xref: /freebsd/contrib/llvm-project/lldb/source/Core/ValueObject.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- ValueObject.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Core/ValueObject.h"
10 
11 #include "lldb/Core/Address.h"
12 #include "lldb/Core/Declaration.h"
13 #include "lldb/Core/Module.h"
14 #include "lldb/Core/ValueObjectCast.h"
15 #include "lldb/Core/ValueObjectChild.h"
16 #include "lldb/Core/ValueObjectConstResult.h"
17 #include "lldb/Core/ValueObjectDynamicValue.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectSyntheticFilter.h"
20 #include "lldb/Core/ValueObjectVTable.h"
21 #include "lldb/DataFormatters/DataVisualization.h"
22 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
23 #include "lldb/DataFormatters/FormatManager.h"
24 #include "lldb/DataFormatters/StringPrinter.h"
25 #include "lldb/DataFormatters/TypeFormat.h"
26 #include "lldb/DataFormatters/TypeSummary.h"
27 #include "lldb/DataFormatters/ValueObjectPrinter.h"
28 #include "lldb/Expression/ExpressionVariable.h"
29 #include "lldb/Host/Config.h"
30 #include "lldb/Symbol/CompileUnit.h"
31 #include "lldb/Symbol/CompilerType.h"
32 #include "lldb/Symbol/SymbolContext.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/Variable.h"
35 #include "lldb/Target/ExecutionContext.h"
36 #include "lldb/Target/Language.h"
37 #include "lldb/Target/LanguageRuntime.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/StackFrame.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Target/Thread.h"
42 #include "lldb/Target/ThreadList.h"
43 #include "lldb/Utility/DataBuffer.h"
44 #include "lldb/Utility/DataBufferHeap.h"
45 #include "lldb/Utility/Flags.h"
46 #include "lldb/Utility/LLDBLog.h"
47 #include "lldb/Utility/Log.h"
48 #include "lldb/Utility/Scalar.h"
49 #include "lldb/Utility/Stream.h"
50 #include "lldb/Utility/StreamString.h"
51 #include "lldb/lldb-private-types.h"
52 
53 #include "llvm/Support/Compiler.h"
54 
55 #include <algorithm>
56 #include <cstdint>
57 #include <cstdlib>
58 #include <memory>
59 #include <optional>
60 #include <tuple>
61 
62 #include <cassert>
63 #include <cinttypes>
64 #include <cstdio>
65 #include <cstring>
66 
67 #include <lldb/Core/ValueObject.h>
68 
69 namespace lldb_private {
70 class ExecutionContextScope;
71 }
72 namespace lldb_private {
73 class SymbolContextScope;
74 }
75 
76 using namespace lldb;
77 using namespace lldb_private;
78 
79 static user_id_t g_value_obj_uid = 0;
80 
81 // ValueObject constructor
ValueObject(ValueObject & parent)82 ValueObject::ValueObject(ValueObject &parent)
83     : m_parent(&parent), m_update_point(parent.GetUpdatePoint()),
84       m_manager(parent.GetManager()), m_id(++g_value_obj_uid) {
85   m_flags.m_is_synthetic_children_generated =
86       parent.m_flags.m_is_synthetic_children_generated;
87   m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder());
88   m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize());
89   m_manager->ManageObject(this);
90 }
91 
92 // ValueObject constructor
ValueObject(ExecutionContextScope * exe_scope,ValueObjectManager & manager,AddressType child_ptr_or_ref_addr_type)93 ValueObject::ValueObject(ExecutionContextScope *exe_scope,
94                          ValueObjectManager &manager,
95                          AddressType child_ptr_or_ref_addr_type)
96     : m_update_point(exe_scope), m_manager(&manager),
97       m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
98       m_id(++g_value_obj_uid) {
99   if (exe_scope) {
100     TargetSP target_sp(exe_scope->CalculateTarget());
101     if (target_sp) {
102       const ArchSpec &arch = target_sp->GetArchitecture();
103       m_data.SetByteOrder(arch.GetByteOrder());
104       m_data.SetAddressByteSize(arch.GetAddressByteSize());
105     }
106   }
107   m_manager->ManageObject(this);
108 }
109 
110 // Destructor
111 ValueObject::~ValueObject() = default;
112 
UpdateValueIfNeeded(bool update_format)113 bool ValueObject::UpdateValueIfNeeded(bool update_format) {
114 
115   bool did_change_formats = false;
116 
117   if (update_format)
118     did_change_formats = UpdateFormatsIfNeeded();
119 
120   // If this is a constant value, then our success is predicated on whether we
121   // have an error or not
122   if (GetIsConstant()) {
123     // if you are constant, things might still have changed behind your back
124     // (e.g. you are a frozen object and things have changed deeper than you
125     // cared to freeze-dry yourself) in this case, your value has not changed,
126     // but "computed" entries might have, so you might now have a different
127     // summary, or a different object description. clear these so we will
128     // recompute them
129     if (update_format && !did_change_formats)
130       ClearUserVisibleData(eClearUserVisibleDataItemsSummary |
131                            eClearUserVisibleDataItemsDescription);
132     return m_error.Success();
133   }
134 
135   bool first_update = IsChecksumEmpty();
136 
137   if (NeedsUpdating()) {
138     m_update_point.SetUpdated();
139 
140     // Save the old value using swap to avoid a string copy which also will
141     // clear our m_value_str
142     if (m_value_str.empty()) {
143       m_flags.m_old_value_valid = false;
144     } else {
145       m_flags.m_old_value_valid = true;
146       m_old_value_str.swap(m_value_str);
147       ClearUserVisibleData(eClearUserVisibleDataItemsValue);
148     }
149 
150     ClearUserVisibleData();
151 
152     if (IsInScope()) {
153       const bool value_was_valid = GetValueIsValid();
154       SetValueDidChange(false);
155 
156       m_error.Clear();
157 
158       // Call the pure virtual function to update the value
159 
160       bool need_compare_checksums = false;
161       llvm::SmallVector<uint8_t, 16> old_checksum;
162 
163       if (!first_update && CanProvideValue()) {
164         need_compare_checksums = true;
165         old_checksum.resize(m_value_checksum.size());
166         std::copy(m_value_checksum.begin(), m_value_checksum.end(),
167                   old_checksum.begin());
168       }
169 
170       bool success = UpdateValue();
171 
172       SetValueIsValid(success);
173 
174       if (success) {
175         UpdateChildrenAddressType();
176         const uint64_t max_checksum_size = 128;
177         m_data.Checksum(m_value_checksum, max_checksum_size);
178       } else {
179         need_compare_checksums = false;
180         m_value_checksum.clear();
181       }
182 
183       assert(!need_compare_checksums ||
184              (!old_checksum.empty() && !m_value_checksum.empty()));
185 
186       if (first_update)
187         SetValueDidChange(false);
188       else if (!m_flags.m_value_did_change && !success) {
189         // The value wasn't gotten successfully, so we mark this as changed if
190         // the value used to be valid and now isn't
191         SetValueDidChange(value_was_valid);
192       } else if (need_compare_checksums) {
193         SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
194                                  m_value_checksum.size()));
195       }
196 
197     } else {
198       m_error.SetErrorString("out of scope");
199     }
200   }
201   return m_error.Success();
202 }
203 
UpdateFormatsIfNeeded()204 bool ValueObject::UpdateFormatsIfNeeded() {
205   Log *log = GetLog(LLDBLog::DataFormatters);
206   LLDB_LOGF(log,
207             "[%s %p] checking for FormatManager revisions. ValueObject "
208             "rev: %d - Global rev: %d",
209             GetName().GetCString(), static_cast<void *>(this),
210             m_last_format_mgr_revision,
211             DataVisualization::GetCurrentRevision());
212 
213   bool any_change = false;
214 
215   if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) {
216     m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
217     any_change = true;
218 
219     SetValueFormat(DataVisualization::GetFormat(*this, GetDynamicValueType()));
220     SetSummaryFormat(
221         DataVisualization::GetSummaryFormat(*this, GetDynamicValueType()));
222     SetSyntheticChildren(
223         DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType()));
224   }
225 
226   return any_change;
227 }
228 
SetNeedsUpdate()229 void ValueObject::SetNeedsUpdate() {
230   m_update_point.SetNeedsUpdate();
231   // We have to clear the value string here so ConstResult children will notice
232   // if their values are changed by hand (i.e. with SetValueAsCString).
233   ClearUserVisibleData(eClearUserVisibleDataItemsValue);
234 }
235 
ClearDynamicTypeInformation()236 void ValueObject::ClearDynamicTypeInformation() {
237   m_flags.m_children_count_valid = false;
238   m_flags.m_did_calculate_complete_objc_class_type = false;
239   m_last_format_mgr_revision = 0;
240   m_override_type = CompilerType();
241   SetValueFormat(lldb::TypeFormatImplSP());
242   SetSummaryFormat(lldb::TypeSummaryImplSP());
243   SetSyntheticChildren(lldb::SyntheticChildrenSP());
244 }
245 
MaybeCalculateCompleteType()246 CompilerType ValueObject::MaybeCalculateCompleteType() {
247   CompilerType compiler_type(GetCompilerTypeImpl());
248 
249   if (m_flags.m_did_calculate_complete_objc_class_type) {
250     if (m_override_type.IsValid())
251       return m_override_type;
252     else
253       return compiler_type;
254   }
255 
256   m_flags.m_did_calculate_complete_objc_class_type = true;
257 
258   ProcessSP process_sp(
259       GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
260 
261   if (!process_sp)
262     return compiler_type;
263 
264   if (auto *runtime =
265           process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) {
266     if (std::optional<CompilerType> complete_type =
267             runtime->GetRuntimeType(compiler_type)) {
268       m_override_type = *complete_type;
269       if (m_override_type.IsValid())
270         return m_override_type;
271     }
272   }
273   return compiler_type;
274 }
275 
276 
277 
GetDataExtractor()278 DataExtractor &ValueObject::GetDataExtractor() {
279   UpdateValueIfNeeded(false);
280   return m_data;
281 }
282 
GetError()283 const Status &ValueObject::GetError() {
284   UpdateValueIfNeeded(false);
285   return m_error;
286 }
287 
GetLocationAsCStringImpl(const Value & value,const DataExtractor & data)288 const char *ValueObject::GetLocationAsCStringImpl(const Value &value,
289                                                   const DataExtractor &data) {
290   if (UpdateValueIfNeeded(false)) {
291     if (m_location_str.empty()) {
292       StreamString sstr;
293 
294       Value::ValueType value_type = value.GetValueType();
295 
296       switch (value_type) {
297       case Value::ValueType::Invalid:
298         m_location_str = "invalid";
299         break;
300       case Value::ValueType::Scalar:
301         if (value.GetContextType() == Value::ContextType::RegisterInfo) {
302           RegisterInfo *reg_info = value.GetRegisterInfo();
303           if (reg_info) {
304             if (reg_info->name)
305               m_location_str = reg_info->name;
306             else if (reg_info->alt_name)
307               m_location_str = reg_info->alt_name;
308             if (m_location_str.empty())
309               m_location_str = (reg_info->encoding == lldb::eEncodingVector)
310                                    ? "vector"
311                                    : "scalar";
312           }
313         }
314         if (m_location_str.empty())
315           m_location_str = "scalar";
316         break;
317 
318       case Value::ValueType::LoadAddress:
319       case Value::ValueType::FileAddress:
320       case Value::ValueType::HostAddress: {
321         uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
322         sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
323                     value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
324         m_location_str = std::string(sstr.GetString());
325       } break;
326       }
327     }
328   }
329   return m_location_str.c_str();
330 }
331 
ResolveValue(Scalar & scalar)332 bool ValueObject::ResolveValue(Scalar &scalar) {
333   if (UpdateValueIfNeeded(
334           false)) // make sure that you are up to date before returning anything
335   {
336     ExecutionContext exe_ctx(GetExecutionContextRef());
337     Value tmp_value(m_value);
338     scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get());
339     if (scalar.IsValid()) {
340       const uint32_t bitfield_bit_size = GetBitfieldBitSize();
341       if (bitfield_bit_size)
342         return scalar.ExtractBitfield(bitfield_bit_size,
343                                       GetBitfieldBitOffset());
344       return true;
345     }
346   }
347   return false;
348 }
349 
IsLogicalTrue(Status & error)350 bool ValueObject::IsLogicalTrue(Status &error) {
351   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
352     LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
353     switch (is_logical_true) {
354     case eLazyBoolYes:
355     case eLazyBoolNo:
356       return (is_logical_true == true);
357     case eLazyBoolCalculate:
358       break;
359     }
360   }
361 
362   Scalar scalar_value;
363 
364   if (!ResolveValue(scalar_value)) {
365     error.SetErrorString("failed to get a scalar result");
366     return false;
367   }
368 
369   bool ret;
370   ret = scalar_value.ULongLong(1) != 0;
371   error.Clear();
372   return ret;
373 }
374 
GetChildAtIndex(uint32_t idx,bool can_create)375 ValueObjectSP ValueObject::GetChildAtIndex(uint32_t idx, bool can_create) {
376   ValueObjectSP child_sp;
377   // We may need to update our value if we are dynamic
378   if (IsPossibleDynamicType())
379     UpdateValueIfNeeded(false);
380   if (idx < GetNumChildrenIgnoringErrors()) {
381     // Check if we have already made the child value object?
382     if (can_create && !m_children.HasChildAtIndex(idx)) {
383       // No we haven't created the child at this index, so lets have our
384       // subclass do it and cache the result for quick future access.
385       m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx));
386     }
387 
388     ValueObject *child = m_children.GetChildAtIndex(idx);
389     if (child != nullptr)
390       return child->GetSP();
391   }
392   return child_sp;
393 }
394 
395 lldb::ValueObjectSP
GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names)396 ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) {
397   if (names.size() == 0)
398     return GetSP();
399   ValueObjectSP root(GetSP());
400   for (llvm::StringRef name : names) {
401     root = root->GetChildMemberWithName(name);
402     if (!root) {
403       return root;
404     }
405   }
406   return root;
407 }
408 
GetIndexOfChildWithName(llvm::StringRef name)409 size_t ValueObject::GetIndexOfChildWithName(llvm::StringRef name) {
410   bool omit_empty_base_classes = true;
411   return GetCompilerType().GetIndexOfChildWithName(name,
412                                                    omit_empty_base_classes);
413 }
414 
GetChildMemberWithName(llvm::StringRef name,bool can_create)415 ValueObjectSP ValueObject::GetChildMemberWithName(llvm::StringRef name,
416                                                   bool can_create) {
417   // We may need to update our value if we are dynamic.
418   if (IsPossibleDynamicType())
419     UpdateValueIfNeeded(false);
420 
421   // When getting a child by name, it could be buried inside some base classes
422   // (which really aren't part of the expression path), so we need a vector of
423   // indexes that can get us down to the correct child.
