1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a fast scheduler.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstrEmitter.h"
14 #include "SDNodeDbgValue.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/SchedulerRegistry.h"
19 #include "llvm/CodeGen/SelectionDAGISel.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27
28 #define DEBUG_TYPE "pre-RA-sched"
29
30 STATISTIC(NumUnfolds, "Number of nodes unfolded");
31 STATISTIC(NumDups, "Number of duplicated nodes");
32 STATISTIC(NumPRCopies, "Number of physical copies");
33
34 static RegisterScheduler
35 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
36 createFastDAGScheduler);
37 static RegisterScheduler
38 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
39 createDAGLinearizer);
40
41
42 namespace {
43 /// FastPriorityQueue - A degenerate priority queue that considers
44 /// all nodes to have the same priority.
45 ///
46 struct FastPriorityQueue {
47 SmallVector<SUnit *, 16> Queue;
48
empty__anon168f12fc0111::FastPriorityQueue49 bool empty() const { return Queue.empty(); }
50
push__anon168f12fc0111::FastPriorityQueue51 void push(SUnit *U) {
52 Queue.push_back(U);
53 }
54
pop__anon168f12fc0111::FastPriorityQueue55 SUnit *pop() {
56 if (empty()) return nullptr;
57 return Queue.pop_back_val();
58 }
59 };
60
61 //===----------------------------------------------------------------------===//
62 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
63 ///
64 class ScheduleDAGFast : public ScheduleDAGSDNodes {
65 private:
66 /// AvailableQueue - The priority queue to use for the available SUnits.
67 FastPriorityQueue AvailableQueue;
68
69 /// LiveRegDefs - A set of physical registers and their definition
70 /// that are "live". These nodes must be scheduled before any other nodes that
71 /// modifies the registers can be scheduled.
72 unsigned NumLiveRegs = 0u;
73 std::vector<SUnit*> LiveRegDefs;
74 std::vector<unsigned> LiveRegCycles;
75
76 public:
ScheduleDAGFast(MachineFunction & mf)77 ScheduleDAGFast(MachineFunction &mf)
78 : ScheduleDAGSDNodes(mf) {}
79
80 void Schedule() override;
81
82 /// AddPred - adds a predecessor edge to SUnit SU.
83 /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)84 void AddPred(SUnit *SU, const SDep &D) {
85 SU->addPred(D);
86 }
87
88 /// RemovePred - removes a predecessor edge from SUnit SU.
89 /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)90 void RemovePred(SUnit *SU, const SDep &D) {
91 SU->removePred(D);
92 }
93
94 private:
95 void ReleasePred(SUnit *SU, SDep *PredEdge);
96 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
97 void ScheduleNodeBottomUp(SUnit*, unsigned);
98 SUnit *CopyAndMoveSuccessors(SUnit*);
99 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
100 const TargetRegisterClass*,
101 const TargetRegisterClass*,
102 SmallVectorImpl<SUnit*>&);
103 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
104 void ListScheduleBottomUp();
105
106 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
forceUnitLatencies() const107 bool forceUnitLatencies() const override { return true; }
108 };
109 } // end anonymous namespace
110
111
112 /// Schedule - Schedule the DAG using list scheduling.
Schedule()113 void ScheduleDAGFast::Schedule() {
114 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
115
116 NumLiveRegs = 0;
117 LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
118 LiveRegCycles.resize(TRI->getNumRegs(), 0);
119
120 // Build the scheduling graph.
121 BuildSchedGraph(nullptr);
122
123 LLVM_DEBUG(dump());
124
125 // Execute the actual scheduling loop.
126 ListScheduleBottomUp();
127 }
128
129 //===----------------------------------------------------------------------===//
130 // Bottom-Up Scheduling
131 //===----------------------------------------------------------------------===//
132
133 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
134 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)135 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
136 SUnit *PredSU = PredEdge->getSUnit();
137
138 #ifndef NDEBUG
139 if (PredSU->NumSuccsLeft == 0) {
140 dbgs() << "*** Scheduling failed! ***\n";
141 dumpNode(*PredSU);
142 dbgs() << " has been released too many times!\n";
143 llvm_unreachable(nullptr);
144 }
145 #endif
146 --PredSU->NumSuccsLeft;
147
148 // If all the node's successors are scheduled, this node is ready
149 // to be scheduled. Ignore the special EntrySU node.
