1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 // MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds. Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails. Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects. It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 // MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 // // Expects mock_foo.Bar(n) to be called where n is even.
62 // EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 // // Verifies that the value of some_expression is even.
67 // EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 // Value of: some_expression
72 // Expected: is even
73 // Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you). This allows the matcher to be
85 // polymorphic. For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool. In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher. For that you
95 // can use another macro:
96 //
97 // MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 // Value of: Blah("a")
110 // Expected: has absolute value 10
111 // Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'. For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression. The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'. When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher. For example,
133 //
134 // using testing::PrintToString;
135 //
136 // MATCHER_P2(InClosedRange, low, hi,
137 // std::string(negation ? "is not" : "is") + " in range [" +
138 // PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 // return low <= arg && arg <= hi;
140 // }
141 // ...
142 // EXPECT_THAT(3, InClosedRange(4, 6));
143 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 // Expected: is in range [4, 6]
148 // ...
149 // Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple. For example,
154 //
155 // MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 // ...
157 // EXPECT_THAT(3, InClosedRange(4, 6));
158 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 // Expected: in closed range (4, 6)
163 // ...
164 // Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 // template <typename p1_type, ..., typename pk_type>
176 // FooMatcherPk<p1_type, ..., pk_type>
177 // Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you. If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false). As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used. You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable. If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded. For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one. To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 // MATCHER_P(EqualsLongString, str, "") {
208 // if (arg == str) return true;
209 //
210 // *result_listener << "the difference: "
211 /// << DiffStrings(str, arg);
212 // return false;
213 // }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 // MATCHER_P(Blah, a, description_string1) { ... }
221 // MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher(). These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong. They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers. More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258 #include <algorithm>
259 #include <cmath>
260 #include <exception>
261 #include <functional>
262 #include <initializer_list>
263 #include <ios>
264 #include <iterator>
265 #include <limits>
266 #include <memory>
267 #include <ostream> // NOLINT
268 #include <sstream>
269 #include <string>
270 #include <type_traits>
271 #include <utility>
272 #include <vector>
273
274 #include "gmock/internal/gmock-internal-utils.h"
275 #include "gmock/internal/gmock-port.h"
276 #include "gmock/internal/gmock-pp.h"
277 #include "gtest/gtest.h"
278
279 // MSVC warning C5046 is new as of VS2017 version 15.8.
280 #if defined(_MSC_VER) && _MSC_VER >= 1915
281 #define GMOCK_MAYBE_5046_ 5046
282 #else
283 #define GMOCK_MAYBE_5046_
284 #endif
285
286 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288 clients of class B */
289 /* Symbol involving type with internal linkage not defined */)
290
291 namespace testing {
292
293 // To implement a matcher Foo for type T, define:
294 // 1. a class FooMatcherImpl that implements the
295 // MatcherInterface<T> interface, and
296 // 2. a factory function that creates a Matcher<T> object from a
297 // FooMatcherImpl*.
298 //
299 // The two-level delegation design makes it possible to allow a user
300 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
301 // is impossible if we pass matchers by pointers. It also eases
302 // ownership management as Matcher objects can now be copied like
303 // plain values.
304
305 // A match result listener that stores the explanation in a string.
306 class StringMatchResultListener : public MatchResultListener {
307 public:
StringMatchResultListener()308 StringMatchResultListener() : MatchResultListener(&ss_) {}
309
310 // Returns the explanation accumulated so far.
str()311 std::string str() const { return ss_.str(); }
312
313 // Clears the explanation accumulated so far.
Clear()314 void Clear() { ss_.str(""); }
315
316 private:
317 ::std::stringstream ss_;
318
319 StringMatchResultListener(const StringMatchResultListener&) = delete;
320 StringMatchResultListener& operator=(const StringMatchResultListener&) =
321 delete;
322 };
323
324 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
325 // and MUST NOT BE USED IN USER CODE!!!
326 namespace internal {
327
328 // The MatcherCastImpl class template is a helper for implementing
329 // MatcherCast(). We need this helper in order to partially
330 // specialize the implementation of MatcherCast() (C++ allows
331 // class/struct templates to be partially specialized, but not
332 // function templates.).
333
334 // This general version is used when MatcherCast()'s argument is a
335 // polymorphic matcher (i.e. something that can be converted to a
336 // Matcher but is not one yet; for example, Eq(value)) or a value (for
337 // example, "hello").
338 template <typename T, typename M>
339 class MatcherCastImpl {
340 public:
Cast(const M & polymorphic_matcher_or_value)341 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
342 // M can be a polymorphic matcher, in which case we want to use
343 // its conversion operator to create Matcher<T>. Or it can be a value
344 // that should be passed to the Matcher<T>'s constructor.
345 //
346 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
347 // polymorphic matcher because it'll be ambiguous if T has an implicit
348 // constructor from M (this usually happens when T has an implicit
349 // constructor from any type).
350 //
351 // It won't work to unconditionally implicit_cast
352 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
353 // a user-defined conversion from M to T if one exists (assuming M is
354 // a value).
355 return CastImpl(polymorphic_matcher_or_value,
356 std::is_convertible<M, Matcher<T>>{},
357 std::is_convertible<M, T>{});
358 }
359
360 private:
361 template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)362 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
363 std::true_type /* convertible_to_matcher */,
364 std::integral_constant<bool, Ignore>) {
365 // M is implicitly convertible to Matcher<T>, which means that either
366 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
367 // from M. In both cases using the implicit conversion will produce a
368 // matcher.
369 //
370 // Even if T has an implicit constructor from M, it won't be called because
371 // creating Matcher<T> would require a chain of two user-defined conversions
372 // (first to create T from M and then to create Matcher<T> from T).
373 return polymorphic_matcher_or_value;
374 }
375
376 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
377 // matcher. It's a value of a type implicitly convertible to T. Use direct
378 // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)379 static Matcher<T> CastImpl(const M& value,
380 std::false_type /* convertible_to_matcher */,
381 std::true_type /* convertible_to_T */) {
382 return Matcher<T>(ImplicitCast_<T>(value));
383 }
384
385 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
386 // polymorphic matcher Eq(value) in this case.
387 //
388 // Note that we first attempt to perform an implicit cast on the value and
389 // only fall back to the polymorphic Eq() matcher afterwards because the
390 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
391 // which might be undefined even when Rhs is implicitly convertible to Lhs
392 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
393 //
394 // We don't define this method inline as we need the declaration of Eq().
395 static Matcher<T> CastImpl(const M& value,
396 std::false_type /* convertible_to_matcher */,
397 std::false_type /* convertible_to_T */);
398 };
399
400 // This more specialized version is used when MatcherCast()'s argument
401 // is already a Matcher. This only compiles when type T can be
402 // statically converted to type U.
403 template <typename T, typename U>
404 class MatcherCastImpl<T, Matcher<U>> {
405 public:
Cast(const Matcher<U> & source_matcher)406 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
407 return Matcher<T>(new Impl(source_matcher));
408 }
409
410 private:
411 class Impl : public MatcherInterface<T> {
412 public:
Impl(const Matcher<U> & source_matcher)413 explicit Impl(const Matcher<U>& source_matcher)
414 : source_matcher_(source_matcher) {}
415
416 // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)417 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
418 using FromType = typename std::remove_cv<typename std::remove_pointer<
419 typename std::remove_reference<T>::type>::type>::type;
420 using ToType = typename std::remove_cv<typename std::remove_pointer<
421 typename std::remove_reference<U>::type>::type>::type;
422 // Do not allow implicitly converting base*/& to derived*/&.
423 static_assert(
424 // Do not trigger if only one of them is a pointer. That implies a
425 // regular conversion and not a down_cast.
426 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
427 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
428 std::is_same<FromType, ToType>::value ||
429 !std::is_base_of<FromType, ToType>::value,
430 "Can't implicitly convert from <base> to <derived>");
431
432 // Do the cast to `U` explicitly if necessary.
433 // Otherwise, let implicit conversions do the trick.
434 using CastType =
435 typename std::conditional<std::is_convertible<T&, const U&>::value,
436 T&, U>::type;
437
438 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
439 listener);
440 }
441
DescribeTo(::std::ostream * os)442 void DescribeTo(::std::ostream* os) const override {
443 source_matcher_.DescribeTo(os);
444 }
445
DescribeNegationTo(::std::ostream * os)446 void DescribeNegationTo(::std::ostream* os) const override {
447 source_matcher_.DescribeNegationTo(os);
448 }
449
450 private:
451 const Matcher<U> source_matcher_;
452 };
453 };
454
455 // This even more specialized version is used for efficiently casting
456 // a matcher to its own type.
457 template <typename T>
458 class MatcherCastImpl<T, Matcher<T>> {
459 public:
Cast(const Matcher<T> & matcher)460 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
461 };
462
463 // Template specialization for parameterless Matcher.
464 template <typename Derived>
465 class MatcherBaseImpl {
466 public:
467 MatcherBaseImpl() = default;
468
469 template <typename T>
470 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
471 return ::testing::Matcher<T>(new
472 typename Derived::template gmock_Impl<T>());
473 }
474 };
475
476 // Template specialization for Matcher with parameters.
477 template <template <typename...> class Derived, typename... Ts>
478 class MatcherBaseImpl<Derived<Ts...>> {
479 public:
480 // Mark the constructor explicit for single argument T to avoid implicit
481 // conversions.
482 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
483 typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)484 explicit MatcherBaseImpl(Ts... params)
485 : params_(std::forward<Ts>(params)...) {}
486 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
487 typename = typename E::type>
MatcherBaseImpl(Ts...params)488 MatcherBaseImpl(Ts... params) // NOLINT
489 : params_(std::forward<Ts>(params)...) {}
490
491 template <typename F>
492 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
493 return Apply<F>(std::make_index_sequence<sizeof...(Ts)>{});
494 }
495
496 private:
497 template <typename F, std::size_t... tuple_ids>
Apply(std::index_sequence<tuple_ids...>)498 ::testing::Matcher<F> Apply(std::index_sequence<tuple_ids...>) const {
499 return ::testing::Matcher<F>(
500 new typename Derived<Ts...>::template gmock_Impl<F>(
501 std::get<tuple_ids>(params_)...));
502 }
503
504 const std::tuple<Ts...> params_;
505 };
506
507 } // namespace internal
508
509 // In order to be safe and clear, casting between different matcher
510 // types is done explicitly via MatcherCast<T>(m), which takes a
511 // matcher m and returns a Matcher<T>. It compiles only when T can be
512 // statically converted to the argument type of m.
513 template <typename T, typename M>
MatcherCast(const M & matcher)514 inline Matcher<T> MatcherCast(const M& matcher) {
515 return internal::MatcherCastImpl<T, M>::Cast(matcher);
516 }
517
518 // This overload handles polymorphic matchers and values only since
519 // monomorphic matchers are handled by the next one.
520 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)521 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
522 return MatcherCast<T>(polymorphic_matcher_or_value);
523 }
524
525 // This overload handles monomorphic matchers.
526 //
527 // In general, if type T can be implicitly converted to type U, we can
528 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
529 // contravariant): just keep a copy of the original Matcher<U>, convert the
530 // argument from type T to U, and then pass it to the underlying Matcher<U>.
531 // The only exception is when U is a reference and T is not, as the
532 // underlying Matcher<U> may be interested in the argument's address, which
533 // is not preserved in the conversion from T to U.
534 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)535 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
536 // Enforce that T can be implicitly converted to U.
537 static_assert(std::is_convertible<const T&, const U&>::value,
538 "T must be implicitly convertible to U");
539 // Enforce that we are not converting a non-reference type T to a reference
540 // type U.
541 static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
542 "cannot convert non reference arg to reference");
543 // In case both T and U are arithmetic types, enforce that the
544 // conversion is not lossy.
545 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
546 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
547 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
548 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
549 static_assert(
550 kTIsOther || kUIsOther ||
551 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
552 "conversion of arithmetic types must be lossless");
553 return MatcherCast<T>(matcher);
554 }
555
556 // A<T>() returns a matcher that matches any value of type T.
557 template <typename T>
558 Matcher<T> A();
559
560 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561 // and MUST NOT BE USED IN USER CODE!!!
562 namespace internal {
563
564 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)565 inline void PrintIfNotEmpty(const std::string& explanation,
566 ::std::ostream* os) {
567 if (!explanation.empty() && os != nullptr) {
568 *os << ", " << explanation;
569 }
570 }
571
572 // Returns true if the given type name is easy to read by a human.
573 // This is used to decide whether printing the type of a value might
574 // be helpful.
IsReadableTypeName(const std::string & type_name)575 inline bool IsReadableTypeName(const std::string& type_name) {
576 // We consider a type name readable if it's short or doesn't contain
577 // a template or function type.
578 return (type_name.length() <= 20 ||
579 type_name.find_first_of("<(") == std::string::npos);
580 }
581
582 // Matches the value against the given matcher, prints the value and explains
583 // the match result to the listener. Returns the match result.
584 // 'listener' must not be NULL.
585 // Value cannot be passed by const reference, because some matchers take a
586 // non-const argument.
587 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)588 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
589 MatchResultListener* listener) {
590 if (!listener->IsInterested()) {
591 // If the listener is not interested, we do not need to construct the
592 // inner explanation.
593 return matcher.Matches(value);
594 }
595
596 StringMatchResultListener inner_listener;
597 const bool match = matcher.MatchAndExplain(value, &inner_listener);
598
599 UniversalPrint(value, listener->stream());
600 #if GTEST_HAS_RTTI
601 const std::string& type_name = GetTypeName<Value>();
602 if (IsReadableTypeName(type_name))
603 *listener->stream() << " (of type " << type_name << ")";
604 #endif
605 PrintIfNotEmpty(inner_listener.str(), listener->stream());
606
607 return match;
608 }
609
610 // An internal helper class for doing compile-time loop on a tuple's
611 // fields.
612 template <size_t N>
613 class TuplePrefix {
614 public:
615 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
616 // if and only if the first N fields of matcher_tuple matches
617 // the first N fields of value_tuple, respectively.
618 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)619 static bool Matches(const MatcherTuple& matcher_tuple,
620 const ValueTuple& value_tuple) {
621 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
622 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
623 }
624
625 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
626 // describes failures in matching the first N fields of matchers
627 // against the first N fields of values. If there is no failure,
628 // nothing will be streamed to os.
629 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)630 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
631 const ValueTuple& values,
632 ::std::ostream* os) {
633 // First, describes failures in the first N - 1 fields.
634 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
635
636 // Then describes the failure (if any) in the (N - 1)-th (0-based)
637 // field.
638 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
639 std::get<N - 1>(matchers);
640 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
641 const Value& value = std::get<N - 1>(values);
642 StringMatchResultListener listener;
643 if (!matcher.MatchAndExplain(value, &listener)) {
644 *os << " Expected arg #" << N - 1 << ": ";
645 std::get<N - 1>(matchers).DescribeTo(os);
646 *os << "\n Actual: ";
647 // We remove the reference in type Value to prevent the
648 // universal printer from printing the address of value, which
649 // isn't interesting to the user most of the time. The
650 // matcher's MatchAndExplain() method handles the case when
651 // the address is interesting.
652 internal::UniversalPrint(value, os);
653 PrintIfNotEmpty(listener.str(), os);
654 *os << "\n";
655 }
656 }
657 };
658
659 // The base case.
660 template <>
661 class TuplePrefix<0> {
662 public:
663 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)664 static bool Matches(const MatcherTuple& /* matcher_tuple */,
665 const ValueTuple& /* value_tuple */) {
666 return true;
667 }
668
669 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)670 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
671 const ValueTuple& /* values */,
672 ::std::ostream* /* os */) {}
673 };
674
675 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
676 // all matchers in matcher_tuple match the corresponding fields in
677 // value_tuple. It is a compiler error if matcher_tuple and
678 // value_tuple have different number of fields or incompatible field
679 // types.
680 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)681 bool TupleMatches(const MatcherTuple& matcher_tuple,
682 const ValueTuple& value_tuple) {
683 // Makes sure that matcher_tuple and value_tuple have the same
684 // number of fields.
685 static_assert(std::tuple_size<MatcherTuple>::value ==
686 std::tuple_size<ValueTuple>::value,
687 "matcher and value have different numbers of fields");
688 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
689 value_tuple);
690 }
691
692 // Describes failures in matching matchers against values. If there
693 // is no failure, nothing will be streamed to os.
694 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)695 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
696 const ValueTuple& values, ::std::ostream* os) {
697 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
698 matchers, values, os);
699 }
700
701 // TransformTupleValues and its helper.
702 //
703 // TransformTupleValuesHelper hides the internal machinery that
704 // TransformTupleValues uses to implement a tuple traversal.
705 template <typename Tuple, typename Func, typename OutIter>
706 class TransformTupleValuesHelper {
707 private:
708 typedef ::std::tuple_size<Tuple> TupleSize;
709
710 public:
711 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
712 // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)713 static OutIter Run(Func f, const Tuple& t, OutIter out) {
714 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
715 }
716
717 private:
718 template <typename Tup, size_t kRemainingSize>
719 struct IterateOverTuple {
operatorIterateOverTuple720 OutIter operator()(Func f, const Tup& t, OutIter out) const {
721 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
722 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
723 }
724 };
725 template <typename Tup>
726 struct IterateOverTuple<Tup, 0> {
727 OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
728 return out;
729 }
730 };
731 };
732
733 // Successively invokes 'f(element)' on each element of the tuple 't',
734 // appending each result to the 'out' iterator. Returns the final value
735 // of 'out'.
736 template <typename Tuple, typename Func, typename OutIter>
737 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
738 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
739 }
740
741 // Implements _, a matcher that matches any value of any
742 // type. This is a polymorphic matcher, so we need a template type
743 // conversion operator to make it appearing as a Matcher<T> for any
744 // type T.
745 class AnythingMatcher {
746 public:
747 using is_gtest_matcher = void;
748
749 template <typename T>
750 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
751 return true;
752 }
753 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
754 void DescribeNegationTo(::std::ostream* os) const {
755 // This is mostly for completeness' sake, as it's not very useful
756 // to write Not(A<bool>()). However we cannot completely rule out
757 // such a possibility, and it doesn't hurt to be prepared.
758 *os << "never matches";
759 }
760 };
761
762 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
763 // pointer that is NULL.
764 class IsNullMatcher {
765 public:
766 template <typename Pointer>
767 bool MatchAndExplain(const Pointer& p,
768 MatchResultListener* /* listener */) const {
769 return p == nullptr;
770 }
771
772 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
773 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
774 };
775
776 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
777 // pointer that is not NULL.
778 class NotNullMatcher {
779 public:
780 template <typename Pointer>
781 bool MatchAndExplain(const Pointer& p,
782 MatchResultListener* /* listener */) const {
783 return p != nullptr;
784 }
785
786 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
787 void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
788 };
789
790 // Ref(variable) matches any argument that is a reference to
791 // 'variable'. This matcher is polymorphic as it can match any
792 // super type of the type of 'variable'.
793 //
794 // The RefMatcher template class implements Ref(variable). It can
795 // only be instantiated with a reference type. This prevents a user
796 // from mistakenly using Ref(x) to match a non-reference function
797 // argument. For example, the following will righteously cause a
798 // compiler error:
799 //
800 // int n;
801 // Matcher<int> m1 = Ref(n); // This won't compile.
802 // Matcher<int&> m2 = Ref(n); // This will compile.
803 template <typename T>
804 class RefMatcher;
805
806 template <typename T>
807 class RefMatcher<T&> {
808 // Google Mock is a generic framework and thus needs to support
809 // mocking any function types, including those that take non-const
810 // reference arguments. Therefore the template parameter T (and
811 // Super below) can be instantiated to either a const type or a
812 // non-const type.
813 public:
814 // RefMatcher() takes a T& instead of const T&, as we want the
815 // compiler to catch using Ref(const_value) as a matcher for a
816 // non-const reference.
817 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
818
819 template <typename Super>
820 operator Matcher<Super&>() const {
821 // By passing object_ (type T&) to Impl(), which expects a Super&,
822 // we make sure that Super is a super type of T. In particular,
823 // this catches using Ref(const_value) as a matcher for a
824 // non-const reference, as you cannot implicitly convert a const
825 // reference to a non-const reference.
826 return MakeMatcher(new Impl<Super>(object_));
827 }
828
829 private:
830 template <typename Super>
831 class Impl : public MatcherInterface<Super&> {
832 public:
833 explicit Impl(Super& x) : object_(x) {} // NOLINT
834
835 // MatchAndExplain() takes a Super& (as opposed to const Super&)
836 // in order to match the interface MatcherInterface<Super&>.
837 bool MatchAndExplain(Super& x,
838 MatchResultListener* listener) const override {
839 *listener << "which is located @" << static_cast<const void*>(&x);
840 return &x == &object_;
841 }
842
843 void DescribeTo(::std::ostream* os) const override {
844 *os << "references the variable ";
845 UniversalPrinter<Super&>::Print(object_, os);
846 }
847
848 void DescribeNegationTo(::std::ostream* os) const override {
849 *os << "does not reference the variable ";
850 UniversalPrinter<Super&>::Print(object_, os);
851 }
852
853 private:
854 const Super& object_;
855 };
856
857 T& object_;
858 };
859
860 // Polymorphic helper functions for narrow and wide string matchers.
861 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
862 return String::CaseInsensitiveCStringEquals(lhs, rhs);
863 }
864
865 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
866 const wchar_t* rhs) {
867 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
868 }
869
870 // String comparison for narrow or wide strings that can have embedded NUL
871 // characters.
872 template <typename StringType>
873 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
874 // Are the heads equal?
