1 /*-
2 * Copyright (c) 2010-2012 Citrix Inc.
3 * Copyright (c) 2009-2012,2016-2017 Microsoft Corp.
4 * Copyright (c) 2012 NetApp Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 2004-2006 Kip Macy
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
54
55 #include <sys/cdefs.h>
56 #include "opt_hn.h"
57 #include "opt_inet6.h"
58 #include "opt_inet.h"
59 #include "opt_rss.h"
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/bus.h>
64 #include <sys/counter.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/module.h>
70 #include <sys/queue.h>
71 #include <sys/lock.h>
72 #include <sys/proc.h>
73 #include <sys/rmlock.h>
74 #include <sys/sbuf.h>
75 #include <sys/sched.h>
76 #include <sys/smp.h>
77 #include <sys/socket.h>
78 #include <sys/sockio.h>
79 #include <sys/sx.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 #include <sys/buf_ring.h>
83 #include <sys/eventhandler.h>
84 #include <sys/epoch.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89
90 #include <machine/atomic.h>
91 #include <machine/in_cksum.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/if_var.h>
100 #include <net/rndis.h>
101 #include <net/rss_config.h>
102
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 #include <netinet/tcp.h>
108 #include <netinet/tcp_lro.h>
109 #include <netinet/udp.h>
110
111 #include <dev/hyperv/include/hyperv.h>
112 #include <dev/hyperv/include/hyperv_busdma.h>
113 #include <dev/hyperv/include/vmbus.h>
114 #include <dev/hyperv/include/vmbus_xact.h>
115
116 #include <dev/hyperv/netvsc/ndis.h>
117 #include <dev/hyperv/netvsc/if_hnreg.h>
118 #include <dev/hyperv/netvsc/if_hnvar.h>
119 #include <dev/hyperv/netvsc/hn_nvs.h>
120 #include <dev/hyperv/netvsc/hn_rndis.h>
121
122 #include "vmbus_if.h"
123
124 #define HN_IFSTART_SUPPORT
125
126 #define HN_RING_CNT_DEF_MAX 8
127
128 #define HN_VFMAP_SIZE_DEF 8
129
130 #define HN_XPNT_VF_ATTWAIT_MIN 2 /* seconds */
131
132 /* YYY should get it from the underlying channel */
133 #define HN_TX_DESC_CNT 512
134
135 #define HN_RNDIS_PKT_LEN \
136 (sizeof(struct rndis_packet_msg) + \
137 HN_RNDIS_PKTINFO_SIZE(HN_NDIS_HASH_VALUE_SIZE) + \
138 HN_RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) + \
139 HN_RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) + \
140 HN_RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE))
141 #define HN_RNDIS_PKT_BOUNDARY PAGE_SIZE
142 #define HN_RNDIS_PKT_ALIGN CACHE_LINE_SIZE
143
144 #define HN_TX_DATA_BOUNDARY PAGE_SIZE
145 #define HN_TX_DATA_MAXSIZE IP_MAXPACKET
146 #define HN_TX_DATA_SEGSIZE PAGE_SIZE
147 /* -1 for RNDIS packet message */
148 #define HN_TX_DATA_SEGCNT_MAX (HN_GPACNT_MAX - 1)
149
150 #define HN_DIRECT_TX_SIZE_DEF 128
151
152 #define HN_EARLY_TXEOF_THRESH 8
153
154 #define HN_PKTBUF_LEN_DEF (16 * 1024)
155
156 #define HN_LROENT_CNT_DEF 128
157
158 #define HN_LRO_LENLIM_MULTIRX_DEF (12 * ETHERMTU)
159 #define HN_LRO_LENLIM_DEF (25 * ETHERMTU)
160 /* YYY 2*MTU is a bit rough, but should be good enough. */
161 #define HN_LRO_LENLIM_MIN(ifp) (2 * if_getmtu(ifp))
162
163 #define HN_LRO_ACKCNT_DEF 1
164
165 #define HN_LOCK_INIT(sc) \
166 sx_init(&(sc)->hn_lock, device_get_nameunit((sc)->hn_dev))
167 #define HN_LOCK_DESTROY(sc) sx_destroy(&(sc)->hn_lock)
168 #define HN_LOCK_ASSERT(sc) sx_assert(&(sc)->hn_lock, SA_XLOCKED)
169 #define HN_LOCK(sc) \
170 do { \
171 while (sx_try_xlock(&(sc)->hn_lock) == 0) { \
172 /* Relinquish cpu to avoid deadlock */ \
173 sched_relinquish(curthread); \
174 DELAY(1000); \
175 } \
176 } while (0)
177 #define HN_UNLOCK(sc) sx_xunlock(&(sc)->hn_lock)
178
179 #define HN_CSUM_IP_MASK (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP)
180 #define HN_CSUM_IP6_MASK (CSUM_IP6_TCP | CSUM_IP6_UDP)
181 #define HN_CSUM_IP_HWASSIST(sc) \
182 ((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP_MASK)
183 #define HN_CSUM_IP6_HWASSIST(sc) \
184 ((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP6_MASK)
185
186 #define HN_PKTSIZE_MIN(align) \
187 roundup2(ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN + \
188 HN_RNDIS_PKT_LEN, (align))
189 #define HN_PKTSIZE(m, align) \
190 roundup2((m)->m_pkthdr.len + HN_RNDIS_PKT_LEN, (align))
191
192 #ifdef RSS
193 #define HN_RING_IDX2CPU(sc, idx) rss_getcpu((idx) % rss_getnumbuckets())
194 #else
195 #define HN_RING_IDX2CPU(sc, idx) (((sc)->hn_cpu + (idx)) % mp_ncpus)
196 #endif
197
198 struct hn_txdesc {
199 #ifndef HN_USE_TXDESC_BUFRING
200 SLIST_ENTRY(hn_txdesc) link;
201 #endif
202 STAILQ_ENTRY(hn_txdesc) agg_link;
203
204 /* Aggregated txdescs, in sending order. */
205 STAILQ_HEAD(, hn_txdesc) agg_list;
206
207 /* The oldest packet, if transmission aggregation happens. */
208 struct mbuf *m;
209 struct hn_tx_ring *txr;
210 int refs;
211 uint32_t flags; /* HN_TXD_FLAG_ */
212 struct hn_nvs_sendctx send_ctx;
213 uint32_t chim_index;
214 int chim_size;
215
216 bus_dmamap_t data_dmap;
217
218 bus_addr_t rndis_pkt_paddr;
219 struct rndis_packet_msg *rndis_pkt;
220 bus_dmamap_t rndis_pkt_dmap;
221 };
222
223 #define HN_TXD_FLAG_ONLIST 0x0001
224 #define HN_TXD_FLAG_DMAMAP 0x0002
225 #define HN_TXD_FLAG_ONAGG 0x0004
226
227 #define HN_NDIS_PKTINFO_SUBALLOC 0x01
228 #define HN_NDIS_PKTINFO_1ST_FRAG 0x02
229 #define HN_NDIS_PKTINFO_LAST_FRAG 0x04
230
231 struct packet_info_id {
232 uint8_t ver;
233 uint8_t flag;
234 uint16_t pkt_id;
235 };
236
237 #define NDIS_PKTINFOID_SZ sizeof(struct packet_info_id)
238
239
240 struct hn_rxinfo {
241 const uint32_t *vlan_info;
242 const uint32_t *csum_info;
243 const uint32_t *hash_info;
244 const uint32_t *hash_value;
245 const struct packet_info_id *pktinfo_id;
246 };
247
248 struct hn_rxvf_setarg {
249 struct hn_rx_ring *rxr;
250 if_t vf_ifp;
251 };
252
253 #define HN_RXINFO_VLAN 0x0001
254 #define HN_RXINFO_CSUM 0x0002
255 #define HN_RXINFO_HASHINF 0x0004
256 #define HN_RXINFO_HASHVAL 0x0008
257 #define HN_RXINFO_PKTINFO_ID 0x0010
258 #define HN_RXINFO_ALL \
259 (HN_RXINFO_VLAN | \
260 HN_RXINFO_CSUM | \
261 HN_RXINFO_HASHINF | \
262 HN_RXINFO_HASHVAL | \
263 HN_RXINFO_PKTINFO_ID)
264
265 static int hn_probe(device_t);
266 static int hn_attach(device_t);
267 static int hn_detach(device_t);
268 static int hn_shutdown(device_t);
269 static void hn_chan_callback(struct vmbus_channel *,
270 void *);
271
272 static void hn_init(void *);
273 static int hn_ioctl(if_t, u_long, caddr_t);
274 #ifdef HN_IFSTART_SUPPORT
275 static void hn_start(if_t);
276 #endif
277 static int hn_transmit(if_t, struct mbuf *);
278 static void hn_xmit_qflush(if_t);
279 static int hn_ifmedia_upd(if_t);
280 static void hn_ifmedia_sts(if_t,
281 struct ifmediareq *);
282
283 static void hn_ifnet_event(void *, if_t, int);
284 static void hn_ifaddr_event(void *, if_t);
285 static void hn_ifnet_attevent(void *, if_t);
286 static void hn_ifnet_detevent(void *, if_t);
287 static void hn_ifnet_lnkevent(void *, if_t, int);
288
289 static bool hn_ismyvf(const struct hn_softc *,
290 const if_t);
291 static void hn_rxvf_change(struct hn_softc *,
292 if_t, bool);
293 static void hn_rxvf_set(struct hn_softc *, if_t);
294 static void hn_rxvf_set_task(void *, int);
295 static void hn_xpnt_vf_input(if_t, struct mbuf *);
296 static int hn_xpnt_vf_iocsetflags(struct hn_softc *);
297 static int hn_xpnt_vf_iocsetcaps(struct hn_softc *,
298 struct ifreq *);
299 static void hn_xpnt_vf_saveifflags(struct hn_softc *);
300 static bool hn_xpnt_vf_isready(struct hn_softc *);
301 static void hn_xpnt_vf_setready(struct hn_softc *);
302 static void hn_xpnt_vf_init_taskfunc(void *, int);
303 static void hn_xpnt_vf_init(struct hn_softc *);
304 static void hn_xpnt_vf_setenable(struct hn_softc *);
305 static void hn_xpnt_vf_setdisable(struct hn_softc *, bool);
306 static void hn_vf_rss_fixup(struct hn_softc *, bool);
307 static void hn_vf_rss_restore(struct hn_softc *);
308
309 static int hn_rndis_rxinfo(const void *, int,
310 struct hn_rxinfo *);
311 static void hn_rndis_rx_data(struct hn_rx_ring *,
312 const void *, int);
313 static void hn_rndis_rx_status(struct hn_softc *,
314 const void *, int);
315 static void hn_rndis_init_fixat(struct hn_softc *, int);
316
317 static void hn_nvs_handle_notify(struct hn_softc *,
318 const struct vmbus_chanpkt_hdr *);
319 static void hn_nvs_handle_comp(struct hn_softc *,
320 struct vmbus_channel *,
321 const struct vmbus_chanpkt_hdr *);
322 static void hn_nvs_handle_rxbuf(struct hn_rx_ring *,
323 struct vmbus_channel *,
324 const struct vmbus_chanpkt_hdr *);
325 static void hn_nvs_ack_rxbuf(struct hn_rx_ring *,
326 struct vmbus_channel *, uint64_t);
327
328 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS);
329 static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS);
330 static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS);
331 static int hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS);
332 static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS);
333 static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
334 static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
335 static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS);
336 static int hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS);
337 static int hn_caps_sysctl(SYSCTL_HANDLER_ARGS);
338 static int hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS);
339 static int hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS);
340 #ifndef RSS
341 static int hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS);
342 static int hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS);
343 #endif
344 static int hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS);
345 static int hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS);
346 static int hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS);
347 static int hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS);
348 static int hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS);
349 static int hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS);
350 static int hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS);
351 static int hn_polling_sysctl(SYSCTL_HANDLER_ARGS);
352 static int hn_vf_sysctl(SYSCTL_HANDLER_ARGS);
353 static int hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS);
354 static int hn_vflist_sysctl(SYSCTL_HANDLER_ARGS);
355 static int hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS);
356 static int hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS);
357 static int hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS);
358
359 static void hn_stop(struct hn_softc *, bool);
360 static void hn_init_locked(struct hn_softc *);
361 static int hn_chan_attach(struct hn_softc *,
362 struct vmbus_channel *);
363 static void hn_chan_detach(struct hn_softc *,
364 struct vmbus_channel *);
365 static int hn_attach_subchans(struct hn_softc *);
366 static void hn_detach_allchans(struct hn_softc *);
367 static void hn_chan_rollup(struct hn_rx_ring *,
368 struct hn_tx_ring *);
369 static void hn_set_ring_inuse(struct hn_softc *, int);
370 static int hn_synth_attach(struct hn_softc *, int);
371 static void hn_synth_detach(struct hn_softc *);
372 static int hn_synth_alloc_subchans(struct hn_softc *,
373 int *);
374 static bool hn_synth_attachable(const struct hn_softc *);
375 static void hn_suspend(struct hn_softc *);
376 static void hn_suspend_data(struct hn_softc *);
377 static void hn_suspend_mgmt(struct hn_softc *);
378 static void hn_resume(struct hn_softc *);
379 static void hn_resume_data(struct hn_softc *);
380 static void hn_resume_mgmt(struct hn_softc *);
381 static void hn_suspend_mgmt_taskfunc(void *, int);
382 static void hn_chan_drain(struct hn_softc *,
383 struct vmbus_channel *);
384 static void hn_disable_rx(struct hn_softc *);
385 static void hn_drain_rxtx(struct hn_softc *, int);
386 static void hn_polling(struct hn_softc *, u_int);
387 static void hn_chan_polling(struct vmbus_channel *, u_int);
388 static void hn_mtu_change_fixup(struct hn_softc *);
389
390 static void hn_update_link_status(struct hn_softc *);
391 static void hn_change_network(struct hn_softc *);
392 static void hn_link_taskfunc(void *, int);
393 static void hn_netchg_init_taskfunc(void *, int);
394 static void hn_netchg_status_taskfunc(void *, int);
395 static void hn_link_status(struct hn_softc *);
396
397 static int hn_create_rx_data(struct hn_softc *, int);
398 static void hn_destroy_rx_data(struct hn_softc *);
399 static int hn_check_iplen(const struct mbuf *, int);
400 static void hn_rxpkt_proto(const struct mbuf *, int *, int *);
401 static int hn_set_rxfilter(struct hn_softc *, uint32_t);
402 static int hn_rxfilter_config(struct hn_softc *);
403 static int hn_rss_reconfig(struct hn_softc *);
404 static void hn_rss_ind_fixup(struct hn_softc *);
405 static void hn_rss_mbuf_hash(struct hn_softc *, uint32_t);
406 static int hn_rxpkt(struct hn_rx_ring *);
407 static uint32_t hn_rss_type_fromndis(uint32_t);
408 static uint32_t hn_rss_type_tondis(uint32_t);
409
410 static int hn_tx_ring_create(struct hn_softc *, int);
411 static void hn_tx_ring_destroy(struct hn_tx_ring *);
412 static int hn_create_tx_data(struct hn_softc *, int);
413 static void hn_fixup_tx_data(struct hn_softc *);
414 static void hn_fixup_rx_data(struct hn_softc *);
415 static void hn_destroy_tx_data(struct hn_softc *);
416 static void hn_txdesc_dmamap_destroy(struct hn_txdesc *);
417 static void hn_txdesc_gc(struct hn_tx_ring *,
418 struct hn_txdesc *);
419 static int hn_encap(if_t, struct hn_tx_ring *,
420 struct hn_txdesc *, struct mbuf **);
421 static int hn_txpkt(if_t, struct hn_tx_ring *,
422 struct hn_txdesc *);
423 static void hn_set_chim_size(struct hn_softc *, int);
424 static void hn_set_tso_maxsize(struct hn_softc *, int, int);
425 static bool hn_tx_ring_pending(struct hn_tx_ring *);
426 static void hn_tx_ring_qflush(struct hn_tx_ring *);
427 static void hn_resume_tx(struct hn_softc *, int);
428 static void hn_set_txagg(struct hn_softc *);
429 static void *hn_try_txagg(if_t,
430 struct hn_tx_ring *, struct hn_txdesc *,
431 int);
432 static int hn_get_txswq_depth(const struct hn_tx_ring *);
433 static void hn_txpkt_done(struct hn_nvs_sendctx *,
434 struct hn_softc *, struct vmbus_channel *,
435 const void *, int);
436 static int hn_txpkt_sglist(struct hn_tx_ring *,
437 struct hn_txdesc *);
438 static int hn_txpkt_chim(struct hn_tx_ring *,
439 struct hn_txdesc *);
440 static int hn_xmit(struct hn_tx_ring *, int);
441 static void hn_xmit_taskfunc(void *, int);
442 static void hn_xmit_txeof(struct hn_tx_ring *);
443 static void hn_xmit_txeof_taskfunc(void *, int);
444 #ifdef HN_IFSTART_SUPPORT
445 static int hn_start_locked(struct hn_tx_ring *, int);
446 static void hn_start_taskfunc(void *, int);
447 static void hn_start_txeof(struct hn_tx_ring *);
448 static void hn_start_txeof_taskfunc(void *, int);
449 #endif
450
451 static int hn_rsc_sysctl(SYSCTL_HANDLER_ARGS);
452
453 SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
454 "Hyper-V network interface");
455
456 /* Trust tcp segment verification on host side. */
457 static int hn_trust_hosttcp = 1;
458 SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN,
459 &hn_trust_hosttcp, 0,
460 "Trust tcp segment verification on host side, "
461 "when csum info is missing (global setting)");
462
463 /* Trust udp datagrams verification on host side. */
464 static int hn_trust_hostudp = 1;
465 SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN,
466 &hn_trust_hostudp, 0,
467 "Trust udp datagram verification on host side, "
468 "when csum info is missing (global setting)");
469
470 /* Trust ip packets verification on host side. */
471 static int hn_trust_hostip = 1;
472 SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN,
473 &hn_trust_hostip, 0,
474 "Trust ip packet verification on host side, "
475 "when csum info is missing (global setting)");
476
477 /*
478 * Offload UDP/IPv4 checksum.
479 */
480 static int hn_enable_udp4cs = 1;
481 SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp4cs, CTLFLAG_RDTUN,
482 &hn_enable_udp4cs, 0, "Offload UDP/IPv4 checksum");
483
484 /*
485 * Offload UDP/IPv6 checksum.
486 */
487 static int hn_enable_udp6cs = 1;
488 SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp6cs, CTLFLAG_RDTUN,
489 &hn_enable_udp6cs, 0, "Offload UDP/IPv6 checksum");
490
491 /* Stats. */
492 static counter_u64_t hn_udpcs_fixup;
493 SYSCTL_COUNTER_U64(_hw_hn, OID_AUTO, udpcs_fixup, CTLFLAG_RW,
494 &hn_udpcs_fixup, "# of UDP checksum fixup");
495
496 /*
497 * See hn_set_hlen().
498 *
499 * This value is for Azure. For Hyper-V, set this above
500 * 65536 to disable UDP datagram checksum fixup.
501 */
502 static int hn_udpcs_fixup_mtu = 1420;
503 SYSCTL_INT(_hw_hn, OID_AUTO, udpcs_fixup_mtu, CTLFLAG_RWTUN,
504 &hn_udpcs_fixup_mtu, 0, "UDP checksum fixup MTU threshold");
505
506 /* Limit TSO burst size */
507 static int hn_tso_maxlen = IP_MAXPACKET;
508 SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN,
509 &hn_tso_maxlen, 0, "TSO burst limit");
510
511 /* Limit chimney send size */
512 static int hn_tx_chimney_size = 0;
513 SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN,
514 &hn_tx_chimney_size, 0, "Chimney send packet size limit");
515
516 /* Limit the size of packet for direct transmission */
517 static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF;
518 SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN,
519 &hn_direct_tx_size, 0, "Size of the packet for direct transmission");
520
521 /* # of LRO entries per RX ring */
522 #if defined(INET) || defined(INET6)
523 static int hn_lro_entry_count = HN_LROENT_CNT_DEF;
524 SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN,
525 &hn_lro_entry_count, 0, "LRO entry count");
526 #endif
527
528 static int hn_tx_taskq_cnt = 1;
529 SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_cnt, CTLFLAG_RDTUN,
530 &hn_tx_taskq_cnt, 0, "# of TX taskqueues");
531
532 #define HN_TX_TASKQ_M_INDEP 0
533 #define HN_TX_TASKQ_M_GLOBAL 1
534 #define HN_TX_TASKQ_M_EVTTQ 2
535
536 static int hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP;
537 SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_mode, CTLFLAG_RDTUN,
538 &hn_tx_taskq_mode, 0, "TX taskqueue modes: "
539 "0 - independent, 1 - share global tx taskqs, 2 - share event taskqs");
540
541 #ifndef HN_USE_TXDESC_BUFRING
542 static int hn_use_txdesc_bufring = 0;
543 #else
544 static int hn_use_txdesc_bufring = 1;
545 #endif
546 SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD,
547 &hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors");
548
549 #ifdef HN_IFSTART_SUPPORT
550 /* Use ifnet.if_start instead of ifnet.if_transmit */
551 static int hn_use_if_start = 0;
552 SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN,
553 &hn_use_if_start, 0, "Use if_start TX method");
554 #endif
555
556 /* # of channels to use */
557 static int hn_chan_cnt = 0;
558 SYSCTL_INT(_hw_hn, OID_AUTO, chan_cnt, CTLFLAG_RDTUN,
559 &hn_chan_cnt, 0,
560 "# of channels to use; each channel has one RX ring and one TX ring");
561
562 /* # of transmit rings to use */
563 static int hn_tx_ring_cnt = 0;
564 SYSCTL_INT(_hw_hn, OID_AUTO, tx_ring_cnt, CTLFLAG_RDTUN,
565 &hn_tx_ring_cnt, 0, "# of TX rings to use");
566
567 /* Software TX ring deptch */
568 static int hn_tx_swq_depth = 0;
569 SYSCTL_INT(_hw_hn, OID_AUTO, tx_swq_depth, CTLFLAG_RDTUN,
570 &hn_tx_swq_depth, 0, "Depth of IFQ or BUFRING");
571
572 /* Enable sorted LRO, and the depth of the per-channel mbuf queue */
573 static u_int hn_lro_mbufq_depth = 0;
574 SYSCTL_UINT(_hw_hn, OID_AUTO, lro_mbufq_depth, CTLFLAG_RDTUN,
575 &hn_lro_mbufq_depth, 0, "Depth of LRO mbuf queue");
576
577 /* Packet transmission aggregation size limit */
578 static int hn_tx_agg_size = -1;
579 SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_size, CTLFLAG_RDTUN,
580 &hn_tx_agg_size, 0, "Packet transmission aggregation size limit");
581
582 /* Packet transmission aggregation count limit */
583 static int hn_tx_agg_pkts = -1;
584 SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_pkts, CTLFLAG_RDTUN,
585 &hn_tx_agg_pkts, 0, "Packet transmission aggregation packet limit");
586
587 /* VF list */
588 SYSCTL_PROC(_hw_hn, OID_AUTO, vflist,
589 CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, 0, 0,
590 hn_vflist_sysctl, "A",
591 "VF list");
592
593 /* VF mapping */
594 SYSCTL_PROC(_hw_hn, OID_AUTO, vfmap,
595 CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, 0, 0,
596 hn_vfmap_sysctl, "A",
597 "VF mapping");
598
599 /* Transparent VF */
600 static int hn_xpnt_vf = 1;
601 SYSCTL_INT(_hw_hn, OID_AUTO, vf_transparent, CTLFLAG_RDTUN,
602 &hn_xpnt_vf, 0, "Transparent VF mod");
603
604 /* Accurate BPF support for Transparent VF */
605 static int hn_xpnt_vf_accbpf = 0;
606 SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_accbpf, CTLFLAG_RDTUN,
607 &hn_xpnt_vf_accbpf, 0, "Accurate BPF for transparent VF");
608
609 /* Extra wait for transparent VF attach routing; unit seconds. */
610 static int hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN;
611 SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_attwait, CTLFLAG_RWTUN,
612 &hn_xpnt_vf_attwait, 0,
613 "Extra wait for transparent VF attach routing; unit: seconds");
614
615 static u_int hn_cpu_index; /* next CPU for channel */
616 static struct taskqueue **hn_tx_taskque;/* shared TX taskqueues */
617
618 static struct rmlock hn_vfmap_lock;
619 static int hn_vfmap_size;
620 static if_t *hn_vfmap;
621
622 static const struct hyperv_guid hn_guid = {
623 .hv_guid = {
624 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46,
625 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e }
626 };
627
628 static device_method_t hn_methods[] = {
629 /* Device interface */
630 DEVMETHOD(device_probe, hn_probe),
631 DEVMETHOD(device_attach, hn_attach),
632 DEVMETHOD(device_detach, hn_detach),
633 DEVMETHOD(device_shutdown, hn_shutdown),
634 DEVMETHOD_END
635 };
636
637 static driver_t hn_driver = {
638 "hn",
639 hn_methods,
640 sizeof(struct hn_softc)
641 };
642
643 DRIVER_MODULE(hn, vmbus, hn_driver, 0, 0);
644 MODULE_VERSION(hn, 1);
645 MODULE_DEPEND(hn, vmbus, 1, 1, 1);
646
647 static void
hn_set_lro_lenlim(struct hn_softc * sc,int lenlim)648 hn_set_lro_lenlim(struct hn_softc *sc, int lenlim)
649 {
650 int i;
651
652 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
653 sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim;
654 }
655
656 static int
hn_txpkt_sglist(struct hn_tx_ring * txr,struct hn_txdesc * txd)657 hn_txpkt_sglist(struct hn_tx_ring *txr, struct hn_txdesc *txd)
658 {
659
660 KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID &&
661 txd->chim_size == 0, ("invalid rndis sglist txd"));
662 return (hn_nvs_send_rndis_sglist(txr->hn_chan, HN_NVS_RNDIS_MTYPE_DATA,
663 &txd->send_ctx, txr->hn_gpa, txr->hn_gpa_cnt));
664 }
665
666 static int
hn_txpkt_chim(struct hn_tx_ring * txr,struct hn_txdesc * txd)667 hn_txpkt_chim(struct hn_tx_ring *txr, struct hn_txdesc *txd)
668 {
669 struct hn_nvs_rndis rndis;
670
671 KASSERT(txd->chim_index != HN_NVS_CHIM_IDX_INVALID &&
672 txd->chim_size > 0, ("invalid rndis chim txd"));
673
674 rndis.nvs_type = HN_NVS_TYPE_RNDIS;
675 rndis.nvs_rndis_mtype = HN_NVS_RNDIS_MTYPE_DATA;
676 rndis.nvs_chim_idx = txd->chim_index;
677 rndis.nvs_chim_sz = txd->chim_size;
678
679 return (hn_nvs_send(txr->hn_chan, VMBUS_CHANPKT_FLAG_RC,
680 &rndis, sizeof(rndis), &txd->send_ctx));
681 }
682
683 static __inline uint32_t
hn_chim_alloc(struct hn_softc * sc)684 hn_chim_alloc(struct hn_softc *sc)
685 {
686 int i, bmap_cnt = sc->hn_chim_bmap_cnt;
687 u_long *bmap = sc->hn_chim_bmap;
688 uint32_t ret = HN_NVS_CHIM_IDX_INVALID;
689
690 for (i = 0; i < bmap_cnt; ++i) {
691 int idx;
692
693 idx = ffsl(~bmap[i]);
694 if (idx == 0)
695 continue;
696
697 --idx; /* ffsl is 1-based */
698 KASSERT(i * LONG_BIT + idx < sc->hn_chim_cnt,
699 ("invalid i %d and idx %d", i, idx));
700
701 if (atomic_testandset_long(&bmap[i], idx))
702 continue;
703
704 ret = i * LONG_BIT + idx;
705 break;
706 }
707 return (ret);
708 }
709
710 static __inline void
hn_chim_free(struct hn_softc * sc,uint32_t chim_idx)711 hn_chim_free(struct hn_softc *sc, uint32_t chim_idx)
712 {
713 u_long mask;
714 uint32_t idx;
715
716 idx = chim_idx / LONG_BIT;
717 KASSERT(idx < sc->hn_chim_bmap_cnt,
718 ("invalid chimney index 0x%x", chim_idx));
719
720 mask = 1UL << (chim_idx % LONG_BIT);
721 KASSERT(sc->hn_chim_bmap[idx] & mask,
722 ("index bitmap 0x%lx, chimney index %u, "
723 "bitmap idx %d, bitmask 0x%lx",
724 sc->hn_chim_bmap[idx], chim_idx, idx, mask));
725
726 atomic_clear_long(&sc->hn_chim_bmap[idx], mask);
727 }
728
729 #if defined(INET6) || defined(INET)
730
731 #define PULLUP_HDR(m, len) \
732 do { \
733 if (__predict_false((m)->m_len < (len))) { \
734 (m) = m_pullup((m), (len)); \
735 if ((m) == NULL) \
736 return (NULL); \
737 } \
738 } while (0)
739
740 /*
741 * NOTE: If this function failed, the m_head would be freed.
742 */
743 static __inline struct mbuf *
hn_tso_fixup(struct mbuf * m_head)744 hn_tso_fixup(struct mbuf *m_head)
745 {
746 struct ether_vlan_header *evl;
747 struct tcphdr *th;
748 int ehlen;
749
750 KASSERT(M_WRITABLE(m_head), ("TSO mbuf not writable"));
751
752 PULLUP_HDR(m_head, sizeof(*evl));
753 evl = mtod(m_head, struct ether_vlan_header *);
754 if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN))
755 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
756 else
757 ehlen = ETHER_HDR_LEN;
758 m_head->m_pkthdr.l2hlen = ehlen;
759
760 #ifdef INET
761 if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) {
762 struct ip *ip;
763 int iphlen;
764
765 PULLUP_HDR(m_head, ehlen + sizeof(*ip));
766 ip = mtodo(m_head, ehlen);
767 iphlen = ip->ip_hl << 2;
768 m_head->m_pkthdr.l3hlen = iphlen;
769
770 PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th));
771 th = mtodo(m_head, ehlen + iphlen);
772
773 ip->ip_len = 0;
774 ip->ip_sum = 0;
775 th->th_sum = in_pseudo(ip->ip_src.s_addr,
776 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
777 }
778 #endif
779 #if defined(INET6) && defined(INET)
780 else
781 #endif
782 #ifdef INET6
783 {
784 struct ip6_hdr *ip6;
785
786 PULLUP_HDR(m_head, ehlen + sizeof(*ip6));
787 ip6 = mtodo(m_head, ehlen);
788 if (ip6->ip6_nxt != IPPROTO_TCP) {
789 m_freem(m_head);
790 return (NULL);
791 }
792 m_head->m_pkthdr.l3hlen = sizeof(*ip6);
793
794 PULLUP_HDR(m_head, ehlen + sizeof(*ip6) + sizeof(*th));
795 th = mtodo(m_head, ehlen + sizeof(*ip6));
796
797 ip6->ip6_plen = 0;
798 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
799 }
800 #endif
801 return (m_head);
802 }
803
804 /*
805 * NOTE: If this function failed, the m_head would be freed.
806 */
807 static __inline struct mbuf *
hn_set_hlen(struct mbuf * m_head)808 hn_set_hlen(struct mbuf *m_head)
809 {
810 const struct ether_vlan_header *evl;
811 int ehlen;
812
813 PULLUP_HDR(m_head, sizeof(*evl));
814 evl = mtod(m_head, const struct ether_vlan_header *);
815 if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN))
816 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
817 else
818 ehlen = ETHER_HDR_LEN;
819 m_head->m_pkthdr.l2hlen = ehlen;
820
821 #ifdef INET
822 if (m_head->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP_UDP)) {
823 const struct ip *ip;
824 int iphlen;
825
826 PULLUP_HDR(m_head, ehlen + sizeof(*ip));
827 ip = mtodo(m_head, ehlen);
828 iphlen = ip->ip_hl << 2;
829 m_head->m_pkthdr.l3hlen = iphlen;
830
831 /*
832 * UDP checksum offload does not work in Azure, if the
833 * following conditions meet:
834 * - sizeof(IP hdr + UDP hdr + payload) > 1420.
835 * - IP_DF is not set in the IP hdr.
836 *
837 * Fallback to software checksum for these UDP datagrams.
838 */
839 if ((m_head->m_pkthdr.csum_flags & CSUM_IP_UDP) &&
840 m_head->m_pkthdr.len > hn_udpcs_fixup_mtu + ehlen &&
841 (ntohs(ip->ip_off) & IP_DF) == 0) {
842 uint16_t off = ehlen + iphlen;
843
844 counter_u64_add(hn_udpcs_fixup, 1);
845 PULLUP_HDR(m_head, off + sizeof(struct udphdr));
846 *(uint16_t *)(m_head->m_data + off +
847 m_head->m_pkthdr.csum_data) = in_cksum_skip(
848 m_head, m_head->m_pkthdr.len, off);
849 m_head->m_pkthdr.csum_flags &= ~CSUM_IP_UDP;
850 }
851 }
852 #endif
853 #if defined(INET6) && defined(INET)
854 else
855 #endif
856 #ifdef INET6
857 {
858 const struct ip6_hdr *ip6;
859
860 PULLUP_HDR(m_head, ehlen + sizeof(*ip6));
861 ip6 = mtodo(m_head, ehlen);
862 if (ip6->ip6_nxt != IPPROTO_TCP &&
863 ip6->ip6_nxt != IPPROTO_UDP) {
864 m_freem(m_head);
865 return (NULL);
866 }
867 m_head->m_pkthdr.l3hlen = sizeof(*ip6);
868 }
869 #endif
870 return (m_head);
871 }
872
873 /*
874 * NOTE: If this function failed, the m_head would be freed.
875 */
876 static __inline struct mbuf *
hn_check_tcpsyn(struct mbuf * m_head,int * tcpsyn)877 hn_check_tcpsyn(struct mbuf *m_head, int *tcpsyn)
878 {
879 const struct tcphdr *th;
880 int ehlen, iphlen;
881
882 *tcpsyn = 0;
883 ehlen = m_head->m_pkthdr.l2hlen;
884 iphlen = m_head->m_pkthdr.l3hlen;
885
886 PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th));
887 th = mtodo(m_head, ehlen + iphlen);
888 if (tcp_get_flags(th) & TH_SYN)
889 *tcpsyn = 1;
890 return (m_head);
891 }
892
893 #undef PULLUP_HDR
894
895 #endif /* INET6 || INET */
896
897 static int
hn_set_rxfilter(struct hn_softc * sc,uint32_t filter)898 hn_set_rxfilter(struct hn_softc *sc, uint32_t filter)
899 {
900 int error = 0;
901
902 HN_LOCK_ASSERT(sc);
903
904 if (sc->hn_rx_filter != filter) {
905 error = hn_rndis_set_rxfilter(sc, filter);
906 if (!error)
907 sc->hn_rx_filter = filter;
908 }
909 return (error);
910 }
911
912 static int
hn_rxfilter_config(struct hn_softc * sc)913 hn_rxfilter_config(struct hn_softc *sc)
914 {
915 if_t ifp = sc->hn_ifp;
916 uint32_t filter;
917
918 HN_LOCK_ASSERT(sc);
919
920 /*
921 * If the non-transparent mode VF is activated, we don't know how
922 * its RX filter is configured, so stick the synthetic device in
923 * the promiscous mode.
924 */
925 if ((if_getflags(ifp) & IFF_PROMISC) || (sc->hn_flags & HN_FLAG_RXVF)) {
926 filter = NDIS_PACKET_TYPE_PROMISCUOUS;
927 } else {
928 filter = NDIS_PACKET_TYPE_DIRECTED;
929 if (if_getflags(ifp) & IFF_BROADCAST)
930 filter |= NDIS_PACKET_TYPE_BROADCAST;
931 /* TODO: support multicast list */
932 if ((if_getflags(ifp) & IFF_ALLMULTI) ||
933 !if_maddr_empty(ifp))
934 filter |= NDIS_PACKET_TYPE_ALL_MULTICAST;
935 }
936 return (hn_set_rxfilter(sc, filter));
937 }
938
939 static void
hn_set_txagg(struct hn_softc * sc)940 hn_set_txagg(struct hn_softc *sc)
941 {
942 uint32_t size, pkts;
943 int i;
944
945 /*
946 * Setup aggregation size.