424   std::vector<uint32_t> child_indexes;
425   bool omit_empty_base_classes = true;
426 
427   if (!GetCompilerType().IsValid())
428     return ValueObjectSP();
429 
430   const size_t num_child_indexes =
431       GetCompilerType().GetIndexOfChildMemberWithName(
432           name, omit_empty_base_classes, child_indexes);
433   if (num_child_indexes == 0)
434     return nullptr;
435 
436   ValueObjectSP child_sp = GetSP();
437   for (uint32_t idx : child_indexes)
438     if (child_sp)
439       child_sp = child_sp->GetChildAtIndex(idx, can_create);
440   return child_sp;
441 }
442 
GetNumChildren(uint32_t max)443 llvm::Expected<uint32_t> ValueObject::GetNumChildren(uint32_t max) {
444   UpdateValueIfNeeded();
445 
446   if (max < UINT32_MAX) {
447     if (m_flags.m_children_count_valid) {
448       size_t children_count = m_children.GetChildrenCount();
449       return children_count <= max ? children_count : max;
450     } else
451       return CalculateNumChildren(max);
452   }
453 
454   if (!m_flags.m_children_count_valid) {
455     auto num_children_or_err = CalculateNumChildren();
456     if (num_children_or_err)
457       SetNumChildren(*num_children_or_err);
458     else
459       return num_children_or_err;
460   }
461   return m_children.GetChildrenCount();
462 }
463 
GetNumChildrenIgnoringErrors(uint32_t max)464 uint32_t ValueObject::GetNumChildrenIgnoringErrors(uint32_t max) {
465   auto value_or_err = GetNumChildren(max);
466   if (value_or_err)
467     return *value_or_err;
468   LLDB_LOG_ERRORV(GetLog(LLDBLog::DataFormatters), value_or_err.takeError(),
469                   "{0}");
470   return 0;
471 }
472 
MightHaveChildren()473 bool ValueObject::MightHaveChildren() {
474   bool has_children = false;
475   const uint32_t type_info = GetTypeInfo();
476   if (type_info) {
477     if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
478       has_children = true;
479   } else {
480     has_children = GetNumChildrenIgnoringErrors() > 0;
481   }
482   return has_children;
483 }
484 
485 // Should only be called by ValueObject::GetNumChildren()
SetNumChildren(uint32_t num_children)486 void ValueObject::SetNumChildren(uint32_t num_children) {
487   m_flags.m_children_count_valid = true;
488   m_children.SetChildrenCount(num_children);
489 }
490 
CreateChildAtIndex(size_t idx)491 ValueObject *ValueObject::CreateChildAtIndex(size_t idx) {
492   bool omit_empty_base_classes = true;
493   bool ignore_array_bounds = false;
494   std::string child_name;
495   uint32_t child_byte_size = 0;
496   int32_t child_byte_offset = 0;
497   uint32_t child_bitfield_bit_size = 0;
498   uint32_t child_bitfield_bit_offset = 0;
499   bool child_is_base_class = false;
500   bool child_is_deref_of_parent = false;
501   uint64_t language_flags = 0;
502   const bool transparent_pointers = true;
503 
504   ExecutionContext exe_ctx(GetExecutionContextRef());
505 
506   auto child_compiler_type_or_err =
507       GetCompilerType().GetChildCompilerTypeAtIndex(
508           &exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
509           ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
510           child_bitfield_bit_size, child_bitfield_bit_offset,
511           child_is_base_class, child_is_deref_of_parent, this, language_flags);
512   if (!child_compiler_type_or_err || !child_compiler_type_or_err->IsValid()) {
513     LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
514                    child_compiler_type_or_err.takeError(),
515                    "could not find child: {0}");
516     return nullptr;
517   }
518 
519   return new ValueObjectChild(
520       *this, *child_compiler_type_or_err, ConstString(child_name),
521       child_byte_size, child_byte_offset, child_bitfield_bit_size,
522       child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent,
523       eAddressTypeInvalid, language_flags);
524 }
525 
CreateSyntheticArrayMember(size_t idx)526 ValueObject *ValueObject::CreateSyntheticArrayMember(size_t idx) {
527   bool omit_empty_base_classes = true;
528   bool ignore_array_bounds = true;
529   std::string child_name;
530   uint32_t child_byte_size = 0;
531   int32_t child_byte_offset = 0;
532   uint32_t child_bitfield_bit_size = 0;
533   uint32_t child_bitfield_bit_offset = 0;
534   bool child_is_base_class = false;
535   bool child_is_deref_of_parent = false;
536   uint64_t language_flags = 0;
537   const bool transparent_pointers = false;
538 
539   ExecutionContext exe_ctx(GetExecutionContextRef());
540 
541   auto child_compiler_type_or_err =
542       GetCompilerType().GetChildCompilerTypeAtIndex(
543           &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
544           ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
545           child_bitfield_bit_size, child_bitfield_bit_offset,
546           child_is_base_class, child_is_deref_of_parent, this, language_flags);
547   if (!child_compiler_type_or_err) {
548     LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
549                    child_compiler_type_or_err.takeError(),
550                    "could not find child: {0}");
551     return nullptr;
552   }
553 
554   if (child_compiler_type_or_err->IsValid()) {
555     child_byte_offset += child_byte_size * idx;
556 
557     return new ValueObjectChild(
558         *this, *child_compiler_type_or_err, ConstString(child_name),
559         child_byte_size, child_byte_offset, child_bitfield_bit_size,
560         child_bitfield_bit_offset, child_is_base_class,
561         child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
562   }
563 
564   // In case of an incomplete type, try to use the ValueObject's
565   // synthetic value to create the child ValueObject.
566   if (ValueObjectSP synth_valobj_sp = GetSyntheticValue())
567     return synth_valobj_sp->GetChildAtIndex(idx, /*can_create=*/true).get();
568 
569   return nullptr;
570 }
571 
GetSummaryAsCString(TypeSummaryImpl * summary_ptr,std::string & destination,lldb::LanguageType lang)572 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
573                                       std::string &destination,
574                                       lldb::LanguageType lang) {
575   return GetSummaryAsCString(summary_ptr, destination,
576                              TypeSummaryOptions().SetLanguage(lang));
577 }
578 
GetSummaryAsCString(TypeSummaryImpl * summary_ptr,std::string & destination,const TypeSummaryOptions & options)579 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
580                                       std::string &destination,
581                                       const TypeSummaryOptions &options) {
582   destination.clear();
583 
584   // If we have a forcefully completed type, don't try and show a summary from
585   // a valid summary string or function because the type is not complete and
586   // no member variables or member functions will be available.
587   if (GetCompilerType().IsForcefullyCompleted()) {
588       destination = "<incomplete type>";
589       return true;
590   }
591 
592   // ideally we would like to bail out if passing NULL, but if we do so we end
593   // up not providing the summary for function pointers anymore
594   if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary)
595     return false;
596 
597   m_flags.m_is_getting_summary = true;
598 
599   TypeSummaryOptions actual_options(options);
600 
601   if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
602     actual_options.SetLanguage(GetPreferredDisplayLanguage());
603 
604   // this is a hot path in code and we prefer to avoid setting this string all
605   // too often also clearing out other information that we might care to see in
606   // a crash log. might be useful in very specific situations though.
607   /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
608    Summary provider's description is %s",
609    GetTypeName().GetCString(),
610    GetName().GetCString(),
611    summary_ptr->GetDescription().c_str());*/
612 
613   if (UpdateValueIfNeeded(false) && summary_ptr) {
614     if (HasSyntheticValue())
615       m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
616                                                 // the synthetic children being
617                                                 // up-to-date (e.g. ${svar%#})
618     summary_ptr->FormatObject(this, destination, actual_options);
619   }
620   m_flags.m_is_getting_summary = false;
621   return !destination.empty();
622 }
623 
GetSummaryAsCString(lldb::LanguageType lang)624 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) {
625   if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
626     TypeSummaryOptions summary_options;
627     summary_options.SetLanguage(lang);
628     GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str,
629                         summary_options);
630   }
631   if (m_summary_str.empty())
632     return nullptr;
633   return m_summary_str.c_str();
634 }
635 
GetSummaryAsCString(std::string & destination,const TypeSummaryOptions & options)636 bool ValueObject::GetSummaryAsCString(std::string &destination,
637                                       const TypeSummaryOptions &options) {
638   return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
639 }
640 
IsCStringContainer(bool check_pointer)641 bool ValueObject::IsCStringContainer(bool check_pointer) {
642   CompilerType pointee_or_element_compiler_type;
643   const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
644   bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
645                        pointee_or_element_compiler_type.IsCharType());
646   if (!is_char_arr_ptr)
647     return false;
648   if (!check_pointer)
649     return true;
650   if (type_flags.Test(eTypeIsArray))
651     return true;
652   addr_t cstr_address = LLDB_INVALID_ADDRESS;
653   AddressType cstr_address_type = eAddressTypeInvalid;
654   cstr_address = GetPointerValue(&cstr_address_type);
655   return (cstr_address != LLDB_INVALID_ADDRESS);
656 }
657 
GetPointeeData(DataExtractor & data,uint32_t item_idx,uint32_t item_count)658 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
659                                    uint32_t item_count) {
660   CompilerType pointee_or_element_compiler_type;
661   const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
662   const bool is_pointer_type = type_info & eTypeIsPointer;
663   const bool is_array_type = type_info & eTypeIsArray;
664   if (!(is_pointer_type || is_array_type))
665     return 0;
666 
667   if (item_count == 0)
668     return 0;
669 
670   ExecutionContext exe_ctx(GetExecutionContextRef());
671 
672   std::optional<uint64_t> item_type_size =
673       pointee_or_element_compiler_type.GetByteSize(
674           exe_ctx.GetBestExecutionContextScope());
675   if (!item_type_size)
676     return 0;
677   const uint64_t bytes = item_count * *item_type_size;
678   const uint64_t offset = item_idx * *item_type_size;
679 
680   if (item_idx == 0 && item_count == 1) // simply a deref
681   {
682     if (is_pointer_type) {
683       Status error;
684       ValueObjectSP pointee_sp = Dereference(error);
685       if (error.Fail() || pointee_sp.get() == nullptr)
686         return 0;
687       return pointee_sp->GetData(data, error);
688     } else {
689       ValueObjectSP child_sp = GetChildAtIndex(0);
690       if (child_sp.get() == nullptr)
691         return 0;
692       Status error;
693       return child_sp->GetData(data, error);
694     }
695     return true;
696   } else /* (items > 1) */
697   {
698     Status error;
699     lldb_private::DataBufferHeap *heap_buf_ptr = nullptr;
700     lldb::DataBufferSP data_sp(heap_buf_ptr =
701                                    new lldb_private::DataBufferHeap());
702 
703     AddressType addr_type;
704     lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type)
705                                         : GetAddressOf(true, &addr_type);
706 
707     switch (addr_type) {
708     case eAddressTypeFile: {
709       ModuleSP module_sp(GetModule());
710       if (module_sp) {
711         addr = addr + offset;
712         Address so_addr;
713         module_sp->ResolveFileAddress(addr, so_addr);
714         ExecutionContext exe_ctx(GetExecutionContextRef());
715         Target *target = exe_ctx.GetTargetPtr();
716         if (target) {
717           heap_buf_ptr->SetByteSize(bytes);
718           size_t bytes_read = target->ReadMemory(
719               so_addr, heap_buf_ptr->GetBytes(), bytes, error, true);
720           if (error.Success()) {
721             data.SetData(data_sp);
722             return bytes_read;
723           }
724         }
725       }
726     } break;
727     case eAddressTypeLoad: {
728       ExecutionContext exe_ctx(GetExecutionContextRef());
729       Process *process = exe_ctx.GetProcessPtr();
730       if (process) {
731         heap_buf_ptr->SetByteSize(bytes);
732         size_t bytes_read = process->ReadMemory(
733             addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
734         if (error.Success() || bytes_read > 0) {
735           data.SetData(data_sp);
736           return bytes_read;
737         }
738       }
739     } break;
740     case eAddressTypeHost: {
741       auto max_bytes =
742           GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
743       if (max_bytes && *max_bytes > offset) {
744         size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes);
745         addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
746         if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
747           break;
748         heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
749         data.SetData(data_sp);
750         return bytes_read;
751       }
752     } break;
753     case eAddressTypeInvalid:
754       break;
755     }
756   }
757   return 0;
758 }
759 
GetData(DataExtractor & data,Status & error)760 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) {
761   UpdateValueIfNeeded(false);
762   ExecutionContext exe_ctx(GetExecutionContextRef());
763   error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
764   if (error.Fail()) {
765     if (m_data.GetByteSize()) {
766       data = m_data;
767       error.Clear();
768       return data.GetByteSize();
769     } else {
770       return 0;
771     }
772   }
773   data.SetAddressByteSize(m_data.GetAddressByteSize());
774   data.SetByteOrder(m_data.GetByteOrder());
775   return data.GetByteSize();
776 }
777 
SetData(DataExtractor & data,Status & error)778 bool ValueObject::SetData(DataExtractor &data, Status &error) {
779   error.Clear();
780   // Make sure our value is up to date first so that our location and location
781   // type is valid.
782   if (!UpdateValueIfNeeded(false)) {
783     error.SetErrorString("unable to read value");
784     return false;
785   }
786 
787   uint64_t count = 0;
788   const Encoding encoding = GetCompilerType().GetEncoding(count);
789 
790   const size_t byte_size = GetByteSize().value_or(0);
791 
792   Value::ValueType value_type = m_value.GetValueType();
793 
794   switch (value_type) {
795   case Value::ValueType::Invalid:
796     error.SetErrorString("invalid location");
797     return false;
798   case Value::ValueType::Scalar: {
799     Status set_error =
800         m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
801 
802     if (!set_error.Success()) {
803       error.SetErrorStringWithFormat("unable to set scalar value: %s",
804                                      set_error.AsCString());
805       return false;
806     }
807   } break;
808   case Value::ValueType::LoadAddress: {
809     // If it is a load address, then the scalar value is the storage location
810     // of the data, and we have to shove this value down to that load location.
811     ExecutionContext exe_ctx(GetExecutionContextRef());
812     Process *process = exe_ctx.GetProcessPtr();
813     if (process) {
814       addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
815       size_t bytes_written = process->WriteMemory(
816           target_addr, data.GetDataStart(), byte_size, error);
817       if (!error.Success())
818         return false;
819       if (bytes_written != byte_size) {
820         error.SetErrorString("unable to write value to memory");
821         return false;
822       }
823     }
824   } break;
825   case Value::ValueType::HostAddress: {
826     // If it is a host address, then we stuff the scalar as a DataBuffer into
827     // the Value's data.
828     DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
829     m_data.SetData(buffer_sp, 0);
830     data.CopyByteOrderedData(0, byte_size,
831                              const_cast<uint8_t *>(m_data.GetDataStart()),
832                              byte_size, m_data.GetByteOrder());
833     m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
834   } break;
835   case Value::ValueType::FileAddress:
836     break;
837   }
838 
839   // If we have reached this point, then we have successfully changed the
840   // value.
841   SetNeedsUpdate();
842   return true;
843 }
844 
CopyStringDataToBufferSP(const StreamString & source,lldb::WritableDataBufferSP & destination)845 static bool CopyStringDataToBufferSP(const StreamString &source,
846                                      lldb::WritableDataBufferSP &destination) {
847   llvm::StringRef src = source.GetString();
848   src = src.rtrim('\0');
849   destination = std::make_shared<DataBufferHeap>(src.size(), 0);
850   memcpy(destination->GetBytes(), src.data(), src.size());
851   return true;
852 }
853 
854 std::pair<size_t, bool>
ReadPointedString(lldb::WritableDataBufferSP & buffer_sp,Status & error,bool honor_array)855 ValueObject::ReadPointedString(lldb::WritableDataBufferSP &buffer_sp,
856                                Status &error, bool honor_array) {
857   bool was_capped = false;
858   StreamString s;
859   ExecutionContext exe_ctx(GetExecutionContextRef());
860   Target *target = exe_ctx.GetTargetPtr();
861 
862   if (!target) {
863     s << "<no target to read from>";
864     error.SetErrorString("no target to read from");
865     CopyStringDataToBufferSP(s, buffer_sp);
866     return {0, was_capped};
867   }
868 
869   const auto max_length = target->GetMaximumSizeOfStringSummary();
870 
871   size_t bytes_read = 0;
872   size_t total_bytes_read = 0;
873 
874   CompilerType compiler_type = GetCompilerType();
875   CompilerType elem_or_pointee_compiler_type;
876   const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
877   if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
878       elem_or_pointee_compiler_type.IsCharType()) {
879     addr_t cstr_address = LLDB_INVALID_ADDRESS;
880     AddressType cstr_address_type = eAddressTypeInvalid;
881 
882     size_t cstr_len = 0;
883     bool capped_data = false;
884     const bool is_array = type_flags.Test(eTypeIsArray);
885     if (is_array) {
886       // We have an array
887       uint64_t array_size = 0;
888       if (compiler_type.IsArrayType(nullptr, &array_size)) {
889         cstr_len = array_size;
890         if (cstr_len > max_length) {
891           capped_data = true;
892           cstr_len = max_length;
893         }
894       }
895       cstr_address = GetAddressOf(true, &cstr_address_type);
896     } else {
897       // We have a pointer
898       cstr_address = GetPointerValue(&cstr_address_type);
899     }
900 
901     if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) {
902       if (cstr_address_type == eAddressTypeHost && is_array) {
903         const char *cstr = GetDataExtractor().PeekCStr(0);
904         if (cstr == nullptr) {
905           s << "<invalid address>";
906           error.SetErrorString("invalid address");
907           CopyStringDataToBufferSP(s, buffer_sp);
908           return {0, was_capped};
909         }
910         s << llvm::StringRef(cstr, cstr_len);
911         CopyStringDataToBufferSP(s, buffer_sp);
912         return {cstr_len, was_capped};
913       } else {
914         s << "<invalid address>";
915         error.SetErrorString("invalid address");
916         CopyStringDataToBufferSP(s, buffer_sp);
917         return {0, was_capped};
918       }
919     }
920 
921     Address cstr_so_addr(cstr_address);
922     DataExtractor data;
923     if (cstr_len > 0 && honor_array) {
924       // I am using GetPointeeData() here to abstract the fact that some
925       // ValueObjects are actually frozen pointers in the host but the pointed-
926       // to data lives in the debuggee, and GetPointeeData() automatically
927       // takes care of this
928       GetPointeeData(data, 0, cstr_len);
929 
930       if ((bytes_read = data.GetByteSize()) > 0) {
931         total_bytes_read = bytes_read;
932         for (size_t offset = 0; offset < bytes_read; offset++)
933           s.Printf("%c", *data.PeekData(offset, 1));
934         if (capped_data)
935           was_capped = true;
936       }
937     } else {
938       cstr_len = max_length;
939       const size_t k_max_buf_size = 64;
940 
941       size_t offset = 0;
942 
943       int cstr_len_displayed = -1;
944       bool capped_cstr = false;
945       // I am using GetPointeeData() here to abstract the fact that some
946       // ValueObjects are actually frozen pointers in the host but the pointed-
947       // to data lives in the debuggee, and GetPointeeData() automatically
948       // takes care of this
949       while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
950         total_bytes_read += bytes_read;
951         const char *cstr = data.PeekCStr(0);
952         size_t len = strnlen(cstr, k_max_buf_size);
953         if (cstr_len_displayed < 0)
954           cstr_len_displayed = len;
955 
956         if (len == 0)
957           break;
958         cstr_len_displayed += len;
959         if (len > bytes_read)
960           len = bytes_read;
961         if (len > cstr_len)
962           len = cstr_len;
963 
964         for (size_t offset = 0; offset < bytes_read; offset++)
965           s.Printf("%c", *data.PeekData(offset, 1));
966 
967         if (len < k_max_buf_size)
968           break;
969 
970         if (len >= cstr_len) {
971           capped_cstr = true;
972           break;
973         }
974 
975         cstr_len -= len;
976         offset += len;
977       }
978 
979       if (cstr_len_displayed >= 0) {
980         if (capped_cstr)
981           was_capped = true;
982       }
983     }
984   } else {
985     error.SetErrorString("not a string object");
986     s << "<not a string object>";
987   }
988   CopyStringDataToBufferSP(s, buffer_sp);
989   return {total_bytes_read, was_capped};
990 }
991 
GetObjectDescription()992 llvm::Expected<std::string> ValueObject::GetObjectDescription() {
993   if (!UpdateValueIfNeeded(true))
994     return llvm::createStringError("could not update value");
995 
996   // Return cached value.
