xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is
11 // the output mechanism used by `llc'.
12 //
13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/
14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "MCTargetDesc/PPCInstPrinter.h"
19 #include "MCTargetDesc/PPCMCExpr.h"
20 #include "MCTargetDesc/PPCMCTargetDesc.h"
21 #include "MCTargetDesc/PPCPredicates.h"
22 #include "PPC.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCSubtarget.h"
26 #include "PPCTargetMachine.h"
27 #include "PPCTargetStreamer.h"
28 #include "TargetInfo/PowerPCTargetInfo.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/BinaryFormat/ELF.h"
36 #include "llvm/CodeGen/AsmPrinter.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/StackMaps.h"
45 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/MC/MCAsmInfo.h"
51 #include "llvm/MC/MCContext.h"
52 #include "llvm/MC/MCDirectives.h"
53 #include "llvm/MC/MCExpr.h"
54 #include "llvm/MC/MCInst.h"
55 #include "llvm/MC/MCInstBuilder.h"
56 #include "llvm/MC/MCSectionELF.h"
57 #include "llvm/MC/MCSectionXCOFF.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCSymbolELF.h"
61 #include "llvm/MC/MCSymbolXCOFF.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/MC/TargetRegistry.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Process.h"
71 #include "llvm/Support/Threading.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/TargetParser/Triple.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <memory>
80 #include <new>
81 
82 using namespace llvm;
83 using namespace llvm::XCOFF;
84 
85 #define DEBUG_TYPE "asmprinter"
86 
87 STATISTIC(NumTOCEntries, "Number of Total TOC Entries Emitted.");
88 STATISTIC(NumTOCConstPool, "Number of Constant Pool TOC Entries.");
89 STATISTIC(NumTOCGlobalInternal,
90           "Number of Internal Linkage Global TOC Entries.");
91 STATISTIC(NumTOCGlobalExternal,
92           "Number of External Linkage Global TOC Entries.");
93 STATISTIC(NumTOCJumpTable, "Number of Jump Table TOC Entries.");
94 STATISTIC(NumTOCThreadLocal, "Number of Thread Local TOC Entries.");
95 STATISTIC(NumTOCBlockAddress, "Number of Block Address TOC Entries.");
96 STATISTIC(NumTOCEHBlock, "Number of EH Block TOC Entries.");
97 
98 static cl::opt<bool> EnableSSPCanaryBitInTB(
99     "aix-ssp-tb-bit", cl::init(false),
100     cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
101 
102 // Specialize DenseMapInfo to allow
103 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
104 // This specialization is needed here because that type is used as keys in the
105 // map representing TOC entries.
106 namespace llvm {
107 template <>
108 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
109   using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
110 
getEmptyKeyllvm::DenseMapInfo111   static inline TOCKey getEmptyKey() {
112     return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
113   }
getTombstoneKeyllvm::DenseMapInfo114   static inline TOCKey getTombstoneKey() {
115     return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
116   }
getHashValuellvm::DenseMapInfo117   static unsigned getHashValue(const TOCKey &PairVal) {
118     return detail::combineHashValue(
119         DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
120         DenseMapInfo<int>::getHashValue(PairVal.second));
121   }
isEqualllvm::DenseMapInfo122   static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
123 };
124 } // end namespace llvm
125 
126 namespace {
127 
128 enum {
129   // GNU attribute tags for PowerPC ABI
130   Tag_GNU_Power_ABI_FP = 4,
131   Tag_GNU_Power_ABI_Vector = 8,
132   Tag_GNU_Power_ABI_Struct_Return = 12,
133 
134   // GNU attribute values for PowerPC float ABI, as combination of two parts
135   Val_GNU_Power_ABI_NoFloat = 0b00,
136   Val_GNU_Power_ABI_HardFloat_DP = 0b01,
137   Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
138   Val_GNU_Power_ABI_HardFloat_SP = 0b11,
139 
140   Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
141   Val_GNU_Power_ABI_LDBL_64 = 0b1000,
142   Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
143 };
144 
145 class PPCAsmPrinter : public AsmPrinter {
146 protected:
147   // For TLS on AIX, we need to be able to identify TOC entries of specific
148   // VariantKind so we can add the right relocations when we generate the
149   // entries. So each entry is represented by a pair of MCSymbol and
150   // VariantKind. For example, we need to be able to identify the following
151   // entry as a TLSGD entry so we can add the @m relocation:
152   //   .tc .i[TC],i[TL]@m
153   // By default, VK_None is used for the VariantKind.
154   MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
155             MCSymbol *>
156       TOC;
157   const PPCSubtarget *Subtarget = nullptr;
158 
159   // Keep track of the number of TLS variables and their corresponding
160   // addresses, which is then used for the assembly printing of
161   // non-TOC-based local-exec variables.
162   MapVector<const GlobalValue *, uint64_t> TLSVarsToAddressMapping;
163 
164 public:
PPCAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)165   explicit PPCAsmPrinter(TargetMachine &TM,
166                          std::unique_ptr<MCStreamer> Streamer)
167       : AsmPrinter(TM, std::move(Streamer)) {}
168 
getPassName() const169   StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
170 
171   enum TOCEntryType {
172     TOCType_ConstantPool,
173     TOCType_GlobalExternal,
174     TOCType_GlobalInternal,
175     TOCType_JumpTable,
176     TOCType_ThreadLocal,
177     TOCType_BlockAddress,
178     TOCType_EHBlock
179   };
180 
181   MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
182                                    MCSymbolRefExpr::VariantKind Kind =
183                                        MCSymbolRefExpr::VariantKind::VK_None);
184 
doInitialization(Module & M)185   bool doInitialization(Module &M) override {
186     if (!TOC.empty())
187       TOC.clear();
188     return AsmPrinter::doInitialization(M);
189   }
190 
191   void emitInstruction(const MachineInstr *MI) override;
192 
193   /// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
194   /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
195   /// The \p MI would be INLINEASM ONLY.
196   void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
197 
198   void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
199   bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
200                        const char *ExtraCode, raw_ostream &O) override;
201   bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
202                              const char *ExtraCode, raw_ostream &O) override;
203 
204   void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
205   void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
206   void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
207   void EmitAIXTlsCallHelper(const MachineInstr *MI);
208   const MCExpr *getAdjustedFasterLocalExpr(const MachineOperand &MO,
209                                            int64_t Offset);
runOnMachineFunction(MachineFunction & MF)210   bool runOnMachineFunction(MachineFunction &MF) override {
211     Subtarget = &MF.getSubtarget<PPCSubtarget>();
212     bool Changed = AsmPrinter::runOnMachineFunction(MF);
213     emitXRayTable();
214     return Changed;
215   }
216 };
217 
218 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
219 class PPCLinuxAsmPrinter : public PPCAsmPrinter {
220 public:
PPCLinuxAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)221   explicit PPCLinuxAsmPrinter(TargetMachine &TM,
222                               std::unique_ptr<MCStreamer> Streamer)
223       : PPCAsmPrinter(TM, std::move(Streamer)) {}
224 
getPassName() const225   StringRef getPassName() const override {
226     return "Linux PPC Assembly Printer";
227   }
228 
229   void emitGNUAttributes(Module &M);
230 
231   void emitStartOfAsmFile(Module &M) override;
232   void emitEndOfAsmFile(Module &) override;
233 
234   void emitFunctionEntryLabel() override;
235 
236   void emitFunctionBodyStart() override;
237   void emitFunctionBodyEnd() override;
238   void emitInstruction(const MachineInstr *MI) override;
239 };
240 
241 class PPCAIXAsmPrinter : public PPCAsmPrinter {
242 private:
243   /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
244   /// linkage for them in AIX.
245   SmallSetVector<MCSymbol *, 8> ExtSymSDNodeSymbols;
246 
247   /// A format indicator and unique trailing identifier to form part of the
248   /// sinit/sterm function names.
249   std::string FormatIndicatorAndUniqueModId;
250 
251   // Record a list of GlobalAlias associated with a GlobalObject.
252   // This is used for AIX's extra-label-at-definition aliasing strategy.
253   DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
254       GOAliasMap;
255 
256   uint16_t getNumberOfVRSaved();
257   void emitTracebackTable();
258 
259   SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
260 
261   void emitGlobalVariableHelper(const GlobalVariable *);
262 
263   // Get the offset of an alias based on its AliaseeObject.
264   uint64_t getAliasOffset(const Constant *C);
265 
266 public:
PPCAIXAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)267   PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
268       : PPCAsmPrinter(TM, std::move(Streamer)) {
269     if (MAI->isLittleEndian())
270       report_fatal_error(
271           "cannot create AIX PPC Assembly Printer for a little-endian target");
272   }
273 
getPassName() const274   StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
275 
276   bool doInitialization(Module &M) override;
277 
278   void emitXXStructorList(const DataLayout &DL, const Constant *List,
279                           bool IsCtor) override;
280 
281   void SetupMachineFunction(MachineFunction &MF) override;
282 
283   void emitGlobalVariable(const GlobalVariable *GV) override;
284 
285   void emitFunctionDescriptor() override;
286 
287   void emitFunctionEntryLabel() override;
288 
289   void emitFunctionBodyEnd() override;
290 
291   void emitPGORefs(Module &M);
292 
293   void emitEndOfAsmFile(Module &) override;
294 
295   void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
296 
297   void emitInstruction(const MachineInstr *MI) override;
298 
299   bool doFinalization(Module &M) override;
300 
301   void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
302 
303   void emitModuleCommandLines(Module &M) override;
304 };
305 
306 } // end anonymous namespace
307 
PrintSymbolOperand(const MachineOperand & MO,raw_ostream & O)308 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
309                                        raw_ostream &O) {
310   // Computing the address of a global symbol, not calling it.
311   const GlobalValue *GV = MO.getGlobal();
312   getSymbol(GV)->print(O, MAI);
313   printOffset(MO.getOffset(), O);
314 }
315 
printOperand(const MachineInstr * MI,unsigned OpNo,raw_ostream & O)316 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
317                                  raw_ostream &O) {
318   const DataLayout &DL = getDataLayout();
319   const MachineOperand &MO = MI->getOperand(OpNo);
320 
321   switch (MO.getType()) {
322   case MachineOperand::MO_Register: {
323     // The MI is INLINEASM ONLY and UseVSXReg is always false.
324     const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
325 
326     // Linux assembler (Others?) does not take register mnemonics.
327     // FIXME - What about special registers used in mfspr/mtspr?
328     O << PPC::stripRegisterPrefix(RegName);
329     return;
330   }
331   case MachineOperand::MO_Immediate:
332     O << MO.getImm();
333     return;
334 
335   case MachineOperand::MO_MachineBasicBlock:
336     MO.getMBB()->getSymbol()->print(O, MAI);
337     return;
338   case MachineOperand::MO_ConstantPoolIndex:
339     O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
340       << MO.getIndex();
341     return;
342   case MachineOperand::MO_BlockAddress:
343     GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
344     return;
345   case MachineOperand::MO_GlobalAddress: {
346     PrintSymbolOperand(MO, O);
347     return;
348   }
349 
350   default:
351     O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
352     return;
353   }
354 }
355 
356 /// PrintAsmOperand - Print out an operand for an inline asm expression.
357 ///
PrintAsmOperand(const MachineInstr * MI,unsigned OpNo,const char * ExtraCode,raw_ostream & O)358 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
359                                     const char *ExtraCode, raw_ostream &O) {
360   // Does this asm operand have a single letter operand modifier?
361   if (ExtraCode && ExtraCode[0]) {
362     if (ExtraCode[1] != 0) return true; // Unknown modifier.
363 
364     switch (ExtraCode[0]) {
365     default:
366       // See if this is a generic print operand
367       return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
368     case 'L': // Write second word of DImode reference.
369       // Verify that this operand has two consecutive registers.
370       if (!MI->getOperand(OpNo).isReg() ||
371           OpNo+1 == MI->getNumOperands() ||
372           !MI->getOperand(OpNo+1).isReg())
373         return true;
374       ++OpNo;   // Return the high-part.
375       break;
376     case 'I':
377       // Write 'i' if an integer constant, otherwise nothing.  Used to print
378       // addi vs add, etc.
379       if (MI->getOperand(OpNo).isImm())
380         O << "i";
381       return false;
382     case 'x':
383       if(!MI->getOperand(OpNo).isReg())
384         return true;
385       // This operand uses VSX numbering.
386       // If the operand is a VMX register, convert it to a VSX register.
387       Register Reg = MI->getOperand(OpNo).getReg();
388       if (PPC::isVRRegister(Reg))
389         Reg = PPC::VSX32 + (Reg - PPC::V0);
390       else if (PPC::isVFRegister(Reg))
391         Reg = PPC::VSX32 + (Reg - PPC::VF0);
392       const char *RegName;
393       RegName = PPCInstPrinter::getRegisterName(Reg);
394       RegName = PPC::stripRegisterPrefix(RegName);
395       O << RegName;
396       return false;
397     }
398   }
399 
400   printOperand(MI, OpNo, O);
401   return false;
402 }
403 
404 // At the moment, all inline asm memory operands are a single register.
405 // In any case, the output of this routine should always be just one
406 // assembler operand.
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNo,const char * ExtraCode,raw_ostream & O)407 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
408                                           const char *ExtraCode,
409                                           raw_ostream &O) {
410   if (ExtraCode && ExtraCode[0]) {
411     if (ExtraCode[1] != 0) return true; // Unknown modifier.
412 
413     switch (ExtraCode[0]) {
414     default: return true;  // Unknown modifier.
415     case 'L': // A memory reference to the upper word of a double word op.
416       O << getDataLayout().getPointerSize() << "(";
417       printOperand(MI, OpNo, O);
418       O << ")";
419       return false;
420     case 'y': // A memory reference for an X-form instruction
421       O << "0, ";
422       printOperand(MI, OpNo, O);
423       return false;
424     case 'I':
425       // Write 'i' if an integer constant, otherwise nothing.  Used to print
426       // addi vs add, etc.
427       if (MI->getOperand(OpNo).isImm())
428         O << "i";
429       return false;
430     case 'U': // Print 'u' for update form.
431     case 'X': // Print 'x' for indexed form.
432       // FIXME: Currently for PowerPC memory operands are always loaded
433       // into a register, so we never get an update or indexed form.
434       // This is bad even for offset forms, since even if we know we
435       // have a value in -16(r1), we will generate a load into r<n>
436       // and then load from 0(r<n>).  Until that issue is fixed,
437       // tolerate 'U' and 'X' but don't output anything.
438       assert(MI->getOperand(OpNo).isReg());
439       return false;
440     }
441   }
442 
443   assert(MI->getOperand(OpNo).isReg());
444   O << "0(";
445   printOperand(MI, OpNo, O);
446   O << ")";
447   return false;
448 }
449 
collectTOCStats(PPCAsmPrinter::TOCEntryType Type)450 static void collectTOCStats(PPCAsmPrinter::TOCEntryType Type) {
451   ++NumTOCEntries;
452   switch (Type) {
453   case PPCAsmPrinter::TOCType_ConstantPool:
454     ++NumTOCConstPool;
455     break;
456   case PPCAsmPrinter::TOCType_GlobalInternal:
457     ++NumTOCGlobalInternal;
458     break;
459   case PPCAsmPrinter::TOCType_GlobalExternal:
460     ++NumTOCGlobalExternal;
461     break;
462   case PPCAsmPrinter::TOCType_JumpTable:
463     ++NumTOCJumpTable;
464     break;
465   case PPCAsmPrinter::TOCType_ThreadLocal:
466     ++NumTOCThreadLocal;
467     break;
468   case PPCAsmPrinter::TOCType_BlockAddress:
469     ++NumTOCBlockAddress;
470     break;
471   case PPCAsmPrinter::TOCType_EHBlock:
472     ++NumTOCEHBlock;
473     break;
474   }
475 }
476 
getCodeModel(const PPCSubtarget & S,const TargetMachine & TM,const MachineOperand & MO)477 static CodeModel::Model getCodeModel(const PPCSubtarget &S,
478                                      const TargetMachine &TM,
479                                      const MachineOperand &MO) {
480   CodeModel::Model ModuleModel = TM.getCodeModel();
481 
482   // If the operand is not a global address then there is no
483   // global variable to carry an attribute.
