1 //===-- memprof_allocator.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler, a memory profiler.
10 //
11 // Implementation of MemProf's memory allocator, which uses the allocator
12 // from sanitizer_common.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "memprof_allocator.h"
17 #include "memprof_mapping.h"
18 #include "memprof_mibmap.h"
19 #include "memprof_rawprofile.h"
20 #include "memprof_stack.h"
21 #include "memprof_thread.h"
22 #include "profile/MemProfData.inc"
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_allocator_report.h"
26 #include "sanitizer_common/sanitizer_array_ref.h"
27 #include "sanitizer_common/sanitizer_common.h"
28 #include "sanitizer_common/sanitizer_errno.h"
29 #include "sanitizer_common/sanitizer_file.h"
30 #include "sanitizer_common/sanitizer_flags.h"
31 #include "sanitizer_common/sanitizer_internal_defs.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
33
34 #include <sched.h>
35 #include <time.h>
36
37 #define MAX_HISTOGRAM_PRINT_SIZE 32U
38
39 extern bool __memprof_histogram;
40
41 namespace __memprof {
42 namespace {
43 using ::llvm::memprof::MemInfoBlock;
44
Print(const MemInfoBlock & M,const u64 id,bool print_terse)45 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
46 u64 p;
47
48 if (print_terse) {
49 p = M.TotalSize * 100 / M.AllocCount;
50 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
51 M.MinSize, M.MaxSize);
52 p = M.TotalAccessCount * 100 / M.AllocCount;
53 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
54 M.MaxAccessCount);
55 p = M.TotalLifetime * 100 / M.AllocCount;
56 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
57 M.MaxLifetime);
58 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
59 M.NumSameAllocCpu, M.NumSameDeallocCpu);
60 } else {
61 p = M.TotalSize * 100 / M.AllocCount;
62 Printf("Memory allocation stack id = %llu\n", id);
63 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
64 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
65 p = M.TotalAccessCount * 100 / M.AllocCount;
66 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
67 p % 100, M.MinAccessCount, M.MaxAccessCount);
68 p = M.TotalLifetime * 100 / M.AllocCount;
69 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
70 p % 100, M.MinLifetime, M.MaxLifetime);
71 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
72 "cpu: %u, num same dealloc_cpu: %u\n",
73 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
74 M.NumSameDeallocCpu);
75 Printf("AccessCountHistogram[%u]: ", M.AccessHistogramSize);
76 uint32_t PrintSize = M.AccessHistogramSize > MAX_HISTOGRAM_PRINT_SIZE
77 ? MAX_HISTOGRAM_PRINT_SIZE
78 : M.AccessHistogramSize;
79 for (size_t i = 0; i < PrintSize; ++i) {
80 Printf("%llu ", ((uint64_t *)M.AccessHistogram)[i]);
81 }
82 Printf("\n");
83 }
84 }
85 } // namespace
86
GetCpuId(void)87 static int GetCpuId(void) {
88 // _memprof_preinit is called via the preinit_array, which subsequently calls
89 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
90 // will seg fault as the address of __vdso_getcpu will be null.
91 if (!memprof_inited)
92 return -1;
93 return sched_getcpu();
94 }
95
96 // Compute the timestamp in ms.
GetTimestamp(void)97 static int GetTimestamp(void) {
98 // timespec_get will segfault if called from dl_init
99 if (!memprof_timestamp_inited) {
100 // By returning 0, this will be effectively treated as being
101 // timestamped at memprof init time (when memprof_init_timestamp_s
102 // is initialized).
103 return 0;
104 }
105 timespec ts;
106 clock_gettime(CLOCK_REALTIME, &ts);
107 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
108 }
109
110 static MemprofAllocator &get_allocator();
111
112 // The memory chunk allocated from the underlying allocator looks like this:
113 // H H U U U U U U
114 // H -- ChunkHeader (32 bytes)
115 // U -- user memory.
116
117 // If there is left padding before the ChunkHeader (due to use of memalign),
118 // we store a magic value in the first uptr word of the memory block and
119 // store the address of ChunkHeader in the next uptr.