997   if (!m_object_desc_str.empty())
998     return m_object_desc_str;
999 
1000   ExecutionContext exe_ctx(GetExecutionContextRef());
1001   Process *process = exe_ctx.GetProcessPtr();
1002   if (!process)
1003     return llvm::createStringError("no process");
1004 
1005   // Returns the object description produced by one language runtime.
1006   auto get_object_description =
1007       [&](LanguageType language) -> llvm::Expected<std::string> {
1008     if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) {
1009       StreamString s;
1010       if (llvm::Error error = runtime->GetObjectDescription(s, *this))
1011         return error;
1012       m_object_desc_str = s.GetString();
1013       return m_object_desc_str;
1014     }
1015     return llvm::createStringError("no native language runtime");
1016   };
1017 
1018   // Try the native language runtime first.
1019   LanguageType native_language = GetObjectRuntimeLanguage();
1020   llvm::Expected<std::string> desc = get_object_description(native_language);
1021   if (desc)
1022     return desc;
1023 
1024   // Try the Objective-C language runtime. This fallback is necessary
1025   // for Objective-C++ and mixed Objective-C / C++ programs.
1026   if (Language::LanguageIsCFamily(native_language)) {
1027     // We're going to try again, so let's drop the first error.
1028     llvm::consumeError(desc.takeError());
1029     return get_object_description(eLanguageTypeObjC);
1030   }
1031   return desc;
1032 }
1033 
GetValueAsCString(const lldb_private::TypeFormatImpl & format,std::string & destination)1034 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format,
1035                                     std::string &destination) {
1036   if (UpdateValueIfNeeded(false))
1037     return format.FormatObject(this, destination);
1038   else
1039     return false;
1040 }
1041 
GetValueAsCString(lldb::Format format,std::string & destination)1042 bool ValueObject::GetValueAsCString(lldb::Format format,
1043                                     std::string &destination) {
1044   return GetValueAsCString(TypeFormatImpl_Format(format), destination);
1045 }
1046 
GetValueAsCString()1047 const char *ValueObject::GetValueAsCString() {
1048   if (UpdateValueIfNeeded(true)) {
1049     lldb::TypeFormatImplSP format_sp;
1050     lldb::Format my_format = GetFormat();
1051     if (my_format == lldb::eFormatDefault) {
1052       if (m_type_format_sp)
1053         format_sp = m_type_format_sp;
1054       else {
1055         if (m_flags.m_is_bitfield_for_scalar)
1056           my_format = eFormatUnsigned;
1057         else {
1058           if (m_value.GetContextType() == Value::ContextType::RegisterInfo) {
1059             const RegisterInfo *reg_info = m_value.GetRegisterInfo();
1060             if (reg_info)
1061               my_format = reg_info->format;
1062           } else {
1063             my_format = GetValue().GetCompilerType().GetFormat();
1064           }
1065         }
1066       }
1067     }
1068     if (my_format != m_last_format || m_value_str.empty()) {
1069       m_last_format = my_format;
1070       if (!format_sp)
1071         format_sp = std::make_shared<TypeFormatImpl_Format>(my_format);
1072       if (GetValueAsCString(*format_sp.get(), m_value_str)) {
1073         if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) {
1074           // The value was gotten successfully, so we consider the value as
1075           // changed if the value string differs
1076           SetValueDidChange(m_old_value_str != m_value_str);
1077         }
1078       }
1079     }
1080   }
1081   if (m_value_str.empty())
1082     return nullptr;
1083   return m_value_str.c_str();
1084 }
1085 
1086 // if > 8bytes, 0 is returned. this method should mostly be used to read
1087 // address values out of pointers
GetValueAsUnsigned(uint64_t fail_value,bool * success)1088 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
1089   // If our byte size is zero this is an aggregate type that has children
1090   if (CanProvideValue()) {
1091     Scalar scalar;
1092     if (ResolveValue(scalar)) {
1093       if (success)
1094         *success = true;
1095       scalar.MakeUnsigned();
1096       return scalar.ULongLong(fail_value);
1097     }
1098     // fallthrough, otherwise...
1099   }
1100 
1101   if (success)
1102     *success = false;
1103   return fail_value;
1104 }
1105 
GetValueAsSigned(int64_t fail_value,bool * success)1106 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
1107   // If our byte size is zero this is an aggregate type that has children
1108   if (CanProvideValue()) {
1109     Scalar scalar;
1110     if (ResolveValue(scalar)) {
1111       if (success)
1112         *success = true;
1113       scalar.MakeSigned();
1114       return scalar.SLongLong(fail_value);
1115     }
1116     // fallthrough, otherwise...
1117   }
1118 
1119   if (success)
1120     *success = false;
1121   return fail_value;
1122 }
1123 
GetValueAsAPSInt()1124 llvm::Expected<llvm::APSInt> ValueObject::GetValueAsAPSInt() {
1125   // Make sure the type can be converted to an APSInt.
1126   if (!GetCompilerType().IsInteger() &&
1127       !GetCompilerType().IsScopedEnumerationType() &&
1128       !GetCompilerType().IsEnumerationType() &&
1129       !GetCompilerType().IsPointerType() &&
1130       !GetCompilerType().IsNullPtrType() &&
1131       !GetCompilerType().IsReferenceType() && !GetCompilerType().IsBoolean())
1132     return llvm::make_error<llvm::StringError>(
1133         "type cannot be converted to APSInt", llvm::inconvertibleErrorCode());
1134 
1135   if (CanProvideValue()) {
1136     Scalar scalar;
1137     if (ResolveValue(scalar))
1138       return scalar.GetAPSInt();
1139   }
1140 
1141   return llvm::make_error<llvm::StringError>(
1142       "error occurred; unable to convert to APSInt",
1143       llvm::inconvertibleErrorCode());
1144 }
1145 
GetValueAsAPFloat()1146 llvm::Expected<llvm::APFloat> ValueObject::GetValueAsAPFloat() {
1147   if (!GetCompilerType().IsFloat())
1148     return llvm::make_error<llvm::StringError>(
1149         "type cannot be converted to APFloat", llvm::inconvertibleErrorCode());
1150 
1151   if (CanProvideValue()) {
1152     Scalar scalar;
1153     if (ResolveValue(scalar))
1154       return scalar.GetAPFloat();
1155   }
1156 
1157   return llvm::make_error<llvm::StringError>(
1158       "error occurred; unable to convert to APFloat",
1159       llvm::inconvertibleErrorCode());
1160 }
1161 
GetValueAsBool()1162 llvm::Expected<bool> ValueObject::GetValueAsBool() {
1163   CompilerType val_type = GetCompilerType();
1164   if (val_type.IsInteger() || val_type.IsUnscopedEnumerationType() ||
1165       val_type.IsPointerType()) {
1166     auto value_or_err = GetValueAsAPSInt();
1167     if (value_or_err)
1168       return value_or_err->getBoolValue();
1169   }
1170   if (val_type.IsFloat()) {
1171     auto value_or_err = GetValueAsAPFloat();
1172     if (value_or_err)
1173       return value_or_err->isNonZero();
1174   }
1175   if (val_type.IsArrayType())
1176     return GetAddressOf() != 0;
1177 
1178   return llvm::make_error<llvm::StringError>("type cannot be converted to bool",
1179                                              llvm::inconvertibleErrorCode());
1180 }
1181 
SetValueFromInteger(const llvm::APInt & value,Status & error)1182 void ValueObject::SetValueFromInteger(const llvm::APInt &value, Status &error) {
1183   // Verify the current object is an integer object
1184   CompilerType val_type = GetCompilerType();
1185   if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
1186       !val_type.IsFloat() && !val_type.IsPointerType() &&
1187       !val_type.IsScalarType()) {
1188     error.SetErrorString("current value object is not an integer objet");
1189     return;
1190   }
1191 
1192   // Verify the current object is not actually associated with any program
1193   // variable.
1194   if (GetVariable()) {
1195     error.SetErrorString("current value object is not a temporary object");
1196     return;
1197   }
1198 
1199   // Verify the proposed new value is the right size.
1200   lldb::TargetSP target = GetTargetSP();
1201   uint64_t byte_size = 0;
1202   if (auto temp = GetCompilerType().GetByteSize(target.get()))
1203     byte_size = temp.value();
1204   if (value.getBitWidth() != byte_size * CHAR_BIT) {
1205     error.SetErrorString(
1206         "illegal argument: new value should be of the same size");
1207     return;
1208   }
1209 
1210   lldb::DataExtractorSP data_sp;
1211   data_sp->SetData(value.getRawData(), byte_size,
1212                    target->GetArchitecture().GetByteOrder());
1213   data_sp->SetAddressByteSize(
1214       static_cast<uint8_t>(target->GetArchitecture().GetAddressByteSize()));
1215   SetData(*data_sp, error);
1216 }
1217 
SetValueFromInteger(lldb::ValueObjectSP new_val_sp,Status & error)1218 void ValueObject::SetValueFromInteger(lldb::ValueObjectSP new_val_sp,
1219                                       Status &error) {
1220   // Verify the current object is an integer object
1221   CompilerType val_type = GetCompilerType();
1222   if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
1223       !val_type.IsFloat() && !val_type.IsPointerType() &&
1224       !val_type.IsScalarType()) {
1225     error.SetErrorString("current value object is not an integer objet");
1226     return;
1227   }
1228 
1229   // Verify the current object is not actually associated with any program
1230   // variable.
1231   if (GetVariable()) {
1232     error.SetErrorString("current value object is not a temporary object");
1233     return;
1234   }
1235 
1236   // Verify the proposed new value is the right type.
1237   CompilerType new_val_type = new_val_sp->GetCompilerType();
1238   if (!new_val_type.IsInteger() && !new_val_type.IsFloat() &&
1239       !new_val_type.IsPointerType()) {
1240     error.SetErrorString(
1241         "illegal argument: new value should be of the same size");
1242     return;
1243   }
1244 
1245   if (new_val_type.IsInteger()) {
1246     auto value_or_err = new_val_sp->GetValueAsAPSInt();
1247     if (value_or_err)
1248       SetValueFromInteger(*value_or_err, error);
1249     else
1250       error.SetErrorString("error getting APSInt from new_val_sp");
1251   } else if (new_val_type.IsFloat()) {
1252     auto value_or_err = new_val_sp->GetValueAsAPFloat();
1253     if (value_or_err)
1254       SetValueFromInteger(value_or_err->bitcastToAPInt(), error);
1255     else
1256       error.SetErrorString("error getting APFloat from new_val_sp");
1257   } else if (new_val_type.IsPointerType()) {
1258     bool success = true;
1259     uint64_t int_val = new_val_sp->GetValueAsUnsigned(0, &success);
1260     if (success) {
1261       lldb::TargetSP target = GetTargetSP();
1262       uint64_t num_bits = 0;
1263       if (auto temp = new_val_sp->GetCompilerType().GetBitSize(target.get()))
1264         num_bits = temp.value();
1265       SetValueFromInteger(llvm::APInt(num_bits, int_val), error);
1266     } else
1267       error.SetErrorString("error converting new_val_sp to integer");
1268   }
1269 }
1270 
1271 // if any more "special cases" are added to
1272 // ValueObject::DumpPrintableRepresentation() please keep this call up to date
1273 // by returning true for your new special cases. We will eventually move to
1274 // checking this call result before trying to display special cases
HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display,Format custom_format)1275 bool ValueObject::HasSpecialPrintableRepresentation(
1276     ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
1277   Flags flags(GetTypeInfo());
1278   if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1279       val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
1280     if (IsCStringContainer(true) &&
1281         (custom_format == eFormatCString || custom_format == eFormatCharArray ||
1282          custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
1283       return true;
1284 
1285     if (flags.Test(eTypeIsArray)) {
1286       if ((custom_format == eFormatBytes) ||
1287           (custom_format == eFormatBytesWithASCII))
1288         return true;
1289 
1290       if ((custom_format == eFormatVectorOfChar) ||
1291           (custom_format == eFormatVectorOfFloat32) ||
1292           (custom_format == eFormatVectorOfFloat64) ||
1293           (custom_format == eFormatVectorOfSInt16) ||
1294           (custom_format == eFormatVectorOfSInt32) ||
1295           (custom_format == eFormatVectorOfSInt64) ||
1296           (custom_format == eFormatVectorOfSInt8) ||
1297           (custom_format == eFormatVectorOfUInt128) ||
1298           (custom_format == eFormatVectorOfUInt16) ||
1299           (custom_format == eFormatVectorOfUInt32) ||
1300           (custom_format == eFormatVectorOfUInt64) ||
1301           (custom_format == eFormatVectorOfUInt8))
1302         return true;
1303     }
1304   }
1305   return false;
1306 }
1307 
DumpPrintableRepresentation(Stream & s,ValueObjectRepresentationStyle val_obj_display,Format custom_format,PrintableRepresentationSpecialCases special,bool do_dump_error)1308 bool ValueObject::DumpPrintableRepresentation(
1309     Stream &s, ValueObjectRepresentationStyle val_obj_display,
1310     Format custom_format, PrintableRepresentationSpecialCases special,
1311     bool do_dump_error) {
1312 
1313   // If the ValueObject has an error, we might end up dumping the type, which
1314   // is useful, but if we don't even have a type, then don't examine the object
1315   // further as that's not meaningful, only the error is.
1316   if (m_error.Fail() && !GetCompilerType().IsValid()) {
1317     if (do_dump_error)
1318       s.Printf("<%s>", m_error.AsCString());
1319     return false;
1320   }
1321 
1322   Flags flags(GetTypeInfo());
1323 
1324   bool allow_special =
1325       (special == ValueObject::PrintableRepresentationSpecialCases::eAllow);
1326   const bool only_special = false;
1327 
1328   if (allow_special) {
1329     if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1330         val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
1331       // when being asked to get a printable display an array or pointer type
1332       // directly, try to "do the right thing"
1333 
1334       if (IsCStringContainer(true) &&
1335           (custom_format == eFormatCString ||
1336            custom_format == eFormatCharArray || custom_format == eFormatChar ||
1337            custom_format ==
1338                eFormatVectorOfChar)) // print char[] & char* directly
1339       {
1340         Status error;
1341         lldb::WritableDataBufferSP buffer_sp;
1342         std::pair<size_t, bool> read_string =
1343             ReadPointedString(buffer_sp, error,
1344                               (custom_format == eFormatVectorOfChar) ||
1345                                   (custom_format == eFormatCharArray));
1346         lldb_private::formatters::StringPrinter::
1347             ReadBufferAndDumpToStreamOptions options(*this);
1348         options.SetData(DataExtractor(
1349             buffer_sp, lldb::eByteOrderInvalid,
1350             8)); // none of this matters for a string - pass some defaults
1351         options.SetStream(&s);
1352         options.SetPrefixToken(nullptr);
1353         options.SetQuote('"');
1354         options.SetSourceSize(buffer_sp->GetByteSize());
1355         options.SetIsTruncated(read_string.second);
1356         options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar);
1357         formatters::StringPrinter::ReadBufferAndDumpToStream<
1358             lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
1359             options);
1360         return !error.Fail();
1361       }
1362 
1363       if (custom_format == eFormatEnum)
1364         return false;
1365 
1366       // this only works for arrays, because I have no way to know when the
1367       // pointed memory ends, and no special \0 end of data marker
1368       if (flags.Test(eTypeIsArray)) {
1369         if ((custom_format == eFormatBytes) ||
1370             (custom_format == eFormatBytesWithASCII)) {
1371           const size_t count = GetNumChildrenIgnoringErrors();
1372 
1373           s << '[';
1374           for (size_t low = 0; low < count; low++) {
1375 
1376             if (low)
1377               s << ',';
1378 
1379             ValueObjectSP child = GetChildAtIndex(low);
1380             if (!child.get()) {
1381               s << "<invalid child>";
1382               continue;
1383             }
1384             child->DumpPrintableRepresentation(
1385                 s, ValueObject::eValueObjectRepresentationStyleValue,
1386                 custom_format);
1387           }
1388 
1389           s << ']';
1390 
1391           return true;
1392         }
1393 
1394         if ((custom_format == eFormatVectorOfChar) ||
1395             (custom_format == eFormatVectorOfFloat32) ||
1396             (custom_format == eFormatVectorOfFloat64) ||
1397             (custom_format == eFormatVectorOfSInt16) ||
1398             (custom_format == eFormatVectorOfSInt32) ||
1399             (custom_format == eFormatVectorOfSInt64) ||
1400             (custom_format == eFormatVectorOfSInt8) ||
1401             (custom_format == eFormatVectorOfUInt128) ||
1402             (custom_format == eFormatVectorOfUInt16) ||
1403             (custom_format == eFormatVectorOfUInt32) ||
1404             (custom_format == eFormatVectorOfUInt64) ||
1405             (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
1406                                                      // with ASCII or any vector
1407                                                      // format should be printed
1408                                                      // directly
1409         {
1410           const size_t count = GetNumChildrenIgnoringErrors();
1411 
1412           Format format = FormatManager::GetSingleItemFormat(custom_format);
1413 
1414           s << '[';
1415           for (size_t low = 0; low < count; low++) {
1416 
1417             if (low)
1418               s << ',';
1419 
1420             ValueObjectSP child = GetChildAtIndex(low);
1421             if (!child.get()) {
1422               s << "<invalid child>";
1423               continue;
1424             }
1425             child->DumpPrintableRepresentation(
1426                 s, ValueObject::eValueObjectRepresentationStyleValue, format);
1427           }
1428 
1429           s << ']';
1430 
1431           return true;
1432         }
1433       }
1434 
1435       if ((custom_format == eFormatBoolean) ||
1436           (custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
1437           (custom_format == eFormatCharPrintable) ||
1438           (custom_format == eFormatComplexFloat) ||
1439           (custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
1440           (custom_format == eFormatHexUppercase) ||
1441           (custom_format == eFormatFloat) || (custom_format == eFormatOctal) ||
1442           (custom_format == eFormatOSType) ||
1443           (custom_format == eFormatUnicode16) ||
1444           (custom_format == eFormatUnicode32) ||
1445           (custom_format == eFormatUnsigned) ||
1446           (custom_format == eFormatPointer) ||
1447           (custom_format == eFormatComplexInteger) ||
1448           (custom_format == eFormatComplex) ||
1449           (custom_format == eFormatDefault)) // use the [] operator
1450         return false;
1451     }
1452   }
1453 
1454   if (only_special)
1455     return false;
1456 
1457   bool var_success = false;
1458 
1459   {
1460     llvm::StringRef str;
1461 
1462     // this is a local stream that we are using to ensure that the data pointed
1463     // to by cstr survives long enough for us to copy it to its destination -
1464     // it is necessary to have this temporary storage area for cases where our
1465     // desired output is not backed by some other longer-term storage
1466     StreamString strm;
1467 
1468     if (custom_format != eFormatInvalid)
1469       SetFormat(custom_format);
1470 
1471     switch (val_obj_display) {
1472     case eValueObjectRepresentationStyleValue:
1473       str = GetValueAsCString();
1474       break;
1475 
1476     case eValueObjectRepresentationStyleSummary:
1477       str = GetSummaryAsCString();
1478       break;
1479 
1480     case eValueObjectRepresentationStyleLanguageSpecific: {
1481       llvm::Expected<std::string> desc = GetObjectDescription();
1482       if (!desc) {
1483         strm << "error: " << toString(desc.takeError());
1484         str = strm.GetString();
1485       } else {
1486         strm << *desc;
1487         str = strm.GetString();
1488       }
1489     } break;
1490 
1491     case eValueObjectRepresentationStyleLocation:
1492       str = GetLocationAsCString();
1493       break;
1494 
1495     case eValueObjectRepresentationStyleChildrenCount:
1496       strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildrenIgnoringErrors());
1497       str = strm.GetString();
1498       break;
1499 
1500     case eValueObjectRepresentationStyleType:
1501       str = GetTypeName().GetStringRef();
1502       break;
1503 
1504     case eValueObjectRepresentationStyleName:
1505       str = GetName().GetStringRef();
1506       break;
1507 
1508     case eValueObjectRepresentationStyleExpressionPath:
1509       GetExpressionPath(strm);
1510       str = strm.GetString();
1511       break;
1512     }
1513 
1514     // If the requested display style produced no output, try falling back to
1515     // alternative presentations.
