xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "MatchContext.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/Support/Compiler.h"
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
28 /// value types the target machine can handle are left. This involves promoting
29 /// small sizes to large sizes or splitting up large values into small values.
30 ///
31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32   const TargetLowering &TLI;
33   SelectionDAG &DAG;
34 public:
35   /// This pass uses the NodeId on the SDNodes to hold information about the
36   /// state of the node. The enum has all the values.
37   enum NodeIdFlags {
38     /// All operands have been processed, so this node is ready to be handled.
39     ReadyToProcess = 0,
40 
41     /// This is a new node, not before seen, that was created in the process of
42     /// legalizing some other node.
43     NewNode = -1,
44 
45     /// This node's ID needs to be set to the number of its unprocessed
46     /// operands.
47     Unanalyzed = -2,
48 
49     /// This is a node that has already been processed.
50     Processed = -3
51 
52     // 1+ - This is a node which has this many unprocessed operands.
53   };
54 private:
55 
56   /// This is a bitvector that contains two bits for each simple value type,
57   /// where the two bits correspond to the LegalizeAction enum from
58   /// TargetLowering. This can be queried with "getTypeAction(VT)".
59   TargetLowering::ValueTypeActionImpl ValueTypeActions;
60 
61   /// Return how we should legalize values of this type.
getTypeAction(EVT VT)62   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63     return TLI.getTypeAction(*DAG.getContext(), VT);
64   }
65 
66   /// Return true if this type is legal on this target.
isTypeLegal(EVT VT)67   bool isTypeLegal(EVT VT) const {
68     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69   }
70 
71   /// Return true if this is a simple legal type.
isSimpleLegalType(EVT VT)72   bool isSimpleLegalType(EVT VT) const {
73     return VT.isSimple() && TLI.isTypeLegal(VT);
74   }
75 
getSetCCResultType(EVT VT)76   EVT getSetCCResultType(EVT VT) const {
77     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78   }
79 
80   /// Pretend all of this node's results are legal.
IgnoreNodeResults(SDNode * N)81   bool IgnoreNodeResults(SDNode *N) const {
82     return N->getOpcode() == ISD::TargetConstant ||
83            N->getOpcode() == ISD::Register;
84   }
85 
86   // Bijection from SDValue to unique id. As each created node gets a
87   // new id we do not need to worry about reuse expunging.  Should we
88   // run out of ids, we can do a one time expensive compactifcation.
89   typedef unsigned TableId;
90 
91   TableId NextValueId = 1;
92 
93   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95 
96   /// For integer nodes that are below legal width, this map indicates what
97   /// promoted value to use.
98   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99 
100   /// For integer nodes that need to be expanded this map indicates which
101   /// operands are the expanded version of the input.
102   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103 
104   /// For floating-point nodes converted to integers of the same size, this map
105   /// indicates the converted value to use.
106   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107 
108   /// For floating-point nodes that have a smaller precision than the smallest
109   /// supported precision, this map indicates what promoted value to use.
110   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111 
112   /// For floating-point nodes that have a smaller precision than the smallest
113   /// supported precision, this map indicates the converted value to use.
114   SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115 
116   /// For float nodes that need to be expanded this map indicates which operands
117   /// are the expanded version of the input.
118   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
119 
120   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121   /// 'ty' to use.
122   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123 
124   /// For nodes that need to be split this map indicates which operands are the
125   /// expanded version of the input.
126   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
127 
128   /// For vector nodes that need to be widened, indicates the widened value to
129   /// use.
130   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
131 
132   /// For values that have been replaced with another, indicates the replacement
133   /// value to use.
134   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
135 
136   /// This defines a worklist of nodes to process. In order to be pushed onto
137   /// this worklist, all operands of a node must have already been processed.
138   SmallVector<SDNode*, 128> Worklist;
139 
getTableId(SDValue V)140   TableId getTableId(SDValue V) {
141     assert(V.getNode() && "Getting TableId on SDValue()");
142 
143     auto I = ValueToIdMap.find(V);
144     if (I != ValueToIdMap.end()) {
145       // replace if there's been a shift.
146       RemapId(I->second);
147       assert(I->second && "All Ids should be nonzero");
148       return I->second;
149     }
150     // Add if it's not there.
151     ValueToIdMap.insert(std::make_pair(V, NextValueId));
152     IdToValueMap.insert(std::make_pair(NextValueId, V));
153     ++NextValueId;
154     assert(NextValueId != 0 &&
155            "Ran out of Ids. Increase id type size or add compactification");
156     return NextValueId - 1;
157   }
158 
getSDValue(TableId & Id)159   const SDValue &getSDValue(TableId &Id) {
160     RemapId(Id);
161     assert(Id && "TableId should be non-zero");
162     auto I = IdToValueMap.find(Id);
163     assert(I != IdToValueMap.end() && "cannot find Id in map");
164     return I->second;
165   }
166 
167 public:
DAGTypeLegalizer(SelectionDAG & dag)168   explicit DAGTypeLegalizer(SelectionDAG &dag)
169     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170     ValueTypeActions(TLI.getValueTypeActions()) {
171   }
172 
173   /// This is the main entry point for the type legalizer.  This does a
174   /// top-down traversal of the dag, legalizing types as it goes.  Returns
175   /// "true" if it made any changes.
