xref: /freebsd/contrib/googletest/googlemock/include/gmock/gmock-actions.h (revision 5ca8c28cd8c725b81781201cfdb5f9969396f934)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The ACTION* family of macros can be used in a namespace scope to
33 // define custom actions easily.  The syntax:
34 //
35 //   ACTION(name) { statements; }
36 //
37 // will define an action with the given name that executes the
38 // statements.  The value returned by the statements will be used as
39 // the return value of the action.  Inside the statements, you can
40 // refer to the K-th (0-based) argument of the mock function by
41 // 'argK', and refer to its type by 'argK_type'.  For example:
42 //
43 //   ACTION(IncrementArg1) {
44 //     arg1_type temp = arg1;
45 //     return ++(*temp);
46 //   }
47 //
48 // allows you to write
49 //
50 //   ...WillOnce(IncrementArg1());
51 //
52 // You can also refer to the entire argument tuple and its type by
53 // 'args' and 'args_type', and refer to the mock function type and its
54 // return type by 'function_type' and 'return_type'.
55 //
56 // Note that you don't need to specify the types of the mock function
57 // arguments.  However rest assured that your code is still type-safe:
58 // you'll get a compiler error if *arg1 doesn't support the ++
59 // operator, or if the type of ++(*arg1) isn't compatible with the
60 // mock function's return type, for example.
61 //
62 // Sometimes you'll want to parameterize the action.   For that you can use
63 // another macro:
64 //
65 //   ACTION_P(name, param_name) { statements; }
66 //
67 // For example:
68 //
69 //   ACTION_P(Add, n) { return arg0 + n; }
70 //
71 // will allow you to write:
72 //
73 //   ...WillOnce(Add(5));
74 //
75 // Note that you don't need to provide the type of the parameter
76 // either.  If you need to reference the type of a parameter named
77 // 'foo', you can write 'foo_type'.  For example, in the body of
78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79 // of 'n'.
80 //
81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82 // multi-parameter actions.
83 //
84 // For the purpose of typing, you can view
85 //
86 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
87 //
88 // as shorthand for
89 //
90 //   template <typename p1_type, ..., typename pk_type>
91 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92 //
93 // In particular, you can provide the template type arguments
94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95 // although usually you can rely on the compiler to infer the types
96 // for you automatically.  You can assign the result of expression
97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98 // pk_type>.  This can be useful when composing actions.
99 //
100 // You can also overload actions with different numbers of parameters:
101 //
102 //   ACTION_P(Plus, a) { ... }
103 //   ACTION_P2(Plus, a, b) { ... }
104 //
105 // While it's tempting to always use the ACTION* macros when defining
106 // a new action, you should also consider implementing ActionInterface
107 // or using MakePolymorphicAction() instead, especially if you need to
108 // use the action a lot.  While these approaches require more work,
109 // they give you more control on the types of the mock function
110 // arguments and the action parameters, which in general leads to
111 // better compiler error messages that pay off in the long run.  They
112 // also allow overloading actions based on parameter types (as opposed
113 // to just based on the number of parameters).
114 //
115 // CAVEAT:
116 //
117 // ACTION*() can only be used in a namespace scope as templates cannot be
118 // declared inside of a local class.
119 // Users can, however, define any local functors (e.g. a lambda) that
120 // can be used as actions.
121 //
122 // MORE INFORMATION:
123 //
124 // To learn more about using these macros, please search for 'ACTION' on
125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126 
127 // IWYU pragma: private, include "gmock/gmock.h"
128 // IWYU pragma: friend gmock/.*
129 
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132 
133 #ifndef _WIN32_WCE
134 #include <errno.h>
135 #endif
136 
137 #include <algorithm>
138 #include <exception>
139 #include <functional>
140 #include <memory>
141 #include <string>
142 #include <tuple>
143 #include <type_traits>
144 #include <utility>
145 
146 #include "gmock/internal/gmock-internal-utils.h"
147 #include "gmock/internal/gmock-port.h"
148 #include "gmock/internal/gmock-pp.h"
149 
150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
151 
152 namespace testing {
153 
154 // To implement an action Foo, define:
155 //   1. a class FooAction that implements the ActionInterface interface, and
156 //   2. a factory function that creates an Action object from a
157 //      const FooAction*.
158 //
159 // The two-level delegation design follows that of Matcher, providing
160 // consistency for extension developers.  It also eases ownership
161 // management as Action objects can now be copied like plain values.
162 
163 namespace internal {
164 
165 // BuiltInDefaultValueGetter<T, true>::Get() returns a
166 // default-constructed T value.  BuiltInDefaultValueGetter<T,
167 // false>::Get() crashes with an error.
168 //
169 // This primary template is used when kDefaultConstructible is true.
170 template <typename T, bool kDefaultConstructible>
171 struct BuiltInDefaultValueGetter {
GetBuiltInDefaultValueGetter172   static T Get() { return T(); }
173 };
174 template <typename T>
175 struct BuiltInDefaultValueGetter<T, false> {
176   static T Get() {
177     Assert(false, __FILE__, __LINE__,
178            "Default action undefined for the function return type.");
179 #if defined(__GNUC__) || defined(__clang__)
180     __builtin_unreachable();
181 #elif defined(_MSC_VER)
182     __assume(0);
183 #else
184     return Invalid<T>();
185     // The above statement will never be reached, but is required in
186     // order for this function to compile.
187 #endif
188   }
189 };
190 
191 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
192 // for type T, which is NULL when T is a raw pointer type, 0 when T is
193 // a numeric type, false when T is bool, or "" when T is string or
194 // std::string.  In addition, in C++11 and above, it turns a
195 // default-constructed T value if T is default constructible.  For any
196 // other type T, the built-in default T value is undefined, and the
197 // function will abort the process.
198 template <typename T>
199 class BuiltInDefaultValue {
200  public:
201   // This function returns true if and only if type T has a built-in default
202   // value.
203   static bool Exists() { return ::std::is_default_constructible<T>::value; }
204 
205   static T Get() {
206     return BuiltInDefaultValueGetter<
207         T, ::std::is_default_constructible<T>::value>::Get();
208   }
209 };
210 
211 // This partial specialization says that we use the same built-in
212 // default value for T and const T.
213 template <typename T>
214 class BuiltInDefaultValue<const T> {
215  public:
216   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
217   static T Get() { return BuiltInDefaultValue<T>::Get(); }
218 };
219 
220 // This partial specialization defines the default values for pointer
221 // types.
222 template <typename T>
223 class BuiltInDefaultValue<T*> {
224  public:
225   static bool Exists() { return true; }
226   static T* Get() { return nullptr; }
227 };
228 
229 // The following specializations define the default values for
230 // specific types we care about.
231 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
232   template <>                                                     \
233   class BuiltInDefaultValue<type> {                               \
234    public:                                                        \
235     static bool Exists() { return true; }                         \
236     static type Get() { return value; }                           \
237   }
238 
239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
241 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
242 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
243 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
244 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
245 
246 // There's no need for a default action for signed wchar_t, as that
247 // type is the same as wchar_t for gcc, and invalid for MSVC.
248 //
249 // There's also no need for a default action for unsigned wchar_t, as
250 // that type is the same as unsigned int for gcc, and invalid for
251 // MSVC.
252 #if GMOCK_WCHAR_T_IS_NATIVE_
253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
254 #endif
255 
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT
261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT
262 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
263 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT
264 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
265 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
266 
267 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
268 
269 // Partial implementations of metaprogramming types from the standard library
270 // not available in C++11.
271 
272 template <typename P>
273 struct negation
274     // NOLINTNEXTLINE
275     : std::integral_constant<bool, bool(!P::value)> {};
276 
277 // Base case: with zero predicates the answer is always true.
278 template <typename...>
279 struct conjunction : std::true_type {};
280 
281 // With a single predicate, the answer is that predicate.
282 template <typename P1>
283 struct conjunction<P1> : P1 {};
284 
285 // With multiple predicates the answer is the first predicate if that is false,
286 // and we recurse otherwise.
287 template <typename P1, typename... Ps>
288 struct conjunction<P1, Ps...>
289     : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
290 
291 template <typename...>
292 struct disjunction : std::false_type {};
293 
294 template <typename P1>
295 struct disjunction<P1> : P1 {};
296 
297 template <typename P1, typename... Ps>
298 struct disjunction<P1, Ps...>
299     // NOLINTNEXTLINE
300     : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
301 
302 template <typename...>
303 using void_t = void;
304 
305 // Detects whether an expression of type `From` can be implicitly converted to
306 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
307 //
308 //     An expression e can be implicitly converted to a type T if and only if
309 //     the declaration T t=e; is well-formed, for some invented temporary
310 //     variable t ([dcl.init]).
311 //
312 // [conv]/2 implies we can use function argument passing to detect whether this
313 // initialization is valid.
314 //
315 // Note that this is distinct from is_convertible, which requires this be valid:
316 //
317 //     To test() {
318 //       return declval<From>();
319 //     }
320 //
321 // In particular, is_convertible doesn't give the correct answer when `To` and
322 // `From` are the same non-moveable type since `declval<From>` will be an rvalue
323 // reference, defeating the guaranteed copy elision that would otherwise make
324 // this function work.
325 //
326 // REQUIRES: `From` is not cv void.
327 template <typename From, typename To>
328 struct is_implicitly_convertible {
329  private:
330   // A function that accepts a parameter of type T. This can be called with type
331   // U successfully only if U is implicitly convertible to T.
332   template <typename T>
333   static void Accept(T);
334 
335   // A function that creates a value of type T.