120 // M B L L L L L L L L L H H U U U U U U
121 // | ^
122 // ---------------------|
123 // M -- magic value kAllocBegMagic
124 // B -- address of ChunkHeader pointing to the first 'H'
125
126 constexpr uptr kMaxAllowedMallocBits = 40;
127
128 // Should be no more than 32-bytes
129 struct ChunkHeader {
130 // 1-st 4 bytes.
131 u32 alloc_context_id;
132 // 2-nd 4 bytes
133 u32 cpu_id;
134 // 3-rd 4 bytes
135 u32 timestamp_ms;
136 // 4-th 4 bytes
137 // Note only 1 bit is needed for this flag if we need space in the future for
138 // more fields.
139 u32 from_memalign;
140 // 5-th and 6-th 4 bytes
141 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
142 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
143 // more fields.
144 atomic_uint64_t user_requested_size;
145 // 23 bits available
146 // 7-th and 8-th 4 bytes
147 u64 data_type_id; // TODO: hash of type name
148 };
149
150 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
151 COMPILER_CHECK(kChunkHeaderSize == 32);
152
153 struct MemprofChunk : ChunkHeader {
Beg__memprof::MemprofChunk154 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__memprof::MemprofChunk155 uptr UsedSize() {
156 return atomic_load(&user_requested_size, memory_order_relaxed);
157 }
AllocBeg__memprof::MemprofChunk158 void *AllocBeg() {
159 if (from_memalign)
160 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
161 return reinterpret_cast<void *>(this);
162 }
163 };
164
165 class LargeChunkHeader {
166 static constexpr uptr kAllocBegMagic =
167 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
168 atomic_uintptr_t magic;
169 MemprofChunk *chunk_header;
170
171 public:
Get() const172 MemprofChunk *Get() const {
173 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
174 ? chunk_header
175 : nullptr;
176 }
177
Set(MemprofChunk * p)178 void Set(MemprofChunk *p) {
179 if (p) {
180 chunk_header = p;
181 atomic_store(&magic, kAllocBegMagic, memory_order_release);
182 return;
183 }
184
185 uptr old = kAllocBegMagic;
186 if (!atomic_compare_exchange_strong(&magic, &old, 0,
187 memory_order_release)) {
188 CHECK_EQ(old, kAllocBegMagic);
189 }
190 }
191 };
192
FlushUnneededMemProfShadowMemory(uptr p,uptr size)193 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
194 // Since memprof's mapping is compacting, the shadow chunk may be
195 // not page-aligned, so we only flush the page-aligned portion.
196 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
197 }
198
OnMap(uptr p,uptr size) const199 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
200 // Statistics.
201 MemprofStats &thread_stats = GetCurrentThreadStats();
202 thread_stats.mmaps++;
203 thread_stats.mmaped += size;
204 }
205
OnUnmap(uptr p,uptr size) const206 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
207 // We are about to unmap a chunk of user memory.
208 // Mark the corresponding shadow memory as not needed.
209 FlushUnneededMemProfShadowMemory(p, size);
210 // Statistics.
211 MemprofStats &thread_stats = GetCurrentThreadStats();
212 thread_stats.munmaps++;
213 thread_stats.munmaped += size;
214 }
215
GetAllocatorCache(MemprofThreadLocalMallocStorage * ms)216 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
217 CHECK(ms);
218 return &ms->allocator_cache;
219 }
220
221 // Accumulates the access count from the shadow for the given pointer and size.
GetShadowCount(uptr p,u32 size)222 u64 GetShadowCount(uptr p, u32 size) {
223 u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
224 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
225 u64 count = 0;
226 for (; shadow <= shadow_end; shadow++)
227 count += *shadow;
228 return count;
229 }
230
231 // Accumulates the access count from the shadow for the given pointer and size.
232 // See memprof_mapping.h for an overview on histogram counters.