150 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
151 PredSU->isAvailable = true;
152 AvailableQueue.push(PredSU);
153 }
154 }
155
ReleasePredecessors(SUnit * SU,unsigned CurCycle)156 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
157 // Bottom up: release predecessors
158 for (SDep &Pred : SU->Preds) {
159 ReleasePred(SU, &Pred);
160 if (Pred.isAssignedRegDep()) {
161 // This is a physical register dependency and it's impossible or
162 // expensive to copy the register. Make sure nothing that can
163 // clobber the register is scheduled between the predecessor and
164 // this node.
165 if (!LiveRegDefs[Pred.getReg()]) {
166 ++NumLiveRegs;
167 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
168 LiveRegCycles[Pred.getReg()] = CurCycle;
169 }
170 }
171 }
172 }
173
174 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
175 /// count of its predecessors. If a predecessor pending count is zero, add it to
176 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)177 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
178 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
179 LLVM_DEBUG(dumpNode(*SU));
180
181 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
182 SU->setHeightToAtLeast(CurCycle);
183 Sequence.push_back(SU);
184
185 ReleasePredecessors(SU, CurCycle);
186
187 // Release all the implicit physical register defs that are live.
188 for (SDep &Succ : SU->Succs) {
189 if (Succ.isAssignedRegDep()) {
190 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
191 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
192 assert(LiveRegDefs[Succ.getReg()] == SU &&
193 "Physical register dependency violated?");
194 --NumLiveRegs;
195 LiveRegDefs[Succ.getReg()] = nullptr;
196 LiveRegCycles[Succ.getReg()] = 0;
197 }
198 }
199 }
200
201 SU->isScheduled = true;
202 }
203
204 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
205 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)206 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
207 if (SU->getNode()->getGluedNode())
208 return nullptr;
209
210 SDNode *N = SU->getNode();
211 if (!N)
212 return nullptr;
213
214 SUnit *NewSU;
215 bool TryUnfold = false;
216 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
217 MVT VT = N->getSimpleValueType(i);
218 if (VT == MVT::Glue)
219 return nullptr;
220 else if (VT == MVT::Other)
221 TryUnfold = true;
222 }
223 for (const SDValue &Op : N->op_values()) {
224 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
225 if (VT == MVT::Glue)
226 return nullptr;
227 }
228
229 if (TryUnfold) {
230 SmallVector<SDNode*, 2> NewNodes;
231 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
232 return nullptr;
233
234 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
235 assert(NewNodes.size() == 2 && "Expected a load folding node!");
236
237 N = NewNodes[1];
238 SDNode *LoadNode = NewNodes[0];
239 unsigned NumVals = N->getNumValues();
240 unsigned OldNumVals = SU->getNode()->getNumValues();
241 for (unsigned i = 0; i != NumVals; ++i)
242 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
243 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
244 SDValue(LoadNode, 1));
245
246 SUnit *NewSU = newSUnit(N);
247 assert(N->getNodeId() == -1 && "Node already inserted!");
248 N->setNodeId(NewSU->NodeNum);
249
250 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
251 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
252 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
253 NewSU->isTwoAddress = true;
254 break;
255 }
256 }
257 if (MCID.isCommutable())
258 NewSU->isCommutable = true;
259
260 // LoadNode may already exist. This can happen when there is another
261 // load from the same location and producing the same type of value
262 // but it has different alignment or volatileness.