484   if (!(MO.getType() == MachineOperand::MO_GlobalAddress))
485     return ModuleModel;
486 
487   const GlobalValue *GV = MO.getGlobal();
488   assert(GV && "expected global for MO_GlobalAddress");
489 
490   return S.getCodeModel(TM, GV);
491 }
492 
setOptionalCodeModel(MCSymbolXCOFF * XSym,CodeModel::Model CM)493 static void setOptionalCodeModel(MCSymbolXCOFF *XSym, CodeModel::Model CM) {
494   switch (CM) {
495   case CodeModel::Large:
496     XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Large);
497     return;
498   case CodeModel::Small:
499     XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Small);
500     return;
501   default:
502     report_fatal_error("Invalid code model for AIX");
503   }
504 }
505 
506 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
507 /// exists for it.  If not, create one.  Then return a symbol that references
508 /// the TOC entry.
509 MCSymbol *
lookUpOrCreateTOCEntry(const MCSymbol * Sym,TOCEntryType Type,MCSymbolRefExpr::VariantKind Kind)510 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
511                                       MCSymbolRefExpr::VariantKind Kind) {
512   // If this is a new TOC entry add statistics about it.
513   if (!TOC.contains({Sym, Kind}))
514     collectTOCStats(Type);
515 
516   MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
517   if (!TOCEntry)
518     TOCEntry = createTempSymbol("C");
519   return TOCEntry;
520 }
521 
LowerSTACKMAP(StackMaps & SM,const MachineInstr & MI)522 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
523   unsigned NumNOPBytes = MI.getOperand(1).getImm();
524 
525   auto &Ctx = OutStreamer->getContext();
526   MCSymbol *MILabel = Ctx.createTempSymbol();
527   OutStreamer->emitLabel(MILabel);
528 
529   SM.recordStackMap(*MILabel, MI);
530   assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
531 
532   // Scan ahead to trim the shadow.
533   const MachineBasicBlock &MBB = *MI.getParent();
534   MachineBasicBlock::const_iterator MII(MI);
535   ++MII;
536   while (NumNOPBytes > 0) {
537     if (MII == MBB.end() || MII->isCall() ||
538         MII->getOpcode() == PPC::DBG_VALUE ||
539         MII->getOpcode() == TargetOpcode::PATCHPOINT ||
540         MII->getOpcode() == TargetOpcode::STACKMAP)
541       break;
542     ++MII;
543     NumNOPBytes -= 4;
544   }
545 
546   // Emit nops.
547   for (unsigned i = 0; i < NumNOPBytes; i += 4)
548     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
549 }
550 
551 // Lower a patchpoint of the form:
552 // [<def>], <id>, <numBytes>, <target>, <numArgs>
LowerPATCHPOINT(StackMaps & SM,const MachineInstr & MI)553 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
554   auto &Ctx = OutStreamer->getContext();
555   MCSymbol *MILabel = Ctx.createTempSymbol();
556   OutStreamer->emitLabel(MILabel);
557 
558   SM.recordPatchPoint(*MILabel, MI);
559   PatchPointOpers Opers(&MI);
560 
561   unsigned EncodedBytes = 0;
562   const MachineOperand &CalleeMO = Opers.getCallTarget();
563 
564   if (CalleeMO.isImm()) {
565     int64_t CallTarget = CalleeMO.getImm();
566     if (CallTarget) {
567       assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
568              "High 16 bits of call target should be zero.");
569       Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
570       EncodedBytes = 0;
571       // Materialize the jump address:
572       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
573                                       .addReg(ScratchReg)
574                                       .addImm((CallTarget >> 32) & 0xFFFF));
575       ++EncodedBytes;
576       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
577                                       .addReg(ScratchReg)
578                                       .addReg(ScratchReg)
579                                       .addImm(32).addImm(16));
580       ++EncodedBytes;
581       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
582                                       .addReg(ScratchReg)
583                                       .addReg(ScratchReg)
584                                       .addImm((CallTarget >> 16) & 0xFFFF));
585       ++EncodedBytes;
586       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
587                                       .addReg(ScratchReg)
588                                       .addReg(ScratchReg)
589                                       .addImm(CallTarget & 0xFFFF));
590 
591       // Save the current TOC pointer before the remote call.
592       int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
593       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
594                                       .addReg(PPC::X2)
595                                       .addImm(TOCSaveOffset)
596                                       .addReg(PPC::X1));
597       ++EncodedBytes;
598 
599       // If we're on ELFv1, then we need to load the actual function pointer
600       // from the function descriptor.
601       if (!Subtarget->isELFv2ABI()) {
602         // Load the new TOC pointer and the function address, but not r11
603         // (needing this is rare, and loading it here would prevent passing it
604         // via a 'nest' parameter.
605         EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
606                                         .addReg(PPC::X2)
607                                         .addImm(8)
608                                         .addReg(ScratchReg));
609         ++EncodedBytes;
610         EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
611                                         .addReg(ScratchReg)
612                                         .addImm(0)
613                                         .addReg(ScratchReg));
614         ++EncodedBytes;
615       }
616 
617       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
618                                       .addReg(ScratchReg));
619       ++EncodedBytes;
620       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
621       ++EncodedBytes;
622 
623       // Restore the TOC pointer after the call.
624       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
625                                       .addReg(PPC::X2)
626                                       .addImm(TOCSaveOffset)
627                                       .addReg(PPC::X1));
628       ++EncodedBytes;
629     }
630   } else if (CalleeMO.isGlobal()) {
631     const GlobalValue *GValue = CalleeMO.getGlobal();
632     MCSymbol *MOSymbol = getSymbol(GValue);
633     const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
634 
635     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
636                                     .addExpr(SymVar));
637     EncodedBytes += 2;
638   }
639 
640   // Each instruction is 4 bytes.
641   EncodedBytes *= 4;
642 
643   // Emit padding.
644   unsigned NumBytes = Opers.getNumPatchBytes();
645   assert(NumBytes >= EncodedBytes &&
646          "Patchpoint can't request size less than the length of a call.");
647   assert((NumBytes - EncodedBytes) % 4 == 0 &&
648          "Invalid number of NOP bytes requested!");
649   for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
650     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
651 }
652 
653 /// This helper function creates the TlsGetAddr/TlsGetMod MCSymbol for AIX. We
654 /// will create the csect and use the qual-name symbol instead of creating just
655 /// the external symbol.
createMCSymbolForTlsGetAddr(MCContext & Ctx,unsigned MIOpc)656 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx, unsigned MIOpc) {
657   StringRef SymName;
658   switch (MIOpc) {
659   default:
660     SymName = ".__tls_get_addr";
661     break;
662   case PPC::GETtlsTpointer32AIX:
663     SymName = ".__get_tpointer";
664     break;
665   case PPC::GETtlsMOD32AIX:
666   case PPC::GETtlsMOD64AIX:
667     SymName = ".__tls_get_mod";
668     break;
669   }
670   return Ctx
671       .getXCOFFSection(SymName, SectionKind::getText(),
672                        XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
673       ->getQualNameSymbol();
674 }
675 
EmitAIXTlsCallHelper(const MachineInstr * MI)676 void PPCAsmPrinter::EmitAIXTlsCallHelper(const MachineInstr *MI) {
677   assert(Subtarget->isAIXABI() &&
678          "Only expecting to emit calls to get the thread pointer on AIX!");
679 
680   MCSymbol *TlsCall = createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
681   const MCExpr *TlsRef =
682       MCSymbolRefExpr::create(TlsCall, MCSymbolRefExpr::VK_None, OutContext);
683   EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
684 }
685 
686 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
687 /// call to __tls_get_addr to the current output stream.
EmitTlsCall(const MachineInstr * MI,MCSymbolRefExpr::VariantKind VK)688 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
689                                 MCSymbolRefExpr::VariantKind VK) {
690   MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
691   unsigned Opcode = PPC::BL8_NOP_TLS;
692 
693   assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
694   if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
695       MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
696     Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
697     Opcode = PPC::BL8_NOTOC_TLS;
698   }
699   const Module *M = MF->getFunction().getParent();
700 
701   assert(MI->getOperand(0).isReg() &&
702          ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
703           (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
704          "GETtls[ld]ADDR[32] must define GPR3");
705   assert(MI->getOperand(1).isReg() &&
706          ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
707           (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
708          "GETtls[ld]ADDR[32] must read GPR3");
709 
710   if (Subtarget->isAIXABI()) {
711     // For TLSGD, the variable offset should already be in R4 and the region
712     // handle should already be in R3. We generate an absolute branch to
713     // .__tls_get_addr. For TLSLD, the module handle should already be in R3.
714     // We generate an absolute branch to .__tls_get_mod.
715     Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
716     (void)VarOffsetReg;
717     assert((MI->getOpcode() == PPC::GETtlsMOD32AIX ||
718             MI->getOpcode() == PPC::GETtlsMOD64AIX ||
719             (MI->getOperand(2).isReg() &&
720              MI->getOperand(2).getReg() == VarOffsetReg)) &&
721            "GETtls[ld]ADDR[32] must read GPR4");
722     EmitAIXTlsCallHelper(MI);
723     return;
724   }
725 
726   MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
727 
728   if (Subtarget->is32BitELFABI() && isPositionIndependent())
729     Kind = MCSymbolRefExpr::VK_PLT;
730 
731   const MCExpr *TlsRef =
732     MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
733 
734   // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
735   if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
736       M->getPICLevel() == PICLevel::BigPIC)
737     TlsRef = MCBinaryExpr::createAdd(
738         TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
739   const MachineOperand &MO = MI->getOperand(2);
740   const GlobalValue *GValue = MO.getGlobal();
741   MCSymbol *MOSymbol = getSymbol(GValue);
742   const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
743   EmitToStreamer(*OutStreamer,
744                  MCInstBuilder(Subtarget->isPPC64() ? Opcode
745                                                     : (unsigned)PPC::BL_TLS)
746                      .addExpr(TlsRef)
747                      .addExpr(SymVar));
748 }
749 
750 /// Map a machine operand for a TOC pseudo-machine instruction to its
751 /// corresponding MCSymbol.
getMCSymbolForTOCPseudoMO(const MachineOperand & MO,AsmPrinter & AP)752 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
753                                            AsmPrinter &AP) {
754   switch (MO.getType()) {
755   case MachineOperand::MO_GlobalAddress:
756     return AP.getSymbol(MO.getGlobal());
757   case MachineOperand::MO_ConstantPoolIndex:
758     return AP.GetCPISymbol(MO.getIndex());
759   case MachineOperand::MO_JumpTableIndex:
760     return AP.GetJTISymbol(MO.getIndex());
761   case MachineOperand::MO_BlockAddress:
762     return AP.GetBlockAddressSymbol(MO.getBlockAddress());
763   default:
764     llvm_unreachable("Unexpected operand type to get symbol.");
765   }
766 }
767 
768 static PPCAsmPrinter::TOCEntryType
getTOCEntryTypeForMO(const MachineOperand & MO)769 getTOCEntryTypeForMO(const MachineOperand &MO) {
770   // Use the target flags to determine if this MO is Thread Local.
771   // If we don't do this it comes out as Global.
772   if (PPCInstrInfo::hasTLSFlag(MO.getTargetFlags()))
773     return PPCAsmPrinter::TOCType_ThreadLocal;
774 
775   switch (MO.getType()) {
776   case MachineOperand::MO_GlobalAddress: {
777     const GlobalValue *GlobalV = MO.getGlobal();
778     GlobalValue::LinkageTypes Linkage = GlobalV->getLinkage();
779     if (Linkage == GlobalValue::ExternalLinkage ||
780         Linkage == GlobalValue::AvailableExternallyLinkage ||
781         Linkage == GlobalValue::ExternalWeakLinkage)
782       return PPCAsmPrinter::TOCType_GlobalExternal;
783 
784     return PPCAsmPrinter::TOCType_GlobalInternal;
785   }
786   case MachineOperand::MO_ConstantPoolIndex:
787     return PPCAsmPrinter::TOCType_ConstantPool;
788   case MachineOperand::MO_JumpTableIndex:
789     return PPCAsmPrinter::TOCType_JumpTable;
790   case MachineOperand::MO_BlockAddress:
791     return PPCAsmPrinter::TOCType_BlockAddress;
792   default:
793     llvm_unreachable("Unexpected operand type to get TOC type.");
794   }
795 }
796 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
797 /// the current output stream.
798 ///
emitInstruction(const MachineInstr * MI)799 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
800   PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
801                                       getSubtargetInfo().getFeatureBits());
802 
803   MCInst TmpInst;
804   const bool IsPPC64 = Subtarget->isPPC64();
805   const bool IsAIX = Subtarget->isAIXABI();
806   const bool HasAIXSmallLocalTLS = Subtarget->hasAIXSmallLocalExecTLS() ||
807                                    Subtarget->hasAIXSmallLocalDynamicTLS();
808   const Module *M = MF->getFunction().getParent();
809   PICLevel::Level PL = M->getPICLevel();
810 
811 #ifndef NDEBUG
812   // Validate that SPE and FPU are mutually exclusive in codegen
813   if (!MI->isInlineAsm()) {
814     for (const MachineOperand &MO: MI->operands()) {
815       if (MO.isReg()) {
816         Register Reg = MO.getReg();
817         if (Subtarget->hasSPE()) {
818           if (PPC::F4RCRegClass.contains(Reg) ||
819               PPC::F8RCRegClass.contains(Reg) ||
820               PPC::VFRCRegClass.contains(Reg) ||
821               PPC::VRRCRegClass.contains(Reg) ||
822               PPC::VSFRCRegClass.contains(Reg) ||
823               PPC::VSSRCRegClass.contains(Reg)
824               )
825             llvm_unreachable("SPE targets cannot have FPRegs!");
826         } else {
827           if (PPC::SPERCRegClass.contains(Reg))
828             llvm_unreachable("SPE register found in FPU-targeted code!");
829         }
830       }
831     }
832   }
833 #endif
834 
835   auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
836                                                 ptrdiff_t OriginalOffset) {
837     // Apply an offset to the TOC-based expression such that the adjusted
838     // notional offset from the TOC base (to be encoded into the instruction's D
839     // or DS field) is the signed 16-bit truncation of the original notional
840     // offset from the TOC base.
841     // This is consistent with the treatment used both by XL C/C++ and
842     // by AIX ld -r.
843     ptrdiff_t Adjustment =
844         OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
845     return MCBinaryExpr::createAdd(
846         Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
847   };
848 
849   auto getTOCEntryLoadingExprForXCOFF =
850       [IsPPC64, getTOCRelocAdjustedExprForXCOFF,
851        this](const MCSymbol *MOSymbol, const MCExpr *Expr,
852              MCSymbolRefExpr::VariantKind VK =
853                  MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
854     const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
855     const auto TOCEntryIter = TOC.find({MOSymbol, VK});
856     assert(TOCEntryIter != TOC.end() &&
857            "Could not find the TOC entry for this symbol.");
858     const ptrdiff_t EntryDistanceFromTOCBase =
859         (TOCEntryIter - TOC.begin()) * EntryByteSize;
860     constexpr int16_t PositiveTOCRange = INT16_MAX;
861 
862     if (EntryDistanceFromTOCBase > PositiveTOCRange)
863       return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
864 
865     return Expr;
866   };
867   auto GetVKForMO = [&](const MachineOperand &MO) {
868     // For TLS initial-exec and local-exec accesses on AIX, we have one TOC
869     // entry for the symbol (with the variable offset), which is differentiated
870     // by MO_TPREL_FLAG.