GetShadowCountHistogram(uptr p,u32 size)233 u64 GetShadowCountHistogram(uptr p, u32 size) {
234 u8 *shadow = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p);
235 u8 *shadow_end = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p + size);
236 u64 count = 0;
237 for (; shadow <= shadow_end; shadow++)
238 count += *shadow;
239 return count;
240 }
241
242 // Clears the shadow counters (when memory is allocated).
ClearShadow(uptr addr,uptr size)243 void ClearShadow(uptr addr, uptr size) {
244 CHECK(AddrIsAlignedByGranularity(addr));
245 CHECK(AddrIsInMem(addr));
246 CHECK(AddrIsAlignedByGranularity(addr + size));
247 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
248 CHECK(REAL(memset));
249 uptr shadow_beg;
250 uptr shadow_end;
251 if (__memprof_histogram) {
252 shadow_beg = HISTOGRAM_MEM_TO_SHADOW(addr);
253 shadow_end = HISTOGRAM_MEM_TO_SHADOW(addr + size);
254 } else {
255 shadow_beg = MEM_TO_SHADOW(addr);
256 shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
257 }
258
259 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
260 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
261 } else {
262 uptr page_size = GetPageSizeCached();
263 uptr page_beg = RoundUpTo(shadow_beg, page_size);
264 uptr page_end = RoundDownTo(shadow_end, page_size);
265
266 if (page_beg >= page_end) {
267 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
268 } else {
269 if (page_beg != shadow_beg) {
270 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
271 }
272 if (page_end != shadow_end) {
273 REAL(memset)((void *)page_end, 0, shadow_end - page_end);
274 }
275 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
276 }
277 }
278 }
279
280 struct Allocator {
281 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
282
283 MemprofAllocator allocator;
284 StaticSpinMutex fallback_mutex;
285 AllocatorCache fallback_allocator_cache;
286
287 uptr max_user_defined_malloc_size;
288
289 // Holds the mapping of stack ids to MemInfoBlocks.
290 MIBMapTy MIBMap;
291
292 atomic_uint8_t destructing;
293 atomic_uint8_t constructed;
294 bool print_text;
295
296 // ------------------- Initialization ------------------------
Allocator__memprof::Allocator297 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
298 atomic_store_relaxed(&destructing, 0);
299 atomic_store_relaxed(&constructed, 1);
300 }
301
~Allocator__memprof::Allocator302 ~Allocator() {
303 atomic_store_relaxed(&destructing, 1);
304 FinishAndWrite();
305 }
306
PrintCallback__memprof::Allocator307 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
308 void *Arg) {
309 SpinMutexLock l(&Value->mutex);
310 Print(Value->mib, Key, bool(Arg));
311 }
312
313 // See memprof_mapping.h for an overview on histogram counters.
CreateNewMIB__memprof::Allocator314 static MemInfoBlock CreateNewMIB(uptr p, MemprofChunk *m, u64 user_size) {
315 if (__memprof_histogram) {
316 return CreateNewMIBWithHistogram(p, m, user_size);
317 } else {
318 return CreateNewMIBWithoutHistogram(p, m, user_size);
319 }
320 }
321
CreateNewMIBWithHistogram__memprof::Allocator322 static MemInfoBlock CreateNewMIBWithHistogram(uptr p, MemprofChunk *m,
323 u64 user_size) {
324
325 u64 c = GetShadowCountHistogram(p, user_size);
326 long curtime = GetTimestamp();
327 uint32_t HistogramSize =
328 RoundUpTo(user_size, HISTOGRAM_GRANULARITY) / HISTOGRAM_GRANULARITY;
329 uintptr_t Histogram =
330 (uintptr_t)InternalAlloc(HistogramSize * sizeof(uint64_t));
331 memset((void *)Histogram, 0, HistogramSize * sizeof(uint64_t));
332 for (size_t i = 0; i < HistogramSize; ++i) {
333 u8 Counter =
334 *((u8 *)HISTOGRAM_MEM_TO_SHADOW(p + HISTOGRAM_GRANULARITY * i));
335 ((uint64_t *)Histogram)[i] = (uint64_t)Counter;
336 }
337 MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id,
338 GetCpuId(), Histogram, HistogramSize);
339 return newMIB;
340 }
341
CreateNewMIBWithoutHistogram__memprof::Allocator342 static MemInfoBlock CreateNewMIBWithoutHistogram(uptr p, MemprofChunk *m,
343 u64 user_size) {
344 u64 c = GetShadowCount(p, user_size);
345 long curtime = GetTimestamp();
346 MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id,
347 GetCpuId(), 0, 0);
348 return newMIB;
349 }
350
FinishAndWrite__memprof::Allocator351 void FinishAndWrite() {
352 if (print_text && common_flags()->print_module_map)
353 DumpProcessMap();
354
355 allocator.ForceLock();
356
357 InsertLiveBlocks();
358 if (print_text) {
359 if (!flags()->print_terse)
360 Printf("Recorded MIBs (incl. live on exit):\n");
361 MIBMap.ForEach(PrintCallback,
362 reinterpret_cast<void *>(flags()->print_terse));
363 StackDepotPrintAll();
364 } else {
365 // Serialize the contents to a raw profile. Format documented in
366 // memprof_rawprofile.h.