263 bool isNewLoad = true;
264 SUnit *LoadSU;
265 if (LoadNode->getNodeId() != -1) {
266 LoadSU = &SUnits[LoadNode->getNodeId()];
267 isNewLoad = false;
268 } else {
269 LoadSU = newSUnit(LoadNode);
270 LoadNode->setNodeId(LoadSU->NodeNum);
271 }
272
273 SDep ChainPred;
274 SmallVector<SDep, 4> ChainSuccs;
275 SmallVector<SDep, 4> LoadPreds;
276 SmallVector<SDep, 4> NodePreds;
277 SmallVector<SDep, 4> NodeSuccs;
278 for (SDep &Pred : SU->Preds) {
279 if (Pred.isCtrl())
280 ChainPred = Pred;
281 else if (Pred.getSUnit()->getNode() &&
282 Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
283 LoadPreds.push_back(Pred);
284 else
285 NodePreds.push_back(Pred);
286 }
287 for (SDep &Succ : SU->Succs) {
288 if (Succ.isCtrl())
289 ChainSuccs.push_back(Succ);
290 else
291 NodeSuccs.push_back(Succ);
292 }
293
294 if (ChainPred.getSUnit()) {
295 RemovePred(SU, ChainPred);
296 if (isNewLoad)
297 AddPred(LoadSU, ChainPred);
298 }
299 for (const SDep &Pred : LoadPreds) {
300 RemovePred(SU, Pred);
301 if (isNewLoad) {
302 AddPred(LoadSU, Pred);
303 }
304 }
305 for (const SDep &Pred : NodePreds) {
306 RemovePred(SU, Pred);
307 AddPred(NewSU, Pred);
308 }
309 for (SDep D : NodeSuccs) {
310 SUnit *SuccDep = D.getSUnit();
311 D.setSUnit(SU);
312 RemovePred(SuccDep, D);
313 D.setSUnit(NewSU);
314 AddPred(SuccDep, D);
315 }
316 for (SDep D : ChainSuccs) {
317 SUnit *SuccDep = D.getSUnit();
318 D.setSUnit(SU);
319 RemovePred(SuccDep, D);
320 if (isNewLoad) {
321 D.setSUnit(LoadSU);
322 AddPred(SuccDep, D);
323 }
324 }
325 if (isNewLoad) {
326 SDep D(LoadSU, SDep::Barrier);
327 D.setLatency(LoadSU->Latency);
328 AddPred(NewSU, D);
329 }
330
331 ++NumUnfolds;
332
333 if (NewSU->NumSuccsLeft == 0) {
334 NewSU->isAvailable = true;
335 return NewSU;
336 }
337 SU = NewSU;
338 }
339
340 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
341 NewSU = Clone(SU);
342
343 // New SUnit has the exact same predecessors.
344 for (SDep &Pred : SU->Preds)
345 if (!Pred.isArtificial())
346 AddPred(NewSU, Pred);
347
348 // Only copy scheduled successors. Cut them from old node's successor
349 // list and move them over.
350 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
351 for (SDep &Succ : SU->Succs) {
352 if (Succ.isArtificial())
353 continue;
354 SUnit *SuccSU = Succ.getSUnit();
355 if (SuccSU->isScheduled) {
356 SDep D = Succ;
357 D.setSUnit(NewSU);
358 AddPred(SuccSU, D);
359 D.setSUnit(SU);
360 DelDeps.push_back(std::make_pair(SuccSU, D));
361 }
362 }
363 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
364 RemovePred(DelDeps[i].first, DelDeps[i].second);
365
366 ++NumDups;
367 return NewSU;
368 }
369
370 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
371 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)372 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
373 const TargetRegisterClass *DestRC,
374 const TargetRegisterClass *SrcRC,
375 SmallVectorImpl<SUnit*> &Copies) {
376 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
377 CopyFromSU->CopySrcRC = SrcRC;
378 CopyFromSU->CopyDstRC = DestRC;
379
380 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
381 CopyToSU->CopySrcRC = DestRC;
382 CopyToSU->CopyDstRC = SrcRC;
383
384 // Only copy scheduled successors. Cut them from old node's successor
385 // list and move them over.
386 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
387 for (SDep &Succ : SU->Succs) {
388 if (Succ.isArtificial())
389 continue;
390 SUnit *SuccSU = Succ.getSUnit();
391 if (SuccSU->isScheduled) {
392 SDep D = Succ;
393 D.setSUnit(CopyToSU);
394 AddPred(SuccSU, D);
395 DelDeps.push_back(std::make_pair(SuccSU, Succ));
396 }
397 }
398 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
399 RemovePred(DelDeps[i].first, DelDeps[i].second);
400 }
401 SDep FromDep(SU, SDep::Data, Reg);
402 FromDep.setLatency(SU->Latency);
403 AddPred(CopyFromSU, FromDep);
404 SDep ToDep(CopyFromSU, SDep::Data, 0);
405 ToDep.setLatency(CopyFromSU->Latency);
406 AddPred(CopyToSU, ToDep);
407
408 Copies.push_back(CopyFromSU);
409 Copies.push_back(CopyToSU);
410
411 ++NumPRCopies;
412 }
413
414 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
415 /// definition of the specified node.