947 */
948 if (sc->hn_agg_size < 0)
949 size = UINT32_MAX;
950 else
951 size = sc->hn_agg_size;
952
953 if (sc->hn_rndis_agg_size < size)
954 size = sc->hn_rndis_agg_size;
955
956 /* NOTE: We only aggregate packets using chimney sending buffers. */
957 if (size > (uint32_t)sc->hn_chim_szmax)
958 size = sc->hn_chim_szmax;
959
960 if (size <= 2 * HN_PKTSIZE_MIN(sc->hn_rndis_agg_align)) {
961 /* Disable */
962 size = 0;
963 pkts = 0;
964 goto done;
965 }
966
967 /* NOTE: Type of the per TX ring setting is 'int'. */
968 if (size > INT_MAX)
969 size = INT_MAX;
970
971 /*
972 * Setup aggregation packet count.
973 */
974 if (sc->hn_agg_pkts < 0)
975 pkts = UINT32_MAX;
976 else
977 pkts = sc->hn_agg_pkts;
978
979 if (sc->hn_rndis_agg_pkts < pkts)
980 pkts = sc->hn_rndis_agg_pkts;
981
982 if (pkts <= 1) {
983 /* Disable */
984 size = 0;
985 pkts = 0;
986 goto done;
987 }
988
989 /* NOTE: Type of the per TX ring setting is 'short'. */
990 if (pkts > SHRT_MAX)
991 pkts = SHRT_MAX;
992
993 done:
994 /* NOTE: Type of the per TX ring setting is 'short'. */
995 if (sc->hn_rndis_agg_align > SHRT_MAX) {
996 /* Disable */
997 size = 0;
998 pkts = 0;
999 }
1000
1001 if (bootverbose) {
1002 if_printf(sc->hn_ifp, "TX agg size %u, pkts %u, align %u\n",
1003 size, pkts, sc->hn_rndis_agg_align);
1004 }
1005
1006 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
1007 struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
1008
1009 mtx_lock(&txr->hn_tx_lock);
1010 txr->hn_agg_szmax = size;
1011 txr->hn_agg_pktmax = pkts;
1012 txr->hn_agg_align = sc->hn_rndis_agg_align;
1013 mtx_unlock(&txr->hn_tx_lock);
1014 }
1015 }
1016
1017 static int
hn_get_txswq_depth(const struct hn_tx_ring * txr)1018 hn_get_txswq_depth(const struct hn_tx_ring *txr)
1019 {
1020
1021 KASSERT(txr->hn_txdesc_cnt > 0, ("tx ring is not setup yet"));
1022 if (hn_tx_swq_depth < txr->hn_txdesc_cnt)
1023 return txr->hn_txdesc_cnt;
1024 return hn_tx_swq_depth;
1025 }
1026
1027 static int
hn_rss_reconfig(struct hn_softc * sc)1028 hn_rss_reconfig(struct hn_softc *sc)
1029 {
1030 int error;
1031
1032 HN_LOCK_ASSERT(sc);
1033
1034 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
1035 return (ENXIO);
1036
1037 /*
1038 * Disable RSS first.
1039 *
1040 * NOTE:
1041 * Direct reconfiguration by setting the UNCHG flags does
1042 * _not_ work properly.
1043 */
1044 if (bootverbose)
1045 if_printf(sc->hn_ifp, "disable RSS\n");
1046 error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_DISABLE);
1047 if (error) {
1048 if_printf(sc->hn_ifp, "RSS disable failed\n");
1049 return (error);
1050 }
1051
1052 /*
1053 * Reenable the RSS w/ the updated RSS key or indirect
1054 * table.
1055 */
1056 if (bootverbose)
1057 if_printf(sc->hn_ifp, "reconfig RSS\n");
1058 error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE);
1059 if (error) {
1060 if_printf(sc->hn_ifp, "RSS reconfig failed\n");
1061 return (error);
1062 }
1063 return (0);
1064 }
1065
1066 static void
hn_rss_ind_fixup(struct hn_softc * sc)1067 hn_rss_ind_fixup(struct hn_softc *sc)
1068 {
1069 struct ndis_rssprm_toeplitz *rss = &sc->hn_rss;
1070 int i, nchan;
1071
1072 nchan = sc->hn_rx_ring_inuse;
1073 KASSERT(nchan > 1, ("invalid # of channels %d", nchan));
1074
1075 /*
1076 * Check indirect table to make sure that all channels in it
1077 * can be used.
1078 */
1079 for (i = 0; i < NDIS_HASH_INDCNT; ++i) {
1080 if (rss->rss_ind[i] >= nchan) {
1081 if_printf(sc->hn_ifp,
1082 "RSS indirect table %d fixup: %u -> %d\n",
1083 i, rss->rss_ind[i], nchan - 1);
1084 rss->rss_ind[i] = nchan - 1;
1085 }
1086 }
1087 }
1088
1089 static int
hn_ifmedia_upd(if_t ifp __unused)1090 hn_ifmedia_upd(if_t ifp __unused)
1091 {
1092
1093 /* Ignore since autoselect is the only defined and valid media */
1094 return (0);
1095 }
1096
1097 static void
hn_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)1098 hn_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1099 {
1100 struct hn_softc *sc = if_getsoftc(ifp);
1101
1102 ifmr->ifm_status = IFM_AVALID;
1103 ifmr->ifm_active = IFM_ETHER;
1104
1105 if ((sc->hn_link_flags & HN_LINK_FLAG_LINKUP) == 0) {
1106 ifmr->ifm_active |= IFM_NONE;
1107 return;
1108 }
1109 ifmr->ifm_status |= IFM_ACTIVE;
1110 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
1111 }
1112
1113 static void
hn_rxvf_set_task(void * xarg,int pending __unused)1114 hn_rxvf_set_task(void *xarg, int pending __unused)
1115 {
1116 struct hn_rxvf_setarg *arg = xarg;
1117
1118 arg->rxr->hn_rxvf_ifp = arg->vf_ifp;
1119 }
1120
1121 static void
hn_rxvf_set(struct hn_softc * sc,if_t vf_ifp)1122 hn_rxvf_set(struct hn_softc *sc, if_t vf_ifp)
1123 {
1124 struct hn_rx_ring *rxr;
1125 struct hn_rxvf_setarg arg;
1126 struct task task;
1127 int i;
1128
1129 HN_LOCK_ASSERT(sc);
1130
1131 TASK_INIT(&task, 0, hn_rxvf_set_task, &arg);
1132
1133 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
1134 rxr = &sc->hn_rx_ring[i];
1135
1136 if (i < sc->hn_rx_ring_inuse) {
1137 arg.rxr = rxr;
1138 arg.vf_ifp = vf_ifp;
1139 vmbus_chan_run_task(rxr->hn_chan, &task);
1140 } else {
1141 rxr->hn_rxvf_ifp = vf_ifp;
1142 }
1143 }
1144 }
1145
1146 static bool
hn_ismyvf(const struct hn_softc * sc,const if_t ifp)1147 hn_ismyvf(const struct hn_softc *sc, const if_t ifp)
1148 {
1149 if_t hn_ifp;
1150
1151 hn_ifp = sc->hn_ifp;
1152
1153 if (ifp == hn_ifp)
1154 return (false);
1155
1156 if (if_getalloctype(ifp) != IFT_ETHER)
1157 return (false);
1158
1159 /* Ignore lagg/vlan interfaces */
1160 if (strcmp(if_getdname(ifp), "lagg") == 0 ||
1161 strcmp(if_getdname(ifp), "vlan") == 0)
1162 return (false);
1163
1164 /*
1165 * During detach events if_getifaddr(ifp) might be NULL.
1166 * Make sure the bcmp() below doesn't panic on that:
1167 */
1168 if (if_getifaddr(ifp) == NULL || if_getifaddr(hn_ifp) == NULL)
1169 return (false);
1170
1171 if (bcmp(if_getlladdr(ifp), if_getlladdr(hn_ifp), ETHER_ADDR_LEN) != 0)
1172 return (false);
1173
1174 return (true);
1175 }
1176
1177 static void
hn_rxvf_change(struct hn_softc * sc,if_t ifp,bool rxvf)1178 hn_rxvf_change(struct hn_softc *sc, if_t ifp, bool rxvf)
1179 {
1180 if_t hn_ifp;
1181
1182 HN_LOCK(sc);
1183
1184 if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
1185 goto out;
1186
1187 if (!hn_ismyvf(sc, ifp))
1188 goto out;
1189 hn_ifp = sc->hn_ifp;
1190
1191 if (rxvf) {
1192 if (sc->hn_flags & HN_FLAG_RXVF)
1193 goto out;
1194
1195 sc->hn_flags |= HN_FLAG_RXVF;
1196 hn_rxfilter_config(sc);
1197 } else {
1198 if (!(sc->hn_flags & HN_FLAG_RXVF))
1199 goto out;
1200
1201 sc->hn_flags &= ~HN_FLAG_RXVF;
1202 if (if_getdrvflags(hn_ifp) & IFF_DRV_RUNNING)
1203 hn_rxfilter_config(sc);
1204 else
1205 hn_set_rxfilter(sc, NDIS_PACKET_TYPE_NONE);
1206 }
1207
1208 hn_nvs_set_datapath(sc,
1209 rxvf ? HN_NVS_DATAPATH_VF : HN_NVS_DATAPATH_SYNTH);
1210
1211 hn_rxvf_set(sc, rxvf ? ifp : NULL);
1212
1213 if (rxvf) {
1214 hn_vf_rss_fixup(sc, true);
1215 hn_suspend_mgmt(sc);
1216 sc->hn_link_flags &=
1217 ~(HN_LINK_FLAG_LINKUP | HN_LINK_FLAG_NETCHG);
1218 if_link_state_change(hn_ifp, LINK_STATE_DOWN);
1219 } else {
1220 hn_vf_rss_restore(sc);
1221 hn_resume_mgmt(sc);
1222 }
1223
1224 devctl_notify("HYPERV_NIC_VF", if_name(hn_ifp),
1225 rxvf ? "VF_UP" : "VF_DOWN", NULL);
1226
1227 if (bootverbose) {
1228 if_printf(hn_ifp, "datapath is switched %s %s\n",
1229 rxvf ? "to" : "from", if_name(ifp));
1230 }
1231 out:
1232 HN_UNLOCK(sc);
1233 }
1234
1235 static void
hn_ifnet_event(void * arg,if_t ifp,int event)1236 hn_ifnet_event(void *arg, if_t ifp, int event)
1237 {
1238
1239 if (event != IFNET_EVENT_UP && event != IFNET_EVENT_DOWN)
1240 return;
1241 hn_rxvf_change(arg, ifp, event == IFNET_EVENT_UP);
1242 }
1243
1244 static void
hn_ifaddr_event(void * arg,if_t ifp)1245 hn_ifaddr_event(void *arg, if_t ifp)
1246 {
1247
1248 hn_rxvf_change(arg, ifp, if_getflags(ifp) & IFF_UP);
1249 }
1250
1251 static int
hn_xpnt_vf_iocsetcaps(struct hn_softc * sc,struct ifreq * ifr __unused)1252 hn_xpnt_vf_iocsetcaps(struct hn_softc *sc, struct ifreq *ifr __unused)
1253 {
1254 if_t ifp, vf_ifp;
1255
1256 HN_LOCK_ASSERT(sc);
1257 ifp = sc->hn_ifp;
1258 vf_ifp = sc->hn_vf_ifp;
1259
1260 /*
1261 * Just sync up with VF's enabled capabilities.
1262 */
1263 if_setcapenable(ifp, if_getcapenable(vf_ifp));
1264 if_sethwassist(ifp, if_gethwassist(vf_ifp));
1265
1266 return (0);
1267 }
1268
1269 static int
hn_xpnt_vf_iocsetflags(struct hn_softc * sc)1270 hn_xpnt_vf_iocsetflags(struct hn_softc *sc)
1271 {
1272 if_t vf_ifp;
1273 struct ifreq ifr;
1274
1275 HN_LOCK_ASSERT(sc);
1276 vf_ifp = sc->hn_vf_ifp;
1277
1278 memset(&ifr, 0, sizeof(ifr));
1279 strlcpy(ifr.ifr_name, if_name(vf_ifp), sizeof(ifr.ifr_name));
1280 ifr.ifr_flags = if_getflags(vf_ifp) & 0xffff;
1281 ifr.ifr_flagshigh = if_getflags(vf_ifp) >> 16;
1282 return (ifhwioctl(SIOCSIFFLAGS, vf_ifp, (caddr_t)&ifr, curthread));
1283 }
1284
1285 static void
hn_xpnt_vf_saveifflags(struct hn_softc * sc)1286 hn_xpnt_vf_saveifflags(struct hn_softc *sc)
1287 {
1288 if_t ifp = sc->hn_ifp;
1289 int allmulti = 0;
1290
1291 HN_LOCK_ASSERT(sc);
1292
1293 /* XXX vlan(4) style mcast addr maintenance */
1294 if (!if_maddr_empty(ifp))
1295 allmulti = IFF_ALLMULTI;
1296
1297 /* Always set the VF's if_flags */
1298 if_setflags(sc->hn_vf_ifp, if_getflags(ifp) | allmulti);
1299 }
1300
1301 static void
hn_xpnt_vf_input(if_t vf_ifp,struct mbuf * m)1302 hn_xpnt_vf_input(if_t vf_ifp, struct mbuf *m)
1303 {
1304 struct rm_priotracker pt;
1305 if_t hn_ifp = NULL;
1306 struct mbuf *mn;
1307
1308 /*
1309 * XXX racy, if hn(4) ever detached.
1310 */
1311 rm_rlock(&hn_vfmap_lock, &pt);
1312 if (if_getindex(vf_ifp) < hn_vfmap_size)
1313 hn_ifp = hn_vfmap[if_getindex(vf_ifp)];
1314 rm_runlock(&hn_vfmap_lock, &pt);
1315
1316 if (hn_ifp != NULL) {
1317 for (mn = m; mn != NULL; mn = mn->m_nextpkt) {
1318 /*
1319 * Allow tapping on the VF.
1320 */
1321 ETHER_BPF_MTAP(vf_ifp, mn);
1322
1323 /*
1324 * Update VF stats.
1325 */
1326 if ((if_getcapenable(vf_ifp) & IFCAP_HWSTATS) == 0) {
1327 if_inc_counter(vf_ifp, IFCOUNTER_IBYTES,
1328 mn->m_pkthdr.len);
1329 }
1330 /*
1331 * XXX IFCOUNTER_IMCAST
1332 * This stat updating is kinda invasive, since it
1333 * requires two checks on the mbuf: the length check
1334 * and the ethernet header check. As of this write,
1335 * all multicast packets go directly to hn(4), which
1336 * makes imcast stat updating in the VF a try in vian.
1337 */
1338
1339 /*
1340 * Fix up rcvif and increase hn(4)'s ipackets.
1341 */
1342 mn->m_pkthdr.rcvif = hn_ifp;
1343 if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1);
1344 }
1345 /*
1346 * Go through hn(4)'s if_input.
1347 */
1348 if_input(hn_ifp, m);
1349 } else {
1350 /*
1351 * In the middle of the transition; free this
1352 * mbuf chain.
1353 */
1354 while (m != NULL) {
1355 mn = m->m_nextpkt;
1356 m->m_nextpkt = NULL;
1357 m_freem(m);
1358 m = mn;
1359 }
1360 }
1361 }
1362
1363 static void
hn_mtu_change_fixup(struct hn_softc * sc)1364 hn_mtu_change_fixup(struct hn_softc *sc)
1365 {
1366 if_t ifp;
1367
1368 HN_LOCK_ASSERT(sc);
1369 ifp = sc->hn_ifp;
1370
1371 hn_set_tso_maxsize(sc, hn_tso_maxlen, if_getmtu(ifp));
1372 if (sc->hn_rx_ring[0].hn_lro.lro_length_lim < HN_LRO_LENLIM_MIN(ifp))
1373 hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MIN(ifp));
1374 }
1375
1376 static uint32_t
hn_rss_type_fromndis(uint32_t rss_hash)1377 hn_rss_type_fromndis(uint32_t rss_hash)
1378 {
1379 uint32_t types = 0;
1380
1381 if (rss_hash & NDIS_HASH_IPV4)
1382 types |= RSS_TYPE_IPV4;
1383 if (rss_hash & NDIS_HASH_TCP_IPV4)
1384 types |= RSS_TYPE_TCP_IPV4;
1385 if (rss_hash & NDIS_HASH_IPV6)
1386 types |= RSS_TYPE_IPV6;
1387 if (rss_hash & NDIS_HASH_IPV6_EX)
1388 types |= RSS_TYPE_IPV6_EX;
1389 if (rss_hash & NDIS_HASH_TCP_IPV6)
1390 types |= RSS_TYPE_TCP_IPV6;
1391 if (rss_hash & NDIS_HASH_TCP_IPV6_EX)
1392 types |= RSS_TYPE_TCP_IPV6_EX;
1393 if (rss_hash & NDIS_HASH_UDP_IPV4_X)
1394 types |= RSS_TYPE_UDP_IPV4;
1395 return (types);
1396 }
1397
1398 static uint32_t
hn_rss_type_tondis(uint32_t types)1399 hn_rss_type_tondis(uint32_t types)
1400 {
1401 uint32_t rss_hash = 0;
1402
1403 KASSERT((types & (RSS_TYPE_UDP_IPV6 | RSS_TYPE_UDP_IPV6_EX)) == 0,
1404 ("UDP6 and UDP6EX are not supported"));
1405
1406 if (types & RSS_TYPE_IPV4)
1407 rss_hash |= NDIS_HASH_IPV4;
1408 if (types & RSS_TYPE_TCP_IPV4)
1409 rss_hash |= NDIS_HASH_TCP_IPV4;
1410 if (types & RSS_TYPE_IPV6)
1411 rss_hash |= NDIS_HASH_IPV6;
1412 if (types & RSS_TYPE_IPV6_EX)
1413 rss_hash |= NDIS_HASH_IPV6_EX;
1414 if (types & RSS_TYPE_TCP_IPV6)
1415 rss_hash |= NDIS_HASH_TCP_IPV6;
1416 if (types & RSS_TYPE_TCP_IPV6_EX)
1417 rss_hash |= NDIS_HASH_TCP_IPV6_EX;
1418 if (types & RSS_TYPE_UDP_IPV4)
1419 rss_hash |= NDIS_HASH_UDP_IPV4_X;
1420 return (rss_hash);
1421 }
1422
1423 static void
hn_rss_mbuf_hash(struct hn_softc * sc,uint32_t mbuf_hash)1424 hn_rss_mbuf_hash(struct hn_softc *sc, uint32_t mbuf_hash)
1425 {
1426 int i;
1427
1428 HN_LOCK_ASSERT(sc);
1429
1430 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
1431 sc->hn_rx_ring[i].hn_mbuf_hash = mbuf_hash;
1432 }
1433
1434 static void
hn_vf_rss_fixup(struct hn_softc * sc,bool reconf)1435 hn_vf_rss_fixup(struct hn_softc *sc, bool reconf)
1436 {
1437 if_t ifp, vf_ifp;
1438 struct ifrsshash ifrh;
1439 struct ifrsskey ifrk;
1440 int error;
1441 uint32_t my_types, diff_types, mbuf_types = 0;
1442
1443 HN_LOCK_ASSERT(sc);
1444 KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
1445 ("%s: synthetic parts are not attached", if_name(sc->hn_ifp)));
1446
1447 if (sc->hn_rx_ring_inuse == 1) {
1448 /* No RSS on synthetic parts; done. */
1449 return;
1450 }
1451 if ((sc->hn_rss_hcap & NDIS_HASH_FUNCTION_TOEPLITZ) == 0) {
1452 /* Synthetic parts do not support Toeplitz; done. */
1453 return;
1454 }
1455
1456 ifp = sc->hn_ifp;
1457 vf_ifp = sc->hn_vf_ifp;
1458
1459 /*
1460 * Extract VF's RSS key. Only 40 bytes key for Toeplitz is
1461 * supported.
1462 */
1463 memset(&ifrk, 0, sizeof(ifrk));
1464 strlcpy(ifrk.ifrk_name, if_name(vf_ifp), sizeof(ifrk.ifrk_name));
1465 error = ifhwioctl(SIOCGIFRSSKEY, vf_ifp, (caddr_t)&ifrk, curthread);
1466 if (error) {
1467 if_printf(ifp, "%s SIOCGIFRSSKEY failed: %d\n",
1468 if_name(vf_ifp), error);
1469 goto done;
1470 }
1471 if (ifrk.ifrk_func != RSS_FUNC_TOEPLITZ) {
1472 if_printf(ifp, "%s RSS function %u is not Toeplitz\n",
1473 if_name(vf_ifp), ifrk.ifrk_func);
1474 goto done;
1475 }
1476 if (ifrk.ifrk_keylen != NDIS_HASH_KEYSIZE_TOEPLITZ) {
1477 if_printf(ifp, "%s invalid RSS Toeplitz key length %d\n",
1478 if_name(vf_ifp), ifrk.ifrk_keylen);
1479 goto done;
1480 }
1481
1482 /*
1483 * Extract VF's RSS hash. Only Toeplitz is supported.
1484 */
1485 memset(&ifrh, 0, sizeof(ifrh));
1486 strlcpy(ifrh.ifrh_name, if_name(vf_ifp), sizeof(ifrh.ifrh_name));
1487 error = ifhwioctl(SIOCGIFRSSHASH, vf_ifp, (caddr_t)&ifrh, curthread);
1488 if (error) {
1489 if_printf(ifp, "%s SIOCGRSSHASH failed: %d\n",
1490 if_name(vf_ifp), error);
1491 goto done;
1492 }
1493 if (ifrh.ifrh_func != RSS_FUNC_TOEPLITZ) {
1494 if_printf(ifp, "%s RSS function %u is not Toeplitz\n",
1495 if_name(vf_ifp), ifrh.ifrh_func);
1496 goto done;
1497 }
1498
1499 my_types = hn_rss_type_fromndis(sc->hn_rss_hcap);
1500 if ((ifrh.ifrh_types & my_types) == 0) {
1501 /* This disables RSS; ignore it then */
1502 if_printf(ifp, "%s intersection of RSS types failed. "
1503 "VF %#x, mine %#x\n", if_name(vf_ifp),
1504 ifrh.ifrh_types, my_types);
1505 goto done;
1506 }
1507
1508 diff_types = my_types ^ ifrh.ifrh_types;
1509 my_types &= ifrh.ifrh_types;
1510 mbuf_types = my_types;
1511
1512 /*
1513 * Detect RSS hash value/type confliction.
1514 *
1515 * NOTE:
1516 * We don't disable the hash type, but stop delivery the hash
1517 * value/type through mbufs on RX path.
1518 *
1519 * XXX If HN_CAP_UDPHASH is set in hn_caps, then UDP 4-tuple
1520 * hash is delivered with type of TCP_IPV4. This means if
1521 * UDP_IPV4 is enabled, then TCP_IPV4 should be forced, at
1522 * least to hn_mbuf_hash. However, given that _all_ of the
1523 * NICs implement TCP_IPV4, this will _not_ impose any issues
1524 * here.
1525 */
1526 if ((my_types & RSS_TYPE_IPV4) &&
1527 (diff_types & ifrh.ifrh_types &
1528 (RSS_TYPE_TCP_IPV4 | RSS_TYPE_UDP_IPV4))) {
1529 /* Conflict; disable IPV4 hash type/value delivery. */
1530 if_printf(ifp, "disable IPV4 mbuf hash delivery\n");
1531 mbuf_types &= ~RSS_TYPE_IPV4;
1532 }
1533 if ((my_types & RSS_TYPE_IPV6) &&
1534 (diff_types & ifrh.ifrh_types &
1535 (RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 |
1536 RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX |
1537 RSS_TYPE_IPV6_EX))) {
1538 /* Conflict; disable IPV6 hash type/value delivery. */
1539 if_printf(ifp, "disable IPV6 mbuf hash delivery\n");
1540 mbuf_types &= ~RSS_TYPE_IPV6;
1541 }
1542 if ((my_types & RSS_TYPE_IPV6_EX) &&
1543 (diff_types & ifrh.ifrh_types &
1544 (RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 |
1545 RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX |
1546 RSS_TYPE_IPV6))) {
1547 /* Conflict; disable IPV6_EX hash type/value delivery. */
1548 if_printf(ifp, "disable IPV6_EX mbuf hash delivery\n");
1549 mbuf_types &= ~RSS_TYPE_IPV6_EX;
1550 }
1551 if ((my_types & RSS_TYPE_TCP_IPV6) &&
1552 (diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6_EX)) {
1553 /* Conflict; disable TCP_IPV6 hash type/value delivery. */
1554 if_printf(ifp, "disable TCP_IPV6 mbuf hash delivery\n");
1555 mbuf_types &= ~RSS_TYPE_TCP_IPV6;
1556 }
1557 if ((my_types & RSS_TYPE_TCP_IPV6_EX) &&
1558 (diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6)) {
1559 /* Conflict; disable TCP_IPV6_EX hash type/value delivery. */
1560 if_printf(ifp, "disable TCP_IPV6_EX mbuf hash delivery\n");
1561 mbuf_types &= ~RSS_TYPE_TCP_IPV6_EX;
1562 }
1563 if ((my_types & RSS_TYPE_UDP_IPV6) &&
1564 (diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6_EX)) {
1565 /* Conflict; disable UDP_IPV6 hash type/value delivery. */
1566 if_printf(ifp, "disable UDP_IPV6 mbuf hash delivery\n");
1567 mbuf_types &= ~RSS_TYPE_UDP_IPV6;
1568 }
1569 if ((my_types & RSS_TYPE_UDP_IPV6_EX) &&
1570 (diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6)) {
1571 /* Conflict; disable UDP_IPV6_EX hash type/value delivery. */
1572 if_printf(ifp, "disable UDP_IPV6_EX mbuf hash delivery\n");
1573 mbuf_types &= ~RSS_TYPE_UDP_IPV6_EX;
1574 }
1575
1576 /*
1577 * Indirect table does not matter.
1578 */
1579
1580 sc->hn_rss_hash = (sc->hn_rss_hcap & NDIS_HASH_FUNCTION_MASK) |
1581 hn_rss_type_tondis(my_types);
1582 memcpy(sc->hn_rss.rss_key, ifrk.ifrk_key, sizeof(sc->hn_rss.rss_key));
1583 sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
1584
1585 if (reconf) {
1586 error = hn_rss_reconfig(sc);
1587 if (error) {
1588 /* XXX roll-back? */
1589 if_printf(ifp, "hn_rss_reconfig failed: %d\n", error);
1590 /* XXX keep going. */
1591 }
1592 }
1593 done:
1594 /* Hash deliverability for mbufs. */
1595 hn_rss_mbuf_hash(sc, hn_rss_type_tondis(mbuf_types));
1596 }
1597
1598 static void
hn_vf_rss_restore(struct hn_softc * sc)1599 hn_vf_rss_restore(struct hn_softc *sc)
1600 {
1601
1602 HN_LOCK_ASSERT(sc);
1603 KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
1604 ("%s: synthetic parts are not attached", if_name(sc->hn_ifp)));
1605
1606 if (sc->hn_rx_ring_inuse == 1)
1607 goto done;
1608
1609 /*
1610 * Restore hash types. Key does _not_ matter.
1611 */
1612 if (sc->hn_rss_hash != sc->hn_rss_hcap) {
1613 int error;
1614
1615 sc->hn_rss_hash = sc->hn_rss_hcap;
1616 error = hn_rss_reconfig(sc);
1617 if (error) {
1618 if_printf(sc->hn_ifp, "hn_rss_reconfig failed: %d\n",
1619 error);
1620 /* XXX keep going. */
1621 }
1622 }
1623 done:
1624 /* Hash deliverability for mbufs. */
1625 hn_rss_mbuf_hash(sc, NDIS_HASH_ALL);
1626 }
1627
1628 static void
hn_xpnt_vf_setready(struct hn_softc * sc)1629 hn_xpnt_vf_setready(struct hn_softc *sc)
1630 {
1631 if_t ifp, vf_ifp;
1632 struct ifreq ifr;
1633
1634 HN_LOCK_ASSERT(sc);
1635 ifp = sc->hn_ifp;
1636 vf_ifp = sc->hn_vf_ifp;
1637
1638 /*
1639 * Mark the VF ready.
1640 */
1641 sc->hn_vf_rdytick = 0;
1642
1643 /*
1644 * Save information for restoration.
1645 */
1646 sc->hn_saved_caps = if_getcapabilities(ifp);
1647 sc->hn_saved_tsomax = if_gethwtsomax(ifp);
1648 sc->hn_saved_tsosegcnt = if_gethwtsomaxsegcount(ifp);
1649 sc->hn_saved_tsosegsz = if_gethwtsomaxsegsize(ifp);
1650 sc->hn_saved_capenable = if_getcapenable(ifp);
1651 sc->hn_saved_hwassist = if_gethwassist(ifp);
1652
1653 /*
1654 * Intersect supported/enabled capabilities.
1655 *
1656 * NOTE:
1657 * if_hwassist is not changed here.
1658 */
1659 if_setcapabilitiesbit(ifp, 0, if_getcapabilities(vf_ifp));
1660 if_setcapenablebit(ifp, 0, if_getcapabilities(ifp));
1661
1662 /*
1663 * Fix TSO settings.
1664 */
1665 if (if_gethwtsomax(ifp) > if_gethwtsomax(vf_ifp))
1666 if_sethwtsomax(ifp, if_gethwtsomax(vf_ifp));
1667 if (if_gethwtsomaxsegcount(ifp) > if_gethwtsomaxsegcount(vf_ifp))
1668 if_sethwtsomaxsegcount(ifp, if_gethwtsomaxsegcount(vf_ifp));
1669 if (if_gethwtsomaxsegsize(ifp) > if_gethwtsomaxsegsize(vf_ifp))
1670 if_sethwtsomaxsegsize(ifp, if_gethwtsomaxsegsize(vf_ifp));
1671
1672 /*
1673 * Change VF's enabled capabilities.
1674 */
1675 memset(&ifr, 0, sizeof(ifr));
1676 strlcpy(ifr.ifr_name, if_name(vf_ifp), sizeof(ifr.ifr_name));
1677 ifr.ifr_reqcap = if_getcapenable(ifp);
1678 hn_xpnt_vf_iocsetcaps(sc, &ifr);
1679
1680 if (if_getmtu(ifp) != ETHERMTU) {
1681 int error;
1682
1683 /*
1684 * Change VF's MTU.
1685 */
1686 memset(&ifr, 0, sizeof(ifr));
1687 strlcpy(ifr.ifr_name, if_name(vf_ifp), sizeof(ifr.ifr_name));
1688 ifr.ifr_mtu = if_getmtu(ifp);
1689 error = ifhwioctl(SIOCSIFMTU, vf_ifp, (caddr_t)&ifr, curthread);
1690 if (error) {
1691 if_printf(ifp, "%s SIOCSIFMTU %u failed\n",
1692 if_name(vf_ifp), if_getmtu(ifp));
1693 if (if_getmtu(ifp) > ETHERMTU) {
1694 if_printf(ifp, "change MTU to %d\n", ETHERMTU);
1695
1696 /*
1697 * XXX
1698 * No need to adjust the synthetic parts' MTU;
1699 * failure of the adjustment will cause us
1700 * infinite headache.
1701 */
1702 if_setmtu(ifp, ETHERMTU);
1703 hn_mtu_change_fixup(sc);
1704 }
1705 }
1706 }
1707 }
1708
1709 static bool
hn_xpnt_vf_isready(struct hn_softc * sc)1710 hn_xpnt_vf_isready(struct hn_softc *sc)
1711 {
1712
1713 HN_LOCK_ASSERT(sc);
1714
1715 if (!hn_xpnt_vf || sc->hn_vf_ifp == NULL)
1716 return (false);
1717
1718 if (sc->hn_vf_rdytick == 0)
1719 return (true);
1720
1721 if (sc->hn_vf_rdytick > ticks)
1722 return (false);
1723
1724 /* Mark VF as ready. */
1725 hn_xpnt_vf_setready(sc);
1726 return (true);
1727 }
1728
1729 static void
hn_xpnt_vf_setenable(struct hn_softc * sc)1730 hn_xpnt_vf_setenable(struct hn_softc *sc)
1731 {
1732 int i;
1733
1734 HN_LOCK_ASSERT(sc);
1735
1736 /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
1737 rm_wlock(&sc->hn_vf_lock);
1738 sc->hn_xvf_flags |= HN_XVFFLAG_ENABLED;
1739 rm_wunlock(&sc->hn_vf_lock);
1740
1741 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
1742 sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_XPNT_VF;
1743 }
1744
1745 static void
hn_xpnt_vf_setdisable(struct hn_softc * sc,bool clear_vf)1746 hn_xpnt_vf_setdisable(struct hn_softc *sc, bool clear_vf)
1747 {
1748 int i;
1749
1750 HN_LOCK_ASSERT(sc);
1751
1752 /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
1753 rm_wlock(&sc->hn_vf_lock);
1754 sc->hn_xvf_flags &= ~HN_XVFFLAG_ENABLED;
1755 if (clear_vf)
1756 sc->hn_vf_ifp = NULL;
1757 rm_wunlock(&sc->hn_vf_lock);
1758
1759 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
1760 sc->hn_rx_ring[i].hn_rx_flags &= ~HN_RX_FLAG_XPNT_VF;
1761 }
1762
1763 static void
hn_xpnt_vf_init(struct hn_softc * sc)1764 hn_xpnt_vf_init(struct hn_softc *sc)
1765 {
1766 int error;
1767
1768 HN_LOCK_ASSERT(sc);
1769
1770 KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0,
1771 ("%s: transparent VF was enabled", if_name(sc->hn_ifp)));
1772
1773 if (bootverbose) {
1774 if_printf(sc->hn_ifp, "try bringing up %s\n",
1775 if_name(sc->hn_vf_ifp));
1776 }
1777
1778 /*
1779 * Bring the VF up.
1780 */
1781 hn_xpnt_vf_saveifflags(sc);
1782 if_setflagbits(sc->hn_ifp, IFF_UP, 0);
1783 error = hn_xpnt_vf_iocsetflags(sc);
1784 if (error) {
1785 if_printf(sc->hn_ifp, "bringing up %s failed: %d\n",
1786 if_name(sc->hn_vf_ifp), error);
1787 return;
1788 }
1789
1790 /*
1791 * NOTE:
1792 * Datapath setting must happen _after_ bringing the VF up.
1793 */
1794 hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF);
1795
1796 /*
1797 * NOTE:
1798 * Fixup RSS related bits _after_ the VF is brought up, since
1799 * many VFs generate RSS key during it's initialization.
1800 */
1801 hn_vf_rss_fixup(sc, true);
1802
1803 /* Mark transparent mode VF as enabled. */
1804 hn_xpnt_vf_setenable(sc);
1805 }
1806
1807 static void
hn_xpnt_vf_init_taskfunc(void * xsc,int pending __unused)1808 hn_xpnt_vf_init_taskfunc(void *xsc, int pending __unused)
1809 {
1810 struct hn_softc *sc = xsc;
1811
1812 HN_LOCK(sc);
1813
1814 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
1815 goto done;
1816 if (sc->hn_vf_ifp == NULL)
1817 goto done;
1818 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
1819 goto done;
1820
1821 if (sc->hn_vf_rdytick != 0) {
1822 /* Mark VF as ready. */
1823 hn_xpnt_vf_setready(sc);
1824 }
1825
1826 if (if_getdrvflags(sc->hn_ifp) & IFF_DRV_RUNNING) {
1827 /*
1828 * Delayed VF initialization.