367 char *Buffer = nullptr;
368
369 __sanitizer::ListOfModules List;
370 List.init();
371 ArrayRef<LoadedModule> Modules(List.begin(), List.end());
372 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer);
373 CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
374 report_file.Write(Buffer, BytesSerialized);
375 }
376
377 allocator.ForceUnlock();
378 }
379
380 // Inserts any blocks which have been allocated but not yet deallocated.
InsertLiveBlocks__memprof::Allocator381 void InsertLiveBlocks() {
382 allocator.ForEachChunk(
383 [](uptr chunk, void *alloc) {
384 u64 user_requested_size;
385 Allocator *A = (Allocator *)alloc;
386 MemprofChunk *m =
387 A->GetMemprofChunk((void *)chunk, user_requested_size);
388 if (!m)
389 return;
390 uptr user_beg = ((uptr)m) + kChunkHeaderSize;
391 MemInfoBlock newMIB = CreateNewMIB(user_beg, m, user_requested_size);
392 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
393 },
394 this);
395 }
396
InitLinkerInitialized__memprof::Allocator397 void InitLinkerInitialized() {
398 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
399 allocator.InitLinkerInitialized(
400 common_flags()->allocator_release_to_os_interval_ms);
401 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
402 ? common_flags()->max_allocation_size_mb
403 << 20
404 : kMaxAllowedMallocSize;
405 }
406
407 // -------------------- Allocation/Deallocation routines ---------------
Allocate__memprof::Allocator408 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
409 AllocType alloc_type) {
410 if (UNLIKELY(!memprof_inited))
411 MemprofInitFromRtl();
412 if (UNLIKELY(IsRssLimitExceeded())) {
413 if (AllocatorMayReturnNull())
414 return nullptr;
415 ReportRssLimitExceeded(stack);
416 }
417 CHECK(stack);
418 const uptr min_alignment = MEMPROF_ALIGNMENT;
419 if (alignment < min_alignment)
420 alignment = min_alignment;
421 if (size == 0) {
422 // We'd be happy to avoid allocating memory for zero-size requests, but
423 // some programs/tests depend on this behavior and assume that malloc
424 // would not return NULL even for zero-size allocations. Moreover, it
425 // looks like operator new should never return NULL, and results of
426 // consecutive "new" calls must be different even if the allocated size
427 // is zero.