336   template <typename T>
337   static T Make();
338 
339   // An overload be selected when implicit conversion from T to To is possible.
340   template <typename T, typename = decltype(Accept<To>(Make<T>()))>
341   static std::true_type TestImplicitConversion(int);
342 
343   // A fallback overload selected in all other cases.
344   template <typename T>
345   static std::false_type TestImplicitConversion(...);
346 
347  public:
348   using type = decltype(TestImplicitConversion<From>(0));
349   static constexpr bool value = type::value;
350 };
351 
352 // Like std::invoke_result_t from C++17, but works only for objects with call
353 // operators (not e.g. member function pointers, which we don't need specific
354 // support for in OnceAction because std::function deals with them).
355 template <typename F, typename... Args>
356 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
357 
358 template <typename Void, typename R, typename F, typename... Args>
359 struct is_callable_r_impl : std::false_type {};
360 
361 // Specialize the struct for those template arguments where call_result_t is
362 // well-formed. When it's not, the generic template above is chosen, resulting
363 // in std::false_type.
364 template <typename R, typename F, typename... Args>
365 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
366     : std::conditional<
367           std::is_void<R>::value,  //
368           std::true_type,          //
369           is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
370 
371 // Like std::is_invocable_r from C++17, but works only for objects with call
372 // operators. See the note on call_result_t.
373 template <typename R, typename F, typename... Args>
374 using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
375 
376 // Like std::as_const from C++17.
377 template <typename T>
378 typename std::add_const<T>::type& as_const(T& t) {
379   return t;
380 }
381 
382 }  // namespace internal
383 
384 // Specialized for function types below.
385 template <typename F>
386 class OnceAction;
387 
388 // An action that can only be used once.
389 //
390 // This is accepted by WillOnce, which doesn't require the underlying action to
391 // be copy-constructible (only move-constructible), and promises to invoke it as
392 // an rvalue reference. This allows the action to work with move-only types like
393 // std::move_only_function in a type-safe manner.
394 //
395 // For example:
396 //
397 //     // Assume we have some API that needs to accept a unique pointer to some
398 //     // non-copyable object Foo.
399 //     void AcceptUniquePointer(std::unique_ptr<Foo> foo);
400 //
401 //     // We can define an action that provides a Foo to that API. Because It
402 //     // has to give away its unique pointer, it must not be called more than
403 //     // once, so its call operator is &&-qualified.
404 //     struct ProvideFoo {
405 //       std::unique_ptr<Foo> foo;
406 //
407 //       void operator()() && {
408 //         AcceptUniquePointer(std::move(Foo));
409 //       }
410 //     };
411 //
412 //     // This action can be used with WillOnce.
413 //     EXPECT_CALL(mock, Call)
414 //         .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
415 //
416 //     // But a call to WillRepeatedly will fail to compile. This is correct,
417 //     // since the action cannot correctly be used repeatedly.
418 //     EXPECT_CALL(mock, Call)
419 //         .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
420 //
421 // A less-contrived example would be an action that returns an arbitrary type,
422 // whose &&-qualified call operator is capable of dealing with move-only types.
423 template <typename Result, typename... Args>
424 class OnceAction<Result(Args...)> final {
425  private:
426   // True iff we can use the given callable type (or lvalue reference) directly
427   // via StdFunctionAdaptor.
428   template <typename Callable>
429   using IsDirectlyCompatible = internal::conjunction<
430       // It must be possible to capture the callable in StdFunctionAdaptor.
431       std::is_constructible<typename std::decay<Callable>::type, Callable>,
432       // The callable must be compatible with our signature.
433       internal::is_callable_r<Result, typename std::decay<Callable>::type,
434                               Args...>>;
435 
436   // True iff we can use the given callable type via StdFunctionAdaptor once we
437   // ignore incoming arguments.
438   template <typename Callable>
439   using IsCompatibleAfterIgnoringArguments = internal::conjunction<
440       // It must be possible to capture the callable in a lambda.
441       std::is_constructible<typename std::decay<Callable>::type, Callable>,
442       // The callable must be invocable with zero arguments, returning something
443       // convertible to Result.
444       internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
445 
446  public:
447   // Construct from a callable that is directly compatible with our mocked
448   // signature: it accepts our function type's arguments and returns something
449   // convertible to our result type.
450   template <typename Callable,
451             typename std::enable_if<
452                 internal::conjunction<
453                     // Teach clang on macOS that we're not talking about a
454                     // copy/move constructor here. Otherwise it gets confused
455                     // when checking the is_constructible requirement of our
456                     // traits above.
457                     internal::negation<std::is_same<
458                         OnceAction, typename std::decay<Callable>::type>>,
459                     IsDirectlyCompatible<Callable>>  //
460                 ::value,
461                 int>::type = 0>
462   OnceAction(Callable&& callable)  // NOLINT
463       : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
464             {}, std::forward<Callable>(callable))) {}
465 
466   // As above, but for a callable that ignores the mocked function's arguments.
467   template <typename Callable,
468             typename std::enable_if<
469                 internal::conjunction<
470                     // Teach clang on macOS that we're not talking about a
471                     // copy/move constructor here. Otherwise it gets confused
472                     // when checking the is_constructible requirement of our
473                     // traits above.
474                     internal::negation<std::is_same<
475                         OnceAction, typename std::decay<Callable>::type>>,
476                     // Exclude callables for which the overload above works.
477                     // We'd rather provide the arguments if possible.
478                     internal::negation<IsDirectlyCompatible<Callable>>,
479                     IsCompatibleAfterIgnoringArguments<Callable>>::value,
480                 int>::type = 0>
481   OnceAction(Callable&& callable)  // NOLINT
482                                    // Call the constructor above with a callable
483                                    // that ignores the input arguments.
484       : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
485             std::forward<Callable>(callable)}) {}
486 
487   // We are naturally copyable because we store only an std::function, but
488   // semantically we should not be copyable.
489   OnceAction(const OnceAction&) = delete;
490   OnceAction& operator=(const OnceAction&) = delete;
491   OnceAction(OnceAction&&) = default;
492 
493   // Invoke the underlying action callable with which we were constructed,
494   // handing it the supplied arguments.
495   Result Call(Args... args) && {
496     return function_(std::forward<Args>(args)...);
497   }
498 
499  private:
500   // An adaptor that wraps a callable that is compatible with our signature and
501   // being invoked as an rvalue reference so that it can be used as an
502   // StdFunctionAdaptor. This throws away type safety, but that's fine because
503   // this is only used by WillOnce, which we know calls at most once.
504   //
505   // Once we have something like std::move_only_function from C++23, we can do
506   // away with this.
507   template <typename Callable>
508   class StdFunctionAdaptor final {
509    public:
510     // A tag indicating that the (otherwise universal) constructor is accepting
511     // the callable itself, instead of e.g. stealing calls for the move
512     // constructor.
513     struct CallableTag final {};
514 
515     template <typename F>
516     explicit StdFunctionAdaptor(CallableTag, F&& callable)
517         : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
518 
519     // Rather than explicitly returning Result, we return whatever the wrapped
520     // callable returns. This allows for compatibility with existing uses like
521     // the following, when the mocked function returns void:
522     //
523     //     EXPECT_CALL(mock_fn_, Call)
524     //         .WillOnce([&] {
525     //            [...]
526     //            return 0;
527     //         });
528     //
529     // Such a callable can be turned into std::function<void()>. If we use an
530     // explicit return type of Result here then it *doesn't* work with
531     // std::function, because we'll get a "void function should not return a
532     // value" error.
533     //
534     // We need not worry about incompatible result types because the SFINAE on
535     // OnceAction already checks this for us. std::is_invocable_r_v itself makes
536     // the same allowance for void result types.
537     template <typename... ArgRefs>
538     internal::call_result_t<Callable, ArgRefs...> operator()(
539         ArgRefs&&... args) const {
540       return std::move(*callable_)(std::forward<ArgRefs>(args)...);
541     }
542 
543    private:
544     // We must put the callable on the heap so that we are copyable, which
545     // std::function needs.
546     std::shared_ptr<Callable> callable_;
547   };
548 
549   // An adaptor that makes a callable that accepts zero arguments callable with
550   // our mocked arguments.
551   template <typename Callable>
552   struct IgnoreIncomingArguments {
553     internal::call_result_t<Callable> operator()(Args&&...) {
554       return std::move(callable)();
555     }
556 
557     Callable callable;
558   };
559 
560   std::function<Result(Args...)> function_;
561 };
562 
563 // When an unexpected function call is encountered, Google Mock will
564 // let it return a default value if the user has specified one for its
565 // return type, or if the return type has a built-in default value;
566 // otherwise Google Mock won't know what value to return and will have
567 // to abort the process.
568 //
569 // The DefaultValue<T> class allows a user to specify the
570 // default value for a type T that is both copyable and publicly
571 // destructible (i.e. anything that can be used as a function return
572 // type).  The usage is:
573 //
574 //   // Sets the default value for type T to be foo.
575 //   DefaultValue<T>::Set(foo);
576 template <typename T>
577 class DefaultValue {
578  public:
579   // Sets the default value for type T; requires T to be
580   // copy-constructable and have a public destructor.
581   static void Set(T x) {
582     delete producer_;
583     producer_ = new FixedValueProducer(x);
584   }
585 
586   // Provides a factory function to be called to generate the default value.
587   // This method can be used even if T is only move-constructible, but it is not
588   // limited to that case.