1829 */
1830 if (bootverbose) {
1831 if_printf(sc->hn_ifp, "delayed initialize %s\n",
1832 if_name(sc->hn_vf_ifp));
1833 }
1834 hn_xpnt_vf_init(sc);
1835 }
1836 done:
1837 HN_UNLOCK(sc);
1838 }
1839
1840 static void
hn_ifnet_attevent(void * xsc,if_t ifp)1841 hn_ifnet_attevent(void *xsc, if_t ifp)
1842 {
1843 struct hn_softc *sc = xsc;
1844
1845 HN_LOCK(sc);
1846
1847 if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
1848 goto done;
1849
1850 if (!hn_ismyvf(sc, ifp))
1851 goto done;
1852
1853 if (sc->hn_vf_ifp != NULL) {
1854 if_printf(sc->hn_ifp, "%s was attached as VF\n",
1855 if_name(sc->hn_vf_ifp));
1856 goto done;
1857 }
1858
1859 if (hn_xpnt_vf && if_getstartfn(ifp) != NULL) {
1860 /*
1861 * ifnet.if_start is _not_ supported by transparent
1862 * mode VF; mainly due to the IFF_DRV_OACTIVE flag.
1863 */
1864 if_printf(sc->hn_ifp, "%s uses if_start, which is unsupported "
1865 "in transparent VF mode.\n", if_name(sc->hn_vf_ifp));
1866
1867 goto done;
1868 }
1869
1870 rm_wlock(&hn_vfmap_lock);
1871
1872 if (if_getindex(ifp) >= hn_vfmap_size) {
1873 if_t *newmap;
1874 int newsize;
1875
1876 newsize = if_getindex(ifp) + HN_VFMAP_SIZE_DEF;
1877 newmap = malloc(sizeof(if_t) * newsize, M_DEVBUF,
1878 M_WAITOK | M_ZERO);
1879
1880 memcpy(newmap, hn_vfmap,
1881 sizeof(if_t) * hn_vfmap_size);
1882 free(hn_vfmap, M_DEVBUF);
1883 hn_vfmap = newmap;
1884 hn_vfmap_size = newsize;
1885 }
1886 KASSERT(hn_vfmap[if_getindex(ifp)] == NULL,
1887 ("%s: ifindex %d was mapped to %s",
1888 if_name(ifp), if_getindex(ifp), if_name(hn_vfmap[if_getindex(ifp)])));
1889 hn_vfmap[if_getindex(ifp)] = sc->hn_ifp;
1890
1891 rm_wunlock(&hn_vfmap_lock);
1892
1893 /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
1894 rm_wlock(&sc->hn_vf_lock);
1895 KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0,
1896 ("%s: transparent VF was enabled", if_name(sc->hn_ifp)));
1897 sc->hn_vf_ifp = ifp;
1898 rm_wunlock(&sc->hn_vf_lock);
1899
1900 if (hn_xpnt_vf) {
1901 int wait_ticks;
1902
1903 /*
1904 * Install if_input for vf_ifp, which does vf_ifp -> hn_ifp.
1905 * Save vf_ifp's current if_input for later restoration.
1906 */
1907 sc->hn_vf_input = if_getinputfn(ifp);
1908 if_setinputfn(ifp, hn_xpnt_vf_input);
1909
1910 /*
1911 * Stop link status management; use the VF's.
1912 */
1913 hn_suspend_mgmt(sc);
1914
1915 /*
1916 * Give VF sometime to complete its attach routing.
1917 */
1918 wait_ticks = hn_xpnt_vf_attwait * hz;
1919 sc->hn_vf_rdytick = ticks + wait_ticks;
1920
1921 taskqueue_enqueue_timeout(sc->hn_vf_taskq, &sc->hn_vf_init,
1922 wait_ticks);
1923 }
1924 done:
1925 HN_UNLOCK(sc);
1926 }
1927
1928 static void
hn_ifnet_detevent(void * xsc,if_t ifp)1929 hn_ifnet_detevent(void *xsc, if_t ifp)
1930 {
1931 struct hn_softc *sc = xsc;
1932
1933 HN_LOCK(sc);
1934
1935 if (sc->hn_vf_ifp == NULL)
1936 goto done;
1937
1938 if (!hn_ismyvf(sc, ifp))
1939 goto done;
1940
1941 if (hn_xpnt_vf) {
1942 /*
1943 * Make sure that the delayed initialization is not running.
1944 *
1945 * NOTE:
1946 * - This lock _must_ be released, since the hn_vf_init task
1947 * will try holding this lock.
1948 * - It is safe to release this lock here, since the
1949 * hn_ifnet_attevent() is interlocked by the hn_vf_ifp.
1950 *
1951 * XXX racy, if hn(4) ever detached.
1952 */
1953 HN_UNLOCK(sc);
1954 taskqueue_drain_timeout(sc->hn_vf_taskq, &sc->hn_vf_init);
1955 HN_LOCK(sc);
1956
1957 KASSERT(sc->hn_vf_input != NULL, ("%s VF input is not saved",
1958 if_name(sc->hn_ifp)));
1959 if_setinputfn(ifp, sc->hn_vf_input);
1960 sc->hn_vf_input = NULL;
1961
1962 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) &&
1963 (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED))
1964 hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH);
1965
1966 if (sc->hn_vf_rdytick == 0) {
1967 /*
1968 * The VF was ready; restore some settings.
1969 */
1970 if_setcapabilities(ifp, sc->hn_saved_caps);
1971
1972 if_sethwtsomax(ifp, sc->hn_saved_tsomax);
1973 if_sethwtsomaxsegcount(sc->hn_ifp,
1974 sc->hn_saved_tsosegcnt);
1975 if_sethwtsomaxsegsize(ifp, sc->hn_saved_tsosegsz);
1976
1977 if_setcapenable(ifp, sc->hn_saved_capenable);
1978 if_sethwassist(ifp, sc->hn_saved_hwassist);
1979 }
1980
1981 if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
1982 /*
1983 * Restore RSS settings.
1984 */
1985 hn_vf_rss_restore(sc);
1986
1987 /*
1988 * Resume link status management, which was suspended
1989 * by hn_ifnet_attevent().
1990 */
1991 hn_resume_mgmt(sc);
1992 }
1993 }
1994
1995 /* Mark transparent mode VF as disabled. */
1996 hn_xpnt_vf_setdisable(sc, true /* clear hn_vf_ifp */);
1997
1998 rm_wlock(&hn_vfmap_lock);
1999
2000 KASSERT(if_getindex(ifp) < hn_vfmap_size,
2001 ("ifindex %d, vfmapsize %d", if_getindex(ifp), hn_vfmap_size));
2002 if (hn_vfmap[if_getindex(ifp)] != NULL) {
2003 KASSERT(hn_vfmap[if_getindex(ifp)] == sc->hn_ifp,
2004 ("%s: ifindex %d was mapped to %s",
2005 if_name(ifp), if_getindex(ifp),
2006 if_name(hn_vfmap[if_getindex(ifp)])));
2007 hn_vfmap[if_getindex(ifp)] = NULL;
2008 }
2009
2010 rm_wunlock(&hn_vfmap_lock);
2011 done:
2012 HN_UNLOCK(sc);
2013 }
2014
2015 static void
hn_ifnet_lnkevent(void * xsc,if_t ifp,int link_state)2016 hn_ifnet_lnkevent(void *xsc, if_t ifp, int link_state)
2017 {
2018 struct hn_softc *sc = xsc;
2019
2020 if (sc->hn_vf_ifp == ifp)
2021 if_link_state_change(sc->hn_ifp, link_state);
2022 }
2023
2024 static int
hn_tsomax_sysctl(SYSCTL_HANDLER_ARGS)2025 hn_tsomax_sysctl(SYSCTL_HANDLER_ARGS)
2026 {
2027 struct hn_softc *sc = arg1;
2028 unsigned int tsomax;
2029 int error;
2030
2031 tsomax = if_gethwtsomax(sc->hn_ifp);
2032 error = sysctl_handle_int(oidp, &tsomax, 0, req);
2033 return error;
2034 }
2035
2036 static int
hn_tsomaxsegcnt_sysctl(SYSCTL_HANDLER_ARGS)2037 hn_tsomaxsegcnt_sysctl(SYSCTL_HANDLER_ARGS)
2038 {
2039 struct hn_softc *sc = arg1;
2040 unsigned int tsomaxsegcnt;
2041 int error;
2042
2043 tsomaxsegcnt = if_gethwtsomaxsegcount(sc->hn_ifp);
2044 error = sysctl_handle_int(oidp, &tsomaxsegcnt, 0, req);
2045 return error;
2046 }
2047
2048 static int
hn_tsomaxsegsz_sysctl(SYSCTL_HANDLER_ARGS)2049 hn_tsomaxsegsz_sysctl(SYSCTL_HANDLER_ARGS)
2050 {
2051 struct hn_softc *sc = arg1;
2052 unsigned int tsomaxsegsz;
2053 int error;
2054
2055 tsomaxsegsz = if_gethwtsomaxsegsize(sc->hn_ifp);
2056 error = sysctl_handle_int(oidp, &tsomaxsegsz, 0, req);
2057 return error;
2058 }
2059
2060 static int
hn_probe(device_t dev)2061 hn_probe(device_t dev)
2062 {
2063
2064 if (VMBUS_PROBE_GUID(device_get_parent(dev), dev, &hn_guid) == 0) {
2065 device_set_desc(dev, "Hyper-V Network Interface");
2066 return BUS_PROBE_DEFAULT;
2067 }
2068 return ENXIO;
2069 }
2070
2071 static int
hn_attach(device_t dev)2072 hn_attach(device_t dev)
2073 {
2074 struct hn_softc *sc = device_get_softc(dev);
2075 struct sysctl_oid_list *child;
2076 struct sysctl_ctx_list *ctx;
2077 uint8_t eaddr[ETHER_ADDR_LEN];
2078 if_t ifp = NULL;
2079 int error, ring_cnt, tx_ring_cnt;
2080 uint32_t mtu;
2081
2082 sc->hn_dev = dev;
2083 sc->hn_prichan = vmbus_get_channel(dev);
2084 HN_LOCK_INIT(sc);
2085 rm_init(&sc->hn_vf_lock, "hnvf");
2086 if (hn_xpnt_vf && hn_xpnt_vf_accbpf)
2087 sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF;
2088
2089 /*
2090 * Initialize these tunables once.
2091 */
2092 sc->hn_agg_size = hn_tx_agg_size;
2093 sc->hn_agg_pkts = hn_tx_agg_pkts;
2094
2095 /*
2096 * Setup taskqueue for transmission.
2097 */
2098 if (hn_tx_taskq_mode == HN_TX_TASKQ_M_INDEP) {
2099 int i;
2100
2101 sc->hn_tx_taskqs =
2102 malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *),
2103 M_DEVBUF, M_WAITOK);
2104 for (i = 0; i < hn_tx_taskq_cnt; ++i) {
2105 sc->hn_tx_taskqs[i] = taskqueue_create("hn_tx",
2106 M_WAITOK, taskqueue_thread_enqueue,
2107 &sc->hn_tx_taskqs[i]);
2108 taskqueue_start_threads(&sc->hn_tx_taskqs[i], 1, PI_NET,
2109 "%s tx%d", device_get_nameunit(dev), i);
2110 }
2111 } else if (hn_tx_taskq_mode == HN_TX_TASKQ_M_GLOBAL) {
2112 sc->hn_tx_taskqs = hn_tx_taskque;
2113 }
2114
2115 /*
2116 * Setup taskqueue for mangement tasks, e.g. link status.
2117 */
2118 sc->hn_mgmt_taskq0 = taskqueue_create("hn_mgmt", M_WAITOK,
2119 taskqueue_thread_enqueue, &sc->hn_mgmt_taskq0);
2120 taskqueue_start_threads(&sc->hn_mgmt_taskq0, 1, PI_NET, "%s mgmt",
2121 device_get_nameunit(dev));
2122 TASK_INIT(&sc->hn_link_task, 0, hn_link_taskfunc, sc);
2123 TASK_INIT(&sc->hn_netchg_init, 0, hn_netchg_init_taskfunc, sc);
2124 TIMEOUT_TASK_INIT(sc->hn_mgmt_taskq0, &sc->hn_netchg_status, 0,
2125 hn_netchg_status_taskfunc, sc);
2126
2127 if (hn_xpnt_vf) {
2128 /*
2129 * Setup taskqueue for VF tasks, e.g. delayed VF bringing up.
2130 */
2131 sc->hn_vf_taskq = taskqueue_create("hn_vf", M_WAITOK,
2132 taskqueue_thread_enqueue, &sc->hn_vf_taskq);
2133 taskqueue_start_threads(&sc->hn_vf_taskq, 1, PI_NET, "%s vf",
2134 device_get_nameunit(dev));
2135 TIMEOUT_TASK_INIT(sc->hn_vf_taskq, &sc->hn_vf_init, 0,
2136 hn_xpnt_vf_init_taskfunc, sc);
2137 }
2138
2139 /*
2140 * Allocate ifnet and setup its name earlier, so that if_printf
2141 * can be used by functions, which will be called after
2142 * ether_ifattach().
2143 */
2144 ifp = sc->hn_ifp = if_alloc(IFT_ETHER);
2145 if_setsoftc(ifp, sc);
2146 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2147
2148 /*
2149 * Initialize ifmedia earlier so that it can be unconditionally
2150 * destroyed, if error happened later on.
2151 */
2152 ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts);
2153
2154 /*
2155 * Figure out the # of RX rings (ring_cnt) and the # of TX rings
2156 * to use (tx_ring_cnt).
2157 *
2158 * NOTE:
2159 * The # of RX rings to use is same as the # of channels to use.
2160 */
2161 ring_cnt = hn_chan_cnt;
2162 if (ring_cnt <= 0) {
2163 /* Default */
2164 ring_cnt = mp_ncpus;
2165 if (ring_cnt > HN_RING_CNT_DEF_MAX)
2166 ring_cnt = HN_RING_CNT_DEF_MAX;
2167 } else if (ring_cnt > mp_ncpus) {
2168 ring_cnt = mp_ncpus;
2169 }
2170 #ifdef RSS
2171 if (ring_cnt > rss_getnumbuckets())
2172 ring_cnt = rss_getnumbuckets();
2173 #endif
2174
2175 tx_ring_cnt = hn_tx_ring_cnt;
2176 if (tx_ring_cnt <= 0 || tx_ring_cnt > ring_cnt)
2177 tx_ring_cnt = ring_cnt;
2178 #ifdef HN_IFSTART_SUPPORT
2179 if (hn_use_if_start) {
2180 /* ifnet.if_start only needs one TX ring. */
2181 tx_ring_cnt = 1;
2182 }
2183 #endif
2184
2185 /*
2186 * Set the leader CPU for channels.
2187 */
2188 sc->hn_cpu = atomic_fetchadd_int(&hn_cpu_index, ring_cnt) % mp_ncpus;
2189
2190 /*
2191 * Create enough TX/RX rings, even if only limited number of
2192 * channels can be allocated.
2193 */
2194 error = hn_create_tx_data(sc, tx_ring_cnt);
2195 if (error)
2196 goto failed;
2197 error = hn_create_rx_data(sc, ring_cnt);
2198 if (error)
2199 goto failed;
2200
2201 /*
2202 * Create transaction context for NVS and RNDIS transactions.
2203 */
2204 sc->hn_xact = vmbus_xact_ctx_create(bus_get_dma_tag(dev),
2205 HN_XACT_REQ_SIZE, HN_XACT_RESP_SIZE, 0);
2206 if (sc->hn_xact == NULL) {
2207 error = ENXIO;
2208 goto failed;
2209 }
2210
2211 /*
2212 * Install orphan handler for the revocation of this device's
2213 * primary channel.
2214 *
2215 * NOTE:
2216 * The processing order is critical here:
2217 * Install the orphan handler, _before_ testing whether this
2218 * device's primary channel has been revoked or not.
2219 */
2220 vmbus_chan_set_orphan(sc->hn_prichan, sc->hn_xact);
2221 if (vmbus_chan_is_revoked(sc->hn_prichan)) {
2222 error = ENXIO;
2223 goto failed;
2224 }
2225
2226 /*
2227 * Attach the synthetic parts, i.e. NVS and RNDIS.
2228 */
2229 error = hn_synth_attach(sc, ETHERMTU);
2230 if (error)
2231 goto failed;
2232
2233 error = hn_rndis_get_eaddr(sc, eaddr);
2234 if (error)
2235 goto failed;
2236
2237 error = hn_rndis_get_mtu(sc, &mtu);
2238 if (error)
2239 mtu = ETHERMTU;
2240 else if (bootverbose)
2241 device_printf(dev, "RNDIS mtu %u\n", mtu);
2242
2243 if (sc->hn_rx_ring_inuse > 1) {
2244 /*
2245 * Reduce TCP segment aggregation limit for multiple
2246 * RX rings to increase ACK timeliness.
2247 */
2248 hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MULTIRX_DEF);
2249 }
2250
2251 /*
2252 * Fixup TX/RX stuffs after synthetic parts are attached.
2253 */
2254 hn_fixup_tx_data(sc);
2255 hn_fixup_rx_data(sc);
2256
2257 ctx = device_get_sysctl_ctx(dev);
2258 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
2259 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "nvs_version", CTLFLAG_RD,
2260 &sc->hn_nvs_ver, 0, "NVS version");
2261 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "ndis_version",
2262 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2263 hn_ndis_version_sysctl, "A", "NDIS version");
2264 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "caps",
2265 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2266 hn_caps_sysctl, "A", "capabilities");
2267 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "hwassist",
2268 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2269 hn_hwassist_sysctl, "A", "hwassist");
2270 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tso_max",
2271 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, hn_tsomax_sysctl,
2272 "IU", "max TSO size");
2273 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tso_maxsegcnt",
2274 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, hn_tsomaxsegcnt_sysctl,
2275 "IU", "max # of TSO segments");
2276 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tso_maxsegsz",
2277 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, hn_tsomaxsegsz_sysctl,
2278 "IU", "max size of TSO segment");
2279 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxfilter",
2280 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2281 hn_rxfilter_sysctl, "A", "rxfilter");
2282 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hash",
2283 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2284 hn_rss_hash_sysctl, "A", "RSS hash");
2285 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hashcap",
2286 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2287 hn_rss_hcap_sysctl, "A", "RSS hash capabilities");
2288 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "mbuf_hash",
2289 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2290 hn_rss_mbuf_sysctl, "A", "RSS hash for mbufs");
2291 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rss_ind_size",
2292 CTLFLAG_RD, &sc->hn_rss_ind_size, 0, "RSS indirect entry count");
2293 #ifndef RSS
2294 /*
2295 * Don't allow RSS key/indirect table changes, if RSS is defined.
2296 */
2297 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_key",
2298 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2299 hn_rss_key_sysctl, "IU", "RSS key");
2300 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_ind",
2301 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2302 hn_rss_ind_sysctl, "IU", "RSS indirect table");
2303 #endif
2304 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_size",
2305 CTLFLAG_RD, &sc->hn_rndis_agg_size, 0,
2306 "RNDIS offered packet transmission aggregation size limit");
2307 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_pkts",
2308 CTLFLAG_RD, &sc->hn_rndis_agg_pkts, 0,
2309 "RNDIS offered packet transmission aggregation count limit");
2310 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_align",
2311 CTLFLAG_RD, &sc->hn_rndis_agg_align, 0,
2312 "RNDIS packet transmission aggregation alignment");
2313 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_size",
2314 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2315 hn_txagg_size_sysctl, "I",
2316 "Packet transmission aggregation size, 0 -- disable, -1 -- auto");
2317 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pkts",
2318 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2319 hn_txagg_pkts_sysctl, "I",
2320 "Packet transmission aggregation packets, "
2321 "0 -- disable, -1 -- auto");
2322 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "polling",
2323 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2324 hn_polling_sysctl, "I",
2325 "Polling frequency: [100,1000000], 0 disable polling");
2326 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf",
2327 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2328 hn_vf_sysctl, "A", "Virtual Function's name");
2329 if (!hn_xpnt_vf) {
2330 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxvf",
2331 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2332 hn_rxvf_sysctl, "A", "activated Virtual Function's name");
2333 } else {
2334 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_enabled",
2335 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
2336 hn_xpnt_vf_enabled_sysctl, "I",
2337 "Transparent VF enabled");
2338 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_accbpf",
2339 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
2340 hn_xpnt_vf_accbpf_sysctl, "I",
2341 "Accurate BPF for transparent VF");
2342 }
2343
2344 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rsc_switch",
2345 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, hn_rsc_sysctl, "I",
2346 "switch to rsc");
2347
2348 /*
2349 * Setup the ifmedia, which has been initialized earlier.
2350 */
2351 ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL);
2352 ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO);
2353 /* XXX ifmedia_set really should do this for us */
2354 sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media;
2355
2356 /*
2357 * Setup the ifnet for this interface.
2358 */
2359
2360 if_setbaudrate(ifp, IF_Gbps(10));
2361 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2362 if_setioctlfn(ifp, hn_ioctl);
2363 if_setinitfn(ifp, hn_init);
2364 #ifdef HN_IFSTART_SUPPORT
2365 if (hn_use_if_start) {
2366 int qdepth = hn_get_txswq_depth(&sc->hn_tx_ring[0]);
2367
2368 if_setstartfn(ifp, hn_start);
2369 if_setsendqlen(ifp, qdepth);
2370 if_setsendqready(ifp);
2371 } else
2372 #endif
2373 {
2374 if_settransmitfn(ifp, hn_transmit);
2375 if_setqflushfn(ifp, hn_xmit_qflush);
2376 }
2377
2378 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM | IFCAP_LRO | IFCAP_LINKSTATE, 0);
2379 #ifdef foo
2380 /* We can't diff IPv6 packets from IPv4 packets on RX path. */
2381 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM_IPV6, 0);
2382 #endif
2383 if (sc->hn_caps & HN_CAP_VLAN) {
2384 /* XXX not sure about VLAN_MTU. */
2385 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU, 0);
2386 }
2387
2388 if_sethwassist(ifp, sc->hn_tx_ring[0].hn_csum_assist);
2389 if (if_gethwassist(ifp) & HN_CSUM_IP_MASK)
2390 if_setcapabilitiesbit(ifp, IFCAP_TXCSUM, 0);
2391 if (if_gethwassist(ifp) & HN_CSUM_IP6_MASK)
2392 if_setcapabilitiesbit(ifp, IFCAP_TXCSUM_IPV6, 0);
2393 if (sc->hn_caps & HN_CAP_TSO4) {
2394 if_setcapabilitiesbit(ifp, IFCAP_TSO4, 0);
2395 if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2396 }
2397 if (sc->hn_caps & HN_CAP_TSO6) {
2398 if_setcapabilitiesbit(ifp, IFCAP_TSO6, 0);
2399 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2400 }
2401
2402 /* Enable all available capabilities by default. */
2403 if_setcapenable(ifp, if_getcapabilities(ifp));
2404
2405 /*
2406 * Disable IPv6 TSO and TXCSUM by default, they still can
2407 * be enabled through SIOCSIFCAP.
2408 */
2409 if_setcapenablebit(ifp, 0, (IFCAP_TXCSUM_IPV6 | IFCAP_TSO6));
2410 if_sethwassistbits(ifp, 0, (HN_CSUM_IP6_MASK | CSUM_IP6_TSO));
2411
2412 if (if_getcapabilities(ifp) & (IFCAP_TSO6 | IFCAP_TSO4)) {
2413 /*
2414 * Lock hn_set_tso_maxsize() to simplify its
2415 * internal logic.
2416 */
2417 HN_LOCK(sc);
2418 hn_set_tso_maxsize(sc, hn_tso_maxlen, ETHERMTU);
2419 HN_UNLOCK(sc);
2420 if_sethwtsomaxsegcount(ifp, HN_TX_DATA_SEGCNT_MAX);
2421 if_sethwtsomaxsegsize(ifp, PAGE_SIZE);
2422 }
2423
2424 ether_ifattach(ifp, eaddr);
2425
2426 if ((if_getcapabilities(ifp) & (IFCAP_TSO6 | IFCAP_TSO4)) && bootverbose) {
2427 if_printf(ifp, "TSO segcnt %u segsz %u\n",
2428 if_gethwtsomaxsegcount(ifp), if_gethwtsomaxsegsize(ifp));
2429 }
2430 if (mtu < ETHERMTU) {
2431
2432 if_setmtu(ifp, mtu);
2433 }
2434
2435 /* Inform the upper layer about the long frame support. */
2436 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2437
2438 /*
2439 * Kick off link status check.
2440 */
2441 sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0;
2442 hn_update_link_status(sc);
2443
2444 if (!hn_xpnt_vf) {
2445 sc->hn_ifnet_evthand = EVENTHANDLER_REGISTER(ifnet_event,
2446 hn_ifnet_event, sc, EVENTHANDLER_PRI_ANY);
2447 sc->hn_ifaddr_evthand = EVENTHANDLER_REGISTER(ifaddr_event,
2448 hn_ifaddr_event, sc, EVENTHANDLER_PRI_ANY);
2449 } else {
2450 sc->hn_ifnet_lnkhand = EVENTHANDLER_REGISTER(ifnet_link_event,
2451 hn_ifnet_lnkevent, sc, EVENTHANDLER_PRI_ANY);
2452 }
2453
2454 /*
2455 * NOTE:
2456 * Subscribe ether_ifattach event, instead of ifnet_arrival event,
2457 * since interface's LLADDR is needed; interface LLADDR is not
2458 * available when ifnet_arrival event is triggered.
2459 */
2460 sc->hn_ifnet_atthand = EVENTHANDLER_REGISTER(ether_ifattach_event,
2461 hn_ifnet_attevent, sc, EVENTHANDLER_PRI_ANY);
2462 sc->hn_ifnet_dethand = EVENTHANDLER_REGISTER(ifnet_departure_event,
2463 hn_ifnet_detevent, sc, EVENTHANDLER_PRI_ANY);
2464
2465 return (0);
2466 failed:
2467 if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED)
2468 hn_synth_detach(sc);
2469 hn_detach(dev);
2470 return (error);
2471 }
2472
2473 static int
hn_detach(device_t dev)2474 hn_detach(device_t dev)
2475 {
2476 struct hn_softc *sc = device_get_softc(dev);
2477 if_t ifp = sc->hn_ifp, vf_ifp;
2478
2479 if (sc->hn_xact != NULL && vmbus_chan_is_revoked(sc->hn_prichan)) {
2480 /*
2481 * In case that the vmbus missed the orphan handler
2482 * installation.
2483 */
2484 vmbus_xact_ctx_orphan(sc->hn_xact);
2485 }
2486
2487 if (sc->hn_ifaddr_evthand != NULL)
2488 EVENTHANDLER_DEREGISTER(ifaddr_event, sc->hn_ifaddr_evthand);
2489 if (sc->hn_ifnet_evthand != NULL)
2490 EVENTHANDLER_DEREGISTER(ifnet_event, sc->hn_ifnet_evthand);
2491 if (sc->hn_ifnet_atthand != NULL) {
2492 EVENTHANDLER_DEREGISTER(ether_ifattach_event,
2493 sc->hn_ifnet_atthand);
2494 }
2495 if (sc->hn_ifnet_dethand != NULL) {
2496 EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2497 sc->hn_ifnet_dethand);
2498 }
2499 if (sc->hn_ifnet_lnkhand != NULL)
2500 EVENTHANDLER_DEREGISTER(ifnet_link_event, sc->hn_ifnet_lnkhand);
2501
2502 vf_ifp = sc->hn_vf_ifp;
2503 __compiler_membar();
2504 if (vf_ifp != NULL)
2505 hn_ifnet_detevent(sc, vf_ifp);
2506
2507 if (device_is_attached(dev)) {
2508 HN_LOCK(sc);
2509 if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
2510 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2511 hn_stop(sc, true);
2512 /*
2513 * NOTE:
2514 * hn_stop() only suspends data, so management
2515 * stuffs have to be suspended manually here.
2516 */
2517 hn_suspend_mgmt(sc);
2518 hn_synth_detach(sc);
2519 }
2520 HN_UNLOCK(sc);
2521 ether_ifdetach(ifp);
2522 }
2523
2524 ifmedia_removeall(&sc->hn_media);
2525 hn_destroy_rx_data(sc);
2526 hn_destroy_tx_data(sc);
2527
2528 if (sc->hn_tx_taskqs != NULL && sc->hn_tx_taskqs != hn_tx_taskque) {
2529 int i;
2530
2531 for (i = 0; i < hn_tx_taskq_cnt; ++i)
2532 taskqueue_free(sc->hn_tx_taskqs[i]);
2533 free(sc->hn_tx_taskqs, M_DEVBUF);
2534 }
2535 taskqueue_free(sc->hn_mgmt_taskq0);
2536 if (sc->hn_vf_taskq != NULL)
2537 taskqueue_free(sc->hn_vf_taskq);
2538
2539 if (sc->hn_xact != NULL) {
2540 /*
2541 * Uninstall the orphan handler _before_ the xact is
2542 * destructed.
2543 */
2544 vmbus_chan_unset_orphan(sc->hn_prichan);
2545 vmbus_xact_ctx_destroy(sc->hn_xact);
2546 }
2547
2548 if_free(ifp);
2549
2550 HN_LOCK_DESTROY(sc);
2551 rm_destroy(&sc->hn_vf_lock);
2552 return (0);
2553 }
2554
2555 static int
hn_shutdown(device_t dev)2556 hn_shutdown(device_t dev)
2557 {
2558
2559 return (0);
2560 }
2561
2562 static void
hn_link_status(struct hn_softc * sc)2563 hn_link_status(struct hn_softc *sc)
2564 {
2565 uint32_t link_status;
2566 int error;
2567
2568 error = hn_rndis_get_linkstatus(sc, &link_status);
2569 if (error) {
2570 /* XXX what to do? */
2571 return;
2572 }
2573
2574 if (link_status == NDIS_MEDIA_STATE_CONNECTED)
2575 sc->hn_link_flags |= HN_LINK_FLAG_LINKUP;
2576 else
2577 sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP;
2578 if_link_state_change(sc->hn_ifp,
2579 (sc->hn_link_flags & HN_LINK_FLAG_LINKUP) ?
2580 LINK_STATE_UP : LINK_STATE_DOWN);
2581 }
2582
2583 static void
hn_link_taskfunc(void * xsc,int pending __unused)2584 hn_link_taskfunc(void *xsc, int pending __unused)
2585 {
2586 struct hn_softc *sc = xsc;
2587
2588 if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG)
2589 return;
2590 hn_link_status(sc);
2591 }
2592
2593 static void
hn_netchg_init_taskfunc(void * xsc,int pending __unused)2594 hn_netchg_init_taskfunc(void *xsc, int pending __unused)
2595 {
2596 struct hn_softc *sc = xsc;
2597
2598 /* Prevent any link status checks from running. */
2599 sc->hn_link_flags |= HN_LINK_FLAG_NETCHG;
2600
2601 /*
2602 * Fake up a [link down --> link up] state change; 5 seconds
2603 * delay is used, which closely simulates miibus reaction
2604 * upon link down event.