1516     if (str.empty()) {
1517       if (val_obj_display == eValueObjectRepresentationStyleValue)
1518         str = GetSummaryAsCString();
1519       else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
1520         if (!CanProvideValue()) {
1521           strm.Printf("%s @ %s", GetTypeName().AsCString(),
1522                       GetLocationAsCString());
1523           str = strm.GetString();
1524         } else
1525           str = GetValueAsCString();
1526       }
1527     }
1528 
1529     if (!str.empty())
1530       s << str;
1531     else {
1532       // We checked for errors at the start, but do it again here in case
1533       // realizing the value for dumping produced an error.
1534       if (m_error.Fail()) {
1535         if (do_dump_error)
1536           s.Printf("<%s>", m_error.AsCString());
1537         else
1538           return false;
1539       } else if (val_obj_display == eValueObjectRepresentationStyleSummary)
1540         s.PutCString("<no summary available>");
1541       else if (val_obj_display == eValueObjectRepresentationStyleValue)
1542         s.PutCString("<no value available>");
1543       else if (val_obj_display ==
1544                eValueObjectRepresentationStyleLanguageSpecific)
1545         s.PutCString("<not a valid Objective-C object>"); // edit this if we
1546                                                           // have other runtimes
1547                                                           // that support a
1548                                                           // description
1549       else
1550         s.PutCString("<no printable representation>");
1551     }
1552 
1553     // we should only return false here if we could not do *anything* even if
1554     // we have an error message as output, that's a success from our callers'
1555     // perspective, so return true
1556     var_success = true;
1557 
1558     if (custom_format != eFormatInvalid)
1559       SetFormat(eFormatDefault);
1560   }
1561 
1562   return var_success;
1563 }
1564 
GetAddressOf(bool scalar_is_load_address,AddressType * address_type)1565 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address,
1566                                  AddressType *address_type) {
1567   // Can't take address of a bitfield
1568   if (IsBitfield())
1569     return LLDB_INVALID_ADDRESS;
1570 
1571   if (!UpdateValueIfNeeded(false))
1572     return LLDB_INVALID_ADDRESS;
1573 
1574   switch (m_value.GetValueType()) {
1575   case Value::ValueType::Invalid:
1576     return LLDB_INVALID_ADDRESS;
1577   case Value::ValueType::Scalar:
1578     if (scalar_is_load_address) {
1579       if (address_type)
1580         *address_type = eAddressTypeLoad;
1581       return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1582     }
1583     break;
1584 
1585   case Value::ValueType::LoadAddress:
1586   case Value::ValueType::FileAddress: {
1587     if (address_type)
1588       *address_type = m_value.GetValueAddressType();
1589     return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1590   } break;
1591   case Value::ValueType::HostAddress: {
1592     if (address_type)
1593       *address_type = m_value.GetValueAddressType();
1594     return LLDB_INVALID_ADDRESS;
1595   } break;
1596   }
1597   if (address_type)
1598     *address_type = eAddressTypeInvalid;
1599   return LLDB_INVALID_ADDRESS;
1600 }
1601 
GetPointerValue(AddressType * address_type)1602 addr_t ValueObject::GetPointerValue(AddressType *address_type) {
1603   addr_t address = LLDB_INVALID_ADDRESS;
1604   if (address_type)
1605     *address_type = eAddressTypeInvalid;
1606 
1607   if (!UpdateValueIfNeeded(false))
1608     return address;
1609 
1610   switch (m_value.GetValueType()) {
1611   case Value::ValueType::Invalid:
1612     return LLDB_INVALID_ADDRESS;
1613   case Value::ValueType::Scalar:
1614     address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1615     break;
1616 
1617   case Value::ValueType::HostAddress:
1618   case Value::ValueType::LoadAddress:
1619   case Value::ValueType::FileAddress: {
1620     lldb::offset_t data_offset = 0;
1621     address = m_data.GetAddress(&data_offset);
1622   } break;
1623   }
1624 
1625   if (address_type)
1626     *address_type = GetAddressTypeOfChildren();
1627 
1628   return address;
1629 }
1630 
SetValueFromCString(const char * value_str,Status & error)1631 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
1632   error.Clear();
1633   // Make sure our value is up to date first so that our location and location
1634   // type is valid.
1635   if (!UpdateValueIfNeeded(false)) {
1636     error.SetErrorString("unable to read value");
1637     return false;
1638   }
1639 
1640   uint64_t count = 0;
1641   const Encoding encoding = GetCompilerType().GetEncoding(count);
1642 
1643   const size_t byte_size = GetByteSize().value_or(0);
1644 
1645   Value::ValueType value_type = m_value.GetValueType();
1646 
1647   if (value_type == Value::ValueType::Scalar) {
1648     // If the value is already a scalar, then let the scalar change itself:
1649     m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
1650   } else if (byte_size <= 16) {
1651     // If the value fits in a scalar, then make a new scalar and again let the
1652     // scalar code do the conversion, then figure out where to put the new
1653     // value.
1654     Scalar new_scalar;
1655     error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
1656     if (error.Success()) {
1657       switch (value_type) {
1658       case Value::ValueType::LoadAddress: {
1659         // If it is a load address, then the scalar value is the storage
1660         // location of the data, and we have to shove this value down to that
1661         // load location.
1662         ExecutionContext exe_ctx(GetExecutionContextRef());
1663         Process *process = exe_ctx.GetProcessPtr();
1664         if (process) {
1665           addr_t target_addr =
1666               m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1667           size_t bytes_written = process->WriteScalarToMemory(
1668               target_addr, new_scalar, byte_size, error);
1669           if (!error.Success())
1670             return false;
1671           if (bytes_written != byte_size) {
1672             error.SetErrorString("unable to write value to memory");
1673             return false;
1674           }
1675         }
1676       } break;
1677       case Value::ValueType::HostAddress: {
1678         // If it is a host address, then we stuff the scalar as a DataBuffer
1679         // into the Value's data.
1680         DataExtractor new_data;
1681         new_data.SetByteOrder(m_data.GetByteOrder());
1682 
1683         DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
1684         m_data.SetData(buffer_sp, 0);
1685         bool success = new_scalar.GetData(new_data);
1686         if (success) {
1687           new_data.CopyByteOrderedData(
1688               0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
1689               byte_size, m_data.GetByteOrder());
1690         }
1691         m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
1692 
1693       } break;
1694       case Value::ValueType::Invalid:
1695         error.SetErrorString("invalid location");
1696         return false;
1697       case Value::ValueType::FileAddress:
1698       case Value::ValueType::Scalar:
1699         break;
1700       }
1701     } else {
1702       return false;
1703     }
1704   } else {
1705     // We don't support setting things bigger than a scalar at present.
1706     error.SetErrorString("unable to write aggregate data type");
1707     return false;
1708   }
1709 
1710   // If we have reached this point, then we have successfully changed the
1711   // value.
1712   SetNeedsUpdate();
1713   return true;
1714 }
1715 
GetDeclaration(Declaration & decl)1716 bool ValueObject::GetDeclaration(Declaration &decl) {
1717   decl.Clear();
1718   return false;
1719 }
1720 
AddSyntheticChild(ConstString key,ValueObject * valobj)1721 void ValueObject::AddSyntheticChild(ConstString key,
1722                                     ValueObject *valobj) {
1723   m_synthetic_children[key] = valobj;
1724 }
1725 
GetSyntheticChild(ConstString key) const1726 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const {
1727   ValueObjectSP synthetic_child_sp;
1728   std::map<ConstString, ValueObject *>::const_iterator pos =
1729       m_synthetic_children.find(key);
1730   if (pos != m_synthetic_children.end())
1731     synthetic_child_sp = pos->second->GetSP();
1732   return synthetic_child_sp;
1733 }
1734 
IsPossibleDynamicType()1735 bool ValueObject::IsPossibleDynamicType() {
1736   ExecutionContext exe_ctx(GetExecutionContextRef());
1737   Process *process = exe_ctx.GetProcessPtr();
1738   if (process)
1739     return process->IsPossibleDynamicValue(*this);
1740   else
1741     return GetCompilerType().IsPossibleDynamicType(nullptr, true, true);
1742 }
1743 
IsRuntimeSupportValue()1744 bool ValueObject::IsRuntimeSupportValue() {
1745   Process *process(GetProcessSP().get());
1746   if (!process)
1747     return false;
1748 
1749   // We trust that the compiler did the right thing and marked runtime support
1750   // values as artificial.
1751   if (!GetVariable() || !GetVariable()->IsArtificial())
1752     return false;
1753 
1754   if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage()))
1755     if (runtime->IsAllowedRuntimeValue(GetName()))
1756       return false;
1757 
1758   return true;
1759 }
1760 
IsNilReference()1761 bool ValueObject::IsNilReference() {
1762   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
1763     return language->IsNilReference(*this);
1764   }
1765   return false;
1766 }
1767 
IsUninitializedReference()1768 bool ValueObject::IsUninitializedReference() {
1769   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
1770     return language->IsUninitializedReference(*this);
1771   }
1772   return false;
1773 }
1774 
1775 // This allows you to create an array member using and index that doesn't not
1776 // fall in the normal bounds of the array. Many times structure can be defined
1777 // as: struct Collection {
1778 //     uint32_t item_count;
1779 //     Item item_array[0];
1780 // };
1781 // The size of the "item_array" is 1, but many times in practice there are more
1782 // items in "item_array".
1783 
GetSyntheticArrayMember(size_t index,bool can_create)1784 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index,
1785                                                    bool can_create) {
1786   ValueObjectSP synthetic_child_sp;
1787   if (IsPointerType() || IsArrayType()) {
1788     std::string index_str = llvm::formatv("[{0}]", index);
1789     ConstString index_const_str(index_str);
1790     // Check if we have already created a synthetic array member in this valid
1791     // object. If we have we will re-use it.
1792     synthetic_child_sp = GetSyntheticChild(index_const_str);
1793     if (!synthetic_child_sp) {
1794       ValueObject *synthetic_child;
1795       // We haven't made a synthetic array member for INDEX yet, so lets make
1796       // one and cache it for any future reference.
1797       synthetic_child = CreateSyntheticArrayMember(index);
1798 
1799       // Cache the value if we got one back...
1800       if (synthetic_child) {
1801         AddSyntheticChild(index_const_str, synthetic_child);
1802         synthetic_child_sp = synthetic_child->GetSP();
1803         synthetic_child_sp->SetName(ConstString(index_str));
1804         synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true;
1805       }
1806     }
1807   }
1808   return synthetic_child_sp;
1809 }
1810 
GetSyntheticBitFieldChild(uint32_t from,uint32_t to,bool can_create)1811 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to,
1812                                                      bool can_create) {
1813   ValueObjectSP synthetic_child_sp;
1814   if (IsScalarType()) {
1815     std::string index_str = llvm::formatv("[{0}-{1}]", from, to);
1816     ConstString index_const_str(index_str);
1817     // Check if we have already created a synthetic array member in this valid
1818     // object. If we have we will re-use it.
1819     synthetic_child_sp = GetSyntheticChild(index_const_str);
1820     if (!synthetic_child_sp) {
1821       uint32_t bit_field_size = to - from + 1;
1822       uint32_t bit_field_offset = from;
1823       if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
1824         bit_field_offset =
1825             GetByteSize().value_or(0) * 8 - bit_field_size - bit_field_offset;
1826       // We haven't made a synthetic array member for INDEX yet, so lets make
1827       // one and cache it for any future reference.
1828       ValueObjectChild *synthetic_child = new ValueObjectChild(
1829           *this, GetCompilerType(), index_const_str, GetByteSize().value_or(0),
1830           0, bit_field_size, bit_field_offset, false, false,
1831           eAddressTypeInvalid, 0);
1832 
1833       // Cache the value if we got one back...
1834       if (synthetic_child) {
1835         AddSyntheticChild(index_const_str, synthetic_child);
1836         synthetic_child_sp = synthetic_child->GetSP();
1837         synthetic_child_sp->SetName(ConstString(index_str));
1838         synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true;
1839       }
1840     }
1841   }
1842   return synthetic_child_sp;
1843 }
1844 
GetSyntheticChildAtOffset(uint32_t offset,const CompilerType & type,bool can_create,ConstString name_const_str)1845 ValueObjectSP ValueObject::GetSyntheticChildAtOffset(
1846     uint32_t offset, const CompilerType &type, bool can_create,
1847     ConstString name_const_str) {
1848 
1849   ValueObjectSP synthetic_child_sp;
1850 
1851   if (name_const_str.IsEmpty()) {
1852     name_const_str.SetString("@" + std::to_string(offset));
1853   }
1854 
1855   // Check if we have already created a synthetic array member in this valid
1856   // object. If we have we will re-use it.
1857   synthetic_child_sp = GetSyntheticChild(name_const_str);
1858 
1859   if (synthetic_child_sp.get())
1860     return synthetic_child_sp;
1861 
1862   if (!can_create)
1863     return {};
1864 
1865   ExecutionContext exe_ctx(GetExecutionContextRef());
1866   std::optional<uint64_t> size =
1867       type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
1868   if (!size)
1869     return {};
1870   ValueObjectChild *synthetic_child =
1871       new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1872                            false, false, eAddressTypeInvalid, 0);
1873   if (synthetic_child) {
1874     AddSyntheticChild(name_const_str, synthetic_child);
1875     synthetic_child_sp = synthetic_child->GetSP();
1876     synthetic_child_sp->SetName(name_const_str);
1877     synthetic_child_sp->m_flags.m_is_child_at_offset = true;
1878   }
1879   return synthetic_child_sp;
1880 }
1881 
GetSyntheticBase(uint32_t offset,const CompilerType & type,bool can_create,ConstString name_const_str)1882 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset,
1883                                             const CompilerType &type,
1884                                             bool can_create,
1885                                             ConstString name_const_str) {
1886   ValueObjectSP synthetic_child_sp;
1887 
1888   if (name_const_str.IsEmpty()) {
1889     char name_str[128];
1890     snprintf(name_str, sizeof(name_str), "base%s@%i",
1891              type.GetTypeName().AsCString("<unknown>"), offset);
1892     name_const_str.SetCString(name_str);
1893   }
1894 
1895   // Check if we have already created a synthetic array member in this valid
1896   // object. If we have we will re-use it.