416 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)417 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
418 const TargetInstrInfo *TII) {
419 unsigned NumRes;
420 if (N->getOpcode() == ISD::CopyFromReg) {
421 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
422 NumRes = 1;
423 } else {
424 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
425 assert(!MCID.implicit_defs().empty() &&
426 "Physical reg def must be in implicit def list!");
427 NumRes = MCID.getNumDefs();
428 for (MCPhysReg ImpDef : MCID.implicit_defs()) {
429 if (Reg == ImpDef)
430 break;
431 ++NumRes;
432 }
433 }
434 return N->getSimpleValueType(NumRes);
435 }
436
437 /// CheckForLiveRegDef - Return true and update live register vector if the
438 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI,const SDNode * Node=nullptr)439 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
440 std::vector<SUnit *> &LiveRegDefs,
441 SmallSet<unsigned, 4> &RegAdded,
442 SmallVectorImpl<unsigned> &LRegs,
443 const TargetRegisterInfo *TRI,
444 const SDNode *Node = nullptr) {
445 bool Added = false;
446 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
447 // Check if Ref is live.
448 if (!LiveRegDefs[*AI])
449 continue;
450
451 // Allow multiple uses of the same def.
452 if (LiveRegDefs[*AI] == SU)
453 continue;
454
455 // Allow multiple uses of same def
456 if (Node && LiveRegDefs[*AI]->getNode() == Node)
457 continue;
458
459 // Add Reg to the set of interfering live regs.
460 if (RegAdded.insert(*AI).second) {
461 LRegs.push_back(*AI);
462 Added = true;
463 }
464 }
465 return Added;
466 }
467
468 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
469 /// scheduling of the given node to satisfy live physical register dependencies.
470 /// If the specific node is the last one that's available to schedule, do
471 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)472 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
473 SmallVectorImpl<unsigned> &LRegs){
474 if (NumLiveRegs == 0)
475 return false;
476
477 SmallSet<unsigned, 4> RegAdded;
478 // If this node would clobber any "live" register, then it's not ready.
479 for (SDep &Pred : SU->Preds) {
480 if (Pred.isAssignedRegDep()) {
481 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
482 RegAdded, LRegs, TRI);
483 }
484 }
485
486 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
487 if (Node->getOpcode() == ISD::INLINEASM ||
488 Node->getOpcode() == ISD::INLINEASM_BR) {
489 // Inline asm can clobber physical defs.
490 unsigned NumOps = Node->getNumOperands();
491 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
492 --NumOps; // Ignore the glue operand.
493
494 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
495 unsigned Flags = Node->getConstantOperandVal(i);
496 const InlineAsm::Flag F(Flags);
497 unsigned NumVals = F.getNumOperandRegisters();
498
499 ++i; // Skip the ID value.
500 if (F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
501 F.isClobberKind()) {
502 // Check for def of register or earlyclobber register.
503 for (; NumVals; --NumVals, ++i) {
504 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
505 if (Register::isPhysicalRegister(Reg))
506 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
507 }
508 } else
509 i += NumVals;
510 }
511 continue;
512 }
513
514 if (Node->getOpcode() == ISD::CopyToReg) {
515 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
516 if (Reg.isPhysical()) {
517 SDNode *SrcNode = Node->getOperand(2).getNode();
518 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI, SrcNode);
519 }
520 }
521
522 if (!Node->isMachineOpcode())
523 continue;
524 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
525 for (MCPhysReg Reg : MCID.implicit_defs())
526 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
527 }
528 return !LRegs.empty();
529 }
530
531
532 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
533 /// schedulers.
ListScheduleBottomUp()534 void ScheduleDAGFast::ListScheduleBottomUp() {
535 unsigned CurCycle = 0;
536
537 // Release any predecessors of the special Exit node.
538 ReleasePredecessors(&ExitSU, CurCycle);
539
540 // Add root to Available queue.
541 if (!SUnits.empty()) {
542 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
543 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
544 RootSU->isAvailable = true;
545 AvailableQueue.push(RootSU);
546 }
547
548 // While Available queue is not empty, grab the node with the highest
549 // priority. If it is not ready put it back. Schedule the node.