176   bool run();
177 
NoteDeletion(SDNode * Old,SDNode * New)178   void NoteDeletion(SDNode *Old, SDNode *New) {
179     assert(Old != New && "node replaced with self");
180     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
181       TableId NewId = getTableId(SDValue(New, i));
182       TableId OldId = getTableId(SDValue(Old, i));
183 
184       if (OldId != NewId) {
185         ReplacedValues[OldId] = NewId;
186 
187         // Delete Node from tables.  We cannot do this when OldId == NewId,
188         // because NewId can still have table references to it in
189         // ReplacedValues.
190         IdToValueMap.erase(OldId);
191         PromotedIntegers.erase(OldId);
192         ExpandedIntegers.erase(OldId);
193         SoftenedFloats.erase(OldId);
194         PromotedFloats.erase(OldId);
195         SoftPromotedHalfs.erase(OldId);
196         ExpandedFloats.erase(OldId);
197         ScalarizedVectors.erase(OldId);
198         SplitVectors.erase(OldId);
199         WidenedVectors.erase(OldId);
200       }
201 
202       ValueToIdMap.erase(SDValue(Old, i));
203     }
204   }
205 
getDAG()206   SelectionDAG &getDAG() const { return DAG; }
207 
208 private:
209   SDNode *AnalyzeNewNode(SDNode *N);
210   void AnalyzeNewValue(SDValue &Val);
211   void PerformExpensiveChecks();
212   void RemapId(TableId &Id);
213   void RemapValue(SDValue &V);
214 
215   // Common routines.
216   SDValue BitConvertToInteger(SDValue Op);
217   SDValue BitConvertVectorToIntegerVector(SDValue Op);
218   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
219   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
220   bool CustomWidenLowerNode(SDNode *N, EVT VT);
221 
222   /// Replace each result of the given MERGE_VALUES node with the corresponding
223   /// input operand, except for the result 'ResNo', for which the corresponding
224   /// input operand is returned.
225   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
226 
227   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
228 
229   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
230 
231   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
232 
233   void ReplaceValueWith(SDValue From, SDValue To);
234   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
235   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
236                     SDValue &Lo, SDValue &Hi);
237 
238   //===--------------------------------------------------------------------===//
239   // Integer Promotion Support: LegalizeIntegerTypes.cpp
240   //===--------------------------------------------------------------------===//
241 
242   /// Given a processed operand Op which was promoted to a larger integer type,
243   /// this returns the promoted value. The low bits of the promoted value
244   /// corresponding to the original type are exactly equal to Op.
245   /// The extra bits contain rubbish, so the promoted value may need to be zero-
246   /// or sign-extended from the original type before it is usable (the helpers
247   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
248   /// For example, if Op is an i16 and was promoted to an i32, then this method
249   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
250   /// 16 bits of which contain rubbish.
GetPromotedInteger(SDValue Op)251   SDValue GetPromotedInteger(SDValue Op) {
252     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
253     SDValue PromotedOp = getSDValue(PromotedId);
254     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
255     return PromotedOp;
256   }
257   void SetPromotedInteger(SDValue Op, SDValue Result);
258 
259   /// Get a promoted operand and sign extend it to the final size.
SExtPromotedInteger(SDValue Op)260   SDValue SExtPromotedInteger(SDValue Op) {
261     EVT OldVT = Op.getValueType();
262     SDLoc dl(Op);
263     Op = GetPromotedInteger(Op);
264     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
265                        DAG.getValueType(OldVT));
266   }
267 
268   /// Get a promoted operand and zero extend it to the final size.
ZExtPromotedInteger(SDValue Op)269   SDValue ZExtPromotedInteger(SDValue Op) {
270     EVT OldVT = Op.getValueType();
271     SDLoc dl(Op);
272     Op = GetPromotedInteger(Op);
273     return DAG.getZeroExtendInReg(Op, dl, OldVT);
274   }
275 
276   /// Get a promoted operand and zero extend it to the final size.
VPSExtPromotedInteger(SDValue Op,SDValue Mask,SDValue EVL)277   SDValue VPSExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
278     EVT OldVT = Op.getValueType();
279     SDLoc dl(Op);
280     Op = GetPromotedInteger(Op);
281     // FIXME: Add VP_SIGN_EXTEND_INREG.
282     EVT VT = Op.getValueType();
283     unsigned BitsDiff = VT.getScalarSizeInBits() - OldVT.getScalarSizeInBits();
284     SDValue ShiftCst = DAG.getShiftAmountConstant(BitsDiff, VT, dl);
285     SDValue Shl = DAG.getNode(ISD::VP_SHL, dl, VT, Op, ShiftCst, Mask, EVL);
286     return DAG.getNode(ISD::VP_SRA, dl, VT, Shl, ShiftCst, Mask, EVL);
287   }
288 
289   /// Get a promoted operand and zero extend it to the final size.