875 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
876 return false;
877 }
878
879 // Skip the equal heads.
880 const typename StringType::value_type nul = 0;
881 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
882
883 // Are we at the end of either s1 or s2?
884 if (i1 == StringType::npos || i2 == StringType::npos) {
885 return i1 == i2;
886 }
887
888 // Are the tails equal?
889 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
890 }
891
892 // String matchers.
893
894 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
895 template <typename StringType>
896 class StrEqualityMatcher {
897 public:
898 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
899 : string_(std::move(str)),
900 expect_eq_(expect_eq),
901 case_sensitive_(case_sensitive) {}
902
903 #if GTEST_INTERNAL_HAS_STRING_VIEW
904 bool MatchAndExplain(const internal::StringView& s,
905 MatchResultListener* listener) const {
906 // This should fail to compile if StringView is used with wide
907 // strings.
908 const StringType& str = std::string(s);
909 return MatchAndExplain(str, listener);
910 }
911 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
912
913 // Accepts pointer types, particularly:
914 // const char*
915 // char*
916 // const wchar_t*
917 // wchar_t*
918 template <typename CharType>
919 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
920 if (s == nullptr) {
921 return !expect_eq_;
922 }
923 return MatchAndExplain(StringType(s), listener);
924 }
925
926 // Matches anything that can convert to StringType.
927 //
928 // This is a template, not just a plain function with const StringType&,
929 // because StringView has some interfering non-explicit constructors.
930 template <typename MatcheeStringType>
931 bool MatchAndExplain(const MatcheeStringType& s,
932 MatchResultListener* /* listener */) const {
933 const StringType s2(s);
934 const bool eq = case_sensitive_ ? s2 == string_
935 : CaseInsensitiveStringEquals(s2, string_);
936 return expect_eq_ == eq;
937 }
938
939 void DescribeTo(::std::ostream* os) const {
940 DescribeToHelper(expect_eq_, os);
941 }
942
943 void DescribeNegationTo(::std::ostream* os) const {
944 DescribeToHelper(!expect_eq_, os);
945 }
946
947 private:
948 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
949 *os << (expect_eq ? "is " : "isn't ");
950 *os << "equal to ";
951 if (!case_sensitive_) {
952 *os << "(ignoring case) ";
953 }
954 UniversalPrint(string_, os);
955 }
956
957 const StringType string_;
958 const bool expect_eq_;
959 const bool case_sensitive_;
960 };
961
962 // Implements the polymorphic HasSubstr(substring) matcher, which
963 // can be used as a Matcher<T> as long as T can be converted to a
964 // string.
965 template <typename StringType>
966 class HasSubstrMatcher {
967 public:
968 explicit HasSubstrMatcher(const StringType& substring)
969 : substring_(substring) {}
970
971 #if GTEST_INTERNAL_HAS_STRING_VIEW
972 bool MatchAndExplain(const internal::StringView& s,
973 MatchResultListener* listener) const {
974 // This should fail to compile if StringView is used with wide
975 // strings.
976 const StringType& str = std::string(s);
977 return MatchAndExplain(str, listener);
978 }
979 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
980
981 // Accepts pointer types, particularly:
982 // const char*
983 // char*
984 // const wchar_t*
985 // wchar_t*
986 template <typename CharType>
987 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
988 return s != nullptr && MatchAndExplain(StringType(s), listener);
989 }
990
991 // Matches anything that can convert to StringType.
992 //
993 // This is a template, not just a plain function with const StringType&,
994 // because StringView has some interfering non-explicit constructors.
995 template <typename MatcheeStringType>
996 bool MatchAndExplain(const MatcheeStringType& s,
997 MatchResultListener* /* listener */) const {
998 return StringType(s).find(substring_) != StringType::npos;
999 }
1000
1001 // Describes what this matcher matches.
1002 void DescribeTo(::std::ostream* os) const {
1003 *os << "has substring ";
1004 UniversalPrint(substring_, os);
1005 }
1006
1007 void DescribeNegationTo(::std::ostream* os) const {
1008 *os << "has no substring ";
1009 UniversalPrint(substring_, os);
1010 }
1011
1012 private:
1013 const StringType substring_;
1014 };
1015
1016 // Implements the polymorphic StartsWith(substring) matcher, which
1017 // can be used as a Matcher<T> as long as T can be converted to a
1018 // string.
1019 template <typename StringType>
1020 class StartsWithMatcher {
1021 public:
1022 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1023
1024 #if GTEST_INTERNAL_HAS_STRING_VIEW
1025 bool MatchAndExplain(const internal::StringView& s,
1026 MatchResultListener* listener) const {
1027 // This should fail to compile if StringView is used with wide
1028 // strings.
1029 const StringType& str = std::string(s);
1030 return MatchAndExplain(str, listener);
1031 }
1032 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1033
1034 // Accepts pointer types, particularly:
1035 // const char*
1036 // char*
1037 // const wchar_t*
1038 // wchar_t*
1039 template <typename CharType>
1040 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1041 return s != nullptr && MatchAndExplain(StringType(s), listener);
1042 }
1043
1044 // Matches anything that can convert to StringType.
1045 //
1046 // This is a template, not just a plain function with const StringType&,
1047 // because StringView has some interfering non-explicit constructors.
1048 template <typename MatcheeStringType>
1049 bool MatchAndExplain(const MatcheeStringType& s,
1050 MatchResultListener* /* listener */) const {
1051 const StringType s2(s);
1052 return s2.length() >= prefix_.length() &&
1053 s2.substr(0, prefix_.length()) == prefix_;
1054 }
1055
1056 void DescribeTo(::std::ostream* os) const {
1057 *os << "starts with ";
1058 UniversalPrint(prefix_, os);
1059 }
1060
1061 void DescribeNegationTo(::std::ostream* os) const {
1062 *os << "doesn't start with ";
1063 UniversalPrint(prefix_, os);
1064 }
1065
1066 private:
1067 const StringType prefix_;
1068 };
1069
1070 // Implements the polymorphic EndsWith(substring) matcher, which
1071 // can be used as a Matcher<T> as long as T can be converted to a
1072 // string.
1073 template <typename StringType>
1074 class EndsWithMatcher {
1075 public:
1076 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1077
1078 #if GTEST_INTERNAL_HAS_STRING_VIEW
1079 bool MatchAndExplain(const internal::StringView& s,
1080 MatchResultListener* listener) const {
1081 // This should fail to compile if StringView is used with wide
1082 // strings.
1083 const StringType& str = std::string(s);
1084 return MatchAndExplain(str, listener);
1085 }
1086 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1087
1088 // Accepts pointer types, particularly:
1089 // const char*
1090 // char*
1091 // const wchar_t*
1092 // wchar_t*
1093 template <typename CharType>
1094 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1095 return s != nullptr && MatchAndExplain(StringType(s), listener);
1096 }
1097
1098 // Matches anything that can convert to StringType.
1099 //
1100 // This is a template, not just a plain function with const StringType&,
1101 // because StringView has some interfering non-explicit constructors.
1102 template <typename MatcheeStringType>
1103 bool MatchAndExplain(const MatcheeStringType& s,
1104 MatchResultListener* /* listener */) const {
1105 const StringType s2(s);
1106 return s2.length() >= suffix_.length() &&
1107 s2.substr(s2.length() - suffix_.length()) == suffix_;
1108 }
1109
1110 void DescribeTo(::std::ostream* os) const {
1111 *os << "ends with ";
1112 UniversalPrint(suffix_, os);
1113 }
1114
1115 void DescribeNegationTo(::std::ostream* os) const {
1116 *os << "doesn't end with ";
1117 UniversalPrint(suffix_, os);
1118 }
1119
1120 private:
1121 const StringType suffix_;
1122 };
1123
1124 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1125 // used as a Matcher<T> as long as T can be converted to a string.
1126 class WhenBase64UnescapedMatcher {
1127 public:
1128 using is_gtest_matcher = void;
1129
1130 explicit WhenBase64UnescapedMatcher(
1131 const Matcher<const std::string&>& internal_matcher)
1132 : internal_matcher_(internal_matcher) {}
1133
1134 // Matches anything that can convert to std::string.
1135 template <typename MatcheeStringType>
1136 bool MatchAndExplain(const MatcheeStringType& s,
1137 MatchResultListener* listener) const {
1138 const std::string s2(s); // NOLINT (needed for working with string_view).
1139 std::string unescaped;
1140 if (!internal::Base64Unescape(s2, &unescaped)) {
1141 if (listener != nullptr) {
1142 *listener << "is not a valid base64 escaped string";
1143 }
1144 return false;
1145 }
1146 return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1147 }
1148
1149 void DescribeTo(::std::ostream* os) const {
1150 *os << "matches after Base64Unescape ";
1151 internal_matcher_.DescribeTo(os);
1152 }
1153
1154 void DescribeNegationTo(::std::ostream* os) const {
1155 *os << "does not match after Base64Unescape ";
1156 internal_matcher_.DescribeTo(os);
1157 }
1158
1159 private:
1160 const Matcher<const std::string&> internal_matcher_;
1161 };
1162
1163 // Implements a matcher that compares the two fields of a 2-tuple
1164 // using one of the ==, <=, <, etc, operators. The two fields being
1165 // compared don't have to have the same type.
1166 //
1167 // The matcher defined here is polymorphic (for example, Eq() can be
1168 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1169 // etc). Therefore we use a template type conversion operator in the
1170 // implementation.
1171 template <typename D, typename Op>
1172 class PairMatchBase {
1173 public:
1174 template <typename T1, typename T2>
1175 operator Matcher<::std::tuple<T1, T2>>() const {
1176 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1177 }
1178 template <typename T1, typename T2>
1179 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1180 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1181 }
1182
1183 private:
1184 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1185 return os << D::Desc();
1186 }
1187
1188 template <typename Tuple>
1189 class Impl : public MatcherInterface<Tuple> {
1190 public:
1191 bool MatchAndExplain(Tuple args,
1192 MatchResultListener* /* listener */) const override {
1193 return Op()(::std::get<0>(args), ::std::get<1>(args));
1194 }
1195 void DescribeTo(::std::ostream* os) const override {
1196 *os << "are " << GetDesc;
1197 }
1198 void DescribeNegationTo(::std::ostream* os) const override {
1199 *os << "aren't " << GetDesc;
1200 }
1201 };
1202 };
1203
1204 class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1205 public:
1206 static const char* Desc() { return "an equal pair"; }
1207 };
1208 class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1209 public:
1210 static const char* Desc() { return "an unequal pair"; }
1211 };
1212 class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1213 public:
1214 static const char* Desc() { return "a pair where the first < the second"; }
1215 };
1216 class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1217 public:
1218 static const char* Desc() { return "a pair where the first > the second"; }
1219 };
1220 class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1221 public:
1222 static const char* Desc() { return "a pair where the first <= the second"; }
1223 };
1224 class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1225 public:
1226 static const char* Desc() { return "a pair where the first >= the second"; }
1227 };
1228
1229 // Implements the Not(...) matcher for a particular argument type T.
1230 // We do not nest it inside the NotMatcher class template, as that
1231 // will prevent different instantiations of NotMatcher from sharing
1232 // the same NotMatcherImpl<T> class.
1233 template <typename T>
1234 class NotMatcherImpl : public MatcherInterface<const T&> {
1235 public:
1236 explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1237
1238 bool MatchAndExplain(const T& x,
1239 MatchResultListener* listener) const override {
1240 return !matcher_.MatchAndExplain(x, listener);
1241 }
1242
1243 void DescribeTo(::std::ostream* os) const override {
1244 matcher_.DescribeNegationTo(os);
1245 }
1246
1247 void DescribeNegationTo(::std::ostream* os) const override {
1248 matcher_.DescribeTo(os);
1249 }
1250
1251 private:
1252 const Matcher<T> matcher_;
1253 };
1254
1255 // Implements the Not(m) matcher, which matches a value that doesn't
1256 // match matcher m.
1257 template <typename InnerMatcher>
1258 class NotMatcher {
1259 public:
1260 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1261
1262 // This template type conversion operator allows Not(m) to be used
1263 // to match any type m can match.
1264 template <typename T>
1265 operator Matcher<T>() const {
1266 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1267 }
1268
1269 private:
1270 InnerMatcher matcher_;
1271 };
1272
1273 // Implements the AllOf(m1, m2) matcher for a particular argument type
1274 // T. We do not nest it inside the BothOfMatcher class template, as
1275 // that will prevent different instantiations of BothOfMatcher from
1276 // sharing the same BothOfMatcherImpl<T> class.
1277 template <typename T>
1278 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1279 public:
1280 explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1281 : matchers_(std::move(matchers)) {}
1282
1283 void DescribeTo(::std::ostream* os) const override {
1284 *os << "(";
1285 for (size_t i = 0; i < matchers_.size(); ++i) {
1286 if (i != 0) *os << ") and (";
1287 matchers_[i].DescribeTo(os);
1288 }
1289 *os << ")";
1290 }
1291
1292 void DescribeNegationTo(::std::ostream* os) const override {
1293 *os << "(";
1294 for (size_t i = 0; i < matchers_.size(); ++i) {
1295 if (i != 0) *os << ") or (";
1296 matchers_[i].DescribeNegationTo(os);
1297 }
1298 *os << ")";
1299 }
1300
1301 bool MatchAndExplain(const T& x,
1302 MatchResultListener* listener) const override {
1303 // If either matcher1_ or matcher2_ doesn't match x, we only need
1304 // to explain why one of them fails.
1305 std::string all_match_result;
1306
1307 for (size_t i = 0; i < matchers_.size(); ++i) {
1308 StringMatchResultListener slistener;
1309 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1310 if (all_match_result.empty()) {
1311 all_match_result = slistener.str();
1312 } else {
1313 std::string result = slistener.str();
1314 if (!result.empty()) {
1315 all_match_result += ", and ";
1316 all_match_result += result;
1317 }
1318 }
1319 } else {
1320 *listener << slistener.str();
1321 return false;
1322 }
1323 }
1324
1325 // Otherwise we need to explain why *both* of them match.
1326 *listener << all_match_result;
1327 return true;
1328 }
1329
1330 private:
1331 const std::vector<Matcher<T>> matchers_;
1332 };
1333
1334 // VariadicMatcher is used for the variadic implementation of
1335 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1336 // CombiningMatcher<T> is used to recursively combine the provided matchers
1337 // (of type Args...).
1338 template <template <typename T> class CombiningMatcher, typename... Args>
1339 class VariadicMatcher {
1340 public:
1341 VariadicMatcher(const Args&... matchers) // NOLINT
1342 : matchers_(matchers...) {
1343 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1344 }
1345
1346 VariadicMatcher(const VariadicMatcher&) = default;
1347 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1348
1349 // This template type conversion operator allows an
1350 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1351 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1352 template <typename T>
1353 operator Matcher<T>() const {
1354 std::vector<Matcher<T>> values;
1355 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1356 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1357 }
1358
1359 private:
1360 template <typename T, size_t I>
1361 void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1362 std::integral_constant<size_t, I>) const {
1363 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1364 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1365 }
1366
1367 template <typename T>
1368 void CreateVariadicMatcher(
1369 std::vector<Matcher<T>>*,
1370 std::integral_constant<size_t, sizeof...(Args)>) const {}
1371
1372 std::tuple<Args...> matchers_;
1373 };
1374
1375 template <typename... Args>
1376 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1377
1378 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1379 // T. We do not nest it inside the AnyOfMatcher class template, as
1380 // that will prevent different instantiations of AnyOfMatcher from
1381 // sharing the same EitherOfMatcherImpl<T> class.
1382 template <typename T>
1383 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1384 public:
1385 explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1386 : matchers_(std::move(matchers)) {}
1387
1388 void DescribeTo(::std::ostream* os) const override {
1389 *os << "(";
1390 for (size_t i = 0; i < matchers_.size(); ++i) {
1391 if (i != 0) *os << ") or (";
1392 matchers_[i].DescribeTo(os);
1393 }
1394 *os << ")";
1395 }
1396
1397 void DescribeNegationTo(::std::ostream* os) const override {
1398 *os << "(";
1399 for (size_t i = 0; i < matchers_.size(); ++i) {
1400 if (i != 0) *os << ") and (";
1401 matchers_[i].DescribeNegationTo(os);
1402 }
1403 *os << ")";
1404 }
1405
1406 bool MatchAndExplain(const T& x,
1407 MatchResultListener* listener) const override {
1408 std::string no_match_result;
1409
1410 // If either matcher1_ or matcher2_ matches x, we just need to
1411 // explain why *one* of them matches.
1412 for (size_t i = 0; i < matchers_.size(); ++i) {
1413 StringMatchResultListener slistener;
1414 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1415 *listener << slistener.str();
1416 return true;
1417 } else {
1418 if (no_match_result.empty()) {
1419 no_match_result = slistener.str();
1420 } else {
1421 std::string result = slistener.str();
1422 if (!result.empty()) {
1423 no_match_result += ", and ";
1424 no_match_result += result;
1425 }
1426 }
1427 }
1428 }
1429
1430 // Otherwise we need to explain why *both* of them fail.
1431 *listener << no_match_result;
1432 return false;
1433 }
1434
1435 private:
1436 const std::vector<Matcher<T>> matchers_;
1437 };
1438
1439 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1440 template <typename... Args>
1441 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1442
1443 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1444 template <typename MatcherTrue, typename MatcherFalse>
1445 class ConditionalMatcher {
1446 public:
1447 ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1448 MatcherFalse matcher_false)
1449 : condition_(condition),
1450 matcher_true_(std::move(matcher_true)),
1451 matcher_false_(std::move(matcher_false)) {}
1452
1453 template <typename T>
1454 operator Matcher<T>() const { // NOLINT(runtime/explicit)
1455 return condition_ ? SafeMatcherCast<T>(matcher_true_)
1456 : SafeMatcherCast<T>(matcher_false_);
1457 }
1458
1459 private:
1460 bool condition_;
1461 MatcherTrue matcher_true_;
1462 MatcherFalse matcher_false_;
1463 };
1464
1465 // Wrapper for implementation of Any/AllOfArray().
1466 template <template <class> class MatcherImpl, typename T>
1467 class SomeOfArrayMatcher {
1468 public:
1469 // Constructs the matcher from a sequence of element values or
1470 // element matchers.
1471 template <typename Iter>
1472 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1473
1474 template <typename U>
1475 operator Matcher<U>() const { // NOLINT
1476 using RawU = typename std::decay<U>::type;
1477 std::vector<Matcher<RawU>> matchers;
1478 matchers.reserve(matchers_.size());
1479 for (const auto& matcher : matchers_) {
1480 matchers.push_back(MatcherCast<RawU>(matcher));
1481 }
1482 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1483 }
1484
1485 private:
1486 const ::std::vector<T> matchers_;
1487 };
1488
1489 template <typename T>
1490 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1491
1492 template <typename T>
1493 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1494
1495 // Used for implementing Truly(pred), which turns a predicate into a
1496 // matcher.
1497 template <typename Predicate>
1498 class TrulyMatcher {
1499 public:
1500 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1501
1502 // This method template allows Truly(pred) to be used as a matcher
1503 // for type T where T is the argument type of predicate 'pred'. The
1504 // argument is passed by reference as the predicate may be
1505 // interested in the address of the argument.
1506 template <typename T>
1507 bool MatchAndExplain(T& x, // NOLINT
1508 MatchResultListener* listener) const {
1509 // Without the if-statement, MSVC sometimes warns about converting
1510 // a value to bool (warning 4800).
1511 //
1512 // We cannot write 'return !!predicate_(x);' as that doesn't work
1513 // when predicate_(x) returns a class convertible to bool but
1514 // having no operator!().
1515 if (predicate_(x)) return true;
1516 *listener << "didn't satisfy the given predicate";
1517 return false;
1518 }
1519
1520 void DescribeTo(::std::ostream* os) const {
1521 *os << "satisfies the given predicate";
1522 }
1523
1524 void DescribeNegationTo(::std::ostream* os) const {
1525 *os << "doesn't satisfy the given predicate";
1526 }
1527
1528 private:
1529 Predicate predicate_;
1530 };
1531
1532 // Used for implementing Matches(matcher), which turns a matcher into
1533 // a predicate.
1534 template <typename M>
1535 class MatcherAsPredicate {
1536 public:
1537 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1538
1539 // This template operator() allows Matches(m) to be used as a
1540 // predicate on type T where m is a matcher on type T.
1541 //
1542 // The argument x is passed by reference instead of by value, as
1543 // some matcher may be interested in its address (e.g. as in
1544 // Matches(Ref(n))(x)).
1545 template <typename T>
1546 bool operator()(const T& x) const {
1547 // We let matcher_ commit to a particular type here instead of
1548 // when the MatcherAsPredicate object was constructed. This
1549 // allows us to write Matches(m) where m is a polymorphic matcher
1550 // (e.g. Eq(5)).
1551 //
1552 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1553 // compile when matcher_ has type Matcher<const T&>; if we write
1554 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1555 // when matcher_ has type Matcher<T>; if we just write
1556 // matcher_.Matches(x), it won't compile when matcher_ is
1557 // polymorphic, e.g. Eq(5).
1558 //
1559 // MatcherCast<const T&>() is necessary for making the code work
1560 // in all of the above situations.
1561 return MatcherCast<const T&>(matcher_).Matches(x);
1562 }
1563
1564 private:
1565 M matcher_;
1566 };
1567
1568 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1569 // argument M must be a type that can be converted to a matcher.
1570 template <typename M>
1571 class PredicateFormatterFromMatcher {
1572 public:
1573 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1574
1575 // This template () operator allows a PredicateFormatterFromMatcher
1576 // object to act as a predicate-formatter suitable for using with
1577 // Google Test's EXPECT_PRED_FORMAT1() macro.