589   typedef T (*FactoryFunction)();
590   static void SetFactory(FactoryFunction factory) {
591     delete producer_;
592     producer_ = new FactoryValueProducer(factory);
593   }
594 
595   // Unsets the default value for type T.
596   static void Clear() {
597     delete producer_;
598     producer_ = nullptr;
599   }
600 
601   // Returns true if and only if the user has set the default value for type T.
602   static bool IsSet() { return producer_ != nullptr; }
603 
604   // Returns true if T has a default return value set by the user or there
605   // exists a built-in default value.
606   static bool Exists() {
607     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
608   }
609 
610   // Returns the default value for type T if the user has set one;
611   // otherwise returns the built-in default value. Requires that Exists()
612   // is true, which ensures that the return value is well-defined.
613   static T Get() {
614     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
615                                 : producer_->Produce();
616   }
617 
618  private:
619   class ValueProducer {
620    public:
621     virtual ~ValueProducer() = default;
622     virtual T Produce() = 0;
623   };
624 
625   class FixedValueProducer : public ValueProducer {
626    public:
627     explicit FixedValueProducer(T value) : value_(value) {}
628     T Produce() override { return value_; }
629 
630    private:
631     const T value_;
632     FixedValueProducer(const FixedValueProducer&) = delete;
633     FixedValueProducer& operator=(const FixedValueProducer&) = delete;
634   };
635 
636   class FactoryValueProducer : public ValueProducer {
637    public:
638     explicit FactoryValueProducer(FactoryFunction factory)
639         : factory_(factory) {}
640     T Produce() override { return factory_(); }
641 
642    private:
643     const FactoryFunction factory_;
644     FactoryValueProducer(const FactoryValueProducer&) = delete;
645     FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
646   };
647 
648   static ValueProducer* producer_;
649 };
650 
651 // This partial specialization allows a user to set default values for
652 // reference types.
653 template <typename T>
654 class DefaultValue<T&> {
655  public:
656   // Sets the default value for type T&.
657   static void Set(T& x) {  // NOLINT
658     address_ = &x;
659   }
660 
661   // Unsets the default value for type T&.
662   static void Clear() { address_ = nullptr; }
663 
664   // Returns true if and only if the user has set the default value for type T&.
665   static bool IsSet() { return address_ != nullptr; }
666 
667   // Returns true if T has a default return value set by the user or there
668   // exists a built-in default value.
669   static bool Exists() {
670     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
671   }
672 
673   // Returns the default value for type T& if the user has set one;
674   // otherwise returns the built-in default value if there is one;
675   // otherwise aborts the process.
676   static T& Get() {
677     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
678                                : *address_;
679   }
680 
681  private:
682   static T* address_;
683 };
684 
685 // This specialization allows DefaultValue<void>::Get() to
686 // compile.
687 template <>
688 class DefaultValue<void> {
689  public:
690   static bool Exists() { return true; }
691   static void Get() {}
692 };
693 
694 // Points to the user-set default value for type T.
695 template <typename T>
696 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
697 
698 // Points to the user-set default value for type T&.
699 template <typename T>
700 T* DefaultValue<T&>::address_ = nullptr;
701 
702 // Implement this interface to define an action for function type F.
703 template <typename F>
704 class ActionInterface {
705  public:
706   typedef typename internal::Function<F>::Result Result;
707   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
708 
709   ActionInterface() = default;
710   virtual ~ActionInterface() = default;
711 
712   // Performs the action.  This method is not const, as in general an
713   // action can have side effects and be stateful.  For example, a
714   // get-the-next-element-from-the-collection action will need to
715   // remember the current element.
716   virtual Result Perform(const ArgumentTuple& args) = 0;
717 
718  private:
719   ActionInterface(const ActionInterface&) = delete;
720   ActionInterface& operator=(const ActionInterface&) = delete;
721 };
722 
723 template <typename F>
724 class Action;
725 
726 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
727 // object that represents an action to be taken when a mock function of type
728 // R(Args...) is called. The implementation of Action<T> is just a
729 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
730 // can view an object implementing ActionInterface<F> as a concrete action
731 // (including its current state), and an Action<F> object as a handle to it.
732 template <typename R, typename... Args>
733 class Action<R(Args...)> {
734  private:
735   using F = R(Args...);
736 
737   // Adapter class to allow constructing Action from a legacy ActionInterface.
738   // New code should create Actions from functors instead.
739   struct ActionAdapter {
740     // Adapter must be copyable to satisfy std::function requirements.
741     ::std::shared_ptr<ActionInterface<F>> impl_;
742 
743     template <typename... InArgs>
744     typename internal::Function<F>::Result operator()(InArgs&&... args) {
745       return impl_->Perform(
746           ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
747     }
748   };
749 
750   template <typename G>
751   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
752 
753  public:
754   typedef typename internal::Function<F>::Result Result;
755   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
756 
757   // Constructs a null Action.  Needed for storing Action objects in
758   // STL containers.
759   Action() = default;
760 
761   // Construct an Action from a specified callable.
762   // This cannot take std::function directly, because then Action would not be
763   // directly constructible from lambda (it would require two conversions).
764   template <
765       typename G,
766       typename = typename std::enable_if<internal::disjunction<
767           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
768                                                         G>>::value>::type>
769   Action(G&& fun) {  // NOLINT
770     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
771   }
772 
773   // Constructs an Action from its implementation.
774   explicit Action(ActionInterface<F>* impl)
775       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
776 
777   // This constructor allows us to turn an Action<Func> object into an
778   // Action<F>, as long as F's arguments can be implicitly converted
779   // to Func's and Func's return type can be implicitly converted to F's.
780   template <typename Func>
781   Action(const Action<Func>& action)  // NOLINT
782       : fun_(action.fun_) {}
783 
784   // Returns true if and only if this is the DoDefault() action.
785   bool IsDoDefault() const { return fun_ == nullptr; }
786 
787   // Performs the action.  Note that this method is const even though
788   // the corresponding method in ActionInterface is not.  The reason
789   // is that a const Action<F> means that it cannot be re-bound to
790   // another concrete action, not that the concrete action it binds to
791   // cannot change state.  (Think of the difference between a const
792   // pointer and a pointer to const.)
793   Result Perform(ArgumentTuple args) const {
794     if (IsDoDefault()) {
795       internal::IllegalDoDefault(__FILE__, __LINE__);
796     }
797     return internal::Apply(fun_, ::std::move(args));
798   }
799 
800   // An action can be used as a OnceAction, since it's obviously safe to call it
801   // once.
802   operator OnceAction<F>() const {  // NOLINT
803     // Return a OnceAction-compatible callable that calls Perform with the
804     // arguments it is provided. We could instead just return fun_, but then
805     // we'd need to handle the IsDoDefault() case separately.
806     struct OA {
807       Action<F> action;
808 
809       R operator()(Args... args) && {
810         return action.Perform(
811             std::forward_as_tuple(std::forward<Args>(args)...));
812       }
813     };
814 
815     return OA{*this};
816   }
817 
818  private:
819   template <typename G>
820   friend class Action;
821 
822   template <typename G>
823   void Init(G&& g, ::std::true_type) {
824     fun_ = ::std::forward<G>(g);
825   }
826 
827   template <typename G>
828   void Init(G&& g, ::std::false_type) {
829     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
830   }
831 
832   template <typename FunctionImpl>
833   struct IgnoreArgs {
834     template <typename... InArgs>
835     Result operator()(const InArgs&...) const {
836       return function_impl();
837     }
838 
839     FunctionImpl function_impl;
840   };
841 
842   // fun_ is an empty function if and only if this is the DoDefault() action.
843   ::std::function<F> fun_;
844 };
845 
846 // The PolymorphicAction class template makes it easy to implement a
847 // polymorphic action (i.e. an action that can be used in mock
848 // functions of than one type, e.g. Return()).
849 //
850 // To define a polymorphic action, a user first provides a COPYABLE
851 // implementation class that has a Perform() method template:
852 //
853 //   class FooAction {
854 //    public:
855 //     template <typename Result, typename ArgumentTuple>
856 //     Result Perform(const ArgumentTuple& args) const {
857 //       // Processes the arguments and returns a result, using
858 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
859 //     }
860 //     ...
861 //   };
862 //
863 // Then the user creates the polymorphic action using
864 // MakePolymorphicAction(object) where object has type FooAction.  See
865 // the definition of Return(void) and SetArgumentPointee<N>(value) for
866 // complete examples.
867 template <typename Impl>
868 class PolymorphicAction {
869  public:
870   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
871 
872   template <typename F>
873   operator Action<F>() const {
874     return Action<F>(new MonomorphicImpl<F>(impl_));
875   }
876 
877  private:
878   template <typename F>
879   class MonomorphicImpl : public ActionInterface<F> {
880    public:
881     typedef typename internal::Function<F>::Result Result;
882     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
883 
884     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
885 
886     Result Perform(const ArgumentTuple& args) override {
887       return impl_.template Perform<Result>(args);
888     }
889 
890    private:
891     Impl impl_;
892   };
893 
894   Impl impl_;
895 };
896 
897 // Creates an Action from its implementation and returns it.  The
898 // created Action object owns the implementation.
899 template <typename F>
900 Action<F> MakeAction(ActionInterface<F>* impl) {
901   return Action<F>(impl);
902 }
903 
904 // Creates a polymorphic action from its implementation.  This is
905 // easier to use than the PolymorphicAction<Impl> constructor as it
906 // doesn't require you to explicitly write the template argument, e.g.