428 size = 1;
429 }
430 CHECK(IsPowerOfTwo(alignment));
431 uptr rounded_size = RoundUpTo(size, alignment);
432 uptr needed_size = rounded_size + kChunkHeaderSize;
433 if (alignment > min_alignment)
434 needed_size += alignment;
435 CHECK(IsAligned(needed_size, min_alignment));
436 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
437 size > max_user_defined_malloc_size) {
438 if (AllocatorMayReturnNull()) {
439 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
440 return nullptr;
441 }
442 uptr malloc_limit =
443 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
444 ReportAllocationSizeTooBig(size, malloc_limit, stack);
445 }
446
447 MemprofThread *t = GetCurrentThread();
448 void *allocated;
449 if (t) {
450 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
451 allocated = allocator.Allocate(cache, needed_size, 8);
452 } else {
453 SpinMutexLock l(&fallback_mutex);
454 AllocatorCache *cache = &fallback_allocator_cache;
455 allocated = allocator.Allocate(cache, needed_size, 8);
456 }
457 if (UNLIKELY(!allocated)) {
458 SetAllocatorOutOfMemory();
459 if (AllocatorMayReturnNull())
460 return nullptr;
461 ReportOutOfMemory(size, stack);
462 }
463
464 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
465 uptr alloc_end = alloc_beg + needed_size;
466 uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
467 uptr user_beg = beg_plus_header;
468 if (!IsAligned(user_beg, alignment))
469 user_beg = RoundUpTo(user_beg, alignment);
470 uptr user_end = user_beg + size;
471 CHECK_LE(user_end, alloc_end);
472 uptr chunk_beg = user_beg - kChunkHeaderSize;
473 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
474 m->from_memalign = alloc_beg != chunk_beg;
475 CHECK(size);
476
477 m->cpu_id = GetCpuId();
478 m->timestamp_ms = GetTimestamp();
479 m->alloc_context_id = StackDepotPut(*stack);
480
481 uptr size_rounded_down_to_granularity =
482 RoundDownTo(size, SHADOW_GRANULARITY);
483 if (size_rounded_down_to_granularity)
484 ClearShadow(user_beg, size_rounded_down_to_granularity);
485
486 MemprofStats &thread_stats = GetCurrentThreadStats();
487 thread_stats.mallocs++;
488 thread_stats.malloced += size;
489 thread_stats.malloced_overhead += needed_size - size;
490 if (needed_size > SizeClassMap::kMaxSize)
491 thread_stats.malloc_large++;
492 else
493 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
494
495 void *res = reinterpret_cast<void *>(user_beg);
496 atomic_store(&m->user_requested_size, size, memory_order_release);
497 if (alloc_beg != chunk_beg) {
498 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
499 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
500 }
501 RunMallocHooks(res, size);
502 return res;
503 }
504
Deallocate__memprof::Allocator505 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
506 BufferedStackTrace *stack, AllocType alloc_type) {
507 uptr p = reinterpret_cast<uptr>(ptr);
508 if (p == 0)
509 return;
510
511 RunFreeHooks(ptr);
512
513 uptr chunk_beg = p - kChunkHeaderSize;
514 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
515
516 u64 user_requested_size =
517 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
518 if (memprof_inited && atomic_load_relaxed(&constructed) &&
519 !atomic_load_relaxed(&destructing)) {
520 MemInfoBlock newMIB = this->CreateNewMIB(p, m, user_requested_size);
521 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
522 }
523
524 MemprofStats &thread_stats = GetCurrentThreadStats();
525 thread_stats.frees++;
526 thread_stats.freed += user_requested_size;
527
528 void *alloc_beg = m->AllocBeg();
529 if (alloc_beg != m) {
530 // Clear the magic value, as allocator internals may overwrite the
531 // contents of deallocated chunk, confusing GetMemprofChunk lookup.
532 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
533 }
534
535 MemprofThread *t = GetCurrentThread();
536 if (t) {
537 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
538 allocator.Deallocate(cache, alloc_beg);
539 } else {
540 SpinMutexLock l(&fallback_mutex);
541 AllocatorCache *cache = &fallback_allocator_cache;
542 allocator.Deallocate(cache, alloc_beg);
543 }
544 }
545
Reallocate__memprof::Allocator546 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
547 CHECK(old_ptr && new_size);
548 uptr p = reinterpret_cast<uptr>(old_ptr);
549 uptr chunk_beg = p - kChunkHeaderSize;
550 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
551
552 MemprofStats &thread_stats = GetCurrentThreadStats();
553 thread_stats.reallocs++;
554 thread_stats.realloced += new_size;
555
556 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
557 if (new_ptr) {
558 CHECK_NE(REAL(memcpy), nullptr);
559 uptr memcpy_size = Min(new_size, m->UsedSize());
560 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
561 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
562 }
563 return new_ptr;
564 }
565
Calloc__memprof::Allocator566 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
567 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
568 if (AllocatorMayReturnNull())
569 return nullptr;
570 ReportCallocOverflow(nmemb, size, stack);
571 }
572 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
573 // If the memory comes from the secondary allocator no need to clear it
574 // as it comes directly from mmap.