1578 template <typename T>
1579 AssertionResult operator()(const char* value_text, const T& x) const {
1580 // We convert matcher_ to a Matcher<const T&> *now* instead of
1581 // when the PredicateFormatterFromMatcher object was constructed,
1582 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1583 // know which type to instantiate it to until we actually see the
1584 // type of x here.
1585 //
1586 // We write SafeMatcherCast<const T&>(matcher_) instead of
1587 // Matcher<const T&>(matcher_), as the latter won't compile when
1588 // matcher_ has type Matcher<T> (e.g. An<int>()).
1589 // We don't write MatcherCast<const T&> either, as that allows
1590 // potentially unsafe downcasting of the matcher argument.
1591 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1592
1593 // The expected path here is that the matcher should match (i.e. that most
1594 // tests pass) so optimize for this case.
1595 if (matcher.Matches(x)) {
1596 return AssertionSuccess();
1597 }
1598
1599 ::std::stringstream ss;
1600 ss << "Value of: " << value_text << "\n"
1601 << "Expected: ";
1602 matcher.DescribeTo(&ss);
1603
1604 // Rerun the matcher to "PrintAndExplain" the failure.
1605 StringMatchResultListener listener;
1606 if (MatchPrintAndExplain(x, matcher, &listener)) {
1607 ss << "\n The matcher failed on the initial attempt; but passed when "
1608 "rerun to generate the explanation.";
1609 }
1610 ss << "\n Actual: " << listener.str();
1611 return AssertionFailure() << ss.str();
1612 }
1613
1614 private:
1615 const M matcher_;
1616 };
1617
1618 // A helper function for converting a matcher to a predicate-formatter
1619 // without the user needing to explicitly write the type. This is
1620 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1621 // Implementation detail: 'matcher' is received by-value to force decaying.
1622 template <typename M>
1623 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1624 M matcher) {
1625 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1626 }
1627
1628 // Implements the polymorphic IsNan() matcher, which matches any floating type
1629 // value that is Nan.
1630 class IsNanMatcher {
1631 public:
1632 template <typename FloatType>
1633 bool MatchAndExplain(const FloatType& f,
1634 MatchResultListener* /* listener */) const {
1635 return (::std::isnan)(f);
1636 }
1637
1638 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1639 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1640 };
1641
1642 // Implements the polymorphic floating point equality matcher, which matches
1643 // two float values using ULP-based approximation or, optionally, a
1644 // user-specified epsilon. The template is meant to be instantiated with
1645 // FloatType being either float or double.
1646 template <typename FloatType>
1647 class FloatingEqMatcher {
1648 public:
1649 // Constructor for FloatingEqMatcher.
1650 // The matcher's input will be compared with expected. The matcher treats two
1651 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1652 // equality comparisons between NANs will always return false. We specify a
1653 // negative max_abs_error_ term to indicate that ULP-based approximation will
1654 // be used for comparison.
1655 FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1656 : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1657
1658 // Constructor that supports a user-specified max_abs_error that will be used
1659 // for comparison instead of ULP-based approximation. The max absolute
1660 // should be non-negative.
1661 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1662 FloatType max_abs_error)
1663 : expected_(expected),
1664 nan_eq_nan_(nan_eq_nan),
1665 max_abs_error_(max_abs_error) {
1666 GTEST_CHECK_(max_abs_error >= 0)
1667 << ", where max_abs_error is" << max_abs_error;
1668 }
1669
1670 // Implements floating point equality matcher as a Matcher<T>.
1671 template <typename T>
1672 class Impl : public MatcherInterface<T> {
1673 public:
1674 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1675 : expected_(expected),
1676 nan_eq_nan_(nan_eq_nan),
1677 max_abs_error_(max_abs_error) {}
1678
1679 bool MatchAndExplain(T value,
1680 MatchResultListener* listener) const override {
1681 const FloatingPoint<FloatType> actual(value), expected(expected_);
1682
1683 // Compares NaNs first, if nan_eq_nan_ is true.
1684 if (actual.is_nan() || expected.is_nan()) {
1685 if (actual.is_nan() && expected.is_nan()) {
1686 return nan_eq_nan_;
1687 }
1688 // One is nan; the other is not nan.
1689 return false;
1690 }
1691 if (HasMaxAbsError()) {
1692 // We perform an equality check so that inf will match inf, regardless
1693 // of error bounds. If the result of value - expected_ would result in
1694 // overflow or if either value is inf, the default result is infinity,
1695 // which should only match if max_abs_error_ is also infinity.
1696 if (value == expected_) {
1697 return true;
1698 }
1699
1700 const FloatType diff = value - expected_;
1701 if (::std::fabs(diff) <= max_abs_error_) {
1702 return true;
1703 }
1704
1705 if (listener->IsInterested()) {
1706 *listener << "which is " << diff << " from " << expected_;
1707 }
1708 return false;
1709 } else {
1710 return actual.AlmostEquals(expected);
1711 }
1712 }
1713
1714 void DescribeTo(::std::ostream* os) const override {
1715 // os->precision() returns the previously set precision, which we
1716 // store to restore the ostream to its original configuration
1717 // after outputting.
1718 const ::std::streamsize old_precision =
1719 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1720 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1721 if (nan_eq_nan_) {
1722 *os << "is NaN";
1723 } else {
1724 *os << "never matches";
1725 }
1726 } else {
1727 *os << "is approximately " << expected_;
1728 if (HasMaxAbsError()) {
1729 *os << " (absolute error <= " << max_abs_error_ << ")";
1730 }
1731 }
1732 os->precision(old_precision);
1733 }
1734
1735 void DescribeNegationTo(::std::ostream* os) const override {
1736 // As before, get original precision.
1737 const ::std::streamsize old_precision =
1738 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1739 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1740 if (nan_eq_nan_) {
1741 *os << "isn't NaN";
1742 } else {
1743 *os << "is anything";
1744 }
1745 } else {
1746 *os << "isn't approximately " << expected_;
1747 if (HasMaxAbsError()) {
1748 *os << " (absolute error > " << max_abs_error_ << ")";
1749 }
1750 }
1751 // Restore original precision.
1752 os->precision(old_precision);
1753 }
1754
1755 private:
1756 bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1757
1758 const FloatType expected_;
1759 const bool nan_eq_nan_;
1760 // max_abs_error will be used for value comparison when >= 0.
1761 const FloatType max_abs_error_;
1762 };
1763
1764 // The following 3 type conversion operators allow FloatEq(expected) and
1765 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1766 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1767 operator Matcher<FloatType>() const {
1768 return MakeMatcher(
1769 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1770 }
1771
1772 operator Matcher<const FloatType&>() const {
1773 return MakeMatcher(
1774 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1775 }
1776
1777 operator Matcher<FloatType&>() const {
1778 return MakeMatcher(
1779 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1780 }
1781
1782 private:
1783 const FloatType expected_;
1784 const bool nan_eq_nan_;
1785 // max_abs_error will be used for value comparison when >= 0.
1786 const FloatType max_abs_error_;
1787 };
1788
1789 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1790 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1791 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1792 // against y. The former implements "Eq", the latter "Near". At present, there
1793 // is no version that compares NaNs as equal.
1794 template <typename FloatType>
1795 class FloatingEq2Matcher {
1796 public:
1797 FloatingEq2Matcher() { Init(-1, false); }
1798
1799 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1800
1801 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1802 Init(max_abs_error, false);
1803 }
1804
1805 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1806 Init(max_abs_error, nan_eq_nan);
1807 }
1808
1809 template <typename T1, typename T2>
1810 operator Matcher<::std::tuple<T1, T2>>() const {
1811 return MakeMatcher(
1812 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1813 }
1814 template <typename T1, typename T2>
1815 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1816 return MakeMatcher(
1817 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1818 }
1819
1820 private:
1821 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1822 return os << "an almost-equal pair";
1823 }
1824
1825 template <typename Tuple>
1826 class Impl : public MatcherInterface<Tuple> {
1827 public:
1828 Impl(FloatType max_abs_error, bool nan_eq_nan)
1829 : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1830
1831 bool MatchAndExplain(Tuple args,
1832 MatchResultListener* listener) const override {
1833 if (max_abs_error_ == -1) {
1834 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1835 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1836 ::std::get<1>(args), listener);
1837 } else {
1838 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1839 max_abs_error_);
1840 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1841 ::std::get<1>(args), listener);
1842 }
1843 }
1844 void DescribeTo(::std::ostream* os) const override {
1845 *os << "are " << GetDesc;
1846 }
1847 void DescribeNegationTo(::std::ostream* os) const override {
1848 *os << "aren't " << GetDesc;
1849 }
1850
1851 private:
1852 FloatType max_abs_error_;
1853 const bool nan_eq_nan_;
1854 };
1855
1856 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1857 max_abs_error_ = max_abs_error_val;
1858 nan_eq_nan_ = nan_eq_nan_val;
1859 }
1860 FloatType max_abs_error_;
1861 bool nan_eq_nan_;
1862 };
1863
1864 // Implements the Pointee(m) matcher for matching a pointer whose
1865 // pointee matches matcher m. The pointer can be either raw or smart.
1866 template <typename InnerMatcher>
1867 class PointeeMatcher {
1868 public:
1869 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1870
1871 // This type conversion operator template allows Pointee(m) to be
1872 // used as a matcher for any pointer type whose pointee type is
1873 // compatible with the inner matcher, where type Pointer can be
1874 // either a raw pointer or a smart pointer.
1875 //
1876 // The reason we do this instead of relying on
1877 // MakePolymorphicMatcher() is that the latter is not flexible
1878 // enough for implementing the DescribeTo() method of Pointee().
1879 template <typename Pointer>
1880 operator Matcher<Pointer>() const {
1881 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1882 }
1883
1884 private:
1885 // The monomorphic implementation that works for a particular pointer type.
1886 template <typename Pointer>
1887 class Impl : public MatcherInterface<Pointer> {
1888 public:
1889 using Pointee =
1890 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1891 Pointer)>::element_type;
1892
1893 explicit Impl(const InnerMatcher& matcher)
1894 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1895
1896 void DescribeTo(::std::ostream* os) const override {
1897 *os << "points to a value that ";
1898 matcher_.DescribeTo(os);
1899 }
1900
1901 void DescribeNegationTo(::std::ostream* os) const override {
1902 *os << "does not point to a value that ";
1903 matcher_.DescribeTo(os);
1904 }
1905
1906 bool MatchAndExplain(Pointer pointer,
1907 MatchResultListener* listener) const override {
1908 if (GetRawPointer(pointer) == nullptr) return false;
1909
1910 *listener << "which points to ";
1911 return MatchPrintAndExplain(*pointer, matcher_, listener);
1912 }
1913
1914 private:
1915 const Matcher<const Pointee&> matcher_;
1916 };
1917
1918 const InnerMatcher matcher_;
1919 };
1920
1921 // Implements the Pointer(m) matcher
1922 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1923 // m. The pointer can be either raw or smart, and will match `m` against the
1924 // raw pointer.
1925 template <typename InnerMatcher>
1926 class PointerMatcher {
1927 public:
1928 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1929
1930 // This type conversion operator template allows Pointer(m) to be
1931 // used as a matcher for any pointer type whose pointer type is
1932 // compatible with the inner matcher, where type PointerType can be
1933 // either a raw pointer or a smart pointer.
1934 //
1935 // The reason we do this instead of relying on
1936 // MakePolymorphicMatcher() is that the latter is not flexible
1937 // enough for implementing the DescribeTo() method of Pointer().
1938 template <typename PointerType>
1939 operator Matcher<PointerType>() const { // NOLINT
1940 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1941 }
1942
1943 private:
1944 // The monomorphic implementation that works for a particular pointer type.
1945 template <typename PointerType>
1946 class Impl : public MatcherInterface<PointerType> {
1947 public:
1948 using Pointer =
1949 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1950 PointerType)>::element_type*;
1951
1952 explicit Impl(const InnerMatcher& matcher)
1953 : matcher_(MatcherCast<Pointer>(matcher)) {}
1954
1955 void DescribeTo(::std::ostream* os) const override {
1956 *os << "is a pointer that ";
1957 matcher_.DescribeTo(os);
1958 }
1959
1960 void DescribeNegationTo(::std::ostream* os) const override {
1961 *os << "is not a pointer that ";
1962 matcher_.DescribeTo(os);
1963 }
1964
1965 bool MatchAndExplain(PointerType pointer,
1966 MatchResultListener* listener) const override {
1967 *listener << "which is a pointer that ";
1968 Pointer p = GetRawPointer(pointer);
1969 return MatchPrintAndExplain(p, matcher_, listener);
1970 }
1971
1972 private:
1973 Matcher<Pointer> matcher_;
1974 };
1975
1976 const InnerMatcher matcher_;
1977 };
1978
1979 #if GTEST_HAS_RTTI
1980 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1981 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1982 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1983 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1984 // If To is a reference and the cast fails, this matcher returns false
1985 // immediately.
1986 template <typename To>
1987 class WhenDynamicCastToMatcherBase {
1988 public:
1989 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1990 : matcher_(matcher) {}
1991
1992 void DescribeTo(::std::ostream* os) const {
1993 GetCastTypeDescription(os);
1994 matcher_.DescribeTo(os);
1995 }
1996
1997 void DescribeNegationTo(::std::ostream* os) const {
1998 GetCastTypeDescription(os);
1999 matcher_.DescribeNegationTo(os);
2000 }
2001
2002 protected:
2003 const Matcher<To> matcher_;
2004
2005 static std::string GetToName() { return GetTypeName<To>(); }
2006
2007 private:
2008 static void GetCastTypeDescription(::std::ostream* os) {
2009 *os << "when dynamic_cast to " << GetToName() << ", ";
2010 }
2011 };
2012
2013 // Primary template.
2014 // To is a pointer. Cast and forward the result.
2015 template <typename To>
2016 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2017 public:
2018 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2019 : WhenDynamicCastToMatcherBase<To>(matcher) {}
2020
2021 template <typename From>
2022 bool MatchAndExplain(From from, MatchResultListener* listener) const {
2023 To to = dynamic_cast<To>(from);
2024 return MatchPrintAndExplain(to, this->matcher_, listener);
2025 }
2026 };
2027
2028 // Specialize for references.
2029 // In this case we return false if the dynamic_cast fails.
2030 template <typename To>
2031 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2032 public:
2033 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2034 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2035
2036 template <typename From>
2037 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2038 // We don't want an std::bad_cast here, so do the cast with pointers.
2039 To* to = dynamic_cast<To*>(&from);
2040 if (to == nullptr) {
2041 *listener << "which cannot be dynamic_cast to " << this->GetToName();
2042 return false;
2043 }
2044 return MatchPrintAndExplain(*to, this->matcher_, listener);
2045 }
2046 };
2047 #endif // GTEST_HAS_RTTI
2048
2049 // Implements the Field() matcher for matching a field (i.e. member
2050 // variable) of an object.
2051 template <typename Class, typename FieldType>
2052 class FieldMatcher {
2053 public:
2054 FieldMatcher(FieldType Class::*field,
2055 const Matcher<const FieldType&>& matcher)
2056 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2057
2058 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2059 const Matcher<const FieldType&>& matcher)
2060 : field_(field),
2061 matcher_(matcher),
2062 whose_field_("whose field `" + field_name + "` ") {}
2063
2064 void DescribeTo(::std::ostream* os) const {
2065 *os << "is an object " << whose_field_;
2066 matcher_.DescribeTo(os);
2067 }
2068
2069 void DescribeNegationTo(::std::ostream* os) const {
2070 *os << "is an object " << whose_field_;
2071 matcher_.DescribeNegationTo(os);
2072 }
2073
2074 template <typename T>
2075 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2076 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2077 // a compiler bug, and can now be removed.
2078 return MatchAndExplainImpl(
2079 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2080 value, listener);
2081 }
2082
2083 private:
2084 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2085 const Class& obj,
2086 MatchResultListener* listener) const {
2087 *listener << whose_field_ << "is ";
2088 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2089 }
2090
2091 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2092 MatchResultListener* listener) const {
2093 if (p == nullptr) return false;
2094
2095 *listener << "which points to an object ";
2096 // Since *p has a field, it must be a class/struct/union type and
2097 // thus cannot be a pointer. Therefore we pass false_type() as
2098 // the first argument.
2099 return MatchAndExplainImpl(std::false_type(), *p, listener);
2100 }
2101
2102 const FieldType Class::*field_;
2103 const Matcher<const FieldType&> matcher_;
2104
2105 // Contains either "whose given field " if the name of the field is unknown
2106 // or "whose field `name_of_field` " if the name is known.
2107 const std::string whose_field_;
2108 };
2109
2110 // Implements the Property() matcher for matching a property
2111 // (i.e. return value of a getter method) of an object.
2112 //
2113 // Property is a const-qualified member function of Class returning
2114 // PropertyType.
2115 template <typename Class, typename PropertyType, typename Property>
2116 class PropertyMatcher {
2117 public:
2118 typedef const PropertyType& RefToConstProperty;
2119
2120 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2121 : property_(property),
2122 matcher_(matcher),
2123 whose_property_("whose given property ") {}
2124
2125 PropertyMatcher(const std::string& property_name, Property property,
2126 const Matcher<RefToConstProperty>& matcher)
2127 : property_(property),
2128 matcher_(matcher),
2129 whose_property_("whose property `" + property_name + "` ") {}
2130
2131 void DescribeTo(::std::ostream* os) const {
2132 *os << "is an object " << whose_property_;
2133 matcher_.DescribeTo(os);
2134 }
2135
2136 void DescribeNegationTo(::std::ostream* os) const {
2137 *os << "is an object " << whose_property_;
2138 matcher_.DescribeNegationTo(os);
2139 }
2140
2141 template <typename T>
2142 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2143 return MatchAndExplainImpl(
2144 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2145 value, listener);
2146 }
2147
2148 private:
2149 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2150 const Class& obj,
2151 MatchResultListener* listener) const {
2152 *listener << whose_property_ << "is ";
2153 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2154 // which takes a non-const reference as argument.
2155 RefToConstProperty result = (obj.*property_)();
2156 return MatchPrintAndExplain(result, matcher_, listener);
2157 }
2158
2159 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2160 MatchResultListener* listener) const {
2161 if (p == nullptr) return false;
2162
2163 *listener << "which points to an object ";
2164 // Since *p has a property method, it must be a class/struct/union
2165 // type and thus cannot be a pointer. Therefore we pass
2166 // false_type() as the first argument.
2167 return MatchAndExplainImpl(std::false_type(), *p, listener);
2168 }
2169
2170 Property property_;
2171 const Matcher<RefToConstProperty> matcher_;
2172
2173 // Contains either "whose given property " if the name of the property is
2174 // unknown or "whose property `name_of_property` " if the name is known.
2175 const std::string whose_property_;
2176 };
2177
2178 // Type traits specifying various features of different functors for ResultOf.
2179 // The default template specifies features for functor objects.
2180 template <typename Functor>
2181 struct CallableTraits {
2182 typedef Functor StorageType;
2183
2184 static void CheckIsValid(Functor /* functor */) {}
2185
2186 template <typename T>
2187 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2188 return f(arg);
2189 }
2190 };
2191
2192 // Specialization for function pointers.
2193 template <typename ArgType, typename ResType>
2194 struct CallableTraits<ResType (*)(ArgType)> {
2195 typedef ResType ResultType;
2196 typedef ResType (*StorageType)(ArgType);
2197
2198 static void CheckIsValid(ResType (*f)(ArgType)) {
2199 GTEST_CHECK_(f != nullptr)
2200 << "NULL function pointer is passed into ResultOf().";
2201 }
2202 template <typename T>
2203 static ResType Invoke(ResType (*f)(ArgType), T arg) {
2204 return (*f)(arg);
2205 }
2206 };
2207
2208 // Implements the ResultOf() matcher for matching a return value of a
2209 // unary function of an object.
2210 template <typename Callable, typename InnerMatcher>
2211 class ResultOfMatcher {
2212 public:
2213 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2214 : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2215 std::move(matcher)) {}
2216
2217 ResultOfMatcher(const std::string& result_description, Callable callable,
2218 InnerMatcher matcher)
2219 : result_description_(result_description),
2220 callable_(std::move(callable)),
2221 matcher_(std::move(matcher)) {
2222 CallableTraits<Callable>::CheckIsValid(callable_);
2223 }
2224
2225 template <typename T>
2226 operator Matcher<T>() const {
2227 return Matcher<T>(
2228 new Impl<const T&>(result_description_, callable_, matcher_));
2229 }
2230
2231 private:
2232 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2233
2234 template <typename T>
2235 class Impl : public MatcherInterface<T> {
2236 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2237 std::declval<CallableStorageType>(), std::declval<T>()));
2238
2239 public:
2240 template <typename M>
2241 Impl(const std::string& result_description,
2242 const CallableStorageType& callable, const M& matcher)
2243 : result_description_(result_description),
2244 callable_(callable),
2245 matcher_(MatcherCast<ResultType>(matcher)) {}
2246
2247 void DescribeTo(::std::ostream* os) const override {
2248 if (result_description_.empty()) {
2249 *os << "is mapped by the given callable to a value that ";
2250 } else {
2251 *os << "whose " << result_description_ << " ";
2252 }
2253 matcher_.DescribeTo(os);
2254 }
2255
2256 void DescribeNegationTo(::std::ostream* os) const override {
2257 if (result_description_.empty()) {
2258 *os << "is mapped by the given callable to a value that ";
2259 } else {
2260 *os << "whose " << result_description_ << " ";
2261 }
2262 matcher_.DescribeNegationTo(os);
2263 }
2264
2265 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2266 if (result_description_.empty()) {
2267 *listener << "which is mapped by the given callable to ";
2268 } else {
2269 *listener << "whose " << result_description_ << " is ";
2270 }
2271 // Cannot pass the return value directly to MatchPrintAndExplain, which
2272 // takes a non-const reference as argument.