VPZExtPromotedInteger(SDValue Op,SDValue Mask,SDValue EVL)290   SDValue VPZExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
291     EVT OldVT = Op.getValueType();
292     SDLoc dl(Op);
293     Op = GetPromotedInteger(Op);
294     return DAG.getVPZeroExtendInReg(Op, Mask, EVL, dl, OldVT);
295   }
296 
297   // Promote the given operand V (vector or scalar) according to N's specific
298   // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
299   // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
300   // promoted value.
301   SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
302 
303   // Integer Result Promotion.
304   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
305   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
306   SDValue PromoteIntRes_AssertSext(SDNode *N);
307   SDValue PromoteIntRes_AssertZext(SDNode *N);
308   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
309   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
310   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
311   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
312   SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
313   SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
314   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
315   SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
316   SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
317   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
318   SDValue PromoteIntRes_ScalarOp(SDNode *N);
319   SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
320   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
321   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
322   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
323   SDValue PromoteIntRes_BITCAST(SDNode *N);
324   SDValue PromoteIntRes_BSWAP(SDNode *N);
325   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
326   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
327   SDValue PromoteIntRes_Constant(SDNode *N);
328   SDValue PromoteIntRes_CTLZ(SDNode *N);
329   SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
330   SDValue PromoteIntRes_CTTZ(SDNode *N);
331   SDValue PromoteIntRes_VP_CttzElements(SDNode *N);
332   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
333   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
334   SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
335   SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
336   SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
337   SDValue PromoteIntRes_XRINT(SDNode *N);
338   SDValue PromoteIntRes_FREEZE(SDNode *N);
339   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
340   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
341   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
342   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
343   SDValue PromoteIntRes_VECTOR_COMPRESS(SDNode *N);
344   SDValue PromoteIntRes_Overflow(SDNode *N);
345   SDValue PromoteIntRes_FFREXP(SDNode *N);
346   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
347   SDValue PromoteIntRes_CMP(SDNode *N);
348   SDValue PromoteIntRes_Select(SDNode *N);
349   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
350   SDValue PromoteIntRes_SETCC(SDNode *N);
351   SDValue PromoteIntRes_SHL(SDNode *N);
352   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
353   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
354   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
355   SDValue PromoteIntRes_UMINUMAX(SDNode *N);
356   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
357   SDValue PromoteIntRes_SRA(SDNode *N);
358   SDValue PromoteIntRes_SRL(SDNode *N);
359   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
360   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
361   SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
362   SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
363   SDValue PromoteIntRes_UNDEF(SDNode *N);
364   SDValue PromoteIntRes_VAARG(SDNode *N);
365   SDValue PromoteIntRes_VSCALE(SDNode *N);
366   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
367   template <class MatchContextClass>
368   SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
369   SDValue PromoteIntRes_MULFIX(SDNode *N);
370   SDValue PromoteIntRes_DIVFIX(SDNode *N);
371   SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
372   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
373   SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
374   SDValue PromoteIntRes_ABS(SDNode *N);
375   SDValue PromoteIntRes_Rotate(SDNode *N);
376   SDValue PromoteIntRes_FunnelShift(SDNode *N);
377   SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
378   SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
379   SDValue PromoteIntRes_PATCHPOINT(SDNode *N);
380 
381   // Integer Operand Promotion.
382   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
383   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
384   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
385   SDValue PromoteIntOp_BITCAST(SDNode *N);
386   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
387   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
388   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
389   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
390   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
391   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
392   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
393   SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
394   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
395   SDValue PromoteIntOp_ScalarOp(SDNode *N);
396   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
397   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
398   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
399   SDValue PromoteIntOp_Shift(SDNode *N);
400   SDValue PromoteIntOp_CMP(SDNode *N);
401   SDValue PromoteIntOp_FunnelShift(SDNode *N);
402   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
403   SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
404   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
405   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
406   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
407   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
408   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
409   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
410   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
411   SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
412   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
413   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
414   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
415   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
416   SDValue PromoteIntOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo);
417   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
418   SDValue PromoteIntOp_FIX(SDNode *N);
419   SDValue PromoteIntOp_ExpOp(SDNode *N);
420   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
421   SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
422   SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
423   SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
424   SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
425   SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
426   SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
427 
428   void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS);
429   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
430 
431   //===--------------------------------------------------------------------===//
432   // Integer Expansion Support: LegalizeIntegerTypes.cpp
433   //===--------------------------------------------------------------------===//
434 
435   /// Given a processed operand Op which was expanded into two integers of half
436   /// the size, this returns the two halves. The low bits of Op are exactly
437   /// equal to the bits of Lo; the high bits exactly equal Hi.
438   /// For example, if Op is an i64 which was expanded into two i32's, then this
439   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
440   /// Op, and Hi being equal to the upper 32 bits.
441   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
442   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
443 
444   // Integer Result Expansion.