1897   synthetic_child_sp = GetSyntheticChild(name_const_str);
1898 
1899   if (synthetic_child_sp.get())
1900     return synthetic_child_sp;
1901 
1902   if (!can_create)
1903     return {};
1904 
1905   const bool is_base_class = true;
1906 
1907   ExecutionContext exe_ctx(GetExecutionContextRef());
1908   std::optional<uint64_t> size =
1909       type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
1910   if (!size)
1911     return {};
1912   ValueObjectChild *synthetic_child =
1913       new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1914                            is_base_class, false, eAddressTypeInvalid, 0);
1915   if (synthetic_child) {
1916     AddSyntheticChild(name_const_str, synthetic_child);
1917     synthetic_child_sp = synthetic_child->GetSP();
1918     synthetic_child_sp->SetName(name_const_str);
1919   }
1920   return synthetic_child_sp;
1921 }
1922 
1923 // your expression path needs to have a leading . or -> (unless it somehow
1924 // "looks like" an array, in which case it has a leading [ symbol). while the [
1925 // is meaningful and should be shown to the user, . and -> are just parser
1926 // design, but by no means added information for the user.. strip them off
SkipLeadingExpressionPathSeparators(const char * expression)1927 static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
1928   if (!expression || !expression[0])
1929     return expression;
1930   if (expression[0] == '.')
1931     return expression + 1;
1932   if (expression[0] == '-' && expression[1] == '>')
1933     return expression + 2;
1934   return expression;
1935 }
1936 
1937 ValueObjectSP
GetSyntheticExpressionPathChild(const char * expression,bool can_create)1938 ValueObject::GetSyntheticExpressionPathChild(const char *expression,
1939                                              bool can_create) {
1940   ValueObjectSP synthetic_child_sp;
1941   ConstString name_const_string(expression);
1942   // Check if we have already created a synthetic array member in this valid
1943   // object. If we have we will re-use it.
1944   synthetic_child_sp = GetSyntheticChild(name_const_string);
1945   if (!synthetic_child_sp) {
1946     // We haven't made a synthetic array member for expression yet, so lets
1947     // make one and cache it for any future reference.
1948     synthetic_child_sp = GetValueForExpressionPath(
1949         expression, nullptr, nullptr,
1950         GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(
1951             GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
1952                 None));
1953 
1954     // Cache the value if we got one back...
1955     if (synthetic_child_sp.get()) {
1956       // FIXME: this causes a "real" child to end up with its name changed to
1957       // the contents of expression
1958       AddSyntheticChild(name_const_string, synthetic_child_sp.get());
1959       synthetic_child_sp->SetName(
1960           ConstString(SkipLeadingExpressionPathSeparators(expression)));
1961     }
1962   }
1963   return synthetic_child_sp;
1964 }
1965 
CalculateSyntheticValue()1966 void ValueObject::CalculateSyntheticValue() {
1967   TargetSP target_sp(GetTargetSP());
1968   if (target_sp && !target_sp->GetEnableSyntheticValue()) {
1969     m_synthetic_value = nullptr;
1970     return;
1971   }
1972 
1973   lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
1974 
1975   if (!UpdateFormatsIfNeeded() && m_synthetic_value)
1976     return;
1977 
1978   if (m_synthetic_children_sp.get() == nullptr)
1979     return;
1980 
1981   if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
1982     return;
1983 
1984   m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
1985 }
1986 
CalculateDynamicValue(DynamicValueType use_dynamic)1987 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) {
1988   if (use_dynamic == eNoDynamicValues)
1989     return;
1990 
1991   if (!m_dynamic_value && !IsDynamic()) {
1992     ExecutionContext exe_ctx(GetExecutionContextRef());
1993     Process *process = exe_ctx.GetProcessPtr();
1994     if (process && process->IsPossibleDynamicValue(*this)) {
1995       ClearDynamicTypeInformation();
1996       m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
1997     }
1998   }
1999 }
2000 
GetDynamicValue(DynamicValueType use_dynamic)2001 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) {
2002   if (use_dynamic == eNoDynamicValues)
2003     return ValueObjectSP();
2004 
2005   if (!IsDynamic() && m_dynamic_value == nullptr) {
2006     CalculateDynamicValue(use_dynamic);
2007   }
2008   if (m_dynamic_value && m_dynamic_value->GetError().Success())
2009     return m_dynamic_value->GetSP();
2010   else
2011     return ValueObjectSP();
2012 }
2013 
GetSyntheticValue()2014 ValueObjectSP ValueObject::GetSyntheticValue() {
2015   CalculateSyntheticValue();
2016 
2017   if (m_synthetic_value)
2018     return m_synthetic_value->GetSP();
2019   else
2020     return ValueObjectSP();
2021 }
2022 
HasSyntheticValue()2023 bool ValueObject::HasSyntheticValue() {
2024   UpdateFormatsIfNeeded();
2025 
2026   if (m_synthetic_children_sp.get() == nullptr)
2027     return false;
2028 
2029   CalculateSyntheticValue();
2030 
2031   return m_synthetic_value != nullptr;
2032 }
2033 
GetNonBaseClassParent()2034 ValueObject *ValueObject::GetNonBaseClassParent() {
2035   if (GetParent()) {
2036     if (GetParent()->IsBaseClass())
2037       return GetParent()->GetNonBaseClassParent();
2038     else
2039       return GetParent();
2040   }
2041   return nullptr;
2042 }
2043 
IsBaseClass(uint32_t & depth)2044 bool ValueObject::IsBaseClass(uint32_t &depth) {
2045   if (!IsBaseClass()) {
2046     depth = 0;
2047     return false;
2048   }
2049   if (GetParent()) {
2050     GetParent()->IsBaseClass(depth);
2051     depth = depth + 1;
2052     return true;
2053   }
2054   // TODO: a base of no parent? weird..
2055   depth = 1;
2056   return true;
2057 }
2058 
GetExpressionPath(Stream & s,GetExpressionPathFormat epformat)2059 void ValueObject::GetExpressionPath(Stream &s,
2060                                     GetExpressionPathFormat epformat) {
2061   // synthetic children do not actually "exist" as part of the hierarchy, and
2062   // sometimes they are consed up in ways that don't make sense from an
2063   // underlying language/API standpoint. So, use a special code path here to
2064   // return something that can hopefully be used in expression
2065   if (m_flags.m_is_synthetic_children_generated) {
2066     UpdateValueIfNeeded();
2067 
2068     if (m_value.GetValueType() == Value::ValueType::LoadAddress) {
2069       if (IsPointerOrReferenceType()) {
2070         s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
2071                  GetValueAsUnsigned(0));
2072         return;
2073       } else {
2074         uint64_t load_addr =
2075             m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2076         if (load_addr != LLDB_INVALID_ADDRESS) {
2077           s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
2078                    load_addr);
2079           return;
2080         }
2081       }
2082     }
2083 
2084     if (CanProvideValue()) {
2085       s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
2086                GetValueAsCString());
2087       return;
2088     }
2089 
2090     return;
2091   }
2092 
2093   const bool is_deref_of_parent = IsDereferenceOfParent();
2094 
2095   if (is_deref_of_parent &&
2096       epformat == eGetExpressionPathFormatDereferencePointers) {
2097     // this is the original format of GetExpressionPath() producing code like
2098     // *(a_ptr).memberName, which is entirely fine, until you put this into
2099     // StackFrame::GetValueForVariableExpressionPath() which prefers to see
2100     // a_ptr->memberName. the eHonorPointers mode is meant to produce strings
2101     // in this latter format
2102     s.PutCString("*(");
2103   }
2104 
2105   ValueObject *parent = GetParent();
2106 
2107   if (parent)
2108     parent->GetExpressionPath(s, epformat);
2109 
2110   // if we are a deref_of_parent just because we are synthetic array members
2111   // made up to allow ptr[%d] syntax to work in variable printing, then add our
2112   // name ([%d]) to the expression path
2113   if (m_flags.m_is_array_item_for_pointer &&
2114       epformat == eGetExpressionPathFormatHonorPointers)
2115     s.PutCString(m_name.GetStringRef());
2116 
2117   if (!IsBaseClass()) {
2118     if (!is_deref_of_parent) {
2119       ValueObject *non_base_class_parent = GetNonBaseClassParent();
2120       if (non_base_class_parent &&
2121           !non_base_class_parent->GetName().IsEmpty()) {
2122         CompilerType non_base_class_parent_compiler_type =
2123             non_base_class_parent->GetCompilerType();
2124         if (non_base_class_parent_compiler_type) {
2125           if (parent && parent->IsDereferenceOfParent() &&
2126               epformat == eGetExpressionPathFormatHonorPointers) {
2127             s.PutCString("->");
2128           } else {
2129             const uint32_t non_base_class_parent_type_info =
2130                 non_base_class_parent_compiler_type.GetTypeInfo();
2131 
2132             if (non_base_class_parent_type_info & eTypeIsPointer) {
2133               s.PutCString("->");
2134             } else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
2135                        !(non_base_class_parent_type_info & eTypeIsArray)) {
2136               s.PutChar('.');
2137             }
2138           }
2139         }
2140       }
2141 
2142       const char *name = GetName().GetCString();
2143       if (name)
2144         s.PutCString(name);
2145     }
2146   }
2147 
2148   if (is_deref_of_parent &&
2149       epformat == eGetExpressionPathFormatDereferencePointers) {
2150     s.PutChar(')');
2151   }
2152 }
2153 
GetValueForExpressionPath(llvm::StringRef expression,ExpressionPathScanEndReason * reason_to_stop,ExpressionPathEndResultType * final_value_type,const GetValueForExpressionPathOptions & options,ExpressionPathAftermath * final_task_on_target)2154 ValueObjectSP ValueObject::GetValueForExpressionPath(
2155     llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
2156     ExpressionPathEndResultType *final_value_type,
2157     const GetValueForExpressionPathOptions &options,
2158     ExpressionPathAftermath *final_task_on_target) {
2159 
2160   ExpressionPathScanEndReason dummy_reason_to_stop =
2161       ValueObject::eExpressionPathScanEndReasonUnknown;
2162   ExpressionPathEndResultType dummy_final_value_type =
2163       ValueObject::eExpressionPathEndResultTypeInvalid;
2164   ExpressionPathAftermath dummy_final_task_on_target =
2165       ValueObject::eExpressionPathAftermathNothing;
2166 
2167   ValueObjectSP ret_val = GetValueForExpressionPath_Impl(
2168       expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
2169       final_value_type ? final_value_type : &dummy_final_value_type, options,
2170       final_task_on_target ? final_task_on_target
2171                            : &dummy_final_task_on_target);
2172 
2173   if (!final_task_on_target ||
2174       *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
2175     return ret_val;
2176 
2177   if (ret_val.get() &&
2178       ((final_value_type ? *final_value_type : dummy_final_value_type) ==
2179        eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress
2180                                            // of plain objects
2181   {
2182     if ((final_task_on_target ? *final_task_on_target
2183                               : dummy_final_task_on_target) ==
2184         ValueObject::eExpressionPathAftermathDereference) {
2185       Status error;
2186       ValueObjectSP final_value = ret_val->Dereference(error);
2187       if (error.Fail() || !final_value.get()) {
2188         if (reason_to_stop)
2189           *reason_to_stop =
2190               ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2191         if (final_value_type)
2192           *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2193         return ValueObjectSP();
2194       } else {
2195         if (final_task_on_target)
2196           *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2197         return final_value;
2198       }
2199     }
2200     if (*final_task_on_target ==
2201         ValueObject::eExpressionPathAftermathTakeAddress) {
2202       Status error;
2203       ValueObjectSP final_value = ret_val->AddressOf(error);
2204       if (error.Fail() || !final_value.get()) {
2205         if (reason_to_stop)
2206           *reason_to_stop =
2207               ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
2208         if (final_value_type)
2209           *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2210         return ValueObjectSP();
2211       } else {
2212         if (final_task_on_target)
2213           *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2214         return final_value;
2215       }
2216     }
2217   }
2218   return ret_val; // final_task_on_target will still have its original value, so
2219                   // you know I did not do it
2220 }
2221 
GetValueForExpressionPath_Impl(llvm::StringRef expression,ExpressionPathScanEndReason * reason_to_stop,ExpressionPathEndResultType * final_result,const GetValueForExpressionPathOptions & options,ExpressionPathAftermath * what_next)2222 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl(
2223     llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
2224     ExpressionPathEndResultType *final_result,
2225     const GetValueForExpressionPathOptions &options,
2226     ExpressionPathAftermath *what_next) {
2227   ValueObjectSP root = GetSP();
2228 
2229   if (!root)
2230     return nullptr;
2231 
2232   llvm::StringRef remainder = expression;
2233 
2234   while (true) {
2235     llvm::StringRef temp_expression = remainder;
2236 
2237     CompilerType root_compiler_type = root->GetCompilerType();
2238     CompilerType pointee_compiler_type;
2239     Flags pointee_compiler_type_info;
2240 
2241     Flags root_compiler_type_info(
2242         root_compiler_type.GetTypeInfo(&pointee_compiler_type));
2243     if (pointee_compiler_type)
2244       pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
2245 
2246     if (temp_expression.empty()) {
2247       *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2248       return root;
2249     }
2250 
2251     switch (temp_expression.front()) {
2252     case '-': {
2253       temp_expression = temp_expression.drop_front();
2254       if (options.m_check_dot_vs_arrow_syntax &&
2255           root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2256                                                         // use -> on a
2257                                                         // non-pointer and I
2258                                                         // must catch the error
2259       {
2260         *reason_to_stop =
2261             ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
2262         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2263         return ValueObjectSP();
2264       }
2265       if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
2266                                                        // extract an ObjC IVar
2267                                                        // when this is forbidden
2268           root_compiler_type_info.Test(eTypeIsPointer) &&
2269           options.m_no_fragile_ivar) {
2270         *reason_to_stop =
2271             ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
2272         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2273         return ValueObjectSP();
2274       }
2275       if (!temp_expression.starts_with(">")) {
2276         *reason_to_stop =
2277             ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2278         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2279         return ValueObjectSP();
2280       }
2281     }
2282       [[fallthrough]];
2283     case '.': // or fallthrough from ->
2284     {
2285       if (options.m_check_dot_vs_arrow_syntax &&
2286           temp_expression.front() == '.' &&
2287           root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2288                                                         // use . on a pointer
2289                                                         // and I must catch the
2290                                                         // error
2291       {
2292         *reason_to_stop =
2293             ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
2294         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2295         return nullptr;
2296       }
2297       temp_expression = temp_expression.drop_front(); // skip . or >
2298 
2299       size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
2300       if (next_sep_pos == llvm::StringRef::npos) // if no other separator just
2301                                                  // expand this last layer
2302       {
2303         llvm::StringRef child_name = temp_expression;
2304         ValueObjectSP child_valobj_sp =
2305             root->GetChildMemberWithName(child_name);
2306 
2307         if (child_valobj_sp.get()) // we know we are done, so just return
2308         {
2309           *reason_to_stop =
2310               ValueObject::eExpressionPathScanEndReasonEndOfString;
2311           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2312           return child_valobj_sp;
2313         } else {
2314           switch (options.m_synthetic_children_traversal) {
2315           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2316               None:
2317             break;
2318           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2319               FromSynthetic:
2320             if (root->IsSynthetic()) {
2321               child_valobj_sp = root->GetNonSyntheticValue();
2322               if (child_valobj_sp.get())
2323                 child_valobj_sp =
2324                     child_valobj_sp->GetChildMemberWithName(child_name);
2325             }
2326             break;
2327           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2328               ToSynthetic:
2329             if (!root->IsSynthetic()) {
2330               child_valobj_sp = root->GetSyntheticValue();
2331               if (child_valobj_sp.get())
2332                 child_valobj_sp =
2333                     child_valobj_sp->GetChildMemberWithName(child_name);
2334             }
2335             break;
2336           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2337               Both:
2338             if (root->IsSynthetic()) {
2339               child_valobj_sp = root->GetNonSyntheticValue();
2340               if (child_valobj_sp.get())
2341                 child_valobj_sp =
2342                     child_valobj_sp->GetChildMemberWithName(child_name);
2343             } else {
2344               child_valobj_sp = root->GetSyntheticValue();
2345               if (child_valobj_sp.get())
2346                 child_valobj_sp =
2347                     child_valobj_sp->GetChildMemberWithName(child_name);
2348             }
2349             break;
2350           }
2351         }
2352 
2353         // if we are here and options.m_no_synthetic_children is true,
2354         // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2355         // branch, and return an error
2356         if (child_valobj_sp.get()) // if it worked, just return
2357         {
2358           *reason_to_stop =
2359               ValueObject::eExpressionPathScanEndReasonEndOfString;
2360           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2361           return child_valobj_sp;
2362         } else {
2363           *reason_to_stop =
2364               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2365           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2366           return nullptr;
2367         }
2368       } else // other layers do expand
2369       {
2370         llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
2371         llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos);
2372 
2373         ValueObjectSP child_valobj_sp =
2374             root->GetChildMemberWithName(child_name);
2375         if (child_valobj_sp.get()) // store the new root and move on
2376         {
2377           root = child_valobj_sp;
2378           remainder = next_separator;
2379           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2380           continue;
2381         } else {
2382           switch (options.m_synthetic_children_traversal) {
2383           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2384               None:
2385             break;
2386           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2387               FromSynthetic:
2388             if (root->IsSynthetic()) {
2389               child_valobj_sp = root->GetNonSyntheticValue();
2390               if (child_valobj_sp.get())
2391                 child_valobj_sp =
2392                     child_valobj_sp->GetChildMemberWithName(child_name);
2393             }
2394             break;
2395           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2396               ToSynthetic:
2397             if (!root->IsSynthetic()) {
2398               child_valobj_sp = root->GetSyntheticValue();
2399               if (child_valobj_sp.get())
2400                 child_valobj_sp =
2401                     child_valobj_sp->GetChildMemberWithName(child_name);
2402             }
2403             break;
2404           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2405               Both:
2406             if (root->IsSynthetic()) {
2407               child_valobj_sp = root->GetNonSyntheticValue();
2408               if (child_valobj_sp.get())
2409                 child_valobj_sp =
2410                     child_valobj_sp->GetChildMemberWithName(child_name);
2411             } else {
2412               child_valobj_sp = root->GetSyntheticValue();
2413               if (child_valobj_sp.get())
2414                 child_valobj_sp =
2415                     child_valobj_sp->GetChildMemberWithName(child_name);
2416             }
2417             break;
2418           }
2419         }
2420 
2421         // if we are here and options.m_no_synthetic_children is true,
2422         // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2423         // branch, and return an error
2424         if (child_valobj_sp.get()) // if it worked, move on
2425         {
2426           root = child_valobj_sp;
2427           remainder = next_separator;
2428           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2429           continue;
2430         } else {
2431           *reason_to_stop =
2432               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2433           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2434           return nullptr;
2435         }
2436       }
2437       break;
2438     }
2439     case '[': {
2440       if (!root_compiler_type_info.Test(eTypeIsArray) &&
2441           !root_compiler_type_info.Test(eTypeIsPointer) &&
2442           !root_compiler_type_info.Test(
2443               eTypeIsVector)) // if this is not a T[] nor a T*
2444       {
2445         if (!root_compiler_type_info.Test(
2446                 eTypeIsScalar)) // if this is not even a scalar...