2605 */
2606 sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP;
2607 if_link_state_change(sc->hn_ifp, LINK_STATE_DOWN);
2608 taskqueue_enqueue_timeout(sc->hn_mgmt_taskq0,
2609 &sc->hn_netchg_status, 5 * hz);
2610 }
2611
2612 static void
hn_netchg_status_taskfunc(void * xsc,int pending __unused)2613 hn_netchg_status_taskfunc(void *xsc, int pending __unused)
2614 {
2615 struct hn_softc *sc = xsc;
2616
2617 /* Re-allow link status checks. */
2618 sc->hn_link_flags &= ~HN_LINK_FLAG_NETCHG;
2619 hn_link_status(sc);
2620 }
2621
2622 static void
hn_update_link_status(struct hn_softc * sc)2623 hn_update_link_status(struct hn_softc *sc)
2624 {
2625
2626 if (sc->hn_mgmt_taskq != NULL)
2627 taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_link_task);
2628 }
2629
2630 static void
hn_change_network(struct hn_softc * sc)2631 hn_change_network(struct hn_softc *sc)
2632 {
2633
2634 if (sc->hn_mgmt_taskq != NULL)
2635 taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_netchg_init);
2636 }
2637
2638 static __inline int
hn_txdesc_dmamap_load(struct hn_tx_ring * txr,struct hn_txdesc * txd,struct mbuf ** m_head,bus_dma_segment_t * segs,int * nsegs)2639 hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd,
2640 struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs)
2641 {
2642 struct mbuf *m = *m_head;
2643 int error;
2644
2645 KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID, ("txd uses chim"));
2646
2647 error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap,
2648 m, segs, nsegs, BUS_DMA_NOWAIT);
2649 if (error == EFBIG) {
2650 struct mbuf *m_new;
2651
2652 m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX);
2653 if (m_new == NULL)
2654 return ENOBUFS;
2655 else
2656 *m_head = m = m_new;
2657 txr->hn_tx_collapsed++;
2658
2659 error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag,
2660 txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT);
2661 }
2662 if (!error) {
2663 bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap,
2664 BUS_DMASYNC_PREWRITE);
2665 txd->flags |= HN_TXD_FLAG_DMAMAP;
2666 }
2667 return error;
2668 }
2669
2670 static __inline int
hn_txdesc_put(struct hn_tx_ring * txr,struct hn_txdesc * txd)2671 hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd)
2672 {
2673
2674 KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0,
2675 ("put an onlist txd %#x", txd->flags));
2676 KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0,
2677 ("put an onagg txd %#x", txd->flags));
2678
2679 KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs));
2680 if (atomic_fetchadd_int(&txd->refs, -1) != 1)
2681 return 0;
2682
2683 if (!STAILQ_EMPTY(&txd->agg_list)) {
2684 struct hn_txdesc *tmp_txd;
2685
2686 while ((tmp_txd = STAILQ_FIRST(&txd->agg_list)) != NULL) {
2687 int freed __diagused;
2688
2689 KASSERT(STAILQ_EMPTY(&tmp_txd->agg_list),
2690 ("resursive aggregation on aggregated txdesc"));
2691 KASSERT((tmp_txd->flags & HN_TXD_FLAG_ONAGG),
2692 ("not aggregated txdesc"));
2693 KASSERT((tmp_txd->flags & HN_TXD_FLAG_DMAMAP) == 0,
2694 ("aggregated txdesc uses dmamap"));
2695 KASSERT(tmp_txd->chim_index == HN_NVS_CHIM_IDX_INVALID,
2696 ("aggregated txdesc consumes "
2697 "chimney sending buffer"));
2698 KASSERT(tmp_txd->chim_size == 0,
2699 ("aggregated txdesc has non-zero "
2700 "chimney sending size"));
2701
2702 STAILQ_REMOVE_HEAD(&txd->agg_list, agg_link);
2703 tmp_txd->flags &= ~HN_TXD_FLAG_ONAGG;
2704 freed = hn_txdesc_put(txr, tmp_txd);
2705 KASSERT(freed, ("failed to free aggregated txdesc"));
2706 }
2707 }
2708
2709 if (txd->chim_index != HN_NVS_CHIM_IDX_INVALID) {
2710 KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0,
2711 ("chim txd uses dmamap"));
2712 hn_chim_free(txr->hn_sc, txd->chim_index);
2713 txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
2714 txd->chim_size = 0;
2715 } else if (txd->flags & HN_TXD_FLAG_DMAMAP) {
2716 bus_dmamap_sync(txr->hn_tx_data_dtag,
2717 txd->data_dmap, BUS_DMASYNC_POSTWRITE);
2718 bus_dmamap_unload(txr->hn_tx_data_dtag,
2719 txd->data_dmap);
2720 txd->flags &= ~HN_TXD_FLAG_DMAMAP;
2721 }
2722
2723 if (txd->m != NULL) {
2724 m_freem(txd->m);
2725 txd->m = NULL;
2726 }
2727
2728 txd->flags |= HN_TXD_FLAG_ONLIST;
2729 #ifndef HN_USE_TXDESC_BUFRING
2730 mtx_lock_spin(&txr->hn_txlist_spin);
2731 KASSERT(txr->hn_txdesc_avail >= 0 &&
2732 txr->hn_txdesc_avail < txr->hn_txdesc_cnt,
2733 ("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail));
2734 txr->hn_txdesc_avail++;
2735 SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
2736 mtx_unlock_spin(&txr->hn_txlist_spin);
2737 #else /* HN_USE_TXDESC_BUFRING */
2738 #ifdef HN_DEBUG
2739 atomic_add_int(&txr->hn_txdesc_avail, 1);
2740 #endif
2741 buf_ring_enqueue(txr->hn_txdesc_br, txd);
2742 #endif /* !HN_USE_TXDESC_BUFRING */
2743
2744 return 1;
2745 }
2746
2747 static __inline struct hn_txdesc *
hn_txdesc_get(struct hn_tx_ring * txr)2748 hn_txdesc_get(struct hn_tx_ring *txr)
2749 {
2750 struct hn_txdesc *txd;
2751
2752 #ifndef HN_USE_TXDESC_BUFRING
2753 mtx_lock_spin(&txr->hn_txlist_spin);
2754 txd = SLIST_FIRST(&txr->hn_txlist);
2755 if (txd != NULL) {
2756 KASSERT(txr->hn_txdesc_avail > 0,
2757 ("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail));
2758 txr->hn_txdesc_avail--;
2759 SLIST_REMOVE_HEAD(&txr->hn_txlist, link);
2760 }
2761 mtx_unlock_spin(&txr->hn_txlist_spin);
2762 #else
2763 txd = buf_ring_dequeue_sc(txr->hn_txdesc_br);
2764 #endif
2765
2766 if (txd != NULL) {
2767 #ifdef HN_USE_TXDESC_BUFRING
2768 #ifdef HN_DEBUG
2769 atomic_subtract_int(&txr->hn_txdesc_avail, 1);
2770 #endif
2771 #endif /* HN_USE_TXDESC_BUFRING */
2772 KASSERT(txd->m == NULL && txd->refs == 0 &&
2773 STAILQ_EMPTY(&txd->agg_list) &&
2774 txd->chim_index == HN_NVS_CHIM_IDX_INVALID &&
2775 txd->chim_size == 0 &&
2776 (txd->flags & HN_TXD_FLAG_ONLIST) &&
2777 (txd->flags & HN_TXD_FLAG_ONAGG) == 0 &&
2778 (txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("invalid txd"));
2779 txd->flags &= ~HN_TXD_FLAG_ONLIST;
2780 txd->refs = 1;
2781 }
2782 return txd;
2783 }
2784
2785 static __inline void
hn_txdesc_hold(struct hn_txdesc * txd)2786 hn_txdesc_hold(struct hn_txdesc *txd)
2787 {
2788
2789 /* 0->1 transition will never work */
2790 KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs));
2791 atomic_add_int(&txd->refs, 1);
2792 }
2793
2794 static __inline void
hn_txdesc_agg(struct hn_txdesc * agg_txd,struct hn_txdesc * txd)2795 hn_txdesc_agg(struct hn_txdesc *agg_txd, struct hn_txdesc *txd)
2796 {
2797
2798 KASSERT((agg_txd->flags & HN_TXD_FLAG_ONAGG) == 0,
2799 ("recursive aggregation on aggregating txdesc"));
2800
2801 KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0,
2802 ("already aggregated"));
2803 KASSERT(STAILQ_EMPTY(&txd->agg_list),
2804 ("recursive aggregation on to-be-aggregated txdesc"));
2805
2806 txd->flags |= HN_TXD_FLAG_ONAGG;
2807 STAILQ_INSERT_TAIL(&agg_txd->agg_list, txd, agg_link);
2808 }
2809
2810 static bool
hn_tx_ring_pending(struct hn_tx_ring * txr)2811 hn_tx_ring_pending(struct hn_tx_ring *txr)
2812 {
2813 bool pending = false;
2814
2815 #ifndef HN_USE_TXDESC_BUFRING
2816 mtx_lock_spin(&txr->hn_txlist_spin);
2817 if (txr->hn_txdesc_avail != txr->hn_txdesc_cnt)
2818 pending = true;
2819 mtx_unlock_spin(&txr->hn_txlist_spin);
2820 #else
2821 if (!buf_ring_full(txr->hn_txdesc_br))
2822 pending = true;
2823 #endif
2824 return (pending);
2825 }
2826
2827 static __inline void
hn_txeof(struct hn_tx_ring * txr)2828 hn_txeof(struct hn_tx_ring *txr)
2829 {
2830 txr->hn_has_txeof = 0;
2831 txr->hn_txeof(txr);
2832 }
2833
2834 static void
hn_txpkt_done(struct hn_nvs_sendctx * sndc,struct hn_softc * sc,struct vmbus_channel * chan,const void * data __unused,int dlen __unused)2835 hn_txpkt_done(struct hn_nvs_sendctx *sndc, struct hn_softc *sc,
2836 struct vmbus_channel *chan, const void *data __unused, int dlen __unused)
2837 {
2838 struct hn_txdesc *txd = sndc->hn_cbarg;
2839 struct hn_tx_ring *txr;
2840
2841 txr = txd->txr;
2842 KASSERT(txr->hn_chan == chan,
2843 ("channel mismatch, on chan%u, should be chan%u",
2844 vmbus_chan_id(chan), vmbus_chan_id(txr->hn_chan)));
2845
2846 txr->hn_has_txeof = 1;
2847 hn_txdesc_put(txr, txd);
2848
2849 ++txr->hn_txdone_cnt;
2850 if (txr->hn_txdone_cnt >= HN_EARLY_TXEOF_THRESH) {
2851 txr->hn_txdone_cnt = 0;
2852 if (txr->hn_oactive)
2853 hn_txeof(txr);
2854 }
2855 }
2856
2857 static void
hn_chan_rollup(struct hn_rx_ring * rxr,struct hn_tx_ring * txr)2858 hn_chan_rollup(struct hn_rx_ring *rxr, struct hn_tx_ring *txr)
2859 {
2860 #if defined(INET) || defined(INET6)
2861 struct epoch_tracker et;
2862
2863 NET_EPOCH_ENTER(et);
2864 tcp_lro_flush_all(&rxr->hn_lro);
2865 NET_EPOCH_EXIT(et);
2866 #endif
2867
2868 /*
2869 * NOTE:
2870 * 'txr' could be NULL, if multiple channels and
2871 * ifnet.if_start method are enabled.
2872 */
2873 if (txr == NULL || !txr->hn_has_txeof)
2874 return;
2875
2876 txr->hn_txdone_cnt = 0;
2877 hn_txeof(txr);
2878 }
2879
2880 static __inline uint32_t
hn_rndis_pktmsg_offset(uint32_t ofs)2881 hn_rndis_pktmsg_offset(uint32_t ofs)
2882 {
2883
2884 KASSERT(ofs >= sizeof(struct rndis_packet_msg),
2885 ("invalid RNDIS packet msg offset %u", ofs));
2886 return (ofs - __offsetof(struct rndis_packet_msg, rm_dataoffset));
2887 }
2888
2889 static __inline void *
hn_rndis_pktinfo_append(struct rndis_packet_msg * pkt,size_t pktsize,size_t pi_dlen,uint32_t pi_type)2890 hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt, size_t pktsize,
2891 size_t pi_dlen, uint32_t pi_type)
2892 {
2893 const size_t pi_size = HN_RNDIS_PKTINFO_SIZE(pi_dlen);
2894 struct rndis_pktinfo *pi;
2895
2896 KASSERT((pi_size & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK) == 0,
2897 ("unaligned pktinfo size %zu, pktinfo dlen %zu", pi_size, pi_dlen));
2898
2899 /*
2900 * Per-packet-info does not move; it only grows.
2901 *
2902 * NOTE:
2903 * rm_pktinfooffset in this phase counts from the beginning
2904 * of rndis_packet_msg.
2905 */
2906 KASSERT(pkt->rm_pktinfooffset + pkt->rm_pktinfolen + pi_size <= pktsize,
2907 ("%u pktinfo overflows RNDIS packet msg", pi_type));
2908 pi = (struct rndis_pktinfo *)((uint8_t *)pkt + pkt->rm_pktinfooffset +
2909 pkt->rm_pktinfolen);
2910 pkt->rm_pktinfolen += pi_size;
2911
2912 pi->rm_size = pi_size;
2913 pi->rm_type = pi_type;
2914 pi->rm_internal = 0;
2915 pi->rm_pktinfooffset = RNDIS_PKTINFO_OFFSET;
2916
2917 return (pi->rm_data);
2918 }
2919
2920 static __inline int
hn_flush_txagg(if_t ifp,struct hn_tx_ring * txr)2921 hn_flush_txagg(if_t ifp, struct hn_tx_ring *txr)
2922 {
2923 struct hn_txdesc *txd;
2924 struct mbuf *m;
2925 int error, pkts;
2926
2927 txd = txr->hn_agg_txd;
2928 KASSERT(txd != NULL, ("no aggregate txdesc"));
2929
2930 /*
2931 * Since hn_txpkt() will reset this temporary stat, save
2932 * it now, so that oerrors can be updated properly, if
2933 * hn_txpkt() ever fails.
2934 */
2935 pkts = txr->hn_stat_pkts;
2936
2937 /*
2938 * Since txd's mbuf will _not_ be freed upon hn_txpkt()
2939 * failure, save it for later freeing, if hn_txpkt() ever
2940 * fails.
2941 */
2942 m = txd->m;
2943 error = hn_txpkt(ifp, txr, txd);
2944 if (__predict_false(error)) {
2945 /* txd is freed, but m is not. */
2946 m_freem(m);
2947
2948 txr->hn_flush_failed++;
2949 if_inc_counter(ifp, IFCOUNTER_OERRORS, pkts);
2950 }
2951
2952 /* Reset all aggregation states. */
2953 txr->hn_agg_txd = NULL;
2954 txr->hn_agg_szleft = 0;
2955 txr->hn_agg_pktleft = 0;
2956 txr->hn_agg_prevpkt = NULL;
2957
2958 return (error);
2959 }
2960
2961 static void *
hn_try_txagg(if_t ifp,struct hn_tx_ring * txr,struct hn_txdesc * txd,int pktsize)2962 hn_try_txagg(if_t ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd,
2963 int pktsize)
2964 {
2965 void *chim;
2966
2967 if (txr->hn_agg_txd != NULL) {
2968 if (txr->hn_agg_pktleft >= 1 && txr->hn_agg_szleft > pktsize) {
2969 struct hn_txdesc *agg_txd = txr->hn_agg_txd;
2970 struct rndis_packet_msg *pkt = txr->hn_agg_prevpkt;
2971 int olen;
2972
2973 /*
2974 * Update the previous RNDIS packet's total length,
2975 * it can be increased due to the mandatory alignment
2976 * padding for this RNDIS packet. And update the
2977 * aggregating txdesc's chimney sending buffer size
2978 * accordingly.
2979 *
2980 * XXX
2981 * Zero-out the padding, as required by the RNDIS spec.
2982 */
2983 olen = pkt->rm_len;
2984 pkt->rm_len = roundup2(olen, txr->hn_agg_align);
2985 agg_txd->chim_size += pkt->rm_len - olen;
2986
2987 /* Link this txdesc to the parent. */
2988 hn_txdesc_agg(agg_txd, txd);
2989
2990 chim = (uint8_t *)pkt + pkt->rm_len;
2991 /* Save the current packet for later fixup. */
2992 txr->hn_agg_prevpkt = chim;
2993
2994 txr->hn_agg_pktleft--;
2995 txr->hn_agg_szleft -= pktsize;
2996 if (txr->hn_agg_szleft <=
2997 HN_PKTSIZE_MIN(txr->hn_agg_align)) {
2998 /*
2999 * Probably can't aggregate more packets,
3000 * flush this aggregating txdesc proactively.
3001 */
3002 txr->hn_agg_pktleft = 0;
3003 }
3004 /* Done! */
3005 return (chim);
3006 }
3007 hn_flush_txagg(ifp, txr);
3008 }
3009 KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
3010
3011 txr->hn_tx_chimney_tried++;
3012 txd->chim_index = hn_chim_alloc(txr->hn_sc);
3013 if (txd->chim_index == HN_NVS_CHIM_IDX_INVALID)
3014 return (NULL);
3015 txr->hn_tx_chimney++;
3016
3017 chim = txr->hn_sc->hn_chim +
3018 (txd->chim_index * txr->hn_sc->hn_chim_szmax);
3019
3020 if (txr->hn_agg_pktmax > 1 &&
3021 txr->hn_agg_szmax > pktsize + HN_PKTSIZE_MIN(txr->hn_agg_align)) {
3022 txr->hn_agg_txd = txd;
3023 txr->hn_agg_pktleft = txr->hn_agg_pktmax - 1;
3024 txr->hn_agg_szleft = txr->hn_agg_szmax - pktsize;
3025 txr->hn_agg_prevpkt = chim;
3026 }
3027 return (chim);
3028 }
3029
3030 /*
3031 * NOTE:
3032 * If this function fails, then both txd and m_head0 will be freed.
3033 */
3034 static int
hn_encap(if_t ifp,struct hn_tx_ring * txr,struct hn_txdesc * txd,struct mbuf ** m_head0)3035 hn_encap(if_t ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd,
3036 struct mbuf **m_head0)
3037 {
3038 bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX];
3039 int error, nsegs, i;
3040 struct mbuf *m_head = *m_head0;
3041 struct rndis_packet_msg *pkt;
3042 uint32_t *pi_data;
3043 void *chim = NULL;
3044 int pkt_hlen, pkt_size;
3045
3046 pkt = txd->rndis_pkt;
3047 pkt_size = HN_PKTSIZE(m_head, txr->hn_agg_align);
3048 if (pkt_size < txr->hn_chim_size) {
3049 chim = hn_try_txagg(ifp, txr, txd, pkt_size);
3050 if (chim != NULL)
3051 pkt = chim;
3052 } else {
3053 if (txr->hn_agg_txd != NULL)
3054 hn_flush_txagg(ifp, txr);
3055 }
3056
3057 pkt->rm_type = REMOTE_NDIS_PACKET_MSG;
3058 pkt->rm_len = m_head->m_pkthdr.len;
3059 pkt->rm_dataoffset = 0;
3060 pkt->rm_datalen = m_head->m_pkthdr.len;
3061 pkt->rm_oobdataoffset = 0;
3062 pkt->rm_oobdatalen = 0;
3063 pkt->rm_oobdataelements = 0;
3064 pkt->rm_pktinfooffset = sizeof(*pkt);
3065 pkt->rm_pktinfolen = 0;
3066 pkt->rm_vchandle = 0;
3067 pkt->rm_reserved = 0;
3068
3069 if (txr->hn_tx_flags & HN_TX_FLAG_HASHVAL) {
3070 /*
3071 * Set the hash value for this packet.
3072 */
3073 pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
3074 HN_NDIS_HASH_VALUE_SIZE, HN_NDIS_PKTINFO_TYPE_HASHVAL);
3075
3076 if (M_HASHTYPE_ISHASH(m_head))
3077 /*
3078 * The flowid field contains the hash value host
3079 * set in the rx queue if it is a ip forwarding pkt.
3080 * Set the same hash value so host can send on the
3081 * cpu it was received.
3082 */
3083 *pi_data = m_head->m_pkthdr.flowid;
3084 else
3085 /*
3086 * Otherwise just put the tx queue index.
3087 */
3088 *pi_data = txr->hn_tx_idx;
3089 }
3090
3091 if (m_head->m_flags & M_VLANTAG) {
3092 pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
3093 NDIS_VLAN_INFO_SIZE, NDIS_PKTINFO_TYPE_VLAN);
3094 *pi_data = NDIS_VLAN_INFO_MAKE(
3095 EVL_VLANOFTAG(m_head->m_pkthdr.ether_vtag),
3096 EVL_PRIOFTAG(m_head->m_pkthdr.ether_vtag),
3097 EVL_CFIOFTAG(m_head->m_pkthdr.ether_vtag));
3098 }
3099
3100 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3101 #if defined(INET6) || defined(INET)
3102 pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
3103 NDIS_LSO2_INFO_SIZE, NDIS_PKTINFO_TYPE_LSO);
3104 #ifdef INET
3105 if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) {
3106 *pi_data = NDIS_LSO2_INFO_MAKEIPV4(
3107 m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen,
3108 m_head->m_pkthdr.tso_segsz);
3109 }
3110 #endif
3111 #if defined(INET6) && defined(INET)
3112 else
3113 #endif
3114 #ifdef INET6
3115 {
3116 *pi_data = NDIS_LSO2_INFO_MAKEIPV6(
3117 m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen,
3118 m_head->m_pkthdr.tso_segsz);
3119 }
3120 #endif
3121 #endif /* INET6 || INET */
3122 } else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) {
3123 pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
3124 NDIS_TXCSUM_INFO_SIZE, NDIS_PKTINFO_TYPE_CSUM);
3125 if (m_head->m_pkthdr.csum_flags &
3126 (CSUM_IP6_TCP | CSUM_IP6_UDP)) {
3127 *pi_data = NDIS_TXCSUM_INFO_IPV6;
3128 } else {
3129 *pi_data = NDIS_TXCSUM_INFO_IPV4;
3130 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3131 *pi_data |= NDIS_TXCSUM_INFO_IPCS;
3132 }
3133
3134 if (m_head->m_pkthdr.csum_flags &
3135 (CSUM_IP_TCP | CSUM_IP6_TCP)) {
3136 *pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(
3137 m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen);
3138 } else if (m_head->m_pkthdr.csum_flags &
3139 (CSUM_IP_UDP | CSUM_IP6_UDP)) {
3140 *pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(
3141 m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen);
3142 }
3143 }
3144
3145 pkt_hlen = pkt->rm_pktinfooffset + pkt->rm_pktinfolen;
3146 /* Fixup RNDIS packet message total length */
3147 pkt->rm_len += pkt_hlen;
3148 /* Convert RNDIS packet message offsets */
3149 pkt->rm_dataoffset = hn_rndis_pktmsg_offset(pkt_hlen);
3150 pkt->rm_pktinfooffset = hn_rndis_pktmsg_offset(pkt->rm_pktinfooffset);
3151
3152 /*
3153 * Fast path: Chimney sending.
3154 */
3155 if (chim != NULL) {
3156 struct hn_txdesc *tgt_txd = txd;
3157
3158 if (txr->hn_agg_txd != NULL) {
3159 tgt_txd = txr->hn_agg_txd;
3160 #ifdef INVARIANTS
3161 *m_head0 = NULL;
3162 #endif
3163 }
3164
3165 KASSERT(pkt == chim,
3166 ("RNDIS pkt not in chimney sending buffer"));
3167 KASSERT(tgt_txd->chim_index != HN_NVS_CHIM_IDX_INVALID,
3168 ("chimney sending buffer is not used"));
3169 tgt_txd->chim_size += pkt->rm_len;
3170
3171 m_copydata(m_head, 0, m_head->m_pkthdr.len,
3172 ((uint8_t *)chim) + pkt_hlen);
3173
3174 txr->hn_gpa_cnt = 0;
3175 txr->hn_sendpkt = hn_txpkt_chim;
3176 goto done;
3177 }
3178
3179 KASSERT(txr->hn_agg_txd == NULL, ("aggregating sglist txdesc"));
3180 KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID,
3181 ("chimney buffer is used"));
3182 KASSERT(pkt == txd->rndis_pkt, ("RNDIS pkt not in txdesc"));
3183
3184 error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs);
3185 if (__predict_false(error)) {
3186 int freed __diagused;
3187
3188 /*
3189 * This mbuf is not linked w/ the txd yet, so free it now.
3190 */
3191 m_freem(m_head);
3192 *m_head0 = NULL;
3193
3194 freed = hn_txdesc_put(txr, txd);
3195 KASSERT(freed != 0,
3196 ("fail to free txd upon txdma error"));
3197
3198 txr->hn_txdma_failed++;
3199 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3200 return error;
3201 }
3202 *m_head0 = m_head;
3203
3204 /* +1 RNDIS packet message */
3205 txr->hn_gpa_cnt = nsegs + 1;
3206
3207 /* send packet with page buffer */
3208 txr->hn_gpa[0].gpa_page = atop(txd->rndis_pkt_paddr);
3209 txr->hn_gpa[0].gpa_ofs = txd->rndis_pkt_paddr & PAGE_MASK;
3210 txr->hn_gpa[0].gpa_len = pkt_hlen;
3211
3212 /*
3213 * Fill the page buffers with mbuf info after the page
3214 * buffer for RNDIS packet message.
3215 */
3216 for (i = 0; i < nsegs; ++i) {
3217 struct vmbus_gpa *gpa = &txr->hn_gpa[i + 1];
3218
3219 gpa->gpa_page = atop(segs[i].ds_addr);
3220 gpa->gpa_ofs = segs[i].ds_addr & PAGE_MASK;
3221 gpa->gpa_len = segs[i].ds_len;
3222 }
3223
3224 txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
3225 txd->chim_size = 0;
3226 txr->hn_sendpkt = hn_txpkt_sglist;
3227 done:
3228 txd->m = m_head;
3229
3230 /* Set the completion routine */
3231 hn_nvs_sendctx_init(&txd->send_ctx, hn_txpkt_done, txd);
3232
3233 /* Update temporary stats for later use. */
3234 txr->hn_stat_pkts++;
3235 txr->hn_stat_size += m_head->m_pkthdr.len;
3236 if (m_head->m_flags & M_MCAST)
3237 txr->hn_stat_mcasts++;
3238
3239 return 0;
3240 }
3241
3242 /*
3243 * NOTE:
3244 * If this function fails, then txd will be freed, but the mbuf
3245 * associated w/ the txd will _not_ be freed.
3246 */
3247 static int
hn_txpkt(if_t ifp,struct hn_tx_ring * txr,struct hn_txdesc * txd)3248 hn_txpkt(if_t ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd)
3249 {
3250 int error, send_failed = 0, has_bpf;
3251
3252 again:
3253 has_bpf = bpf_peers_present_if(ifp);
3254 if (has_bpf) {
3255 /*
3256 * Make sure that this txd and any aggregated txds are not
3257 * freed before ETHER_BPF_MTAP.
3258 */
3259 hn_txdesc_hold(txd);
3260 }
3261 error = txr->hn_sendpkt(txr, txd);
3262 if (!error) {
3263 if (has_bpf) {
3264 const struct hn_txdesc *tmp_txd;
3265
3266 ETHER_BPF_MTAP(ifp, txd->m);
3267 STAILQ_FOREACH(tmp_txd, &txd->agg_list, agg_link)
3268 ETHER_BPF_MTAP(ifp, tmp_txd->m);
3269 }
3270
3271 if_inc_counter(ifp, IFCOUNTER_OPACKETS, txr->hn_stat_pkts);
3272 #ifdef HN_IFSTART_SUPPORT
3273 if (!hn_use_if_start)
3274 #endif
3275 {
3276 if_inc_counter(ifp, IFCOUNTER_OBYTES,
3277 txr->hn_stat_size);
3278 if (txr->hn_stat_mcasts != 0) {
3279 if_inc_counter(ifp, IFCOUNTER_OMCASTS,
3280 txr->hn_stat_mcasts);
3281 }
3282 }
3283 txr->hn_pkts += txr->hn_stat_pkts;
3284 txr->hn_sends++;
3285 }
3286 if (has_bpf)
3287 hn_txdesc_put(txr, txd);
3288
3289 if (__predict_false(error)) {
3290 int freed __diagused;
3291
3292 /*
3293 * This should "really rarely" happen.
3294 *
3295 * XXX Too many RX to be acked or too many sideband
3296 * commands to run? Ask netvsc_channel_rollup()
3297 * to kick start later.
3298 */
3299 txr->hn_has_txeof = 1;
3300 if (!send_failed) {
3301 txr->hn_send_failed++;
3302 send_failed = 1;
3303 /*
3304 * Try sending again after set hn_has_txeof;
3305 * in case that we missed the last
3306 * netvsc_channel_rollup().
3307 */
3308 goto again;
3309 }
3310 if_printf(ifp, "send failed\n");
3311
3312 /*
3313 * Caller will perform further processing on the
3314 * associated mbuf, so don't free it in hn_txdesc_put();
3315 * only unload it from the DMA map in hn_txdesc_put(),
3316 * if it was loaded.
3317 */
3318 txd->m = NULL;
3319 freed = hn_txdesc_put(txr, txd);
3320 KASSERT(freed != 0,
3321 ("fail to free txd upon send error"));
3322
3323 txr->hn_send_failed++;
3324 }
3325
3326 /* Reset temporary stats, after this sending is done. */
3327 txr->hn_stat_size = 0;
3328 txr->hn_stat_pkts = 0;
3329 txr->hn_stat_mcasts = 0;
3330
3331 return (error);
3332 }
3333
3334 /*
3335 * Append the specified data to the indicated mbuf chain,
3336 * Extend the mbuf chain if the new data does not fit in
3337 * existing space.
3338 *
3339 * This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c.
3340 * There should be an equivalent in the kernel mbuf code,
3341 * but there does not appear to be one yet.
3342 *
3343 * Differs from m_append() in that additional mbufs are
3344 * allocated with cluster size MJUMPAGESIZE, and filled
3345 * accordingly.
3346 *
3347 * Return the last mbuf in the chain or NULL if failed to
3348 * allocate new mbuf.
3349 */
3350 static struct mbuf *
hv_m_append(struct mbuf * m0,int len,c_caddr_t cp)3351 hv_m_append(struct mbuf *m0, int len, c_caddr_t cp)
3352 {
3353 struct mbuf *m, *n;
3354 int remainder, space;
3355
3356 for (m = m0; m->m_next != NULL; m = m->m_next)
3357 ;
3358 remainder = len;
3359 space = M_TRAILINGSPACE(m);
3360 if (space > 0) {
3361 /*
3362 * Copy into available space.
3363 */
3364 if (space > remainder)
3365 space = remainder;
3366 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
3367 m->m_len += space;
3368 cp += space;
3369 remainder -= space;
3370 }
3371 while (remainder > 0) {
3372 /*
3373 * Allocate a new mbuf; could check space
3374 * and allocate a cluster instead.
3375 */
3376 n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE);
3377 if (n == NULL)
3378 return NULL;
3379 n->m_len = min(MJUMPAGESIZE, remainder);
3380 bcopy(cp, mtod(n, caddr_t), n->m_len);
3381 cp += n->m_len;
3382 remainder -= n->m_len;
3383 m->m_next = n;
3384 m = n;
3385 }
3386
3387 return m;
3388 }
3389
3390 #if defined(INET) || defined(INET6)
3391 static __inline int
hn_lro_rx(struct lro_ctrl * lc,struct mbuf * m)3392 hn_lro_rx(struct lro_ctrl *lc, struct mbuf *m)
3393 {
3394 if (hn_lro_mbufq_depth) {
3395 tcp_lro_queue_mbuf(lc, m);
3396 return 0;
3397 }
3398 return tcp_lro_rx(lc, m, 0);
3399 }
3400 #endif
3401
3402 static int
hn_rxpkt(struct hn_rx_ring * rxr)3403 hn_rxpkt(struct hn_rx_ring *rxr)
3404 {
3405 if_t ifp, hn_ifp = rxr->hn_ifp;
3406 struct mbuf *m_new, *n;
3407 int size, do_lro = 0, do_csum = 1, is_vf = 0;
3408 int hash_type = M_HASHTYPE_NONE;
3409 int l3proto = ETHERTYPE_MAX, l4proto = IPPROTO_DONE;
3410 int i;
3411
3412 ifp = hn_ifp;
3413 if (rxr->hn_rxvf_ifp != NULL) {
3414 /*
3415 * Non-transparent mode VF; pretend this packet is from
3416 * the VF.
3417 */
3418 ifp = rxr->hn_rxvf_ifp;
3419 is_vf = 1;
3420 } else if (rxr->hn_rx_flags & HN_RX_FLAG_XPNT_VF) {
3421 /* Transparent mode VF. */
3422 is_vf = 1;
3423 }
3424
3425 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
3426 /*
3427 * NOTE:
3428 * See the NOTE of hn_rndis_init_fixat(). This
3429 * function can be reached, immediately after the
3430 * RNDIS is initialized but before the ifnet is
3431 * setup on the hn_attach() path; drop the unexpected
3432 * packets.
3433 */
3434 return (0);
3435 }
3436
3437 if (__predict_false(rxr->rsc.pktlen < ETHER_HDR_LEN)) {
3438 if_inc_counter(hn_ifp, IFCOUNTER_IERRORS, 1);
3439 return (0);
3440 }
3441
3442 if (rxr->rsc.cnt == 1 && rxr->rsc.pktlen <= MHLEN) {
3443 m_new = m_gethdr(M_NOWAIT, MT_DATA);
3444 if (m_new == NULL) {
3445 if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
3446 return (0);
3447 }
3448 memcpy(mtod(m_new, void *), rxr->rsc.frag_data[0],
3449 rxr->rsc.frag_len[0]);
3450 m_new->m_pkthdr.len = m_new->m_len = rxr->rsc.frag_len[0];
3451 } else {
3452 /*
3453 * Get an mbuf with a cluster. For packets 2K or less,
3454 * get a standard 2K cluster. For anything larger, get a
3455 * 4K cluster. Any buffers larger than 4K can cause problems
3456 * if looped around to the Hyper-V TX channel, so avoid them.
3457 */
3458 size = MCLBYTES;
3459 if (rxr->rsc.pktlen > MCLBYTES) {
3460 /* 4096 */
3461 size = MJUMPAGESIZE;
3462 }
3463
3464 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size);
3465 if (m_new == NULL) {
3466 if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
3467 return (0);
3468 }
3469
3470 n = m_new;
3471 for (i = 0; i < rxr->rsc.cnt; i++) {
3472 n = hv_m_append(n, rxr->rsc.frag_len[i],
3473 rxr->rsc.frag_data[i]);
3474 if (n == NULL) {
3475 if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
3476 return (0);
3477 } else {
3478 m_new->m_pkthdr.len += rxr->rsc.frag_len[i];
3479 }
3480 }
3481 }
3482 if (rxr->rsc.pktlen <= MHLEN)
3483 rxr->hn_small_pkts++;
3484
3485 m_new->m_pkthdr.rcvif = ifp;
3486
3487 if (__predict_false((if_getcapenable(hn_ifp) & IFCAP_RXCSUM) == 0))
3488 do_csum = 0;
3489
3490 /* receive side checksum offload */
3491 if (rxr->rsc.csum_info != NULL) {
3492 /* IP csum offload */
3493 if ((*(rxr->rsc.csum_info) & NDIS_RXCSUM_INFO_IPCS_OK) && do_csum) {
3494 m_new->m_pkthdr.csum_flags |=
3495 (CSUM_IP_CHECKED | CSUM_IP_VALID);
3496 rxr->hn_csum_ip++;
3497 }
3498
3499 /* TCP/UDP csum offload */
3500 if ((*(rxr->rsc.csum_info) & (NDIS_RXCSUM_INFO_UDPCS_OK |
3501 NDIS_RXCSUM_INFO_TCPCS_OK)) && do_csum) {
3502 m_new->m_pkthdr.csum_flags |=
3503 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
3504 m_new->m_pkthdr.csum_data = 0xffff;
3505 if (*(rxr->rsc.csum_info) & NDIS_RXCSUM_INFO_TCPCS_OK)
3506 rxr->hn_csum_tcp++;
3507 else
3508 rxr->hn_csum_udp++;
3509 }
3510
3511 /*
3512 * XXX
3513 * As of this write (Oct 28th, 2016), host side will turn
3514 * on only TCPCS_OK and IPCS_OK even for UDP datagrams, so
3515 * the do_lro setting here is actually _not_ accurate. We
3516 * depend on the RSS hash type check to reset do_lro.
3517 */
3518 if ((*(rxr->rsc.csum_info) &
3519 (NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK)) ==
3520 (NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK))
3521 do_lro = 1;
3522 } else {
3523 hn_rxpkt_proto(m_new, &l3proto, &l4proto);
3524 if (l3proto == ETHERTYPE_IP) {
3525 if (l4proto == IPPROTO_TCP) {
3526 if (do_csum &&
3527 (rxr->hn_trust_hcsum &
3528 HN_TRUST_HCSUM_TCP)) {
3529 rxr->hn_csum_trusted++;
3530 m_new->m_pkthdr.csum_flags |=
3531 (CSUM_IP_CHECKED | CSUM_IP_VALID |
3532 CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
3533 m_new->m_pkthdr.csum_data = 0xffff;
3534 }
3535 do_lro = 1;
3536 } else if (l4proto == IPPROTO_UDP) {
3537 if (do_csum &&
3538 (rxr->hn_trust_hcsum &
3539 HN_TRUST_HCSUM_UDP)) {
3540 rxr->hn_csum_trusted++;
3541 m_new->m_pkthdr.csum_flags |=
3542 (CSUM_IP_CHECKED | CSUM_IP_VALID |
3543 CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
3544 m_new->m_pkthdr.csum_data = 0xffff;
3545 }
3546 } else if (l4proto != IPPROTO_DONE && do_csum &&
3547 (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) {
3548 rxr->hn_csum_trusted++;
3549 m_new->m_pkthdr.csum_flags |=
3550 (CSUM_IP_CHECKED | CSUM_IP_VALID);
3551 }
3552 }
3553 }
3554
3555 if (rxr->rsc.vlan_info != NULL) {
3556 m_new->m_pkthdr.ether_vtag = EVL_MAKETAG(
3557 NDIS_VLAN_INFO_ID(*(rxr->rsc.vlan_info)),
3558 NDIS_VLAN_INFO_PRI(*(rxr->rsc.vlan_info)),
3559 NDIS_VLAN_INFO_CFI(*(rxr->rsc.vlan_info)));
3560 m_new->m_flags |= M_VLANTAG;
3561 }
3562
3563 /*
3564 * If VF is activated (transparent/non-transparent mode does not
3565 * matter here).
3566 *
3567 * - Disable LRO
3568 *
3569 * hn(4) will only receive broadcast packets, multicast packets,
3570 * TCP SYN and SYN|ACK (in Azure), LRO is useless for these
3571 * packet types.
3572 *
3573 * For non-transparent, we definitely _cannot_ enable LRO at
3574 * all, since the LRO flush will use hn(4) as the receiving
3575 * interface; i.e. hn_ifp->if_input(hn_ifp, m).
3576 */
3577 if (is_vf)
3578 do_lro = 0;
3579
3580 /*
3581 * If VF is activated (transparent/non-transparent mode does not
3582 * matter here), do _not_ mess with unsupported hash types or
3583 * functions.
3584 */
3585 if (rxr->rsc.hash_info != NULL) {
3586 rxr->hn_rss_pkts++;
3587 m_new->m_pkthdr.flowid = *(rxr->rsc.hash_value);
3588 if (!is_vf)
3589 hash_type = M_HASHTYPE_OPAQUE_HASH;
3590 if ((*(rxr->rsc.hash_info) & NDIS_HASH_FUNCTION_MASK) ==
3591 NDIS_HASH_FUNCTION_TOEPLITZ) {
3592 uint32_t type = (*(rxr->rsc.hash_info) & NDIS_HASH_TYPE_MASK &
3593 rxr->hn_mbuf_hash);
3594
3595 /*
3596 * NOTE:
3597 * do_lro is resetted, if the hash types are not TCP
3598 * related. See the comment in the above csum_flags
3599 * setup section.
3600 */
3601 switch (type) {
3602 case NDIS_HASH_IPV4:
3603 hash_type = M_HASHTYPE_RSS_IPV4;
3604 do_lro = 0;
3605 break;
3606
3607 case NDIS_HASH_TCP_IPV4:
3608 hash_type = M_HASHTYPE_RSS_TCP_IPV4;
3609 if (rxr->hn_rx_flags & HN_RX_FLAG_UDP_HASH) {
3610 int def_htype = M_HASHTYPE_OPAQUE_HASH;
3611
3612 if (is_vf)
3613 def_htype = M_HASHTYPE_NONE;
3614
3615 /*
3616 * UDP 4-tuple hash is delivered as
3617 * TCP 4-tuple hash.
