xref: /freebsd/contrib/llvm-project/llvm/include/llvm/MC/MCInstrItineraries.h (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the structures used for instruction
10 // itineraries, stages, and operand reads/writes.  This is used by
11 // schedulers to determine instruction stages and latencies.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCINSTRITINERARIES_H
16 #define LLVM_MC_MCINSTRITINERARIES_H
17 
18 #include "llvm/MC/MCSchedule.h"
19 #include <algorithm>
20 #include <optional>
21 
22 namespace llvm {
23 
24 //===----------------------------------------------------------------------===//
25 /// These values represent a non-pipelined step in
26 /// the execution of an instruction.  Cycles represents the number of
27 /// discrete time slots needed to complete the stage.  Units represent
28 /// the choice of functional units that can be used to complete the
29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
30 /// cycles should elapse from the start of this stage to the start of
31 /// the next stage in the itinerary. A value of -1 indicates that the
32 /// next stage should start immediately after the current one.
33 /// For example:
34 ///
35 ///   { 1, x, -1 }
36 ///      indicates that the stage occupies FU x for 1 cycle and that
37 ///      the next stage starts immediately after this one.
38 ///
39 ///   { 2, x|y, 1 }
40 ///      indicates that the stage occupies either FU x or FU y for 2
41 ///      consecutive cycles and that the next stage starts one cycle
42 ///      after this stage starts. That is, the stage requirements
43 ///      overlap in time.
44 ///
45 ///   { 1, x, 0 }
46 ///      indicates that the stage occupies FU x for 1 cycle and that
47 ///      the next stage starts in this same cycle. This can be used to
48 ///      indicate that the instruction requires multiple stages at the
49 ///      same time.
50 ///
51 /// FU reservation can be of two different kinds:
52 ///  - FUs which instruction actually requires
53 ///  - FUs which instruction just reserves. Reserved unit is not available for
54 ///    execution of other instruction. However, several instructions can reserve
55 ///    the same unit several times.
56 /// Such two types of units reservation is used to model instruction domain
57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
58 
59 struct InstrStage {
60   enum ReservationKinds {
61     Required = 0,
62     Reserved = 1
63   };
64 
65   /// Bitmask representing a set of functional units.
66   typedef uint64_t FuncUnits;
67 
68   unsigned Cycles_;  ///< Length of stage in machine cycles
69   FuncUnits Units_;  ///< Choice of functional units
70   int NextCycles_;   ///< Number of machine cycles to next stage
71   ReservationKinds Kind_; ///< Kind of the FU reservation
72 
73   /// Returns the number of cycles the stage is occupied.
74   unsigned getCycles() const {
75     return Cycles_;
76   }
77 
78   /// Returns the choice of FUs.
79   FuncUnits getUnits() const {
80     return Units_;
81   }
82 
83   ReservationKinds getReservationKind() const {
84     return Kind_;
85   }
86 
87   /// Returns the number of cycles from the start of this stage to the
88   /// start of the next stage in the itinerary
89   unsigned getNextCycles() const {
90     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
91   }
92 };
93 
94 //===----------------------------------------------------------------------===//
95 /// An itinerary represents the scheduling information for an instruction.
96 /// This includes a set of stages occupied by the instruction and the pipeline
97 /// cycle in which operands are read and written.
98 ///
99 struct InstrItinerary {
100   int16_t  NumMicroOps;        ///< # of micro-ops, -1 means it's variable
101   uint16_t FirstStage;         ///< Index of first stage in itinerary
102   uint16_t LastStage;          ///< Index of last + 1 stage in itinerary
103   uint16_t FirstOperandCycle;  ///< Index of first operand rd/wr
104   uint16_t LastOperandCycle;   ///< Index of last + 1 operand rd/wr
105 };
106 
107 //===----------------------------------------------------------------------===//
108 /// Itinerary data supplied by a subtarget to be used by a target.
109 ///
110 class InstrItineraryData {
111 public:
112   MCSchedModel SchedModel =
113       MCSchedModel::Default;               ///< Basic machine properties.
114   const InstrStage *Stages = nullptr;      ///< Array of stages selected
115   const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected
116   const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths
117   const InstrItinerary *Itineraries =
118       nullptr; ///< Array of itineraries selected
119 
120   InstrItineraryData() = default;
121   InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
122                      const unsigned *OS, const unsigned *F)
123     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
124       Itineraries(SchedModel.InstrItineraries) {}
125 
126   /// Returns true if there are no itineraries.