2447         {
2448           if (options.m_synthetic_children_traversal ==
2449               GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2450                   None) // ...only chance left is synthetic
2451           {
2452             *reason_to_stop =
2453                 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
2454             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2455             return ValueObjectSP();
2456           }
2457         } else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
2458                                                       // check that we can
2459                                                       // expand bitfields
2460         {
2461           *reason_to_stop =
2462               ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
2463           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2464           return ValueObjectSP();
2465         }
2466       }
2467       if (temp_expression[1] ==
2468           ']') // if this is an unbounded range it only works for arrays
2469       {
2470         if (!root_compiler_type_info.Test(eTypeIsArray)) {
2471           *reason_to_stop =
2472               ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2473           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2474           return nullptr;
2475         } else // even if something follows, we cannot expand unbounded ranges,
2476                // just let the caller do it
2477         {
2478           *reason_to_stop =
2479               ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2480           *final_result =
2481               ValueObject::eExpressionPathEndResultTypeUnboundedRange;
2482           return root;
2483         }
2484       }
2485 
2486       size_t close_bracket_position = temp_expression.find(']', 1);
2487       if (close_bracket_position ==
2488           llvm::StringRef::npos) // if there is no ], this is a syntax error
2489       {
2490         *reason_to_stop =
2491             ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2492         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2493         return nullptr;
2494       }
2495 
2496       llvm::StringRef bracket_expr =
2497           temp_expression.slice(1, close_bracket_position);
2498 
2499       // If this was an empty expression it would have been caught by the if
2500       // above.
2501       assert(!bracket_expr.empty());
2502 
2503       if (!bracket_expr.contains('-')) {
2504         // if no separator, this is of the form [N].  Note that this cannot be
2505         // an unbounded range of the form [], because that case was handled
2506         // above with an unconditional return.
2507         unsigned long index = 0;
2508         if (bracket_expr.getAsInteger(0, index)) {
2509           *reason_to_stop =
2510               ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2511           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2512           return nullptr;
2513         }
2514 
2515         // from here on we do have a valid index
2516         if (root_compiler_type_info.Test(eTypeIsArray)) {
2517           ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index);
2518           if (!child_valobj_sp)
2519             child_valobj_sp = root->GetSyntheticArrayMember(index, true);
2520           if (!child_valobj_sp)
2521             if (root->HasSyntheticValue() &&
2522                 llvm::expectedToStdOptional(
2523                     root->GetSyntheticValue()->GetNumChildren())
2524                         .value_or(0) > index)
2525               child_valobj_sp =
2526                   root->GetSyntheticValue()->GetChildAtIndex(index);
2527           if (child_valobj_sp) {
2528             root = child_valobj_sp;
2529             remainder =
2530                 temp_expression.substr(close_bracket_position + 1); // skip ]
2531             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2532             continue;
2533           } else {
2534             *reason_to_stop =
2535                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2536             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2537             return nullptr;
2538           }
2539         } else if (root_compiler_type_info.Test(eTypeIsPointer)) {
2540           if (*what_next ==
2541                   ValueObject::
2542                       eExpressionPathAftermathDereference && // if this is a
2543                                                              // ptr-to-scalar, I
2544                                                              // am accessing it
2545                                                              // by index and I
2546                                                              // would have
2547                                                              // deref'ed anyway,
2548                                                              // then do it now
2549                                                              // and use this as
2550                                                              // a bitfield
2551               pointee_compiler_type_info.Test(eTypeIsScalar)) {
2552             Status error;
2553             root = root->Dereference(error);
2554             if (error.Fail() || !root) {
2555               *reason_to_stop =
2556                   ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2557               *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2558               return nullptr;
2559             } else {
2560               *what_next = eExpressionPathAftermathNothing;
2561               continue;
2562             }
2563           } else {
2564             if (root->GetCompilerType().GetMinimumLanguage() ==
2565                     eLanguageTypeObjC &&
2566                 pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
2567                 root->HasSyntheticValue() &&
2568                 (options.m_synthetic_children_traversal ==
2569                      GetValueForExpressionPathOptions::
2570                          SyntheticChildrenTraversal::ToSynthetic ||
2571                  options.m_synthetic_children_traversal ==
2572                      GetValueForExpressionPathOptions::
2573                          SyntheticChildrenTraversal::Both)) {
2574               root = root->GetSyntheticValue()->GetChildAtIndex(index);
2575             } else
2576               root = root->GetSyntheticArrayMember(index, true);
2577             if (!root) {
2578               *reason_to_stop =
2579                   ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2580               *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2581               return nullptr;
2582             } else {
2583               remainder =
2584                   temp_expression.substr(close_bracket_position + 1); // skip ]
2585               *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2586               continue;
2587             }
2588           }
2589         } else if (root_compiler_type_info.Test(eTypeIsScalar)) {
2590           root = root->GetSyntheticBitFieldChild(index, index, true);
2591           if (!root) {
2592             *reason_to_stop =
2593                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2594             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2595             return nullptr;
2596           } else // we do not know how to expand members of bitfields, so we
2597                  // just return and let the caller do any further processing
2598           {
2599             *reason_to_stop = ValueObject::
2600                 eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2601             *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2602             return root;
2603           }
2604         } else if (root_compiler_type_info.Test(eTypeIsVector)) {
2605           root = root->GetChildAtIndex(index);
2606           if (!root) {
2607             *reason_to_stop =
2608                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2609             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2610             return ValueObjectSP();
2611           } else {
2612             remainder =
2613                 temp_expression.substr(close_bracket_position + 1); // skip ]
2614             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2615             continue;
2616           }
2617         } else if (options.m_synthetic_children_traversal ==
2618                        GetValueForExpressionPathOptions::
2619                            SyntheticChildrenTraversal::ToSynthetic ||
2620                    options.m_synthetic_children_traversal ==
2621                        GetValueForExpressionPathOptions::
2622                            SyntheticChildrenTraversal::Both) {
2623           if (root->HasSyntheticValue())
2624             root = root->GetSyntheticValue();
2625           else if (!root->IsSynthetic()) {
2626             *reason_to_stop =
2627                 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2628             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2629             return nullptr;
2630           }
2631           // if we are here, then root itself is a synthetic VO.. should be
2632           // good to go
2633 
2634           if (!root) {
2635             *reason_to_stop =
2636                 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2637             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2638             return nullptr;
2639           }
2640           root = root->GetChildAtIndex(index);
2641           if (!root) {
2642             *reason_to_stop =
2643                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2644             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2645             return nullptr;
2646           } else {
2647             remainder =
2648                 temp_expression.substr(close_bracket_position + 1); // skip ]
2649             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2650             continue;
2651           }
2652         } else {
2653           *reason_to_stop =
2654               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2655           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2656           return nullptr;
2657         }
2658       } else {
2659         // we have a low and a high index
2660         llvm::StringRef sleft, sright;
2661         unsigned long low_index, high_index;
2662         std::tie(sleft, sright) = bracket_expr.split('-');
2663         if (sleft.getAsInteger(0, low_index) ||
2664             sright.getAsInteger(0, high_index)) {
2665           *reason_to_stop =
2666               ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2667           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2668           return nullptr;
2669         }
2670 
2671         if (low_index > high_index) // swap indices if required
2672           std::swap(low_index, high_index);
2673 
2674         if (root_compiler_type_info.Test(
2675                 eTypeIsScalar)) // expansion only works for scalars
2676         {
2677           root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
2678           if (!root) {
2679             *reason_to_stop =
2680                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2681             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2682             return nullptr;
2683           } else {
2684             *reason_to_stop = ValueObject::
2685                 eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2686             *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2687             return root;
2688           }
2689         } else if (root_compiler_type_info.Test(
2690                        eTypeIsPointer) && // if this is a ptr-to-scalar, I am
2691                                           // accessing it by index and I would
2692                                           // have deref'ed anyway, then do it
2693                                           // now and use this as a bitfield
2694                    *what_next ==
2695                        ValueObject::eExpressionPathAftermathDereference &&
2696                    pointee_compiler_type_info.Test(eTypeIsScalar)) {
2697           Status error;
2698           root = root->Dereference(error);
2699           if (error.Fail() || !root) {
2700             *reason_to_stop =
2701                 ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2702             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2703             return nullptr;
2704           } else {
2705             *what_next = ValueObject::eExpressionPathAftermathNothing;
2706             continue;
2707           }
2708         } else {
2709           *reason_to_stop =
2710               ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2711           *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
2712           return root;
2713         }
2714       }
2715       break;
2716     }
2717     default: // some non-separator is in the way
2718     {
2719       *reason_to_stop =
2720           ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2721       *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2722       return nullptr;
2723     }
2724     }
2725   }
2726 }
2727 
Dump(Stream & s)2728 llvm::Error ValueObject::Dump(Stream &s) {
2729   return Dump(s, DumpValueObjectOptions(*this));
2730 }
2731 
Dump(Stream & s,const DumpValueObjectOptions & options)2732 llvm::Error ValueObject::Dump(Stream &s,
2733                               const DumpValueObjectOptions &options) {
2734   ValueObjectPrinter printer(*this, &s, options);
2735   return printer.PrintValueObject();
2736 }
2737 
CreateConstantValue(ConstString name)2738 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) {
2739   ValueObjectSP valobj_sp;
2740 
2741   if (UpdateValueIfNeeded(false) && m_error.Success()) {
2742     ExecutionContext exe_ctx(GetExecutionContextRef());
2743 
2744     DataExtractor data;
2745     data.SetByteOrder(m_data.GetByteOrder());
2746     data.SetAddressByteSize(m_data.GetAddressByteSize());
2747 
2748     if (IsBitfield()) {
2749       Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
2750       m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get());
2751     } else
2752       m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
2753 
2754     valobj_sp = ValueObjectConstResult::Create(
2755         exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
2756         GetAddressOf());
2757   }
2758 
2759   if (!valobj_sp) {
2760     ExecutionContext exe_ctx(GetExecutionContextRef());
2761     valobj_sp = ValueObjectConstResult::Create(
2762         exe_ctx.GetBestExecutionContextScope(), m_error);
2763   }
2764   return valobj_sp;
2765 }
2766 
GetQualifiedRepresentationIfAvailable(lldb::DynamicValueType dynValue,bool synthValue)2767 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable(
2768     lldb::DynamicValueType dynValue, bool synthValue) {
2769   ValueObjectSP result_sp;
2770   switch (dynValue) {
2771   case lldb::eDynamicCanRunTarget:
2772   case lldb::eDynamicDontRunTarget: {
2773     if (!IsDynamic())
2774       result_sp = GetDynamicValue(dynValue);
2775   } break;
2776   case lldb::eNoDynamicValues: {
2777     if (IsDynamic())
2778       result_sp = GetStaticValue();
2779   } break;
2780   }
2781   if (!result_sp)
2782     result_sp = GetSP();
2783   assert(result_sp);
2784 
2785   bool is_synthetic = result_sp->IsSynthetic();
2786   if (synthValue && !is_synthetic) {
2787     if (auto synth_sp = result_sp->GetSyntheticValue())
2788       return synth_sp;
2789   }
2790   if (!synthValue && is_synthetic) {
2791     if (auto non_synth_sp = result_sp->GetNonSyntheticValue())
2792       return non_synth_sp;
2793   }
2794 
2795   return result_sp;
2796 }
2797 
Dereference(Status & error)2798 ValueObjectSP ValueObject::Dereference(Status &error) {
2799   if (m_deref_valobj)
2800     return m_deref_valobj->GetSP();
2801 
2802   const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
2803   if (is_pointer_or_reference_type) {
2804     bool omit_empty_base_classes = true;
2805     bool ignore_array_bounds = false;
2806 
2807     std::string child_name_str;
2808     uint32_t child_byte_size = 0;
2809     int32_t child_byte_offset = 0;
2810     uint32_t child_bitfield_bit_size = 0;
2811     uint32_t child_bitfield_bit_offset = 0;
2812     bool child_is_base_class = false;
2813     bool child_is_deref_of_parent = false;
2814     const bool transparent_pointers = false;
2815     CompilerType compiler_type = GetCompilerType();
2816     uint64_t language_flags = 0;
2817 
2818     ExecutionContext exe_ctx(GetExecutionContextRef());
2819 
2820     CompilerType child_compiler_type;
2821     auto child_compiler_type_or_err = compiler_type.GetChildCompilerTypeAtIndex(
2822         &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
2823         ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
2824         child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
2825         child_is_deref_of_parent, this, language_flags);
2826     if (!child_compiler_type_or_err)
2827       LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
2828                      child_compiler_type_or_err.takeError(),
2829                      "could not find child: {0}");
2830     else
2831       child_compiler_type = *child_compiler_type_or_err;
2832 
2833     if (child_compiler_type && child_byte_size) {
2834       ConstString child_name;
2835       if (!child_name_str.empty())
2836         child_name.SetCString(child_name_str.c_str());
2837 
2838       m_deref_valobj = new ValueObjectChild(
2839           *this, child_compiler_type, child_name, child_byte_size,
2840           child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
2841           child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
2842           language_flags);
2843     }
2844 
2845     // In case of incomplete child compiler type, use the pointee type and try
2846     // to recreate a new ValueObjectChild using it.
2847     if (!m_deref_valobj) {
2848       // FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g.
2849       // `std::vector<int> &`). Remove ObjC restriction once that's resolved.
2850       if (Language::LanguageIsObjC(GetPreferredDisplayLanguage()) &&
2851           HasSyntheticValue()) {
2852         child_compiler_type = compiler_type.GetPointeeType();
2853 
2854         if (child_compiler_type) {
2855           ConstString child_name;
2856           if (!child_name_str.empty())
2857             child_name.SetCString(child_name_str.c_str());
2858 
2859           m_deref_valobj = new ValueObjectChild(
2860               *this, child_compiler_type, child_name, child_byte_size,
2861               child_byte_offset, child_bitfield_bit_size,
2862               child_bitfield_bit_offset, child_is_base_class,
2863               child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
2864         }
2865       }
2866     }
2867 
2868   } else if (HasSyntheticValue()) {
2869     m_deref_valobj =
2870         GetSyntheticValue()->GetChildMemberWithName("$$dereference$$").get();
2871   } else if (IsSynthetic()) {
2872     m_deref_valobj = GetChildMemberWithName("$$dereference$$").get();
2873   }
2874 
2875   if (m_deref_valobj) {
2876     error.Clear();
2877     return m_deref_valobj->GetSP();
2878   } else {
2879     StreamString strm;
2880     GetExpressionPath(strm);
2881 
2882     if (is_pointer_or_reference_type)
2883       error.SetErrorStringWithFormat("dereference failed: (%s) %s",
2884                                      GetTypeName().AsCString("<invalid type>"),
2885                                      strm.GetData());
2886     else
2887       error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s",
2888                                      GetTypeName().AsCString("<invalid type>"),
2889                                      strm.GetData());
2890     return ValueObjectSP();
2891   }
2892 }
2893 
AddressOf(Status & error)2894 ValueObjectSP ValueObject::AddressOf(Status &error) {
2895   if (m_addr_of_valobj_sp)
2896     return m_addr_of_valobj_sp;
2897 
2898   AddressType address_type = eAddressTypeInvalid;
2899   const bool scalar_is_load_address = false;
2900   addr_t addr = GetAddressOf(scalar_is_load_address, &address_type);
2901   error.Clear();
2902   if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) {
2903     switch (address_type) {
2904     case eAddressTypeInvalid: {
2905       StreamString expr_path_strm;
2906       GetExpressionPath(expr_path_strm);
2907       error.SetErrorStringWithFormat("'%s' is not in memory",
2908                                      expr_path_strm.GetData());
2909     } break;
2910 
2911     case eAddressTypeFile:
2912     case eAddressTypeLoad: {
2913       CompilerType compiler_type = GetCompilerType();
2914       if (compiler_type) {
2915         std::string name(1, '&');
2916         name.append(m_name.AsCString(""));
2917         ExecutionContext exe_ctx(GetExecutionContextRef());
2918         m_addr_of_valobj_sp = ValueObjectConstResult::Create(
2919             exe_ctx.GetBestExecutionContextScope(),
2920             compiler_type.GetPointerType(), ConstString(name.c_str()), addr,
2921             eAddressTypeInvalid, m_data.GetAddressByteSize());
2922       }
2923     } break;
2924     default:
2925       break;
2926     }
2927   } else {
2928     StreamString expr_path_strm;
2929     GetExpressionPath(expr_path_strm);
2930     error.SetErrorStringWithFormat("'%s' doesn't have a valid address",
2931                                    expr_path_strm.GetData());
2932   }
2933 
2934   return m_addr_of_valobj_sp;
2935 }
2936 
DoCast(const CompilerType & compiler_type)2937 ValueObjectSP ValueObject::DoCast(const CompilerType &compiler_type) {
2938     return ValueObjectCast::Create(*this, GetName(), compiler_type);
2939 }
2940 
Cast(const CompilerType & compiler_type)2941 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) {
2942   // Only allow casts if the original type is equal or larger than the cast
2943   // type, unless we know this is a load address.  Getting the size wrong for
2944   // a host side storage could leak lldb memory, so we absolutely want to
2945   // prevent that.  We may not always get the right value, for instance if we
2946   // have an expression result value that's copied into a storage location in
2947   // the target may not have copied enough memory.  I'm not trying to fix that
2948   // here, I'm just making Cast from a smaller to a larger possible in all the
2949   // cases where that doesn't risk making a Value out of random lldb memory.