907 //
908 //   MakePolymorphicAction(foo);
909 // vs
910 //   PolymorphicAction<TypeOfFoo>(foo);
911 template <typename Impl>
912 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
913   return PolymorphicAction<Impl>(impl);
914 }
915 
916 namespace internal {
917 
918 // Helper struct to specialize ReturnAction to execute a move instead of a copy
919 // on return. Useful for move-only types, but could be used on any type.
920 template <typename T>
921 struct ByMoveWrapper {
922   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
923   T payload;
924 };
925 
926 // The general implementation of Return(R). Specializations follow below.
927 template <typename R>
928 class ReturnAction final {
929  public:
930   explicit ReturnAction(R value) : value_(std::move(value)) {}
931 
932   template <typename U, typename... Args,
933             typename = typename std::enable_if<conjunction<
934                 // See the requirements documented on Return.
935                 negation<std::is_same<void, U>>,  //
936                 negation<std::is_reference<U>>,   //
937                 std::is_convertible<R, U>,        //
938                 std::is_move_constructible<U>>::value>::type>
939   operator OnceAction<U(Args...)>() && {  // NOLINT
940     return Impl<U>(std::move(value_));
941   }
942 
943   template <typename U, typename... Args,
944             typename = typename std::enable_if<conjunction<
945                 // See the requirements documented on Return.
946                 negation<std::is_same<void, U>>,   //
947                 negation<std::is_reference<U>>,    //
948                 std::is_convertible<const R&, U>,  //
949                 std::is_copy_constructible<U>>::value>::type>
950   operator Action<U(Args...)>() const {  // NOLINT
951     return Impl<U>(value_);
952   }
953 
954  private:
955   // Implements the Return(x) action for a mock function that returns type U.
956   template <typename U>
957   class Impl final {
958    public:
959     // The constructor used when the return value is allowed to move from the
960     // input value (i.e. we are converting to OnceAction).
961     explicit Impl(R&& input_value)
962         : state_(new State(std::move(input_value))) {}
963 
964     // The constructor used when the return value is not allowed to move from
965     // the input value (i.e. we are converting to Action).
966     explicit Impl(const R& input_value) : state_(new State(input_value)) {}
967 
968     U operator()() && { return std::move(state_->value); }
969     U operator()() const& { return state_->value; }
970 
971    private:
972     // We put our state on the heap so that the compiler-generated copy/move
973     // constructors work correctly even when U is a reference-like type. This is
974     // necessary only because we eagerly create State::value (see the note on
975     // that symbol for details). If we instead had only the input value as a
976     // member then the default constructors would work fine.
977     //
978     // For example, when R is std::string and U is std::string_view, value is a
979     // reference to the string backed by input_value. The copy constructor would
980     // copy both, so that we wind up with a new input_value object (with the
981     // same contents) and a reference to the *old* input_value object rather
982     // than the new one.
983     struct State {
984       explicit State(const R& input_value_in)
985           : input_value(input_value_in),
986             // Make an implicit conversion to Result before initializing the U
987             // object we store, avoiding calling any explicit constructor of U
988             // from R.
989             //
990             // This simulates the language rules: a function with return type U
991             // that does `return R()` requires R to be implicitly convertible to
992             // U, and uses that path for the conversion, even U Result has an
993             // explicit constructor from R.
994             value(ImplicitCast_<U>(internal::as_const(input_value))) {}
995 
996       // As above, but for the case where we're moving from the ReturnAction
997       // object because it's being used as a OnceAction.
998       explicit State(R&& input_value_in)
999           : input_value(std::move(input_value_in)),
1000             // For the same reason as above we make an implicit conversion to U
1001             // before initializing the value.
1002             //
1003             // Unlike above we provide the input value as an rvalue to the
1004             // implicit conversion because this is a OnceAction: it's fine if it
1005             // wants to consume the input value.
1006             value(ImplicitCast_<U>(std::move(input_value))) {}
1007 
1008       // A copy of the value originally provided by the user. We retain this in
1009       // addition to the value of the mock function's result type below in case
1010       // the latter is a reference-like type. See the std::string_view example
1011       // in the documentation on Return.
1012       R input_value;
1013 
1014       // The value we actually return, as the type returned by the mock function
1015       // itself.
1016       //
1017       // We eagerly initialize this here, rather than lazily doing the implicit
1018       // conversion automatically each time Perform is called, for historical
1019       // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1020       // made the Action<U()> conversion operator eagerly convert the R value to
1021       // U, but without keeping the R alive. This broke the use case discussed
1022       // in the documentation for Return, making reference-like types such as
1023       // std::string_view not safe to use as U where the input type R is a
1024       // value-like type such as std::string.
1025       //
1026       // The example the commit gave was not very clear, nor was the issue
1027       // thread (https://github.com/google/googlemock/issues/86), but it seems
1028       // the worry was about reference-like input types R that flatten to a
1029       // value-like type U when being implicitly converted. An example of this
1030       // is std::vector<bool>::reference, which is often a proxy type with an
1031       // reference to the underlying vector:
1032       //
1033       //     // Helper method: have the mock function return bools according
1034       //     // to the supplied script.
1035       //     void SetActions(MockFunction<bool(size_t)>& mock,
1036       //                     const std::vector<bool>& script) {
1037       //       for (size_t i = 0; i < script.size(); ++i) {
1038       //         EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1039       //       }
1040       //     }
1041       //
1042       //     TEST(Foo, Bar) {
1043       //       // Set actions using a temporary vector, whose operator[]
1044       //       // returns proxy objects that references that will be
1045       //       // dangling once the call to SetActions finishes and the
1046       //       // vector is destroyed.
1047       //       MockFunction<bool(size_t)> mock;
1048       //       SetActions(mock, {false, true});
1049       //
1050       //       EXPECT_FALSE(mock.AsStdFunction()(0));
1051       //       EXPECT_TRUE(mock.AsStdFunction()(1));
1052       //     }
1053       //
1054       // This eager conversion helps with a simple case like this, but doesn't
1055       // fully make these types work in general. For example the following still
1056       // uses a dangling reference:
1057       //
1058       //     TEST(Foo, Baz) {
1059       //       MockFunction<std::vector<std::string>()> mock;
1060       //
1061       //       // Return the same vector twice, and then the empty vector
1062       //       // thereafter.
1063       //       auto action = Return(std::initializer_list<std::string>{
1064       //           "taco", "burrito",
1065       //       });
1066       //
1067       //       EXPECT_CALL(mock, Call)
1068       //           .WillOnce(action)
1069       //           .WillOnce(action)
1070       //           .WillRepeatedly(Return(std::vector<std::string>{}));
1071       //
1072       //       EXPECT_THAT(mock.AsStdFunction()(),
1073       //                   ElementsAre("taco", "burrito"));
1074       //       EXPECT_THAT(mock.AsStdFunction()(),
1075       //                   ElementsAre("taco", "burrito"));
1076       //       EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1077       //     }
1078       //
1079       U value;
1080     };
1081 
1082     const std::shared_ptr<State> state_;
1083   };
1084 
1085   R value_;
1086 };
1087 
1088 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1089 //
1090 // This version applies the type system-defeating hack of moving from T even in
1091 // the const call operator, checking at runtime that it isn't called more than
1092 // once, since the user has declared their intent to do so by using ByMove.
1093 template <typename T>
1094 class ReturnAction<ByMoveWrapper<T>> final {
1095  public:
1096   explicit ReturnAction(ByMoveWrapper<T> wrapper)
1097       : state_(new State(std::move(wrapper.payload))) {}
1098 
1099   T operator()() const {
1100     GTEST_CHECK_(!state_->called)
1101         << "A ByMove() action must be performed at most once.";
1102 
1103     state_->called = true;
1104     return std::move(state_->value);
1105   }
1106 
1107  private:
1108   // We store our state on the heap so that we are copyable as required by
1109   // Action, despite the fact that we are stateful and T may not be copyable.
1110   struct State {
1111     explicit State(T&& value_in) : value(std::move(value_in)) {}
1112 
1113     T value;
1114     bool called = false;
1115   };
1116 
1117   const std::shared_ptr<State> state_;
1118 };
1119 
1120 // Implements the ReturnNull() action.
1121 class ReturnNullAction {
1122  public:
1123   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1124   // this is enforced by returning nullptr, and in non-C++11 by asserting a
1125   // pointer type on compile time.
1126   template <typename Result, typename ArgumentTuple>
1127   static Result Perform(const ArgumentTuple&) {
1128     return nullptr;
1129   }
1130 };
1131 
1132 // Implements the Return() action.
1133 class ReturnVoidAction {
1134  public:
1135   // Allows Return() to be used in any void-returning function.
1136   template <typename Result, typename ArgumentTuple>
1137   static void Perform(const ArgumentTuple&) {
1138     static_assert(std::is_void<Result>::value, "Result should be void.");
1139   }
1140 };
1141 
1142 // Implements the polymorphic ReturnRef(x) action, which can be used
1143 // in any function that returns a reference to the type of x,
1144 // regardless of the argument types.
1145 template <typename T>
1146 class ReturnRefAction {
1147  public:
1148   // Constructs a ReturnRefAction object from the reference to be returned.
1149   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
1150 
1151   // This template type conversion operator allows ReturnRef(x) to be
1152   // used in ANY function that returns a reference to x's type.
1153   template <typename F>
1154   operator Action<F>() const {
1155     typedef typename Function<F>::Result Result;
1156     // Asserts that the function return type is a reference.  This
1157     // catches the user error of using ReturnRef(x) when Return(x)
1158     // should be used, and generates some helpful error message.