3618 */
3619 if (l3proto == ETHERTYPE_MAX) {
3620 hn_rxpkt_proto(m_new,
3621 &l3proto, &l4proto);
3622 }
3623 if (l3proto == ETHERTYPE_IP) {
3624 if (l4proto == IPPROTO_UDP &&
3625 (rxr->hn_mbuf_hash &
3626 NDIS_HASH_UDP_IPV4_X)) {
3627 hash_type =
3628 M_HASHTYPE_RSS_UDP_IPV4;
3629 do_lro = 0;
3630 } else if (l4proto !=
3631 IPPROTO_TCP) {
3632 hash_type = def_htype;
3633 do_lro = 0;
3634 }
3635 } else {
3636 hash_type = def_htype;
3637 do_lro = 0;
3638 }
3639 }
3640 break;
3641
3642 case NDIS_HASH_IPV6:
3643 hash_type = M_HASHTYPE_RSS_IPV6;
3644 do_lro = 0;
3645 break;
3646
3647 case NDIS_HASH_IPV6_EX:
3648 hash_type = M_HASHTYPE_RSS_IPV6_EX;
3649 do_lro = 0;
3650 break;
3651
3652 case NDIS_HASH_TCP_IPV6:
3653 hash_type = M_HASHTYPE_RSS_TCP_IPV6;
3654 break;
3655
3656 case NDIS_HASH_TCP_IPV6_EX:
3657 hash_type = M_HASHTYPE_RSS_TCP_IPV6_EX;
3658 break;
3659 }
3660 }
3661 } else if (!is_vf) {
3662 m_new->m_pkthdr.flowid = rxr->hn_rx_idx;
3663 hash_type = M_HASHTYPE_OPAQUE;
3664 }
3665 M_HASHTYPE_SET(m_new, hash_type);
3666
3667 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3668 if (hn_ifp != ifp) {
3669 const struct ether_header *eh;
3670
3671 /*
3672 * Non-transparent mode VF is activated.
3673 */
3674
3675 /*
3676 * Allow tapping on hn(4).
3677 */
3678 ETHER_BPF_MTAP(hn_ifp, m_new);
3679
3680 /*
3681 * Update hn(4)'s stats.
3682 */
3683 if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1);
3684 if_inc_counter(hn_ifp, IFCOUNTER_IBYTES, m_new->m_pkthdr.len);
3685 /* Checked at the beginning of this function. */
3686 KASSERT(m_new->m_len >= ETHER_HDR_LEN, ("not ethernet frame"));
3687 eh = mtod(m_new, struct ether_header *);
3688 if (ETHER_IS_MULTICAST(eh->ether_dhost))
3689 if_inc_counter(hn_ifp, IFCOUNTER_IMCASTS, 1);
3690 }
3691 rxr->hn_pkts++;
3692
3693 if ((if_getcapenable(hn_ifp) & IFCAP_LRO) && do_lro) {
3694 #if defined(INET) || defined(INET6)
3695 struct lro_ctrl *lro = &rxr->hn_lro;
3696
3697 if (lro->lro_cnt) {
3698 rxr->hn_lro_tried++;
3699 if (hn_lro_rx(lro, m_new) == 0) {
3700 /* DONE! */
3701 return 0;
3702 }
3703 }
3704 #endif
3705 }
3706 if_input(ifp, m_new);
3707
3708 return (0);
3709 }
3710
3711 static int
hn_ioctl(if_t ifp,u_long cmd,caddr_t data)3712 hn_ioctl(if_t ifp, u_long cmd, caddr_t data)
3713 {
3714 struct hn_softc *sc = if_getsoftc(ifp);
3715 struct ifreq *ifr = (struct ifreq *)data, ifr_vf;
3716 if_t vf_ifp;
3717 int mask, error = 0;
3718 struct ifrsskey *ifrk;
3719 struct ifrsshash *ifrh;
3720 uint32_t mtu;
3721
3722 switch (cmd) {
3723 case SIOCSIFMTU:
3724 if (ifr->ifr_mtu > HN_MTU_MAX) {
3725 error = EINVAL;
3726 break;
3727 }
3728
3729 HN_LOCK(sc);
3730
3731 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
3732 HN_UNLOCK(sc);
3733 break;
3734 }
3735
3736 if ((sc->hn_caps & HN_CAP_MTU) == 0) {
3737 /* Can't change MTU */
3738 HN_UNLOCK(sc);
3739 error = EOPNOTSUPP;
3740 break;
3741 }
3742
3743 if (if_getmtu(ifp) == ifr->ifr_mtu) {
3744 HN_UNLOCK(sc);
3745 break;
3746 }
3747
3748 if (hn_xpnt_vf_isready(sc)) {
3749 vf_ifp = sc->hn_vf_ifp;
3750 ifr_vf = *ifr;
3751 strlcpy(ifr_vf.ifr_name, if_name(vf_ifp),
3752 sizeof(ifr_vf.ifr_name));
3753 error = ifhwioctl(SIOCSIFMTU,vf_ifp,
3754 (caddr_t)&ifr_vf, curthread);
3755 if (error) {
3756 HN_UNLOCK(sc);
3757 if_printf(ifp, "%s SIOCSIFMTU %d failed: %d\n",
3758 if_name(vf_ifp), ifr->ifr_mtu, error);
3759 break;
3760 }
3761 }
3762
3763 /*
3764 * Suspend this interface before the synthetic parts
3765 * are ripped.
3766 */
3767 hn_suspend(sc);
3768
3769 /*
3770 * Detach the synthetics parts, i.e. NVS and RNDIS.
3771 */
3772 hn_synth_detach(sc);
3773
3774 /*
3775 * Reattach the synthetic parts, i.e. NVS and RNDIS,
3776 * with the new MTU setting.
3777 */
3778 error = hn_synth_attach(sc, ifr->ifr_mtu);
3779 if (error) {
3780 HN_UNLOCK(sc);
3781 break;
3782 }
3783
3784 error = hn_rndis_get_mtu(sc, &mtu);
3785 if (error)
3786 mtu = ifr->ifr_mtu;
3787 else if (bootverbose)
3788 if_printf(ifp, "RNDIS mtu %u\n", mtu);
3789
3790 /*
3791 * Commit the requested MTU, after the synthetic parts
3792 * have been successfully attached.
3793 */
3794 if (mtu >= ifr->ifr_mtu) {
3795 mtu = ifr->ifr_mtu;
3796 } else {
3797 if_printf(ifp, "fixup mtu %d -> %u\n",
3798 ifr->ifr_mtu, mtu);
3799 }
3800 if_setmtu(ifp, mtu);
3801
3802 /*
3803 * Synthetic parts' reattach may change the chimney
3804 * sending size; update it.
3805 */
3806 if (sc->hn_tx_ring[0].hn_chim_size > sc->hn_chim_szmax)
3807 hn_set_chim_size(sc, sc->hn_chim_szmax);
3808
3809 /*
3810 * Make sure that various parameters based on MTU are
3811 * still valid, after the MTU change.
3812 */
3813 hn_mtu_change_fixup(sc);
3814
3815 /*
3816 * All done! Resume the interface now.
3817 */
3818 hn_resume(sc);
3819
3820 if ((sc->hn_flags & HN_FLAG_RXVF) ||
3821 (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
3822 /*
3823 * Since we have reattached the NVS part,
3824 * change the datapath to VF again; in case
3825 * that it is lost, after the NVS was detached.
3826 */
3827 hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF);
3828 }
3829
3830 HN_UNLOCK(sc);
3831 break;
3832
3833 case SIOCSIFFLAGS:
3834 HN_LOCK(sc);
3835
3836 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
3837 HN_UNLOCK(sc);
3838 break;
3839 }
3840
3841 if (hn_xpnt_vf_isready(sc))
3842 hn_xpnt_vf_saveifflags(sc);
3843
3844 if (if_getflags(ifp) & IFF_UP) {
3845 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3846 /*
3847 * Caller meight hold mutex, e.g.
3848 * bpf; use busy-wait for the RNDIS
3849 * reply.
3850 */
3851 HN_NO_SLEEPING(sc);
3852 hn_rxfilter_config(sc);
3853 HN_SLEEPING_OK(sc);
3854
3855 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
3856 error = hn_xpnt_vf_iocsetflags(sc);
3857 } else {
3858 hn_init_locked(sc);
3859 }
3860 } else {
3861 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3862 hn_stop(sc, false);
3863 }
3864 sc->hn_if_flags = if_getflags(ifp);
3865
3866 HN_UNLOCK(sc);
3867 break;
3868
3869 case SIOCSIFCAP:
3870 HN_LOCK(sc);
3871
3872 if (hn_xpnt_vf_isready(sc)) {
3873 ifr_vf = *ifr;
3874 strlcpy(ifr_vf.ifr_name, if_name(sc->hn_vf_ifp),
3875 sizeof(ifr_vf.ifr_name));
3876 error = hn_xpnt_vf_iocsetcaps(sc, &ifr_vf);
3877 HN_UNLOCK(sc);
3878 break;
3879 }
3880
3881 /*
3882 * Fix up requested capabilities w/ supported capabilities,
3883 * since the supported capabilities could have been changed.
3884 */
3885 mask = (ifr->ifr_reqcap & if_getcapabilities(ifp)) ^
3886 if_getcapenable(ifp);
3887
3888 if (mask & IFCAP_TXCSUM) {
3889 if_togglecapenable(ifp, IFCAP_TXCSUM);
3890 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
3891 if_sethwassistbits(ifp, HN_CSUM_IP_HWASSIST(sc), 0);
3892 else
3893 if_sethwassistbits(ifp, 0, HN_CSUM_IP_HWASSIST(sc));
3894 }
3895 if (mask & IFCAP_TXCSUM_IPV6) {
3896 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3897 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
3898 if_sethwassistbits(ifp, HN_CSUM_IP6_HWASSIST(sc), 0);
3899 else
3900 if_sethwassistbits(ifp, 0, HN_CSUM_IP6_HWASSIST(sc));
3901 }
3902
3903 /* TODO: flip RNDIS offload parameters for RXCSUM. */
3904 if (mask & IFCAP_RXCSUM)
3905 if_togglecapenable(ifp, IFCAP_RXCSUM);
3906 #ifdef foo
3907 /* We can't diff IPv6 packets from IPv4 packets on RX path. */
3908 if (mask & IFCAP_RXCSUM_IPV6)
3909 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3910 #endif
3911
3912 if (mask & IFCAP_LRO)
3913 if_togglecapenable(ifp, IFCAP_LRO);
3914
3915 if (mask & IFCAP_TSO4) {
3916 if_togglecapenable(ifp, IFCAP_TSO4);
3917 if (if_getcapenable(ifp) & IFCAP_TSO4)
3918 if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
3919 else
3920 if_sethwassistbits(ifp, 0, CSUM_IP_TSO);
3921 }
3922 if (mask & IFCAP_TSO6) {
3923 if_togglecapenable(ifp, IFCAP_TSO6);
3924 if (if_getcapenable(ifp) & IFCAP_TSO6)
3925 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
3926 else
3927 if_sethwassistbits(ifp, 0, CSUM_IP6_TSO);
3928 }
3929
3930 HN_UNLOCK(sc);
3931 break;
3932
3933 case SIOCADDMULTI:
3934 case SIOCDELMULTI:
3935 HN_LOCK(sc);
3936
3937 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
3938 HN_UNLOCK(sc);
3939 break;
3940 }
3941 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3942 /*
3943 * Multicast uses mutex; use busy-wait for
3944 * the RNDIS reply.
3945 */
3946 HN_NO_SLEEPING(sc);
3947 hn_rxfilter_config(sc);
3948 HN_SLEEPING_OK(sc);
3949 }
3950
3951 /* XXX vlan(4) style mcast addr maintenance */
3952 if (hn_xpnt_vf_isready(sc)) {
3953 int old_if_flags;
3954
3955 old_if_flags = if_getflags(sc->hn_vf_ifp);
3956 hn_xpnt_vf_saveifflags(sc);
3957
3958 if ((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) &&
3959 ((old_if_flags ^ if_getflags(sc->hn_vf_ifp)) &
3960 IFF_ALLMULTI))
3961 error = hn_xpnt_vf_iocsetflags(sc);
3962 }
3963
3964 HN_UNLOCK(sc);
3965 break;
3966
3967 case SIOCSIFMEDIA:
3968 case SIOCGIFMEDIA:
3969 HN_LOCK(sc);
3970 if (hn_xpnt_vf_isready(sc)) {
3971 /*
3972 * SIOCGIFMEDIA expects ifmediareq, so don't
3973 * create and pass ifr_vf to the VF here; just
3974 * replace the ifr_name.
3975 */
3976 vf_ifp = sc->hn_vf_ifp;
3977 strlcpy(ifr->ifr_name, if_name(vf_ifp),
3978 sizeof(ifr->ifr_name));
3979 error = ifhwioctl(cmd, vf_ifp, data, curthread);
3980 /* Restore the ifr_name. */
3981 strlcpy(ifr->ifr_name, if_name(ifp),
3982 sizeof(ifr->ifr_name));
3983 HN_UNLOCK(sc);
3984 break;
3985 }
3986 HN_UNLOCK(sc);
3987 error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd);
3988 break;
3989
3990 case SIOCGIFRSSHASH:
3991 ifrh = (struct ifrsshash *)data;
3992 HN_LOCK(sc);
3993 if (sc->hn_rx_ring_inuse == 1) {
3994 HN_UNLOCK(sc);
3995 ifrh->ifrh_func = RSS_FUNC_NONE;
3996 ifrh->ifrh_types = 0;
3997 break;
3998 }
3999
4000 if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ)
4001 ifrh->ifrh_func = RSS_FUNC_TOEPLITZ;
4002 else
4003 ifrh->ifrh_func = RSS_FUNC_PRIVATE;
4004 ifrh->ifrh_types = hn_rss_type_fromndis(sc->hn_rss_hash);
4005 HN_UNLOCK(sc);
4006 break;
4007
4008 case SIOCGIFRSSKEY:
4009 ifrk = (struct ifrsskey *)data;
4010 HN_LOCK(sc);
4011 if (sc->hn_rx_ring_inuse == 1) {
4012 HN_UNLOCK(sc);
4013 ifrk->ifrk_func = RSS_FUNC_NONE;
4014 ifrk->ifrk_keylen = 0;
4015 break;
4016 }
4017 if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ)
4018 ifrk->ifrk_func = RSS_FUNC_TOEPLITZ;
4019 else
4020 ifrk->ifrk_func = RSS_FUNC_PRIVATE;
4021 ifrk->ifrk_keylen = NDIS_HASH_KEYSIZE_TOEPLITZ;
4022 memcpy(ifrk->ifrk_key, sc->hn_rss.rss_key,
4023 NDIS_HASH_KEYSIZE_TOEPLITZ);
4024 HN_UNLOCK(sc);
4025 break;
4026
4027 default:
4028 error = ether_ioctl(ifp, cmd, data);
4029 break;
4030 }
4031 return (error);
4032 }
4033
4034 static void
hn_stop(struct hn_softc * sc,bool detaching)4035 hn_stop(struct hn_softc *sc, bool detaching)
4036 {
4037 if_t ifp = sc->hn_ifp;
4038 int i;
4039
4040 HN_LOCK_ASSERT(sc);
4041
4042 KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
4043 ("synthetic parts were not attached"));
4044
4045 /* Clear RUNNING bit ASAP. */
4046 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
4047
4048 /* Disable polling. */
4049 hn_polling(sc, 0);
4050
4051 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) {
4052 KASSERT(sc->hn_vf_ifp != NULL,
4053 ("%s: VF is not attached", if_name(ifp)));
4054
4055 /* Mark transparent mode VF as disabled. */
4056 hn_xpnt_vf_setdisable(sc, false /* keep hn_vf_ifp */);
4057
4058 /*
4059 * NOTE:
4060 * Datapath setting must happen _before_ bringing
4061 * the VF down.
4062 */
4063 hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH);
4064
4065 /*
4066 * Bring the VF down.
4067 */
4068 hn_xpnt_vf_saveifflags(sc);
4069 if_setflagbits(ifp, 0, IFF_UP);
4070 hn_xpnt_vf_iocsetflags(sc);
4071 }
4072
4073 /* Suspend data transfers. */
4074 hn_suspend_data(sc);
4075
4076 /* Clear OACTIVE bit. */
4077 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4078 for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
4079 sc->hn_tx_ring[i].hn_oactive = 0;
4080
4081 /*
4082 * If the non-transparent mode VF is active, make sure
4083 * that the RX filter still allows packet reception.
4084 */
4085 if (!detaching && (sc->hn_flags & HN_FLAG_RXVF))
4086 hn_rxfilter_config(sc);
4087 }
4088
4089 static void
hn_init_locked(struct hn_softc * sc)4090 hn_init_locked(struct hn_softc *sc)
4091 {
4092 if_t ifp = sc->hn_ifp;
4093 int i;
4094
4095 HN_LOCK_ASSERT(sc);
4096
4097 if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
4098 return;
4099
4100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4101 return;
4102
4103 /* Configure RX filter */
4104 hn_rxfilter_config(sc);
4105
4106 /* Clear OACTIVE bit. */
4107 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4108 for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
4109 sc->hn_tx_ring[i].hn_oactive = 0;
4110
4111 /* Clear TX 'suspended' bit. */
4112 hn_resume_tx(sc, sc->hn_tx_ring_inuse);
4113
4114 if (hn_xpnt_vf_isready(sc)) {
4115 /* Initialize transparent VF. */
4116 hn_xpnt_vf_init(sc);
4117 }
4118
4119 /* Everything is ready; unleash! */
4120 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
4121
4122 /* Re-enable polling if requested. */
4123 if (sc->hn_pollhz > 0)
4124 hn_polling(sc, sc->hn_pollhz);
4125 }
4126
4127 static void
hn_init(void * xsc)4128 hn_init(void *xsc)
4129 {
4130 struct hn_softc *sc = xsc;
4131
4132 HN_LOCK(sc);
4133 hn_init_locked(sc);
4134 HN_UNLOCK(sc);
4135 }
4136
4137 static int
hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS)4138 hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS)
4139 {
4140 struct hn_softc *sc = arg1;
4141 unsigned int lenlim;
4142 int error;
4143
4144 lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim;
4145 error = sysctl_handle_int(oidp, &lenlim, 0, req);
4146 if (error || req->newptr == NULL)
4147 return error;
4148
4149 HN_LOCK(sc);
4150 if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) ||
4151 lenlim > TCP_LRO_LENGTH_MAX) {
4152 HN_UNLOCK(sc);
4153 return EINVAL;
4154 }
4155 hn_set_lro_lenlim(sc, lenlim);
4156 HN_UNLOCK(sc);
4157
4158 return 0;
4159 }
4160
4161 static int
hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS)4162 hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS)
4163 {
4164 struct hn_softc *sc = arg1;
4165 int ackcnt, error, i;
4166
4167 /*
4168 * lro_ackcnt_lim is append count limit,
4169 * +1 to turn it into aggregation limit.
4170 */
4171 ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1;
4172 error = sysctl_handle_int(oidp, &ackcnt, 0, req);
4173 if (error || req->newptr == NULL)
4174 return error;
4175
4176 if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1))
4177 return EINVAL;
4178
4179 /*
4180 * Convert aggregation limit back to append
4181 * count limit.
4182 */
4183 --ackcnt;
4184 HN_LOCK(sc);
4185 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
4186 sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt;
4187 HN_UNLOCK(sc);
4188 return 0;
4189 }
4190
4191 static int
hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS)4192 hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS)
4193 {
4194 struct hn_softc *sc = arg1;
4195 int hcsum = arg2;
4196 int on, error, i;
4197
4198 on = 0;
4199 if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum)
4200 on = 1;
4201
4202 error = sysctl_handle_int(oidp, &on, 0, req);
4203 if (error || req->newptr == NULL)
4204 return error;
4205
4206 HN_LOCK(sc);
4207 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4208 struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
4209
4210 if (on)
4211 rxr->hn_trust_hcsum |= hcsum;
4212 else
4213 rxr->hn_trust_hcsum &= ~hcsum;
4214 }
4215 HN_UNLOCK(sc);
4216 return 0;
4217 }
4218
4219 static int
hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS)4220 hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS)
4221 {
4222 struct hn_softc *sc = arg1;
4223 int chim_size, error;
4224
4225 chim_size = sc->hn_tx_ring[0].hn_chim_size;
4226 error = sysctl_handle_int(oidp, &chim_size, 0, req);
4227 if (error || req->newptr == NULL)
4228 return error;
4229
4230 if (chim_size > sc->hn_chim_szmax || chim_size <= 0)
4231 return EINVAL;
4232
4233 HN_LOCK(sc);
4234 hn_set_chim_size(sc, chim_size);
4235 HN_UNLOCK(sc);
4236 return 0;
4237 }
4238
4239 static int
hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS)4240 hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS)
4241 {
4242 struct hn_softc *sc = arg1;
4243 int ofs = arg2, i, error;
4244 struct hn_rx_ring *rxr;
4245 uint64_t stat;
4246
4247 stat = 0;
4248 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4249 rxr = &sc->hn_rx_ring[i];
4250 stat += *((uint64_t *)((uint8_t *)rxr + ofs));
4251 }
4252
4253 error = sysctl_handle_64(oidp, &stat, 0, req);
4254 if (error || req->newptr == NULL)
4255 return error;
4256
4257 /* Zero out this stat. */
4258 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4259 rxr = &sc->hn_rx_ring[i];
4260 *((uint64_t *)((uint8_t *)rxr + ofs)) = 0;
4261 }
4262 return 0;
4263 }
4264
4265 static int
hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)4266 hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
4267 {
4268 struct hn_softc *sc = arg1;
4269 int ofs = arg2, i, error;
4270 struct hn_rx_ring *rxr;
4271 u_long stat;
4272
4273 stat = 0;
4274 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4275 rxr = &sc->hn_rx_ring[i];
4276 stat += *((u_long *)((uint8_t *)rxr + ofs));
4277 }
4278
4279 error = sysctl_handle_long(oidp, &stat, 0, req);
4280 if (error || req->newptr == NULL)
4281 return error;
4282
4283 /* Zero out this stat. */
4284 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4285 rxr = &sc->hn_rx_ring[i];
4286 *((u_long *)((uint8_t *)rxr + ofs)) = 0;
4287 }
4288 return 0;
4289 }
4290
4291 static int
hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)4292 hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
4293 {
4294 struct hn_softc *sc = arg1;
4295 int ofs = arg2, i, error;
4296 struct hn_tx_ring *txr;
4297 u_long stat;
4298
4299 stat = 0;
4300 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
4301 txr = &sc->hn_tx_ring[i];
4302 stat += *((u_long *)((uint8_t *)txr + ofs));
4303 }
4304
4305 error = sysctl_handle_long(oidp, &stat, 0, req);
4306 if (error || req->newptr == NULL)
4307 return error;
4308
4309 /* Zero out this stat. */
4310 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
4311 txr = &sc->hn_tx_ring[i];
4312 *((u_long *)((uint8_t *)txr + ofs)) = 0;
4313 }
4314 return 0;
4315 }
4316
4317 static int
hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS)4318 hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS)
4319 {
4320 struct hn_softc *sc = arg1;
4321 int ofs = arg2, i, error, conf;
4322 struct hn_tx_ring *txr;
4323
4324 txr = &sc->hn_tx_ring[0];
4325 conf = *((int *)((uint8_t *)txr + ofs));
4326
4327 error = sysctl_handle_int(oidp, &conf, 0, req);
4328 if (error || req->newptr == NULL)
4329 return error;
4330
4331 HN_LOCK(sc);
4332 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
4333 txr = &sc->hn_tx_ring[i];
4334 *((int *)((uint8_t *)txr + ofs)) = conf;
4335 }
4336 HN_UNLOCK(sc);
4337
4338 return 0;
4339 }
4340
4341 static int
hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS)4342 hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS)
4343 {
4344 struct hn_softc *sc = arg1;
4345 int error, size;
4346
4347 size = sc->hn_agg_size;
4348 error = sysctl_handle_int(oidp, &size, 0, req);
4349 if (error || req->newptr == NULL)
4350 return (error);
4351
4352 HN_LOCK(sc);
4353 sc->hn_agg_size = size;
4354 hn_set_txagg(sc);
4355 HN_UNLOCK(sc);
4356
4357 return (0);
4358 }
4359
4360 static int
hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS)4361 hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS)
4362 {
4363 struct hn_softc *sc = arg1;
4364 int error, pkts;
4365
4366 pkts = sc->hn_agg_pkts;
4367 error = sysctl_handle_int(oidp, &pkts, 0, req);
4368 if (error || req->newptr == NULL)
4369 return (error);
4370
4371 HN_LOCK(sc);
4372 sc->hn_agg_pkts = pkts;
4373 hn_set_txagg(sc);
4374 HN_UNLOCK(sc);
4375
4376 return (0);
4377 }
4378
4379 static int
hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS)4380 hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS)
4381 {
4382 struct hn_softc *sc = arg1;
4383 int pkts;
4384
4385 pkts = sc->hn_tx_ring[0].hn_agg_pktmax;
4386 return (sysctl_handle_int(oidp, &pkts, 0, req));
4387 }
4388
4389 static int
hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS)4390 hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS)
4391 {
4392 struct hn_softc *sc = arg1;
4393 int align;
4394
4395 align = sc->hn_tx_ring[0].hn_agg_align;
4396 return (sysctl_handle_int(oidp, &align, 0, req));
4397 }
4398
4399 static void
hn_chan_polling(struct vmbus_channel * chan,u_int pollhz)4400 hn_chan_polling(struct vmbus_channel *chan, u_int pollhz)
4401 {
4402 if (pollhz == 0)
4403 vmbus_chan_poll_disable(chan);
4404 else
4405 vmbus_chan_poll_enable(chan, pollhz);
4406 }
4407
4408 static void
hn_polling(struct hn_softc * sc,u_int pollhz)4409 hn_polling(struct hn_softc *sc, u_int pollhz)
4410 {
4411 int nsubch = sc->hn_rx_ring_inuse - 1;
4412
4413 HN_LOCK_ASSERT(sc);
4414
4415 if (nsubch > 0) {
4416 struct vmbus_channel **subch;
4417 int i;
4418
4419 subch = vmbus_subchan_get(sc->hn_prichan, nsubch);
4420 for (i = 0; i < nsubch; ++i)
4421 hn_chan_polling(subch[i], pollhz);
4422 vmbus_subchan_rel(subch, nsubch);
4423 }
4424 hn_chan_polling(sc->hn_prichan, pollhz);
4425 }
4426
4427 static int
hn_polling_sysctl(SYSCTL_HANDLER_ARGS)4428 hn_polling_sysctl(SYSCTL_HANDLER_ARGS)
4429 {
4430 struct hn_softc *sc = arg1;
4431 int pollhz, error;
4432
4433 pollhz = sc->hn_pollhz;
4434 error = sysctl_handle_int(oidp, &pollhz, 0, req);
4435 if (error || req->newptr == NULL)
4436 return (error);
4437
4438 if (pollhz != 0 &&
4439 (pollhz < VMBUS_CHAN_POLLHZ_MIN || pollhz > VMBUS_CHAN_POLLHZ_MAX))
4440 return (EINVAL);
4441
4442 HN_LOCK(sc);
4443 if (sc->hn_pollhz != pollhz) {
4444 sc->hn_pollhz = pollhz;
4445 if ((if_getdrvflags(sc->hn_ifp) & IFF_DRV_RUNNING) &&
4446 (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
4447 hn_polling(sc, sc->hn_pollhz);
4448 }
4449 HN_UNLOCK(sc);
4450
4451 return (0);
4452 }
4453
4454 static int
hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS)4455 hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS)
4456 {
4457 struct hn_softc *sc = arg1;
4458 char verstr[16];
4459
4460 snprintf(verstr, sizeof(verstr), "%u.%u",
4461 HN_NDIS_VERSION_MAJOR(sc->hn_ndis_ver),
4462 HN_NDIS_VERSION_MINOR(sc->hn_ndis_ver));
4463 return sysctl_handle_string(oidp, verstr, sizeof(verstr), req);
4464 }
4465
4466 static int
hn_caps_sysctl(SYSCTL_HANDLER_ARGS)4467 hn_caps_sysctl(SYSCTL_HANDLER_ARGS)
4468 {
4469 struct hn_softc *sc = arg1;
4470 char caps_str[128];
4471 uint32_t caps;
4472
4473 HN_LOCK(sc);
4474 caps = sc->hn_caps;
4475 HN_UNLOCK(sc);
4476 snprintf(caps_str, sizeof(caps_str), "%b", caps, HN_CAP_BITS);
4477 return sysctl_handle_string(oidp, caps_str, sizeof(caps_str), req);
4478 }
4479
4480 static int
hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS)4481 hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS)
4482 {
4483 struct hn_softc *sc = arg1;
4484 char assist_str[128];
4485 uint32_t hwassist;
4486
4487 HN_LOCK(sc);
4488 hwassist = if_gethwassist(sc->hn_ifp);
4489 HN_UNLOCK(sc);
4490 snprintf(assist_str, sizeof(assist_str), "%b", hwassist, CSUM_BITS);
4491 return sysctl_handle_string(oidp, assist_str, sizeof(assist_str), req);
4492 }
4493
4494 static int
hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS)4495 hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS)
4496 {
4497 struct hn_softc *sc = arg1;
4498 char filter_str[128];
4499 uint32_t filter;
4500
4501 HN_LOCK(sc);
4502 filter = sc->hn_rx_filter;
4503 HN_UNLOCK(sc);
4504 snprintf(filter_str, sizeof(filter_str), "%b", filter,
4505 NDIS_PACKET_TYPES);
4506 return sysctl_handle_string(oidp, filter_str, sizeof(filter_str), req);
4507 }
4508
4509 static int
hn_rsc_sysctl(SYSCTL_HANDLER_ARGS)4510 hn_rsc_sysctl(SYSCTL_HANDLER_ARGS)
4511 {
4512 struct hn_softc *sc = arg1;
4513 int rsc_ctrl, mtu;
4514 int error;
4515
4516 rsc_ctrl = sc->hn_rsc_ctrl;
4517 error = sysctl_handle_int(oidp, &rsc_ctrl, 0, req);
4518 if (error || req->newptr == NULL)
4519 return (error);
4520
4521 if (sc->hn_rsc_ctrl != rsc_ctrl) {
4522 HN_LOCK(sc);
4523 sc->hn_rsc_ctrl = rsc_ctrl;
4524 mtu = if_getmtu(sc->hn_ifp);
4525 error = hn_rndis_reconf_offload(sc, mtu);
4526 HN_UNLOCK(sc);
4527 }
4528
4529 return (error);
4530 }
4531 #ifndef RSS
4532
4533 static int
hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS)4534 hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS)
4535 {
4536 struct hn_softc *sc = arg1;
4537 int error;
4538
4539 HN_LOCK(sc);
4540
4541 error = SYSCTL_OUT(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key));
4542 if (error || req->newptr == NULL)
4543 goto back;
4544
4545 if ((sc->hn_flags & HN_FLAG_RXVF) ||
4546 (hn_xpnt_vf && sc->hn_vf_ifp != NULL)) {
4547 /*
4548 * RSS key is synchronized w/ VF's, don't allow users
4549 * to change it.
4550 */
4551 error = EBUSY;
4552 goto back;
4553 }
4554
4555 error = SYSCTL_IN(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key));
4556 if (error)
4557 goto back;
4558 sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
4559
4560 if (sc->hn_rx_ring_inuse > 1) {
4561 error = hn_rss_reconfig(sc);
4562 } else {
4563 /* Not RSS capable, at least for now; just save the RSS key. */
4564 error = 0;
4565 }
4566 back:
4567 HN_UNLOCK(sc);
4568 return (error);
4569 }
4570
4571 static int
hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS)4572 hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS)
4573 {
4574 struct hn_softc *sc = arg1;
4575 int error;
4576
4577 HN_LOCK(sc);
4578
4579 error = SYSCTL_OUT(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind));
4580 if (error || req->newptr == NULL)
4581 goto back;
4582
4583 /*
4584 * Don't allow RSS indirect table change, if this interface is not
4585 * RSS capable currently.
4586 */
4587 if (sc->hn_rx_ring_inuse == 1) {
4588 error = EOPNOTSUPP;
4589 goto back;
4590 }
4591
4592 error = SYSCTL_IN(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind));
4593 if (error)
4594 goto back;
4595 sc->hn_flags |= HN_FLAG_HAS_RSSIND;
4596
4597 hn_rss_ind_fixup(sc);
4598 error = hn_rss_reconfig(sc);
4599 back:
4600 HN_UNLOCK(sc);
4601 return (error);
4602 }
4603
4604 #endif /* !RSS */
4605
4606 static int
hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS)4607 hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS)
4608 {
4609 struct hn_softc *sc = arg1;
4610 char hash_str[128];
4611 uint32_t hash;
4612
4613 HN_LOCK(sc);
4614 hash = sc->hn_rss_hash;
4615 HN_UNLOCK(sc);
4616 snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
4617 return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
4618 }
4619
4620 static int
hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS)4621 hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS)
4622 {
4623 struct hn_softc *sc = arg1;
4624 char hash_str[128];
4625 uint32_t hash;
4626
4627 HN_LOCK(sc);
4628 hash = sc->hn_rss_hcap;
4629 HN_UNLOCK(sc);
4630 snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
4631 return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
4632 }
4633
4634 static int
hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS)4635 hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS)
4636 {
4637 struct hn_softc *sc = arg1;
4638 char hash_str[128];
4639 uint32_t hash;
4640
4641 HN_LOCK(sc);
4642 hash = sc->hn_rx_ring[0].hn_mbuf_hash;
4643 HN_UNLOCK(sc);
4644 snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
4645 return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
4646 }
4647
4648 static int
hn_vf_sysctl(SYSCTL_HANDLER_ARGS)4649 hn_vf_sysctl(SYSCTL_HANDLER_ARGS)
4650 {
4651 struct hn_softc *sc = arg1;
4652 char vf_name[IFNAMSIZ + 1];
4653 if_t vf_ifp;
4654
4655 HN_LOCK(sc);
4656 vf_name[0] = '\0';
4657 vf_ifp = sc->hn_vf_ifp;
4658 if (vf_ifp != NULL)
4659 snprintf(vf_name, sizeof(vf_name), "%s", if_name(vf_ifp));
4660 HN_UNLOCK(sc);
4661 return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req);
4662 }
4663
4664 static int
hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS)4665 hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS)
4666 {
4667 struct hn_softc *sc = arg1;
4668 char vf_name[IFNAMSIZ + 1];
4669 if_t vf_ifp;
4670
4671 HN_LOCK(sc);
4672 vf_name[0] = '\0';
4673 vf_ifp = sc->hn_rx_ring[0].hn_rxvf_ifp;
4674 if (vf_ifp != NULL)
4675 snprintf(vf_name, sizeof(vf_name), "%s", if_name(vf_ifp));
4676 HN_UNLOCK(sc);
4677 return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req);
4678 }
4679
4680 static int
hn_vflist_sysctl(SYSCTL_HANDLER_ARGS)4681 hn_vflist_sysctl(SYSCTL_HANDLER_ARGS)
4682 {
4683 struct rm_priotracker pt;
4684 struct sbuf *sb;
4685 int error, i;
4686 bool first;
4687
4688 error = sysctl_wire_old_buffer(req, 0);
4689 if (error != 0)
4690 return (error);
4691
4692 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4693 if (sb == NULL)
4694 return (ENOMEM);
4695
4696 rm_rlock(&hn_vfmap_lock, &pt);
4697
4698 first = true;
4699 for (i = 0; i < hn_vfmap_size; ++i) {
4700 struct epoch_tracker et;
4701 if_t ifp;
4702
4703 if (hn_vfmap[i] == NULL)
4704 continue;
4705
4706 NET_EPOCH_ENTER(et);
4707 ifp = ifnet_byindex(i);
4708 if (ifp != NULL) {
4709 if (first)
4710 sbuf_printf(sb, "%s", if_name(ifp));
4711 else
4712 sbuf_printf(sb, " %s", if_name(ifp));
4713 first = false;
4714 }
4715 NET_EPOCH_EXIT(et);
4716 }
4717
4718 rm_runlock(&hn_vfmap_lock, &pt);
4719
4720 error = sbuf_finish(sb);
4721 sbuf_delete(sb);
4722 return (error);
4723 }
4724
4725 static int
hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS)4726 hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS)
4727 {
4728 struct rm_priotracker pt;
4729 struct sbuf *sb;
4730 int error, i;
4731 bool first;
4732
4733 error = sysctl_wire_old_buffer(req, 0);
4734 if (error != 0)
4735 return (error);
4736
4737 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4738 if (sb == NULL)
4739 return (ENOMEM);
4740
4741 rm_rlock(&hn_vfmap_lock, &pt);
4742
4743 first = true;
4744 for (i = 0; i < hn_vfmap_size; ++i) {
4745 struct epoch_tracker et;
4746 if_t ifp, hn_ifp;
4747
4748 hn_ifp = hn_vfmap[i];
4749 if (hn_ifp == NULL)
4750 continue;
4751
4752 NET_EPOCH_ENTER(et);
4753 ifp = ifnet_byindex(i);
4754 if (ifp != NULL) {
4755 if (first) {
4756 sbuf_printf(sb, "%s:%s", if_name(ifp),
4757 if_name(hn_ifp));
4758 } else {
4759 sbuf_printf(sb, " %s:%s", if_name(ifp),
4760 if_name(hn_ifp));
4761 }
4762 first = false;
4763 }
4764 NET_EPOCH_EXIT(et);
4765 }
4766
4767 rm_runlock(&hn_vfmap_lock, &pt);
4768
4769 error = sbuf_finish(sb);
4770 sbuf_delete(sb);
4771 return (error);
4772 }
4773
4774 static int
hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS)4775 hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS)
4776 {
4777 struct hn_softc *sc = arg1;
4778 int error, onoff = 0;
4779
4780 if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF)
4781 onoff = 1;
4782 error = sysctl_handle_int(oidp, &onoff, 0, req);
4783 if (error || req->newptr == NULL)
4784 return (error);
4785
4786 HN_LOCK(sc);
4787 /* NOTE: hn_vf_lock for hn_transmit() */
4788 rm_wlock(&sc->hn_vf_lock);
4789 if (onoff)
4790 sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF;
4791 else
4792 sc->hn_xvf_flags &= ~HN_XVFFLAG_ACCBPF;
4793 rm_wunlock(&sc->hn_vf_lock);
4794 HN_UNLOCK(sc);
4795
4796 return (0);
4797 }
4798
4799 static int
hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS)4800 hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS)
4801 {
4802 struct hn_softc *sc = arg1;
4803 int enabled = 0;
4804
4805 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
4806 enabled = 1;
4807 return (sysctl_handle_int(oidp, &enabled, 0, req));
4808 }
4809
4810 static int
hn_check_iplen(const struct mbuf * m,int hoff)4811 hn_check_iplen(const struct mbuf *m, int hoff)
4812 {
4813 const struct ip *ip;
4814 int len, iphlen, iplen;
4815 const struct tcphdr *th;
4816 int thoff; /* TCP data offset */
4817
4818 len = hoff + sizeof(struct ip);
4819
4820 /* The packet must be at least the size of an IP header. */
4821 if (m->m_pkthdr.len < len)
4822 return IPPROTO_DONE;
4823
4824 /* The fixed IP header must reside completely in the first mbuf. */
4825 if (m->m_len < len)
4826 return IPPROTO_DONE;
4827
4828 ip = mtodo(m, hoff);
4829
4830 /* Bound check the packet's stated IP header length. */
4831 iphlen = ip->ip_hl << 2;
4832 if (iphlen < sizeof(struct ip)) /* minimum header length */
4833 return IPPROTO_DONE;
4834
4835 /* The full IP header must reside completely in the one mbuf. */
4836 if (m->m_len < hoff + iphlen)
4837 return IPPROTO_DONE;
4838
4839 iplen = ntohs(ip->ip_len);
4840
4841 /*
4842 * Check that the amount of data in the buffers is as
4843 * at least much as the IP header would have us expect.