2950   // You have to check the ValueObject's Value for the address types, since
2951   // ValueObjects that use live addresses will tell you they fetch data from the
2952   // live address, but once they are made, they actually don't.
2953   // FIXME: Can we make ValueObject's with a live address fetch "more data" from
2954   // the live address if it is still valid?
2955 
2956   Status error;
2957   CompilerType my_type = GetCompilerType();
2958 
2959   ExecutionContextScope *exe_scope
2960       = ExecutionContext(GetExecutionContextRef())
2961           .GetBestExecutionContextScope();
2962   if (compiler_type.GetByteSize(exe_scope)
2963       <= GetCompilerType().GetByteSize(exe_scope)
2964       || m_value.GetValueType() == Value::ValueType::LoadAddress)
2965         return DoCast(compiler_type);
2966 
2967   error.SetErrorString("Can only cast to a type that is equal to or smaller "
2968                        "than the orignal type.");
2969 
2970   return ValueObjectConstResult::Create(
2971       ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(),
2972                        error);
2973 }
2974 
Clone(ConstString new_name)2975 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) {
2976   return ValueObjectCast::Create(*this, new_name, GetCompilerType());
2977 }
2978 
CastPointerType(const char * name,CompilerType & compiler_type)2979 ValueObjectSP ValueObject::CastPointerType(const char *name,
2980                                            CompilerType &compiler_type) {
2981   ValueObjectSP valobj_sp;
2982   AddressType address_type;
2983   addr_t ptr_value = GetPointerValue(&address_type);
2984 
2985   if (ptr_value != LLDB_INVALID_ADDRESS) {
2986     Address ptr_addr(ptr_value);
2987     ExecutionContext exe_ctx(GetExecutionContextRef());
2988     valobj_sp = ValueObjectMemory::Create(
2989         exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
2990   }
2991   return valobj_sp;
2992 }
2993 
CastPointerType(const char * name,TypeSP & type_sp)2994 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) {
2995   ValueObjectSP valobj_sp;
2996   AddressType address_type;
2997   addr_t ptr_value = GetPointerValue(&address_type);
2998 
2999   if (ptr_value != LLDB_INVALID_ADDRESS) {
3000     Address ptr_addr(ptr_value);
3001     ExecutionContext exe_ctx(GetExecutionContextRef());
3002     valobj_sp = ValueObjectMemory::Create(
3003         exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
3004   }
3005   return valobj_sp;
3006 }
3007 
GetLoadAddress()3008 lldb::addr_t ValueObject::GetLoadAddress() {
3009   lldb::addr_t addr_value = LLDB_INVALID_ADDRESS;
3010   if (auto target_sp = GetTargetSP()) {
3011     const bool scalar_is_load_address = true;
3012     AddressType addr_type;
3013     addr_value = GetAddressOf(scalar_is_load_address, &addr_type);
3014     if (addr_type == eAddressTypeFile) {
3015       lldb::ModuleSP module_sp(GetModule());
3016       if (!module_sp)
3017         addr_value = LLDB_INVALID_ADDRESS;
3018       else {
3019         Address tmp_addr;
3020         module_sp->ResolveFileAddress(addr_value, tmp_addr);
3021         addr_value = tmp_addr.GetLoadAddress(target_sp.get());
3022       }
3023     } else if (addr_type == eAddressTypeHost ||
3024                addr_type == eAddressTypeInvalid)
3025       addr_value = LLDB_INVALID_ADDRESS;
3026   }
3027   return addr_value;
3028 }
3029 
CastDerivedToBaseType(CompilerType type,const llvm::ArrayRef<uint32_t> & base_type_indices)3030 llvm::Expected<lldb::ValueObjectSP> ValueObject::CastDerivedToBaseType(
3031     CompilerType type, const llvm::ArrayRef<uint32_t> &base_type_indices) {
3032   // Make sure the starting type and the target type are both valid for this
3033   // type of cast; otherwise return the shared pointer to the original
3034   // (unchanged) ValueObject.
3035   if (!type.IsPointerType() && !type.IsReferenceType())
3036     return llvm::make_error<llvm::StringError>(
3037         "Invalid target type: should be a pointer or a reference",
3038         llvm::inconvertibleErrorCode());
3039 
3040   CompilerType start_type = GetCompilerType();
3041   if (start_type.IsReferenceType())
3042     start_type = start_type.GetNonReferenceType();
3043 
3044   auto target_record_type =
3045       type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
3046   auto start_record_type =
3047       start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
3048 
3049   if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
3050     return llvm::make_error<llvm::StringError>(
3051         "Underlying start & target types should be record types",
3052         llvm::inconvertibleErrorCode());
3053 
3054   if (target_record_type.CompareTypes(start_record_type))
3055     return llvm::make_error<llvm::StringError>(
3056         "Underlying start & target types should be different",
3057         llvm::inconvertibleErrorCode());
3058 
3059   if (base_type_indices.empty())
3060     return llvm::make_error<llvm::StringError>(
3061         "Children sequence must be non-empty", llvm::inconvertibleErrorCode());
3062 
3063   // Both the starting & target types are valid for the cast, and the list of
3064   // base class indices is non-empty, so we can proceed with the cast.
3065 
3066   lldb::TargetSP target = GetTargetSP();
3067   // The `value` can be a pointer, but GetChildAtIndex works for pointers too.
3068   lldb::ValueObjectSP inner_value = GetSP();
3069 
3070   for (const uint32_t i : base_type_indices)
3071     // Create synthetic value if needed.
3072     inner_value =
3073         inner_value->GetChildAtIndex(i, /*can_create_synthetic*/ true);
3074 
3075   // At this point type of `inner_value` should be the dereferenced target
3076   // type.
3077   CompilerType inner_value_type = inner_value->GetCompilerType();
3078   if (type.IsPointerType()) {
3079     if (!inner_value_type.CompareTypes(type.GetPointeeType()))
3080       return llvm::make_error<llvm::StringError>(
3081           "casted value doesn't match the desired type",
3082           llvm::inconvertibleErrorCode());
3083 
3084     uintptr_t addr = inner_value->GetLoadAddress();
3085     llvm::StringRef name = "";
3086     ExecutionContext exe_ctx(target.get(), false);
3087     return ValueObject::CreateValueObjectFromAddress(name, addr, exe_ctx, type,
3088                                                      /* do deref */ false);
3089   }
3090 
3091   // At this point the target type should be a reference.
3092   if (!inner_value_type.CompareTypes(type.GetNonReferenceType()))
3093     return llvm::make_error<llvm::StringError>(
3094         "casted value doesn't match the desired type",
3095         llvm::inconvertibleErrorCode());
3096 
3097   return lldb::ValueObjectSP(inner_value->Cast(type.GetNonReferenceType()));
3098 }
3099 
3100 llvm::Expected<lldb::ValueObjectSP>
CastBaseToDerivedType(CompilerType type,uint64_t offset)3101 ValueObject::CastBaseToDerivedType(CompilerType type, uint64_t offset) {
3102   // Make sure the starting type and the target type are both valid for this
3103   // type of cast; otherwise return the shared pointer to the original
3104   // (unchanged) ValueObject.
3105   if (!type.IsPointerType() && !type.IsReferenceType())
3106     return llvm::make_error<llvm::StringError>(
3107         "Invalid target type: should be a pointer or a reference",
3108         llvm::inconvertibleErrorCode());
3109 
3110   CompilerType start_type = GetCompilerType();
3111   if (start_type.IsReferenceType())
3112     start_type = start_type.GetNonReferenceType();
3113 
3114   auto target_record_type =
3115       type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
3116   auto start_record_type =
3117       start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
3118 
3119   if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
3120     return llvm::make_error<llvm::StringError>(
3121         "Underlying start & target types should be record types",
3122         llvm::inconvertibleErrorCode());
3123 
3124   if (target_record_type.CompareTypes(start_record_type))
3125     return llvm::make_error<llvm::StringError>(
3126         "Underlying start & target types should be different",
3127         llvm::inconvertibleErrorCode());
3128 
3129   CompilerType virtual_base;
3130   if (target_record_type.IsVirtualBase(start_record_type, &virtual_base)) {
3131     if (!virtual_base.IsValid())
3132       return llvm::make_error<llvm::StringError>(
3133           "virtual base should be valid", llvm::inconvertibleErrorCode());
3134     return llvm::make_error<llvm::StringError>(
3135         llvm::Twine("cannot cast " + start_type.TypeDescription() + " to " +
3136                     type.TypeDescription() + " via virtual base " +
3137                     virtual_base.TypeDescription()),
3138         llvm::inconvertibleErrorCode());
3139   }
3140 
3141   // Both the starting & target types are valid for the cast,  so we can
3142   // proceed with the cast.
3143 
3144   lldb::TargetSP target = GetTargetSP();
3145   auto pointer_type =
3146       type.IsPointerType() ? type : type.GetNonReferenceType().GetPointerType();
3147 
3148   uintptr_t addr =
3149       type.IsPointerType() ? GetValueAsUnsigned(0) : GetLoadAddress();
3150 
3151   llvm::StringRef name = "";
3152   ExecutionContext exe_ctx(target.get(), false);
3153   lldb::ValueObjectSP value = ValueObject::CreateValueObjectFromAddress(
3154       name, addr - offset, exe_ctx, pointer_type, /* do_deref */ false);
3155 
3156   if (type.IsPointerType())
3157     return value;
3158 
3159   // At this point the target type is a reference. Since `value` is a pointer,
3160   // it has to be dereferenced.
3161   Status error;
3162   return value->Dereference(error);
3163 }
3164 
CastToBasicType(CompilerType type)3165 lldb::ValueObjectSP ValueObject::CastToBasicType(CompilerType type) {
3166   bool is_scalar = GetCompilerType().IsScalarType();
3167   bool is_enum = GetCompilerType().IsEnumerationType();
3168   bool is_pointer =
3169       GetCompilerType().IsPointerType() || GetCompilerType().IsNullPtrType();
3170   bool is_float = GetCompilerType().IsFloat();
3171   bool is_integer = GetCompilerType().IsInteger();
3172 
3173   if (!type.IsScalarType()) {
3174     m_error.SetErrorString("target type must be a scalar");
3175     return GetSP();
3176   }
3177 
3178   if (!is_scalar && !is_enum && !is_pointer) {
3179     m_error.SetErrorString("argument must be a scalar, enum, or pointer");
3180     return GetSP();
3181   }
3182 
3183   lldb::TargetSP target = GetTargetSP();
3184   uint64_t type_byte_size = 0;
3185   uint64_t val_byte_size = 0;
3186   if (auto temp = type.GetByteSize(target.get()))
3187     type_byte_size = temp.value();
3188   if (auto temp = GetCompilerType().GetByteSize(target.get()))
3189     val_byte_size = temp.value();
3190 
3191   if (is_pointer) {
3192     if (!type.IsInteger() && !type.IsBoolean()) {
3193       m_error.SetErrorString("target type must be an integer or boolean");
3194       return GetSP();
3195     }
3196     if (!type.IsBoolean() && type_byte_size < val_byte_size) {
3197       m_error.SetErrorString(
3198           "target type cannot be smaller than the pointer type");
3199       return GetSP();
3200     }
3201   }
3202 
3203   if (type.IsBoolean()) {
3204     if (!is_scalar || is_integer)
3205       return ValueObject::CreateValueObjectFromBool(
3206           target, GetValueAsUnsigned(0) != 0, "result");
3207     else if (is_scalar && is_float) {
3208       auto float_value_or_err = GetValueAsAPFloat();
3209       if (float_value_or_err)
3210         return ValueObject::CreateValueObjectFromBool(
3211             target, !float_value_or_err->isZero(), "result");
3212       else {
3213         m_error.SetErrorStringWithFormat(
3214             "cannot get value as APFloat: %s",
3215             llvm::toString(float_value_or_err.takeError()).c_str());
3216         return GetSP();
3217       }
3218     }
3219   }
3220 
3221   if (type.IsInteger()) {
3222     if (!is_scalar || is_integer) {
3223       auto int_value_or_err = GetValueAsAPSInt();
3224       if (int_value_or_err) {
3225         // Get the value as APSInt and extend or truncate it to the requested
3226         // size.
3227         llvm::APSInt ext =
3228             int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
3229         return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
3230                                                        "result");
3231       } else {
3232         m_error.SetErrorStringWithFormat(
3233             "cannot get value as APSInt: %s",
3234             llvm::toString(int_value_or_err.takeError()).c_str());
3235         ;
3236         return GetSP();
3237       }
3238     } else if (is_scalar && is_float) {
3239       llvm::APSInt integer(type_byte_size * CHAR_BIT, !type.IsSigned());
3240       bool is_exact;
3241       auto float_value_or_err = GetValueAsAPFloat();
3242       if (float_value_or_err) {
3243         llvm::APFloatBase::opStatus status =
3244             float_value_or_err->convertToInteger(
3245                 integer, llvm::APFloat::rmTowardZero, &is_exact);
3246 
3247         // Casting floating point values that are out of bounds of the target
3248         // type is undefined behaviour.
3249         if (status & llvm::APFloatBase::opInvalidOp) {
3250           m_error.SetErrorStringWithFormat(
3251               "invalid type cast detected: %s",
3252               llvm::toString(float_value_or_err.takeError()).c_str());
3253           return GetSP();
3254         }
3255         return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
3256                                                        "result");
3257       }
3258     }
3259   }
3260 
3261   if (type.IsFloat()) {
3262     if (!is_scalar) {
3263       auto int_value_or_err = GetValueAsAPSInt();
3264       if (int_value_or_err) {
3265         llvm::APSInt ext =
3266             int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
3267         Scalar scalar_int(ext);
3268         llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
3269             type.GetCanonicalType().GetBasicTypeEnumeration());
3270         return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3271                                                          "result");
3272       } else {
3273         m_error.SetErrorStringWithFormat(
3274             "cannot get value as APSInt: %s",
3275             llvm::toString(int_value_or_err.takeError()).c_str());
3276         return GetSP();
3277       }
3278     } else {
3279       if (is_integer) {
3280         auto int_value_or_err = GetValueAsAPSInt();
3281         if (int_value_or_err) {
3282           Scalar scalar_int(*int_value_or_err);
3283           llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
3284               type.GetCanonicalType().GetBasicTypeEnumeration());
3285           return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3286                                                            "result");
3287         } else {
3288           m_error.SetErrorStringWithFormat(
3289               "cannot get value as APSInt: %s",
3290               llvm::toString(int_value_or_err.takeError()).c_str());
3291           return GetSP();
3292         }
3293       }
3294       if (is_float) {
3295         auto float_value_or_err = GetValueAsAPFloat();
3296         if (float_value_or_err) {
3297           Scalar scalar_float(*float_value_or_err);
3298           llvm::APFloat f = scalar_float.CreateAPFloatFromAPFloat(
3299               type.GetCanonicalType().GetBasicTypeEnumeration());
3300           return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3301                                                            "result");
3302         } else {
3303           m_error.SetErrorStringWithFormat(
3304               "cannot get value as APFloat: %s",
3305               llvm::toString(float_value_or_err.takeError()).c_str());
3306           return GetSP();
3307         }
3308       }
3309     }
3310   }
3311 
3312   m_error.SetErrorString("Unable to perform requested cast");
3313   return GetSP();
3314 }
3315 
CastToEnumType(CompilerType type)3316 lldb::ValueObjectSP ValueObject::CastToEnumType(CompilerType type) {
3317   bool is_enum = GetCompilerType().IsEnumerationType();
3318   bool is_integer = GetCompilerType().IsInteger();
3319   bool is_float = GetCompilerType().IsFloat();
3320 
3321   if (!is_enum && !is_integer && !is_float) {
3322     m_error.SetErrorString("argument must be an integer, a float, or an enum");
3323     return GetSP();
3324   }
3325 
3326   if (!type.IsEnumerationType()) {
3327     m_error.SetErrorString("target type must be an enum");
3328     return GetSP();
3329   }
3330 
3331   lldb::TargetSP target = GetTargetSP();
3332   uint64_t byte_size = 0;
3333   if (auto temp = type.GetByteSize(target.get()))
3334     byte_size = temp.value();
3335 
3336   if (is_float) {
3337     llvm::APSInt integer(byte_size * CHAR_BIT, !type.IsSigned());
3338     bool is_exact;
3339     auto value_or_err = GetValueAsAPFloat();
3340     if (value_or_err) {
3341       llvm::APFloatBase::opStatus status = value_or_err->convertToInteger(
3342           integer, llvm::APFloat::rmTowardZero, &is_exact);
3343 
3344       // Casting floating point values that are out of bounds of the target
3345       // type is undefined behaviour.