445   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
446   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
447   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
448   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
449   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
450   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
451   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
452   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
453   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
454   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
455   void ExpandIntRes_READCOUNTER       (SDNode *N, SDValue &Lo, SDValue &Hi);
456   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
457   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
458   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
460   void ExpandIntRes_GET_ROUNDING      (SDNode *N, SDValue &Lo, SDValue &Hi);
461   void ExpandIntRes_FP_TO_XINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
462   void ExpandIntRes_FP_TO_XINT_SAT    (SDNode *N, SDValue &Lo, SDValue &Hi);
463   void ExpandIntRes_XROUND_XRINT      (SDNode *N, SDValue &Lo, SDValue &Hi);
464 
465   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
468   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
469   void ExpandIntRes_UADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
470   void ExpandIntRes_SADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
471   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
472   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandIntRes_PARITY            (SDNode *N, SDValue &Lo, SDValue &Hi);
474   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
475   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
477   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
478   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
479   void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
480   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
481 
482   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
483 
484   void ExpandIntRes_CMP               (SDNode *N, SDValue &Lo, SDValue &Hi);
485 
486   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
487   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
488   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
489   void ExpandIntRes_AVG               (SDNode *N, SDValue &Lo, SDValue &Hi);
490   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
491   void ExpandIntRes_SHLSAT            (SDNode *N, SDValue &Lo, SDValue &Hi);
492   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
493   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
494 
495   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
496   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
497 
498   void ExpandIntRes_Rotate            (SDNode *N, SDValue &Lo, SDValue &Hi);
499   void ExpandIntRes_FunnelShift       (SDNode *N, SDValue &Lo, SDValue &Hi);
500 
501   void ExpandIntRes_VSCALE            (SDNode *N, SDValue &Lo, SDValue &Hi);
502 
503   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
504                              SDValue &Lo, SDValue &Hi);
505   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
506   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
507 
508   // Integer Operand Expansion.
509   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
510   SDValue ExpandIntOp_BR_CC(SDNode *N);
511   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
512   SDValue ExpandIntOp_SETCC(SDNode *N);
513   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
514   SDValue ExpandIntOp_Shift(SDNode *N);
515   SDValue ExpandIntOp_CMP(SDNode *N);
516   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
517   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
518   SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
519   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
520   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
521   SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
522   SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
523   SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
524   SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
525 
526   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
527                                   ISD::CondCode &CCCode, const SDLoc &dl);
528 
529   //===--------------------------------------------------------------------===//
530   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
531   //===--------------------------------------------------------------------===//
532 
533   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
534   /// integer of the same size, this returns the integer.  The integer contains
535   /// exactly the same bits as Op - only the type changed.  For example, if Op
536   /// is an f32 which was softened to an i32, then this method returns an i32,
537   /// the bits of which coincide with those of Op
GetSoftenedFloat(SDValue Op)538   SDValue GetSoftenedFloat(SDValue Op) {
539     TableId Id = getTableId(Op);
540     auto Iter = SoftenedFloats.find(Id);
541     if (Iter == SoftenedFloats.end()) {
542       assert(isSimpleLegalType(Op.getValueType()) &&
543              "Operand wasn't converted to integer?");
544       return Op;
545     }
546     SDValue SoftenedOp = getSDValue(Iter->second);
547     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
548     return SoftenedOp;
549   }
550   void SetSoftenedFloat(SDValue Op, SDValue Result);
551 
552   // Convert Float Results to Integer.
553   void SoftenFloatResult(SDNode *N, unsigned ResNo);
554   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
555   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
556   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
557   SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
558   SDValue SoftenFloatRes_BITCAST(SDNode *N);
559   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
560   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
561   SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N);
562   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
563   SDValue SoftenFloatRes_FABS(SDNode *N);
564   SDValue SoftenFloatRes_FACOS(SDNode *N);
565   SDValue SoftenFloatRes_FASIN(SDNode *N);
566   SDValue SoftenFloatRes_FATAN(SDNode *N);
567   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
568   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
569   SDValue SoftenFloatRes_FADD(SDNode *N);
570   SDValue SoftenFloatRes_FCBRT(SDNode *N);
571   SDValue SoftenFloatRes_FCEIL(SDNode *N);
572   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
573   SDValue SoftenFloatRes_FCOS(SDNode *N);
574   SDValue SoftenFloatRes_FCOSH(SDNode *N);
575   SDValue SoftenFloatRes_FDIV(SDNode *N);
576   SDValue SoftenFloatRes_FEXP(SDNode *N);
577   SDValue SoftenFloatRes_FEXP2(SDNode *N);
578   SDValue SoftenFloatRes_FEXP10(SDNode *N);
579   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
580   SDValue SoftenFloatRes_FLOG(SDNode *N);
581   SDValue SoftenFloatRes_FLOG2(SDNode *N);
582   SDValue SoftenFloatRes_FLOG10(SDNode *N);
583   SDValue SoftenFloatRes_FMA(SDNode *N);
584   SDValue SoftenFloatRes_FMUL(SDNode *N);
585   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
586   SDValue SoftenFloatRes_FNEG(SDNode *N);
587   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
588   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
589   SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
590   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
591   SDValue SoftenFloatRes_FPOW(SDNode *N);
592   SDValue SoftenFloatRes_ExpOp(SDNode *N);
593   SDValue SoftenFloatRes_FFREXP(SDNode *N);
594   SDValue SoftenFloatRes_FREEZE(SDNode *N);
595   SDValue SoftenFloatRes_FREM(SDNode *N);
596   SDValue SoftenFloatRes_FRINT(SDNode *N);
597   SDValue SoftenFloatRes_FROUND(SDNode *N);
598   SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
599   SDValue SoftenFloatRes_FSIN(SDNode *N);
600   SDValue SoftenFloatRes_FSINH(SDNode *N);
601   SDValue SoftenFloatRes_FSQRT(SDNode *N);
602   SDValue SoftenFloatRes_FSUB(SDNode *N);
603   SDValue SoftenFloatRes_FTAN(SDNode *N);
604   SDValue SoftenFloatRes_FTANH(SDNode *N);
605   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
606   SDValue SoftenFloatRes_LOAD(SDNode *N);
607   SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N);
608   SDValue SoftenFloatRes_SELECT(SDNode *N);
609   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
610   SDValue SoftenFloatRes_UNDEF(SDNode *N);
611   SDValue SoftenFloatRes_VAARG(SDNode *N);
612   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
613   SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
614   SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
615 
616   // Convert Float Operand to Integer.