4844 */
4845 if (m->m_pkthdr.len < hoff + iplen)
4846 return IPPROTO_DONE;
4847
4848 /*
4849 * Ignore IP fragments.
4850 */
4851 if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF))
4852 return IPPROTO_DONE;
4853
4854 /*
4855 * The TCP/IP or UDP/IP header must be entirely contained within
4856 * the first fragment of a packet.
4857 */
4858 switch (ip->ip_p) {
4859 case IPPROTO_TCP:
4860 if (iplen < iphlen + sizeof(struct tcphdr))
4861 return IPPROTO_DONE;
4862 if (m->m_len < hoff + iphlen + sizeof(struct tcphdr))
4863 return IPPROTO_DONE;
4864 th = (const struct tcphdr *)((const uint8_t *)ip + iphlen);
4865 thoff = th->th_off << 2;
4866 if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen)
4867 return IPPROTO_DONE;
4868 if (m->m_len < hoff + iphlen + thoff)
4869 return IPPROTO_DONE;
4870 break;
4871 case IPPROTO_UDP:
4872 if (iplen < iphlen + sizeof(struct udphdr))
4873 return IPPROTO_DONE;
4874 if (m->m_len < hoff + iphlen + sizeof(struct udphdr))
4875 return IPPROTO_DONE;
4876 break;
4877 default:
4878 if (iplen < iphlen)
4879 return IPPROTO_DONE;
4880 break;
4881 }
4882 return ip->ip_p;
4883 }
4884
4885 static void
hn_rxpkt_proto(const struct mbuf * m_new,int * l3proto,int * l4proto)4886 hn_rxpkt_proto(const struct mbuf *m_new, int *l3proto, int *l4proto)
4887 {
4888 const struct ether_header *eh;
4889 uint16_t etype;
4890 int hoff;
4891
4892 hoff = sizeof(*eh);
4893 /* Checked at the beginning of this function. */
4894 KASSERT(m_new->m_len >= hoff, ("not ethernet frame"));
4895
4896 eh = mtod(m_new, const struct ether_header *);
4897 etype = ntohs(eh->ether_type);
4898 if (etype == ETHERTYPE_VLAN) {
4899 const struct ether_vlan_header *evl;
4900
4901 hoff = sizeof(*evl);
4902 if (m_new->m_len < hoff)
4903 return;
4904 evl = mtod(m_new, const struct ether_vlan_header *);
4905 etype = ntohs(evl->evl_proto);
4906 }
4907 *l3proto = etype;
4908
4909 if (etype == ETHERTYPE_IP)
4910 *l4proto = hn_check_iplen(m_new, hoff);
4911 else
4912 *l4proto = IPPROTO_DONE;
4913 }
4914
4915 static int
hn_create_rx_data(struct hn_softc * sc,int ring_cnt)4916 hn_create_rx_data(struct hn_softc *sc, int ring_cnt)
4917 {
4918 struct sysctl_oid_list *child;
4919 struct sysctl_ctx_list *ctx;
4920 device_t dev = sc->hn_dev;
4921 #if defined(INET) || defined(INET6)
4922 int lroent_cnt;
4923 #endif
4924 int i;
4925
4926 /*
4927 * Create RXBUF for reception.
4928 *
4929 * NOTE:
4930 * - It is shared by all channels.
4931 * - A large enough buffer is allocated, certain version of NVSes
4932 * may further limit the usable space.
4933 */
4934 sc->hn_rxbuf = contigmalloc(HN_RXBUF_SIZE, M_DEVBUF, M_WAITOK | M_ZERO,
4935 0ul, ~0ul, PAGE_SIZE, 0);
4936 if (sc->hn_rxbuf == NULL) {
4937 device_printf(sc->hn_dev, "allocate rxbuf failed\n");
4938 return (ENOMEM);
4939 }
4940
4941 sc->hn_rx_ring_cnt = ring_cnt;
4942 sc->hn_rx_ring_inuse = sc->hn_rx_ring_cnt;
4943
4944 sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt,
4945 M_DEVBUF, M_WAITOK | M_ZERO);
4946
4947 #if defined(INET) || defined(INET6)
4948 lroent_cnt = hn_lro_entry_count;
4949 if (lroent_cnt < TCP_LRO_ENTRIES)
4950 lroent_cnt = TCP_LRO_ENTRIES;
4951 if (bootverbose)
4952 device_printf(dev, "LRO: entry count %d\n", lroent_cnt);
4953 #endif /* INET || INET6 */
4954
4955 ctx = device_get_sysctl_ctx(dev);
4956 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
4957
4958 /* Create dev.hn.UNIT.rx sysctl tree */
4959 sc->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "rx",
4960 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
4961
4962 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
4963 struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
4964
4965 rxr->hn_br = contigmalloc(HN_TXBR_SIZE + HN_RXBR_SIZE, M_DEVBUF,
4966 M_WAITOK | M_ZERO, 0ul, ~0ul, PAGE_SIZE, 0);
4967 if (rxr->hn_br == NULL) {
4968 device_printf(dev, "allocate bufring failed\n");
4969 return (ENOMEM);
4970 }
4971
4972 if (hn_trust_hosttcp)
4973 rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP;
4974 if (hn_trust_hostudp)
4975 rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP;
4976 if (hn_trust_hostip)
4977 rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP;
4978 rxr->hn_mbuf_hash = NDIS_HASH_ALL;
4979 rxr->hn_ifp = sc->hn_ifp;
4980 if (i < sc->hn_tx_ring_cnt)
4981 rxr->hn_txr = &sc->hn_tx_ring[i];
4982 rxr->hn_pktbuf_len = HN_PKTBUF_LEN_DEF;
4983 rxr->hn_pktbuf = malloc(rxr->hn_pktbuf_len, M_DEVBUF, M_WAITOK);
4984 rxr->hn_rx_idx = i;
4985 rxr->hn_rxbuf = sc->hn_rxbuf;
4986
4987 /*
4988 * Initialize LRO.
4989 */
4990 #if defined(INET) || defined(INET6)
4991 tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt,
4992 hn_lro_mbufq_depth);
4993 rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF;
4994 rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF;
4995 #endif /* INET || INET6 */
4996
4997 if (sc->hn_rx_sysctl_tree != NULL) {
4998 char name[16];
4999
5000 /*
5001 * Create per RX ring sysctl tree:
5002 * dev.hn.UNIT.rx.RINGID
5003 */
5004 snprintf(name, sizeof(name), "%d", i);
5005 rxr->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx,
5006 SYSCTL_CHILDREN(sc->hn_rx_sysctl_tree),
5007 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
5008
5009 if (rxr->hn_rx_sysctl_tree != NULL) {
5010 SYSCTL_ADD_ULONG(ctx,
5011 SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
5012 OID_AUTO, "packets",
5013 CTLFLAG_RW | CTLFLAG_STATS, &rxr->hn_pkts,
5014 "# of packets received");
5015 SYSCTL_ADD_ULONG(ctx,
5016 SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
5017 OID_AUTO, "rss_pkts",
5018 CTLFLAG_RW | CTLFLAG_STATS,
5019 &rxr->hn_rss_pkts,
5020 "# of packets w/ RSS info received");
5021 SYSCTL_ADD_ULONG(ctx,
5022 SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
5023 OID_AUTO, "rsc_pkts",
5024 CTLFLAG_RW | CTLFLAG_STATS,
5025 &rxr->hn_rsc_pkts,
5026 "# of RSC packets received");
5027 SYSCTL_ADD_ULONG(ctx,
5028 SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
5029 OID_AUTO, "rsc_drop",
5030 CTLFLAG_RW | CTLFLAG_STATS,
5031 &rxr->hn_rsc_drop,
5032 "# of RSC fragments dropped");
5033 SYSCTL_ADD_INT(ctx,
5034 SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
5035 OID_AUTO, "pktbuf_len", CTLFLAG_RD,
5036 &rxr->hn_pktbuf_len, 0,
5037 "Temporary channel packet buffer length");
5038 }
5039 }
5040 }
5041
5042 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued",
5043 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5044 __offsetof(struct hn_rx_ring, hn_lro.lro_queued),
5045 hn_rx_stat_u64_sysctl,
5046 "LU", "LRO queued");
5047 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed",
5048 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5049 __offsetof(struct hn_rx_ring, hn_lro.lro_flushed),
5050 hn_rx_stat_u64_sysctl,
5051 "LU", "LRO flushed");
5052 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried",
5053 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5054 __offsetof(struct hn_rx_ring, hn_lro_tried),
5055 hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries");
5056 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim",
5057 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
5058 hn_lro_lenlim_sysctl, "IU",
5059 "Max # of data bytes to be aggregated by LRO");
5060 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim",
5061 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
5062 hn_lro_ackcnt_sysctl, "I",
5063 "Max # of ACKs to be aggregated by LRO");
5064 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp",
5065 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_TCP,
5066 hn_trust_hcsum_sysctl, "I",
5067 "Trust tcp segment verification on host side, "
5068 "when csum info is missing");
5069 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp",
5070 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_UDP,
5071 hn_trust_hcsum_sysctl, "I",
5072 "Trust udp datagram verification on host side, "
5073 "when csum info is missing");
5074 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip",
5075 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_IP,
5076 hn_trust_hcsum_sysctl, "I",
5077 "Trust ip packet verification on host side, "
5078 "when csum info is missing");
5079 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip",
5080 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5081 __offsetof(struct hn_rx_ring, hn_csum_ip),
5082 hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP");
5083 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp",
5084 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5085 __offsetof(struct hn_rx_ring, hn_csum_tcp),
5086 hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP");
5087 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp",
5088 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5089 __offsetof(struct hn_rx_ring, hn_csum_udp),
5090 hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP");
5091 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted",
5092 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
5093 __offsetof(struct hn_rx_ring, hn_csum_trusted),
5094 hn_rx_stat_ulong_sysctl, "LU",
5095 "# of packets that we trust host's csum verification");
5096 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts",
5097 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5098 __offsetof(struct hn_rx_ring, hn_small_pkts),
5099 hn_rx_stat_ulong_sysctl, "LU", "# of small packets received");
5100 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_ack_failed",
5101 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS , sc,
5102 __offsetof(struct hn_rx_ring, hn_ack_failed),
5103 hn_rx_stat_ulong_sysctl, "LU", "# of RXBUF ack failures");
5104 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_cnt",
5105 CTLFLAG_RD, &sc->hn_rx_ring_cnt, 0, "# created RX rings");
5106 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_inuse",
5107 CTLFLAG_RD, &sc->hn_rx_ring_inuse, 0, "# used RX rings");
5108
5109 return (0);
5110 }
5111
5112 static void
hn_destroy_rx_data(struct hn_softc * sc)5113 hn_destroy_rx_data(struct hn_softc *sc)
5114 {
5115 int i;
5116
5117 if (sc->hn_rxbuf != NULL) {
5118 if ((sc->hn_flags & HN_FLAG_RXBUF_REF) == 0)
5119 free(sc->hn_rxbuf, M_DEVBUF);
5120 else
5121 device_printf(sc->hn_dev, "RXBUF is referenced\n");
5122 sc->hn_rxbuf = NULL;
5123 }
5124
5125 if (sc->hn_rx_ring_cnt == 0)
5126 return;
5127
5128 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
5129 struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
5130
5131 if (rxr->hn_br == NULL)
5132 continue;
5133 if ((rxr->hn_rx_flags & HN_RX_FLAG_BR_REF) == 0) {
5134 free(rxr->hn_br, M_DEVBUF);
5135 } else {
5136 device_printf(sc->hn_dev,
5137 "%dth channel bufring is referenced", i);
5138 }
5139 rxr->hn_br = NULL;
5140
5141 #if defined(INET) || defined(INET6)
5142 tcp_lro_free(&rxr->hn_lro);
5143 #endif
5144 free(rxr->hn_pktbuf, M_DEVBUF);
5145 }
5146 free(sc->hn_rx_ring, M_DEVBUF);
5147 sc->hn_rx_ring = NULL;
5148
5149 sc->hn_rx_ring_cnt = 0;
5150 sc->hn_rx_ring_inuse = 0;
5151 }
5152
5153 static int
hn_tx_ring_create(struct hn_softc * sc,int id)5154 hn_tx_ring_create(struct hn_softc *sc, int id)
5155 {
5156 struct hn_tx_ring *txr = &sc->hn_tx_ring[id];
5157 device_t dev = sc->hn_dev;
5158 bus_dma_tag_t parent_dtag;
5159 int error, i;
5160
5161 txr->hn_sc = sc;
5162 txr->hn_tx_idx = id;
5163
5164 #ifndef HN_USE_TXDESC_BUFRING
5165 mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN);
5166 #endif
5167 mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF);
5168
5169 txr->hn_txdesc_cnt = HN_TX_DESC_CNT;
5170 txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt,
5171 M_DEVBUF, M_WAITOK | M_ZERO);
5172 #ifndef HN_USE_TXDESC_BUFRING
5173 SLIST_INIT(&txr->hn_txlist);
5174 #else
5175 txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_DEVBUF,
5176 M_WAITOK, &txr->hn_tx_lock);
5177 #endif
5178
5179 if (hn_tx_taskq_mode == HN_TX_TASKQ_M_EVTTQ) {
5180 txr->hn_tx_taskq = VMBUS_GET_EVENT_TASKQ(
5181 device_get_parent(dev), dev, HN_RING_IDX2CPU(sc, id));
5182 } else {
5183 txr->hn_tx_taskq = sc->hn_tx_taskqs[id % hn_tx_taskq_cnt];
5184 }
5185
5186 #ifdef HN_IFSTART_SUPPORT
5187 if (hn_use_if_start) {
5188 txr->hn_txeof = hn_start_txeof;
5189 TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr);
5190 TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr);
5191 } else
5192 #endif
5193 {
5194 int br_depth;
5195
5196 txr->hn_txeof = hn_xmit_txeof;
5197 TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr);
5198 TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr);
5199
5200 br_depth = hn_get_txswq_depth(txr);
5201 txr->hn_mbuf_br = buf_ring_alloc(br_depth, M_DEVBUF,
5202 M_WAITOK, &txr->hn_tx_lock);
5203 }
5204
5205 txr->hn_direct_tx_size = hn_direct_tx_size;
5206
5207 /*
5208 * Always schedule transmission instead of trying to do direct
5209 * transmission. This one gives the best performance so far.
5210 */
5211 txr->hn_sched_tx = 1;
5212
5213 parent_dtag = bus_get_dma_tag(dev);
5214
5215 /* DMA tag for RNDIS packet messages. */
5216 error = bus_dma_tag_create(parent_dtag, /* parent */
5217 HN_RNDIS_PKT_ALIGN, /* alignment */
5218 HN_RNDIS_PKT_BOUNDARY, /* boundary */
5219 BUS_SPACE_MAXADDR, /* lowaddr */
5220 BUS_SPACE_MAXADDR, /* highaddr */
5221 NULL, NULL, /* filter, filterarg */
5222 HN_RNDIS_PKT_LEN, /* maxsize */
5223 1, /* nsegments */
5224 HN_RNDIS_PKT_LEN, /* maxsegsize */
5225 0, /* flags */
5226 NULL, /* lockfunc */
5227 NULL, /* lockfuncarg */
5228 &txr->hn_tx_rndis_dtag);
5229 if (error) {
5230 device_printf(dev, "failed to create rndis dmatag\n");
5231 return error;
5232 }
5233
5234 /* DMA tag for data. */
5235 error = bus_dma_tag_create(parent_dtag, /* parent */
5236 1, /* alignment */
5237 HN_TX_DATA_BOUNDARY, /* boundary */
5238 BUS_SPACE_MAXADDR, /* lowaddr */
5239 BUS_SPACE_MAXADDR, /* highaddr */
5240 NULL, NULL, /* filter, filterarg */
5241 HN_TX_DATA_MAXSIZE, /* maxsize */
5242 HN_TX_DATA_SEGCNT_MAX, /* nsegments */
5243 HN_TX_DATA_SEGSIZE, /* maxsegsize */
5244 0, /* flags */
5245 NULL, /* lockfunc */
5246 NULL, /* lockfuncarg */
5247 &txr->hn_tx_data_dtag);
5248 if (error) {
5249 device_printf(dev, "failed to create data dmatag\n");
5250 return error;
5251 }
5252
5253 for (i = 0; i < txr->hn_txdesc_cnt; ++i) {
5254 struct hn_txdesc *txd = &txr->hn_txdesc[i];
5255
5256 txd->txr = txr;
5257 txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
5258 STAILQ_INIT(&txd->agg_list);
5259
5260 /*
5261 * Allocate and load RNDIS packet message.
5262 */
5263 error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag,
5264 (void **)&txd->rndis_pkt,
5265 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
5266 &txd->rndis_pkt_dmap);
5267 if (error) {
5268 device_printf(dev,
5269 "failed to allocate rndis_packet_msg, %d\n", i);
5270 return error;
5271 }
5272
5273 error = bus_dmamap_load(txr->hn_tx_rndis_dtag,
5274 txd->rndis_pkt_dmap,
5275 txd->rndis_pkt, HN_RNDIS_PKT_LEN,
5276 hyperv_dma_map_paddr, &txd->rndis_pkt_paddr,
5277 BUS_DMA_NOWAIT);
5278 if (error) {
5279 device_printf(dev,
5280 "failed to load rndis_packet_msg, %d\n", i);
5281 bus_dmamem_free(txr->hn_tx_rndis_dtag,
5282 txd->rndis_pkt, txd->rndis_pkt_dmap);
5283 return error;
5284 }
5285
5286 /* DMA map for TX data. */
5287 error = bus_dmamap_create(txr->hn_tx_data_dtag, 0,
5288 &txd->data_dmap);
5289 if (error) {
5290 device_printf(dev,
5291 "failed to allocate tx data dmamap\n");
5292 bus_dmamap_unload(txr->hn_tx_rndis_dtag,
5293 txd->rndis_pkt_dmap);
5294 bus_dmamem_free(txr->hn_tx_rndis_dtag,
5295 txd->rndis_pkt, txd->rndis_pkt_dmap);
5296 return error;
5297 }
5298
5299 /* All set, put it to list */
5300 txd->flags |= HN_TXD_FLAG_ONLIST;
5301 #ifndef HN_USE_TXDESC_BUFRING
5302 SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
5303 #else
5304 buf_ring_enqueue(txr->hn_txdesc_br, txd);
5305 #endif
5306 }
5307 txr->hn_txdesc_avail = txr->hn_txdesc_cnt;
5308
5309 if (sc->hn_tx_sysctl_tree != NULL) {
5310 struct sysctl_oid_list *child;
5311 struct sysctl_ctx_list *ctx;
5312 char name[16];
5313
5314 /*
5315 * Create per TX ring sysctl tree:
5316 * dev.hn.UNIT.tx.RINGID
5317 */
5318 ctx = device_get_sysctl_ctx(dev);
5319 child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree);
5320
5321 snprintf(name, sizeof(name), "%d", id);
5322 txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO,
5323 name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
5324
5325 if (txr->hn_tx_sysctl_tree != NULL) {
5326 child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree);
5327
5328 #ifdef HN_DEBUG
5329 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail",
5330 CTLFLAG_RD, &txr->hn_txdesc_avail, 0,
5331 "# of available TX descs");
5332 #endif
5333 #ifdef HN_IFSTART_SUPPORT
5334 if (!hn_use_if_start)
5335 #endif
5336 {
5337 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive",
5338 CTLFLAG_RD, &txr->hn_oactive, 0,
5339 "over active");
5340 }
5341 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "packets",
5342 CTLFLAG_RW | CTLFLAG_STATS, &txr->hn_pkts,
5343 "# of packets transmitted");
5344 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "sends",
5345 CTLFLAG_RW | CTLFLAG_STATS, &txr->hn_sends,
5346 "# of sends");
5347 }
5348 }
5349
5350 return 0;
5351 }
5352
5353 static void
hn_txdesc_dmamap_destroy(struct hn_txdesc * txd)5354 hn_txdesc_dmamap_destroy(struct hn_txdesc *txd)
5355 {
5356 struct hn_tx_ring *txr = txd->txr;
5357
5358 KASSERT(txd->m == NULL, ("still has mbuf installed"));
5359 KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped"));
5360
5361 bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_pkt_dmap);
5362 bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_pkt,
5363 txd->rndis_pkt_dmap);
5364 bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap);
5365 }
5366
5367 static void
hn_txdesc_gc(struct hn_tx_ring * txr,struct hn_txdesc * txd)5368 hn_txdesc_gc(struct hn_tx_ring *txr, struct hn_txdesc *txd)
5369 {
5370
5371 KASSERT(txd->refs == 0 || txd->refs == 1,
5372 ("invalid txd refs %d", txd->refs));
5373
5374 /* Aggregated txds will be freed by their aggregating txd. */
5375 if (txd->refs > 0 && (txd->flags & HN_TXD_FLAG_ONAGG) == 0) {
5376 int freed __diagused;
5377
5378 freed = hn_txdesc_put(txr, txd);
5379 KASSERT(freed, ("can't free txdesc"));
5380 }
5381 }
5382
5383 static void
hn_tx_ring_destroy(struct hn_tx_ring * txr)5384 hn_tx_ring_destroy(struct hn_tx_ring *txr)
5385 {
5386 int i;
5387
5388 if (txr->hn_txdesc == NULL)
5389 return;
5390
5391 /*
5392 * NOTE:
5393 * Because the freeing of aggregated txds will be deferred
5394 * to the aggregating txd, two passes are used here:
5395 * - The first pass GCes any pending txds. This GC is necessary,
5396 * since if the channels are revoked, hypervisor will not
5397 * deliver send-done for all pending txds.
5398 * - The second pass frees the busdma stuffs, i.e. after all txds
5399 * were freed.
5400 */
5401 for (i = 0; i < txr->hn_txdesc_cnt; ++i)
5402 hn_txdesc_gc(txr, &txr->hn_txdesc[i]);
5403 for (i = 0; i < txr->hn_txdesc_cnt; ++i)
5404 hn_txdesc_dmamap_destroy(&txr->hn_txdesc[i]);
5405
5406 if (txr->hn_tx_data_dtag != NULL)
5407 bus_dma_tag_destroy(txr->hn_tx_data_dtag);
5408 if (txr->hn_tx_rndis_dtag != NULL)
5409 bus_dma_tag_destroy(txr->hn_tx_rndis_dtag);
5410
5411 #ifdef HN_USE_TXDESC_BUFRING
5412 buf_ring_free(txr->hn_txdesc_br, M_DEVBUF);
5413 #endif
5414
5415 free(txr->hn_txdesc, M_DEVBUF);
5416 txr->hn_txdesc = NULL;
5417
5418 if (txr->hn_mbuf_br != NULL)
5419 buf_ring_free(txr->hn_mbuf_br, M_DEVBUF);
5420
5421 #ifndef HN_USE_TXDESC_BUFRING
5422 mtx_destroy(&txr->hn_txlist_spin);
5423 #endif
5424 mtx_destroy(&txr->hn_tx_lock);
5425 }
5426
5427 static int
hn_create_tx_data(struct hn_softc * sc,int ring_cnt)5428 hn_create_tx_data(struct hn_softc *sc, int ring_cnt)
5429 {
5430 struct sysctl_oid_list *child;
5431 struct sysctl_ctx_list *ctx;
5432 int i;
5433
5434 /*
5435 * Create TXBUF for chimney sending.
5436 *
5437 * NOTE: It is shared by all channels.
5438 */
5439 sc->hn_chim = contigmalloc(HN_CHIM_SIZE, M_DEVBUF, M_WAITOK | M_ZERO,
5440 0ul, ~0ul, PAGE_SIZE, 0);
5441 if (sc->hn_chim == NULL) {
5442 device_printf(sc->hn_dev, "allocate txbuf failed\n");
5443 return (ENOMEM);
5444 }
5445
5446 sc->hn_tx_ring_cnt = ring_cnt;
5447 sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt;
5448
5449 sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt,
5450 M_DEVBUF, M_WAITOK | M_ZERO);
5451
5452 ctx = device_get_sysctl_ctx(sc->hn_dev);
5453 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev));
5454
5455 /* Create dev.hn.UNIT.tx sysctl tree */
5456 sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx",
5457 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
5458
5459 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
5460 int error;
5461
5462 error = hn_tx_ring_create(sc, i);
5463 if (error)
5464 return error;
5465 }
5466
5467 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs",
5468 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5469 __offsetof(struct hn_tx_ring, hn_no_txdescs),
5470 hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs");
5471 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed",
5472 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5473 __offsetof(struct hn_tx_ring, hn_send_failed),
5474 hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure");
5475 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed",
5476 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5477 __offsetof(struct hn_tx_ring, hn_txdma_failed),
5478 hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure");
5479 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_flush_failed",
5480 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5481 __offsetof(struct hn_tx_ring, hn_flush_failed),
5482 hn_tx_stat_ulong_sysctl, "LU",
5483 "# of packet transmission aggregation flush failure");
5484 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed",
5485 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5486 __offsetof(struct hn_tx_ring, hn_tx_collapsed),
5487 hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed");
5488 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney",
5489 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5490 __offsetof(struct hn_tx_ring, hn_tx_chimney),
5491 hn_tx_stat_ulong_sysctl, "LU", "# of chimney send");
5492 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_tried",
5493 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_STATS, sc,
5494 __offsetof(struct hn_tx_ring, hn_tx_chimney_tried),
5495 hn_tx_stat_ulong_sysctl, "LU", "# of chimney send tries");
5496 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt",
5497 CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0,
5498 "# of total TX descs");
5499 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max",
5500 CTLFLAG_RD, &sc->hn_chim_szmax, 0,
5501 "Chimney send packet size upper boundary");
5502 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size",
5503 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
5504 hn_chim_size_sysctl, "I", "Chimney send packet size limit");
5505 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size",
5506 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
5507 __offsetof(struct hn_tx_ring, hn_direct_tx_size),
5508 hn_tx_conf_int_sysctl, "I",
5509 "Size of the packet for direct transmission");
5510 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx",
5511 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
5512 __offsetof(struct hn_tx_ring, hn_sched_tx),
5513 hn_tx_conf_int_sysctl, "I",
5514 "Always schedule transmission "
5515 "instead of doing direct transmission");
5516 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_cnt",
5517 CTLFLAG_RD, &sc->hn_tx_ring_cnt, 0, "# created TX rings");
5518 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_inuse",
5519 CTLFLAG_RD, &sc->hn_tx_ring_inuse, 0, "# used TX rings");
5520 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "agg_szmax",
5521 CTLFLAG_RD, &sc->hn_tx_ring[0].hn_agg_szmax, 0,
5522 "Applied packet transmission aggregation size");
5523 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pktmax",
5524 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
5525 hn_txagg_pktmax_sysctl, "I",
5526 "Applied packet transmission aggregation packets");
5527 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_align",
5528 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
5529 hn_txagg_align_sysctl, "I",
5530 "Applied packet transmission aggregation alignment");
5531
5532 return 0;
5533 }
5534
5535 static void
hn_set_chim_size(struct hn_softc * sc,int chim_size)5536 hn_set_chim_size(struct hn_softc *sc, int chim_size)
5537 {
5538 int i;
5539
5540 for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
5541 sc->hn_tx_ring[i].hn_chim_size = chim_size;
5542 }
5543
5544 static void
hn_set_tso_maxsize(struct hn_softc * sc,int tso_maxlen,int mtu)5545 hn_set_tso_maxsize(struct hn_softc *sc, int tso_maxlen, int mtu)
5546 {
5547 if_t ifp = sc->hn_ifp;
5548 u_int hw_tsomax;
5549 int tso_minlen;
5550
5551 HN_LOCK_ASSERT(sc);
5552
5553 if ((if_getcapabilities(ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) == 0)
5554 return;
5555
5556 KASSERT(sc->hn_ndis_tso_sgmin >= 2,
5557 ("invalid NDIS tso sgmin %d", sc->hn_ndis_tso_sgmin));
5558 tso_minlen = sc->hn_ndis_tso_sgmin * mtu;
5559
5560 KASSERT(sc->hn_ndis_tso_szmax >= tso_minlen &&
5561 sc->hn_ndis_tso_szmax <= IP_MAXPACKET,
5562 ("invalid NDIS tso szmax %d", sc->hn_ndis_tso_szmax));
5563
5564 if (tso_maxlen < tso_minlen)
5565 tso_maxlen = tso_minlen;
5566 else if (tso_maxlen > IP_MAXPACKET)
5567 tso_maxlen = IP_MAXPACKET;
5568 if (tso_maxlen > sc->hn_ndis_tso_szmax)
5569 tso_maxlen = sc->hn_ndis_tso_szmax;
5570 hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5571
5572 if (hn_xpnt_vf_isready(sc)) {
5573 if (hw_tsomax > if_gethwtsomax(sc->hn_vf_ifp))
5574 hw_tsomax = if_gethwtsomax(sc->hn_vf_ifp);
5575 }
5576 if_sethwtsomax(ifp, hw_tsomax);
5577 if (bootverbose)
5578 if_printf(ifp, "TSO size max %u\n", if_gethwtsomax(ifp));
5579 }
5580
5581 static void
hn_fixup_tx_data(struct hn_softc * sc)5582 hn_fixup_tx_data(struct hn_softc *sc)
5583 {
5584 uint64_t csum_assist;
5585 int i;
5586
5587 hn_set_chim_size(sc, sc->hn_chim_szmax);
5588 if (hn_tx_chimney_size > 0 &&
5589 hn_tx_chimney_size < sc->hn_chim_szmax)
5590 hn_set_chim_size(sc, hn_tx_chimney_size);
5591
5592 csum_assist = 0;
5593 if (sc->hn_caps & HN_CAP_IPCS)
5594 csum_assist |= CSUM_IP;
5595 if (sc->hn_caps & HN_CAP_TCP4CS)
5596 csum_assist |= CSUM_IP_TCP;
5597 if ((sc->hn_caps & HN_CAP_UDP4CS) && hn_enable_udp4cs)
5598 csum_assist |= CSUM_IP_UDP;
5599 if (sc->hn_caps & HN_CAP_TCP6CS)
5600 csum_assist |= CSUM_IP6_TCP;
5601 if ((sc->hn_caps & HN_CAP_UDP6CS) && hn_enable_udp6cs)
5602 csum_assist |= CSUM_IP6_UDP;
5603 for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
5604 sc->hn_tx_ring[i].hn_csum_assist = csum_assist;
5605
5606 if (sc->hn_caps & HN_CAP_HASHVAL) {
5607 /*
5608 * Support HASHVAL pktinfo on TX path.
5609 */
5610 if (bootverbose)
5611 if_printf(sc->hn_ifp, "support HASHVAL pktinfo\n");
5612 for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
5613 sc->hn_tx_ring[i].hn_tx_flags |= HN_TX_FLAG_HASHVAL;
5614 }
5615 }
5616
5617 static void
hn_fixup_rx_data(struct hn_softc * sc)5618 hn_fixup_rx_data(struct hn_softc *sc)
5619 {
5620
5621 if (sc->hn_caps & HN_CAP_UDPHASH) {
5622 int i;
5623
5624 for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
5625 sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_UDP_HASH;
5626 }
5627 }
5628
5629 static void
hn_destroy_tx_data(struct hn_softc * sc)5630 hn_destroy_tx_data(struct hn_softc *sc)
5631 {
5632 int i;
5633
5634 if (sc->hn_chim != NULL) {
5635 if ((sc->hn_flags & HN_FLAG_CHIM_REF) == 0) {
5636 free(sc->hn_chim, M_DEVBUF);
5637 } else {
5638 device_printf(sc->hn_dev,
5639 "chimney sending buffer is referenced");
5640 }
5641 sc->hn_chim = NULL;
5642 }
5643
5644 if (sc->hn_tx_ring_cnt == 0)
5645 return;
5646
5647 for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
5648 hn_tx_ring_destroy(&sc->hn_tx_ring[i]);
5649
5650 free(sc->hn_tx_ring, M_DEVBUF);
5651 sc->hn_tx_ring = NULL;
5652
5653 sc->hn_tx_ring_cnt = 0;
5654 sc->hn_tx_ring_inuse = 0;
5655 }
5656
5657 #ifdef HN_IFSTART_SUPPORT
5658
5659 static void
hn_start_taskfunc(void * xtxr,int pending __unused)5660 hn_start_taskfunc(void *xtxr, int pending __unused)
5661 {
5662 struct hn_tx_ring *txr = xtxr;
5663
5664 mtx_lock(&txr->hn_tx_lock);
5665 hn_start_locked(txr, 0);
5666 mtx_unlock(&txr->hn_tx_lock);
5667 }
5668
5669 static int
hn_start_locked(struct hn_tx_ring * txr,int len)5670 hn_start_locked(struct hn_tx_ring *txr, int len)
5671 {
5672 struct hn_softc *sc = txr->hn_sc;
5673 if_t ifp = sc->hn_ifp;
5674 int sched = 0;
5675
5676 KASSERT(hn_use_if_start,
5677 ("hn_start_locked is called, when if_start is disabled"));
5678 KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
5679 mtx_assert(&txr->hn_tx_lock, MA_OWNED);
5680 KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
5681
5682 if (__predict_false(txr->hn_suspended))
5683 return (0);
5684
5685 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5686 IFF_DRV_RUNNING)
5687 return (0);
5688
5689 while (!if_sendq_empty(ifp)) {
5690 struct hn_txdesc *txd;
5691 struct mbuf *m_head;
5692 int error;
5693
5694 m_head = if_dequeue(ifp);
5695 if (m_head == NULL)
5696 break;
5697
5698 if (len > 0 && m_head->m_pkthdr.len > len) {
5699 /*
5700 * This sending could be time consuming; let callers
5701 * dispatch this packet sending (and sending of any
5702 * following up packets) to tx taskqueue.