871     unsigned Flag = MO.getTargetFlags();
872     if (Flag == PPCII::MO_TPREL_FLAG ||
873         Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
874         Flag == PPCII::MO_TPREL_PCREL_FLAG) {
875       assert(MO.isGlobal() && "Only expecting a global MachineOperand here!\n");
876       TLSModel::Model Model = TM.getTLSModel(MO.getGlobal());
877       if (Model == TLSModel::LocalExec)
878         return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLE;
879       if (Model == TLSModel::InitialExec)
880         return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
881       // On AIX, TLS model opt may have turned local-dynamic accesses into
882       // initial-exec accesses.
883       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
884       if (Model == TLSModel::LocalDynamic &&
885           FuncInfo->isAIXFuncUseTLSIEForLD()) {
886         LLVM_DEBUG(
887             dbgs() << "Current function uses IE access for default LD vars.\n");
888         return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
889       }
890       llvm_unreachable("Only expecting local-exec or initial-exec accesses!");
891     }
892     // For GD TLS access on AIX, we have two TOC entries for the symbol (one for
893     // the variable offset and the other for the region handle). They are
894     // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
895     if (Flag == PPCII::MO_TLSGDM_FLAG)
896       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
897     if (Flag == PPCII::MO_TLSGD_FLAG || Flag == PPCII::MO_GOT_TLSGD_PCREL_FLAG)
898       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
899     // For local-dynamic TLS access on AIX, we have one TOC entry for the symbol
900     // (the variable offset) and one shared TOC entry for the module handle.
901     // They are differentiated by MO_TLSLD_FLAG and MO_TLSLDM_FLAG.
902     if (Flag == PPCII::MO_TLSLD_FLAG && IsAIX)
903       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD;
904     if (Flag == PPCII::MO_TLSLDM_FLAG && IsAIX)
905       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSML;
906     return MCSymbolRefExpr::VariantKind::VK_None;
907   };
908 
909   // Lower multi-instruction pseudo operations.
910   switch (MI->getOpcode()) {
911   default: break;
912   case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
913     assert(!Subtarget->isAIXABI() &&
914            "AIX does not support patchable function entry!");
915     // PATCHABLE_FUNCTION_ENTER on little endian is for XRAY support which is
916     // handled in PPCLinuxAsmPrinter.
917     if (MAI->isLittleEndian())
918       return;
919     const Function &F = MF->getFunction();
920     unsigned Num = 0;
921     (void)F.getFnAttribute("patchable-function-entry")
922         .getValueAsString()
923         .getAsInteger(10, Num);
924     if (!Num)
925       return;
926     emitNops(Num);
927     return;
928   }
929   case TargetOpcode::DBG_VALUE:
930     llvm_unreachable("Should be handled target independently");
931   case TargetOpcode::STACKMAP:
932     return LowerSTACKMAP(SM, *MI);
933   case TargetOpcode::PATCHPOINT:
934     return LowerPATCHPOINT(SM, *MI);
935 
936   case PPC::MoveGOTtoLR: {
937     // Transform %lr = MoveGOTtoLR
938     // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
939     // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
940     // _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
941     //      blrl
942     // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
943     MCSymbol *GOTSymbol =
944       OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
945     const MCExpr *OffsExpr =
946       MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
947                                                       MCSymbolRefExpr::VK_PPC_LOCAL,
948                                                       OutContext),
949                               MCConstantExpr::create(4, OutContext),
950                               OutContext);
951 
952     // Emit the 'bl'.
953     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
954     return;
955   }
956   case PPC::MovePCtoLR:
957   case PPC::MovePCtoLR8: {
958     // Transform %lr = MovePCtoLR
959     // Into this, where the label is the PIC base:
960     //     bl L1$pb
961     // L1$pb:
962     MCSymbol *PICBase = MF->getPICBaseSymbol();
963 
964     // Emit the 'bl'.
965     EmitToStreamer(*OutStreamer,
966                    MCInstBuilder(PPC::BL)
967                        // FIXME: We would like an efficient form for this, so we
968                        // don't have to do a lot of extra uniquing.
969                        .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
970 
971     // Emit the label.
972     OutStreamer->emitLabel(PICBase);
973     return;
974   }
975   case PPC::UpdateGBR: {
976     // Transform %rd = UpdateGBR(%rt, %ri)
977     // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
978     //       add %rd, %rt, %ri
979     // or into (if secure plt mode is on):
980     //       addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
981     //       addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
982     // Get the offset from the GOT Base Register to the GOT
983     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
984     if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
985       unsigned PICR = TmpInst.getOperand(0).getReg();
986       MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
987           M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
988                                                  : ".LTOC");
989       const MCExpr *PB =
990           MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
991 
992       const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
993           MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
994 
995       const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
996       EmitToStreamer(
997           *OutStreamer,
998           MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
999 
1000       const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
1001       EmitToStreamer(
1002           *OutStreamer,
1003           MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
1004       return;
1005     } else {
1006       MCSymbol *PICOffset =
1007         MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
1008       TmpInst.setOpcode(PPC::LWZ);
1009       const MCExpr *Exp =
1010         MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
1011       const MCExpr *PB =
1012         MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
1013                                 MCSymbolRefExpr::VK_None,
1014                                 OutContext);
1015       const MCOperand TR = TmpInst.getOperand(1);
1016       const MCOperand PICR = TmpInst.getOperand(0);
1017 
1018       // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
1019       TmpInst.getOperand(1) =
1020           MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
1021       TmpInst.getOperand(0) = TR;
1022       TmpInst.getOperand(2) = PICR;
1023       EmitToStreamer(*OutStreamer, TmpInst);
1024 
1025       TmpInst.setOpcode(PPC::ADD4);
1026       TmpInst.getOperand(0) = PICR;
1027       TmpInst.getOperand(1) = TR;
1028       TmpInst.getOperand(2) = PICR;
1029       EmitToStreamer(*OutStreamer, TmpInst);
1030       return;
1031     }
1032   }
1033   case PPC::LWZtoc: {
1034     // Transform %rN = LWZtoc @op1, %r2
1035     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1036 
1037     // Change the opcode to LWZ.
1038     TmpInst.setOpcode(PPC::LWZ);
1039 
1040     const MachineOperand &MO = MI->getOperand(1);
1041     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1042            "Invalid operand for LWZtoc.");
1043 
1044     // Map the operand to its corresponding MCSymbol.
1045     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1046 
1047     // Create a reference to the GOT entry for the symbol. The GOT entry will be
1048     // synthesized later.
1049     if (PL == PICLevel::SmallPIC && !IsAIX) {
1050       const MCExpr *Exp =
1051         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
1052                                 OutContext);
1053       TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1054       EmitToStreamer(*OutStreamer, TmpInst);
1055       return;
1056     }
1057 
1058     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1059 
1060     // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
1061     // storage allocated in the TOC which contains the address of
1062     // 'MOSymbol'. Said TOC entry will be synthesized later.
1063     MCSymbol *TOCEntry =
1064         lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1065     const MCExpr *Exp =
1066         MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
1067 
1068     // AIX uses the label directly as the lwz displacement operand for
1069     // references into the toc section. The displacement value will be generated
1070     // relative to the toc-base.
1071     if (IsAIX) {
1072       assert(
1073           getCodeModel(*Subtarget, TM, MO) == CodeModel::Small &&
1074           "This pseudo should only be selected for 32-bit small code model.");
1075       Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
1076       TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1077 
1078       // Print MO for better readability
1079       if (isVerbose())
1080         OutStreamer->getCommentOS() << MO << '\n';
1081       EmitToStreamer(*OutStreamer, TmpInst);
1082       return;
1083     }
1084 
1085     // Create an explicit subtract expression between the local symbol and
1086     // '.LTOC' to manifest the toc-relative offset.
1087     const MCExpr *PB = MCSymbolRefExpr::create(
1088         OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
1089     Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
1090     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1091     EmitToStreamer(*OutStreamer, TmpInst);
1092     return;
1093   }
1094   case PPC::ADDItoc:
1095   case PPC::ADDItoc8: {
1096     assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
1097            "PseudoOp only valid for small code model AIX");
1098 
1099     // Transform %rN = ADDItoc/8 %r2, @op1.
1100     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1101 
1102     // Change the opcode to load address.
1103     TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
1104 
1105     const MachineOperand &MO = MI->getOperand(2);
1106     assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
1107 
1108     // Map the operand to its corresponding MCSymbol.
1109     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1110 
1111     const MCExpr *Exp =
1112         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
1113 
1114     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1115     EmitToStreamer(*OutStreamer, TmpInst);
1116     return;
1117   }
1118   case PPC::LDtocJTI:
1119   case PPC::LDtocCPT:
1120   case PPC::LDtocBA:
1121   case PPC::LDtoc: {
1122     // Transform %x3 = LDtoc @min1, %x2
1123     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1124 
1125     // Change the opcode to LD.
1126     TmpInst.setOpcode(PPC::LD);
1127 
1128     const MachineOperand &MO = MI->getOperand(1);
1129     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1130            "Invalid operand!");
1131 
1132     // Map the operand to its corresponding MCSymbol.
1133     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1134 
1135     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1136 
1137     // Map the machine operand to its corresponding MCSymbol, then map the
1138     // global address operand to be a reference to the TOC entry we will
1139     // synthesize later.
1140     MCSymbol *TOCEntry =
1141         lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1142 
1143     MCSymbolRefExpr::VariantKind VKExpr =
1144         IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
1145     const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
1146     TmpInst.getOperand(1) = MCOperand::createExpr(
1147         IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
1148 
1149     // Print MO for better readability
1150     if (isVerbose() && IsAIX)
1151       OutStreamer->getCommentOS() << MO << '\n';
1152     EmitToStreamer(*OutStreamer, TmpInst);
1153     return;
1154   }
1155   case PPC::ADDIStocHA: {
1156     const MachineOperand &MO = MI->getOperand(2);
1157 
1158     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1159            "Invalid operand for ADDIStocHA.");
1160     assert((IsAIX && !IsPPC64 &&
1161             getCodeModel(*Subtarget, TM, MO) == CodeModel::Large) &&
1162            "This pseudo should only be selected for 32-bit large code model on"
1163            " AIX.");
1164 
1165     // Transform %rd = ADDIStocHA %rA, @sym(%r2)
1166     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1167 
1168     // Change the opcode to ADDIS.
1169     TmpInst.setOpcode(PPC::ADDIS);
1170 
1171     // Map the machine operand to its corresponding MCSymbol.
1172     MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1173 
1174     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1175 
1176     // Map the global address operand to be a reference to the TOC entry we
1177     // will synthesize later. 'TOCEntry' is a label used to reference the
1178     // storage allocated in the TOC which contains the address of 'MOSymbol'.
1179     // If the symbol does not have the toc-data attribute, then we create the
1180     // TOC entry on AIX. If the toc-data attribute is used, the TOC entry
1181     // contains the data rather than the address of the MOSymbol.
1182     if (![](const MachineOperand &MO) {
1183           if (!MO.isGlobal())
1184             return false;
1185 
1186           const GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal());
1187           if (!GV)
1188             return false;
1189           return GV->hasAttribute("toc-data");
1190         }(MO)) {
1191       MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1192     }
1193 
1194     const MCExpr *Exp = MCSymbolRefExpr::create(
1195         MOSymbol, MCSymbolRefExpr::VK_PPC_U, OutContext);
1196     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1197     EmitToStreamer(*OutStreamer, TmpInst);
1198     return;
1199   }
1200   case PPC::LWZtocL: {
1201     const MachineOperand &MO = MI->getOperand(1);
1202 
1203     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1204            "Invalid operand for LWZtocL.");
1205     assert(IsAIX && !IsPPC64 &&
1206            getCodeModel(*Subtarget, TM, MO) == CodeModel::Large &&
1207            "This pseudo should only be selected for 32-bit large code model on"
1208            " AIX.");
1209 
1210     // Transform %rd = LWZtocL @sym, %rs.
1211     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1212 
1213     // Change the opcode to lwz.
1214     TmpInst.setOpcode(PPC::LWZ);
1215 
1216     // Map the machine operand to its corresponding MCSymbol.
1217     MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1218 
1219     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1220 
1221     // Always use TOC on AIX. Map the global address operand to be a reference
1222     // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
1223     // reference the storage allocated in the TOC which contains the address of
1224     // 'MOSymbol'.
1225     MCSymbol *TOCEntry =
1226         lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1227     const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
1228                                                 MCSymbolRefExpr::VK_PPC_L,
1229                                                 OutContext);
1230     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1231     EmitToStreamer(*OutStreamer, TmpInst);
1232     return;
1233   }
1234   case PPC::ADDIStocHA8: {
1235     // Transform %xd = ADDIStocHA8 %x2, @sym
1236     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1237 
1238     // Change the opcode to ADDIS8. If the global address is the address of
1239     // an external symbol, is a jump table address, is a block address, or is a
1240     // constant pool index with large code model enabled, then generate a TOC
1241     // entry and reference that. Otherwise, reference the symbol directly.
1242     TmpInst.setOpcode(PPC::ADDIS8);
1243 
1244     const MachineOperand &MO = MI->getOperand(2);
1245     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1246            "Invalid operand for ADDIStocHA8!");
1247 
1248     const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1249 
1250     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1251 
1252     const bool GlobalToc =
1253         MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1254 
1255     const CodeModel::Model CM =
1256         IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1257 
1258     if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1259         (MO.isCPI() && CM == CodeModel::Large))
1260       MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1261 
1262     VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1263 
1264     const MCExpr *Exp =
1265         MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1266 
1267     if (!MO.isJTI() && MO.getOffset())
1268       Exp = MCBinaryExpr::createAdd(Exp,
1269                                     MCConstantExpr::create(MO.getOffset(),
1270                                                            OutContext),
1271                                     OutContext);
1272 
1273     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1274     EmitToStreamer(*OutStreamer, TmpInst);
1275     return;
1276   }
1277   case PPC::LDtocL: {
1278     // Transform %xd = LDtocL @sym, %xs
1279     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1280 
1281     // Change the opcode to LD. If the global address is the address of
1282     // an external symbol, is a jump table address, is a block address, or is
1283     // a constant pool index with large code model enabled, then generate a
1284     // TOC entry and reference that. Otherwise, reference the symbol directly.
1285     TmpInst.setOpcode(PPC::LD);
1286 
1287     const MachineOperand &MO = MI->getOperand(1);
1288     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1289             MO.isBlockAddress()) &&
1290            "Invalid operand for LDtocL!");
1291 
1292     LLVM_DEBUG(assert(
1293         (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1294         "LDtocL used on symbol that could be accessed directly is "
1295         "invalid. Must match ADDIStocHA8."));
1296 
1297     const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1298 
1299     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1300     CodeModel::Model CM =
1301         IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1302     if (!MO.isCPI() || CM == CodeModel::Large)
1303       MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1304 
1305     VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1306     const MCExpr *Exp =
1307         MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1308     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1309     EmitToStreamer(*OutStreamer, TmpInst);
1310     return;
1311   }
1312   case PPC::ADDItocL:
1313   case PPC::ADDItocL8: {
1314     // Transform %xd = ADDItocL %xs, @sym
1315     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1316 
1317     unsigned Op = MI->getOpcode();
1318 
1319     // Change the opcode to load address for toc-data.