575 if (ptr && allocator.FromPrimary(ptr))
576 REAL(memset)(ptr, 0, nmemb * size);
577 return ptr;
578 }
579
CommitBack__memprof::Allocator580 void CommitBack(MemprofThreadLocalMallocStorage *ms) {
581 AllocatorCache *ac = GetAllocatorCache(ms);
582 allocator.SwallowCache(ac);
583 }
584
585 // -------------------------- Chunk lookup ----------------------
586
587 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetMemprofChunk__memprof::Allocator588 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
589 if (!alloc_beg)
590 return nullptr;
591 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
592 if (!p) {
593 if (!allocator.FromPrimary(alloc_beg))
594 return nullptr;
595 p = reinterpret_cast<MemprofChunk *>(alloc_beg);
596 }
597 // The size is reset to 0 on deallocation (and a min of 1 on
598 // allocation).
599 user_requested_size =
600 atomic_load(&p->user_requested_size, memory_order_acquire);
601 if (user_requested_size)
602 return p;
603 return nullptr;
604 }
605
GetMemprofChunkByAddr__memprof::Allocator606 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
607 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
608 return GetMemprofChunk(alloc_beg, user_requested_size);
609 }
610
AllocationSize__memprof::Allocator611 uptr AllocationSize(uptr p) {
612 u64 user_requested_size;
613 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
614 if (!m)
615 return 0;
616 if (m->Beg() != p)
617 return 0;
618 return user_requested_size;
619 }
620
AllocationSizeFast__memprof::Allocator621 uptr AllocationSizeFast(uptr p) {
622 return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize();
623 }
624
Purge__memprof::Allocator625 void Purge() { allocator.ForceReleaseToOS(); }
626
PrintStats__memprof::Allocator627 void PrintStats() { allocator.PrintStats(); }
628
ForceLock__memprof::Allocator629 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
630 allocator.ForceLock();
631 fallback_mutex.Lock();
632 }
633
ForceUnlock__memprof::Allocator634 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
635 fallback_mutex.Unlock();
636 allocator.ForceUnlock();
637 }
638 };
639
640 static Allocator instance(LINKER_INITIALIZED);
641
get_allocator()642 static MemprofAllocator &get_allocator() { return instance.allocator; }
643
InitializeAllocator()644 void InitializeAllocator() { instance.InitLinkerInitialized(); }
645
CommitBack()646 void MemprofThreadLocalMallocStorage::CommitBack() {
647 instance.CommitBack(this);
648 }
649
PrintInternalAllocatorStats()650 void PrintInternalAllocatorStats() { instance.PrintStats(); }
651
memprof_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)652 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
653 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
654 }
655
memprof_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)656 void memprof_delete(void *ptr, uptr size, uptr alignment,
657 BufferedStackTrace *stack, AllocType alloc_type) {
658 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
659 }
660
memprof_malloc(uptr size,BufferedStackTrace * stack)661 void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
662 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
663 }
664
memprof_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)665 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
666 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
667 }
668
memprof_reallocarray(void * p,uptr nmemb,uptr size,BufferedStackTrace * stack)669 void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
670 BufferedStackTrace *stack) {
671 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
672 errno = errno_ENOMEM;
673 if (AllocatorMayReturnNull())
674 return nullptr;
675 ReportReallocArrayOverflow(nmemb, size, stack);
676 }
677 return memprof_realloc(p, nmemb * size, stack);
678 }
679
memprof_realloc(void * p,uptr size,BufferedStackTrace * stack)680 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
681 if (!p)
682 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
683 if (size == 0) {
684 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
685 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
686 return nullptr;
687 }
688 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
689 size = 1;
690 }
691 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
692 }
693
memprof_valloc(uptr size,BufferedStackTrace * stack)694 void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
695 return SetErrnoOnNull(
696 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
697 }
698
memprof_pvalloc(uptr size,BufferedStackTrace * stack)699 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
700 uptr PageSize = GetPageSizeCached();
701 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
702 errno = errno_ENOMEM;
703 if (AllocatorMayReturnNull())
704 return nullptr;
705 ReportPvallocOverflow(size, stack);
706 }
707 // pvalloc(0) should allocate one page.