127   bool isEmpty() const { return Itineraries == nullptr; }
128 
129   /// Returns true if the index is for the end marker itinerary.
130   bool isEndMarker(unsigned ItinClassIndx) const {
131     return ((Itineraries[ItinClassIndx].FirstStage == UINT16_MAX) &&
132             (Itineraries[ItinClassIndx].LastStage == UINT16_MAX));
133   }
134 
135   /// Return the first stage of the itinerary.
136   const InstrStage *beginStage(unsigned ItinClassIndx) const {
137     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
138     return Stages + StageIdx;
139   }
140 
141   /// Return the last+1 stage of the itinerary.
142   const InstrStage *endStage(unsigned ItinClassIndx) const {
143     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
144     return Stages + StageIdx;
145   }
146 
147   /// Return the total stage latency of the given class.  The latency is
148   /// the maximum completion time for any stage in the itinerary.  If no stages
149   /// exist, it defaults to one cycle.
150   unsigned getStageLatency(unsigned ItinClassIndx) const {
151     // If the target doesn't provide itinerary information, use a simple
152     // non-zero default value for all instructions.
153     if (isEmpty())
154       return 1;
155 
156     // Calculate the maximum completion time for any stage.
157     unsigned Latency = 0, StartCycle = 0;
158     for (const InstrStage *IS = beginStage(ItinClassIndx),
159            *E = endStage(ItinClassIndx); IS != E; ++IS) {
160       Latency = std::max(Latency, StartCycle + IS->getCycles());
161       StartCycle += IS->getNextCycles();
162     }
163     return Latency;
164   }
165 
166   /// Return the cycle for the given class and operand. Return std::nullopt if
167   /// the information is not available for the operand.
168   std::optional<unsigned> getOperandCycle(unsigned ItinClassIndx,
169                                           unsigned OperandIdx) const {
170     if (isEmpty())
171       return std::nullopt;
172 
173     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
174     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
175     if ((FirstIdx + OperandIdx) >= LastIdx)
176       return std::nullopt;
177 
178     return OperandCycles[FirstIdx + OperandIdx];
179   }
180 
181   /// Return true if there is a pipeline forwarding between instructions
182   /// of itinerary classes DefClass and UseClasses so that value produced by an
183   /// instruction of itinerary class DefClass, operand index DefIdx can be
184   /// bypassed when it's read by an instruction of itinerary class UseClass,
185   /// operand index UseIdx.
186   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
187                              unsigned UseClass, unsigned UseIdx) const {
188     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
189     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
190     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
191       return false;
192     if (Forwardings[FirstDefIdx + DefIdx] == 0)
193       return false;
194 
195     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
196     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
197     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
198       return false;
199 
200     return Forwardings[FirstDefIdx + DefIdx] ==
201       Forwardings[FirstUseIdx + UseIdx];
202   }
203 
204   /// Compute and return the use operand latency of a given itinerary
205   /// class and operand index if the value is produced by an instruction of the
206   /// specified itinerary class and def operand index. Return std::nullopt if
207   /// the information is not available for the operand.
208   std::optional<unsigned> getOperandLatency(unsigned DefClass, unsigned DefIdx,
209                                             unsigned UseClass,
210                                             unsigned UseIdx) const {
211     if (isEmpty())
212       return std::nullopt;
213 
214     std::optional<unsigned> DefCycle = getOperandCycle(DefClass, DefIdx);
215     std::optional<unsigned> UseCycle = getOperandCycle(UseClass, UseIdx);
216     if (!DefCycle || !UseCycle)
217       return std::nullopt;
218 
219     if (UseCycle > *DefCycle + 1)
220       return std::nullopt;
221 
222     UseCycle = *DefCycle - *UseCycle + 1;
223     if (UseCycle > 0u &&
224         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
225       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
226       UseCycle = *UseCycle - 1;
227     return UseCycle;
228   }
229 
230   /// Return the number of micro-ops that the given class decodes to.
231   /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
232   int getNumMicroOps(unsigned ItinClassIndx) const {
233     if (isEmpty())
234       return 1;
235     return Itineraries[ItinClassIndx].NumMicroOps;
236   }
237 };
238 
239 } // end namespace llvm
240 
241 #endif // LLVM_MC_MCINSTRITINERARIES_H
242