617   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
618   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
619   SDValue SoftenFloatOp_BITCAST(SDNode *N);
620   SDValue SoftenFloatOp_BR_CC(SDNode *N);
621   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
622   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
623   SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
624   SDValue SoftenFloatOp_LROUND(SDNode *N);
625   SDValue SoftenFloatOp_LLROUND(SDNode *N);
626   SDValue SoftenFloatOp_LRINT(SDNode *N);
627   SDValue SoftenFloatOp_LLRINT(SDNode *N);
628   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
629   SDValue SoftenFloatOp_SETCC(SDNode *N);
630   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
631   SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
632   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
633 
634   //===--------------------------------------------------------------------===//
635   // Float Expansion Support: LegalizeFloatTypes.cpp
636   //===--------------------------------------------------------------------===//
637 
638   /// Given a processed operand Op which was expanded into two floating-point
639   /// values of half the size, this returns the two halves.
640   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
641   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
642   /// into two f64's, then this method returns the two f64's, with Lo being
643   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
644   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
645   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
646 
647   // Float Result Expansion.
648   void ExpandFloatResult(SDNode *N, unsigned ResNo);
649   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
650   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
651                             SDValue &Lo, SDValue &Hi);
652   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
653                              SDValue &Lo, SDValue &Hi);
654   // clang-format off
655   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
656   void ExpandFloatRes_FACOS     (SDNode *N, SDValue &Lo, SDValue &Hi);
657   void ExpandFloatRes_FASIN     (SDNode *N, SDValue &Lo, SDValue &Hi);
658   void ExpandFloatRes_FATAN     (SDNode *N, SDValue &Lo, SDValue &Hi);
659   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
660   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
661   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
662   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
663   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
664   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
665   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
666   void ExpandFloatRes_FCOSH     (SDNode *N, SDValue &Lo, SDValue &Hi);
667   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
668   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
669   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
670   void ExpandFloatRes_FEXP10    (SDNode *N, SDValue &Lo, SDValue &Hi);
671   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
672   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
673   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
674   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
675   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
676   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
677   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
678   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
679   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
680   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
681   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
682   void ExpandFloatRes_FLDEXP    (SDNode *N, SDValue &Lo, SDValue &Hi);
683   void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
684   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
685   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
686   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
687   void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
688   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
689   void ExpandFloatRes_FSINH      (SDNode *N, SDValue &Lo, SDValue &Hi);
690   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
691   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
692   void ExpandFloatRes_FTAN      (SDNode *N, SDValue &Lo, SDValue &Hi);
693   void ExpandFloatRes_FTANH     (SDNode *N, SDValue &Lo, SDValue &Hi);
694   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
695   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
696   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
697   // clang-format on
698 
699   // Float Operand Expansion.