2273 // Also, specifying template argument explicitly is needed because T could
2274 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2275 ResultType result =
2276 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2277 return MatchPrintAndExplain(result, matcher_, listener);
2278 }
2279
2280 private:
2281 const std::string result_description_;
2282 // Functors often define operator() as non-const method even though
2283 // they are actually stateless. But we need to use them even when
2284 // 'this' is a const pointer. It's the user's responsibility not to
2285 // use stateful callables with ResultOf(), which doesn't guarantee
2286 // how many times the callable will be invoked.
2287 mutable CallableStorageType callable_;
2288 const Matcher<ResultType> matcher_;
2289 }; // class Impl
2290
2291 const std::string result_description_;
2292 const CallableStorageType callable_;
2293 const InnerMatcher matcher_;
2294 };
2295
2296 // Implements a matcher that checks the size of an STL-style container.
2297 template <typename SizeMatcher>
2298 class SizeIsMatcher {
2299 public:
2300 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2301 : size_matcher_(size_matcher) {}
2302
2303 template <typename Container>
2304 operator Matcher<Container>() const {
2305 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2306 }
2307
2308 template <typename Container>
2309 class Impl : public MatcherInterface<Container> {
2310 public:
2311 using SizeType = decltype(std::declval<Container>().size());
2312 explicit Impl(const SizeMatcher& size_matcher)
2313 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2314
2315 void DescribeTo(::std::ostream* os) const override {
2316 *os << "has a size that ";
2317 size_matcher_.DescribeTo(os);
2318 }
2319 void DescribeNegationTo(::std::ostream* os) const override {
2320 *os << "has a size that ";
2321 size_matcher_.DescribeNegationTo(os);
2322 }
2323
2324 bool MatchAndExplain(Container container,
2325 MatchResultListener* listener) const override {
2326 SizeType size = container.size();
2327 StringMatchResultListener size_listener;
2328 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2329 *listener << "whose size " << size
2330 << (result ? " matches" : " doesn't match");
2331 PrintIfNotEmpty(size_listener.str(), listener->stream());
2332 return result;
2333 }
2334
2335 private:
2336 const Matcher<SizeType> size_matcher_;
2337 };
2338
2339 private:
2340 const SizeMatcher size_matcher_;
2341 };
2342
2343 // Implements a matcher that checks the begin()..end() distance of an STL-style
2344 // container.
2345 template <typename DistanceMatcher>
2346 class BeginEndDistanceIsMatcher {
2347 public:
2348 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2349 : distance_matcher_(distance_matcher) {}
2350
2351 template <typename Container>
2352 operator Matcher<Container>() const {
2353 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2354 }
2355
2356 template <typename Container>
2357 class Impl : public MatcherInterface<Container> {
2358 public:
2359 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2360 Container)>
2361 ContainerView;
2362 typedef typename std::iterator_traits<
2363 typename ContainerView::type::const_iterator>::difference_type
2364 DistanceType;
2365 explicit Impl(const DistanceMatcher& distance_matcher)
2366 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2367
2368 void DescribeTo(::std::ostream* os) const override {
2369 *os << "distance between begin() and end() ";
2370 distance_matcher_.DescribeTo(os);
2371 }
2372 void DescribeNegationTo(::std::ostream* os) const override {
2373 *os << "distance between begin() and end() ";
2374 distance_matcher_.DescribeNegationTo(os);
2375 }
2376
2377 bool MatchAndExplain(Container container,
2378 MatchResultListener* listener) const override {
2379 using std::begin;
2380 using std::end;
2381 DistanceType distance = std::distance(begin(container), end(container));
2382 StringMatchResultListener distance_listener;
2383 const bool result =
2384 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2385 *listener << "whose distance between begin() and end() " << distance
2386 << (result ? " matches" : " doesn't match");
2387 PrintIfNotEmpty(distance_listener.str(), listener->stream());
2388 return result;
2389 }
2390
2391 private:
2392 const Matcher<DistanceType> distance_matcher_;
2393 };
2394
2395 private:
2396 const DistanceMatcher distance_matcher_;
2397 };
2398
2399 // Implements an equality matcher for any STL-style container whose elements
2400 // support ==. This matcher is like Eq(), but its failure explanations provide
2401 // more detailed information that is useful when the container is used as a set.
2402 // The failure message reports elements that are in one of the operands but not
2403 // the other. The failure messages do not report duplicate or out-of-order
2404 // elements in the containers (which don't properly matter to sets, but can
2405 // occur if the containers are vectors or lists, for example).
2406 //
2407 // Uses the container's const_iterator, value_type, operator ==,
2408 // begin(), and end().
2409 template <typename Container>
2410 class ContainerEqMatcher {
2411 public:
2412 typedef internal::StlContainerView<Container> View;
2413 typedef typename View::type StlContainer;
2414 typedef typename View::const_reference StlContainerReference;
2415
2416 static_assert(!std::is_const<Container>::value,
2417 "Container type must not be const");
2418 static_assert(!std::is_reference<Container>::value,
2419 "Container type must not be a reference");
2420
2421 // We make a copy of expected in case the elements in it are modified
2422 // after this matcher is created.
2423 explicit ContainerEqMatcher(const Container& expected)
2424 : expected_(View::Copy(expected)) {}
2425
2426 void DescribeTo(::std::ostream* os) const {
2427 *os << "equals ";
2428 UniversalPrint(expected_, os);
2429 }
2430 void DescribeNegationTo(::std::ostream* os) const {
2431 *os << "does not equal ";
2432 UniversalPrint(expected_, os);
2433 }
2434
2435 template <typename LhsContainer>
2436 bool MatchAndExplain(const LhsContainer& lhs,
2437 MatchResultListener* listener) const {
2438 typedef internal::StlContainerView<
2439 typename std::remove_const<LhsContainer>::type>
2440 LhsView;
2441 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2442 if (lhs_stl_container == expected_) return true;
2443
2444 ::std::ostream* const os = listener->stream();
2445 if (os != nullptr) {
2446 // Something is different. Check for extra values first.
2447 bool printed_header = false;
2448 for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2449 ++it) {
2450 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2451 expected_.end()) {
2452 if (printed_header) {
2453 *os << ", ";
2454 } else {
2455 *os << "which has these unexpected elements: ";
2456 printed_header = true;
2457 }
2458 UniversalPrint(*it, os);
2459 }
2460 }
2461
2462 // Now check for missing values.
2463 bool printed_header2 = false;
2464 for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2465 if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2466 lhs_stl_container.end(),
2467 *it) == lhs_stl_container.end()) {
2468 if (printed_header2) {
2469 *os << ", ";
2470 } else {
2471 *os << (printed_header ? ",\nand" : "which")
2472 << " doesn't have these expected elements: ";
2473 printed_header2 = true;
2474 }
2475 UniversalPrint(*it, os);
2476 }
2477 }
2478 }
2479
2480 return false;
2481 }
2482
2483 private:
2484 const StlContainer expected_;
2485 };
2486
2487 // A comparator functor that uses the < operator to compare two values.
2488 struct LessComparator {
2489 template <typename T, typename U>
2490 bool operator()(const T& lhs, const U& rhs) const {
2491 return lhs < rhs;
2492 }
2493 };
2494
2495 // Implements WhenSortedBy(comparator, container_matcher).
2496 template <typename Comparator, typename ContainerMatcher>
2497 class WhenSortedByMatcher {
2498 public:
2499 WhenSortedByMatcher(const Comparator& comparator,
2500 const ContainerMatcher& matcher)
2501 : comparator_(comparator), matcher_(matcher) {}
2502
2503 template <typename LhsContainer>
2504 operator Matcher<LhsContainer>() const {
2505 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2506 }
2507
2508 template <typename LhsContainer>
2509 class Impl : public MatcherInterface<LhsContainer> {
2510 public:
2511 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2512 LhsContainer)>
2513 LhsView;
2514 typedef typename LhsView::type LhsStlContainer;
2515 typedef typename LhsView::const_reference LhsStlContainerReference;
2516 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2517 // so that we can match associative containers.
2518 typedef
2519 typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2520 LhsValue;
2521
2522 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2523 : comparator_(comparator), matcher_(matcher) {}
2524
2525 void DescribeTo(::std::ostream* os) const override {
2526 *os << "(when sorted) ";
2527 matcher_.DescribeTo(os);
2528 }
2529
2530 void DescribeNegationTo(::std::ostream* os) const override {
2531 *os << "(when sorted) ";
2532 matcher_.DescribeNegationTo(os);
2533 }
2534
2535 bool MatchAndExplain(LhsContainer lhs,
2536 MatchResultListener* listener) const override {
2537 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2538 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2539 lhs_stl_container.end());
2540 ::std::sort(sorted_container.begin(), sorted_container.end(),
2541 comparator_);
2542
2543 if (!listener->IsInterested()) {
2544 // If the listener is not interested, we do not need to
2545 // construct the inner explanation.
2546 return matcher_.Matches(sorted_container);
2547 }
2548
2549 *listener << "which is ";
2550 UniversalPrint(sorted_container, listener->stream());
2551 *listener << " when sorted";
2552
2553 StringMatchResultListener inner_listener;
2554 const bool match =
2555 matcher_.MatchAndExplain(sorted_container, &inner_listener);
2556 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2557 return match;
2558 }
2559
2560 private:
2561 const Comparator comparator_;
2562 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2563
2564 Impl(const Impl&) = delete;
2565 Impl& operator=(const Impl&) = delete;
2566 };
2567
2568 private:
2569 const Comparator comparator_;
2570 const ContainerMatcher matcher_;
2571 };
2572
2573 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2574 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2575 // T2&> >, where T1 and T2 are the types of elements in the LHS
2576 // container and the RHS container respectively.
2577 template <typename TupleMatcher, typename RhsContainer>
2578 class PointwiseMatcher {
2579 static_assert(
2580 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2581 "use UnorderedPointwise with hash tables");
2582
2583 public:
2584 typedef internal::StlContainerView<RhsContainer> RhsView;
2585 typedef typename RhsView::type RhsStlContainer;
2586 typedef typename RhsStlContainer::value_type RhsValue;
2587
2588 static_assert(!std::is_const<RhsContainer>::value,
2589 "RhsContainer type must not be const");
2590 static_assert(!std::is_reference<RhsContainer>::value,
2591 "RhsContainer type must not be a reference");
2592
2593 // Like ContainerEq, we make a copy of rhs in case the elements in
2594 // it are modified after this matcher is created.
2595 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2596 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2597
2598 template <typename LhsContainer>
2599 operator Matcher<LhsContainer>() const {
2600 static_assert(
2601 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2602 "use UnorderedPointwise with hash tables");
2603
2604 return Matcher<LhsContainer>(
2605 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2606 }
2607
2608 template <typename LhsContainer>
2609 class Impl : public MatcherInterface<LhsContainer> {
2610 public:
2611 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2612 LhsContainer)>
2613 LhsView;
2614 typedef typename LhsView::type LhsStlContainer;
2615 typedef typename LhsView::const_reference LhsStlContainerReference;
2616 typedef typename LhsStlContainer::value_type LhsValue;
2617 // We pass the LHS value and the RHS value to the inner matcher by
2618 // reference, as they may be expensive to copy. We must use tuple
2619 // instead of pair here, as a pair cannot hold references (C++ 98,
2620 // 20.2.2 [lib.pairs]).
2621 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2622
2623 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2624 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2625 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2626 rhs_(rhs) {}
2627
2628 void DescribeTo(::std::ostream* os) const override {
2629 *os << "contains " << rhs_.size()
2630 << " values, where each value and its corresponding value in ";
2631 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2632 *os << " ";
2633 mono_tuple_matcher_.DescribeTo(os);
2634 }
2635 void DescribeNegationTo(::std::ostream* os) const override {
2636 *os << "doesn't contain exactly " << rhs_.size()
2637 << " values, or contains a value x at some index i"
2638 << " where x and the i-th value of ";
2639 UniversalPrint(rhs_, os);
2640 *os << " ";
2641 mono_tuple_matcher_.DescribeNegationTo(os);
2642 }
2643
2644 bool MatchAndExplain(LhsContainer lhs,
2645 MatchResultListener* listener) const override {
2646 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2647 const size_t actual_size = lhs_stl_container.size();
2648 if (actual_size != rhs_.size()) {
2649 *listener << "which contains " << actual_size << " values";
2650 return false;
2651 }
2652
2653 auto left = lhs_stl_container.begin();
2654 auto right = rhs_.begin();
2655 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2656 if (listener->IsInterested()) {
2657 StringMatchResultListener inner_listener;
2658 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2659 // *left and *right. Dereference or the conversion to `const T&` may
2660 // return temp objects, e.g. for vector<bool>.
2661 if (!mono_tuple_matcher_.MatchAndExplain(
2662 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2663 ImplicitCast_<const RhsValue&>(*right)),
2664 &inner_listener)) {
2665 *listener << "where the value pair (";
2666 UniversalPrint(*left, listener->stream());
2667 *listener << ", ";
2668 UniversalPrint(*right, listener->stream());
2669 *listener << ") at index #" << i << " don't match";
2670 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2671 return false;
2672 }
2673 } else {
2674 if (!mono_tuple_matcher_.Matches(
2675 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2676 ImplicitCast_<const RhsValue&>(*right))))
2677 return false;
2678 }
2679 }
2680
2681 return true;
2682 }
2683
2684 private:
2685 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2686 const RhsStlContainer rhs_;
2687 };
2688
2689 private:
2690 const TupleMatcher tuple_matcher_;
2691 const RhsStlContainer rhs_;
2692 };
2693
2694 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2695 template <typename Container>
2696 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2697 public:
2698 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2699 typedef StlContainerView<RawContainer> View;
2700 typedef typename View::type StlContainer;
2701 typedef typename View::const_reference StlContainerReference;
2702 typedef typename StlContainer::value_type Element;
2703
2704 template <typename InnerMatcher>
2705 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2706 : inner_matcher_(
2707 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2708
2709 // Checks whether:
2710 // * All elements in the container match, if all_elements_should_match.
2711 // * Any element in the container matches, if !all_elements_should_match.
2712 bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2713 MatchResultListener* listener) const {
2714 StlContainerReference stl_container = View::ConstReference(container);
2715 size_t i = 0;
2716 for (auto it = stl_container.begin(); it != stl_container.end();
2717 ++it, ++i) {
2718 StringMatchResultListener inner_listener;
2719 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2720
2721 if (matches != all_elements_should_match) {
2722 *listener << "whose element #" << i
2723 << (matches ? " matches" : " doesn't match");
2724 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2725 return !all_elements_should_match;
2726 }
2727 }
2728 return all_elements_should_match;
2729 }
2730
2731 bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2732 Container container,
2733 MatchResultListener* listener) const {
2734 StlContainerReference stl_container = View::ConstReference(container);
2735 size_t i = 0;
2736 std::vector<size_t> match_elements;
2737 for (auto it = stl_container.begin(); it != stl_container.end();
2738 ++it, ++i) {
2739 StringMatchResultListener inner_listener;
2740 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2741 if (matches) {
2742 match_elements.push_back(i);
2743 }
2744 }
2745 if (listener->IsInterested()) {
2746 if (match_elements.empty()) {
2747 *listener << "has no element that matches";
2748 } else if (match_elements.size() == 1) {
2749 *listener << "whose element #" << match_elements[0] << " matches";
2750 } else {
2751 *listener << "whose elements (";
2752 std::string sep = "";
2753 for (size_t e : match_elements) {
2754 *listener << sep << e;
2755 sep = ", ";
2756 }
2757 *listener << ") match";
2758 }
2759 }
2760 StringMatchResultListener count_listener;
2761 if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2762 *listener << " and whose match quantity of " << match_elements.size()
2763 << " matches";
2764 PrintIfNotEmpty(count_listener.str(), listener->stream());
2765 return true;
2766 } else {
2767 if (match_elements.empty()) {
2768 *listener << " and";
2769 } else {
2770 *listener << " but";
2771 }
2772 *listener << " whose match quantity of " << match_elements.size()
2773 << " does not match";
2774 PrintIfNotEmpty(count_listener.str(), listener->stream());
2775 return false;
2776 }
2777 }
2778
2779 protected:
2780 const Matcher<const Element&> inner_matcher_;
2781 };
2782
2783 // Implements Contains(element_matcher) for the given argument type Container.
2784 // Symmetric to EachMatcherImpl.
2785 template <typename Container>
2786 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2787 public:
2788 template <typename InnerMatcher>
2789 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2790 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2791
2792 // Describes what this matcher does.
2793 void DescribeTo(::std::ostream* os) const override {
2794 *os << "contains at least one element that ";
2795 this->inner_matcher_.DescribeTo(os);
2796 }
2797
2798 void DescribeNegationTo(::std::ostream* os) const override {
2799 *os << "doesn't contain any element that ";
2800 this->inner_matcher_.DescribeTo(os);
2801 }
2802
2803 bool MatchAndExplain(Container container,
2804 MatchResultListener* listener) const override {
2805 return this->MatchAndExplainImpl(false, container, listener);
2806 }
2807 };
2808
2809 // Implements Each(element_matcher) for the given argument type Container.
2810 // Symmetric to ContainsMatcherImpl.
2811 template <typename Container>
2812 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2813 public:
2814 template <typename InnerMatcher>
2815 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2816 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2817
2818 // Describes what this matcher does.
2819 void DescribeTo(::std::ostream* os) const override {
2820 *os << "only contains elements that ";
2821 this->inner_matcher_.DescribeTo(os);
2822 }
2823
2824 void DescribeNegationTo(::std::ostream* os) const override {
2825 *os << "contains some element that ";
2826 this->inner_matcher_.DescribeNegationTo(os);
2827 }
2828
2829 bool MatchAndExplain(Container container,
2830 MatchResultListener* listener) const override {
2831 return this->MatchAndExplainImpl(true, container, listener);
2832 }
2833 };
2834
2835 // Implements Contains(element_matcher).Times(n) for the given argument type
2836 // Container.
2837 template <typename Container>
2838 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2839 public:
2840 template <typename InnerMatcher>
2841 explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2842 Matcher<size_t> count_matcher)
2843 : QuantifierMatcherImpl<Container>(inner_matcher),
2844 count_matcher_(std::move(count_matcher)) {}
2845
2846 void DescribeTo(::std::ostream* os) const override {
2847 *os << "quantity of elements that match ";
2848 this->inner_matcher_.DescribeTo(os);
2849 *os << " ";
2850 count_matcher_.DescribeTo(os);
2851 }
2852
2853 void DescribeNegationTo(::std::ostream* os) const override {
2854 *os << "quantity of elements that match ";
2855 this->inner_matcher_.DescribeTo(os);
2856 *os << " ";
2857 count_matcher_.DescribeNegationTo(os);
2858 }
2859
2860 bool MatchAndExplain(Container container,
2861 MatchResultListener* listener) const override {
2862 return this->MatchAndExplainImpl(count_matcher_, container, listener);
2863 }
2864
2865 private:
2866 const Matcher<size_t> count_matcher_;
2867 };
2868
2869 // Implements polymorphic Contains(element_matcher).Times(n).
2870 template <typename M>
2871 class ContainsTimesMatcher {
2872 public:
2873 explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2874 : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2875
2876 template <typename Container>
2877 operator Matcher<Container>() const { // NOLINT
2878 return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2879 inner_matcher_, count_matcher_));
2880 }
2881
2882 private:
2883 const M inner_matcher_;
2884 const Matcher<size_t> count_matcher_;
2885 };
2886
2887 // Implements polymorphic Contains(element_matcher).
2888 template <typename M>
2889 class ContainsMatcher {
2890 public:
2891 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2892
2893 template <typename Container>
2894 operator Matcher<Container>() const { // NOLINT
2895 return Matcher<Container>(
2896 new ContainsMatcherImpl<const Container&>(inner_matcher_));
2897 }
2898
2899 ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2900 return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2901 }
2902
2903 private:
2904 const M inner_matcher_;
2905 };
2906
2907 // Implements polymorphic Each(element_matcher).
2908 template <typename M>
2909 class EachMatcher {
2910 public:
2911 explicit EachMatcher(M m) : inner_matcher_(m) {}
2912
2913 template <typename Container>
2914 operator Matcher<Container>() const { // NOLINT
2915 return Matcher<Container>(
2916 new EachMatcherImpl<const Container&>(inner_matcher_));
2917 }
2918
2919 private:
2920 const M inner_matcher_;
2921 };
2922
2923 // Use go/ranked-overloads for dispatching.
2924 struct Rank0 {};
2925 struct Rank1 : Rank0 {};
2926
2927 namespace pair_getters {
2928 using std::get;
2929 template <typename T>
2930 auto First(T& x, Rank0) -> decltype(get<0>(x)) { // NOLINT
2931 return get<0>(x);
2932 }
2933 template <typename T>
2934 auto First(T& x, Rank1) -> decltype((x.first)) { // NOLINT
2935 return x.first;
2936 }
2937
2938 template <typename T>
2939 auto Second(T& x, Rank0) -> decltype(get<1>(x)) { // NOLINT
2940 return get<1>(x);
2941 }
2942 template <typename T>
2943 auto Second(T& x, Rank1) -> decltype((x.second)) { // NOLINT
2944 return x.second;
2945 }
2946 } // namespace pair_getters
2947
2948 // Implements Key(inner_matcher) for the given argument pair type.