1320     // ADDItocL is only used for 32-bit toc-data on AIX and will always use LA.
1321     TmpInst.setOpcode(Op == PPC::ADDItocL8 ? (IsAIX ? PPC::LA8 : PPC::ADDI8)
1322                                            : PPC::LA);
1323 
1324     const MachineOperand &MO = MI->getOperand(2);
1325     assert((Op == PPC::ADDItocL8)
1326                ? (MO.isGlobal() || MO.isCPI())
1327                : MO.isGlobal() && "Invalid operand for ADDItocL8.");
1328     assert(!(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1329            "Interposable definitions must use indirect accesses.");
1330 
1331     // Map the operand to its corresponding MCSymbol.
1332     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1333 
1334     const MCExpr *Exp = MCSymbolRefExpr::create(
1335         MOSymbol,
1336         IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO,
1337         OutContext);
1338 
1339     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1340     EmitToStreamer(*OutStreamer, TmpInst);
1341     return;
1342   }
1343   case PPC::ADDISgotTprelHA: {
1344     // Transform: %xd = ADDISgotTprelHA %x2, @sym
1345     // Into:      %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1346     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1347     const MachineOperand &MO = MI->getOperand(2);
1348     const GlobalValue *GValue = MO.getGlobal();
1349     MCSymbol *MOSymbol = getSymbol(GValue);
1350     const MCExpr *SymGotTprel =
1351         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1352                                 OutContext);
1353     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1354                                  .addReg(MI->getOperand(0).getReg())
1355                                  .addReg(MI->getOperand(1).getReg())
1356                                  .addExpr(SymGotTprel));
1357     return;
1358   }
1359   case PPC::LDgotTprelL:
1360   case PPC::LDgotTprelL32: {
1361     // Transform %xd = LDgotTprelL @sym, %xs
1362     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1363 
1364     // Change the opcode to LD.
1365     TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1366     const MachineOperand &MO = MI->getOperand(1);
1367     const GlobalValue *GValue = MO.getGlobal();
1368     MCSymbol *MOSymbol = getSymbol(GValue);
1369     const MCExpr *Exp = MCSymbolRefExpr::create(
1370         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1371                           : MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1372         OutContext);
1373     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1374     EmitToStreamer(*OutStreamer, TmpInst);
1375     return;
1376   }
1377 
1378   case PPC::PPC32PICGOT: {
1379     MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1380     MCSymbol *GOTRef = OutContext.createTempSymbol();
1381     MCSymbol *NextInstr = OutContext.createTempSymbol();
1382 
1383     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1384       // FIXME: We would like an efficient form for this, so we don't have to do
1385       // a lot of extra uniquing.
1386       .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1387     const MCExpr *OffsExpr =
1388       MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1389                                 MCSymbolRefExpr::create(GOTRef, OutContext),
1390         OutContext);
1391     OutStreamer->emitLabel(GOTRef);
1392     OutStreamer->emitValue(OffsExpr, 4);
1393     OutStreamer->emitLabel(NextInstr);
1394     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1395                                  .addReg(MI->getOperand(0).getReg()));
1396     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1397                                  .addReg(MI->getOperand(1).getReg())
1398                                  .addImm(0)
1399                                  .addReg(MI->getOperand(0).getReg()));
1400     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1401                                  .addReg(MI->getOperand(0).getReg())
1402                                  .addReg(MI->getOperand(1).getReg())
1403                                  .addReg(MI->getOperand(0).getReg()));
1404     return;
1405   }
1406   case PPC::PPC32GOT: {
1407     MCSymbol *GOTSymbol =
1408         OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1409     const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1410         GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1411     const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1412         GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1413     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1414                                  .addReg(MI->getOperand(0).getReg())
1415                                  .addExpr(SymGotTlsL));
1416     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1417                                  .addReg(MI->getOperand(0).getReg())
1418                                  .addReg(MI->getOperand(0).getReg())
1419                                  .addExpr(SymGotTlsHA));
1420     return;
1421   }
1422   case PPC::ADDIStlsgdHA: {
1423     // Transform: %xd = ADDIStlsgdHA %x2, @sym
1424     // Into:      %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1425     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1426     const MachineOperand &MO = MI->getOperand(2);
1427     const GlobalValue *GValue = MO.getGlobal();
1428     MCSymbol *MOSymbol = getSymbol(GValue);
1429     const MCExpr *SymGotTlsGD =
1430       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1431                               OutContext);
1432     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1433                                  .addReg(MI->getOperand(0).getReg())
1434                                  .addReg(MI->getOperand(1).getReg())
1435                                  .addExpr(SymGotTlsGD));
1436     return;
1437   }
1438   case PPC::ADDItlsgdL:
1439     // Transform: %xd = ADDItlsgdL %xs, @sym
1440     // Into:      %xd = ADDI8 %xs, sym@got@tlsgd@l
1441   case PPC::ADDItlsgdL32: {
1442     // Transform: %rd = ADDItlsgdL32 %rs, @sym
1443     // Into:      %rd = ADDI %rs, sym@got@tlsgd
1444     const MachineOperand &MO = MI->getOperand(2);
1445     const GlobalValue *GValue = MO.getGlobal();
1446     MCSymbol *MOSymbol = getSymbol(GValue);
1447     const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1448         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1449                           : MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1450         OutContext);
1451     EmitToStreamer(*OutStreamer,
1452                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1453                    .addReg(MI->getOperand(0).getReg())
1454                    .addReg(MI->getOperand(1).getReg())
1455                    .addExpr(SymGotTlsGD));
1456     return;
1457   }
1458   case PPC::GETtlsMOD32AIX:
1459   case PPC::GETtlsMOD64AIX:
1460     // Transform: %r3 = GETtlsMODNNAIX %r3 (for NN == 32/64).
1461     // Into: BLA .__tls_get_mod()
1462     // Input parameter is a module handle (_$TLSML[TC]@ml) for all variables.
1463   case PPC::GETtlsADDR:
1464     // Transform: %x3 = GETtlsADDR %x3, @sym
1465     // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1466   case PPC::GETtlsADDRPCREL:
1467   case PPC::GETtlsADDR32AIX:
1468   case PPC::GETtlsADDR64AIX:
1469     // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1470     // Into: BLA .__tls_get_addr()
1471     // Unlike on Linux, there is no symbol or relocation needed for this call.
1472   case PPC::GETtlsADDR32: {
1473     // Transform: %r3 = GETtlsADDR32 %r3, @sym
1474     // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1475     EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1476     return;
1477   }
1478   case PPC::GETtlsTpointer32AIX: {
1479     // Transform: %r3 = GETtlsTpointer32AIX
1480     // Into: BLA .__get_tpointer()
1481     EmitAIXTlsCallHelper(MI);
1482     return;
1483   }
1484   case PPC::ADDIStlsldHA: {
1485     // Transform: %xd = ADDIStlsldHA %x2, @sym
1486     // Into:      %xd = ADDIS8 %x2, sym@got@tlsld@ha
1487     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1488     const MachineOperand &MO = MI->getOperand(2);
1489     const GlobalValue *GValue = MO.getGlobal();
1490     MCSymbol *MOSymbol = getSymbol(GValue);
1491     const MCExpr *SymGotTlsLD =
1492       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1493                               OutContext);
1494     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1495                                  .addReg(MI->getOperand(0).getReg())
1496                                  .addReg(MI->getOperand(1).getReg())
1497                                  .addExpr(SymGotTlsLD));
1498     return;
1499   }
1500   case PPC::ADDItlsldL:
1501     // Transform: %xd = ADDItlsldL %xs, @sym
1502     // Into:      %xd = ADDI8 %xs, sym@got@tlsld@l
1503   case PPC::ADDItlsldL32: {
1504     // Transform: %rd = ADDItlsldL32 %rs, @sym
1505     // Into:      %rd = ADDI %rs, sym@got@tlsld
1506     const MachineOperand &MO = MI->getOperand(2);
1507     const GlobalValue *GValue = MO.getGlobal();
1508     MCSymbol *MOSymbol = getSymbol(GValue);
1509     const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1510         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1511                           : MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1512         OutContext);
1513     EmitToStreamer(*OutStreamer,
1514                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1515                        .addReg(MI->getOperand(0).getReg())
1516                        .addReg(MI->getOperand(1).getReg())
1517                        .addExpr(SymGotTlsLD));
1518     return;
1519   }
1520   case PPC::GETtlsldADDR:
1521     // Transform: %x3 = GETtlsldADDR %x3, @sym
1522     // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1523   case PPC::GETtlsldADDRPCREL:
1524   case PPC::GETtlsldADDR32: {
1525     // Transform: %r3 = GETtlsldADDR32 %r3, @sym
1526     // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1527     EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1528     return;
1529   }
1530   case PPC::ADDISdtprelHA:
1531     // Transform: %xd = ADDISdtprelHA %xs, @sym
1532     // Into:      %xd = ADDIS8 %xs, sym@dtprel@ha
1533   case PPC::ADDISdtprelHA32: {
1534     // Transform: %rd = ADDISdtprelHA32 %rs, @sym
1535     // Into:      %rd = ADDIS %rs, sym@dtprel@ha
1536     const MachineOperand &MO = MI->getOperand(2);
1537     const GlobalValue *GValue = MO.getGlobal();
1538     MCSymbol *MOSymbol = getSymbol(GValue);
1539     const MCExpr *SymDtprel =
1540       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1541                               OutContext);
1542     EmitToStreamer(
1543         *OutStreamer,
1544         MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1545             .addReg(MI->getOperand(0).getReg())
1546             .addReg(MI->getOperand(1).getReg())
1547             .addExpr(SymDtprel));
1548     return;
1549   }
1550   case PPC::PADDIdtprel: {
1551     // Transform: %rd = PADDIdtprel %rs, @sym
1552     // Into:      %rd = PADDI8 %rs, sym@dtprel
1553     const MachineOperand &MO = MI->getOperand(2);
1554     const GlobalValue *GValue = MO.getGlobal();
1555     MCSymbol *MOSymbol = getSymbol(GValue);
1556     const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1557         MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1558     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1559                                      .addReg(MI->getOperand(0).getReg())
1560                                      .addReg(MI->getOperand(1).getReg())
1561                                      .addExpr(SymDtprel));
1562     return;
1563   }
1564 
1565   case PPC::ADDIdtprelL:
1566     // Transform: %xd = ADDIdtprelL %xs, @sym
1567     // Into:      %xd = ADDI8 %xs, sym@dtprel@l
1568   case PPC::ADDIdtprelL32: {
1569     // Transform: %rd = ADDIdtprelL32 %rs, @sym
1570     // Into:      %rd = ADDI %rs, sym@dtprel@l
1571     const MachineOperand &MO = MI->getOperand(2);
1572     const GlobalValue *GValue = MO.getGlobal();
1573     MCSymbol *MOSymbol = getSymbol(GValue);
1574     const MCExpr *SymDtprel =
1575       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1576                               OutContext);
1577     EmitToStreamer(*OutStreamer,
1578                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1579                        .addReg(MI->getOperand(0).getReg())
1580                        .addReg(MI->getOperand(1).getReg())
1581                        .addExpr(SymDtprel));
1582     return;
1583   }
1584   case PPC::MFOCRF:
1585   case PPC::MFOCRF8:
1586     if (!Subtarget->hasMFOCRF()) {
1587       // Transform: %r3 = MFOCRF %cr7
1588       // Into:      %r3 = MFCR   ;; cr7
1589       unsigned NewOpcode =
1590         MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1591       OutStreamer->AddComment(PPCInstPrinter::
1592                               getRegisterName(MI->getOperand(1).getReg()));
1593       EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1594                                   .addReg(MI->getOperand(0).getReg()));
1595       return;
1596     }
1597     break;
1598   case PPC::MTOCRF:
1599   case PPC::MTOCRF8:
1600     if (!Subtarget->hasMFOCRF()) {
1601       // Transform: %cr7 = MTOCRF %r3
1602       // Into:      MTCRF mask, %r3 ;; cr7
1603       unsigned NewOpcode =
1604         MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1605       unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1606                               ->getEncodingValue(MI->getOperand(0).getReg());
1607       OutStreamer->AddComment(PPCInstPrinter::
1608                               getRegisterName(MI->getOperand(0).getReg()));
1609       EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1610                                      .addImm(Mask)
1611                                      .addReg(MI->getOperand(1).getReg()));
1612       return;
1613     }
1614     break;
1615   case PPC::LD:
1616   case PPC::STD:
1617   case PPC::LWA_32:
1618   case PPC::LWA: {
1619     // Verify alignment is legal, so we don't create relocations
1620     // that can't be supported.
1621     unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1622     // For non-TOC-based local-exec TLS accesses with non-zero offsets, the
1623     // machine operand (which is a TargetGlobalTLSAddress) is expected to be
1624     // the same operand for both loads and stores.
1625     for (const MachineOperand &TempMO : MI->operands()) {
1626       if (((TempMO.getTargetFlags() == PPCII::MO_TPREL_FLAG ||
1627             TempMO.getTargetFlags() == PPCII::MO_TLSLD_FLAG)) &&
1628           TempMO.getOperandNo() == 1)
1629         OpNum = 1;
1630     }
1631     const MachineOperand &MO = MI->getOperand(OpNum);
1632     if (MO.isGlobal()) {
1633       const DataLayout &DL = MO.getGlobal()->getDataLayout();
1634       if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1635         llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1636     }
1637     // As these load/stores share common code with the following load/stores,
1638     // fall through to the subsequent cases in order to either process the
1639     // non-TOC-based local-exec sequence or to process the instruction normally.
1640     [[fallthrough]];
1641   }
1642   case PPC::LBZ:
1643   case PPC::LBZ8:
1644   case PPC::LHA:
1645   case PPC::LHA8:
1646   case PPC::LHZ:
1647   case PPC::LHZ8:
1648   case PPC::LWZ:
1649   case PPC::LWZ8:
1650   case PPC::STB:
1651   case PPC::STB8:
1652   case PPC::STH:
1653   case PPC::STH8:
1654   case PPC::STW:
1655   case PPC::STW8:
1656   case PPC::LFS:
1657   case PPC::STFS:
1658   case PPC::LFD:
1659   case PPC::STFD:
1660   case PPC::ADDI8: {
1661     // A faster non-TOC-based local-[exec|dynamic] sequence is represented by
1662     // `addi` or a load/store instruction (that directly loads or stores off of
1663     // the thread pointer) with an immediate operand having the
1664     // [MO_TPREL_FLAG|MO_TLSLD_FLAG]. Such instructions do not otherwise arise.
1665     if (!HasAIXSmallLocalTLS)
1666       break;
1667     bool IsMIADDI8 = MI->getOpcode() == PPC::ADDI8;
1668     unsigned OpNum = IsMIADDI8 ? 2 : 1;
1669     const MachineOperand &MO = MI->getOperand(OpNum);
1670     unsigned Flag = MO.getTargetFlags();
1671     if (Flag == PPCII::MO_TPREL_FLAG ||
1672         Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
1673         Flag == PPCII::MO_TPREL_PCREL_FLAG || Flag == PPCII::MO_TLSLD_FLAG) {
1674       LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1675 
1676       const MCExpr *Expr = getAdjustedFasterLocalExpr(MO, MO.getOffset());
1677       if (Expr)
1678         TmpInst.getOperand(OpNum) = MCOperand::createExpr(Expr);
1679 
1680       // Change the opcode to load address if the original opcode is an `addi`.