550 SmallVector<SUnit*, 4> NotReady;
551 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
552 Sequence.reserve(SUnits.size());
553 while (!AvailableQueue.empty()) {
554 bool Delayed = false;
555 LRegsMap.clear();
556 SUnit *CurSU = AvailableQueue.pop();
557 while (CurSU) {
558 SmallVector<unsigned, 4> LRegs;
559 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
560 break;
561 Delayed = true;
562 LRegsMap.insert(std::make_pair(CurSU, LRegs));
563
564 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
565 NotReady.push_back(CurSU);
566 CurSU = AvailableQueue.pop();
567 }
568
569 // All candidates are delayed due to live physical reg dependencies.
570 // Try code duplication or inserting cross class copies
571 // to resolve it.
572 if (Delayed && !CurSU) {
573 if (!CurSU) {
574 // Try duplicating the nodes that produces these
575 // "expensive to copy" values to break the dependency. In case even
576 // that doesn't work, insert cross class copies.
577 SUnit *TrySU = NotReady[0];
578 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
579 assert(LRegs.size() == 1 && "Can't handle this yet!");
580 unsigned Reg = LRegs[0];
581 SUnit *LRDef = LiveRegDefs[Reg];
582 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
583 const TargetRegisterClass *RC =
584 TRI->getMinimalPhysRegClass(Reg, VT);
585 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
586
587 // If cross copy register class is the same as RC, then it must be
588 // possible copy the value directly. Do not try duplicate the def.
589 // If cross copy register class is not the same as RC, then it's
590 // possible to copy the value but it require cross register class copies
591 // and it is expensive.
592 // If cross copy register class is null, then it's not possible to copy
593 // the value at all.
594 SUnit *NewDef = nullptr;
595 if (DestRC != RC) {
596 NewDef = CopyAndMoveSuccessors(LRDef);
597 if (!DestRC && !NewDef)
598 report_fatal_error("Can't handle live physical "
599 "register dependency!");
600 }
601 if (!NewDef) {
602 // Issue copies, these can be expensive cross register class copies.
603 SmallVector<SUnit*, 2> Copies;
604 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
605 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
606 << " to SU #" << Copies.front()->NodeNum << "\n");
607 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
608 NewDef = Copies.back();
609 }
610
611 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
612 << " to SU #" << TrySU->NodeNum << "\n");
613 LiveRegDefs[Reg] = NewDef;
614 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
615 TrySU->isAvailable = false;
616 CurSU = NewDef;
617 }
618
619 if (!CurSU) {
620 llvm_unreachable("Unable to resolve live physical register dependencies!");
621 }
622 }
623
624 // Add the nodes that aren't ready back onto the available list.
625 for (SUnit *SU : NotReady) {
626 SU->isPending = false;
627 // May no longer be available due to backtracking.
628 if (SU->isAvailable)
629 AvailableQueue.push(SU);
630 }
631 NotReady.clear();
632
633 if (CurSU)
634 ScheduleNodeBottomUp(CurSU, CurCycle);
635 ++CurCycle;
636 }
637
638 // Reverse the order since it is bottom up.
639 std::reverse(Sequence.begin(), Sequence.end());
640
641 #ifndef NDEBUG
642 VerifyScheduledSequence(/*isBottomUp=*/true);
643 #endif
644 }
645
646
647 namespace {
648 //===----------------------------------------------------------------------===//
649 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
650 // DAG in topological order.
651 // IMPORTANT: this may not work for targets with phyreg dependency.
652 //
653 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
654 public:
ScheduleDAGLinearize(MachineFunction & mf)655 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
656
657 void Schedule() override;
658
659 MachineBasicBlock *
660 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
661
662 private:
663 std::vector<SDNode*> Sequence;
664 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
665
666 void ScheduleNode(SDNode *N);
667 };
668 } // end anonymous namespace
669
ScheduleNode(SDNode * N)670 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
671 if (N->getNodeId() != 0)
672 llvm_unreachable(nullptr);
673
674 if (!N->isMachineOpcode() &&
675 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
676 // These nodes do not need to be translated into MIs.
677 return;
678
679 LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
680 LLVM_DEBUG(N->dump(DAG));
681 Sequence.push_back(N);
682
683 unsigned NumOps = N->getNumOperands();
684 if (unsigned NumLeft = NumOps) {
685 SDNode *GluedOpN = nullptr;
686 do {
687 const SDValue &Op = N->getOperand(NumLeft-1);
688 SDNode *OpN = Op.getNode();
689
690 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
691 // Schedule glue operand right above N.