2949 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2950 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2951 // std::map that contains at least one element whose key is >= 5.
2952 template <typename PairType>
2953 class KeyMatcherImpl : public MatcherInterface<PairType> {
2954 public:
2955 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2956 typedef typename RawPairType::first_type KeyType;
2957
2958 template <typename InnerMatcher>
2959 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2960 : inner_matcher_(
2961 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2962
2963 // Returns true if and only if 'key_value.first' (the key) matches the inner
2964 // matcher.
2965 bool MatchAndExplain(PairType key_value,
2966 MatchResultListener* listener) const override {
2967 StringMatchResultListener inner_listener;
2968 const bool match = inner_matcher_.MatchAndExplain(
2969 pair_getters::First(key_value, Rank1()), &inner_listener);
2970 const std::string explanation = inner_listener.str();
2971 if (!explanation.empty()) {
2972 *listener << "whose first field is a value " << explanation;
2973 }
2974 return match;
2975 }
2976
2977 // Describes what this matcher does.
2978 void DescribeTo(::std::ostream* os) const override {
2979 *os << "has a key that ";
2980 inner_matcher_.DescribeTo(os);
2981 }
2982
2983 // Describes what the negation of this matcher does.
2984 void DescribeNegationTo(::std::ostream* os) const override {
2985 *os << "doesn't have a key that ";
2986 inner_matcher_.DescribeTo(os);
2987 }
2988
2989 private:
2990 const Matcher<const KeyType&> inner_matcher_;
2991 };
2992
2993 // Implements polymorphic Key(matcher_for_key).
2994 template <typename M>
2995 class KeyMatcher {
2996 public:
2997 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2998
2999 template <typename PairType>
3000 operator Matcher<PairType>() const {
3001 return Matcher<PairType>(
3002 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3003 }
3004
3005 private:
3006 const M matcher_for_key_;
3007 };
3008
3009 // Implements polymorphic Address(matcher_for_address).
3010 template <typename InnerMatcher>
3011 class AddressMatcher {
3012 public:
3013 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3014
3015 template <typename Type>
3016 operator Matcher<Type>() const { // NOLINT
3017 return Matcher<Type>(new Impl<const Type&>(matcher_));
3018 }
3019
3020 private:
3021 // The monomorphic implementation that works for a particular object type.
3022 template <typename Type>
3023 class Impl : public MatcherInterface<Type> {
3024 public:
3025 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3026 explicit Impl(const InnerMatcher& matcher)
3027 : matcher_(MatcherCast<Address>(matcher)) {}
3028
3029 void DescribeTo(::std::ostream* os) const override {
3030 *os << "has address that ";
3031 matcher_.DescribeTo(os);
3032 }
3033
3034 void DescribeNegationTo(::std::ostream* os) const override {
3035 *os << "does not have address that ";
3036 matcher_.DescribeTo(os);
3037 }
3038
3039 bool MatchAndExplain(Type object,
3040 MatchResultListener* listener) const override {
3041 *listener << "which has address ";
3042 Address address = std::addressof(object);
3043 return MatchPrintAndExplain(address, matcher_, listener);
3044 }
3045
3046 private:
3047 const Matcher<Address> matcher_;
3048 };
3049 const InnerMatcher matcher_;
3050 };
3051
3052 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3053 // type with its two matchers. See Pair() function below.
3054 template <typename PairType>
3055 class PairMatcherImpl : public MatcherInterface<PairType> {
3056 public:
3057 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3058 typedef typename RawPairType::first_type FirstType;
3059 typedef typename RawPairType::second_type SecondType;
3060
3061 template <typename FirstMatcher, typename SecondMatcher>
3062 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3063 : first_matcher_(
3064 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3065 second_matcher_(
3066 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3067
3068 // Describes what this matcher does.
3069 void DescribeTo(::std::ostream* os) const override {
3070 *os << "has a first field that ";
3071 first_matcher_.DescribeTo(os);
3072 *os << ", and has a second field that ";
3073 second_matcher_.DescribeTo(os);
3074 }
3075
3076 // Describes what the negation of this matcher does.
3077 void DescribeNegationTo(::std::ostream* os) const override {
3078 *os << "has a first field that ";
3079 first_matcher_.DescribeNegationTo(os);
3080 *os << ", or has a second field that ";
3081 second_matcher_.DescribeNegationTo(os);
3082 }
3083
3084 // Returns true if and only if 'a_pair.first' matches first_matcher and
3085 // 'a_pair.second' matches second_matcher.
3086 bool MatchAndExplain(PairType a_pair,
3087 MatchResultListener* listener) const override {
3088 if (!listener->IsInterested()) {
3089 // If the listener is not interested, we don't need to construct the
3090 // explanation.
3091 return first_matcher_.Matches(pair_getters::First(a_pair, Rank1())) &&
3092 second_matcher_.Matches(pair_getters::Second(a_pair, Rank1()));
3093 }
3094 StringMatchResultListener first_inner_listener;
3095 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank1()),
3096 &first_inner_listener)) {
3097 *listener << "whose first field does not match";
3098 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3099 return false;
3100 }
3101 StringMatchResultListener second_inner_listener;
3102 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank1()),
3103 &second_inner_listener)) {
3104 *listener << "whose second field does not match";
3105 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3106 return false;
3107 }
3108 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3109 listener);
3110 return true;
3111 }
3112
3113 private:
3114 void ExplainSuccess(const std::string& first_explanation,
3115 const std::string& second_explanation,
3116 MatchResultListener* listener) const {
3117 *listener << "whose both fields match";
3118 if (!first_explanation.empty()) {
3119 *listener << ", where the first field is a value " << first_explanation;
3120 }
3121 if (!second_explanation.empty()) {
3122 *listener << ", ";
3123 if (!first_explanation.empty()) {
3124 *listener << "and ";
3125 } else {
3126 *listener << "where ";
3127 }
3128 *listener << "the second field is a value " << second_explanation;
3129 }
3130 }
3131
3132 const Matcher<const FirstType&> first_matcher_;
3133 const Matcher<const SecondType&> second_matcher_;
3134 };
3135
3136 // Implements polymorphic Pair(first_matcher, second_matcher).
3137 template <typename FirstMatcher, typename SecondMatcher>
3138 class PairMatcher {
3139 public:
3140 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3141 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3142
3143 template <typename PairType>
3144 operator Matcher<PairType>() const {
3145 return Matcher<PairType>(
3146 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3147 }
3148
3149 private:
3150 const FirstMatcher first_matcher_;
3151 const SecondMatcher second_matcher_;
3152 };
3153
3154 template <typename T, size_t... I>
3155 auto UnpackStructImpl(const T& t, std::index_sequence<I...>,
3156 int) -> decltype(std::tie(get<I>(t)...)) {
3157 static_assert(std::tuple_size<T>::value == sizeof...(I),
3158 "Number of arguments doesn't match the number of fields.");
3159 return std::tie(get<I>(t)...);
3160 }
3161
3162 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3163 template <typename T>
3164 auto UnpackStructImpl(const T& t, std::make_index_sequence<1>, char) {
3165 const auto& [a] = t;
3166 return std::tie(a);
3167 }
3168 template <typename T>
3169 auto UnpackStructImpl(const T& t, std::make_index_sequence<2>, char) {
3170 const auto& [a, b] = t;
3171 return std::tie(a, b);
3172 }
3173 template <typename T>
3174 auto UnpackStructImpl(const T& t, std::make_index_sequence<3>, char) {
3175 const auto& [a, b, c] = t;
3176 return std::tie(a, b, c);
3177 }
3178 template <typename T>
3179 auto UnpackStructImpl(const T& t, std::make_index_sequence<4>, char) {
3180 const auto& [a, b, c, d] = t;
3181 return std::tie(a, b, c, d);
3182 }
3183 template <typename T>
3184 auto UnpackStructImpl(const T& t, std::make_index_sequence<5>, char) {
3185 const auto& [a, b, c, d, e] = t;
3186 return std::tie(a, b, c, d, e);
3187 }
3188 template <typename T>
3189 auto UnpackStructImpl(const T& t, std::make_index_sequence<6>, char) {
3190 const auto& [a, b, c, d, e, f] = t;
3191 return std::tie(a, b, c, d, e, f);
3192 }
3193 template <typename T>
3194 auto UnpackStructImpl(const T& t, std::make_index_sequence<7>, char) {
3195 const auto& [a, b, c, d, e, f, g] = t;
3196 return std::tie(a, b, c, d, e, f, g);
3197 }
3198 template <typename T>
3199 auto UnpackStructImpl(const T& t, std::make_index_sequence<8>, char) {
3200 const auto& [a, b, c, d, e, f, g, h] = t;
3201 return std::tie(a, b, c, d, e, f, g, h);
3202 }
3203 template <typename T>
3204 auto UnpackStructImpl(const T& t, std::make_index_sequence<9>, char) {
3205 const auto& [a, b, c, d, e, f, g, h, i] = t;
3206 return std::tie(a, b, c, d, e, f, g, h, i);
3207 }
3208 template <typename T>
3209 auto UnpackStructImpl(const T& t, std::make_index_sequence<10>, char) {
3210 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3211 return std::tie(a, b, c, d, e, f, g, h, i, j);
3212 }
3213 template <typename T>
3214 auto UnpackStructImpl(const T& t, std::make_index_sequence<11>, char) {
3215 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3216 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3217 }
3218 template <typename T>
3219 auto UnpackStructImpl(const T& t, std::make_index_sequence<12>, char) {
3220 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3221 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3222 }
3223 template <typename T>
3224 auto UnpackStructImpl(const T& t, std::make_index_sequence<13>, char) {
3225 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3226 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3227 }
3228 template <typename T>
3229 auto UnpackStructImpl(const T& t, std::make_index_sequence<14>, char) {
3230 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3231 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3232 }
3233 template <typename T>
3234 auto UnpackStructImpl(const T& t, std::make_index_sequence<15>, char) {
3235 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3236 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3237 }
3238 template <typename T>
3239 auto UnpackStructImpl(const T& t, std::make_index_sequence<16>, char) {
3240 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3241 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3242 }
3243 template <typename T>
3244 auto UnpackStructImpl(const T& t, std::make_index_sequence<17>, char) {
3245 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3246 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3247 }
3248 template <typename T>
3249 auto UnpackStructImpl(const T& t, std::make_index_sequence<18>, char) {
3250 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3251 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3252 }
3253 template <typename T>
3254 auto UnpackStructImpl(const T& t, std::make_index_sequence<19>, char) {
3255 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3256 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3257 }
3258 #endif // defined(__cpp_structured_bindings)
3259
3260 template <size_t I, typename T>
3261 auto UnpackStruct(const T& t)
3262 -> decltype((UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0)) {
3263 return (UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0);
3264 }
3265
3266 // Helper function to do comma folding in C++11.
3267 // The array ensures left-to-right order of evaluation.
3268 // Usage: VariadicExpand({expr...});
3269 template <typename T, size_t N>
3270 void VariadicExpand(const T (&)[N]) {}
3271
3272 template <typename Struct, typename StructSize>
3273 class FieldsAreMatcherImpl;
3274
3275 template <typename Struct, size_t... I>
3276 class FieldsAreMatcherImpl<Struct, std::index_sequence<I...>>
3277 : public MatcherInterface<Struct> {
3278 using UnpackedType =
3279 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3280 using MatchersType = std::tuple<
3281 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3282
3283 public:
3284 template <typename Inner>
3285 explicit FieldsAreMatcherImpl(const Inner& matchers)
3286 : matchers_(testing::SafeMatcherCast<
3287 const typename std::tuple_element<I, UnpackedType>::type&>(
3288 std::get<I>(matchers))...) {}
3289
3290 void DescribeTo(::std::ostream* os) const override {
3291 const char* separator = "";
3292 VariadicExpand(
3293 {(*os << separator << "has field #" << I << " that ",
3294 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3295 }
3296
3297 void DescribeNegationTo(::std::ostream* os) const override {
3298 const char* separator = "";
3299 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3300 std::get<I>(matchers_).DescribeNegationTo(os),
3301 separator = ", or ")...});
3302 }
3303
3304 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3305 return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3306 }
3307
3308 private:
3309 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3310 if (!listener->IsInterested()) {
3311 // If the listener is not interested, we don't need to construct the
3312 // explanation.
3313 bool good = true;
3314 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3315 std::get<I>(tuple))...});
3316 return good;
3317 }
3318
3319 size_t failed_pos = ~size_t{};
3320
3321 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3322
3323 VariadicExpand(
3324 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3325 std::get<I>(tuple), &inner_listener[I])
3326 ? failed_pos = I
3327 : 0 ...});
3328 if (failed_pos != ~size_t{}) {
3329 *listener << "whose field #" << failed_pos << " does not match";
3330 PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3331 return false;
3332 }
3333
3334 *listener << "whose all elements match";
3335 const char* separator = ", where";
3336 for (size_t index = 0; index < sizeof...(I); ++index) {
3337 const std::string str = inner_listener[index].str();
3338 if (!str.empty()) {
3339 *listener << separator << " field #" << index << " is a value " << str;
3340 separator = ", and";
3341 }
3342 }
3343
3344 return true;
3345 }
3346
3347 MatchersType matchers_;
3348 };
3349
3350 template <typename... Inner>
3351 class FieldsAreMatcher {
3352 public:
3353 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3354
3355 template <typename Struct>
3356 operator Matcher<Struct>() const { // NOLINT
3357 return Matcher<Struct>(
3358 new FieldsAreMatcherImpl<const Struct&,
3359 std::index_sequence_for<Inner...>>(matchers_));
3360 }
3361
3362 private:
3363 std::tuple<Inner...> matchers_;
3364 };
3365
3366 // Implements ElementsAre() and ElementsAreArray().
3367 template <typename Container>
3368 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3369 public:
3370 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3371 typedef internal::StlContainerView<RawContainer> View;
3372 typedef typename View::type StlContainer;
3373 typedef typename View::const_reference StlContainerReference;
3374 typedef typename StlContainer::value_type Element;
3375
3376 // Constructs the matcher from a sequence of element values or
3377 // element matchers.
3378 template <typename InputIter>
3379 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3380 while (first != last) {
3381 matchers_.push_back(MatcherCast<const Element&>(*first++));
3382 }
3383 }
3384
3385 // Describes what this matcher does.
3386 void DescribeTo(::std::ostream* os) const override {
3387 if (count() == 0) {
3388 *os << "is empty";
3389 } else if (count() == 1) {
3390 *os << "has 1 element that ";
3391 matchers_[0].DescribeTo(os);
3392 } else {
3393 *os << "has " << Elements(count()) << " where\n";
3394 for (size_t i = 0; i != count(); ++i) {
3395 *os << "element #" << i << " ";
3396 matchers_[i].DescribeTo(os);
3397 if (i + 1 < count()) {
3398 *os << ",\n";
3399 }
3400 }
3401 }
3402 }
3403
3404 // Describes what the negation of this matcher does.
3405 void DescribeNegationTo(::std::ostream* os) const override {
3406 if (count() == 0) {
3407 *os << "isn't empty";
3408 return;
3409 }
3410
3411 *os << "doesn't have " << Elements(count()) << ", or\n";
3412 for (size_t i = 0; i != count(); ++i) {
3413 *os << "element #" << i << " ";
3414 matchers_[i].DescribeNegationTo(os);
3415 if (i + 1 < count()) {
3416 *os << ", or\n";
3417 }
3418 }
3419 }
3420
3421 bool MatchAndExplain(Container container,
3422 MatchResultListener* listener) const override {
3423 // To work with stream-like "containers", we must only walk
3424 // through the elements in one pass.
3425
3426 const bool listener_interested = listener->IsInterested();
3427
3428 // explanations[i] is the explanation of the element at index i.
3429 ::std::vector<std::string> explanations(count());
3430 StlContainerReference stl_container = View::ConstReference(container);
3431 auto it = stl_container.begin();
3432 size_t exam_pos = 0;
3433 bool mismatch_found = false; // Have we found a mismatched element yet?
3434
3435 // Go through the elements and matchers in pairs, until we reach
3436 // the end of either the elements or the matchers, or until we find a
3437 // mismatch.
3438 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3439 bool match; // Does the current element match the current matcher?
3440 if (listener_interested) {
3441 StringMatchResultListener s;
3442 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3443 explanations[exam_pos] = s.str();
3444 } else {
3445 match = matchers_[exam_pos].Matches(*it);
3446 }
3447
3448 if (!match) {
3449 mismatch_found = true;
3450 break;
3451 }
3452 }
3453 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3454
3455 // Find how many elements the actual container has. We avoid
3456 // calling size() s.t. this code works for stream-like "containers"
3457 // that don't define size().
3458 size_t actual_count = exam_pos;
3459 for (; it != stl_container.end(); ++it) {
3460 ++actual_count;
3461 }
3462
3463 if (actual_count != count()) {
3464 // The element count doesn't match. If the container is empty,
3465 // there's no need to explain anything as Google Mock already
3466 // prints the empty container. Otherwise we just need to show
3467 // how many elements there actually are.
3468 if (listener_interested && (actual_count != 0)) {
3469 *listener << "which has " << Elements(actual_count);
3470 }
3471 return false;
3472 }
3473
3474 if (mismatch_found) {
3475 // The element count matches, but the exam_pos-th element doesn't match.
3476 if (listener_interested) {
3477 *listener << "whose element #" << exam_pos << " doesn't match";
3478 PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3479 }
3480 return false;
3481 }
3482
3483 // Every element matches its expectation. We need to explain why
3484 // (the obvious ones can be skipped).
3485 if (listener_interested) {
3486 bool reason_printed = false;
3487 for (size_t i = 0; i != count(); ++i) {
3488 const std::string& s = explanations[i];
3489 if (!s.empty()) {
3490 if (reason_printed) {
3491 *listener << ",\nand ";
3492 }
3493 *listener << "whose element #" << i << " matches, " << s;
3494 reason_printed = true;
3495 }
3496 }
3497 }
3498 return true;
3499 }
3500
3501 private:
3502 static Message Elements(size_t count) {
3503 return Message() << count << (count == 1 ? " element" : " elements");
3504 }
3505
3506 size_t count() const { return matchers_.size(); }
3507
3508 ::std::vector<Matcher<const Element&>> matchers_;
3509 };
3510
3511 // Connectivity matrix of (elements X matchers), in element-major order.
3512 // Initially, there are no edges.
3513 // Use NextGraph() to iterate over all possible edge configurations.
3514 // Use Randomize() to generate a random edge configuration.
3515 class GTEST_API_ MatchMatrix {
3516 public:
3517 MatchMatrix(size_t num_elements, size_t num_matchers)
3518 : num_elements_(num_elements),
3519 num_matchers_(num_matchers),
3520 matched_(num_elements_ * num_matchers_, 0) {}
3521
3522 size_t LhsSize() const { return num_elements_; }
3523 size_t RhsSize() const { return num_matchers_; }
3524 bool HasEdge(size_t ilhs, size_t irhs) const {
3525 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3526 }
3527 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3528 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3529 }
3530
3531 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3532 // adds 1 to that number; returns false if incrementing the graph left it
3533 // empty.
3534 bool NextGraph();
3535
3536 void Randomize();
3537
3538 std::string DebugString() const;
3539
3540 private:
3541 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3542 return ilhs * num_matchers_ + irhs;
3543 }
3544
3545 size_t num_elements_;
3546 size_t num_matchers_;
3547
3548 // Each element is a char interpreted as bool. They are stored as a
3549 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3550 // a (ilhs, irhs) matrix coordinate into an offset.
3551 ::std::vector<char> matched_;
3552 };
3553
3554 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3555 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3556
3557 // Returns a maximum bipartite matching for the specified graph 'g'.
3558 // The matching is represented as a vector of {element, matcher} pairs.
3559 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3560
3561 struct UnorderedMatcherRequire {
3562 enum Flags {
3563 Superset = 1 << 0,
3564 Subset = 1 << 1,
3565 ExactMatch = Superset | Subset,
3566 };
3567 };
3568
3569 // Untyped base class for implementing UnorderedElementsAre. By
3570 // putting logic that's not specific to the element type here, we
3571 // reduce binary bloat and increase compilation speed.
3572 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3573 protected:
3574 explicit UnorderedElementsAreMatcherImplBase(
3575 UnorderedMatcherRequire::Flags matcher_flags)
3576 : match_flags_(matcher_flags) {}
3577
3578 // A vector of matcher describers, one for each element matcher.
3579 // Does not own the describers (and thus can be used only when the
3580 // element matchers are alive).
3581 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3582
3583 // Describes this UnorderedElementsAre matcher.
3584 void DescribeToImpl(::std::ostream* os) const;
3585
3586 // Describes the negation of this UnorderedElementsAre matcher.
3587 void DescribeNegationToImpl(::std::ostream* os) const;
3588
3589 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3590 const MatchMatrix& matrix,
3591 MatchResultListener* listener) const;
3592
3593 bool FindPairing(const MatchMatrix& matrix,
3594 MatchResultListener* listener) const;
3595
3596 MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3597
3598 static Message Elements(size_t n) {
3599 return Message() << n << " element" << (n == 1 ? "" : "s");
3600 }
3601
3602 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3603
3604 private:
3605 UnorderedMatcherRequire::Flags match_flags_;
3606 MatcherDescriberVec matcher_describers_;
3607 };
3608
3609 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3610 // IsSupersetOf.