1681       if (IsMIADDI8)
1682         TmpInst.setOpcode(PPC::LA8);
1683 
1684       EmitToStreamer(*OutStreamer, TmpInst);
1685       return;
1686     }
1687     // Now process the instruction normally.
1688     break;
1689   }
1690   case PPC::PseudoEIEIO: {
1691     EmitToStreamer(
1692         *OutStreamer,
1693         MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1694     EmitToStreamer(
1695         *OutStreamer,
1696         MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1697     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1698     return;
1699   }
1700   }
1701 
1702   LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1703   EmitToStreamer(*OutStreamer, TmpInst);
1704 }
1705 
1706 // For non-TOC-based local-[exec|dynamic] variables that have a non-zero offset,
1707 // we need to create a new MCExpr that adds the non-zero offset to the address
1708 // of the local-[exec|dynamic] variable that will be used in either an addi,
1709 // load or store. However, the final displacement for these instructions must be
1710 // between [-32768, 32768), so if the TLS address + its non-zero offset is
1711 // greater than 32KB, a new MCExpr is produced to accommodate this situation.
1712 const MCExpr *
getAdjustedFasterLocalExpr(const MachineOperand & MO,int64_t Offset)1713 PPCAsmPrinter::getAdjustedFasterLocalExpr(const MachineOperand &MO,
1714                                           int64_t Offset) {
1715   // Non-zero offsets (for loads, stores or `addi`) require additional handling.
1716   // When the offset is zero, there is no need to create an adjusted MCExpr.
1717   if (!Offset)
1718     return nullptr;
1719 
1720   assert(MO.isGlobal() && "Only expecting a global MachineOperand here!");
1721   const GlobalValue *GValue = MO.getGlobal();
1722   TLSModel::Model Model = TM.getTLSModel(GValue);
1723   assert((Model == TLSModel::LocalExec || Model == TLSModel::LocalDynamic) &&
1724          "Only local-[exec|dynamic] accesses are handled!");
1725 
1726   bool IsGlobalADeclaration = GValue->isDeclarationForLinker();
1727   // Find the GlobalVariable that corresponds to the particular TLS variable
1728   // in the TLS variable-to-address mapping. All TLS variables should exist
1729   // within this map, with the exception of TLS variables marked as extern.
1730   const auto TLSVarsMapEntryIter = TLSVarsToAddressMapping.find(GValue);
1731   if (TLSVarsMapEntryIter == TLSVarsToAddressMapping.end())
1732     assert(IsGlobalADeclaration &&
1733            "Only expecting to find extern TLS variables not present in the TLS "
1734            "variable-to-address map!");
1735 
1736   unsigned TLSVarAddress =
1737       IsGlobalADeclaration ? 0 : TLSVarsMapEntryIter->second;
1738   ptrdiff_t FinalAddress = (TLSVarAddress + Offset);
1739   // If the address of the TLS variable + the offset is less than 32KB,
1740   // or if the TLS variable is extern, we simply produce an MCExpr to add the
1741   // non-zero offset to the TLS variable address.
1742   // For when TLS variables are extern, this is safe to do because we can
1743   // assume that the address of extern TLS variables are zero.
1744   const MCExpr *Expr = MCSymbolRefExpr::create(
1745       getSymbol(GValue),
1746       Model == TLSModel::LocalExec ? MCSymbolRefExpr::VK_PPC_AIX_TLSLE
1747                                    : MCSymbolRefExpr::VK_PPC_AIX_TLSLD,
1748       OutContext);
1749   Expr = MCBinaryExpr::createAdd(
1750       Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1751   if (FinalAddress >= 32768) {
1752     // Handle the written offset for cases where:
1753     //   TLS variable address + Offset > 32KB.
1754 
1755     // The assembly that is printed will look like:
1756     //  TLSVar@le + Offset - Delta
1757     // where Delta is a multiple of 64KB: ((FinalAddress + 32768) & ~0xFFFF).
1758     ptrdiff_t Delta = ((FinalAddress + 32768) & ~0xFFFF);
1759     // Check that the total instruction displacement fits within [-32768,32768).
1760     [[maybe_unused]] ptrdiff_t InstDisp = TLSVarAddress + Offset - Delta;
1761     assert(
1762         ((InstDisp < 32768) && (InstDisp >= -32768)) &&
1763         "Expecting the instruction displacement for local-[exec|dynamic] TLS "
1764         "variables to be between [-32768, 32768)!");
1765     Expr = MCBinaryExpr::createAdd(
1766         Expr, MCConstantExpr::create(-Delta, OutContext), OutContext);
1767   }
1768 
1769   return Expr;
1770 }
1771 
emitGNUAttributes(Module & M)1772 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
1773   // Emit float ABI into GNU attribute
1774   Metadata *MD = M.getModuleFlag("float-abi");
1775   MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
1776   if (!FloatABI)
1777     return;
1778   StringRef flt = FloatABI->getString();
1779   // TODO: Support emitting soft-fp and hard double/single attributes.
1780   if (flt == "doubledouble")
1781     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1782                                   Val_GNU_Power_ABI_HardFloat_DP |
1783                                       Val_GNU_Power_ABI_LDBL_IBM128);
1784   else if (flt == "ieeequad")
1785     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1786                                   Val_GNU_Power_ABI_HardFloat_DP |
1787                                       Val_GNU_Power_ABI_LDBL_IEEE128);
1788   else if (flt == "ieeedouble")
1789     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1790                                   Val_GNU_Power_ABI_HardFloat_DP |
1791                                       Val_GNU_Power_ABI_LDBL_64);
1792 }
1793 
emitInstruction(const MachineInstr * MI)1794 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1795   if (!Subtarget->isPPC64())
1796     return PPCAsmPrinter::emitInstruction(MI);
1797 
1798   switch (MI->getOpcode()) {
1799   default:
1800     break;
1801   case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1802     // .begin:
1803     //   b .end # lis 0, FuncId[16..32]
1804     //   nop    # li  0, FuncId[0..15]
1805     //   std 0, -8(1)
1806     //   mflr 0
1807     //   bl __xray_FunctionEntry
1808     //   mtlr 0
1809     // .end:
1810     //
1811     // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1812     // of instructions change.
1813     // XRAY is only supported on PPC Linux little endian.
1814     if (!MAI->isLittleEndian())
1815       break;
1816     MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1817     MCSymbol *EndOfSled = OutContext.createTempSymbol();
1818     OutStreamer->emitLabel(BeginOfSled);
1819     EmitToStreamer(*OutStreamer,
1820                    MCInstBuilder(PPC::B).addExpr(
1821                        MCSymbolRefExpr::create(EndOfSled, OutContext)));
1822     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1823     EmitToStreamer(
1824         *OutStreamer,
1825         MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1826     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1827     EmitToStreamer(*OutStreamer,
1828                    MCInstBuilder(PPC::BL8_NOP)
1829                        .addExpr(MCSymbolRefExpr::create(
1830                            OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1831                            OutContext)));
1832     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1833     OutStreamer->emitLabel(EndOfSled);
1834     recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1835     break;
1836   }
1837   case TargetOpcode::PATCHABLE_RET: {
1838     unsigned RetOpcode = MI->getOperand(0).getImm();
1839     MCInst RetInst;
1840     RetInst.setOpcode(RetOpcode);
1841     for (const auto &MO : llvm::drop_begin(MI->operands())) {
1842       MCOperand MCOp;
1843       if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1844         RetInst.addOperand(MCOp);
1845     }
1846 
1847     bool IsConditional;
1848     if (RetOpcode == PPC::BCCLR) {
1849       IsConditional = true;
1850     } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1851                RetOpcode == PPC::TCRETURNai8) {
1852       break;
1853     } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1854       IsConditional = false;
1855     } else {
1856       EmitToStreamer(*OutStreamer, RetInst);
1857       return;
1858     }
1859 
1860     MCSymbol *FallthroughLabel;
1861     if (IsConditional) {
1862       // Before:
1863       //   bgtlr cr0
1864       //
1865       // After:
1866       //   ble cr0, .end
1867       // .p2align 3
1868       // .begin:
1869       //   blr    # lis 0, FuncId[16..32]
1870       //   nop    # li  0, FuncId[0..15]
1871       //   std 0, -8(1)
1872       //   mflr 0
1873       //   bl __xray_FunctionExit
1874       //   mtlr 0
1875       //   blr
1876       // .end:
1877       //
1878       // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1879       // of instructions change.
1880       FallthroughLabel = OutContext.createTempSymbol();
1881       EmitToStreamer(
1882           *OutStreamer,
1883           MCInstBuilder(PPC::BCC)
1884               .addImm(PPC::InvertPredicate(
1885                   static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1886               .addReg(MI->getOperand(2).getReg())
1887               .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1888       RetInst = MCInst();
1889       RetInst.setOpcode(PPC::BLR8);
1890     }
1891     // .p2align 3
1892     // .begin:
1893     //   b(lr)? # lis 0, FuncId[16..32]
1894     //   nop    # li  0, FuncId[0..15]
1895     //   std 0, -8(1)
1896     //   mflr 0
1897     //   bl __xray_FunctionExit
1898     //   mtlr 0
1899     //   b(lr)?
1900     //
1901     // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1902     // of instructions change.
1903     OutStreamer->emitCodeAlignment(Align(8), &getSubtargetInfo());
1904     MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1905     OutStreamer->emitLabel(BeginOfSled);
1906     EmitToStreamer(*OutStreamer, RetInst);
1907     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1908     EmitToStreamer(
1909         *OutStreamer,
1910         MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1911     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1912     EmitToStreamer(*OutStreamer,
1913                    MCInstBuilder(PPC::BL8_NOP)
1914                        .addExpr(MCSymbolRefExpr::create(
1915                            OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1916                            OutContext)));
1917     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1918     EmitToStreamer(*OutStreamer, RetInst);
1919     if (IsConditional)
1920       OutStreamer->emitLabel(FallthroughLabel);
1921     recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1922     return;
1923   }
1924   case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1925     llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1926   case TargetOpcode::PATCHABLE_TAIL_CALL:
1927     // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1928     // normal function exit from a tail exit.
1929     llvm_unreachable("Tail call is handled in the normal case. See comments "
1930                      "around this assert.");
1931   }
1932   return PPCAsmPrinter::emitInstruction(MI);
1933 }
1934 
emitStartOfAsmFile(Module & M)1935 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1936   if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1937     PPCTargetStreamer *TS =
1938       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1939     TS->emitAbiVersion(2);
1940   }
1941 
1942   if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1943       !isPositionIndependent())
1944     return AsmPrinter::emitStartOfAsmFile(M);
1945 
1946   if (M.getPICLevel() == PICLevel::SmallPIC)
1947     return AsmPrinter::emitStartOfAsmFile(M);
1948 
1949   OutStreamer->switchSection(OutContext.getELFSection(
1950       ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1951 
1952   MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1953   MCSymbol *CurrentPos = OutContext.createTempSymbol();
1954 
1955   OutStreamer->emitLabel(CurrentPos);
1956 
1957   // The GOT pointer points to the middle of the GOT, in order to reference the
1958   // entire 64kB range.  0x8000 is the midpoint.
1959   const MCExpr *tocExpr =
1960     MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1961                             MCConstantExpr::create(0x8000, OutContext),
1962                             OutContext);
1963 
1964   OutStreamer->emitAssignment(TOCSym, tocExpr);
1965 
1966   OutStreamer->switchSection(getObjFileLowering().getTextSection());
1967 }
1968 
emitFunctionEntryLabel()1969 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1970   // linux/ppc32 - Normal entry label.
1971   if (!Subtarget->isPPC64() &&
1972       (!isPositionIndependent() ||
1973        MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1974     return AsmPrinter::emitFunctionEntryLabel();
1975 
1976   if (!Subtarget->isPPC64()) {
1977     const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1978     if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1979       MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1980       MCSymbol *PICBase = MF->getPICBaseSymbol();
1981       OutStreamer->emitLabel(RelocSymbol);
1982 
1983       const MCExpr *OffsExpr =
1984         MCBinaryExpr::createSub(
1985           MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1986                                                                OutContext),
1987                                   MCSymbolRefExpr::create(PICBase, OutContext),
1988           OutContext);
1989       OutStreamer->emitValue(OffsExpr, 4);
1990       OutStreamer->emitLabel(CurrentFnSym);
1991       return;
1992     } else
1993       return AsmPrinter::emitFunctionEntryLabel();
1994   }
1995 
1996   // ELFv2 ABI - Normal entry label.
1997   if (Subtarget->isELFv2ABI()) {
1998     // In the Large code model, we allow arbitrary displacements between
1999     // the text section and its associated TOC section.  We place the
2000     // full 8-byte offset to the TOC in memory immediately preceding
2001     // the function global entry point.
2002     if (TM.getCodeModel() == CodeModel::Large
2003         && !MF->getRegInfo().use_empty(PPC::X2)) {
2004       const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2005 
2006       MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2007       MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
2008       const MCExpr *TOCDeltaExpr =
2009         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2010                                 MCSymbolRefExpr::create(GlobalEPSymbol,
2011                                                         OutContext),
2012                                 OutContext);
2013 
2014       OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
2015       OutStreamer->emitValue(TOCDeltaExpr, 8);
2016     }
2017     return AsmPrinter::emitFunctionEntryLabel();
2018   }
2019 
2020   // Emit an official procedure descriptor.
2021   MCSectionSubPair Current = OutStreamer->getCurrentSection();
2022   MCSectionELF *Section = OutStreamer->getContext().getELFSection(
2023       ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2024   OutStreamer->switchSection(Section);
2025   OutStreamer->emitLabel(CurrentFnSym);
2026   OutStreamer->emitValueToAlignment(Align(8));
2027   MCSymbol *Symbol1 = CurrentFnSymForSize;
2028   // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
2029   // entry point.
2030   OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
2031                          8 /*size*/);
2032   MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2033   // Generates a R_PPC64_TOC relocation for TOC base insertion.
2034   OutStreamer->emitValue(
2035     MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
2036     8/*size*/);
2037   // Emit a null environment pointer.
2038   OutStreamer->emitIntValue(0, 8 /* size */);
2039   OutStreamer->switchSection(Current.first, Current.second);
2040 }
2041 
emitEndOfAsmFile(Module & M)2042 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
2043   const DataLayout &DL = getDataLayout();
2044 
2045   bool isPPC64 = DL.getPointerSizeInBits() == 64;
2046 
2047   PPCTargetStreamer *TS =
2048       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2049 
2050   // If we are using any values provided by Glibc at fixed addresses,
2051   // we need to ensure that the Glibc used at link time actually provides
2052   // those values. All versions of Glibc that do will define the symbol
2053   // named "__parse_hwcap_and_convert_at_platform".