1159     static_assert(std::is_reference<Result>::value,
1160                   "use Return instead of ReturnRef to return a value");
1161     return Action<F>(new Impl<F>(ref_));
1162   }
1163 
1164  private:
1165   // Implements the ReturnRef(x) action for a particular function type F.
1166   template <typename F>
1167   class Impl : public ActionInterface<F> {
1168    public:
1169     typedef typename Function<F>::Result Result;
1170     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1171 
1172     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
1173 
1174     Result Perform(const ArgumentTuple&) override { return ref_; }
1175 
1176    private:
1177     T& ref_;
1178   };
1179 
1180   T& ref_;
1181 };
1182 
1183 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1184 // used in any function that returns a reference to the type of x,
1185 // regardless of the argument types.
1186 template <typename T>
1187 class ReturnRefOfCopyAction {
1188  public:
1189   // Constructs a ReturnRefOfCopyAction object from the reference to
1190   // be returned.
1191   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
1192 
1193   // This template type conversion operator allows ReturnRefOfCopy(x) to be
1194   // used in ANY function that returns a reference to x's type.
1195   template <typename F>
1196   operator Action<F>() const {
1197     typedef typename Function<F>::Result Result;
1198     // Asserts that the function return type is a reference.  This
1199     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1200     // should be used, and generates some helpful error message.
1201     static_assert(std::is_reference<Result>::value,
1202                   "use Return instead of ReturnRefOfCopy to return a value");
1203     return Action<F>(new Impl<F>(value_));
1204   }
1205 
1206  private:
1207   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1208   template <typename F>
1209   class Impl : public ActionInterface<F> {
1210    public:
1211     typedef typename Function<F>::Result Result;
1212     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1213 
1214     explicit Impl(const T& value) : value_(value) {}  // NOLINT
1215 
1216     Result Perform(const ArgumentTuple&) override { return value_; }
1217 
1218    private:
1219     T value_;
1220   };
1221 
1222   const T value_;
1223 };
1224 
1225 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1226 // used in any function that returns the element_type of v.
1227 template <typename T>
1228 class ReturnRoundRobinAction {
1229  public:
1230   explicit ReturnRoundRobinAction(std::vector<T> values) {
1231     GTEST_CHECK_(!values.empty())
1232         << "ReturnRoundRobin requires at least one element.";
1233     state_->values = std::move(values);
1234   }
1235 
1236   template <typename... Args>
1237   T operator()(Args&&...) const {
1238     return state_->Next();
1239   }
1240 
1241  private:
1242   struct State {
1243     T Next() {
1244       T ret_val = values[i++];
1245       if (i == values.size()) i = 0;
1246       return ret_val;
1247     }
1248 
1249     std::vector<T> values;
1250     size_t i = 0;
1251   };
1252   std::shared_ptr<State> state_ = std::make_shared<State>();
1253 };
1254 
1255 // Implements the polymorphic DoDefault() action.
1256 class DoDefaultAction {
1257  public:
1258   // This template type conversion operator allows DoDefault() to be
1259   // used in any function.
1260   template <typename F>
1261   operator Action<F>() const {
1262     return Action<F>();
1263   }  // NOLINT
1264 };
1265 
1266 // Implements the Assign action to set a given pointer referent to a
1267 // particular value.
1268 template <typename T1, typename T2>
1269 class AssignAction {
1270  public:
1271   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1272 
1273   template <typename Result, typename ArgumentTuple>
1274   void Perform(const ArgumentTuple& /* args */) const {
1275     *ptr_ = value_;
1276   }
1277 
1278  private:
1279   T1* const ptr_;
1280   const T2 value_;
1281 };
1282 
1283 #ifndef GTEST_OS_WINDOWS_MOBILE
1284 
1285 // Implements the SetErrnoAndReturn action to simulate return from
1286 // various system calls and libc functions.
1287 template <typename T>
1288 class SetErrnoAndReturnAction {
1289  public:
1290   SetErrnoAndReturnAction(int errno_value, T result)
1291       : errno_(errno_value), result_(result) {}
1292   template <typename Result, typename ArgumentTuple>
1293   Result Perform(const ArgumentTuple& /* args */) const {
1294     errno = errno_;
1295     return result_;
1296   }
1297 
1298  private:
1299   const int errno_;
1300   const T result_;
1301 };
1302 
1303 #endif  // !GTEST_OS_WINDOWS_MOBILE
1304 
1305 // Implements the SetArgumentPointee<N>(x) action for any function
1306 // whose N-th argument (0-based) is a pointer to x's type.
1307 template <size_t N, typename A, typename = void>
1308 struct SetArgumentPointeeAction {
1309   A value;
1310 
1311   template <typename... Args>
1312   void operator()(const Args&... args) const {
1313     *::std::get<N>(std::tie(args...)) = value;
1314   }
1315 };
1316 
1317 // Implements the Invoke(object_ptr, &Class::Method) action.
1318 template <class Class, typename MethodPtr>
1319 struct InvokeMethodAction {
1320   Class* const obj_ptr;
1321   const MethodPtr method_ptr;
1322 
1323   template <typename... Args>
1324   auto operator()(Args&&... args) const
1325       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1326     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1327   }
1328 };
1329 
1330 // Implements the InvokeWithoutArgs(f) action.  The template argument
1331 // FunctionImpl is the implementation type of f, which can be either a
1332 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
1333 // Action<F> as long as f's type is compatible with F.
1334 template <typename FunctionImpl>
1335 struct InvokeWithoutArgsAction {
1336   FunctionImpl function_impl;
1337 
1338   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1339   // compatible with f.
1340   template <typename... Args>
1341   auto operator()(const Args&...) -> decltype(function_impl()) {
1342     return function_impl();
1343   }
1344 };
1345 
1346 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1347 template <class Class, typename MethodPtr>
1348 struct InvokeMethodWithoutArgsAction {
1349   Class* const obj_ptr;
1350   const MethodPtr method_ptr;
1351 
1352   using ReturnType =
1353       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1354 
1355   template <typename... Args>
1356   ReturnType operator()(const Args&...) const {
1357     return (obj_ptr->*method_ptr)();
1358   }
1359 };
1360 
1361 // Implements the IgnoreResult(action) action.
1362 template <typename A>
1363 class IgnoreResultAction {
1364  public:
1365   explicit IgnoreResultAction(const A& action) : action_(action) {}
1366 
1367   template <typename F>
1368   operator Action<F>() const {
1369     // Assert statement belongs here because this is the best place to verify
1370     // conditions on F. It produces the clearest error messages
1371     // in most compilers.
1372     // Impl really belongs in this scope as a local class but can't
1373     // because MSVC produces duplicate symbols in different translation units
1374     // in this case. Until MS fixes that bug we put Impl into the class scope
1375     // and put the typedef both here (for use in assert statement) and
1376     // in the Impl class. But both definitions must be the same.
1377     typedef typename internal::Function<F>::Result Result;
1378 
1379     // Asserts at compile time that F returns void.
1380     static_assert(std::is_void<Result>::value, "Result type should be void.");
1381 
1382     return Action<F>(new Impl<F>(action_));
1383   }
1384 
1385  private:
1386   template <typename F>
1387   class Impl : public ActionInterface<F> {
1388    public:
1389     typedef typename internal::Function<F>::Result Result;
1390     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1391 
1392     explicit Impl(const A& action) : action_(action) {}
1393 
1394     void Perform(const ArgumentTuple& args) override {
1395       // Performs the action and ignores its result.
1396       action_.Perform(args);
1397     }
1398 
1399    private:
1400     // Type OriginalFunction is the same as F except that its return
1401     // type is IgnoredValue.
1402     typedef
1403         typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1404 
1405     const Action<OriginalFunction> action_;
1406   };
1407 
1408   const A action_;
1409 };
1410 
1411 template <typename InnerAction, size_t... I>
1412 struct WithArgsAction {
1413   InnerAction inner_action;
1414 
1415   // The signature of the function as seen by the inner action, given an out
1416   // action with the given result and argument types.
1417   template <typename R, typename... Args>
1418   using InnerSignature =
1419       R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1420 
1421   // Rather than a call operator, we must define conversion operators to
1422   // particular action types. This is necessary for embedded actions like
1423   // DoDefault(), which rely on an action conversion operators rather than
1424   // providing a call operator because even with a particular set of arguments
1425   // they don't have a fixed return type.
1426 
1427   template <
1428       typename R, typename... Args,
1429       typename std::enable_if<
1430           std::is_convertible<InnerAction,
1431                               // Unfortunately we can't use the InnerSignature
1432                               // alias here; MSVC complains about the I
1433                               // parameter pack not being expanded (error C3520)
1434                               // despite it being expanded in the type alias.
1435                               // TupleElement is also an MSVC workaround.
1436                               // See its definition for details.
1437                               OnceAction<R(internal::TupleElement<
1438                                            I, std::tuple<Args...>>...)>>::value,
1439           int>::type = 0>
1440   operator OnceAction<R(Args...)>() && {  // NOLINT
1441     struct OA {
1442       OnceAction<InnerSignature<R, Args...>> inner_action;
1443 
1444       R operator()(Args&&... args) && {
1445         return std::move(inner_action)
1446             .Call(std::get<I>(
1447                 std::forward_as_tuple(std::forward<Args>(args)...))...);
1448       }
1449     };
1450 
1451     return OA{std::move(inner_action)};
1452   }
1453 
1454   template <
1455       typename R, typename... Args,
1456       typename std::enable_if<
1457           std::is_convertible<const InnerAction&,
1458                               // Unfortunately we can't use the InnerSignature
1459                               // alias here; MSVC complains about the I
1460                               // parameter pack not being expanded (error C3520)
1461                               // despite it being expanded in the type alias.