3611 template <typename Container>
3612 class UnorderedElementsAreMatcherImpl
3613 : public MatcherInterface<Container>,
3614 public UnorderedElementsAreMatcherImplBase {
3615 public:
3616 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3617 typedef internal::StlContainerView<RawContainer> View;
3618 typedef typename View::type StlContainer;
3619 typedef typename View::const_reference StlContainerReference;
3620 typedef typename StlContainer::value_type Element;
3621
3622 template <typename InputIter>
3623 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3624 InputIter first, InputIter last)
3625 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3626 for (; first != last; ++first) {
3627 matchers_.push_back(MatcherCast<const Element&>(*first));
3628 }
3629 for (const auto& m : matchers_) {
3630 matcher_describers().push_back(m.GetDescriber());
3631 }
3632 }
3633
3634 // Describes what this matcher does.
3635 void DescribeTo(::std::ostream* os) const override {
3636 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3637 }
3638
3639 // Describes what the negation of this matcher does.
3640 void DescribeNegationTo(::std::ostream* os) const override {
3641 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3642 }
3643
3644 bool MatchAndExplain(Container container,
3645 MatchResultListener* listener) const override {
3646 StlContainerReference stl_container = View::ConstReference(container);
3647 ::std::vector<std::string> element_printouts;
3648 MatchMatrix matrix =
3649 AnalyzeElements(stl_container.begin(), stl_container.end(),
3650 &element_printouts, listener);
3651
3652 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3653 FindPairing(matrix, listener);
3654 }
3655
3656 private:
3657 template <typename ElementIter>
3658 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3659 ::std::vector<std::string>* element_printouts,
3660 MatchResultListener* listener) const {
3661 element_printouts->clear();
3662 ::std::vector<char> did_match;
3663 size_t num_elements = 0;
3664 DummyMatchResultListener dummy;
3665 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3666 if (listener->IsInterested()) {
3667 element_printouts->push_back(PrintToString(*elem_first));
3668 }
3669 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3670 did_match.push_back(
3671 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3672 }
3673 }
3674
3675 MatchMatrix matrix(num_elements, matchers_.size());
3676 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3677 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3678 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3679 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3680 }
3681 }
3682 return matrix;
3683 }
3684
3685 ::std::vector<Matcher<const Element&>> matchers_;
3686 };
3687
3688 // Functor for use in TransformTuple.
3689 // Performs MatcherCast<Target> on an input argument of any type.
3690 template <typename Target>
3691 struct CastAndAppendTransform {
3692 template <typename Arg>
3693 Matcher<Target> operator()(const Arg& a) const {
3694 return MatcherCast<Target>(a);
3695 }
3696 };
3697
3698 // Implements UnorderedElementsAre.
3699 template <typename MatcherTuple>
3700 class UnorderedElementsAreMatcher {
3701 public:
3702 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3703 : matchers_(args) {}
3704
3705 template <typename Container>
3706 operator Matcher<Container>() const {
3707 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3708 typedef typename internal::StlContainerView<RawContainer>::type View;
3709 typedef typename View::value_type Element;
3710 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3711 MatcherVec matchers;
3712 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3713 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3714 ::std::back_inserter(matchers));
3715 return Matcher<Container>(
3716 new UnorderedElementsAreMatcherImpl<const Container&>(
3717 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3718 matchers.end()));
3719 }
3720
3721 private:
3722 const MatcherTuple matchers_;
3723 };
3724
3725 // Implements ElementsAre.
3726 template <typename MatcherTuple>
3727 class ElementsAreMatcher {
3728 public:
3729 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3730
3731 template <typename Container>
3732 operator Matcher<Container>() const {
3733 static_assert(
3734 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3735 ::std::tuple_size<MatcherTuple>::value < 2,
3736 "use UnorderedElementsAre with hash tables");
3737
3738 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3739 typedef typename internal::StlContainerView<RawContainer>::type View;
3740 typedef typename View::value_type Element;
3741 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3742 MatcherVec matchers;
3743 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3744 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3745 ::std::back_inserter(matchers));
3746 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3747 matchers.begin(), matchers.end()));
3748 }
3749
3750 private:
3751 const MatcherTuple matchers_;
3752 };
3753
3754 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3755 template <typename T>
3756 class UnorderedElementsAreArrayMatcher {
3757 public:
3758 template <typename Iter>
3759 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3760 Iter first, Iter last)
3761 : match_flags_(match_flags), matchers_(first, last) {}
3762
3763 template <typename Container>
3764 operator Matcher<Container>() const {
3765 return Matcher<Container>(
3766 new UnorderedElementsAreMatcherImpl<const Container&>(
3767 match_flags_, matchers_.begin(), matchers_.end()));
3768 }
3769
3770 private:
3771 UnorderedMatcherRequire::Flags match_flags_;
3772 ::std::vector<T> matchers_;
3773 };
3774
3775 // Implements ElementsAreArray().
3776 template <typename T>
3777 class ElementsAreArrayMatcher {
3778 public:
3779 template <typename Iter>
3780 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3781
3782 template <typename Container>
3783 operator Matcher<Container>() const {
3784 static_assert(
3785 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3786 "use UnorderedElementsAreArray with hash tables");
3787
3788 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3789 matchers_.begin(), matchers_.end()));
3790 }
3791
3792 private:
3793 const ::std::vector<T> matchers_;
3794 };
3795
3796 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3797 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3798 // second) is a polymorphic matcher that matches a value x if and only if
3799 // tm matches tuple (x, second). Useful for implementing
3800 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3801 //
3802 // BoundSecondMatcher is copyable and assignable, as we need to put
3803 // instances of this class in a vector when implementing
3804 // UnorderedPointwise().
3805 template <typename Tuple2Matcher, typename Second>
3806 class BoundSecondMatcher {
3807 public:
3808 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3809 : tuple2_matcher_(tm), second_value_(second) {}
3810
3811 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3812
3813 template <typename T>
3814 operator Matcher<T>() const {
3815 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3816 }
3817
3818 // We have to define this for UnorderedPointwise() to compile in
3819 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3820 // which requires the elements to be assignable in C++98. The
3821 // compiler cannot generate the operator= for us, as Tuple2Matcher
3822 // and Second may not be assignable.
3823 //
3824 // However, this should never be called, so the implementation just
3825 // need to assert.
3826 void operator=(const BoundSecondMatcher& /*rhs*/) {
3827 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3828 }
3829
3830 private:
3831 template <typename T>
3832 class Impl : public MatcherInterface<T> {
3833 public:
3834 typedef ::std::tuple<T, Second> ArgTuple;
3835
3836 Impl(const Tuple2Matcher& tm, const Second& second)
3837 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3838 second_value_(second) {}
3839
3840 void DescribeTo(::std::ostream* os) const override {
3841 *os << "and ";
3842 UniversalPrint(second_value_, os);
3843 *os << " ";
3844 mono_tuple2_matcher_.DescribeTo(os);
3845 }
3846
3847 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3848 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3849 listener);
3850 }
3851
3852 private:
3853 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3854 const Second second_value_;
3855 };
3856
3857 const Tuple2Matcher tuple2_matcher_;
3858 const Second second_value_;
3859 };
3860
3861 // Given a 2-tuple matcher tm and a value second,
3862 // MatcherBindSecond(tm, second) returns a matcher that matches a
3863 // value x if and only if tm matches tuple (x, second). Useful for
3864 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3865 template <typename Tuple2Matcher, typename Second>
3866 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3867 const Tuple2Matcher& tm, const Second& second) {
3868 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3869 }
3870
3871 // Returns the description for a matcher defined using the MATCHER*()
3872 // macro where the user-supplied description string is "", if
3873 // 'negation' is false; otherwise returns the description of the
3874 // negation of the matcher. 'param_values' contains a list of strings
3875 // that are the print-out of the matcher's parameters.
3876 GTEST_API_ std::string FormatMatcherDescription(
3877 bool negation, const char* matcher_name,
3878 const std::vector<const char*>& param_names, const Strings& param_values);
3879
3880 // Implements a matcher that checks the value of a optional<> type variable.
3881 template <typename ValueMatcher>
3882 class OptionalMatcher {
3883 public:
3884 explicit OptionalMatcher(const ValueMatcher& value_matcher)
3885 : value_matcher_(value_matcher) {}
3886
3887 template <typename Optional>
3888 operator Matcher<Optional>() const {
3889 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3890 }
3891
3892 template <typename Optional>
3893 class Impl : public MatcherInterface<Optional> {
3894 public:
3895 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3896 typedef typename OptionalView::value_type ValueType;
3897 explicit Impl(const ValueMatcher& value_matcher)
3898 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3899
3900 void DescribeTo(::std::ostream* os) const override {
3901 *os << "value ";
3902 value_matcher_.DescribeTo(os);
3903 }
3904
3905 void DescribeNegationTo(::std::ostream* os) const override {
3906 *os << "value ";
3907 value_matcher_.DescribeNegationTo(os);
3908 }
3909
3910 bool MatchAndExplain(Optional optional,
3911 MatchResultListener* listener) const override {
3912 if (!optional) {
3913 *listener << "which is not engaged";
3914 return false;
3915 }
3916 const ValueType& value = *optional;
3917 StringMatchResultListener value_listener;
3918 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3919 *listener << "whose value " << PrintToString(value)
3920 << (match ? " matches" : " doesn't match");
3921 PrintIfNotEmpty(value_listener.str(), listener->stream());
3922 return match;
3923 }
3924
3925 private:
3926 const Matcher<ValueType> value_matcher_;
3927 };
3928
3929 private:
3930 const ValueMatcher value_matcher_;
3931 };
3932
3933 namespace variant_matcher {
3934 // Overloads to allow VariantMatcher to do proper ADL lookup.
3935 template <typename T>
3936 void holds_alternative() {}
3937 template <typename T>
3938 void get() {}
3939
3940 // Implements a matcher that checks the value of a variant<> type variable.
3941 template <typename T>
3942 class VariantMatcher {
3943 public:
3944 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3945 : matcher_(std::move(matcher)) {}
3946
3947 template <typename Variant>
3948 bool MatchAndExplain(const Variant& value,
3949 ::testing::MatchResultListener* listener) const {
3950 using std::get;
3951 if (!listener->IsInterested()) {
3952 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3953 }
3954
3955 if (!holds_alternative<T>(value)) {
3956 *listener << "whose value is not of type '" << GetTypeName() << "'";
3957 return false;
3958 }
3959
3960 const T& elem = get<T>(value);
3961 StringMatchResultListener elem_listener;
3962 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3963 *listener << "whose value " << PrintToString(elem)
3964 << (match ? " matches" : " doesn't match");
3965 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3966 return match;
3967 }
3968
3969 void DescribeTo(std::ostream* os) const {
3970 *os << "is a variant<> with value of type '" << GetTypeName()
3971 << "' and the value ";
3972 matcher_.DescribeTo(os);
3973 }
3974
3975 void DescribeNegationTo(std::ostream* os) const {
3976 *os << "is a variant<> with value of type other than '" << GetTypeName()
3977 << "' or the value ";
3978 matcher_.DescribeNegationTo(os);
3979 }
3980
3981 private:
3982 static std::string GetTypeName() {
3983 #if GTEST_HAS_RTTI
3984 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3985 return internal::GetTypeName<T>());
3986 #endif
3987 return "the element type";
3988 }
3989
3990 const ::testing::Matcher<const T&> matcher_;
3991 };
3992
3993 } // namespace variant_matcher
3994
3995 namespace any_cast_matcher {
3996
3997 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3998 template <typename T>
3999 void any_cast() {}
4000
4001 // Implements a matcher that any_casts the value.
4002 template <typename T>
4003 class AnyCastMatcher {
4004 public:
4005 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4006 : matcher_(matcher) {}
4007
4008 template <typename AnyType>
4009 bool MatchAndExplain(const AnyType& value,
4010 ::testing::MatchResultListener* listener) const {
4011 if (!listener->IsInterested()) {
4012 const T* ptr = any_cast<T>(&value);
4013 return ptr != nullptr && matcher_.Matches(*ptr);
4014 }
4015
4016 const T* elem = any_cast<T>(&value);
4017 if (elem == nullptr) {
4018 *listener << "whose value is not of type '" << GetTypeName() << "'";
4019 return false;
4020 }
4021
4022 StringMatchResultListener elem_listener;
4023 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4024 *listener << "whose value " << PrintToString(*elem)
4025 << (match ? " matches" : " doesn't match");
4026 PrintIfNotEmpty(elem_listener.str(), listener->stream());
4027 return match;
4028 }
4029
4030 void DescribeTo(std::ostream* os) const {
4031 *os << "is an 'any' type with value of type '" << GetTypeName()
4032 << "' and the value ";
4033 matcher_.DescribeTo(os);
4034 }
4035
4036 void DescribeNegationTo(std::ostream* os) const {
4037 *os << "is an 'any' type with value of type other than '" << GetTypeName()
4038 << "' or the value ";
4039 matcher_.DescribeNegationTo(os);
4040 }
4041
4042 private:
4043 static std::string GetTypeName() {
4044 #if GTEST_HAS_RTTI
4045 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4046 return internal::GetTypeName<T>());
4047 #endif
4048 return "the element type";
4049 }
4050
4051 const ::testing::Matcher<const T&> matcher_;
4052 };
4053
4054 } // namespace any_cast_matcher
4055
4056 // Implements the Args() matcher.
4057 template <class ArgsTuple, size_t... k>
4058 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4059 public:
4060 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4061 using SelectedArgs =
4062 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4063 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4064
4065 template <typename InnerMatcher>
4066 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4067 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4068
4069 bool MatchAndExplain(ArgsTuple args,
4070 MatchResultListener* listener) const override {
4071 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4072 (void)args;
4073 const SelectedArgs& selected_args =
4074 std::forward_as_tuple(std::get<k>(args)...);
4075 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4076
4077 PrintIndices(listener->stream());
4078 *listener << "are " << PrintToString(selected_args);
4079
4080 StringMatchResultListener inner_listener;
4081 const bool match =
4082 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4083 PrintIfNotEmpty(inner_listener.str(), listener->stream());
4084 return match;
4085 }
4086
4087 void DescribeTo(::std::ostream* os) const override {
4088 *os << "are a tuple ";
4089 PrintIndices(os);
4090 inner_matcher_.DescribeTo(os);
4091 }
4092
4093 void DescribeNegationTo(::std::ostream* os) const override {
4094 *os << "are a tuple ";
4095 PrintIndices(os);
4096 inner_matcher_.DescribeNegationTo(os);
4097 }
4098
4099 private:
4100 // Prints the indices of the selected fields.
4101 static void PrintIndices(::std::ostream* os) {
4102 *os << "whose fields (";
4103 const char* sep = "";
4104 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4105 (void)sep;
4106 // The static_cast to void is needed to silence Clang's -Wcomma warning.
4107 // This pattern looks suspiciously like we may have mismatched parentheses
4108 // and may have been trying to use the first operation of the comma operator
4109 // as a member of the array, so Clang warns that we may have made a mistake.
4110 const char* dummy[] = {
4111 "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4112 (void)dummy;
4113 *os << ") ";
4114 }
4115
4116 MonomorphicInnerMatcher inner_matcher_;
4117 };
4118
4119 template <class InnerMatcher, size_t... k>
4120 class ArgsMatcher {
4121 public:
4122 explicit ArgsMatcher(InnerMatcher inner_matcher)
4123 : inner_matcher_(std::move(inner_matcher)) {}
4124
4125 template <typename ArgsTuple>
4126 operator Matcher<ArgsTuple>() const { // NOLINT
4127 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4128 }
4129
4130 private:
4131 InnerMatcher inner_matcher_;
4132 };
4133
4134 } // namespace internal
4135
4136 // ElementsAreArray(iterator_first, iterator_last)
4137 // ElementsAreArray(pointer, count)
4138 // ElementsAreArray(array)
4139 // ElementsAreArray(container)
4140 // ElementsAreArray({ e1, e2, ..., en })
4141 //
4142 // The ElementsAreArray() functions are like ElementsAre(...), except
4143 // that they are given a homogeneous sequence rather than taking each
4144 // element as a function argument. The sequence can be specified as an
4145 // array, a pointer and count, a vector, an initializer list, or an
4146 // STL iterator range. In each of these cases, the underlying sequence
4147 // can be either a sequence of values or a sequence of matchers.
4148 //
4149 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4150
4151 template <typename Iter>
4152 inline internal::ElementsAreArrayMatcher<
4153 typename ::std::iterator_traits<Iter>::value_type>
4154 ElementsAreArray(Iter first, Iter last) {
4155 typedef typename ::std::iterator_traits<Iter>::value_type T;
4156 return internal::ElementsAreArrayMatcher<T>(first, last);
4157 }
4158
4159 template <typename T>
4160 inline auto ElementsAreArray(const T* pointer, size_t count)
4161 -> decltype(ElementsAreArray(pointer, pointer + count)) {
4162 return ElementsAreArray(pointer, pointer + count);
4163 }
4164
4165 template <typename T, size_t N>
4166 inline auto ElementsAreArray(const T (&array)[N])
4167 -> decltype(ElementsAreArray(array, N)) {
4168 return ElementsAreArray(array, N);
4169 }
4170
4171 template <typename Container>
4172 inline auto ElementsAreArray(const Container& container)
4173 -> decltype(ElementsAreArray(container.begin(), container.end())) {
4174 return ElementsAreArray(container.begin(), container.end());
4175 }
4176
4177 template <typename T>
4178 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4179 -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4180 return ElementsAreArray(xs.begin(), xs.end());
4181 }
4182
4183 // UnorderedElementsAreArray(iterator_first, iterator_last)
4184 // UnorderedElementsAreArray(pointer, count)
4185 // UnorderedElementsAreArray(array)
4186 // UnorderedElementsAreArray(container)
4187 // UnorderedElementsAreArray({ e1, e2, ..., en })
4188 //
4189 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4190 // collection of matchers exists.
4191 //
4192 // The matchers can be specified as an array, a pointer and count, a container,
4193 // an initializer list, or an STL iterator range. In each of these cases, the
4194 // underlying matchers can be either values or matchers.
4195
4196 template <typename Iter>
4197 inline internal::UnorderedElementsAreArrayMatcher<
4198 typename ::std::iterator_traits<Iter>::value_type>
4199 UnorderedElementsAreArray(Iter first, Iter last) {
4200 typedef typename ::std::iterator_traits<Iter>::value_type T;
4201 return internal::UnorderedElementsAreArrayMatcher<T>(
4202 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4203 }
4204
4205 template <typename T>
4206 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4207 const T* pointer, size_t count) {
4208 return UnorderedElementsAreArray(pointer, pointer + count);
4209 }
4210
4211 template <typename T, size_t N>
4212 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4213 const T (&array)[N]) {
4214 return UnorderedElementsAreArray(array, N);
4215 }
4216
4217 template <typename Container>
4218 inline internal::UnorderedElementsAreArrayMatcher<
4219 typename Container::value_type>
4220 UnorderedElementsAreArray(const Container& container) {
4221 return UnorderedElementsAreArray(container.begin(), container.end());
4222 }
4223
4224 template <typename T>
4225 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4226 ::std::initializer_list<T> xs) {
4227 return UnorderedElementsAreArray(xs.begin(), xs.end());
4228 }
4229
4230 // _ is a matcher that matches anything of any type.
4231 //
4232 // This definition is fine as:
4233 //
4234 // 1. The C++ standard permits using the name _ in a namespace that
4235 // is not the global namespace or ::std.
4236 // 2. The AnythingMatcher class has no data member or constructor,
4237 // so it's OK to create global variables of this type.
4238 // 3. c-style has approved of using _ in this case.
4239 const internal::AnythingMatcher _ = {};
4240 // Creates a matcher that matches any value of the given type T.
4241 template <typename T>
4242 inline Matcher<T> A() {
4243 return _;
4244 }
4245
4246 // Creates a matcher that matches any value of the given type T.
4247 template <typename T>
4248 inline Matcher<T> An() {
4249 return _;
4250 }
4251
4252 template <typename T, typename M>
4253 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4254 const M& value, std::false_type /* convertible_to_matcher */,
4255 std::false_type /* convertible_to_T */) {
4256 return Eq(value);
4257 }
4258
4259 // Creates a polymorphic matcher that matches any NULL pointer.
4260 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4261 return MakePolymorphicMatcher(internal::IsNullMatcher());
4262 }
4263
4264 // Creates a polymorphic matcher that matches any non-NULL pointer.
4265 // This is convenient as Not(NULL) doesn't compile (the compiler
4266 // thinks that that expression is comparing a pointer with an integer).
4267 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4268 return MakePolymorphicMatcher(internal::NotNullMatcher());
4269 }
4270
4271 // Creates a polymorphic matcher that matches any argument that
4272 // references variable x.
4273 template <typename T>
4274 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4275 return internal::RefMatcher<T&>(x);
4276 }
4277
4278 // Creates a polymorphic matcher that matches any NaN floating point.
4279 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4280 return MakePolymorphicMatcher(internal::IsNanMatcher());
4281 }
4282
4283 // Creates a matcher that matches any double argument approximately
4284 // equal to rhs, where two NANs are considered unequal.
4285 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4286 return internal::FloatingEqMatcher<double>(rhs, false);
4287 }
4288
4289 // Creates a matcher that matches any double argument approximately
4290 // equal to rhs, including NaN values when rhs is NaN.
4291 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4292 return internal::FloatingEqMatcher<double>(rhs, true);
4293 }
4294
4295 // Creates a matcher that matches any double argument approximately equal to
4296 // rhs, up to the specified max absolute error bound, where two NANs are
4297 // considered unequal. The max absolute error bound must be non-negative.