700   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
701   SDValue ExpandFloatOp_BR_CC(SDNode *N);
702   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
703   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
704   SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
705   SDValue ExpandFloatOp_LROUND(SDNode *N);
706   SDValue ExpandFloatOp_LLROUND(SDNode *N);
707   SDValue ExpandFloatOp_LRINT(SDNode *N);
708   SDValue ExpandFloatOp_LLRINT(SDNode *N);
709   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
710   SDValue ExpandFloatOp_SETCC(SDNode *N);
711   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
712 
713   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
714                                 ISD::CondCode &CCCode, const SDLoc &dl,
715                                 SDValue &Chain, bool IsSignaling = false);
716 
717   //===--------------------------------------------------------------------===//
718   // Float promotion support: LegalizeFloatTypes.cpp
719   //===--------------------------------------------------------------------===//
720 
GetPromotedFloat(SDValue Op)721   SDValue GetPromotedFloat(SDValue Op) {
722     TableId &PromotedId = PromotedFloats[getTableId(Op)];
723     SDValue PromotedOp = getSDValue(PromotedId);
724     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
725     return PromotedOp;
726   }
727   void SetPromotedFloat(SDValue Op, SDValue Result);
728 
729   void PromoteFloatResult(SDNode *N, unsigned ResNo);
730   SDValue PromoteFloatRes_BITCAST(SDNode *N);
731   SDValue PromoteFloatRes_BinOp(SDNode *N);
732   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
733   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
734   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
735   SDValue PromoteFloatRes_FMAD(SDNode *N);
736   SDValue PromoteFloatRes_ExpOp(SDNode *N);
737   SDValue PromoteFloatRes_FFREXP(SDNode *N);
738   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
739   SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
740   SDValue PromoteFloatRes_LOAD(SDNode *N);
741   SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N);
742   SDValue PromoteFloatRes_SELECT(SDNode *N);
743   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
744   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
745   SDValue PromoteFloatRes_UNDEF(SDNode *N);
746   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
747   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
748   SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
749   SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
750 
751   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
752   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
753   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
754   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
755   SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
756   SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
757   SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
758   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
759   SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
760   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
761   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
762 
763   //===--------------------------------------------------------------------===//
764   // Half soft promotion support: LegalizeFloatTypes.cpp
765   //===--------------------------------------------------------------------===//
766 
GetSoftPromotedHalf(SDValue Op)767   SDValue GetSoftPromotedHalf(SDValue Op) {
768     TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
769     SDValue PromotedOp = getSDValue(PromotedId);
770     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
771     return PromotedOp;
772   }
773   void SetSoftPromotedHalf(SDValue Op, SDValue Result);
774 
775   void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
776   SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N);
777   SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
778   SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
779   SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
780   SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
781   SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
782   SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
783   SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
784   SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
785   SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
786   SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
787   SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N);
788   SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
789   SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
790   SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
791   SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
792   SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
793   SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
794   SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
795 
796   bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
797   SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
798   SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
799   SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
800   SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
801   SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
802   SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
803   SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
804   SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
805   SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
806   SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
807   SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
808 
809   //===--------------------------------------------------------------------===//
810   // Scalarization Support: LegalizeVectorTypes.cpp
811   //===--------------------------------------------------------------------===//
812 
813   /// Given a processed one-element vector Op which was scalarized to its
814   /// element type, this returns the element. For example, if Op is a v1i32,
815   /// Op = < i32 val >, this method returns val, an i32.
GetScalarizedVector(SDValue Op)816   SDValue GetScalarizedVector(SDValue Op) {
817     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
818     SDValue ScalarizedOp = getSDValue(ScalarizedId);
819     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
820     return ScalarizedOp;
821   }
822   void SetScalarizedVector(SDValue Op, SDValue Result);
823 
824   // Vector Result Scalarization: <1 x ty> -> ty.
825   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
826   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
827   SDValue ScalarizeVecRes_BinOp(SDNode *N);
828   SDValue ScalarizeVecRes_CMP(SDNode *N);
829   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
830   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
831   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
832   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
833   SDValue ScalarizeVecRes_InregOp(SDNode *N);
834   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
835 
836   SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N);
837   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
838   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
839   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
840   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
841   SDValue ScalarizeVecRes_ExpOp(SDNode *N);
842   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
843   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
844   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
845   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
846   SDValue ScalarizeVecRes_SELECT(SDNode *N);
847   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
848   SDValue ScalarizeVecRes_SETCC(SDNode *N);
849   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
850   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
851   SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
852   SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
853 
854   SDValue ScalarizeVecRes_FIX(SDNode *N);
855   SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo);
856 
857   // Vector Operand Scalarization: <1 x ty> -> ty.
858   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
859   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
860   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
861   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
862   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
863   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
864   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
865   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
866   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
867   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
868   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
869   SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
870   SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
871   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
872   SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
873   SDValue ScalarizeVecOp_CMP(SDNode *N);
874 
875   //===--------------------------------------------------------------------===//
876   // Vector Splitting Support: LegalizeVectorTypes.cpp
877   //===--------------------------------------------------------------------===//
878 
879   /// Given a processed vector Op which was split into vectors of half the size,
880   /// this method returns the halves. The first elements of Op coincide with the
881   /// elements of Lo; the remaining elements of Op coincide with the elements of
882   /// Hi: Op is what you would get by concatenating Lo and Hi.
883   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
884   /// method returns the two v4i32's, with Lo corresponding to the first 4
885   /// elements of Op, and Hi to the last 4 elements.
886   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
887   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
888 
889   /// Split mask operator of a VP intrinsic.
890   std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
891 
892   /// Split mask operator of a VP intrinsic in a given location.