708 size = size ? RoundUpTo(size, PageSize) : PageSize;
709 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
710 }
711
memprof_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)712 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
713 AllocType alloc_type) {
714 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
715 errno = errno_EINVAL;
716 if (AllocatorMayReturnNull())
717 return nullptr;
718 ReportInvalidAllocationAlignment(alignment, stack);
719 }
720 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
721 }
722
memprof_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)723 void *memprof_aligned_alloc(uptr alignment, uptr size,
724 BufferedStackTrace *stack) {
725 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
726 errno = errno_EINVAL;
727 if (AllocatorMayReturnNull())
728 return nullptr;
729 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
730 }
731 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
732 }
733
memprof_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)734 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
735 BufferedStackTrace *stack) {
736 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
737 if (AllocatorMayReturnNull())
738 return errno_EINVAL;
739 ReportInvalidPosixMemalignAlignment(alignment, stack);
740 }
741 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
742 if (UNLIKELY(!ptr))
743 // OOM error is already taken care of by Allocate.
744 return errno_ENOMEM;
745 CHECK(IsAligned((uptr)ptr, alignment));
746 *memptr = ptr;
747 return 0;
748 }
749
memprof_malloc_begin(const void * p)750 static const void *memprof_malloc_begin(const void *p) {
751 u64 user_requested_size;
752 MemprofChunk *m =
753 instance.GetMemprofChunkByAddr((uptr)p, user_requested_size);
754 if (!m)
755 return nullptr;
756 if (user_requested_size == 0)
757 return nullptr;
758
759 return (const void *)m->Beg();
760 }
761
memprof_malloc_usable_size(const void * ptr)762 uptr memprof_malloc_usable_size(const void *ptr) {
763 if (!ptr)
764 return 0;
765 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
766 return usable_size;
767 }
768
769 } // namespace __memprof
770
771 // ---------------------- Interface ---------------- {{{1
772 using namespace __memprof;
773
__sanitizer_get_estimated_allocated_size(uptr size)774 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
775
__sanitizer_get_ownership(const void * p)776 int __sanitizer_get_ownership(const void *p) {
777 return memprof_malloc_usable_size(p) != 0;
778 }
779
__sanitizer_get_allocated_begin(const void * p)780 const void *__sanitizer_get_allocated_begin(const void *p) {
781 return memprof_malloc_begin(p);
782 }
783
__sanitizer_get_allocated_size(const void * p)784 uptr __sanitizer_get_allocated_size(const void *p) {
785 return memprof_malloc_usable_size(p);
786 }
787
__sanitizer_get_allocated_size_fast(const void * p)788 uptr __sanitizer_get_allocated_size_fast(const void *p) {
789 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
790 uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p));
791 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
792 return ret;
793 }
794
__sanitizer_purge_allocator()795 void __sanitizer_purge_allocator() { instance.Purge(); }
796
__memprof_profile_dump()797 int __memprof_profile_dump() {
798 instance.FinishAndWrite();
799 // In the future we may want to return non-zero if there are any errors
800 // detected during the dumping process.
801 return 0;
802 }
803
__memprof_profile_reset()804 void __memprof_profile_reset() {
805 if (report_file.fd != kInvalidFd && report_file.fd != kStdoutFd &&
806 report_file.fd != kStderrFd) {
807 CloseFile(report_file.fd);
808 // Setting the file descriptor to kInvalidFd ensures that we will reopen the
809 // file when invoking Write again.
810 report_file.fd = kInvalidFd;
811 }
812 }
813