692 GluedOpN = OpN;
693 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
694 OpN->setNodeId(0);
695 ScheduleNode(OpN);
696 continue;
697 }
698
699 if (OpN == GluedOpN)
700 // Glue operand is already scheduled.
701 continue;
702
703 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
704 if (DI != GluedMap.end() && DI->second != N)
705 // Users of glues are counted against the glued users.
706 OpN = DI->second;
707
708 unsigned Degree = OpN->getNodeId();
709 assert(Degree > 0 && "Predecessor over-released!");
710 OpN->setNodeId(--Degree);
711 if (Degree == 0)
712 ScheduleNode(OpN);
713 } while (--NumLeft);
714 }
715 }
716
717 /// findGluedUser - Find the representative use of a glue value by walking
718 /// the use chain.
findGluedUser(SDNode * N)719 static SDNode *findGluedUser(SDNode *N) {
720 while (SDNode *Glued = N->getGluedUser())
721 N = Glued;
722 return N;
723 }
724
Schedule()725 void ScheduleDAGLinearize::Schedule() {
726 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
727
728 SmallVector<SDNode*, 8> Glues;
729 unsigned DAGSize = 0;
730 for (SDNode &Node : DAG->allnodes()) {
731 SDNode *N = &Node;
732
733 // Use node id to record degree.
734 unsigned Degree = N->use_size();
735 N->setNodeId(Degree);
736 unsigned NumVals = N->getNumValues();
737 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
738 N->hasAnyUseOfValue(NumVals-1)) {
739 SDNode *User = findGluedUser(N);
740 if (User) {
741 Glues.push_back(N);
742 GluedMap.insert(std::make_pair(N, User));
743 }
744 }
745
746 if (N->isMachineOpcode() ||
747 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
748 ++DAGSize;
749 }
750
751 for (SDNode *Glue : Glues) {
752 SDNode *GUser = GluedMap[Glue];
753 unsigned Degree = Glue->getNodeId();
754 unsigned UDegree = GUser->getNodeId();
755
756 // Glue user must be scheduled together with the glue operand. So other
757 // users of the glue operand must be treated as its users.
758 SDNode *ImmGUser = Glue->getGluedUser();
759 for (const SDNode *U : Glue->uses())
760 if (U == ImmGUser)
761 --Degree;
762 GUser->setNodeId(UDegree + Degree);
763 Glue->setNodeId(1);
764 }
765
766 Sequence.reserve(DAGSize);
767 ScheduleNode(DAG->getRoot().getNode());
768 }
769
770 MachineBasicBlock*
EmitSchedule(MachineBasicBlock::iterator & InsertPos)771 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
772 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
773 DenseMap<SDValue, Register> VRBaseMap;
774
775 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
776
777 unsigned NumNodes = Sequence.size();
778 MachineBasicBlock *BB = Emitter.getBlock();
779 for (unsigned i = 0; i != NumNodes; ++i) {
780 SDNode *N = Sequence[NumNodes-i-1];
781 LLVM_DEBUG(N->dump(DAG));
782 Emitter.EmitNode(N, false, false, VRBaseMap);
783
784 // Emit any debug values associated with the node.
785 if (N->getHasDebugValue()) {
786 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
787 for (auto *DV : DAG->GetDbgValues(N)) {
788 if (!DV->isEmitted())
789 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
790 BB->insert(InsertPos, DbgMI);
791 }
792 }
793 }
794
795 LLVM_DEBUG(dbgs() << '\n');
796
797 InsertPos = Emitter.getInsertPos();
798 return Emitter.getBlock();
799 }
800
801 //===----------------------------------------------------------------------===//
802 // Public Constructor Functions
803 //===----------------------------------------------------------------------===//
804
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOptLevel)805 llvm::ScheduleDAGSDNodes *llvm::createFastDAGScheduler(SelectionDAGISel *IS,
806 CodeGenOptLevel) {
807 return new ScheduleDAGFast(*IS->MF);
808 }
809
createDAGLinearizer(SelectionDAGISel * IS,CodeGenOptLevel)810 llvm::ScheduleDAGSDNodes *llvm::createDAGLinearizer(SelectionDAGISel *IS,
811 CodeGenOptLevel) {
812 return new ScheduleDAGLinearize(*IS->MF);
813 }
814