893   std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
894 
895   // Helper function for incrementing the pointer when splitting
896   // memory operations
897   void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
898                         SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
899 
900   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
901   void SplitVectorResult(SDNode *N, unsigned ResNo);
902   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
903   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
904   void SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi);
905   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
906   void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi);
907   void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi);
908   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
909   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
910   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
911   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
912   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
913                               SDValue &Lo, SDValue &Hi);
914 
915   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
916 
917   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
918   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
919   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
920   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
921   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
922   void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
923   void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
924   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
925   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
926   void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
927   void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
928                                    SDValue &Hi);
929   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
930   void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
931                           bool SplitSETCC = false);
932   void SplitVecRes_VECTOR_COMPRESS(SDNode *N, SDValue &Lo, SDValue &Hi);
933   void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
934   void SplitVecRes_VP_SPLAT(SDNode *N, SDValue &Lo, SDValue &Hi);
935   void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
936   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
937   void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
938   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
939                                   SDValue &Hi);
940   void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
941   void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
942   void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
943   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
944   void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
945   void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
946 
947   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
948   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
949   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
950   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
951   SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
952   SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
953   SDValue SplitVecOp_UnaryOp(SDNode *N);
954   SDValue SplitVecOp_TruncateHelper(SDNode *N);
955 
956   SDValue SplitVecOp_BITCAST(SDNode *N);
957   SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
958   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
959   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
960   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
961   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
962   SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
963   SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
964   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
965   SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
966   SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
967   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
968   SDValue SplitVecOp_VSETCC(SDNode *N);
969   SDValue SplitVecOp_FP_ROUND(SDNode *N);
970   SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
971   SDValue SplitVecOp_CMP(SDNode *N);
972   SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
973   SDValue SplitVecOp_VP_CttzElements(SDNode *N);
974 
975   //===--------------------------------------------------------------------===//
976   // Vector Widening Support: LegalizeVectorTypes.cpp
977   //===--------------------------------------------------------------------===//
978 
979   /// Given a processed vector Op which was widened into a larger vector, this
980   /// method returns the larger vector. The elements of the returned vector
981   /// consist of the elements of Op followed by elements containing rubbish.
982   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
983   /// method returns a v4i32 for which the first two elements are the same as
984   /// those of Op, while the last two elements contain rubbish.
GetWidenedVector(SDValue Op)985   SDValue GetWidenedVector(SDValue Op) {
986     TableId &WidenedId = WidenedVectors[getTableId(Op)];
987     SDValue WidenedOp = getSDValue(WidenedId);
988     assert(WidenedOp.getNode() && "Operand wasn't widened?");
989     return WidenedOp;
990   }
991   void SetWidenedVector(SDValue Op, SDValue Result);
992 
993   /// Given a mask Mask, returns the larger vector into which Mask was widened.
GetWidenedMask(SDValue Mask,ElementCount EC)994   SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
995     // For VP operations, we must also widen the mask. Note that the mask type
996     // may not actually need widening, leading it be split along with the VP
997     // operation.
998     // FIXME: This could lead to an infinite split/widen loop. We only handle
999     // the case where the mask needs widening to an identically-sized type as
1000     // the vector inputs.
1001     assert(getTypeAction(Mask.getValueType()) ==
1002                TargetLowering::TypeWidenVector &&
1003            "Unable to widen binary VP op");
1004     Mask = GetWidenedVector(Mask);
1005     assert(Mask.getValueType().getVectorElementCount() == EC &&
1006            "Unable to widen binary VP op");
1007     return Mask;
1008   }
1009 
1010   // Widen Vector Result Promotion.
1011   void WidenVectorResult(SDNode *N, unsigned ResNo);
1012   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
1013   SDValue WidenVecRes_ADDRSPACECAST(SDNode *N);
1014   SDValue WidenVecRes_AssertZext(SDNode* N);
1015   SDValue WidenVecRes_BITCAST(SDNode* N);
1016   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
1017   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
1018   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
1019   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
1020   SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
1021   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
1022   SDValue WidenVecRes_LOAD(SDNode* N);
1023   SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
1024   SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
1025   SDValue WidenVecRes_VECTOR_COMPRESS(SDNode *N);
1026   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
1027   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
1028   SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
1029   SDValue WidenVecRes_ScalarOp(SDNode* N);
1030   SDValue WidenVecRes_Select(SDNode *N);
1031   SDValue WidenVSELECTMask(SDNode *N);
1032   SDValue WidenVecRes_SELECT_CC(SDNode* N);
1033   SDValue WidenVecRes_SETCC(SDNode* N);
1034   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
1035   SDValue WidenVecRes_UNDEF(SDNode *N);
1036   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
1037   SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
1038 
1039   SDValue WidenVecRes_Ternary(SDNode *N);
1040   SDValue WidenVecRes_Binary(SDNode *N);
1041   SDValue WidenVecRes_CMP(SDNode *N);
1042   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
1043   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
1044   SDValue WidenVecRes_StrictFP(SDNode *N);
1045   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
1046   SDValue WidenVecRes_Convert(SDNode *N);
1047   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
1048   SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
1049   SDValue WidenVecRes_XRINT(SDNode *N);
1050   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
1051   SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N);
1052   SDValue WidenVecRes_ExpOp(SDNode *N);
1053   SDValue WidenVecRes_Unary(SDNode *N);
1054   SDValue WidenVecRes_InregOp(SDNode *N);
1055 
1056   // Widen Vector Operand.