2054   if (static_cast<const PPCTargetMachine &>(TM).hasGlibcHWCAPAccess())
2055     OutStreamer->emitSymbolValue(
2056         GetExternalSymbolSymbol("__parse_hwcap_and_convert_at_platform"),
2057         MAI->getCodePointerSize());
2058   emitGNUAttributes(M);
2059 
2060   if (!TOC.empty()) {
2061     const char *Name = isPPC64 ? ".toc" : ".got2";
2062     MCSectionELF *Section = OutContext.getELFSection(
2063         Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2064     OutStreamer->switchSection(Section);
2065     if (!isPPC64)
2066       OutStreamer->emitValueToAlignment(Align(4));
2067 
2068     for (const auto &TOCMapPair : TOC) {
2069       const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
2070       MCSymbol *const TOCEntryLabel = TOCMapPair.second;
2071 
2072       OutStreamer->emitLabel(TOCEntryLabel);
2073       if (isPPC64)
2074         TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
2075       else
2076         OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
2077     }
2078   }
2079 
2080   PPCAsmPrinter::emitEndOfAsmFile(M);
2081 }
2082 
2083 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
emitFunctionBodyStart()2084 void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
2085   // In the ELFv2 ABI, in functions that use the TOC register, we need to
2086   // provide two entry points.  The ABI guarantees that when calling the
2087   // local entry point, r2 is set up by the caller to contain the TOC base
2088   // for this function, and when calling the global entry point, r12 is set
2089   // up by the caller to hold the address of the global entry point.  We
2090   // thus emit a prefix sequence along the following lines:
2091   //
2092   // func:
2093   // .Lfunc_gepNN:
2094   //         # global entry point
2095   //         addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
2096   //         addi  r2,r2,(.TOC.-.Lfunc_gepNN)@l
2097   // .Lfunc_lepNN:
2098   //         .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2099   //         # local entry point, followed by function body
2100   //
2101   // For the Large code model, we create
2102   //
2103   // .Lfunc_tocNN:
2104   //         .quad .TOC.-.Lfunc_gepNN      # done by EmitFunctionEntryLabel
2105   // func:
2106   // .Lfunc_gepNN:
2107   //         # global entry point
2108   //         ld    r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
2109   //         add   r2,r2,r12
2110   // .Lfunc_lepNN:
2111   //         .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2112   //         # local entry point, followed by function body
2113   //
2114   // This ensures we have r2 set up correctly while executing the function
2115   // body, no matter which entry point is called.
2116   const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2117   const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
2118                           !MF->getRegInfo().use_empty(PPC::R2);
2119   const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
2120                                 UsesX2OrR2 && PPCFI->usesTOCBasePtr();
2121   const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
2122                                    Subtarget->isELFv2ABI() && UsesX2OrR2;
2123 
2124   // Only do all that if the function uses R2 as the TOC pointer
2125   // in the first place. We don't need the global entry point if the
2126   // function uses R2 as an allocatable register.
2127   if (NonPCrelGEPRequired || PCrelGEPRequired) {
2128     // Note: The logic here must be synchronized with the code in the
2129     // branch-selection pass which sets the offset of the first block in the
2130     // function. This matters because it affects the alignment.
2131     MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
2132     OutStreamer->emitLabel(GlobalEntryLabel);
2133     const MCSymbolRefExpr *GlobalEntryLabelExp =
2134       MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
2135 
2136     if (TM.getCodeModel() != CodeModel::Large) {
2137       MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2138       const MCExpr *TOCDeltaExpr =
2139         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2140                                 GlobalEntryLabelExp, OutContext);
2141 
2142       const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
2143       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
2144                                    .addReg(PPC::X2)
2145                                    .addReg(PPC::X12)
2146                                    .addExpr(TOCDeltaHi));
2147 
2148       const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
2149       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
2150                                    .addReg(PPC::X2)
2151                                    .addReg(PPC::X2)
2152                                    .addExpr(TOCDeltaLo));
2153     } else {
2154       MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
2155       const MCExpr *TOCOffsetDeltaExpr =
2156         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
2157                                 GlobalEntryLabelExp, OutContext);
2158 
2159       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
2160                                    .addReg(PPC::X2)
2161                                    .addExpr(TOCOffsetDeltaExpr)
2162                                    .addReg(PPC::X12));
2163       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
2164                                    .addReg(PPC::X2)
2165                                    .addReg(PPC::X2)
2166                                    .addReg(PPC::X12));
2167     }
2168 
2169     MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
2170     OutStreamer->emitLabel(LocalEntryLabel);
2171     const MCSymbolRefExpr *LocalEntryLabelExp =
2172        MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
2173     const MCExpr *LocalOffsetExp =
2174       MCBinaryExpr::createSub(LocalEntryLabelExp,
2175                               GlobalEntryLabelExp, OutContext);
2176 
2177     PPCTargetStreamer *TS =
2178       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2179     TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
2180   } else if (Subtarget->isUsingPCRelativeCalls()) {
2181     // When generating the entry point for a function we have a few scenarios
2182     // based on whether or not that function uses R2 and whether or not that
2183     // function makes calls (or is a leaf function).
2184     // 1) A leaf function that does not use R2 (or treats it as callee-saved
2185     //    and preserves it). In this case st_other=0 and both
2186     //    the local and global entry points for the function are the same.
2187     //    No special entry point code is required.
2188     // 2) A function uses the TOC pointer R2. This function may or may not have
2189     //    calls. In this case st_other=[2,6] and the global and local entry
2190     //    points are different. Code to correctly setup the TOC pointer in R2
2191     //    is put between the global and local entry points. This case is
2192     //    covered by the if statatement above.
2193     // 3) A function does not use the TOC pointer R2 but does have calls.
2194     //    In this case st_other=1 since we do not know whether or not any
2195     //    of the callees clobber R2. This case is dealt with in this else if
2196     //    block. Tail calls are considered calls and the st_other should also
2197     //    be set to 1 in that case as well.
2198     // 4) The function does not use the TOC pointer but R2 is used inside
2199     //    the function. In this case st_other=1 once again.
2200     // 5) This function uses inline asm. We mark R2 as reserved if the function
2201     //    has inline asm as we have to assume that it may be used.
2202     if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
2203         MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
2204       PPCTargetStreamer *TS =
2205           static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2206       TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
2207                          MCConstantExpr::create(1, OutContext));
2208     }
2209   }
2210 }
2211 
2212 /// EmitFunctionBodyEnd - Print the traceback table before the .size
2213 /// directive.
2214 ///
emitFunctionBodyEnd()2215 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
2216   // Only the 64-bit target requires a traceback table.  For now,
2217   // we only emit the word of zeroes that GDB requires to find
2218   // the end of the function, and zeroes for the eight-byte
2219   // mandatory fields.
2220   // FIXME: We should fill in the eight-byte mandatory fields as described in
2221   // the PPC64 ELF ABI (this is a low-priority item because GDB does not
2222   // currently make use of these fields).
2223   if (Subtarget->isPPC64()) {
2224     OutStreamer->emitIntValue(0, 4/*size*/);
2225     OutStreamer->emitIntValue(0, 8/*size*/);
2226   }
2227 }
2228 
emitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const2229 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
2230                                    MCSymbol *GVSym) const {
2231 
2232   assert(MAI->hasVisibilityOnlyWithLinkage() &&
2233          "AIX's linkage directives take a visibility setting.");
2234 
2235   MCSymbolAttr LinkageAttr = MCSA_Invalid;
2236   switch (GV->getLinkage()) {
2237   case GlobalValue::ExternalLinkage:
2238     LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
2239     break;
2240   case GlobalValue::LinkOnceAnyLinkage:
2241   case GlobalValue::LinkOnceODRLinkage:
2242   case GlobalValue::WeakAnyLinkage:
2243   case GlobalValue::WeakODRLinkage:
2244   case GlobalValue::ExternalWeakLinkage:
2245     LinkageAttr = MCSA_Weak;
2246     break;
2247   case GlobalValue::AvailableExternallyLinkage:
2248     LinkageAttr = MCSA_Extern;
2249     break;
2250   case GlobalValue::PrivateLinkage:
2251     return;
2252   case GlobalValue::InternalLinkage:
2253     assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
2254            "InternalLinkage should not have other visibility setting.");
2255     LinkageAttr = MCSA_LGlobal;
2256     break;
2257   case GlobalValue::AppendingLinkage:
2258     llvm_unreachable("Should never emit this");
2259   case GlobalValue::CommonLinkage:
2260     llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
2261   }
2262 
2263   assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
2264 
2265   MCSymbolAttr VisibilityAttr = MCSA_Invalid;
2266   if (!TM.getIgnoreXCOFFVisibility()) {
2267     if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
2268       report_fatal_error(
2269           "Cannot not be both dllexport and non-default visibility");
2270     switch (GV->getVisibility()) {
2271 
2272     // TODO: "internal" Visibility needs to go here.
2273     case GlobalValue::DefaultVisibility:
2274       if (GV->hasDLLExportStorageClass())
2275         VisibilityAttr = MAI->getExportedVisibilityAttr();
2276       break;
2277     case GlobalValue::HiddenVisibility:
2278       VisibilityAttr = MAI->getHiddenVisibilityAttr();
2279       break;
2280     case GlobalValue::ProtectedVisibility:
2281       VisibilityAttr = MAI->getProtectedVisibilityAttr();
2282       break;
2283     }
2284   }
2285 
2286   // Do not emit the _$TLSML symbol.
2287   if (GV->getThreadLocalMode() == GlobalVariable::LocalDynamicTLSModel &&
2288       GV->hasName() && GV->getName() == "_$TLSML")
2289     return;
2290 
2291   OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
2292                                                     VisibilityAttr);
2293 }
2294 
SetupMachineFunction(MachineFunction & MF)2295 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2296   // Setup CurrentFnDescSym and its containing csect.
2297   MCSectionXCOFF *FnDescSec =
2298       cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
2299           &MF.getFunction(), TM));
2300   FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
2301 
2302   CurrentFnDescSym = FnDescSec->getQualNameSymbol();
2303 
2304   return AsmPrinter::SetupMachineFunction(MF);
2305 }
2306 
getNumberOfVRSaved()2307 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
2308   // Calculate the number of VRs be saved.
2309   // Vector registers 20 through 31 are marked as reserved and cannot be used
2310   // in the default ABI.
2311   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
2312   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
2313       TM.getAIXExtendedAltivecABI()) {
2314     const MachineRegisterInfo &MRI = MF->getRegInfo();
2315     for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
2316       if (MRI.isPhysRegModified(Reg))
2317         // Number of VRs saved.
2318         return PPC::V31 - Reg + 1;
2319   }
2320   return 0;
2321 }
2322 
emitFunctionBodyEnd()2323 void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
2324 
2325   if (!TM.getXCOFFTracebackTable())
2326     return;
2327 
2328   emitTracebackTable();
2329 
2330   // If ShouldEmitEHBlock returns true, then the eh info table
2331   // will be emitted via `AIXException::endFunction`. Otherwise, we
2332   // need to emit a dumy eh info table when VRs are saved. We could not
2333   // consolidate these two places into one because there is no easy way
2334   // to access register information in `AIXException` class.
2335   if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
2336       (getNumberOfVRSaved() > 0)) {
2337     // Emit dummy EH Info Table.
2338     OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
2339     MCSymbol *EHInfoLabel =
2340         TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2341     OutStreamer->emitLabel(EHInfoLabel);
2342 
2343     // Version number.
2344     OutStreamer->emitInt32(0);
2345 
2346     const DataLayout &DL = MMI->getModule()->getDataLayout();
2347     const unsigned PointerSize = DL.getPointerSize();
2348     // Add necessary paddings in 64 bit mode.
2349     OutStreamer->emitValueToAlignment(Align(PointerSize));
2350 
2351     OutStreamer->emitIntValue(0, PointerSize);
2352     OutStreamer->emitIntValue(0, PointerSize);
2353     OutStreamer->switchSection(MF->getSection());
2354   }
2355 }
2356 
emitTracebackTable()2357 void PPCAIXAsmPrinter::emitTracebackTable() {
2358 
2359   // Create a symbol for the end of function.
2360   MCSymbol *FuncEnd = createTempSymbol(MF->getName());
2361   OutStreamer->emitLabel(FuncEnd);
2362 
2363   OutStreamer->AddComment("Traceback table begin");
2364   // Begin with a fullword of zero.
2365   OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
2366 
2367   SmallString<128> CommentString;
2368   raw_svector_ostream CommentOS(CommentString);
2369 
2370   auto EmitComment = [&]() {
2371     OutStreamer->AddComment(CommentOS.str());
2372     CommentString.clear();
2373   };
2374 
2375   auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
2376     EmitComment();
2377     OutStreamer->emitIntValueInHexWithPadding(Value, Size);
2378   };
2379 
2380   unsigned int Version = 0;
2381   CommentOS << "Version = " << Version;
2382   EmitCommentAndValue(Version, 1);
2383 
2384   // There is a lack of information in the IR to assist with determining the
2385   // source language. AIX exception handling mechanism would only search for
2386   // personality routine and LSDA area when such language supports exception
2387   // handling. So to be conservatively correct and allow runtime to do its job,
2388   // we need to set it to C++ for now.
2389   TracebackTable::LanguageID LanguageIdentifier =
2390       TracebackTable::CPlusPlus; // C++
2391 
2392   CommentOS << "Language = "
2393             << getNameForTracebackTableLanguageId(LanguageIdentifier);
2394   EmitCommentAndValue(LanguageIdentifier, 1);
2395 
2396   //  This is only populated for the third and fourth bytes.
2397   uint32_t FirstHalfOfMandatoryField = 0;
2398 
2399   // Emit the 3rd byte of the mandatory field.
2400 
2401   // We always set traceback offset bit to true.
2402   FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
2403 
2404   const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2405   const MachineRegisterInfo &MRI = MF->getRegInfo();
2406 
2407   // Check the function uses floating-point processor instructions or not
2408   for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
2409     if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2410       FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
2411       break;
2412     }
2413   }
2414 
2415 #define GENBOOLCOMMENT(Prefix, V, Field)                                       \
2416   CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-")   \
2417             << #Field
2418 
2419 #define GENVALUECOMMENT(PrefixAndName, V, Field)                               \
2420   CommentOS << (PrefixAndName) << " = "                                        \
2421             << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >>  \
2422                                      (TracebackTable::Field##Shift))
2423 
2424   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2425   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2426   EmitComment();
2427 
2428   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2429   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2430   EmitComment();
2431 
2432   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2433   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2434   EmitComment();
2435 
2436   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2437   EmitComment();
2438   GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2439                  IsFloatingPointOperationLogOrAbortEnabled);
2440   EmitComment();
2441 
2442   OutStreamer->emitIntValueInHexWithPadding(
2443       (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2444 
2445   // Set the 4th byte of the mandatory field.
2446   FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2447 
2448   const PPCRegisterInfo *RegInfo =
2449       static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
2450   Register FrameReg = RegInfo->getFrameRegister(*MF);
2451   if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
2452     FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2453 
2454   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2455   if (!MustSaveCRs.empty())
2456     FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2457 
2458   if (FI->mustSaveLR())
2459     FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2460 
2461   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2462   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2463   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2464   EmitComment();
2465   GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2466                   OnConditionDirective);
2467   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2468   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2469   EmitComment();
2470   OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2471                                             1);
2472 
2473   // Set the 5th byte of mandatory field.
2474   uint32_t SecondHalfOfMandatoryField = 0;
2475 
2476   SecondHalfOfMandatoryField |= MF->getFrameInfo().getStackSize()
2477                                     ? TracebackTable::IsBackChainStoredMask
2478                                     : 0;
2479 
2480   uint32_t FPRSaved = 0;
2481   for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2482     if (MRI.isPhysRegModified(Reg)) {
2483       FPRSaved = PPC::F31 - Reg + 1;
2484       break;
2485     }
2486   }
2487   SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2488                                 TracebackTable::FPRSavedMask;
2489   GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2490   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2491   GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2492   EmitComment();
2493   OutStreamer->emitIntValueInHexWithPadding(
2494       (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2495 
2496   // Set the 6th byte of mandatory field.
2497 
2498   // Check whether has Vector Instruction,We only treat instructions uses vector
2499   // register as vector instructions.
2500   bool HasVectorInst = false;
2501   for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2502     if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2503       // Has VMX instruction.