3346       if (status & llvm::APFloatBase::opInvalidOp) {
3347         m_error.SetErrorStringWithFormat(
3348             "invalid type cast detected: %s",
3349             llvm::toString(value_or_err.takeError()).c_str());
3350         return GetSP();
3351       }
3352       return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
3353                                                      "result");
3354     } else {
3355       m_error.SetErrorString("cannot get value as APFloat");
3356       return GetSP();
3357     }
3358   } else {
3359     // Get the value as APSInt and extend or truncate it to the requested size.
3360     auto value_or_err = GetValueAsAPSInt();
3361     if (value_or_err) {
3362       llvm::APSInt ext = value_or_err->extOrTrunc(byte_size * CHAR_BIT);
3363       return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
3364                                                      "result");
3365     } else {
3366       m_error.SetErrorStringWithFormat(
3367           "cannot get value as APSInt: %s",
3368           llvm::toString(value_or_err.takeError()).c_str());
3369       return GetSP();
3370     }
3371   }
3372   m_error.SetErrorString("Cannot perform requested cast");
3373   return GetSP();
3374 }
3375 
EvaluationPoint()3376 ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {}
3377 
EvaluationPoint(ExecutionContextScope * exe_scope,bool use_selected)3378 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope,
3379                                               bool use_selected)
3380     : m_mod_id(), m_exe_ctx_ref() {
3381   ExecutionContext exe_ctx(exe_scope);
3382   TargetSP target_sp(exe_ctx.GetTargetSP());
3383   if (target_sp) {
3384     m_exe_ctx_ref.SetTargetSP(target_sp);
3385     ProcessSP process_sp(exe_ctx.GetProcessSP());
3386     if (!process_sp)
3387       process_sp = target_sp->GetProcessSP();
3388 
3389     if (process_sp) {
3390       m_mod_id = process_sp->GetModID();
3391       m_exe_ctx_ref.SetProcessSP(process_sp);
3392 
3393       ThreadSP thread_sp(exe_ctx.GetThreadSP());
3394 
3395       if (!thread_sp) {
3396         if (use_selected)
3397           thread_sp = process_sp->GetThreadList().GetSelectedThread();
3398       }
3399 
3400       if (thread_sp) {
3401         m_exe_ctx_ref.SetThreadSP(thread_sp);
3402 
3403         StackFrameSP frame_sp(exe_ctx.GetFrameSP());
3404         if (!frame_sp) {
3405           if (use_selected)
3406             frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame);
3407         }
3408         if (frame_sp)
3409           m_exe_ctx_ref.SetFrameSP(frame_sp);
3410       }
3411     }
3412   }
3413 }
3414 
EvaluationPoint(const ValueObject::EvaluationPoint & rhs)3415 ValueObject::EvaluationPoint::EvaluationPoint(
3416     const ValueObject::EvaluationPoint &rhs)
3417     : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {}
3418 
3419 ValueObject::EvaluationPoint::~EvaluationPoint() = default;
3420 
3421 // This function checks the EvaluationPoint against the current process state.
3422 // If the current state matches the evaluation point, or the evaluation point
3423 // is already invalid, then we return false, meaning "no change".  If the
3424 // current state is different, we update our state, and return true meaning
3425 // "yes, change".  If we did see a change, we also set m_needs_update to true,
3426 // so future calls to NeedsUpdate will return true. exe_scope will be set to
3427 // the current execution context scope.
3428 
SyncWithProcessState(bool accept_invalid_exe_ctx)3429 bool ValueObject::EvaluationPoint::SyncWithProcessState(
3430     bool accept_invalid_exe_ctx) {
3431   // Start with the target, if it is NULL, then we're obviously not going to
3432   // get any further:
3433   const bool thread_and_frame_only_if_stopped = true;
3434   ExecutionContext exe_ctx(
3435       m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
3436 
3437   if (exe_ctx.GetTargetPtr() == nullptr)
3438     return false;
3439 
3440   // If we don't have a process nothing can change.
3441   Process *process = exe_ctx.GetProcessPtr();
3442   if (process == nullptr)
3443     return false;
3444 
3445   // If our stop id is the current stop ID, nothing has changed:
3446   ProcessModID current_mod_id = process->GetModID();
3447 
3448   // If the current stop id is 0, either we haven't run yet, or the process
3449   // state has been cleared. In either case, we aren't going to be able to sync
3450   // with the process state.
3451   if (current_mod_id.GetStopID() == 0)
3452     return false;
3453 
3454   bool changed = false;
3455   const bool was_valid = m_mod_id.IsValid();
3456   if (was_valid) {
3457     if (m_mod_id == current_mod_id) {
3458       // Everything is already up to date in this object, no need to update the
3459       // execution context scope.
3460       changed = false;
3461     } else {
3462       m_mod_id = current_mod_id;
3463       m_needs_update = true;
3464       changed = true;
3465     }
3466   }
3467 
3468   // Now re-look up the thread and frame in case the underlying objects have
3469   // gone away & been recreated. That way we'll be sure to return a valid
3470   // exe_scope. If we used to have a thread or a frame but can't find it
3471   // anymore, then mark ourselves as invalid.
3472 
3473   if (!accept_invalid_exe_ctx) {
3474     if (m_exe_ctx_ref.HasThreadRef()) {
3475       ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
3476       if (thread_sp) {
3477         if (m_exe_ctx_ref.HasFrameRef()) {
3478           StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
3479           if (!frame_sp) {
3480             // We used to have a frame, but now it is gone
3481             SetInvalid();
3482             changed = was_valid;
3483           }
3484         }
3485       } else {
3486         // We used to have a thread, but now it is gone
3487         SetInvalid();
3488         changed = was_valid;
3489       }
3490     }
3491   }
3492 
3493   return changed;
3494 }
3495 
SetUpdated()3496 void ValueObject::EvaluationPoint::SetUpdated() {
3497   ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
3498   if (process_sp)
3499     m_mod_id = process_sp->GetModID();
3500   m_needs_update = false;
3501 }
3502 
ClearUserVisibleData(uint32_t clear_mask)3503 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
3504   if ((clear_mask & eClearUserVisibleDataItemsValue) ==
3505       eClearUserVisibleDataItemsValue)
3506     m_value_str.clear();
3507 
3508   if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
3509       eClearUserVisibleDataItemsLocation)
3510     m_location_str.clear();
3511 
3512   if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
3513       eClearUserVisibleDataItemsSummary)
3514     m_summary_str.clear();
3515 
3516   if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
3517       eClearUserVisibleDataItemsDescription)
3518     m_object_desc_str.clear();
3519 
3520   if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) ==
3521       eClearUserVisibleDataItemsSyntheticChildren) {
3522     if (m_synthetic_value)
3523       m_synthetic_value = nullptr;
3524   }
3525 }
3526 
GetSymbolContextScope()3527 SymbolContextScope *ValueObject::GetSymbolContextScope() {
3528   if (m_parent) {
3529     if (!m_parent->IsPointerOrReferenceType())
3530       return m_parent->GetSymbolContextScope();
3531   }
3532   return nullptr;
3533 }
3534 
3535 lldb::ValueObjectSP
CreateValueObjectFromExpression(llvm::StringRef name,llvm::StringRef expression,const ExecutionContext & exe_ctx)3536 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name,
3537                                              llvm::StringRef expression,
3538                                              const ExecutionContext &exe_ctx) {
3539   return CreateValueObjectFromExpression(name, expression, exe_ctx,
3540                                          EvaluateExpressionOptions());
3541 }
3542 
CreateValueObjectFromExpression(llvm::StringRef name,llvm::StringRef expression,const ExecutionContext & exe_ctx,const EvaluateExpressionOptions & options)3543 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression(
3544     llvm::StringRef name, llvm::StringRef expression,
3545     const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
3546   lldb::ValueObjectSP retval_sp;
3547   lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
3548   if (!target_sp)
3549     return retval_sp;
3550   if (expression.empty())
3551     return retval_sp;
3552   target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
3553                                 retval_sp, options);
3554   if (retval_sp && !name.empty())
3555     retval_sp->SetName(ConstString(name));
3556   return retval_sp;
3557 }
3558 
CreateValueObjectFromAddress(llvm::StringRef name,uint64_t address,const ExecutionContext & exe_ctx,CompilerType type,bool do_deref)3559 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress(
3560     llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
3561     CompilerType type, bool do_deref) {
3562   if (type) {
3563     CompilerType pointer_type(type.GetPointerType());
3564     if (!do_deref)
3565       pointer_type = type;
3566     if (pointer_type) {
3567       lldb::DataBufferSP buffer(
3568           new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
3569       lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create(
3570           exe_ctx.GetBestExecutionContextScope(), pointer_type,
3571           ConstString(name), buffer, exe_ctx.GetByteOrder(),
3572           exe_ctx.GetAddressByteSize()));
3573       if (ptr_result_valobj_sp) {
3574         if (do_deref)
3575           ptr_result_valobj_sp->GetValue().SetValueType(
3576               Value::ValueType::LoadAddress);
3577         Status err;
3578         if (do_deref)
3579           ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
3580         if (ptr_result_valobj_sp && !name.empty())
3581           ptr_result_valobj_sp->SetName(ConstString(name));
3582       }
3583       return ptr_result_valobj_sp;
3584     }
3585   }
3586   return lldb::ValueObjectSP();
3587 }
3588 
CreateValueObjectFromData(llvm::StringRef name,const DataExtractor & data,const ExecutionContext & exe_ctx,CompilerType type)3589 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData(
3590     llvm::StringRef name, const DataExtractor &data,
3591     const ExecutionContext &exe_ctx, CompilerType type) {
3592   lldb::ValueObjectSP new_value_sp;
3593   new_value_sp = ValueObjectConstResult::Create(
3594       exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
3595       LLDB_INVALID_ADDRESS);
3596   new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
3597   if (new_value_sp && !name.empty())
3598     new_value_sp->SetName(ConstString(name));
3599   return new_value_sp;
3600 }
3601 
3602 lldb::ValueObjectSP
CreateValueObjectFromAPInt(lldb::TargetSP target,const llvm::APInt & v,CompilerType type,llvm::StringRef name)3603 ValueObject::CreateValueObjectFromAPInt(lldb::TargetSP target,
3604                                         const llvm::APInt &v, CompilerType type,
3605                                         llvm::StringRef name) {
3606   ExecutionContext exe_ctx(target.get(), false);
3607   uint64_t byte_size = 0;
3608   if (auto temp = type.GetByteSize(target.get()))
3609     byte_size = temp.value();
3610   lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3611       reinterpret_cast<const void *>(v.getRawData()), byte_size,
3612       exe_ctx.GetByteOrder(), exe_ctx.GetAddressByteSize());
3613   return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
3614 }
3615 
CreateValueObjectFromAPFloat(lldb::TargetSP target,const llvm::APFloat & v,CompilerType type,llvm::StringRef name)3616 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAPFloat(
3617     lldb::TargetSP target, const llvm::APFloat &v, CompilerType type,
3618     llvm::StringRef name) {
3619   return CreateValueObjectFromAPInt(target, v.bitcastToAPInt(), type, name);
3620 }
3621 
3622 lldb::ValueObjectSP
CreateValueObjectFromBool(lldb::TargetSP target,bool value,llvm::StringRef name)3623 ValueObject::CreateValueObjectFromBool(lldb::TargetSP target, bool value,
3624                                        llvm::StringRef name) {
3625   CompilerType target_type;
3626   if (target) {
3627     for (auto type_system_sp : target->GetScratchTypeSystems())
3628       if (auto compiler_type =
3629               type_system_sp->GetBasicTypeFromAST(lldb::eBasicTypeBool)) {
3630         target_type = compiler_type;
3631         break;
3632       }
3633   }
3634   ExecutionContext exe_ctx(target.get(), false);
3635   uint64_t byte_size = 0;
3636   if (auto temp = target_type.GetByteSize(target.get()))
3637     byte_size = temp.value();
3638   lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3639       reinterpret_cast<const void *>(&value), byte_size, exe_ctx.GetByteOrder(),
3640       exe_ctx.GetAddressByteSize());
3641   return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx,
3642                                                 target_type);
3643 }
3644 
CreateValueObjectFromNullptr(lldb::TargetSP target,CompilerType type,llvm::StringRef name)3645 lldb::ValueObjectSP ValueObject::CreateValueObjectFromNullptr(
3646     lldb::TargetSP target, CompilerType type, llvm::StringRef name) {
3647   if (!type.IsNullPtrType()) {
3648     lldb::ValueObjectSP ret_val;
3649     return ret_val;
3650   }
3651   uintptr_t zero = 0;
3652   ExecutionContext exe_ctx(target.get(), false);
3653   uint64_t byte_size = 0;
3654   if (auto temp = type.GetByteSize(target.get()))
3655     byte_size = temp.value();
3656   lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3657       reinterpret_cast<const void *>(zero), byte_size, exe_ctx.GetByteOrder(),
3658       exe_ctx.GetAddressByteSize());
3659   return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
3660 }
3661 
GetModule()3662 ModuleSP ValueObject::GetModule() {
3663   ValueObject *root(GetRoot());
3664   if (root != this)
3665     return root->GetModule();
3666   return lldb::ModuleSP();
3667 }
3668 
GetRoot()3669 ValueObject *ValueObject::GetRoot() {
3670   if (m_root)
3671     return m_root;
3672   return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
3673             return (vo->m_parent != nullptr);
3674           }));
3675 }
3676 
3677 ValueObject *
FollowParentChain(std::function<bool (ValueObject *)> f)3678 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) {
3679   ValueObject *vo = this;
3680   while (vo) {
3681     if (!f(vo))
3682       break;
3683     vo = vo->m_parent;
3684   }
3685   return vo;
3686 }
3687 
GetAddressTypeOfChildren()3688 AddressType ValueObject::GetAddressTypeOfChildren() {
3689   if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) {
3690     ValueObject *root(GetRoot());
3691     if (root != this)
3692       return root->GetAddressTypeOfChildren();
3693   }
3694   return m_address_type_of_ptr_or_ref_children;
3695 }
3696 
GetDynamicValueType()3697 lldb::DynamicValueType ValueObject::GetDynamicValueType() {
3698   ValueObject *with_dv_info = this;
3699   while (with_dv_info) {
3700     if (with_dv_info->HasDynamicValueTypeInfo())
3701       return with_dv_info->GetDynamicValueTypeImpl();
3702     with_dv_info = with_dv_info->m_parent;
3703   }
3704   return lldb::eNoDynamicValues;
3705 }
3706 
GetFormat() const3707 lldb::Format ValueObject::GetFormat() const {
3708   const ValueObject *with_fmt_info = this;
3709   while (with_fmt_info) {
3710     if (with_fmt_info->m_format != lldb::eFormatDefault)
3711       return with_fmt_info->m_format;
3712     with_fmt_info = with_fmt_info->m_parent;
3713   }
3714   return m_format;
3715 }
3716 
GetPreferredDisplayLanguage()3717 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() {
3718   lldb::LanguageType type = m_preferred_display_language;
3719   if (m_preferred_display_language == lldb::eLanguageTypeUnknown) {
3720     if (GetRoot()) {
3721       if (GetRoot() == this) {
3722         if (StackFrameSP frame_sp = GetFrameSP()) {
3723           const SymbolContext &sc(
3724               frame_sp->GetSymbolContext(eSymbolContextCompUnit));
3725           if (CompileUnit *cu = sc.comp_unit)
3726             type = cu->GetLanguage();
3727         }
3728       } else {
3729         type = GetRoot()->GetPreferredDisplayLanguage();
3730       }
3731     }
3732   }
3733   return (m_preferred_display_language = type); // only compute it once
3734 }
3735 
SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt)3736 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) {
3737   if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
3738     SetPreferredDisplayLanguage(lt);
3739 }
3740 
CanProvideValue()3741 bool ValueObject::CanProvideValue() {
3742   // we need to support invalid types as providers of values because some bare-
3743   // board debugging scenarios have no notion of types, but still manage to
3744   // have raw numeric values for things like registers. sigh.
3745   CompilerType type = GetCompilerType();
3746   return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
3747 }
3748 
3749 
3750 
Persist()3751 ValueObjectSP ValueObject::Persist() {
3752   if (!UpdateValueIfNeeded())
3753     return nullptr;
3754 
3755   TargetSP target_sp(GetTargetSP());
3756   if (!target_sp)
3757     return nullptr;
3758 
3759   PersistentExpressionState *persistent_state =
3760       target_sp->GetPersistentExpressionStateForLanguage(
3761           GetPreferredDisplayLanguage());
3762 
3763   if (!persistent_state)
3764     return nullptr;
3765 
3766   ConstString name = persistent_state->GetNextPersistentVariableName();
3767 
3768   ValueObjectSP const_result_sp =
3769       ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
3770 
3771   ExpressionVariableSP persistent_var_sp =
3772       persistent_state->CreatePersistentVariable(const_result_sp);
3773   persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp;
3774   persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
3775 
3776   return persistent_var_sp->GetValueObject();
3777 }
3778 
GetVTable()3779 lldb::ValueObjectSP ValueObject::GetVTable() {
3780   return ValueObjectVTable::Create(*this);
3781 }
3782