1057   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
1058   SDValue WidenVecOp_BITCAST(SDNode *N);
1059   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
1060   SDValue WidenVecOp_EXTEND(SDNode *N);
1061   SDValue WidenVecOp_CMP(SDNode *N);
1062   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
1063   SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
1064   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
1065   SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
1066   SDValue WidenVecOp_STORE(SDNode* N);
1067   SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
1068   SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
1069   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
1070   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
1071   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
1072   SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
1073   SDValue WidenVecOp_VP_SPLAT(SDNode *N, unsigned OpNo);
1074   SDValue WidenVecOp_SETCC(SDNode* N);
1075   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
1076   SDValue WidenVecOp_VSELECT(SDNode *N);
1077 
1078   SDValue WidenVecOp_Convert(SDNode *N);
1079   SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
1080   SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
1081   SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
1082   SDValue WidenVecOp_VECREDUCE(SDNode *N);
1083   SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1084   SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1085   SDValue WidenVecOp_ExpOp(SDNode *N);
1086   SDValue WidenVecOp_VP_CttzElements(SDNode *N);
1087 
1088   /// Helper function to generate a set of operations to perform
1089   /// a vector operation for a wider type.
1090   ///
1091   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1092 
1093   //===--------------------------------------------------------------------===//
1094   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1095   //===--------------------------------------------------------------------===//
1096 
1097   /// Helper function to generate a set of loads to load a vector with a
1098   /// resulting wider type. It takes:
1099   ///   LdChain: list of chains for the load to be generated.
1100   ///   Ld:      load to widen
1101   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1102                               LoadSDNode *LD);
1103 
1104   /// Helper function to generate a set of extension loads to load a vector with
1105   /// a resulting wider type. It takes:
1106   ///   LdChain: list of chains for the load to be generated.
1107   ///   Ld:      load to widen
1108   ///   ExtType: extension element type
1109   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1110                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
1111 
1112   /// Helper function to generate a set of stores to store a widen vector into
1113   /// non-widen memory. Returns true if successful, false otherwise.
1114   ///   StChain: list of chains for the stores we have generated
1115   ///   ST:      store of a widen value
1116   bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1117 
1118   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
1119   /// input vector must have the same element type as NVT.
1120   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1121   /// By default, the vector will be widened with undefined values.
1122   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1123 
1124   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1125   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1126   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1127 
1128   //===--------------------------------------------------------------------===//
1129   // Generic Splitting: LegalizeTypesGeneric.cpp
1130   //===--------------------------------------------------------------------===//
1131 
1132   // Legalization methods which only use that the illegal type is split into two
1133   // not necessarily identical types.  As such they can be used for splitting
1134   // vectors and expanding integers and floats.
1135 
GetSplitOp(SDValue Op,SDValue & Lo,SDValue & Hi)1136   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1137     if (Op.getValueType().isVector())
1138       GetSplitVector(Op, Lo, Hi);
1139     else if (Op.getValueType().isInteger())
1140       GetExpandedInteger(Op, Lo, Hi);
1141     else
1142       GetExpandedFloat(Op, Lo, Hi);
1143   }
1144 
1145   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1146   /// given value.
1147   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1148 
1149   // Generic Result Splitting.
1150   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1151                              SDValue &Lo, SDValue &Hi);
1152   void SplitVecRes_AssertZext  (SDNode *N, SDValue &Lo, SDValue &Hi);
1153   void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1154   void SplitRes_Select      (SDNode *N, SDValue &Lo, SDValue &Hi);
1155   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
1156   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
1157   void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
1158 
1159   //===--------------------------------------------------------------------===//
1160   // Generic Expansion: LegalizeTypesGeneric.cpp
1161   //===--------------------------------------------------------------------===//
1162 
1163   // Legalization methods which only use that the illegal type is split into two
1164   // identical types of half the size, and that the Lo/Hi part is stored first
1165   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
1166   // such they can be used for expanding integers and floats.
1167 
GetExpandedOp(SDValue Op,SDValue & Lo,SDValue & Hi)1168   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1169     if (Op.getValueType().isInteger())
1170       GetExpandedInteger(Op, Lo, Hi);
1171     else
1172       GetExpandedFloat(Op, Lo, Hi);
1173   }
1174 
1175 
1176   /// This function will split the integer \p Op into \p NumElements
1177   /// operations of type \p EltVT and store them in \p Ops.
1178   void IntegerToVector(SDValue Op, unsigned NumElements,
1179                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1180 
1181   // Generic Result Expansion.
1182   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1183                                     SDValue &Lo, SDValue &Hi);
1184   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1185   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1186   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1187   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1188   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1189   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1190 
1191   // Generic Operand Expansion.
1192   SDValue ExpandOp_BITCAST          (SDNode *N);
1193   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1194   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1195   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1196   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1197   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1198 };
1199 
1200 } // end namespace llvm.
1201 
1202 #endif
1203