2504       HasVectorInst = true;
2505       break;
2506     }
2507 
2508   if (FI->hasVectorParms() || HasVectorInst)
2509     SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2510 
2511   uint16_t NumOfVRSaved = getNumberOfVRSaved();
2512   bool ShouldEmitEHBlock =
2513       TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2514 
2515   if (ShouldEmitEHBlock)
2516     SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2517 
2518   uint32_t GPRSaved = 0;
2519 
2520   // X13 is reserved under 64-bit environment.
2521   unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2522   unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2523 
2524   for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2525     if (MRI.isPhysRegModified(Reg)) {
2526       GPRSaved = GPREnd - Reg + 1;
2527       break;
2528     }
2529   }
2530 
2531   SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2532                                 TracebackTable::GPRSavedMask;
2533 
2534   GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2535   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2536   GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2537   EmitComment();
2538   OutStreamer->emitIntValueInHexWithPadding(
2539       (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2540 
2541   // Set the 7th byte of mandatory field.
2542   uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2543   SecondHalfOfMandatoryField |=
2544       (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2545       TracebackTable::NumberOfFixedParmsMask;
2546   GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2547                   NumberOfFixedParms);
2548   EmitComment();
2549   OutStreamer->emitIntValueInHexWithPadding(
2550       (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2551 
2552   // Set the 8th byte of mandatory field.
2553 
2554   // Always set parameter on stack.
2555   SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2556 
2557   uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2558   SecondHalfOfMandatoryField |=
2559       (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2560       TracebackTable::NumberOfFloatingPointParmsMask;
2561 
2562   GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2563                   NumberOfFloatingPointParms);
2564   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2565   EmitComment();
2566   OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2567                                             1);
2568 
2569   // Generate the optional fields of traceback table.
2570 
2571   // Parameter type.
2572   if (NumberOfFixedParms || NumberOfFPParms) {
2573     uint32_t ParmsTypeValue = FI->getParmsType();
2574 
2575     Expected<SmallString<32>> ParmsType =
2576         FI->hasVectorParms()
2577             ? XCOFF::parseParmsTypeWithVecInfo(
2578                   ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2579                   FI->getVectorParmsNum())
2580             : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2581                                     NumberOfFPParms);
2582 
2583     assert(ParmsType && toString(ParmsType.takeError()).c_str());
2584     if (ParmsType) {
2585       CommentOS << "Parameter type = " << ParmsType.get();
2586       EmitComment();
2587     }
2588     OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2589                                               sizeof(ParmsTypeValue));
2590   }
2591   // Traceback table offset.
2592   OutStreamer->AddComment("Function size");
2593   if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2594     MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2595         &(MF->getFunction()), TM);
2596     OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2597   }
2598 
2599   // Since we unset the Int_Handler.
2600   if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2601     report_fatal_error("Hand_Mask not implement yet");
2602 
2603   if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2604     report_fatal_error("Ctl_Info not implement yet");
2605 
2606   if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2607     StringRef Name = MF->getName().substr(0, INT16_MAX);
2608     int16_t NameLength = Name.size();
2609     CommentOS << "Function name len = "
2610               << static_cast<unsigned int>(NameLength);
2611     EmitCommentAndValue(NameLength, 2);
2612     OutStreamer->AddComment("Function Name");
2613     OutStreamer->emitBytes(Name);
2614   }
2615 
2616   if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2617     uint8_t AllocReg = XCOFF::AllocRegNo;
2618     OutStreamer->AddComment("AllocaUsed");
2619     OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2620   }
2621 
2622   if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2623     uint16_t VRData = 0;
2624     if (NumOfVRSaved) {
2625       // Number of VRs saved.
2626       VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2627                 TracebackTable::NumberOfVRSavedMask;
2628       // This bit is supposed to set only when the special register
2629       // VRSAVE is saved on stack.
2630       // However, IBM XL compiler sets the bit when any vector registers
2631       // are saved on the stack. We will follow XL's behavior on AIX
2632       // so that we don't get surprise behavior change for C code.
2633       VRData |= TracebackTable::IsVRSavedOnStackMask;
2634     }
2635 
2636     // Set has_varargs.
2637     if (FI->getVarArgsFrameIndex())
2638       VRData |= TracebackTable::HasVarArgsMask;
2639 
2640     // Vector parameters number.
2641     unsigned VectorParmsNum = FI->getVectorParmsNum();
2642     VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2643               TracebackTable::NumberOfVectorParmsMask;
2644 
2645     if (HasVectorInst)
2646       VRData |= TracebackTable::HasVMXInstructionMask;
2647 
2648     GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2649     GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2650     GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2651     EmitComment();
2652     OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2653 
2654     GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2655     GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2656     EmitComment();
2657     OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2658 
2659     uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2660 
2661     Expected<SmallString<32>> VecParmsType =
2662         XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2663     assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2664     if (VecParmsType) {
2665       CommentOS << "Vector Parameter type = " << VecParmsType.get();
2666       EmitComment();
2667     }
2668     OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2669                                               sizeof(VecParmTypeValue));
2670     // Padding 2 bytes.
2671     CommentOS << "Padding";
2672     EmitCommentAndValue(0, 2);
2673   }
2674 
2675   uint8_t ExtensionTableFlag = 0;
2676   if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2677     if (ShouldEmitEHBlock)
2678       ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2679     if (EnableSSPCanaryBitInTB &&
2680         TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2681       ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2682 
2683     CommentOS << "ExtensionTableFlag = "
2684               << getExtendedTBTableFlagString(ExtensionTableFlag);
2685     EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2686   }
2687 
2688   if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2689     auto &Ctx = OutStreamer->getContext();
2690     MCSymbol *EHInfoSym =
2691         TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2692     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym, TOCType_EHBlock);
2693     const MCSymbol *TOCBaseSym =
2694         cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2695             ->getQualNameSymbol();
2696     const MCExpr *Exp =
2697         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2698                                 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2699 
2700     const DataLayout &DL = getDataLayout();
2701     OutStreamer->emitValueToAlignment(Align(4));
2702     OutStreamer->AddComment("EHInfo Table");
2703     OutStreamer->emitValue(Exp, DL.getPointerSize());
2704   }
2705 #undef GENBOOLCOMMENT
2706 #undef GENVALUECOMMENT
2707 }
2708 
isSpecialLLVMGlobalArrayToSkip(const GlobalVariable * GV)2709 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2710   return GV->hasAppendingLinkage() &&
2711          StringSwitch<bool>(GV->getName())
2712              // TODO: Linker could still eliminate the GV if we just skip
2713              // handling llvm.used array. Skipping them for now until we or the
2714              // AIX OS team come up with a good solution.
2715              .Case("llvm.used", true)
2716              // It's correct to just skip llvm.compiler.used array here.
2717              .Case("llvm.compiler.used", true)
2718              .Default(false);
2719 }
2720 
isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable * GV)2721 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2722   return StringSwitch<bool>(GV->getName())
2723       .Cases("llvm.global_ctors", "llvm.global_dtors", true)
2724       .Default(false);
2725 }
2726 
getAliasOffset(const Constant * C)2727 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
2728   if (auto *GA = dyn_cast<GlobalAlias>(C))
2729     return getAliasOffset(GA->getAliasee());
2730   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2731     const MCExpr *LowC = lowerConstant(CE);
2732     const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
2733     if (!CBE)
2734       return 0;
2735     if (CBE->getOpcode() != MCBinaryExpr::Add)
2736       report_fatal_error("Only adding an offset is supported now.");
2737     auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
2738     if (!RHS)
2739       report_fatal_error("Unable to get the offset of alias.");
2740     return RHS->getValue();
2741   }
2742   return 0;
2743 }
2744 
tocDataChecks(unsigned PointerSize,const GlobalVariable * GV)2745 static void tocDataChecks(unsigned PointerSize, const GlobalVariable *GV) {
2746   // TODO: These asserts should be updated as more support for the toc data
2747   // transformation is added (struct support, etc.).
2748   assert(
2749       PointerSize >= GV->getAlign().valueOrOne().value() &&
2750       "GlobalVariables with an alignment requirement stricter than TOC entry "
2751       "size not supported by the toc data transformation.");
2752 
2753   Type *GVType = GV->getValueType();
2754   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
2755                               "supported by the toc data transformation.");
2756   if (GV->getDataLayout().getTypeSizeInBits(GVType) >
2757       PointerSize * 8)
2758     report_fatal_error(
2759         "A GlobalVariable with size larger than a TOC entry is not currently "
2760         "supported by the toc data transformation.");
2761   if (GV->hasPrivateLinkage())
2762     report_fatal_error("A GlobalVariable with private linkage is not "
2763                        "currently supported by the toc data transformation.");
2764 }
2765 
emitGlobalVariable(const GlobalVariable * GV)2766 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2767   // Special LLVM global arrays have been handled at the initialization.
2768   if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2769     return;
2770 
2771   // If the Global Variable has the toc-data attribute, it needs to be emitted
2772   // when we emit the .toc section.
2773   if (GV->hasAttribute("toc-data")) {
2774     unsigned PointerSize = GV->getDataLayout().getPointerSize();
2775     tocDataChecks(PointerSize, GV);
2776     TOCDataGlobalVars.push_back(GV);
2777     return;
2778   }
2779 
2780   emitGlobalVariableHelper(GV);
2781 }
2782 
emitGlobalVariableHelper(const GlobalVariable * GV)2783 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2784   assert(!GV->getName().starts_with("llvm.") &&
2785          "Unhandled intrinsic global variable.");
2786 
2787   if (GV->hasComdat())
2788     report_fatal_error("COMDAT not yet supported by AIX.");
2789 
2790   MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2791 
2792   if (GV->isDeclarationForLinker()) {
2793     emitLinkage(GV, GVSym);
2794     return;
2795   }
2796 
2797   SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2798   if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2799       !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2800     report_fatal_error("Encountered a global variable kind that is "
2801                        "not supported yet.");
2802 
2803   // Print GV in verbose mode
2804   if (isVerbose()) {
2805     if (GV->hasInitializer()) {
2806       GV->printAsOperand(OutStreamer->getCommentOS(),
2807                          /*PrintType=*/false, GV->getParent());
2808       OutStreamer->getCommentOS() << '\n';
2809     }
2810   }
2811 
2812   MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2813       getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2814 
2815   // Switch to the containing csect.
2816   OutStreamer->switchSection(Csect);
2817 
2818   const DataLayout &DL = GV->getDataLayout();
2819 
2820   // Handle common and zero-initialized local symbols.
2821   if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2822       GVKind.isThreadBSSLocal()) {
2823     Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
2824     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2825     GVSym->setStorageClass(
2826         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2827 
2828     if (GVKind.isBSSLocal() && Csect->getMappingClass() == XCOFF::XMC_TD) {
2829       OutStreamer->emitZeros(Size);
2830     } else if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) {
2831       assert(Csect->getMappingClass() != XCOFF::XMC_TD &&
2832              "BSS local toc-data already handled and TLS variables "
2833              "incompatible with XMC_TD");
2834       OutStreamer->emitXCOFFLocalCommonSymbol(
2835           OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2836           GVSym, Alignment);
2837     } else {
2838       OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
2839     }
2840     return;
2841   }
2842 
2843   MCSymbol *EmittedInitSym = GVSym;
2844 
2845   // Emit linkage for the global variable and its aliases.
2846   emitLinkage(GV, EmittedInitSym);
2847   for (const GlobalAlias *GA : GOAliasMap[GV])
2848     emitLinkage(GA, getSymbol(GA));
2849 
2850   emitAlignment(getGVAlignment(GV, DL), GV);
2851 
2852   // When -fdata-sections is enabled, every GlobalVariable will
2853   // be put into its own csect; therefore, label is not necessary here.
2854   if (!TM.getDataSections() || GV->hasSection()) {
2855     if (Csect->getMappingClass() != XCOFF::XMC_TD)
2856       OutStreamer->emitLabel(EmittedInitSym);
2857   }
2858 
2859   // No alias to emit.
2860   if (!GOAliasMap[GV].size()) {
2861     emitGlobalConstant(GV->getDataLayout(), GV->getInitializer());
2862     return;
2863   }
2864 
2865   // Aliases with the same offset should be aligned. Record the list of aliases
2866   // associated with the offset.
2867   AliasMapTy AliasList;
2868   for (const GlobalAlias *GA : GOAliasMap[GV])
2869     AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
2870 
2871   // Emit alias label and element value for global variable.
2872   emitGlobalConstant(GV->getDataLayout(), GV->getInitializer(),
2873                      &AliasList);
2874 }
2875 
emitFunctionDescriptor()2876 void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2877   const DataLayout &DL = getDataLayout();
2878   const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2879 
2880   MCSectionSubPair Current = OutStreamer->getCurrentSection();
2881   // Emit function descriptor.
2882   OutStreamer->switchSection(
2883       cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2884 
2885   // Emit aliasing label for function descriptor csect.
2886   for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2887     OutStreamer->emitLabel(getSymbol(Alias));
2888 
2889   // Emit function entry point address.
2890   OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2891                          PointerSize);
2892   // Emit TOC base address.
2893   const MCSymbol *TOCBaseSym =
2894       cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2895           ->getQualNameSymbol();
2896   OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2897                          PointerSize);
2898   // Emit a null environment pointer.
2899   OutStreamer->emitIntValue(0, PointerSize);
2900 
2901   OutStreamer->switchSection(Current.first, Current.second);
2902 }
2903 
emitFunctionEntryLabel()2904 void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2905   // For functions without user defined section, it's not necessary to emit the
2906   // label when we have individual function in its own csect.
2907   if (!TM.getFunctionSections() || MF->getFunction().hasSection())
2908     PPCAsmPrinter::emitFunctionEntryLabel();
2909 
2910   // Emit aliasing label for function entry point label.
2911   for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2912     OutStreamer->emitLabel(
2913         getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2914 }
2915 
emitPGORefs(Module & M)2916 void PPCAIXAsmPrinter::emitPGORefs(Module &M) {
2917   if (!OutContext.hasXCOFFSection(
2918           "__llvm_prf_cnts",
2919           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2920     return;
2921 
2922   // When inside a csect `foo`, a .ref directive referring to a csect `bar`
2923   // translates into a relocation entry from `foo` to` bar`. The referring
2924   // csect, `foo`, is identified by its address.  If multiple csects have the
2925   // same address (because one or more of them are zero-length), the referring
2926   // csect cannot be determined. Hence, we don't generate the .ref directives
2927   // if `__llvm_prf_cnts` is an empty section.
2928   bool HasNonZeroLengthPrfCntsSection = false;
2929   const DataLayout &DL = M.getDataLayout();
2930   for (GlobalVariable &GV : M.globals())
2931     if (GV.hasSection() && GV.getSection() == "__llvm_prf_cnts" &&
2932         DL.getTypeAllocSize(GV.getValueType()) > 0) {
2933       HasNonZeroLengthPrfCntsSection = true;
2934       break;
2935     }
2936 
2937   if (HasNonZeroLengthPrfCntsSection) {
2938     MCSection *CntsSection = OutContext.getXCOFFSection(
2939         "__llvm_prf_cnts", SectionKind::getData(),
2940         XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2941         /*MultiSymbolsAllowed*/ true);
2942 
2943     OutStreamer->switchSection(CntsSection);
2944     if (OutContext.hasXCOFFSection(
2945             "__llvm_prf_data",
2946             XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2947       MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_data[RW]");
2948       OutStreamer->emitXCOFFRefDirective(S);
2949     }
2950     if (OutContext.hasXCOFFSection(
2951             "__llvm_prf_names",
2952             XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) {
2953       MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_names[RO]");
2954       OutStreamer->emitXCOFFRefDirective(S);
2955     }
2956     if (OutContext.hasXCOFFSection(
2957             "__llvm_prf_vnds",
2958             XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2959       MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_vnds[RW]");
2960       OutStreamer->emitXCOFFRefDirective(S);
2961     }
2962   }
2963 }
2964 
emitEndOfAsmFile(Module & M)2965 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2966   // If there are no functions and there are no toc-data definitions in this
2967   // module, we will never need to reference the TOC base.