1462                               // TupleElement is also an MSVC workaround.
1463                               // See its definition for details.
1464                               Action<R(internal::TupleElement<
1465                                        I, std::tuple<Args...>>...)>>::value,
1466           int>::type = 0>
1467   operator Action<R(Args...)>() const {  // NOLINT
1468     Action<InnerSignature<R, Args...>> converted(inner_action);
1469 
1470     return [converted](Args&&... args) -> R {
1471       return converted.Perform(std::forward_as_tuple(
1472           std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1473     };
1474   }
1475 };
1476 
1477 template <typename... Actions>
1478 class DoAllAction;
1479 
1480 // Base case: only a single action.
1481 template <typename FinalAction>
1482 class DoAllAction<FinalAction> {
1483  public:
1484   struct UserConstructorTag {};
1485 
1486   template <typename T>
1487   explicit DoAllAction(UserConstructorTag, T&& action)
1488       : final_action_(std::forward<T>(action)) {}
1489 
1490   // Rather than a call operator, we must define conversion operators to
1491   // particular action types. This is necessary for embedded actions like
1492   // DoDefault(), which rely on an action conversion operators rather than
1493   // providing a call operator because even with a particular set of arguments
1494   // they don't have a fixed return type.
1495 
1496   template <typename R, typename... Args,
1497             typename std::enable_if<
1498                 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1499                 int>::type = 0>
1500   operator OnceAction<R(Args...)>() && {  // NOLINT
1501     return std::move(final_action_);
1502   }
1503 
1504   template <
1505       typename R, typename... Args,
1506       typename std::enable_if<
1507           std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1508           int>::type = 0>
1509   operator Action<R(Args...)>() const {  // NOLINT
1510     return final_action_;
1511   }
1512 
1513  private:
1514   FinalAction final_action_;
1515 };
1516 
1517 // Recursive case: support N actions by calling the initial action and then
1518 // calling through to the base class containing N-1 actions.
1519 template <typename InitialAction, typename... OtherActions>
1520 class DoAllAction<InitialAction, OtherActions...>
1521     : private DoAllAction<OtherActions...> {
1522  private:
1523   using Base = DoAllAction<OtherActions...>;
1524 
1525   // The type of reference that should be provided to an initial action for a
1526   // mocked function parameter of type T.
1527   //
1528   // There are two quirks here:
1529   //
1530   //  *  Unlike most forwarding functions, we pass scalars through by value.
1531   //     This isn't strictly necessary because an lvalue reference would work
1532   //     fine too and be consistent with other non-reference types, but it's
1533   //     perhaps less surprising.
1534   //
1535   //     For example if the mocked function has signature void(int), then it
1536   //     might seem surprising for the user's initial action to need to be
1537   //     convertible to Action<void(const int&)>. This is perhaps less
1538   //     surprising for a non-scalar type where there may be a performance
1539   //     impact, or it might even be impossible, to pass by value.
1540   //
1541   //  *  More surprisingly, `const T&` is often not a const reference type.
1542   //     By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1543   //     U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1544   //     U&. In other words, we may hand over a non-const reference.
1545   //
1546   //     So for example, given some non-scalar type Obj we have the following
1547   //     mappings:
1548   //
1549   //            T               InitialActionArgType<T>
1550   //         -------            -----------------------
1551   //         Obj                const Obj&
1552   //         Obj&               Obj&
1553   //         Obj&&              Obj&
1554   //         const Obj          const Obj&
1555   //         const Obj&         const Obj&
1556   //         const Obj&&        const Obj&
1557   //
1558   //     In other words, the initial actions get a mutable view of an non-scalar
1559   //     argument if and only if the mock function itself accepts a non-const
1560   //     reference type. They are never given an rvalue reference to an
1561   //     non-scalar type.
1562   //
1563   //     This situation makes sense if you imagine use with a matcher that is
1564   //     designed to write through a reference. For example, if the caller wants
1565   //     to fill in a reference argument and then return a canned value:
1566   //
1567   //         EXPECT_CALL(mock, Call)
1568   //             .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1569   //
1570   template <typename T>
1571   using InitialActionArgType =
1572       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1573 
1574  public:
1575   struct UserConstructorTag {};
1576 
1577   template <typename T, typename... U>
1578   explicit DoAllAction(UserConstructorTag, T&& initial_action,
1579                        U&&... other_actions)
1580       : Base({}, std::forward<U>(other_actions)...),
1581         initial_action_(std::forward<T>(initial_action)) {}
1582 
1583   template <typename R, typename... Args,
1584             typename std::enable_if<
1585                 conjunction<
1586                     // Both the initial action and the rest must support
1587                     // conversion to OnceAction.
1588                     std::is_convertible<
1589                         InitialAction,
1590                         OnceAction<void(InitialActionArgType<Args>...)>>,
1591                     std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1592                 int>::type = 0>
1593   operator OnceAction<R(Args...)>() && {  // NOLINT
1594     // Return an action that first calls the initial action with arguments
1595     // filtered through InitialActionArgType, then forwards arguments directly
1596     // to the base class to deal with the remaining actions.
1597     struct OA {
1598       OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1599       OnceAction<R(Args...)> remaining_actions;
1600 
1601       R operator()(Args... args) && {
1602         std::move(initial_action)
1603             .Call(static_cast<InitialActionArgType<Args>>(args)...);
1604 
1605         return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1606       }
1607     };
1608 
1609     return OA{
1610         std::move(initial_action_),
1611         std::move(static_cast<Base&>(*this)),
1612     };
1613   }
1614 
1615   template <
1616       typename R, typename... Args,
1617       typename std::enable_if<
1618           conjunction<
1619               // Both the initial action and the rest must support conversion to
1620               // Action.
1621               std::is_convertible<const InitialAction&,
1622                                   Action<void(InitialActionArgType<Args>...)>>,
1623               std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1624           int>::type = 0>
1625   operator Action<R(Args...)>() const {  // NOLINT
1626     // Return an action that first calls the initial action with arguments
1627     // filtered through InitialActionArgType, then forwards arguments directly
1628     // to the base class to deal with the remaining actions.
1629     struct OA {
1630       Action<void(InitialActionArgType<Args>...)> initial_action;
1631       Action<R(Args...)> remaining_actions;
1632 
1633       R operator()(Args... args) const {
1634         initial_action.Perform(std::forward_as_tuple(
1635             static_cast<InitialActionArgType<Args>>(args)...));
1636 
1637         return remaining_actions.Perform(
1638             std::forward_as_tuple(std::forward<Args>(args)...));
1639       }
1640     };
1641 
1642     return OA{
1643         initial_action_,
1644         static_cast<const Base&>(*this),
1645     };
1646   }
1647 
1648  private:
1649   InitialAction initial_action_;
1650 };
1651 
1652 template <typename T, typename... Params>
1653 struct ReturnNewAction {
1654   T* operator()() const {
1655     return internal::Apply(
1656         [](const Params&... unpacked_params) {
1657           return new T(unpacked_params...);
1658         },
1659         params);
1660   }
1661   std::tuple<Params...> params;
1662 };
1663 
1664 template <size_t k>
1665 struct ReturnArgAction {
1666   template <typename... Args,
1667             typename = typename std::enable_if<(k < sizeof...(Args))>::type>
1668   auto operator()(Args&&... args) const -> decltype(std::get<k>(
1669       std::forward_as_tuple(std::forward<Args>(args)...))) {
1670     return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1671   }
1672 };
1673 
1674 template <size_t k, typename Ptr>
1675 struct SaveArgAction {
1676   Ptr pointer;
1677 
1678   template <typename... Args>
1679   void operator()(const Args&... args) const {
1680     *pointer = std::get<k>(std::tie(args...));
1681   }
1682 };
1683 
1684 template <size_t k, typename Ptr>
1685 struct SaveArgPointeeAction {
1686   Ptr pointer;
1687 
1688   template <typename... Args>
1689   void operator()(const Args&... args) const {
1690     *pointer = *std::get<k>(std::tie(args...));
1691   }
1692 };
1693 
1694 template <size_t k, typename T>
1695 struct SetArgRefereeAction {
1696   T value;
1697 
1698   template <typename... Args>
1699   void operator()(Args&&... args) const {
1700     using argk_type =
1701         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1702     static_assert(std::is_lvalue_reference<argk_type>::value,
1703                   "Argument must be a reference type.");
1704     std::get<k>(std::tie(args...)) = value;
1705   }
1706 };
1707 
1708 template <size_t k, typename I1, typename I2>
1709 struct SetArrayArgumentAction {
1710   I1 first;
1711   I2 last;
1712 
1713   template <typename... Args>
1714   void operator()(const Args&... args) const {
1715     auto value = std::get<k>(std::tie(args...));
1716     for (auto it = first; it != last; ++it, (void)++value) {
1717       *value = *it;
1718     }
1719   }
1720 };
1721 
1722 template <size_t k>
1723 struct DeleteArgAction {
1724   template <typename... Args>
1725   void operator()(const Args&... args) const {
1726     delete std::get<k>(std::tie(args...));
1727   }
1728 };
1729 
1730 template <typename Ptr>
1731 struct ReturnPointeeAction {
1732   Ptr pointer;
1733   template <typename... Args>
1734   auto operator()(const Args&...) const -> decltype(*pointer) {
1735     return *pointer;
1736   }
1737 };
1738 
1739 #if GTEST_HAS_EXCEPTIONS
1740 template <typename T>
1741 struct ThrowAction {
1742   T exception;
1743   // We use a conversion operator to adapt to any return type.