5703 */
5704 if_sendq_prepend(ifp, m_head);
5705 sched = 1;
5706 break;
5707 }
5708
5709 #if defined(INET6) || defined(INET)
5710 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
5711 m_head = hn_tso_fixup(m_head);
5712 if (__predict_false(m_head == NULL)) {
5713 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5714 continue;
5715 }
5716 } else if (m_head->m_pkthdr.csum_flags &
5717 (CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) {
5718 m_head = hn_set_hlen(m_head);
5719 if (__predict_false(m_head == NULL)) {
5720 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5721 continue;
5722 }
5723 }
5724 #endif
5725
5726 txd = hn_txdesc_get(txr);
5727 if (txd == NULL) {
5728 txr->hn_no_txdescs++;
5729 if_sendq_prepend(ifp, m_head);
5730 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5731 break;
5732 }
5733
5734 error = hn_encap(ifp, txr, txd, &m_head);
5735 if (error) {
5736 /* Both txd and m_head are freed */
5737 KASSERT(txr->hn_agg_txd == NULL,
5738 ("encap failed w/ pending aggregating txdesc"));
5739 continue;
5740 }
5741
5742 if (txr->hn_agg_pktleft == 0) {
5743 if (txr->hn_agg_txd != NULL) {
5744 KASSERT(m_head == NULL,
5745 ("pending mbuf for aggregating txdesc"));
5746 error = hn_flush_txagg(ifp, txr);
5747 if (__predict_false(error)) {
5748 if_setdrvflagbits(ifp,
5749 IFF_DRV_OACTIVE, 0);
5750 break;
5751 }
5752 } else {
5753 KASSERT(m_head != NULL, ("mbuf was freed"));
5754 error = hn_txpkt(ifp, txr, txd);
5755 if (__predict_false(error)) {
5756 /* txd is freed, but m_head is not */
5757 if_sendq_prepend(ifp, m_head);
5758 if_setdrvflagbits(ifp,
5759 IFF_DRV_OACTIVE, 0);
5760 break;
5761 }
5762 }
5763 }
5764 #ifdef INVARIANTS
5765 else {
5766 KASSERT(txr->hn_agg_txd != NULL,
5767 ("no aggregating txdesc"));
5768 KASSERT(m_head == NULL,
5769 ("pending mbuf for aggregating txdesc"));
5770 }
5771 #endif
5772 }
5773
5774 /* Flush pending aggerated transmission. */
5775 if (txr->hn_agg_txd != NULL)
5776 hn_flush_txagg(ifp, txr);
5777 return (sched);
5778 }
5779
5780 static void
hn_start(if_t ifp)5781 hn_start(if_t ifp)
5782 {
5783 struct hn_softc *sc = if_getsoftc(ifp);
5784 struct hn_tx_ring *txr = &sc->hn_tx_ring[0];
5785
5786 if (txr->hn_sched_tx)
5787 goto do_sched;
5788
5789 if (mtx_trylock(&txr->hn_tx_lock)) {
5790 int sched;
5791
5792 sched = hn_start_locked(txr, txr->hn_direct_tx_size);
5793 mtx_unlock(&txr->hn_tx_lock);
5794 if (!sched)
5795 return;
5796 }
5797 do_sched:
5798 taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
5799 }
5800
5801 static void
hn_start_txeof_taskfunc(void * xtxr,int pending __unused)5802 hn_start_txeof_taskfunc(void *xtxr, int pending __unused)
5803 {
5804 struct hn_tx_ring *txr = xtxr;
5805
5806 mtx_lock(&txr->hn_tx_lock);
5807 if_setdrvflagbits(txr->hn_sc->hn_ifp, 0, IFF_DRV_OACTIVE);
5808 hn_start_locked(txr, 0);
5809 mtx_unlock(&txr->hn_tx_lock);
5810 }
5811
5812 static void
hn_start_txeof(struct hn_tx_ring * txr)5813 hn_start_txeof(struct hn_tx_ring *txr)
5814 {
5815 struct hn_softc *sc = txr->hn_sc;
5816 if_t ifp = sc->hn_ifp;
5817
5818 KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
5819
5820 if (txr->hn_sched_tx)
5821 goto do_sched;
5822
5823 if (mtx_trylock(&txr->hn_tx_lock)) {
5824 int sched;
5825
5826 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5827 sched = hn_start_locked(txr, txr->hn_direct_tx_size);
5828 mtx_unlock(&txr->hn_tx_lock);
5829 if (sched) {
5830 taskqueue_enqueue(txr->hn_tx_taskq,
5831 &txr->hn_tx_task);
5832 }
5833 } else {
5834 do_sched:
5835 /*
5836 * Release the OACTIVE earlier, with the hope, that
5837 * others could catch up. The task will clear the
5838 * flag again with the hn_tx_lock to avoid possible
5839 * races.
5840 */
5841 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5842 taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
5843 }
5844 }
5845
5846 #endif /* HN_IFSTART_SUPPORT */
5847
5848 static int
hn_xmit(struct hn_tx_ring * txr,int len)5849 hn_xmit(struct hn_tx_ring *txr, int len)
5850 {
5851 struct hn_softc *sc = txr->hn_sc;
5852 if_t ifp = sc->hn_ifp;
5853 struct mbuf *m_head;
5854 int sched = 0;
5855
5856 mtx_assert(&txr->hn_tx_lock, MA_OWNED);
5857 #ifdef HN_IFSTART_SUPPORT
5858 KASSERT(hn_use_if_start == 0,
5859 ("hn_xmit is called, when if_start is enabled"));
5860 #endif
5861 KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
5862
5863 if (__predict_false(txr->hn_suspended))
5864 return (0);
5865
5866 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || txr->hn_oactive)
5867 return (0);
5868
5869 while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) {
5870 struct hn_txdesc *txd;
5871 int error;
5872
5873 if (len > 0 && m_head->m_pkthdr.len > len) {
5874 /*
5875 * This sending could be time consuming; let callers
5876 * dispatch this packet sending (and sending of any
5877 * following up packets) to tx taskqueue.
5878 */
5879 drbr_putback(ifp, txr->hn_mbuf_br, m_head);
5880 sched = 1;
5881 break;
5882 }
5883
5884 txd = hn_txdesc_get(txr);
5885 if (txd == NULL) {
5886 txr->hn_no_txdescs++;
5887 drbr_putback(ifp, txr->hn_mbuf_br, m_head);
5888 txr->hn_oactive = 1;
5889 break;
5890 }
5891
5892 error = hn_encap(ifp, txr, txd, &m_head);
5893 if (error) {
5894 /* Both txd and m_head are freed; discard */
5895 KASSERT(txr->hn_agg_txd == NULL,
5896 ("encap failed w/ pending aggregating txdesc"));
5897 drbr_advance(ifp, txr->hn_mbuf_br);
5898 continue;
5899 }
5900
5901 if (txr->hn_agg_pktleft == 0) {
5902 if (txr->hn_agg_txd != NULL) {
5903 KASSERT(m_head == NULL,
5904 ("pending mbuf for aggregating txdesc"));
5905 error = hn_flush_txagg(ifp, txr);
5906 if (__predict_false(error)) {
5907 txr->hn_oactive = 1;
5908 break;
5909 }
5910 } else {
5911 KASSERT(m_head != NULL, ("mbuf was freed"));
5912 error = hn_txpkt(ifp, txr, txd);
5913 if (__predict_false(error)) {
5914 /* txd is freed, but m_head is not */
5915 drbr_putback(ifp, txr->hn_mbuf_br,
5916 m_head);
5917 txr->hn_oactive = 1;
5918 break;
5919 }
5920 }
5921 }
5922 #ifdef INVARIANTS
5923 else {
5924 KASSERT(txr->hn_agg_txd != NULL,
5925 ("no aggregating txdesc"));
5926 KASSERT(m_head == NULL,
5927 ("pending mbuf for aggregating txdesc"));
5928 }
5929 #endif
5930
5931 /* Sent */
5932 drbr_advance(ifp, txr->hn_mbuf_br);
5933 }
5934
5935 /* Flush pending aggerated transmission. */
5936 if (txr->hn_agg_txd != NULL)
5937 hn_flush_txagg(ifp, txr);
5938 return (sched);
5939 }
5940
5941 static int
hn_transmit(if_t ifp,struct mbuf * m)5942 hn_transmit(if_t ifp, struct mbuf *m)
5943 {
5944 struct hn_softc *sc = if_getsoftc(ifp);
5945 struct hn_tx_ring *txr;
5946 int error, idx = 0;
5947
5948 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) {
5949 struct rm_priotracker pt;
5950
5951 rm_rlock(&sc->hn_vf_lock, &pt);
5952 if (__predict_true(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
5953 struct mbuf *m_bpf = NULL;
5954 int obytes, omcast;
5955
5956 obytes = m->m_pkthdr.len;
5957 omcast = (m->m_flags & M_MCAST) != 0;
5958
5959 if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF) {
5960 if (bpf_peers_present_if(ifp)) {
5961 m_bpf = m_copypacket(m, M_NOWAIT);
5962 if (m_bpf == NULL) {
5963 /*
5964 * Failed to grab a shallow
5965 * copy; tap now.
5966 */
5967 ETHER_BPF_MTAP(ifp, m);
5968 }
5969 }
5970 } else {
5971 ETHER_BPF_MTAP(ifp, m);
5972 }
5973
5974 error = if_transmit(sc->hn_vf_ifp, m);
5975 rm_runlock(&sc->hn_vf_lock, &pt);
5976
5977 if (m_bpf != NULL) {
5978 if (!error)
5979 ETHER_BPF_MTAP(ifp, m_bpf);
5980 m_freem(m_bpf);
5981 }
5982
5983 if (error == ENOBUFS) {
5984 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
5985 } else if (error) {
5986 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5987 } else {
5988 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
5989 if_inc_counter(ifp, IFCOUNTER_OBYTES, obytes);
5990 if (omcast) {
5991 if_inc_counter(ifp, IFCOUNTER_OMCASTS,
5992 omcast);
5993 }
5994 }
5995 return (error);
5996 }
5997 rm_runlock(&sc->hn_vf_lock, &pt);
5998 }
5999
6000 #if defined(INET6) || defined(INET)
6001 /*
6002 * Perform TSO packet header fixup or get l2/l3 header length now,
6003 * since packet headers should be cache-hot.
6004 */
6005 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
6006 m = hn_tso_fixup(m);
6007 if (__predict_false(m == NULL)) {
6008 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6009 return EIO;
6010 }
6011 } else if (m->m_pkthdr.csum_flags &
6012 (CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) {
6013 m = hn_set_hlen(m);
6014 if (__predict_false(m == NULL)) {
6015 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6016 return EIO;
6017 }
6018 }
6019 #endif
6020
6021 /*
6022 * Select the TX ring based on flowid
6023 */
6024 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
6025 #ifdef RSS
6026 uint32_t bid;
6027
6028 if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
6029 &bid) == 0)
6030 idx = bid % sc->hn_tx_ring_inuse;
6031 else
6032 #endif
6033 {
6034 #if defined(INET6) || defined(INET)
6035 int tcpsyn = 0;
6036
6037 if (m->m_pkthdr.len < 128 &&
6038 (m->m_pkthdr.csum_flags &
6039 (CSUM_IP_TCP | CSUM_IP6_TCP)) &&
6040 (m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
6041 m = hn_check_tcpsyn(m, &tcpsyn);
6042 if (__predict_false(m == NULL)) {
6043 if_inc_counter(ifp,
6044 IFCOUNTER_OERRORS, 1);
6045 return (EIO);
6046 }
6047 }
6048 #else
6049 const int tcpsyn = 0;
6050 #endif
6051 if (tcpsyn)
6052 idx = 0;
6053 else
6054 idx = m->m_pkthdr.flowid % sc->hn_tx_ring_inuse;
6055 }
6056 }
6057 txr = &sc->hn_tx_ring[idx];
6058
6059 error = drbr_enqueue(ifp, txr->hn_mbuf_br, m);
6060 if (error) {
6061 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
6062 return error;
6063 }
6064
6065 if (txr->hn_oactive)
6066 return 0;
6067
6068 if (txr->hn_sched_tx)
6069 goto do_sched;
6070
6071 if (mtx_trylock(&txr->hn_tx_lock)) {
6072 int sched;
6073
6074 sched = hn_xmit(txr, txr->hn_direct_tx_size);
6075 mtx_unlock(&txr->hn_tx_lock);
6076 if (!sched)
6077 return 0;
6078 }
6079 do_sched:
6080 taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
6081 return 0;
6082 }
6083
6084 static void
hn_tx_ring_qflush(struct hn_tx_ring * txr)6085 hn_tx_ring_qflush(struct hn_tx_ring *txr)
6086 {
6087 struct mbuf *m;
6088
6089 mtx_lock(&txr->hn_tx_lock);
6090 while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL)
6091 m_freem(m);
6092 mtx_unlock(&txr->hn_tx_lock);
6093 }
6094
6095 static void
hn_xmit_qflush(if_t ifp)6096 hn_xmit_qflush(if_t ifp)
6097 {
6098 struct hn_softc *sc = if_getsoftc(ifp);
6099 struct rm_priotracker pt;
6100 int i;
6101
6102 for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
6103 hn_tx_ring_qflush(&sc->hn_tx_ring[i]);
6104 if_qflush(ifp);
6105
6106 rm_rlock(&sc->hn_vf_lock, &pt);
6107 if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
6108 if_qflush(sc->hn_vf_ifp);
6109 rm_runlock(&sc->hn_vf_lock, &pt);
6110 }
6111
6112 static void
hn_xmit_txeof(struct hn_tx_ring * txr)6113 hn_xmit_txeof(struct hn_tx_ring *txr)
6114 {
6115
6116 if (txr->hn_sched_tx)
6117 goto do_sched;
6118
6119 if (mtx_trylock(&txr->hn_tx_lock)) {
6120 int sched;
6121
6122 txr->hn_oactive = 0;
6123 sched = hn_xmit(txr, txr->hn_direct_tx_size);
6124 mtx_unlock(&txr->hn_tx_lock);
6125 if (sched) {
6126 taskqueue_enqueue(txr->hn_tx_taskq,
6127 &txr->hn_tx_task);
6128 }
6129 } else {
6130 do_sched:
6131 /*
6132 * Release the oactive earlier, with the hope, that
6133 * others could catch up. The task will clear the
6134 * oactive again with the hn_tx_lock to avoid possible
6135 * races.
6136 */
6137 txr->hn_oactive = 0;
6138 taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
6139 }
6140 }
6141
6142 static void
hn_xmit_taskfunc(void * xtxr,int pending __unused)6143 hn_xmit_taskfunc(void *xtxr, int pending __unused)
6144 {
6145 struct hn_tx_ring *txr = xtxr;
6146
6147 mtx_lock(&txr->hn_tx_lock);
6148 hn_xmit(txr, 0);
6149 mtx_unlock(&txr->hn_tx_lock);
6150 }
6151
6152 static void
hn_xmit_txeof_taskfunc(void * xtxr,int pending __unused)6153 hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused)
6154 {
6155 struct hn_tx_ring *txr = xtxr;
6156
6157 mtx_lock(&txr->hn_tx_lock);
6158 txr->hn_oactive = 0;
6159 hn_xmit(txr, 0);
6160 mtx_unlock(&txr->hn_tx_lock);
6161 }
6162
6163 static int
hn_chan_attach(struct hn_softc * sc,struct vmbus_channel * chan)6164 hn_chan_attach(struct hn_softc *sc, struct vmbus_channel *chan)
6165 {
6166 struct vmbus_chan_br cbr;
6167 struct hn_rx_ring *rxr;
6168 struct hn_tx_ring *txr = NULL;
6169 int idx, error;
6170
6171 idx = vmbus_chan_subidx(chan);
6172
6173 /*
6174 * Link this channel to RX/TX ring.
6175 */
6176 KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse,
6177 ("invalid channel index %d, should > 0 && < %d",
6178 idx, sc->hn_rx_ring_inuse));
6179 rxr = &sc->hn_rx_ring[idx];
6180 KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0,
6181 ("RX ring %d already attached", idx));
6182 rxr->hn_rx_flags |= HN_RX_FLAG_ATTACHED;
6183 rxr->hn_chan = chan;
6184
6185 if (bootverbose) {
6186 if_printf(sc->hn_ifp, "link RX ring %d to chan%u\n",
6187 idx, vmbus_chan_id(chan));
6188 }
6189
6190 if (idx < sc->hn_tx_ring_inuse) {
6191 txr = &sc->hn_tx_ring[idx];
6192 KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0,
6193 ("TX ring %d already attached", idx));
6194 txr->hn_tx_flags |= HN_TX_FLAG_ATTACHED;
6195
6196 txr->hn_chan = chan;
6197 if (bootverbose) {
6198 if_printf(sc->hn_ifp, "link TX ring %d to chan%u\n",
6199 idx, vmbus_chan_id(chan));
6200 }
6201 }
6202
6203 /* Bind this channel to a proper CPU. */
6204 vmbus_chan_cpu_set(chan, HN_RING_IDX2CPU(sc, idx));
6205
6206 /*
6207 * Open this channel
6208 */
6209 cbr.cbr = rxr->hn_br;
6210 cbr.cbr_paddr = pmap_kextract((vm_offset_t)rxr->hn_br);
6211 cbr.cbr_txsz = HN_TXBR_SIZE;
6212 cbr.cbr_rxsz = HN_RXBR_SIZE;
6213 error = vmbus_chan_open_br(chan, &cbr, NULL, 0, hn_chan_callback, rxr);
6214 if (error) {
6215 if (error == EISCONN) {
6216 if_printf(sc->hn_ifp, "bufring is connected after "
6217 "chan%u open failure\n", vmbus_chan_id(chan));
6218 rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF;
6219 } else {
6220 if_printf(sc->hn_ifp, "open chan%u failed: %d\n",
6221 vmbus_chan_id(chan), error);
6222 }
6223 }
6224 return (error);
6225 }
6226
6227 static void
hn_chan_detach(struct hn_softc * sc,struct vmbus_channel * chan)6228 hn_chan_detach(struct hn_softc *sc, struct vmbus_channel *chan)
6229 {
6230 struct hn_rx_ring *rxr;
6231 int idx, error;
6232
6233 idx = vmbus_chan_subidx(chan);
6234
6235 /*
6236 * Link this channel to RX/TX ring.
6237 */
6238 KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse,
6239 ("invalid channel index %d, should > 0 && < %d",
6240 idx, sc->hn_rx_ring_inuse));
6241 rxr = &sc->hn_rx_ring[idx];
6242 KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED),
6243 ("RX ring %d is not attached", idx));
6244 rxr->hn_rx_flags &= ~HN_RX_FLAG_ATTACHED;
6245
6246 if (idx < sc->hn_tx_ring_inuse) {
6247 struct hn_tx_ring *txr = &sc->hn_tx_ring[idx];
6248
6249 KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED),
6250 ("TX ring %d is not attached attached", idx));
6251 txr->hn_tx_flags &= ~HN_TX_FLAG_ATTACHED;
6252 }
6253
6254 /*
6255 * Close this channel.
6256 *
6257 * NOTE:
6258 * Channel closing does _not_ destroy the target channel.
6259 */
6260 error = vmbus_chan_close_direct(chan);
6261 if (error == EISCONN) {
6262 if_printf(sc->hn_ifp, "chan%u bufring is connected "
6263 "after being closed\n", vmbus_chan_id(chan));
6264 rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF;
6265 } else if (error) {
6266 if_printf(sc->hn_ifp, "chan%u close failed: %d\n",
6267 vmbus_chan_id(chan), error);
6268 }
6269 }
6270
6271 static int
hn_attach_subchans(struct hn_softc * sc)6272 hn_attach_subchans(struct hn_softc *sc)
6273 {
6274 struct vmbus_channel **subchans;
6275 int subchan_cnt = sc->hn_rx_ring_inuse - 1;
6276 int i, error = 0;
6277
6278 KASSERT(subchan_cnt > 0, ("no sub-channels"));
6279
6280 /* Attach the sub-channels. */
6281 subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt);
6282 for (i = 0; i < subchan_cnt; ++i) {
6283 int error1;
6284
6285 error1 = hn_chan_attach(sc, subchans[i]);
6286 if (error1) {
6287 error = error1;
6288 /* Move on; all channels will be detached later. */
6289 }
6290 }
6291 vmbus_subchan_rel(subchans, subchan_cnt);
6292
6293 if (error) {
6294 if_printf(sc->hn_ifp, "sub-channels attach failed: %d\n", error);
6295 } else {
6296 if (bootverbose) {
6297 if_printf(sc->hn_ifp, "%d sub-channels attached\n",
6298 subchan_cnt);
6299 }
6300 }
6301 return (error);
6302 }
6303
6304 static void
hn_detach_allchans(struct hn_softc * sc)6305 hn_detach_allchans(struct hn_softc *sc)
6306 {
6307 struct vmbus_channel **subchans;
6308 int subchan_cnt = sc->hn_rx_ring_inuse - 1;
6309 int i;
6310
6311 if (subchan_cnt == 0)
6312 goto back;
6313
6314 /* Detach the sub-channels. */
6315 subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt);
6316 for (i = 0; i < subchan_cnt; ++i)
6317 hn_chan_detach(sc, subchans[i]);
6318 vmbus_subchan_rel(subchans, subchan_cnt);
6319
6320 back:
6321 /*
6322 * Detach the primary channel, _after_ all sub-channels
6323 * are detached.
6324 */
6325 hn_chan_detach(sc, sc->hn_prichan);
6326
6327 /* Wait for sub-channels to be destroyed, if any. */
6328 vmbus_subchan_drain(sc->hn_prichan);
6329
6330 #ifdef INVARIANTS
6331 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
6332 KASSERT((sc->hn_rx_ring[i].hn_rx_flags &
6333 HN_RX_FLAG_ATTACHED) == 0,
6334 ("%dth RX ring is still attached", i));
6335 }
6336 for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
6337 KASSERT((sc->hn_tx_ring[i].hn_tx_flags &
6338 HN_TX_FLAG_ATTACHED) == 0,
6339 ("%dth TX ring is still attached", i));
6340 }
6341 #endif
6342 }
6343
6344 static int
hn_synth_alloc_subchans(struct hn_softc * sc,int * nsubch)6345 hn_synth_alloc_subchans(struct hn_softc *sc, int *nsubch)
6346 {
6347 struct vmbus_channel **subchans;
6348 int nchan, rxr_cnt, error;
6349
6350 nchan = *nsubch + 1;
6351 if (nchan == 1) {
6352 /*
6353 * Multiple RX/TX rings are not requested.
6354 */
6355 *nsubch = 0;
6356 return (0);
6357 }
6358
6359 /*
6360 * Query RSS capabilities, e.g. # of RX rings, and # of indirect
6361 * table entries.
6362 */
6363 error = hn_rndis_query_rsscaps(sc, &rxr_cnt);
6364 if (error) {
6365 /* No RSS; this is benign. */
6366 *nsubch = 0;
6367 return (0);
6368 }
6369 if (bootverbose) {
6370 if_printf(sc->hn_ifp, "RX rings offered %u, requested %d\n",
6371 rxr_cnt, nchan);
6372 }
6373
6374 if (nchan > rxr_cnt)
6375 nchan = rxr_cnt;
6376 if (nchan == 1) {
6377 if_printf(sc->hn_ifp, "only 1 channel is supported, no vRSS\n");
6378 *nsubch = 0;
6379 return (0);
6380 }
6381
6382 /*
6383 * Allocate sub-channels from NVS.
6384 */
6385 *nsubch = nchan - 1;
6386 error = hn_nvs_alloc_subchans(sc, nsubch);
6387 if (error || *nsubch == 0) {
6388 /* Failed to allocate sub-channels. */
6389 *nsubch = 0;
6390 return (0);
6391 }
6392
6393 /*
6394 * Wait for all sub-channels to become ready before moving on.
6395 */
6396 subchans = vmbus_subchan_get(sc->hn_prichan, *nsubch);
6397 vmbus_subchan_rel(subchans, *nsubch);
6398 return (0);
6399 }
6400
6401 static bool
hn_synth_attachable(const struct hn_softc * sc)6402 hn_synth_attachable(const struct hn_softc *sc)
6403 {
6404 int i;
6405
6406 if (sc->hn_flags & HN_FLAG_ERRORS)
6407 return (false);
6408
6409 for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
6410 const struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
6411
6412 if (rxr->hn_rx_flags & HN_RX_FLAG_BR_REF)
6413 return (false);
6414 }
6415 return (true);
6416 }
6417
6418 /*
6419 * Make sure that the RX filter is zero after the successful
6420 * RNDIS initialization.
6421 *
6422 * NOTE:
6423 * Under certain conditions on certain versions of Hyper-V,
6424 * the RNDIS rxfilter is _not_ zero on the hypervisor side
6425 * after the successful RNDIS initialization, which breaks
6426 * the assumption of any following code (well, it breaks the
6427 * RNDIS API contract actually). Clear the RNDIS rxfilter
6428 * explicitly, drain packets sneaking through, and drain the
6429 * interrupt taskqueues scheduled due to the stealth packets.
6430 */
6431 static void
hn_rndis_init_fixat(struct hn_softc * sc,int nchan)6432 hn_rndis_init_fixat(struct hn_softc *sc, int nchan)
6433 {
6434
6435 hn_disable_rx(sc);
6436 hn_drain_rxtx(sc, nchan);
6437 }
6438
6439 static int
hn_synth_attach(struct hn_softc * sc,int mtu)6440 hn_synth_attach(struct hn_softc *sc, int mtu)
6441 {
6442 #define ATTACHED_NVS 0x0002
6443 #define ATTACHED_RNDIS 0x0004
6444
6445 struct ndis_rssprm_toeplitz *rss = &sc->hn_rss;
6446 int error, nsubch, nchan = 1, i, rndis_inited;
6447 uint32_t old_caps, attached = 0;
6448
6449 KASSERT((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0,
6450 ("synthetic parts were attached"));
6451
6452 if (!hn_synth_attachable(sc))
6453 return (ENXIO);
6454
6455 /* Save capabilities for later verification. */
6456 old_caps = sc->hn_caps;
6457 sc->hn_caps = 0;
6458
6459 /* Clear RSS stuffs. */
6460 sc->hn_rss_ind_size = 0;
6461 sc->hn_rss_hash = 0;
6462 sc->hn_rss_hcap = 0;
6463
6464 /*
6465 * Attach the primary channel _before_ attaching NVS and RNDIS.
6466 */
6467 error = hn_chan_attach(sc, sc->hn_prichan);
6468 if (error)
6469 goto failed;
6470
6471 /*
6472 * Attach NVS.
6473 */
6474 error = hn_nvs_attach(sc, mtu);
6475 if (error)
6476 goto failed;
6477 attached |= ATTACHED_NVS;
6478
6479 /*
6480 * Attach RNDIS _after_ NVS is attached.
6481 */
6482 error = hn_rndis_attach(sc, mtu, &rndis_inited);
6483 if (rndis_inited)
6484 attached |= ATTACHED_RNDIS;
6485 if (error)
6486 goto failed;
6487
6488 /*
6489 * Make sure capabilities are not changed.
6490 */
6491 if (device_is_attached(sc->hn_dev) && old_caps != sc->hn_caps) {
6492 if_printf(sc->hn_ifp, "caps mismatch old 0x%08x, new 0x%08x\n",
6493 old_caps, sc->hn_caps);
6494 error = ENXIO;
6495 goto failed;
6496 }
6497
6498 /*
6499 * Allocate sub-channels for multi-TX/RX rings.
6500 *
6501 * NOTE:
6502 * The # of RX rings that can be used is equivalent to the # of
6503 * channels to be requested.
6504 */
6505 nsubch = sc->hn_rx_ring_cnt - 1;
6506 error = hn_synth_alloc_subchans(sc, &nsubch);
6507 if (error)
6508 goto failed;
6509 /* NOTE: _Full_ synthetic parts detach is required now. */
6510 sc->hn_flags |= HN_FLAG_SYNTH_ATTACHED;
6511
6512 /*
6513 * Set the # of TX/RX rings that could be used according to
6514 * the # of channels that NVS offered.
6515 */
6516 nchan = nsubch + 1;
6517 hn_set_ring_inuse(sc, nchan);
6518 if (nchan == 1) {
6519 /* Only the primary channel can be used; done */
6520 goto back;
6521 }
6522
6523 /*
6524 * Attach the sub-channels.
6525 *
6526 * NOTE: hn_set_ring_inuse() _must_ have been called.
6527 */
6528 error = hn_attach_subchans(sc);
6529 if (error)
6530 goto failed;
6531
6532 /*
6533 * Configure RSS key and indirect table _after_ all sub-channels
6534 * are attached.
6535 */
6536 if ((sc->hn_flags & HN_FLAG_HAS_RSSKEY) == 0) {
6537 /*
6538 * RSS key is not set yet; set it to the default RSS key.
6539 */
6540 if (bootverbose)
6541 if_printf(sc->hn_ifp, "setup default RSS key\n");
6542 rss_getkey(rss->rss_key);
6543 sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
6544 }
6545
6546 if ((sc->hn_flags & HN_FLAG_HAS_RSSIND) == 0) {
6547 /*
6548 * RSS indirect table is not set yet; set it up in round-
6549 * robin fashion.
6550 */
6551 if (bootverbose) {
6552 if_printf(sc->hn_ifp, "setup default RSS indirect "
6553 "table\n");
6554 }
6555 for (i = 0; i < NDIS_HASH_INDCNT; ++i) {
6556 uint32_t subidx;
6557
6558 #ifdef RSS
6559 subidx = rss_get_indirection_to_bucket(i);
6560 #else
6561 subidx = i;
6562 #endif
6563 rss->rss_ind[i] = subidx % nchan;
6564 }
6565 sc->hn_flags |= HN_FLAG_HAS_RSSIND;
6566 } else {
6567 /*
6568 * # of usable channels may be changed, so we have to
6569 * make sure that all entries in RSS indirect table
6570 * are valid.
6571 *
6572 * NOTE: hn_set_ring_inuse() _must_ have been called.
6573 */
6574 hn_rss_ind_fixup(sc);
6575 }
6576
6577 sc->hn_rss_hash = sc->hn_rss_hcap;
6578 if ((sc->hn_flags & HN_FLAG_RXVF) ||
6579 (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
6580 /* NOTE: Don't reconfigure RSS; will do immediately. */
6581 hn_vf_rss_fixup(sc, false);
6582 }
6583 error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE);
6584 if (error)
6585 goto failed;
6586 back:
6587 /*
6588 * Fixup transmission aggregation setup.
6589 */
6590 hn_set_txagg(sc);
6591 hn_rndis_init_fixat(sc, nchan);
6592 return (0);
6593
6594 failed:
6595 if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
6596 hn_rndis_init_fixat(sc, nchan);
6597 hn_synth_detach(sc);
6598 } else {
6599 if (attached & ATTACHED_RNDIS) {
6600 hn_rndis_init_fixat(sc, nchan);
6601 hn_rndis_detach(sc);
6602 }
6603 if (attached & ATTACHED_NVS)
6604 hn_nvs_detach(sc);
6605 hn_chan_detach(sc, sc->hn_prichan);
6606 /* Restore old capabilities. */
6607 sc->hn_caps = old_caps;
6608 }
6609 return (error);
6610
6611 #undef ATTACHED_RNDIS
6612 #undef ATTACHED_NVS
6613 }
6614
6615 /*
6616 * NOTE:
6617 * The interface must have been suspended though hn_suspend(), before
6618 * this function get called.
6619 */
6620 static void
hn_synth_detach(struct hn_softc * sc)6621 hn_synth_detach(struct hn_softc *sc)
6622 {
6623
6624 KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
6625 ("synthetic parts were not attached"));
6626
6627 /* Detach the RNDIS first. */
6628 hn_rndis_detach(sc);
6629
6630 /* Detach NVS. */
6631 hn_nvs_detach(sc);
6632
6633 /* Detach all of the channels. */
6634 hn_detach_allchans(sc);
6635
6636 if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_rxbuf_gpadl != 0) {
6637 /*
6638 * Host is post-Win2016, disconnect RXBUF from primary channel here.
6639 */
6640 int error;
6641
6642 error = vmbus_chan_gpadl_disconnect(sc->hn_prichan,
6643 sc->hn_rxbuf_gpadl);
6644 if (error) {
6645 if_printf(sc->hn_ifp,
6646 "rxbuf gpadl disconn failed: %d\n", error);
6647 sc->hn_flags |= HN_FLAG_RXBUF_REF;
6648 }
6649 sc->hn_rxbuf_gpadl = 0;
6650 }
6651
6652 if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_chim_gpadl != 0) {
6653 /*
6654 * Host is post-Win2016, disconnect chimney sending buffer from
6655 * primary channel here.
6656 */
6657 int error;
6658
6659 error = vmbus_chan_gpadl_disconnect(sc->hn_prichan,
6660 sc->hn_chim_gpadl);
6661 if (error) {
6662 if_printf(sc->hn_ifp,
6663 "chim gpadl disconn failed: %d\n", error);
6664 sc->hn_flags |= HN_FLAG_CHIM_REF;
6665 }
6666 sc->hn_chim_gpadl = 0;
6667 }
6668 sc->hn_flags &= ~HN_FLAG_SYNTH_ATTACHED;
6669 }
6670
6671 static void
hn_set_ring_inuse(struct hn_softc * sc,int ring_cnt)6672 hn_set_ring_inuse(struct hn_softc *sc, int ring_cnt)
6673 {
6674 KASSERT(ring_cnt > 0 && ring_cnt <= sc->hn_rx_ring_cnt,
6675 ("invalid ring count %d", ring_cnt));
6676
6677 if (sc->hn_tx_ring_cnt > ring_cnt)
6678 sc->hn_tx_ring_inuse = ring_cnt;
6679 else
6680 sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt;
6681 sc->hn_rx_ring_inuse = ring_cnt;
6682
6683 #ifdef RSS
6684 if (sc->hn_rx_ring_inuse != rss_getnumbuckets()) {
6685 if_printf(sc->hn_ifp, "# of RX rings (%d) does not match "
6686 "# of RSS buckets (%d)\n", sc->hn_rx_ring_inuse,
6687 rss_getnumbuckets());
6688 }
6689 #endif
6690
6691 if (bootverbose) {
6692 if_printf(sc->hn_ifp, "%d TX ring, %d RX ring\n",
6693 sc->hn_tx_ring_inuse, sc->hn_rx_ring_inuse);
6694 }
6695 }
6696
6697 static void
hn_chan_drain(struct hn_softc * sc,struct vmbus_channel * chan)6698 hn_chan_drain(struct hn_softc *sc, struct vmbus_channel *chan)
6699 {
6700
6701 /*
6702 * NOTE:
6703 * The TX bufring will not be drained by the hypervisor,
6704 * if the primary channel is revoked.
6705 */
6706 while (!vmbus_chan_rx_empty(chan) ||
6707 (!vmbus_chan_is_revoked(sc->hn_prichan) &&
6708 !vmbus_chan_tx_empty(chan)))
6709 pause("waitch", 1);
6710 vmbus_chan_intr_drain(chan);
6711 }
6712
6713 static void
hn_disable_rx(struct hn_softc * sc)6714 hn_disable_rx(struct hn_softc *sc)
6715 {
6716
6717 /*
6718 * Disable RX by clearing RX filter forcefully.