2968   if (M.empty() && TOCDataGlobalVars.empty())
2969     return;
2970 
2971   emitPGORefs(M);
2972 
2973   // Switch to section to emit TOC base.
2974   OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
2975 
2976   PPCTargetStreamer *TS =
2977       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2978 
2979   for (auto &I : TOC) {
2980     MCSectionXCOFF *TCEntry;
2981     // Setup the csect for the current TC entry. If the variant kind is
2982     // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
2983     // new symbol to prefix the name with a dot.
2984     // If TLS model opt is turned on, create a new symbol to prefix the name
2985     // with a dot.
2986     if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM ||
2987         (Subtarget->hasAIXShLibTLSModelOpt() &&
2988          I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD)) {
2989       SmallString<128> Name;
2990       StringRef Prefix = ".";
2991       Name += Prefix;
2992       Name += cast<MCSymbolXCOFF>(I.first.first)->getSymbolTableName();
2993       MCSymbol *S = OutContext.getOrCreateSymbol(Name);
2994       TCEntry = cast<MCSectionXCOFF>(
2995           getObjFileLowering().getSectionForTOCEntry(S, TM));
2996     } else {
2997       TCEntry = cast<MCSectionXCOFF>(
2998           getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
2999     }
3000     OutStreamer->switchSection(TCEntry);
3001 
3002     OutStreamer->emitLabel(I.second);
3003     TS->emitTCEntry(*I.first.first, I.first.second);
3004   }
3005 
3006   // Traverse the list of global variables twice, emitting all of the
3007   // non-common global variables before the common ones, as emitting a
3008   // .comm directive changes the scope from .toc to the common symbol.
3009   for (const auto *GV : TOCDataGlobalVars) {
3010     if (!GV->hasCommonLinkage())
3011       emitGlobalVariableHelper(GV);
3012   }
3013   for (const auto *GV : TOCDataGlobalVars) {
3014     if (GV->hasCommonLinkage())
3015       emitGlobalVariableHelper(GV);
3016   }
3017 }
3018 
doInitialization(Module & M)3019 bool PPCAIXAsmPrinter::doInitialization(Module &M) {
3020   const bool Result = PPCAsmPrinter::doInitialization(M);
3021 
3022   auto setCsectAlignment = [this](const GlobalObject *GO) {
3023     // Declarations have 0 alignment which is set by default.
3024     if (GO->isDeclarationForLinker())
3025       return;
3026 
3027     SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
3028     MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
3029         getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
3030 
3031     Align GOAlign = getGVAlignment(GO, GO->getDataLayout());
3032     Csect->ensureMinAlignment(GOAlign);
3033   };
3034 
3035   // For all TLS variables, calculate their corresponding addresses and store
3036   // them into TLSVarsToAddressMapping, which will be used to determine whether
3037   // or not local-exec TLS variables require special assembly printing.
3038   uint64_t TLSVarAddress = 0;
3039   auto DL = M.getDataLayout();
3040   for (const auto &G : M.globals()) {
3041     if (G.isThreadLocal() && !G.isDeclaration()) {
3042       TLSVarAddress = alignTo(TLSVarAddress, getGVAlignment(&G, DL));
3043       TLSVarsToAddressMapping[&G] = TLSVarAddress;
3044       TLSVarAddress += DL.getTypeAllocSize(G.getValueType());
3045     }
3046   }
3047 
3048   // We need to know, up front, the alignment of csects for the assembly path,
3049   // because once a .csect directive gets emitted, we could not change the
3050   // alignment value on it.
3051   for (const auto &G : M.globals()) {
3052     if (isSpecialLLVMGlobalArrayToSkip(&G))
3053       continue;
3054 
3055     if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
3056       // Generate a format indicator and a unique module id to be a part of
3057       // the sinit and sterm function names.
3058       if (FormatIndicatorAndUniqueModId.empty()) {
3059         std::string UniqueModuleId = getUniqueModuleId(&M);
3060         if (UniqueModuleId != "")
3061           // TODO: Use source file full path to generate the unique module id
3062           // and add a format indicator as a part of function name in case we
3063           // will support more than one format.
3064           FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
3065         else {
3066           // Use threadId, Pid, and current time as the unique module id when we
3067           // cannot generate one based on a module's strong external symbols.
3068           auto CurTime =
3069               std::chrono::duration_cast<std::chrono::nanoseconds>(
3070                   std::chrono::steady_clock::now().time_since_epoch())
3071                   .count();
3072           FormatIndicatorAndUniqueModId =
3073               "clangPidTidTime_" + llvm::itostr(sys::Process::getProcessId()) +
3074               "_" + llvm::itostr(llvm::get_threadid()) + "_" +
3075               llvm::itostr(CurTime);
3076         }
3077       }
3078 
3079       emitSpecialLLVMGlobal(&G);
3080       continue;
3081     }
3082 
3083     setCsectAlignment(&G);
3084     std::optional<CodeModel::Model> OptionalCodeModel = G.getCodeModel();
3085     if (OptionalCodeModel)
3086       setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&G)),
3087                            *OptionalCodeModel);
3088   }
3089 
3090   for (const auto &F : M)
3091     setCsectAlignment(&F);
3092 
3093   // Construct an aliasing list for each GlobalObject.
3094   for (const auto &Alias : M.aliases()) {
3095     const GlobalObject *Aliasee = Alias.getAliaseeObject();
3096     if (!Aliasee)
3097       report_fatal_error(
3098           "alias without a base object is not yet supported on AIX");
3099 
3100     if (Aliasee->hasCommonLinkage()) {
3101       report_fatal_error("Aliases to common variables are not allowed on AIX:"
3102                          "\n\tAlias attribute for " +
3103                              Alias.getGlobalIdentifier() +
3104                              " is invalid because " + Aliasee->getName() +
3105                              " is common.",
3106                          false);
3107     }
3108 
3109     const GlobalVariable *GVar =
3110         dyn_cast_or_null<GlobalVariable>(Alias.getAliaseeObject());
3111     if (GVar) {
3112       std::optional<CodeModel::Model> OptionalCodeModel = GVar->getCodeModel();
3113       if (OptionalCodeModel)
3114         setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&Alias)),
3115                              *OptionalCodeModel);
3116     }
3117 
3118     GOAliasMap[Aliasee].push_back(&Alias);
3119   }
3120 
3121   return Result;
3122 }
3123 
emitInstruction(const MachineInstr * MI)3124 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
3125   switch (MI->getOpcode()) {
3126   default:
3127     break;
3128   case PPC::TW:
3129   case PPC::TWI:
3130   case PPC::TD:
3131   case PPC::TDI: {
3132     if (MI->getNumOperands() < 5)
3133       break;
3134     const MachineOperand &LangMO = MI->getOperand(3);
3135     const MachineOperand &ReasonMO = MI->getOperand(4);
3136     if (!LangMO.isImm() || !ReasonMO.isImm())
3137       break;
3138     MCSymbol *TempSym = OutContext.createNamedTempSymbol();
3139     OutStreamer->emitLabel(TempSym);
3140     OutStreamer->emitXCOFFExceptDirective(CurrentFnSym, TempSym,
3141                  LangMO.getImm(), ReasonMO.getImm(),
3142                  Subtarget->isPPC64() ? MI->getMF()->getInstructionCount() * 8 :
3143                  MI->getMF()->getInstructionCount() * 4,
3144 		 MMI->hasDebugInfo());
3145     break;
3146   }
3147   case PPC::GETtlsMOD32AIX:
3148   case PPC::GETtlsMOD64AIX:
3149   case PPC::GETtlsTpointer32AIX:
3150   case PPC::GETtlsADDR64AIX:
3151   case PPC::GETtlsADDR32AIX: {
3152     // A reference to .__tls_get_mod/.__tls_get_addr/.__get_tpointer is unknown
3153     // to the assembler so we need to emit an external symbol reference.
3154     MCSymbol *TlsGetAddr =
3155         createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
3156     ExtSymSDNodeSymbols.insert(TlsGetAddr);
3157     break;
3158   }
3159   case PPC::BL8:
3160   case PPC::BL:
3161   case PPC::BL8_NOP:
3162   case PPC::BL_NOP: {
3163     const MachineOperand &MO = MI->getOperand(0);
3164     if (MO.isSymbol()) {
3165       MCSymbolXCOFF *S =
3166           cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
3167       ExtSymSDNodeSymbols.insert(S);
3168     }
3169   } break;
3170   case PPC::BL_TLS:
3171   case PPC::BL8_TLS:
3172   case PPC::BL8_TLS_:
3173   case PPC::BL8_NOP_TLS:
3174     report_fatal_error("TLS call not yet implemented");
3175   case PPC::TAILB:
3176   case PPC::TAILB8:
3177   case PPC::TAILBA:
3178   case PPC::TAILBA8:
3179   case PPC::TAILBCTR:
3180   case PPC::TAILBCTR8:
3181     if (MI->getOperand(0).isSymbol())
3182       report_fatal_error("Tail call for extern symbol not yet supported.");
3183     break;
3184   case PPC::DST:
3185   case PPC::DST64:
3186   case PPC::DSTT:
3187   case PPC::DSTT64:
3188   case PPC::DSTST:
3189   case PPC::DSTST64:
3190   case PPC::DSTSTT:
3191   case PPC::DSTSTT64:
3192     EmitToStreamer(
3193         *OutStreamer,
3194         MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
3195     return;
3196   }
3197   return PPCAsmPrinter::emitInstruction(MI);
3198 }
3199 
doFinalization(Module & M)3200 bool PPCAIXAsmPrinter::doFinalization(Module &M) {
3201   // Do streamer related finalization for DWARF.
3202   if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
3203     OutStreamer->doFinalizationAtSectionEnd(
3204         OutStreamer->getContext().getObjectFileInfo()->getTextSection());
3205 
3206   for (MCSymbol *Sym : ExtSymSDNodeSymbols)
3207     OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
3208   return PPCAsmPrinter::doFinalization(M);
3209 }
3210 
mapToSinitPriority(int P)3211 static unsigned mapToSinitPriority(int P) {
3212   if (P < 0 || P > 65535)
3213     report_fatal_error("invalid init priority");
3214 
3215   if (P <= 20)
3216     return P;
3217 
3218   if (P < 81)
3219     return 20 + (P - 20) * 16;
3220 
3221   if (P <= 1124)
3222     return 1004 + (P - 81);
3223 
3224   if (P < 64512)
3225     return 2047 + (P - 1124) * 33878;
3226 
3227   return 2147482625u + (P - 64512);
3228 }
3229 
convertToSinitPriority(int Priority)3230 static std::string convertToSinitPriority(int Priority) {
3231   // This helper function converts clang init priority to values used in sinit
3232   // and sterm functions.
3233   //
3234   // The conversion strategies are:
3235   // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
3236   // reserved priority range [0, 1023] by
3237   // - directly mapping the first 21 and the last 20 elements of the ranges
3238   // - linear interpolating the intermediate values with a step size of 16.
3239   //
3240   // We map the non reserved clang/gnu priority range of [101, 65535] into the
3241   // sinit/sterm priority range [1024, 2147483648] by:
3242   // - directly mapping the first and the last 1024 elements of the ranges
3243   // - linear interpolating the intermediate values with a step size of 33878.
3244   unsigned int P = mapToSinitPriority(Priority);
3245 
3246   std::string PrioritySuffix;
3247   llvm::raw_string_ostream os(PrioritySuffix);
3248   os << llvm::format_hex_no_prefix(P, 8);
3249   os.flush();
3250   return PrioritySuffix;
3251 }
3252 
emitXXStructorList(const DataLayout & DL,const Constant * List,bool IsCtor)3253 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
3254                                           const Constant *List, bool IsCtor) {
3255   SmallVector<Structor, 8> Structors;
3256   preprocessXXStructorList(DL, List, Structors);
3257   if (Structors.empty())
3258     return;
3259 
3260   unsigned Index = 0;
3261   for (Structor &S : Structors) {
3262     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
3263       S.Func = CE->getOperand(0);
3264 
3265     llvm::GlobalAlias::create(
3266         GlobalValue::ExternalLinkage,
3267         (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
3268             llvm::Twine(convertToSinitPriority(S.Priority)) +
3269             llvm::Twine("_", FormatIndicatorAndUniqueModId) +
3270             llvm::Twine("_", llvm::utostr(Index++)),
3271         cast<Function>(S.Func));
3272   }
3273 }
3274 
emitTTypeReference(const GlobalValue * GV,unsigned Encoding)3275 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
3276                                           unsigned Encoding) {
3277   if (GV) {
3278     TOCEntryType GlobalType = TOCType_GlobalInternal;
3279     GlobalValue::LinkageTypes Linkage = GV->getLinkage();
3280     if (Linkage == GlobalValue::ExternalLinkage ||
3281         Linkage == GlobalValue::AvailableExternallyLinkage ||
3282         Linkage == GlobalValue::ExternalWeakLinkage)
3283       GlobalType = TOCType_GlobalExternal;
3284     MCSymbol *TypeInfoSym = TM.getSymbol(GV);
3285     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym, GlobalType);
3286     const MCSymbol *TOCBaseSym =
3287         cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
3288             ->getQualNameSymbol();
3289     auto &Ctx = OutStreamer->getContext();
3290     const MCExpr *Exp =
3291         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
3292                                 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
3293     OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
3294   } else
3295     OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
3296 }
3297 
3298 // Return a pass that prints the PPC assembly code for a MachineFunction to the
3299 // given output stream.
3300 static AsmPrinter *
createPPCAsmPrinterPass(TargetMachine & tm,std::unique_ptr<MCStreamer> && Streamer)3301 createPPCAsmPrinterPass(TargetMachine &tm,
3302                         std::unique_ptr<MCStreamer> &&Streamer) {
3303   if (tm.getTargetTriple().isOSAIX())
3304     return new PPCAIXAsmPrinter(tm, std::move(Streamer));
3305 
3306   return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
3307 }
3308 
emitModuleCommandLines(Module & M)3309 void PPCAIXAsmPrinter::emitModuleCommandLines(Module &M) {
3310   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3311   if (!NMD || !NMD->getNumOperands())
3312     return;
3313 
3314   std::string S;
3315   raw_string_ostream RSOS(S);
3316   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3317     const MDNode *N = NMD->getOperand(i);
3318     assert(N->getNumOperands() == 1 &&
3319            "llvm.commandline metadata entry can have only one operand");
3320     const MDString *MDS = cast<MDString>(N->getOperand(0));
3321     // Add "@(#)" to support retrieving the command line information with the
3322     // AIX "what" command
3323     RSOS << "@(#)opt " << MDS->getString() << "\n";
3324     RSOS.write('\0');
3325   }
3326   OutStreamer->emitXCOFFCInfoSym(".GCC.command.line", RSOS.str());
3327 }
3328 
3329 // Force static initialization.
LLVMInitializePowerPCAsmPrinter()3330 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
3331   TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
3332                                      createPPCAsmPrinterPass);
3333   TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
3334                                      createPPCAsmPrinterPass);
3335   TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
3336                                      createPPCAsmPrinterPass);
3337   TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
3338                                      createPPCAsmPrinterPass);
3339 }
3340