4298 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4299 double max_abs_error) {
4300 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4301 }
4302
4303 // Creates a matcher that matches any double argument approximately equal to
4304 // rhs, up to the specified max absolute error bound, including NaN values when
4305 // rhs is NaN. The max absolute error bound must be non-negative.
4306 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4307 double rhs, double max_abs_error) {
4308 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4309 }
4310
4311 // Creates a matcher that matches any float argument approximately
4312 // equal to rhs, where two NANs are considered unequal.
4313 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4314 return internal::FloatingEqMatcher<float>(rhs, false);
4315 }
4316
4317 // Creates a matcher that matches any float argument approximately
4318 // equal to rhs, including NaN values when rhs is NaN.
4319 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4320 return internal::FloatingEqMatcher<float>(rhs, true);
4321 }
4322
4323 // Creates a matcher that matches any float argument approximately equal to
4324 // rhs, up to the specified max absolute error bound, where two NANs are
4325 // considered unequal. The max absolute error bound must be non-negative.
4326 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4327 float max_abs_error) {
4328 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4329 }
4330
4331 // Creates a matcher that matches any float argument approximately equal to
4332 // rhs, up to the specified max absolute error bound, including NaN values when
4333 // rhs is NaN. The max absolute error bound must be non-negative.
4334 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4335 float rhs, float max_abs_error) {
4336 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4337 }
4338
4339 // Creates a matcher that matches a pointer (raw or smart) that points
4340 // to a value that matches inner_matcher.
4341 template <typename InnerMatcher>
4342 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4343 const InnerMatcher& inner_matcher) {
4344 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4345 }
4346
4347 #if GTEST_HAS_RTTI
4348 // Creates a matcher that matches a pointer or reference that matches
4349 // inner_matcher when dynamic_cast<To> is applied.
4350 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4351 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4352 // If To is a reference and the cast fails, this matcher returns false
4353 // immediately.
4354 template <typename To>
4355 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4356 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4357 return MakePolymorphicMatcher(
4358 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4359 }
4360 #endif // GTEST_HAS_RTTI
4361
4362 // Creates a matcher that matches an object whose given field matches
4363 // 'matcher'. For example,
4364 // Field(&Foo::number, Ge(5))
4365 // matches a Foo object x if and only if x.number >= 5.
4366 template <typename Class, typename FieldType, typename FieldMatcher>
4367 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4368 FieldType Class::*field, const FieldMatcher& matcher) {
4369 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4370 field, MatcherCast<const FieldType&>(matcher)));
4371 // The call to MatcherCast() is required for supporting inner
4372 // matchers of compatible types. For example, it allows
4373 // Field(&Foo::bar, m)
4374 // to compile where bar is an int32 and m is a matcher for int64.
4375 }
4376
4377 // Same as Field() but also takes the name of the field to provide better error
4378 // messages.
4379 template <typename Class, typename FieldType, typename FieldMatcher>
4380 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4381 const std::string& field_name, FieldType Class::*field,
4382 const FieldMatcher& matcher) {
4383 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4384 field_name, field, MatcherCast<const FieldType&>(matcher)));
4385 }
4386
4387 // Creates a matcher that matches an object whose given property
4388 // matches 'matcher'. For example,
4389 // Property(&Foo::str, StartsWith("hi"))
4390 // matches a Foo object x if and only if x.str() starts with "hi".
4391 template <typename Class, typename PropertyType, typename PropertyMatcher>
4392 inline PolymorphicMatcher<internal::PropertyMatcher<
4393 Class, PropertyType, PropertyType (Class::*)() const>>
4394 Property(PropertyType (Class::*property)() const,
4395 const PropertyMatcher& matcher) {
4396 return MakePolymorphicMatcher(
4397 internal::PropertyMatcher<Class, PropertyType,
4398 PropertyType (Class::*)() const>(
4399 property, MatcherCast<const PropertyType&>(matcher)));
4400 // The call to MatcherCast() is required for supporting inner
4401 // matchers of compatible types. For example, it allows
4402 // Property(&Foo::bar, m)
4403 // to compile where bar() returns an int32 and m is a matcher for int64.
4404 }
4405
4406 // Same as Property() above, but also takes the name of the property to provide
4407 // better error messages.
4408 template <typename Class, typename PropertyType, typename PropertyMatcher>
4409 inline PolymorphicMatcher<internal::PropertyMatcher<
4410 Class, PropertyType, PropertyType (Class::*)() const>>
4411 Property(const std::string& property_name,
4412 PropertyType (Class::*property)() const,
4413 const PropertyMatcher& matcher) {
4414 return MakePolymorphicMatcher(
4415 internal::PropertyMatcher<Class, PropertyType,
4416 PropertyType (Class::*)() const>(
4417 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4418 }
4419
4420 // The same as above but for reference-qualified member functions.
4421 template <typename Class, typename PropertyType, typename PropertyMatcher>
4422 inline PolymorphicMatcher<internal::PropertyMatcher<
4423 Class, PropertyType, PropertyType (Class::*)() const&>>
4424 Property(PropertyType (Class::*property)() const&,
4425 const PropertyMatcher& matcher) {
4426 return MakePolymorphicMatcher(
4427 internal::PropertyMatcher<Class, PropertyType,
4428 PropertyType (Class::*)() const&>(
4429 property, MatcherCast<const PropertyType&>(matcher)));
4430 }
4431
4432 // Three-argument form for reference-qualified member functions.
4433 template <typename Class, typename PropertyType, typename PropertyMatcher>
4434 inline PolymorphicMatcher<internal::PropertyMatcher<
4435 Class, PropertyType, PropertyType (Class::*)() const&>>
4436 Property(const std::string& property_name,
4437 PropertyType (Class::*property)() const&,
4438 const PropertyMatcher& matcher) {
4439 return MakePolymorphicMatcher(
4440 internal::PropertyMatcher<Class, PropertyType,
4441 PropertyType (Class::*)() const&>(
4442 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4443 }
4444
4445 // Creates a matcher that matches an object if and only if the result of
4446 // applying a callable to x matches 'matcher'. For example,
4447 // ResultOf(f, StartsWith("hi"))
4448 // matches a Foo object x if and only if f(x) starts with "hi".
4449 // `callable` parameter can be a function, function pointer, or a functor. It is
4450 // required to keep no state affecting the results of the calls on it and make
4451 // no assumptions about how many calls will be made. Any state it keeps must be
4452 // protected from the concurrent access.
4453 template <typename Callable, typename InnerMatcher>
4454 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4455 Callable callable, InnerMatcher matcher) {
4456 return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4457 std::move(matcher));
4458 }
4459
4460 // Same as ResultOf() above, but also takes a description of the `callable`
4461 // result to provide better error messages.
4462 template <typename Callable, typename InnerMatcher>
4463 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4464 const std::string& result_description, Callable callable,
4465 InnerMatcher matcher) {
4466 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4467 result_description, std::move(callable), std::move(matcher));
4468 }
4469
4470 // String matchers.
4471
4472 // Matches a string equal to str.
4473 template <typename T = std::string>
4474 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4475 const internal::StringLike<T>& str) {
4476 return MakePolymorphicMatcher(
4477 internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4478 }
4479
4480 // Matches a string not equal to str.
4481 template <typename T = std::string>
4482 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4483 const internal::StringLike<T>& str) {
4484 return MakePolymorphicMatcher(
4485 internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4486 }
4487
4488 // Matches a string equal to str, ignoring case.
4489 template <typename T = std::string>
4490 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4491 const internal::StringLike<T>& str) {
4492 return MakePolymorphicMatcher(
4493 internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4494 }
4495
4496 // Matches a string not equal to str, ignoring case.
4497 template <typename T = std::string>
4498 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4499 const internal::StringLike<T>& str) {
4500 return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4501 std::string(str), false, false));
4502 }
4503
4504 // Creates a matcher that matches any string, std::string, or C string
4505 // that contains the given substring.
4506 template <typename T = std::string>
4507 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4508 const internal::StringLike<T>& substring) {
4509 return MakePolymorphicMatcher(
4510 internal::HasSubstrMatcher<std::string>(std::string(substring)));
4511 }
4512
4513 // Matches a string that starts with 'prefix' (case-sensitive).
4514 template <typename T = std::string>
4515 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4516 const internal::StringLike<T>& prefix) {
4517 return MakePolymorphicMatcher(
4518 internal::StartsWithMatcher<std::string>(std::string(prefix)));
4519 }
4520
4521 // Matches a string that ends with 'suffix' (case-sensitive).
4522 template <typename T = std::string>
4523 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4524 const internal::StringLike<T>& suffix) {
4525 return MakePolymorphicMatcher(
4526 internal::EndsWithMatcher<std::string>(std::string(suffix)));
4527 }
4528
4529 #if GTEST_HAS_STD_WSTRING
4530 // Wide string matchers.
4531
4532 // Matches a string equal to str.
4533 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4534 const std::wstring& str) {
4535 return MakePolymorphicMatcher(
4536 internal::StrEqualityMatcher<std::wstring>(str, true, true));
4537 }
4538
4539 // Matches a string not equal to str.
4540 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4541 const std::wstring& str) {
4542 return MakePolymorphicMatcher(
4543 internal::StrEqualityMatcher<std::wstring>(str, false, true));
4544 }
4545
4546 // Matches a string equal to str, ignoring case.
4547 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4548 const std::wstring& str) {
4549 return MakePolymorphicMatcher(
4550 internal::StrEqualityMatcher<std::wstring>(str, true, false));
4551 }
4552
4553 // Matches a string not equal to str, ignoring case.
4554 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4555 const std::wstring& str) {
4556 return MakePolymorphicMatcher(
4557 internal::StrEqualityMatcher<std::wstring>(str, false, false));
4558 }
4559
4560 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4561 // that contains the given substring.
4562 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4563 const std::wstring& substring) {
4564 return MakePolymorphicMatcher(
4565 internal::HasSubstrMatcher<std::wstring>(substring));
4566 }
4567
4568 // Matches a string that starts with 'prefix' (case-sensitive).
4569 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4570 const std::wstring& prefix) {
4571 return MakePolymorphicMatcher(
4572 internal::StartsWithMatcher<std::wstring>(prefix));
4573 }
4574
4575 // Matches a string that ends with 'suffix' (case-sensitive).
4576 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4577 const std::wstring& suffix) {
4578 return MakePolymorphicMatcher(
4579 internal::EndsWithMatcher<std::wstring>(suffix));
4580 }
4581
4582 #endif // GTEST_HAS_STD_WSTRING
4583
4584 // Creates a polymorphic matcher that matches a 2-tuple where the
4585 // first field == the second field.
4586 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4587
4588 // Creates a polymorphic matcher that matches a 2-tuple where the
4589 // first field >= the second field.
4590 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4591
4592 // Creates a polymorphic matcher that matches a 2-tuple where the
4593 // first field > the second field.
4594 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4595
4596 // Creates a polymorphic matcher that matches a 2-tuple where the
4597 // first field <= the second field.
4598 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4599
4600 // Creates a polymorphic matcher that matches a 2-tuple where the
4601 // first field < the second field.
4602 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4603
4604 // Creates a polymorphic matcher that matches a 2-tuple where the
4605 // first field != the second field.
4606 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4607
4608 // Creates a polymorphic matcher that matches a 2-tuple where
4609 // FloatEq(first field) matches the second field.
4610 inline internal::FloatingEq2Matcher<float> FloatEq() {
4611 return internal::FloatingEq2Matcher<float>();
4612 }
4613
4614 // Creates a polymorphic matcher that matches a 2-tuple where
4615 // DoubleEq(first field) matches the second field.
4616 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4617 return internal::FloatingEq2Matcher<double>();
4618 }
4619
4620 // Creates a polymorphic matcher that matches a 2-tuple where
4621 // FloatEq(first field) matches the second field with NaN equality.
4622 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4623 return internal::FloatingEq2Matcher<float>(true);
4624 }
4625
4626 // Creates a polymorphic matcher that matches a 2-tuple where
4627 // DoubleEq(first field) matches the second field with NaN equality.
4628 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4629 return internal::FloatingEq2Matcher<double>(true);
4630 }
4631
4632 // Creates a polymorphic matcher that matches a 2-tuple where
4633 // FloatNear(first field, max_abs_error) matches the second field.
4634 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4635 return internal::FloatingEq2Matcher<float>(max_abs_error);
4636 }
4637
4638 // Creates a polymorphic matcher that matches a 2-tuple where
4639 // DoubleNear(first field, max_abs_error) matches the second field.
4640 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4641 return internal::FloatingEq2Matcher<double>(max_abs_error);
4642 }
4643
4644 // Creates a polymorphic matcher that matches a 2-tuple where
4645 // FloatNear(first field, max_abs_error) matches the second field with NaN
4646 // equality.
4647 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4648 float max_abs_error) {
4649 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4650 }
4651
4652 // Creates a polymorphic matcher that matches a 2-tuple where
4653 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4654 // equality.
4655 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4656 double max_abs_error) {
4657 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4658 }
4659
4660 // Creates a matcher that matches any value of type T that m doesn't
4661 // match.
4662 template <typename InnerMatcher>
4663 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4664 return internal::NotMatcher<InnerMatcher>(m);
4665 }
4666
4667 // Returns a matcher that matches anything that satisfies the given
4668 // predicate. The predicate can be any unary function or functor
4669 // whose return type can be implicitly converted to bool.
4670 template <typename Predicate>
4671 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4672 Predicate pred) {
4673 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4674 }
4675
4676 // Returns a matcher that matches the container size. The container must
4677 // support both size() and size_type which all STL-like containers provide.
4678 // Note that the parameter 'size' can be a value of type size_type as well as
4679 // matcher. For instance:
4680 // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4681 // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4682 template <typename SizeMatcher>
4683 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4684 const SizeMatcher& size_matcher) {
4685 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4686 }
4687
4688 // Returns a matcher that matches the distance between the container's begin()
4689 // iterator and its end() iterator, i.e. the size of the container. This matcher
4690 // can be used instead of SizeIs with containers such as std::forward_list which
4691 // do not implement size(). The container must provide const_iterator (with
4692 // valid iterator_traits), begin() and end().
4693 template <typename DistanceMatcher>
4694 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4695 const DistanceMatcher& distance_matcher) {
4696 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4697 }
4698
4699 // Returns a matcher that matches an equal container.
4700 // This matcher behaves like Eq(), but in the event of mismatch lists the
4701 // values that are included in one container but not the other. (Duplicate
4702 // values and order differences are not explained.)
4703 template <typename Container>
4704 inline PolymorphicMatcher<
4705 internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4706 ContainerEq(const Container& rhs) {
4707 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4708 }
4709
4710 // Returns a matcher that matches a container that, when sorted using
4711 // the given comparator, matches container_matcher.
4712 template <typename Comparator, typename ContainerMatcher>
4713 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4714 const Comparator& comparator, const ContainerMatcher& container_matcher) {
4715 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4716 comparator, container_matcher);
4717 }
4718
4719 // Returns a matcher that matches a container that, when sorted using
4720 // the < operator, matches container_matcher.
4721 template <typename ContainerMatcher>
4722 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4723 WhenSorted(const ContainerMatcher& container_matcher) {
4724 return internal::WhenSortedByMatcher<internal::LessComparator,
4725 ContainerMatcher>(
4726 internal::LessComparator(), container_matcher);
4727 }
4728
4729 // Matches an STL-style container or a native array that contains the
4730 // same number of elements as in rhs, where its i-th element and rhs's
4731 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4732 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4733 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4734 // LHS container and the RHS container respectively.
4735 template <typename TupleMatcher, typename Container>
4736 inline internal::PointwiseMatcher<TupleMatcher,
4737 typename std::remove_const<Container>::type>
4738 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4739 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4740 rhs);
4741 }
4742
4743 // Supports the Pointwise(m, {a, b, c}) syntax.
4744 template <typename TupleMatcher, typename T>
4745 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4746 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4747 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4748 }
4749
4750 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4751 // container or a native array that contains the same number of
4752 // elements as in rhs, where in some permutation of the container, its
4753 // i-th element and rhs's i-th element (as a pair) satisfy the given
4754 // pair matcher, for all i. Tuple2Matcher must be able to be safely
4755 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4756 // the types of elements in the LHS container and the RHS container
4757 // respectively.
4758 //
4759 // This is like Pointwise(pair_matcher, rhs), except that the element
4760 // order doesn't matter.
4761 template <typename Tuple2Matcher, typename RhsContainer>
4762 inline internal::UnorderedElementsAreArrayMatcher<
4763 typename internal::BoundSecondMatcher<
4764 Tuple2Matcher,
4765 typename internal::StlContainerView<
4766 typename std::remove_const<RhsContainer>::type>::type::value_type>>
4767 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4768 const RhsContainer& rhs_container) {
4769 // RhsView allows the same code to handle RhsContainer being a
4770 // STL-style container and it being a native C-style array.
4771 typedef typename internal::StlContainerView<RhsContainer> RhsView;
4772 typedef typename RhsView::type RhsStlContainer;
4773 typedef typename RhsStlContainer::value_type Second;
4774 const RhsStlContainer& rhs_stl_container =
4775 RhsView::ConstReference(rhs_container);
4776
4777 // Create a matcher for each element in rhs_container.
4778 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4779 for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4780 ++it) {
4781 matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4782 }
4783
4784 // Delegate the work to UnorderedElementsAreArray().
4785 return UnorderedElementsAreArray(matchers);
4786 }
4787
4788 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4789 template <typename Tuple2Matcher, typename T>
4790 inline internal::UnorderedElementsAreArrayMatcher<
4791 typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4792 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4793 std::initializer_list<T> rhs) {
4794 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4795 }
4796
4797 // Matches an STL-style container or a native array that contains at
4798 // least one element matching the given value or matcher.
4799 //
4800 // Examples:
4801 // ::std::set<int> page_ids;
4802 // page_ids.insert(3);
4803 // page_ids.insert(1);
4804 // EXPECT_THAT(page_ids, Contains(1));
4805 // EXPECT_THAT(page_ids, Contains(Gt(2)));
4806 // EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0)
4807 //
4808 // ::std::map<int, size_t> page_lengths;
4809 // page_lengths[1] = 100;
4810 // EXPECT_THAT(page_lengths,
4811 // Contains(::std::pair<const int, size_t>(1, 100)));
4812 //
4813 // const char* user_ids[] = { "joe", "mike", "tom" };
4814 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4815 //
4816 // The matcher supports a modifier `Times` that allows to check for arbitrary
4817 // occurrences including testing for absence with Times(0).
4818 //
4819 // Examples:
4820 // ::std::vector<int> ids;
4821 // ids.insert(1);
4822 // ids.insert(1);
4823 // ids.insert(3);
4824 // EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times
4825 // EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present
4826 // EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once
4827
4828 template <typename M>
4829 inline internal::ContainsMatcher<M> Contains(M matcher) {
4830 return internal::ContainsMatcher<M>(matcher);
4831 }
4832
4833 // IsSupersetOf(iterator_first, iterator_last)
4834 // IsSupersetOf(pointer, count)
4835 // IsSupersetOf(array)
4836 // IsSupersetOf(container)
4837 // IsSupersetOf({e1, e2, ..., en})
4838 //
4839 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4840 // of matchers exists. In other words, a container matches
4841 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4842 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4843 // ..., and yn matches en. Obviously, the size of the container must be >= n
4844 // in order to have a match. Examples:
4845 //
4846 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4847 // 1 matches Ne(0).
4848 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4849 // both Eq(1) and Lt(2). The reason is that different matchers must be used
4850 // for elements in different slots of the container.
4851 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4852 // Eq(1) and (the second) 1 matches Lt(2).
4853 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4854 // Gt(1) and 3 matches (the second) Gt(1).
4855 //
4856 // The matchers can be specified as an array, a pointer and count, a container,
4857 // an initializer list, or an STL iterator range. In each of these cases, the
4858 // underlying matchers can be either values or matchers.
4859
4860 template <typename Iter>
4861 inline internal::UnorderedElementsAreArrayMatcher<
4862 typename ::std::iterator_traits<Iter>::value_type>
4863 IsSupersetOf(Iter first, Iter last) {
4864 typedef typename ::std::iterator_traits<Iter>::value_type T;
4865 return internal::UnorderedElementsAreArrayMatcher<T>(
4866 internal::UnorderedMatcherRequire::Superset, first, last);
4867 }
4868
4869 template <typename T>
4870 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4871 const T* pointer, size_t count) {
4872 return IsSupersetOf(pointer, pointer + count);
4873 }
4874
4875 template <typename T, size_t N>
4876 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4877 const T (&array)[N]) {
4878 return IsSupersetOf(array, N);
4879 }
4880
4881 template <typename Container>
4882 inline internal::UnorderedElementsAreArrayMatcher<
4883 typename Container::value_type>
4884 IsSupersetOf(const Container& container) {
4885 return IsSupersetOf(container.begin(), container.end());
4886 }
4887
4888 template <typename T>
4889 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4890 ::std::initializer_list<T> xs) {
4891 return IsSupersetOf(xs.begin(), xs.end());
4892 }
4893
4894 // IsSubsetOf(iterator_first, iterator_last)
4895 // IsSubsetOf(pointer, count)
4896 // IsSubsetOf(array)
4897 // IsSubsetOf(container)
4898 // IsSubsetOf({e1, e2, ..., en})
4899 //
4900 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4901 // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4902 // only if there is a subset of matchers {m1, ..., mk} which would match the
4903 // container using UnorderedElementsAre. Obviously, the size of the container
4904 // must be <= n in order to have a match. Examples:
4905 //
4906 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4907 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4908 // matches Lt(0).
4909 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4910 // match Gt(0). The reason is that different matchers must be used for
4911 // elements in different slots of the container.