6719 */
6720 sc->hn_rx_filter = NDIS_PACKET_TYPE_NONE;
6721 hn_rndis_set_rxfilter(sc, sc->hn_rx_filter); /* ignore error */
6722
6723 /*
6724 * Give RNDIS enough time to flush all pending data packets.
6725 */
6726 pause("waitrx", (200 * hz) / 1000);
6727 }
6728
6729 /*
6730 * NOTE:
6731 * RX/TX _must_ have been suspended/disabled, before this function
6732 * is called.
6733 */
6734 static void
hn_drain_rxtx(struct hn_softc * sc,int nchan)6735 hn_drain_rxtx(struct hn_softc *sc, int nchan)
6736 {
6737 struct vmbus_channel **subch = NULL;
6738 int nsubch;
6739
6740 /*
6741 * Drain RX/TX bufrings and interrupts.
6742 */
6743 nsubch = nchan - 1;
6744 if (nsubch > 0)
6745 subch = vmbus_subchan_get(sc->hn_prichan, nsubch);
6746
6747 if (subch != NULL) {
6748 int i;
6749
6750 for (i = 0; i < nsubch; ++i)
6751 hn_chan_drain(sc, subch[i]);
6752 }
6753 hn_chan_drain(sc, sc->hn_prichan);
6754
6755 if (subch != NULL)
6756 vmbus_subchan_rel(subch, nsubch);
6757 }
6758
6759 static void
hn_suspend_data(struct hn_softc * sc)6760 hn_suspend_data(struct hn_softc *sc)
6761 {
6762 struct hn_tx_ring *txr;
6763 int i;
6764
6765 HN_LOCK_ASSERT(sc);
6766
6767 /*
6768 * Suspend TX.
6769 */
6770 for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
6771 txr = &sc->hn_tx_ring[i];
6772
6773 mtx_lock(&txr->hn_tx_lock);
6774 txr->hn_suspended = 1;
6775 mtx_unlock(&txr->hn_tx_lock);
6776 /* No one is able send more packets now. */
6777
6778 /*
6779 * Wait for all pending sends to finish.
6780 *
6781 * NOTE:
6782 * We will _not_ receive all pending send-done, if the
6783 * primary channel is revoked.
6784 */
6785 while (hn_tx_ring_pending(txr) &&
6786 !vmbus_chan_is_revoked(sc->hn_prichan))
6787 pause("hnwtx", 1 /* 1 tick */);
6788 }
6789
6790 /*
6791 * Disable RX.
6792 */
6793 hn_disable_rx(sc);
6794
6795 /*
6796 * Drain RX/TX.
6797 */
6798 hn_drain_rxtx(sc, sc->hn_rx_ring_inuse);
6799
6800 /*
6801 * Drain any pending TX tasks.
6802 *
6803 * NOTE:
6804 * The above hn_drain_rxtx() can dispatch TX tasks, so the TX
6805 * tasks will have to be drained _after_ the above hn_drain_rxtx().
6806 */
6807 for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
6808 txr = &sc->hn_tx_ring[i];
6809
6810 taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task);
6811 taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task);
6812 }
6813 }
6814
6815 static void
hn_suspend_mgmt_taskfunc(void * xsc,int pending __unused)6816 hn_suspend_mgmt_taskfunc(void *xsc, int pending __unused)
6817 {
6818
6819 ((struct hn_softc *)xsc)->hn_mgmt_taskq = NULL;
6820 }
6821
6822 static void
hn_suspend_mgmt(struct hn_softc * sc)6823 hn_suspend_mgmt(struct hn_softc *sc)
6824 {
6825 struct task task;
6826
6827 HN_LOCK_ASSERT(sc);
6828
6829 /*
6830 * Make sure that hn_mgmt_taskq0 can nolonger be accessed
6831 * through hn_mgmt_taskq.
6832 */
6833 TASK_INIT(&task, 0, hn_suspend_mgmt_taskfunc, sc);
6834 vmbus_chan_run_task(sc->hn_prichan, &task);
6835
6836 /*
6837 * Make sure that all pending management tasks are completed.
6838 */
6839 taskqueue_drain(sc->hn_mgmt_taskq0, &sc->hn_netchg_init);
6840 taskqueue_drain_timeout(sc->hn_mgmt_taskq0, &sc->hn_netchg_status);
6841 taskqueue_drain_all(sc->hn_mgmt_taskq0);
6842 }
6843
6844 static void
hn_suspend(struct hn_softc * sc)6845 hn_suspend(struct hn_softc *sc)
6846 {
6847
6848 /* Disable polling. */
6849 hn_polling(sc, 0);
6850
6851 /*
6852 * If the non-transparent mode VF is activated, the synthetic
6853 * device is receiving packets, so the data path of the
6854 * synthetic device must be suspended.
6855 */
6856 if ((if_getdrvflags(sc->hn_ifp) & IFF_DRV_RUNNING) ||
6857 (sc->hn_flags & HN_FLAG_RXVF))
6858 hn_suspend_data(sc);
6859 hn_suspend_mgmt(sc);
6860 }
6861
6862 static void
hn_resume_tx(struct hn_softc * sc,int tx_ring_cnt)6863 hn_resume_tx(struct hn_softc *sc, int tx_ring_cnt)
6864 {
6865 int i;
6866
6867 KASSERT(tx_ring_cnt <= sc->hn_tx_ring_cnt,
6868 ("invalid TX ring count %d", tx_ring_cnt));
6869
6870 for (i = 0; i < tx_ring_cnt; ++i) {
6871 struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
6872
6873 mtx_lock(&txr->hn_tx_lock);
6874 txr->hn_suspended = 0;
6875 mtx_unlock(&txr->hn_tx_lock);
6876 }
6877 }
6878
6879 static void
hn_resume_data(struct hn_softc * sc)6880 hn_resume_data(struct hn_softc *sc)
6881 {
6882 int i;
6883
6884 HN_LOCK_ASSERT(sc);
6885
6886 /*
6887 * Re-enable RX.
6888 */
6889 hn_rxfilter_config(sc);
6890
6891 /*
6892 * Make sure to clear suspend status on "all" TX rings,
6893 * since hn_tx_ring_inuse can be changed after
6894 * hn_suspend_data().
6895 */
6896 hn_resume_tx(sc, sc->hn_tx_ring_cnt);
6897
6898 #ifdef HN_IFSTART_SUPPORT
6899 if (!hn_use_if_start)
6900 #endif
6901 {
6902 /*
6903 * Flush unused drbrs, since hn_tx_ring_inuse may be
6904 * reduced.
6905 */
6906 for (i = sc->hn_tx_ring_inuse; i < sc->hn_tx_ring_cnt; ++i)
6907 hn_tx_ring_qflush(&sc->hn_tx_ring[i]);
6908 }
6909
6910 /*
6911 * Kick start TX.
6912 */
6913 for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
6914 struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
6915
6916 /*
6917 * Use txeof task, so that any pending oactive can be
6918 * cleared properly.
6919 */
6920 taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
6921 }
6922 }
6923
6924 static void
hn_resume_mgmt(struct hn_softc * sc)6925 hn_resume_mgmt(struct hn_softc *sc)
6926 {
6927
6928 sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0;
6929
6930 /*
6931 * Kick off network change detection, if it was pending.
6932 * If no network change was pending, start link status
6933 * checks, which is more lightweight than network change
6934 * detection.
6935 */
6936 if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG)
6937 hn_change_network(sc);
6938 else
6939 hn_update_link_status(sc);
6940 }
6941
6942 static void
hn_resume(struct hn_softc * sc)6943 hn_resume(struct hn_softc *sc)
6944 {
6945
6946 /*
6947 * If the non-transparent mode VF is activated, the synthetic
6948 * device have to receive packets, so the data path of the
6949 * synthetic device must be resumed.
6950 */
6951 if ((if_getdrvflags(sc->hn_ifp) & IFF_DRV_RUNNING) ||
6952 (sc->hn_flags & HN_FLAG_RXVF))
6953 hn_resume_data(sc);
6954
6955 /*
6956 * Don't resume link status change if VF is attached/activated.
6957 * - In the non-transparent VF mode, the synthetic device marks
6958 * link down until the VF is deactivated; i.e. VF is down.
6959 * - In transparent VF mode, VF's media status is used until
6960 * the VF is detached.
6961 */
6962 if ((sc->hn_flags & HN_FLAG_RXVF) == 0 &&
6963 !(hn_xpnt_vf && sc->hn_vf_ifp != NULL))
6964 hn_resume_mgmt(sc);
6965
6966 /*
6967 * Re-enable polling if this interface is running and
6968 * the polling is requested.
6969 */
6970 if ((if_getdrvflags(sc->hn_ifp) & IFF_DRV_RUNNING) && sc->hn_pollhz > 0)
6971 hn_polling(sc, sc->hn_pollhz);
6972 }
6973
6974 static void
hn_rndis_rx_status(struct hn_softc * sc,const void * data,int dlen)6975 hn_rndis_rx_status(struct hn_softc *sc, const void *data, int dlen)
6976 {
6977 const struct rndis_status_msg *msg;
6978 int ofs;
6979
6980 if (dlen < sizeof(*msg)) {
6981 if_printf(sc->hn_ifp, "invalid RNDIS status\n");
6982 return;
6983 }
6984 msg = data;
6985
6986 switch (msg->rm_status) {
6987 case RNDIS_STATUS_MEDIA_CONNECT:
6988 case RNDIS_STATUS_MEDIA_DISCONNECT:
6989 hn_update_link_status(sc);
6990 break;
6991
6992 case RNDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG:
6993 case RNDIS_STATUS_LINK_SPEED_CHANGE:
6994 /* Not really useful; ignore. */
6995 break;
6996
6997 case RNDIS_STATUS_NETWORK_CHANGE:
6998 ofs = RNDIS_STBUFOFFSET_ABS(msg->rm_stbufoffset);
6999 if (dlen < ofs + msg->rm_stbuflen ||
7000 msg->rm_stbuflen < sizeof(uint32_t)) {
7001 if_printf(sc->hn_ifp, "network changed\n");
7002 } else {
7003 uint32_t change;
7004
7005 memcpy(&change, ((const uint8_t *)msg) + ofs,
7006 sizeof(change));
7007 if_printf(sc->hn_ifp, "network changed, change %u\n",
7008 change);
7009 }
7010 hn_change_network(sc);
7011 break;
7012
7013 default:
7014 if_printf(sc->hn_ifp, "unknown RNDIS status 0x%08x\n",
7015 msg->rm_status);
7016 break;
7017 }
7018 }
7019
7020 static int
hn_rndis_rxinfo(const void * info_data,int info_dlen,struct hn_rxinfo * info)7021 hn_rndis_rxinfo(const void *info_data, int info_dlen, struct hn_rxinfo *info)
7022 {
7023 const struct rndis_pktinfo *pi = info_data;
7024 uint32_t mask = 0;
7025
7026 while (info_dlen != 0) {
7027 const void *data;
7028 uint32_t dlen;
7029
7030 if (__predict_false(info_dlen < sizeof(*pi)))
7031 return (EINVAL);
7032 if (__predict_false(info_dlen < pi->rm_size))
7033 return (EINVAL);
7034 info_dlen -= pi->rm_size;
7035
7036 if (__predict_false(pi->rm_size & RNDIS_PKTINFO_SIZE_ALIGNMASK))
7037 return (EINVAL);
7038 if (__predict_false(pi->rm_size < pi->rm_pktinfooffset))
7039 return (EINVAL);
7040 dlen = pi->rm_size - pi->rm_pktinfooffset;
7041 data = pi->rm_data;
7042
7043 if (pi->rm_internal == 1) {
7044 switch (pi->rm_type) {
7045 case NDIS_PKTINFO_IT_PKTINFO_ID:
7046 if (__predict_false(dlen < NDIS_PKTINFOID_SZ))
7047 return (EINVAL);
7048 info->pktinfo_id =
7049 (const struct packet_info_id *)data;
7050 mask |= HN_RXINFO_PKTINFO_ID;
7051 break;
7052
7053 default:
7054 goto next;
7055 }
7056 } else {
7057 switch (pi->rm_type) {
7058 case NDIS_PKTINFO_TYPE_VLAN:
7059 if (__predict_false(dlen
7060 < NDIS_VLAN_INFO_SIZE))
7061 return (EINVAL);
7062 info->vlan_info = (const uint32_t *)data;
7063 mask |= HN_RXINFO_VLAN;
7064 break;
7065
7066 case NDIS_PKTINFO_TYPE_CSUM:
7067 if (__predict_false(dlen
7068 < NDIS_RXCSUM_INFO_SIZE))
7069 return (EINVAL);
7070 info->csum_info = (const uint32_t *)data;
7071 mask |= HN_RXINFO_CSUM;
7072 break;
7073
7074 case HN_NDIS_PKTINFO_TYPE_HASHVAL:
7075 if (__predict_false(dlen
7076 < HN_NDIS_HASH_VALUE_SIZE))
7077 return (EINVAL);
7078 info->hash_value = (const uint32_t *)data;
7079 mask |= HN_RXINFO_HASHVAL;
7080 break;
7081
7082 case HN_NDIS_PKTINFO_TYPE_HASHINF:
7083 if (__predict_false(dlen
7084 < HN_NDIS_HASH_INFO_SIZE))
7085 return (EINVAL);
7086 info->hash_info = (const uint32_t *)data;
7087 mask |= HN_RXINFO_HASHINF;
7088 break;
7089
7090 default:
7091 goto next;
7092 }
7093 }
7094
7095 if (mask == HN_RXINFO_ALL) {
7096 /* All found; done */
7097 break;
7098 }
7099 next:
7100 pi = (const struct rndis_pktinfo *)
7101 ((const uint8_t *)pi + pi->rm_size);
7102 }
7103
7104 /*
7105 * Final fixup.
7106 * - If there is no hash value, invalidate the hash info.
7107 */
7108 if ((mask & HN_RXINFO_HASHVAL) == 0)
7109 info->hash_info = NULL;
7110 return (0);
7111 }
7112
7113 static __inline bool
hn_rndis_check_overlap(int off,int len,int check_off,int check_len)7114 hn_rndis_check_overlap(int off, int len, int check_off, int check_len)
7115 {
7116
7117 if (off < check_off) {
7118 if (__predict_true(off + len <= check_off))
7119 return (false);
7120 } else if (off > check_off) {
7121 if (__predict_true(check_off + check_len <= off))
7122 return (false);
7123 }
7124 return (true);
7125 }
7126
7127 static __inline void
hn_rsc_add_data(struct hn_rx_ring * rxr,const void * data,uint32_t len,struct hn_rxinfo * info)7128 hn_rsc_add_data(struct hn_rx_ring *rxr, const void *data,
7129 uint32_t len, struct hn_rxinfo *info)
7130 {
7131 uint32_t cnt = rxr->rsc.cnt;
7132
7133 if (cnt) {
7134 rxr->rsc.pktlen += len;
7135 } else {
7136 rxr->rsc.vlan_info = info->vlan_info;
7137 rxr->rsc.csum_info = info->csum_info;
7138 rxr->rsc.hash_info = info->hash_info;
7139 rxr->rsc.hash_value = info->hash_value;
7140 rxr->rsc.pktlen = len;
7141 }
7142
7143 rxr->rsc.frag_data[cnt] = data;
7144 rxr->rsc.frag_len[cnt] = len;
7145 rxr->rsc.cnt++;
7146 }
7147
7148 static void
hn_rndis_rx_data(struct hn_rx_ring * rxr,const void * data,int dlen)7149 hn_rndis_rx_data(struct hn_rx_ring *rxr, const void *data, int dlen)
7150 {
7151 const struct rndis_packet_msg *pkt;
7152 struct hn_rxinfo info;
7153 int data_off, pktinfo_off, data_len, pktinfo_len;
7154 bool rsc_more= false;
7155
7156 /*
7157 * Check length.
7158 */
7159 if (__predict_false(dlen < sizeof(*pkt))) {
7160 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg\n");
7161 return;
7162 }
7163 pkt = data;
7164
7165 if (__predict_false(dlen < pkt->rm_len)) {
7166 if_printf(rxr->hn_ifp, "truncated RNDIS packet msg, "
7167 "dlen %d, msglen %u\n", dlen, pkt->rm_len);
7168 return;
7169 }
7170 if (__predict_false(pkt->rm_len <
7171 pkt->rm_datalen + pkt->rm_oobdatalen + pkt->rm_pktinfolen)) {
7172 if_printf(rxr->hn_ifp, "invalid RNDIS packet msglen, "
7173 "msglen %u, data %u, oob %u, pktinfo %u\n",
7174 pkt->rm_len, pkt->rm_datalen, pkt->rm_oobdatalen,
7175 pkt->rm_pktinfolen);
7176 return;
7177 }
7178 if (__predict_false(pkt->rm_datalen == 0)) {
7179 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, no data\n");
7180 return;
7181 }
7182
7183 /*
7184 * Check offests.
7185 */
7186 #define IS_OFFSET_INVALID(ofs) \
7187 ((ofs) < RNDIS_PACKET_MSG_OFFSET_MIN || \
7188 ((ofs) & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK))
7189
7190 /* XXX Hyper-V does not meet data offset alignment requirement */
7191 if (__predict_false(pkt->rm_dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN)) {
7192 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7193 "data offset %u\n", pkt->rm_dataoffset);
7194 return;
7195 }
7196 if (__predict_false(pkt->rm_oobdataoffset > 0 &&
7197 IS_OFFSET_INVALID(pkt->rm_oobdataoffset))) {
7198 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7199 "oob offset %u\n", pkt->rm_oobdataoffset);
7200 return;
7201 }
7202 if (__predict_true(pkt->rm_pktinfooffset > 0) &&
7203 __predict_false(IS_OFFSET_INVALID(pkt->rm_pktinfooffset))) {
7204 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7205 "pktinfo offset %u\n", pkt->rm_pktinfooffset);
7206 return;
7207 }
7208
7209 #undef IS_OFFSET_INVALID
7210
7211 data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_dataoffset);
7212 data_len = pkt->rm_datalen;
7213 pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_pktinfooffset);
7214 pktinfo_len = pkt->rm_pktinfolen;
7215
7216 /*
7217 * Check OOB coverage.
7218 */
7219 if (__predict_false(pkt->rm_oobdatalen != 0)) {
7220 int oob_off, oob_len;
7221
7222 if_printf(rxr->hn_ifp, "got oobdata\n");
7223 oob_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_oobdataoffset);
7224 oob_len = pkt->rm_oobdatalen;
7225
7226 if (__predict_false(oob_off + oob_len > pkt->rm_len)) {
7227 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7228 "oob overflow, msglen %u, oob abs %d len %d\n",
7229 pkt->rm_len, oob_off, oob_len);
7230 return;
7231 }
7232
7233 /*
7234 * Check against data.
7235 */
7236 if (hn_rndis_check_overlap(oob_off, oob_len,
7237 data_off, data_len)) {
7238 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7239 "oob overlaps data, oob abs %d len %d, "
7240 "data abs %d len %d\n",
7241 oob_off, oob_len, data_off, data_len);
7242 return;
7243 }
7244
7245 /*
7246 * Check against pktinfo.
7247 */
7248 if (pktinfo_len != 0 &&
7249 hn_rndis_check_overlap(oob_off, oob_len,
7250 pktinfo_off, pktinfo_len)) {
7251 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7252 "oob overlaps pktinfo, oob abs %d len %d, "
7253 "pktinfo abs %d len %d\n",
7254 oob_off, oob_len, pktinfo_off, pktinfo_len);
7255 return;
7256 }
7257 }
7258
7259 /*
7260 * Check per-packet-info coverage and find useful per-packet-info.
7261 */
7262 info.vlan_info = NULL;
7263 info.csum_info = NULL;
7264 info.hash_info = NULL;
7265 info.pktinfo_id = NULL;
7266
7267 if (__predict_true(pktinfo_len != 0)) {
7268 bool overlap;
7269 int error;
7270
7271 if (__predict_false(pktinfo_off + pktinfo_len > pkt->rm_len)) {
7272 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7273 "pktinfo overflow, msglen %u, "
7274 "pktinfo abs %d len %d\n",
7275 pkt->rm_len, pktinfo_off, pktinfo_len);
7276 return;
7277 }
7278
7279 /*
7280 * Check packet info coverage.
7281 */
7282 overlap = hn_rndis_check_overlap(pktinfo_off, pktinfo_len,
7283 data_off, data_len);
7284 if (__predict_false(overlap)) {
7285 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7286 "pktinfo overlap data, pktinfo abs %d len %d, "
7287 "data abs %d len %d\n",
7288 pktinfo_off, pktinfo_len, data_off, data_len);
7289 return;
7290 }
7291
7292 /*
7293 * Find useful per-packet-info.
7294 */
7295 error = hn_rndis_rxinfo(((const uint8_t *)pkt) + pktinfo_off,
7296 pktinfo_len, &info);
7297 if (__predict_false(error)) {
7298 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg "
7299 "pktinfo\n");
7300 return;
7301 }
7302 }
7303
7304 if (__predict_false(data_off + data_len > pkt->rm_len)) {
7305 if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
7306 "data overflow, msglen %u, data abs %d len %d\n",
7307 pkt->rm_len, data_off, data_len);
7308 return;
7309 }
7310
7311 /* Identify RSC fragments, drop invalid packets */
7312 if ((info.pktinfo_id != NULL) &&
7313 (info.pktinfo_id->flag & HN_NDIS_PKTINFO_SUBALLOC)) {
7314 if (info.pktinfo_id->flag & HN_NDIS_PKTINFO_1ST_FRAG) {
7315 rxr->rsc.cnt = 0;
7316 rxr->hn_rsc_pkts++;
7317 } else if (rxr->rsc.cnt == 0)
7318 goto drop;
7319
7320 rsc_more = true;
7321
7322 if (info.pktinfo_id->flag & HN_NDIS_PKTINFO_LAST_FRAG)
7323 rsc_more = false;
7324
7325 if (rsc_more && rxr->rsc.is_last)
7326 goto drop;
7327 } else {
7328 rxr->rsc.cnt = 0;
7329 }
7330
7331 if (__predict_false(rxr->rsc.cnt >= HN_NVS_RSC_MAX))
7332 goto drop;
7333
7334 /* Store data in per rx ring structure */
7335 hn_rsc_add_data(rxr,((const uint8_t *)pkt) + data_off,
7336 data_len, &info);
7337
7338 if (rsc_more)
7339 return;
7340
7341 hn_rxpkt(rxr);
7342 rxr->rsc.cnt = 0;
7343 return;
7344 drop:
7345 rxr->hn_rsc_drop++;
7346 return;
7347 }
7348
7349 static __inline void
hn_rndis_rxpkt(struct hn_rx_ring * rxr,const void * data,int dlen)7350 hn_rndis_rxpkt(struct hn_rx_ring *rxr, const void *data, int dlen)
7351 {
7352 const struct rndis_msghdr *hdr;
7353
7354 if (__predict_false(dlen < sizeof(*hdr))) {
7355 if_printf(rxr->hn_ifp, "invalid RNDIS msg\n");
7356 return;
7357 }
7358 hdr = data;
7359
7360 if (__predict_true(hdr->rm_type == REMOTE_NDIS_PACKET_MSG)) {
7361 /* Hot data path. */
7362 hn_rndis_rx_data(rxr, data, dlen);
7363 /* Done! */
7364 return;
7365 }
7366
7367 if (hdr->rm_type == REMOTE_NDIS_INDICATE_STATUS_MSG)
7368 hn_rndis_rx_status(if_getsoftc(rxr->hn_ifp), data, dlen);
7369 else
7370 hn_rndis_rx_ctrl(if_getsoftc(rxr->hn_ifp), data, dlen);
7371 }
7372
7373 static void
hn_nvs_handle_notify(struct hn_softc * sc,const struct vmbus_chanpkt_hdr * pkt)7374 hn_nvs_handle_notify(struct hn_softc *sc, const struct vmbus_chanpkt_hdr *pkt)
7375 {
7376 const struct hn_nvs_hdr *hdr;
7377
7378 if (VMBUS_CHANPKT_DATALEN(pkt) < sizeof(*hdr)) {
7379 if_printf(sc->hn_ifp, "invalid nvs notify\n");
7380 return;
7381 }
7382 hdr = VMBUS_CHANPKT_CONST_DATA(pkt);
7383
7384 if (hdr->nvs_type == HN_NVS_TYPE_TXTBL_NOTE) {
7385 /* Useless; ignore */
7386 return;
7387 }
7388 if_printf(sc->hn_ifp, "got notify, nvs type %u\n", hdr->nvs_type);
7389 }
7390
7391 static void
hn_nvs_handle_comp(struct hn_softc * sc,struct vmbus_channel * chan,const struct vmbus_chanpkt_hdr * pkt)7392 hn_nvs_handle_comp(struct hn_softc *sc, struct vmbus_channel *chan,
7393 const struct vmbus_chanpkt_hdr *pkt)
7394 {
7395 struct hn_nvs_sendctx *sndc;
7396
7397 sndc = (struct hn_nvs_sendctx *)(uintptr_t)pkt->cph_xactid;
7398 sndc->hn_cb(sndc, sc, chan, VMBUS_CHANPKT_CONST_DATA(pkt),
7399 VMBUS_CHANPKT_DATALEN(pkt));
7400 /*
7401 * NOTE:
7402 * 'sndc' CAN NOT be accessed anymore, since it can be freed by
7403 * its callback.
7404 */
7405 }
7406
7407 static void
hn_nvs_handle_rxbuf(struct hn_rx_ring * rxr,struct vmbus_channel * chan,const struct vmbus_chanpkt_hdr * pkthdr)7408 hn_nvs_handle_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan,
7409 const struct vmbus_chanpkt_hdr *pkthdr)
7410 {
7411 struct epoch_tracker et;
7412 const struct vmbus_chanpkt_rxbuf *pkt;
7413 const struct hn_nvs_hdr *nvs_hdr;
7414 int count, i, hlen;
7415
7416 if (__predict_false(VMBUS_CHANPKT_DATALEN(pkthdr) < sizeof(*nvs_hdr))) {
7417 if_printf(rxr->hn_ifp, "invalid nvs RNDIS\n");
7418 return;
7419 }
7420 nvs_hdr = VMBUS_CHANPKT_CONST_DATA(pkthdr);
7421
7422 /* Make sure that this is a RNDIS message. */
7423 if (__predict_false(nvs_hdr->nvs_type != HN_NVS_TYPE_RNDIS)) {
7424 if_printf(rxr->hn_ifp, "nvs type %u, not RNDIS\n",
7425 nvs_hdr->nvs_type);
7426 return;
7427 }
7428
7429 hlen = VMBUS_CHANPKT_GETLEN(pkthdr->cph_hlen);
7430 if (__predict_false(hlen < sizeof(*pkt))) {
7431 if_printf(rxr->hn_ifp, "invalid rxbuf chanpkt\n");
7432 return;
7433 }
7434 pkt = (const struct vmbus_chanpkt_rxbuf *)pkthdr;
7435
7436 if (__predict_false(pkt->cp_rxbuf_id != HN_NVS_RXBUF_SIG)) {
7437 if_printf(rxr->hn_ifp, "invalid rxbuf_id 0x%08x\n",
7438 pkt->cp_rxbuf_id);
7439 return;
7440 }
7441
7442 count = pkt->cp_rxbuf_cnt;
7443 if (__predict_false(hlen <
7444 __offsetof(struct vmbus_chanpkt_rxbuf, cp_rxbuf[count]))) {
7445 if_printf(rxr->hn_ifp, "invalid rxbuf_cnt %d\n", count);
7446 return;
7447 }
7448
7449 NET_EPOCH_ENTER(et);
7450 /* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */
7451 for (i = 0; i < count; ++i) {
7452 int ofs, len;
7453
7454 ofs = pkt->cp_rxbuf[i].rb_ofs;
7455 len = pkt->cp_rxbuf[i].rb_len;
7456 if (__predict_false(ofs + len > HN_RXBUF_SIZE)) {
7457 if_printf(rxr->hn_ifp, "%dth RNDIS msg overflow rxbuf, "
7458 "ofs %d, len %d\n", i, ofs, len);
7459 continue;
7460 }
7461
7462 rxr->rsc.is_last = (i == (count - 1));
7463 hn_rndis_rxpkt(rxr, rxr->hn_rxbuf + ofs, len);
7464 }
7465 NET_EPOCH_EXIT(et);
7466
7467 /*
7468 * Ack the consumed RXBUF associated w/ this channel packet,
7469 * so that this RXBUF can be recycled by the hypervisor.
7470 */
7471 hn_nvs_ack_rxbuf(rxr, chan, pkt->cp_hdr.cph_xactid);
7472 }
7473
7474 static void
hn_nvs_ack_rxbuf(struct hn_rx_ring * rxr,struct vmbus_channel * chan,uint64_t tid)7475 hn_nvs_ack_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan,
7476 uint64_t tid)
7477 {
7478 struct hn_nvs_rndis_ack ack;
7479 int retries, error;
7480
7481 ack.nvs_type = HN_NVS_TYPE_RNDIS_ACK;
7482 ack.nvs_status = HN_NVS_STATUS_OK;
7483
7484 retries = 0;
7485 again:
7486 error = vmbus_chan_send(chan, VMBUS_CHANPKT_TYPE_COMP,
7487 VMBUS_CHANPKT_FLAG_NONE, &ack, sizeof(ack), tid);
7488 if (__predict_false(error == EAGAIN)) {
7489 /*
7490 * NOTE:
7491 * This should _not_ happen in real world, since the
7492 * consumption of the TX bufring from the TX path is
7493 * controlled.
7494 */
7495 if (rxr->hn_ack_failed == 0)
7496 if_printf(rxr->hn_ifp, "RXBUF ack retry\n");
7497 rxr->hn_ack_failed++;
7498 retries++;
7499 if (retries < 10) {
7500 DELAY(100);
7501 goto again;
7502 }
7503 /* RXBUF leaks! */
7504 if_printf(rxr->hn_ifp, "RXBUF ack failed\n");
7505 }
7506 }
7507
7508 static void
hn_chan_callback(struct vmbus_channel * chan,void * xrxr)7509 hn_chan_callback(struct vmbus_channel *chan, void *xrxr)
7510 {
7511 struct hn_rx_ring *rxr = xrxr;
7512 struct hn_softc *sc = if_getsoftc(rxr->hn_ifp);
7513
7514 for (;;) {
7515 struct vmbus_chanpkt_hdr *pkt = rxr->hn_pktbuf;
7516 int error, pktlen;
7517
7518 pktlen = rxr->hn_pktbuf_len;
7519 error = vmbus_chan_recv_pkt(chan, pkt, &pktlen);
7520 if (__predict_false(error == ENOBUFS)) {
7521 void *nbuf;
7522 int nlen;
7523
7524 /*
7525 * Expand channel packet buffer.
7526 *
7527 * XXX
7528 * Use M_WAITOK here, since allocation failure
7529 * is fatal.
7530 */
7531 nlen = rxr->hn_pktbuf_len * 2;
7532 while (nlen < pktlen)
7533 nlen *= 2;
7534 nbuf = malloc(nlen, M_DEVBUF, M_WAITOK);
7535
7536 if_printf(rxr->hn_ifp, "expand pktbuf %d -> %d\n",
7537 rxr->hn_pktbuf_len, nlen);
7538
7539 free(rxr->hn_pktbuf, M_DEVBUF);
7540 rxr->hn_pktbuf = nbuf;
7541 rxr->hn_pktbuf_len = nlen;
7542 /* Retry! */
7543 continue;
7544 } else if (__predict_false(error == EAGAIN)) {
7545 /* No more channel packets; done! */
7546 break;
7547 }
7548 KASSERT(!error, ("vmbus_chan_recv_pkt failed: %d", error));
7549
7550 switch (pkt->cph_type) {
7551 case VMBUS_CHANPKT_TYPE_COMP:
7552 hn_nvs_handle_comp(sc, chan, pkt);
7553 break;
7554
7555 case VMBUS_CHANPKT_TYPE_RXBUF:
7556 hn_nvs_handle_rxbuf(rxr, chan, pkt);
7557 break;
7558
7559 case VMBUS_CHANPKT_TYPE_INBAND:
7560 hn_nvs_handle_notify(sc, pkt);
7561 break;
7562
7563 default:
7564 if_printf(rxr->hn_ifp, "unknown chan pkt %u\n",
7565 pkt->cph_type);
7566 break;
7567 }
7568 }
7569 hn_chan_rollup(rxr, rxr->hn_txr);
7570 }
7571
7572 static void
hn_sysinit(void * arg __unused)7573 hn_sysinit(void *arg __unused)
7574 {
7575 int i;
7576
7577 hn_udpcs_fixup = counter_u64_alloc(M_WAITOK);
7578
7579 #ifdef HN_IFSTART_SUPPORT
7580 /*
7581 * Don't use ifnet.if_start if transparent VF mode is requested;
7582 * mainly due to the IFF_DRV_OACTIVE flag.
7583 */
7584 if (hn_xpnt_vf && hn_use_if_start) {
7585 hn_use_if_start = 0;
7586 printf("hn: transparent VF mode, if_transmit will be used, "
7587 "instead of if_start\n");
7588 }
7589 #endif
7590 if (hn_xpnt_vf_attwait < HN_XPNT_VF_ATTWAIT_MIN) {
7591 printf("hn: invalid transparent VF attach routing "
7592 "wait timeout %d, reset to %d\n",
7593 hn_xpnt_vf_attwait, HN_XPNT_VF_ATTWAIT_MIN);
7594 hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN;
7595 }
7596
7597 /*
7598 * Initialize VF map.
7599 */
7600 rm_init_flags(&hn_vfmap_lock, "hn_vfmap", RM_SLEEPABLE);
7601 hn_vfmap_size = HN_VFMAP_SIZE_DEF;
7602 hn_vfmap = malloc(sizeof(if_t) * hn_vfmap_size, M_DEVBUF,
7603 M_WAITOK | M_ZERO);
7604
7605 /*
7606 * Fix the # of TX taskqueues.
7607 */
7608 if (hn_tx_taskq_cnt <= 0)
7609 hn_tx_taskq_cnt = 1;
7610 else if (hn_tx_taskq_cnt > mp_ncpus)
7611 hn_tx_taskq_cnt = mp_ncpus;
7612
7613 /*
7614 * Fix the TX taskqueue mode.
7615 */
7616 switch (hn_tx_taskq_mode) {
7617 case HN_TX_TASKQ_M_INDEP:
7618 case HN_TX_TASKQ_M_GLOBAL:
7619 case HN_TX_TASKQ_M_EVTTQ:
7620 break;
7621 default:
7622 hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP;
7623 break;
7624 }
7625
7626 if (vm_guest != VM_GUEST_HV)
7627 return;
7628
7629 if (hn_tx_taskq_mode != HN_TX_TASKQ_M_GLOBAL)
7630 return;
7631
7632 hn_tx_taskque = malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *),
7633 M_DEVBUF, M_WAITOK);
7634 for (i = 0; i < hn_tx_taskq_cnt; ++i) {
7635 hn_tx_taskque[i] = taskqueue_create("hn_tx", M_WAITOK,
7636 taskqueue_thread_enqueue, &hn_tx_taskque[i]);
7637 taskqueue_start_threads(&hn_tx_taskque[i], 1, PI_NET,
7638 "hn tx%d", i);
7639 }
7640 }
7641 SYSINIT(hn_sysinit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysinit, NULL);
7642
7643 static void
hn_sysuninit(void * arg __unused)7644 hn_sysuninit(void *arg __unused)
7645 {
7646
7647 if (hn_tx_taskque != NULL) {
7648 int i;
7649
7650 for (i = 0; i < hn_tx_taskq_cnt; ++i)
7651 taskqueue_free(hn_tx_taskque[i]);
7652 free(hn_tx_taskque, M_DEVBUF);
7653 }
7654
7655 if (hn_vfmap != NULL)
7656 free(hn_vfmap, M_DEVBUF);
7657 rm_destroy(&hn_vfmap_lock);
7658
7659 counter_u64_free(hn_udpcs_fixup);
7660 }
7661 SYSUNINIT(hn_sysuninit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysuninit, NULL);
7662