1744   template <typename R, typename... Args>
1745   operator Action<R(Args...)>() const {  // NOLINT
1746     T copy = exception;
1747     return [copy](Args...) -> R { throw copy; };
1748   }
1749 };
1750 struct RethrowAction {
1751   std::exception_ptr exception;
1752   template <typename R, typename... Args>
1753   operator Action<R(Args...)>() const {  // NOLINT
1754     return [ex = exception](Args...) -> R { std::rethrow_exception(ex); };
1755   }
1756 };
1757 #endif  // GTEST_HAS_EXCEPTIONS
1758 
1759 }  // namespace internal
1760 
1761 // An Unused object can be implicitly constructed from ANY value.
1762 // This is handy when defining actions that ignore some or all of the
1763 // mock function arguments.  For example, given
1764 //
1765 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1766 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1767 //
1768 // instead of
1769 //
1770 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1771 //     return sqrt(x*x + y*y);
1772 //   }
1773 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1774 //     return sqrt(x*x + y*y);
1775 //   }
1776 //   ...
1777 //   EXPECT_CALL(mock, Foo("abc", _, _))
1778 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1779 //   EXPECT_CALL(mock, Bar(5, _, _))
1780 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1781 //
1782 // you could write
1783 //
1784 //   // We can declare any uninteresting argument as Unused.
1785 //   double DistanceToOrigin(Unused, double x, double y) {
1786 //     return sqrt(x*x + y*y);
1787 //   }
1788 //   ...
1789 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1790 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1791 typedef internal::IgnoredValue Unused;
1792 
1793 // Creates an action that does actions a1, a2, ..., sequentially in
1794 // each invocation. All but the last action will have a readonly view of the
1795 // arguments.
1796 template <typename... Action>
1797 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1798     Action&&... action) {
1799   return internal::DoAllAction<typename std::decay<Action>::type...>(
1800       {}, std::forward<Action>(action)...);
1801 }
1802 
1803 // WithArg<k>(an_action) creates an action that passes the k-th
1804 // (0-based) argument of the mock function to an_action and performs
1805 // it.  It adapts an action accepting one argument to one that accepts
1806 // multiple arguments.  For convenience, we also provide
1807 // WithArgs<k>(an_action) (defined below) as a synonym.
1808 template <size_t k, typename InnerAction>
1809 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1810     InnerAction&& action) {
1811   return {std::forward<InnerAction>(action)};
1812 }
1813 
1814 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1815 // the selected arguments of the mock function to an_action and
1816 // performs it.  It serves as an adaptor between actions with
1817 // different argument lists.
1818 template <size_t k, size_t... ks, typename InnerAction>
1819 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1820 WithArgs(InnerAction&& action) {
1821   return {std::forward<InnerAction>(action)};
1822 }
1823 
1824 // WithoutArgs(inner_action) can be used in a mock function with a
1825 // non-empty argument list to perform inner_action, which takes no
1826 // argument.  In other words, it adapts an action accepting no
1827 // argument to one that accepts (and ignores) arguments.
1828 template <typename InnerAction>
1829 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1830     InnerAction&& action) {
1831   return {std::forward<InnerAction>(action)};
1832 }
1833 
1834 // Creates an action that returns a value.
1835 //
1836 // The returned type can be used with a mock function returning a non-void,
1837 // non-reference type U as follows:
1838 //
1839 //  *  If R is convertible to U and U is move-constructible, then the action can
1840 //     be used with WillOnce.
1841 //
1842 //  *  If const R& is convertible to U and U is copy-constructible, then the
1843 //     action can be used with both WillOnce and WillRepeatedly.
1844 //
1845 // The mock expectation contains the R value from which the U return value is
1846 // constructed (a move/copy of the argument to Return). This means that the R
1847 // value will survive at least until the mock object's expectations are cleared
1848 // or the mock object is destroyed, meaning that U can safely be a
1849 // reference-like type such as std::string_view:
1850 //
1851 //     // The mock function returns a view of a copy of the string fed to
1852 //     // Return. The view is valid even after the action is performed.
1853 //     MockFunction<std::string_view()> mock;
1854 //     EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1855 //     const std::string_view result = mock.AsStdFunction()();
1856 //     EXPECT_EQ("taco", result);
1857 //
1858 template <typename R>
1859 internal::ReturnAction<R> Return(R value) {
1860   return internal::ReturnAction<R>(std::move(value));
1861 }
1862 
1863 // Creates an action that returns NULL.
1864 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1865   return MakePolymorphicAction(internal::ReturnNullAction());
1866 }
1867 
1868 // Creates an action that returns from a void function.
1869 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1870   return MakePolymorphicAction(internal::ReturnVoidAction());
1871 }
1872 
1873 // Creates an action that returns the reference to a variable.
1874 template <typename R>
1875 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1876   return internal::ReturnRefAction<R>(x);
1877 }
1878 
1879 // Prevent using ReturnRef on reference to temporary.
1880 template <typename R, R* = nullptr>
1881 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1882 
1883 // Creates an action that returns the reference to a copy of the
1884 // argument.  The copy is created when the action is constructed and
1885 // lives as long as the action.
1886 template <typename R>
1887 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1888   return internal::ReturnRefOfCopyAction<R>(x);
1889 }
1890 
1891 // DEPRECATED: use Return(x) directly with WillOnce.
1892 //
1893 // Modifies the parent action (a Return() action) to perform a move of the
1894 // argument instead of a copy.
1895 // Return(ByMove()) actions can only be executed once and will assert this
1896 // invariant.
1897 template <typename R>
1898 internal::ByMoveWrapper<R> ByMove(R x) {
1899   return internal::ByMoveWrapper<R>(std::move(x));
1900 }
1901 
1902 // Creates an action that returns an element of `vals`. Calling this action will
1903 // repeatedly return the next value from `vals` until it reaches the end and
1904 // will restart from the beginning.
1905 template <typename T>
1906 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1907   return internal::ReturnRoundRobinAction<T>(std::move(vals));
1908 }
1909 
1910 // Creates an action that returns an element of `vals`. Calling this action will
1911 // repeatedly return the next value from `vals` until it reaches the end and
1912 // will restart from the beginning.
1913 template <typename T>
1914 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1915     std::initializer_list<T> vals) {
1916   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1917 }
1918 
1919 // Creates an action that does the default action for the give mock function.
1920 inline internal::DoDefaultAction DoDefault() {
1921   return internal::DoDefaultAction();
1922 }
1923 
1924 // Creates an action that sets the variable pointed by the N-th
1925 // (0-based) function argument to 'value'.
1926 template <size_t N, typename T>
1927 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1928   return {std::move(value)};
1929 }
1930 
1931 // The following version is DEPRECATED.
1932 template <size_t N, typename T>
1933 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1934   return {std::move(value)};
1935 }
1936 
1937 // Creates an action that sets a pointer referent to a given value.
1938 template <typename T1, typename T2>
1939 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
1940   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1941 }
1942 
1943 #ifndef GTEST_OS_WINDOWS_MOBILE
1944 
1945 // Creates an action that sets errno and returns the appropriate error.
1946 template <typename T>
1947 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
1948     int errval, T result) {
1949   return MakePolymorphicAction(
1950       internal::SetErrnoAndReturnAction<T>(errval, result));
1951 }
1952 
1953 #endif  // !GTEST_OS_WINDOWS_MOBILE
1954 
1955 // Various overloads for Invoke().
1956 
1957 // Legacy function.
1958 // Actions can now be implicitly constructed from callables. No need to create
1959 // wrapper objects.
1960 // This function exists for backwards compatibility.
1961 template <typename FunctionImpl>
1962 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1963   return std::forward<FunctionImpl>(function_impl);
1964 }
1965 
1966 // Creates an action that invokes the given method on the given object
1967 // with the mock function's arguments.
1968 template <class Class, typename MethodPtr>
1969 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1970                                                       MethodPtr method_ptr) {
1971   return {obj_ptr, method_ptr};
1972 }
1973 
1974 // Creates an action that invokes 'function_impl' with no argument.
1975 template <typename FunctionImpl>
1976 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1977 InvokeWithoutArgs(FunctionImpl function_impl) {
1978   return {std::move(function_impl)};
1979 }
1980 
1981 // Creates an action that invokes the given method on the given object
1982 // with no argument.
1983 template <class Class, typename MethodPtr>
1984 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1985     Class* obj_ptr, MethodPtr method_ptr) {
1986   return {obj_ptr, method_ptr};
1987 }
1988 
1989 // Creates an action that performs an_action and throws away its
1990 // result.  In other words, it changes the return type of an_action to
1991 // void.  an_action MUST NOT return void, or the code won't compile.
1992 template <typename A>
1993 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1994   return internal::IgnoreResultAction<A>(an_action);
1995 }
1996 
1997 // Creates a reference wrapper for the given L-value.  If necessary,
1998 // you can explicitly specify the type of the reference.  For example,
1999 // suppose 'derived' is an object of type Derived, ByRef(derived)
2000 // would wrap a Derived&.  If you want to wrap a const Base& instead,
2001 // where Base is a base class of Derived, just write:
2002 //
2003 //   ByRef<const Base>(derived)
2004 //
2005 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
2006 // However, it may still be used for consistency with ByMove().