4912 //
4913 // The matchers can be specified as an array, a pointer and count, a container,
4914 // an initializer list, or an STL iterator range. In each of these cases, the
4915 // underlying matchers can be either values or matchers.
4916
4917 template <typename Iter>
4918 inline internal::UnorderedElementsAreArrayMatcher<
4919 typename ::std::iterator_traits<Iter>::value_type>
4920 IsSubsetOf(Iter first, Iter last) {
4921 typedef typename ::std::iterator_traits<Iter>::value_type T;
4922 return internal::UnorderedElementsAreArrayMatcher<T>(
4923 internal::UnorderedMatcherRequire::Subset, first, last);
4924 }
4925
4926 template <typename T>
4927 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4928 const T* pointer, size_t count) {
4929 return IsSubsetOf(pointer, pointer + count);
4930 }
4931
4932 template <typename T, size_t N>
4933 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4934 const T (&array)[N]) {
4935 return IsSubsetOf(array, N);
4936 }
4937
4938 template <typename Container>
4939 inline internal::UnorderedElementsAreArrayMatcher<
4940 typename Container::value_type>
4941 IsSubsetOf(const Container& container) {
4942 return IsSubsetOf(container.begin(), container.end());
4943 }
4944
4945 template <typename T>
4946 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4947 ::std::initializer_list<T> xs) {
4948 return IsSubsetOf(xs.begin(), xs.end());
4949 }
4950
4951 // Matches an STL-style container or a native array that contains only
4952 // elements matching the given value or matcher.
4953 //
4954 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4955 // the messages are different.
4956 //
4957 // Examples:
4958 // ::std::set<int> page_ids;
4959 // // Each(m) matches an empty container, regardless of what m is.
4960 // EXPECT_THAT(page_ids, Each(Eq(1)));
4961 // EXPECT_THAT(page_ids, Each(Eq(77)));
4962 //
4963 // page_ids.insert(3);
4964 // EXPECT_THAT(page_ids, Each(Gt(0)));
4965 // EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4966 // page_ids.insert(1);
4967 // EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4968 //
4969 // ::std::map<int, size_t> page_lengths;
4970 // page_lengths[1] = 100;
4971 // page_lengths[2] = 200;
4972 // page_lengths[3] = 300;
4973 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4974 // EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4975 //
4976 // const char* user_ids[] = { "joe", "mike", "tom" };
4977 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4978 template <typename M>
4979 inline internal::EachMatcher<M> Each(M matcher) {
4980 return internal::EachMatcher<M>(matcher);
4981 }
4982
4983 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4984 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
4985 // std::map that contains at least one element whose key is >= 5.
4986 template <typename M>
4987 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4988 return internal::KeyMatcher<M>(inner_matcher);
4989 }
4990
4991 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4992 // matches first_matcher and whose 'second' field matches second_matcher. For
4993 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4994 // to match a std::map<int, string> that contains exactly one element whose key
4995 // is >= 5 and whose value equals "foo".
4996 template <typename FirstMatcher, typename SecondMatcher>
4997 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4998 FirstMatcher first_matcher, SecondMatcher second_matcher) {
4999 return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
5000 second_matcher);
5001 }
5002
5003 namespace no_adl {
5004 // Conditional() creates a matcher that conditionally uses either the first or
5005 // second matcher provided. For example, we could create an `equal if, and only
5006 // if' matcher using the Conditional wrapper as follows:
5007 //
5008 // EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5009 template <typename MatcherTrue, typename MatcherFalse>
5010 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5011 bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5012 return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5013 condition, std::move(matcher_true), std::move(matcher_false));
5014 }
5015
5016 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5017 // These include those that support `get<I>(obj)`, and when structured bindings
5018 // are enabled any class that supports them.
5019 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5020 template <typename... M>
5021 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5022 M&&... matchers) {
5023 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5024 std::forward<M>(matchers)...);
5025 }
5026
5027 // Creates a matcher that matches a pointer (raw or smart) that matches
5028 // inner_matcher.
5029 template <typename InnerMatcher>
5030 inline internal::PointerMatcher<InnerMatcher> Pointer(
5031 const InnerMatcher& inner_matcher) {
5032 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5033 }
5034
5035 // Creates a matcher that matches an object that has an address that matches
5036 // inner_matcher.
5037 template <typename InnerMatcher>
5038 inline internal::AddressMatcher<InnerMatcher> Address(
5039 const InnerMatcher& inner_matcher) {
5040 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5041 }
5042
5043 // Matches a base64 escaped string, when the unescaped string matches the
5044 // internal matcher.
5045 template <typename MatcherType>
5046 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5047 const MatcherType& internal_matcher) {
5048 return internal::WhenBase64UnescapedMatcher(internal_matcher);
5049 }
5050 } // namespace no_adl
5051
5052 // Returns a predicate that is satisfied by anything that matches the
5053 // given matcher.
5054 template <typename M>
5055 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5056 return internal::MatcherAsPredicate<M>(matcher);
5057 }
5058
5059 // Returns true if and only if the value matches the matcher.
5060 template <typename T, typename M>
5061 inline bool Value(const T& value, M matcher) {
5062 return testing::Matches(matcher)(value);
5063 }
5064
5065 // Matches the value against the given matcher and explains the match
5066 // result to listener.
5067 template <typename T, typename M>
5068 inline bool ExplainMatchResult(M matcher, const T& value,
5069 MatchResultListener* listener) {
5070 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5071 }
5072
5073 // Returns a string representation of the given matcher. Useful for description
5074 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5075 // their arguments. For example:
5076 //
5077 // MATCHER_P(XAndYThat, matcher,
5078 // "X that " + DescribeMatcher<int>(matcher, negation) +
5079 // (negation ? " or" : " and") + " Y that " +
5080 // DescribeMatcher<double>(matcher, negation)) {
5081 // return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5082 // ExplainMatchResult(matcher, arg.y(), result_listener);
5083 // }
5084 template <typename T, typename M>
5085 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5086 ::std::stringstream ss;
5087 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5088 if (negation) {
5089 monomorphic_matcher.DescribeNegationTo(&ss);
5090 } else {
5091 monomorphic_matcher.DescribeTo(&ss);
5092 }
5093 return ss.str();
5094 }
5095
5096 template <typename... Args>
5097 internal::ElementsAreMatcher<
5098 std::tuple<typename std::decay<const Args&>::type...>>
5099 ElementsAre(const Args&... matchers) {
5100 return internal::ElementsAreMatcher<
5101 std::tuple<typename std::decay<const Args&>::type...>>(
5102 std::make_tuple(matchers...));
5103 }
5104
5105 template <typename... Args>
5106 internal::UnorderedElementsAreMatcher<
5107 std::tuple<typename std::decay<const Args&>::type...>>
5108 UnorderedElementsAre(const Args&... matchers) {
5109 return internal::UnorderedElementsAreMatcher<
5110 std::tuple<typename std::decay<const Args&>::type...>>(
5111 std::make_tuple(matchers...));
5112 }
5113
5114 // Define variadic matcher versions.
5115 template <typename... Args>
5116 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5117 const Args&... matchers) {
5118 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5119 matchers...);
5120 }
5121
5122 template <typename... Args>
5123 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5124 const Args&... matchers) {
5125 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5126 matchers...);
5127 }
5128
5129 // AnyOfArray(array)
5130 // AnyOfArray(pointer, count)
5131 // AnyOfArray(container)
5132 // AnyOfArray({ e1, e2, ..., en })
5133 // AnyOfArray(iterator_first, iterator_last)
5134 //
5135 // AnyOfArray() verifies whether a given value matches any member of a
5136 // collection of matchers.
5137 //
5138 // AllOfArray(array)
5139 // AllOfArray(pointer, count)
5140 // AllOfArray(container)
5141 // AllOfArray({ e1, e2, ..., en })
5142 // AllOfArray(iterator_first, iterator_last)
5143 //
5144 // AllOfArray() verifies whether a given value matches all members of a
5145 // collection of matchers.
5146 //
5147 // The matchers can be specified as an array, a pointer and count, a container,
5148 // an initializer list, or an STL iterator range. In each of these cases, the
5149 // underlying matchers can be either values or matchers.
5150
5151 template <typename Iter>
5152 inline internal::AnyOfArrayMatcher<
5153 typename ::std::iterator_traits<Iter>::value_type>
5154 AnyOfArray(Iter first, Iter last) {
5155 return internal::AnyOfArrayMatcher<
5156 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5157 }
5158
5159 template <typename Iter>
5160 inline internal::AllOfArrayMatcher<
5161 typename ::std::iterator_traits<Iter>::value_type>
5162 AllOfArray(Iter first, Iter last) {
5163 return internal::AllOfArrayMatcher<
5164 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5165 }
5166
5167 template <typename T>
5168 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5169 return AnyOfArray(ptr, ptr + count);
5170 }
5171
5172 template <typename T>
5173 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5174 return AllOfArray(ptr, ptr + count);
5175 }
5176
5177 template <typename T, size_t N>
5178 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5179 return AnyOfArray(array, N);
5180 }
5181
5182 template <typename T, size_t N>
5183 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5184 return AllOfArray(array, N);
5185 }
5186
5187 template <typename Container>
5188 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5189 const Container& container) {
5190 return AnyOfArray(container.begin(), container.end());
5191 }
5192
5193 template <typename Container>
5194 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5195 const Container& container) {
5196 return AllOfArray(container.begin(), container.end());
5197 }
5198
5199 template <typename T>
5200 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5201 ::std::initializer_list<T> xs) {
5202 return AnyOfArray(xs.begin(), xs.end());
5203 }
5204
5205 template <typename T>
5206 inline internal::AllOfArrayMatcher<T> AllOfArray(
5207 ::std::initializer_list<T> xs) {
5208 return AllOfArray(xs.begin(), xs.end());
5209 }
5210
5211 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5212 // fields of it matches a_matcher. C++ doesn't support default
5213 // arguments for function templates, so we have to overload it.
5214 template <size_t... k, typename InnerMatcher>
5215 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5216 InnerMatcher&& matcher) {
5217 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5218 std::forward<InnerMatcher>(matcher));
5219 }
5220
5221 // AllArgs(m) is a synonym of m. This is useful in
5222 //
5223 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5224 //
5225 // which is easier to read than
5226 //
5227 // EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5228 template <typename InnerMatcher>
5229 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5230 return matcher;
5231 }
5232
5233 // Returns a matcher that matches the value of an optional<> type variable.
5234 // The matcher implementation only uses '!arg' and requires that the optional<>
5235 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5236 // and is printable using 'PrintToString'. It is compatible with
5237 // std::optional/std::experimental::optional.
5238 // Note that to compare an optional type variable against nullopt you should
5239 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5240 // optional value contains an optional itself.
5241 template <typename ValueMatcher>
5242 inline internal::OptionalMatcher<ValueMatcher> Optional(
5243 const ValueMatcher& value_matcher) {
5244 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5245 }
5246
5247 // Returns a matcher that matches the value of a absl::any type variable.
5248 template <typename T>
5249 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5250 const Matcher<const T&>& matcher) {
5251 return MakePolymorphicMatcher(
5252 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5253 }
5254
5255 // Returns a matcher that matches the value of a variant<> type variable.
5256 // The matcher implementation uses ADL to find the holds_alternative and get
5257 // functions.
5258 // It is compatible with std::variant.
5259 template <typename T>
5260 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5261 const Matcher<const T&>& matcher) {
5262 return MakePolymorphicMatcher(
5263 internal::variant_matcher::VariantMatcher<T>(matcher));
5264 }
5265
5266 #if GTEST_HAS_EXCEPTIONS
5267
5268 // Anything inside the `internal` namespace is internal to the implementation
5269 // and must not be used in user code!
5270 namespace internal {
5271
5272 class WithWhatMatcherImpl {
5273 public:
5274 WithWhatMatcherImpl(Matcher<std::string> matcher)
5275 : matcher_(std::move(matcher)) {}
5276
5277 void DescribeTo(std::ostream* os) const {
5278 *os << "contains .what() that ";
5279 matcher_.DescribeTo(os);
5280 }
5281
5282 void DescribeNegationTo(std::ostream* os) const {
5283 *os << "contains .what() that does not ";
5284 matcher_.DescribeTo(os);
5285 }
5286
5287 template <typename Err>
5288 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5289 *listener << "which contains .what() (of value = " << err.what()
5290 << ") that ";
5291 return matcher_.MatchAndExplain(err.what(), listener);
5292 }
5293
5294 private:
5295 const Matcher<std::string> matcher_;
5296 };
5297
5298 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5299 Matcher<std::string> m) {
5300 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5301 }
5302
5303 template <typename Err>
5304 class ExceptionMatcherImpl {
5305 class NeverThrown {
5306 public:
5307 const char* what() const noexcept {
5308 return "this exception should never be thrown";
5309 }
5310 };
5311
5312 // If the matchee raises an exception of a wrong type, we'd like to
5313 // catch it and print its message and type. To do that, we add an additional
5314 // catch clause:
5315 //
5316 // try { ... }
5317 // catch (const Err&) { /* an expected exception */ }
5318 // catch (const std::exception&) { /* exception of a wrong type */ }
5319 //
5320 // However, if the `Err` itself is `std::exception`, we'd end up with two
5321 // identical `catch` clauses:
5322 //
5323 // try { ... }
5324 // catch (const std::exception&) { /* an expected exception */ }
5325 // catch (const std::exception&) { /* exception of a wrong type */ }
5326 //
5327 // This can cause a warning or an error in some compilers. To resolve
5328 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5329 //
5330 // try { ... }
5331 // catch (const std::exception&) { /* an expected exception */ }
5332 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5333 using DefaultExceptionType = typename std::conditional<
5334 std::is_same<typename std::remove_cv<
5335 typename std::remove_reference<Err>::type>::type,
5336 std::exception>::value,
5337 const NeverThrown&, const std::exception&>::type;
5338
5339 public:
5340 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5341 : matcher_(std::move(matcher)) {}
5342
5343 void DescribeTo(std::ostream* os) const {
5344 *os << "throws an exception which is a " << GetTypeName<Err>();
5345 *os << " which ";
5346 matcher_.DescribeTo(os);
5347 }
5348
5349 void DescribeNegationTo(std::ostream* os) const {
5350 *os << "throws an exception which is not a " << GetTypeName<Err>();
5351 *os << " which ";
5352 matcher_.DescribeNegationTo(os);
5353 }
5354
5355 template <typename T>
5356 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5357 try {
5358 (void)(std::forward<T>(x)());
5359 } catch (const Err& err) {
5360 *listener << "throws an exception which is a " << GetTypeName<Err>();
5361 *listener << " ";
5362 return matcher_.MatchAndExplain(err, listener);
5363 } catch (DefaultExceptionType err) {
5364 #if GTEST_HAS_RTTI
5365 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5366 *listener << " ";
5367 #else
5368 *listener << "throws an std::exception-derived type ";
5369 #endif
5370 *listener << "with description \"" << err.what() << "\"";
5371 return false;
5372 } catch (...) {
5373 *listener << "throws an exception of an unknown type";
5374 return false;
5375 }
5376
5377 *listener << "does not throw any exception";
5378 return false;
5379 }
5380
5381 private:
5382 const Matcher<const Err&> matcher_;
5383 };
5384
5385 } // namespace internal
5386
5387 // Throws()
5388 // Throws(exceptionMatcher)
5389 // ThrowsMessage(messageMatcher)
5390 //
5391 // This matcher accepts a callable and verifies that when invoked, it throws
5392 // an exception with the given type and properties.
5393 //
5394 // Examples:
5395 //
5396 // EXPECT_THAT(
5397 // []() { throw std::runtime_error("message"); },
5398 // Throws<std::runtime_error>());
5399 //
5400 // EXPECT_THAT(
5401 // []() { throw std::runtime_error("message"); },
5402 // ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5403 //
5404 // EXPECT_THAT(
5405 // []() { throw std::runtime_error("message"); },
5406 // Throws<std::runtime_error>(
5407 // Property(&std::runtime_error::what, HasSubstr("message"))));
5408
5409 template <typename Err>
5410 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5411 return MakePolymorphicMatcher(
5412 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5413 }
5414
5415 template <typename Err, typename ExceptionMatcher>
5416 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5417 const ExceptionMatcher& exception_matcher) {
5418 // Using matcher cast allows users to pass a matcher of a more broad type.
5419 // For example user may want to pass Matcher<std::exception>
5420 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5421 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5422 SafeMatcherCast<const Err&>(exception_matcher)));
5423 }
5424
5425 template <typename Err, typename MessageMatcher>
5426 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5427 MessageMatcher&& message_matcher) {
5428 static_assert(std::is_base_of<std::exception, Err>::value,
5429 "expected an std::exception-derived type");
5430 return Throws<Err>(internal::WithWhat(
5431 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5432 }
5433
5434 #endif // GTEST_HAS_EXCEPTIONS
5435
5436 // These macros allow using matchers to check values in Google Test
5437 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5438 // succeed if and only if the value matches the matcher. If the assertion
5439 // fails, the value and the description of the matcher will be printed.
5440 #define ASSERT_THAT(value, matcher) \
5441 ASSERT_PRED_FORMAT1( \
5442 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5443 #define EXPECT_THAT(value, matcher) \
5444 EXPECT_PRED_FORMAT1( \
5445 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5446
5447 // MATCHER* macros itself are listed below.
5448 #define MATCHER(name, description) \
5449 class name##Matcher \
5450 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5451 public: \
5452 template <typename arg_type> \
5453 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5454 public: \
5455 gmock_Impl() {} \
5456 bool MatchAndExplain( \
5457 const arg_type& arg, \
5458 ::testing::MatchResultListener* result_listener) const override; \
5459 void DescribeTo(::std::ostream* gmock_os) const override { \
5460 *gmock_os << FormatDescription(false); \
5461 } \
5462 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5463 *gmock_os << FormatDescription(true); \
5464 } \
5465 \
5466 private: \
5467 ::std::string FormatDescription(bool negation) const { \
5468 /* NOLINTNEXTLINE readability-redundant-string-init */ \
5469 ::std::string gmock_description = (description); \
5470 if (!gmock_description.empty()) { \
5471 return gmock_description; \
5472 } \
5473 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5474 {}, {}); \
5475 } \
5476 }; \
5477 }; \
5478 inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \
5479 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \
5480 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \
5481 name GMOCK_INTERNAL_WARNING_POP()() { \
5482 return {}; \
5483 } \
5484 template <typename arg_type> \
5485 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5486 const arg_type& arg, \
5487 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing::MatchResultListener* \
5488 result_listener) const
5489
5490 #define MATCHER_P(name, p0, description) \
5491 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5492 #define MATCHER_P2(name, p0, p1, description) \
5493 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5494 (p0, p1))
5495 #define MATCHER_P3(name, p0, p1, p2, description) \
5496 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5497 (p0, p1, p2))
5498 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
5499 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5500 (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5501 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5502 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5503 (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5504 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5505 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5506 (#p0, #p1, #p2, #p3, #p4, #p5), \
5507 (p0, p1, p2, p3, p4, p5))
5508 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5509 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5510 (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \
5511 (p0, p1, p2, p3, p4, p5, p6))
5512 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5513 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5514 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \
5515 (p0, p1, p2, p3, p4, p5, p6, p7))
5516 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5517 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5518 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \
5519 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5520 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5521 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5522 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \
5523 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5524
5525 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \
5526 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5527 class full_name : public ::testing::internal::MatcherBaseImpl< \
5528 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5529 public: \
5530 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5531 template <typename arg_type> \
5532 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5533 public: \
5534 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5535 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5536 bool MatchAndExplain( \
5537 const arg_type& arg, \
5538 ::testing::MatchResultListener* result_listener) const override; \
5539 void DescribeTo(::std::ostream* gmock_os) const override { \
5540 *gmock_os << FormatDescription(false); \
5541 } \
5542 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5543 *gmock_os << FormatDescription(true); \
5544 } \
5545 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5546 \
5547 private: \
5548 ::std::string FormatDescription(bool negation) const { \
5549 ::std::string gmock_description; \
5550 gmock_description = (description); \
5551 if (!gmock_description.empty()) { \
5552 return gmock_description; \
5553 } \
5554 return ::testing::internal::FormatMatcherDescription( \
5555 negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \
5556 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5557 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5558 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5559 } \
5560 }; \
5561 }; \
5562 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5563 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5564 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5565 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5566 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5567 } \
5568 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5569 template <typename arg_type> \
5570 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>:: \
5571 gmock_Impl<arg_type>::MatchAndExplain( \
5572 const arg_type& arg, \
5573 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing:: \
5574 MatchResultListener* result_listener) const
5575
5576 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5577 GMOCK_PP_TAIL( \
5578 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5579 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5580 , typename arg##_type
5581
5582 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5583 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5584 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5585 , arg##_type
5586
5587 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5588 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5589 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5590 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5591 , arg##_type gmock_p##i
5592
5593 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5594 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5595 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5596 , arg(::std::forward<arg##_type>(gmock_p##i))
5597
5598 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5599 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5600 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5601 const arg##_type arg;
5602
5603 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5604 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5605 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5606
5607 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5608 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5609 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg) \
5610 , ::std::forward<arg##_type>(gmock_p##i)
5611
5612 // To prevent ADL on certain functions we put them on a separate namespace.
5613 using namespace no_adl; // NOLINT
5614
5615 } // namespace testing
5616
5617 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5618
5619 // Include any custom callback matchers added by the local installation.
5620 // We must include this header at the end to make sure it can use the
5621 // declarations from this file.
5622 #include "gmock/internal/custom/gmock-matchers.h"
5623
5624 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5625