2007 template <typename T>
2008 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
2009   return ::std::reference_wrapper<T>(l_value);
2010 }
2011 
2012 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2013 // instance of type T, constructed on the heap with constructor arguments
2014 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2015 template <typename T, typename... Params>
2016 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2017     Params&&... params) {
2018   return {std::forward_as_tuple(std::forward<Params>(params)...)};
2019 }
2020 
2021 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2022 template <size_t k>
2023 internal::ReturnArgAction<k> ReturnArg() {
2024   return {};
2025 }
2026 
2027 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2028 // mock function to *pointer.
2029 template <size_t k, typename Ptr>
2030 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2031   return {pointer};
2032 }
2033 
2034 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2035 // by the k-th (0-based) argument of the mock function to *pointer.
2036 template <size_t k, typename Ptr>
2037 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2038   return {pointer};
2039 }
2040 
2041 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2042 // referenced by the k-th (0-based) argument of the mock function.
2043 template <size_t k, typename T>
2044 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2045     T&& value) {
2046   return {std::forward<T>(value)};
2047 }
2048 
2049 // Action SetArrayArgument<k>(first, last) copies the elements in
2050 // source range [first, last) to the array pointed to by the k-th
2051 // (0-based) argument, which can be either a pointer or an
2052 // iterator. The action does not take ownership of the elements in the
2053 // source range.
2054 template <size_t k, typename I1, typename I2>
2055 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2056                                                              I2 last) {
2057   return {first, last};
2058 }
2059 
2060 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2061 // function.
2062 template <size_t k>
2063 internal::DeleteArgAction<k> DeleteArg() {
2064   return {};
2065 }
2066 
2067 // This action returns the value pointed to by 'pointer'.
2068 template <typename Ptr>
2069 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2070   return {pointer};
2071 }
2072 
2073 #if GTEST_HAS_EXCEPTIONS
2074 // Action Throw(exception) can be used in a mock function of any type
2075 // to throw the given exception.  Any copyable value can be thrown,
2076 // except for std::exception_ptr, which is likely a mistake if
2077 // thrown directly.
2078 template <typename T>
2079 typename std::enable_if<
2080     !std::is_base_of<std::exception_ptr, typename std::decay<T>::type>::value,
2081     internal::ThrowAction<typename std::decay<T>::type>>::type
2082 Throw(T&& exception) {
2083   return {std::forward<T>(exception)};
2084 }
2085 // Action Rethrow(exception_ptr) can be used in a mock function of any type
2086 // to rethrow any exception_ptr. Note that the same object is thrown each time.
2087 inline internal::RethrowAction Rethrow(std::exception_ptr exception) {
2088   return {std::move(exception)};
2089 }
2090 #endif  // GTEST_HAS_EXCEPTIONS
2091 
2092 namespace internal {
2093 
2094 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2095 // defines an action that can be used in a mock function.  Typically,
2096 // these actions only care about a subset of the arguments of the mock
2097 // function.  For example, if such an action only uses the second
2098 // argument, it can be used in any mock function that takes >= 2
2099 // arguments where the type of the second argument is compatible.
2100 //
2101 // Therefore, the action implementation must be prepared to take more
2102 // arguments than it needs.  The ExcessiveArg type is used to
2103 // represent those excessive arguments.  In order to keep the compiler
2104 // error messages tractable, we define it in the testing namespace
2105 // instead of testing::internal.  However, this is an INTERNAL TYPE
2106 // and subject to change without notice, so a user MUST NOT USE THIS
2107 // TYPE DIRECTLY.
2108 struct ExcessiveArg {};
2109 
2110 // Builds an implementation of an Action<> for some particular signature, using
2111 // a class defined by an ACTION* macro.
2112 template <typename F, typename Impl>
2113 struct ActionImpl;
2114 
2115 template <typename Impl>
2116 struct ImplBase {
2117   struct Holder {
2118     // Allows each copy of the Action<> to get to the Impl.
2119     explicit operator const Impl&() const { return *ptr; }
2120     std::shared_ptr<Impl> ptr;
2121   };
2122   using type = typename std::conditional<std::is_constructible<Impl>::value,
2123                                          Impl, Holder>::type;
2124 };
2125 
2126 template <typename R, typename... Args, typename Impl>
2127 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2128   using Base = typename ImplBase<Impl>::type;
2129   using function_type = R(Args...);
2130   using args_type = std::tuple<Args...>;
2131 
2132   ActionImpl() = default;  // Only defined if appropriate for Base.
2133   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2134 
2135   R operator()(Args&&... arg) const {
2136     static constexpr size_t kMaxArgs =
2137         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2138     return Apply(std::make_index_sequence<kMaxArgs>{},
2139                  std::make_index_sequence<10 - kMaxArgs>{},
2140                  args_type{std::forward<Args>(arg)...});
2141   }
2142 
2143   template <std::size_t... arg_id, std::size_t... excess_id>
2144   R Apply(std::index_sequence<arg_id...>, std::index_sequence<excess_id...>,
2145           const args_type& args) const {
2146     // Impl need not be specific to the signature of action being implemented;
2147     // only the implementing function body needs to have all of the specific
2148     // types instantiated.  Up to 10 of the args that are provided by the
2149     // args_type get passed, followed by a dummy of unspecified type for the
2150     // remainder up to 10 explicit args.
2151     static constexpr ExcessiveArg kExcessArg{};
2152     return static_cast<const Impl&>(*this)
2153         .template gmock_PerformImpl<
2154             /*function_type=*/function_type, /*return_type=*/R,
2155             /*args_type=*/args_type,
2156             /*argN_type=*/
2157             typename std::tuple_element<arg_id, args_type>::type...>(
2158             /*args=*/args, std::get<arg_id>(args)...,
2159             ((void)excess_id, kExcessArg)...);
2160   }
2161 };
2162 
2163 // Stores a default-constructed Impl as part of the Action<>'s
2164 // std::function<>. The Impl should be trivial to copy.
2165 template <typename F, typename Impl>
2166 ::testing::Action<F> MakeAction() {
2167   return ::testing::Action<F>(ActionImpl<F, Impl>());
2168 }
2169 
2170 // Stores just the one given instance of Impl.
2171 template <typename F, typename Impl>
2172 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2173   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2174 }
2175 
2176 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2177   , GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const arg##i##_type& arg##i
2178 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                               \
2179   GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const args_type& args GMOCK_PP_REPEAT( \
2180       GMOCK_INTERNAL_ARG_UNUSED, , 10)
2181 
2182 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2183 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2184   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2185 
2186 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2187 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2188   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2189 
2190 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2191 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2192   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2193 
2194 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2195 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2196   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2197 
2198 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2199   , param##_type gmock_p##i
2200 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2201   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2202 
2203 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2204   , std::forward<param##_type>(gmock_p##i)
2205 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2206   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2207 
2208 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2209   , param(::std::forward<param##_type>(gmock_p##i))
2210 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2211   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2212 
2213 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2214 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2215   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2216 
2217 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \
2218   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2219   class full_name {                                                            \
2220    public:                                                                     \
2221     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \
2222         : impl_(std::make_shared<gmock_Impl>(                                  \
2223               GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \
2224     full_name(const full_name&) = default;                                     \
2225     full_name(full_name&&) noexcept = default;                                 \
2226     template <typename F>                                                      \
2227     operator ::testing::Action<F>() const {                                    \
2228       return ::testing::internal::MakeAction<F>(impl_);                        \
2229     }                                                                          \
2230                                                                                \
2231    private:                                                                    \
2232     class gmock_Impl {                                                         \
2233      public:                                                                   \
2234       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \
2235           : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \
2236       template <typename function_type, typename return_type,                  \
2237                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
2238       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
2239       GMOCK_ACTION_FIELD_PARAMS_(params)                                       \
2240     };                                                                         \
2241     std::shared_ptr<const gmock_Impl> impl_;                                   \
2242   };                                                                           \
2243   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2244   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2245       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \
2246   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2247   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2248       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \
2249     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \
2250         GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \
2251   }                                                                            \
2252   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2253   template <typename function_type, typename return_type, typename args_type,  \
2254             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
2255   return_type                                                                  \
2256   full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2257       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2258 
2259 }  // namespace internal
2260 
2261 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2262 #define ACTION(name)                                                          \
2263   class name##Action {                                                        \
2264    public:                                                                    \
2265     explicit name##Action() noexcept {}                                       \
2266     name##Action(const name##Action&) noexcept {}                             \
2267     template <typename F>                                                     \
2268     operator ::testing::Action<F>() const {                                   \
2269       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
2270     }                                                                         \
2271                                                                               \
2272    private:                                                                   \
2273     class gmock_Impl {                                                        \
2274      public:                                                                  \
2275       template <typename function_type, typename return_type,                 \
2276                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2277       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2278     };                                                                        \
2279   };                                                                          \
2280   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
2281   inline name##Action name() { return name##Action(); }                       \
2282   template <typename function_type, typename return_type, typename args_type, \
2283             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2284   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
2285       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2286 
2287 #define ACTION_P(name, ...) \
2288   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2289 
2290 #define ACTION_P2(name, ...) \
2291   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2292 
2293 #define ACTION_P3(name, ...) \
2294   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2295 
2296 #define ACTION_P4(name, ...) \
2297   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2298 
2299 #define ACTION_P5(name, ...) \
2300   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2301 
2302 #define ACTION_P6(name, ...) \
2303   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2304 
2305 #define ACTION_P7(name, ...) \
2306   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2307 
2308 #define ACTION_P8(name, ...) \
2309   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2310 
2311 #define ACTION_P9(name, ...) \
2312   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2313 
2314 #define ACTION_P10(name, ...) \
2315   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2316 
2317 }  // namespace testing
2318 
2319 GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100
2320 
2321 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2322