1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file assembles .s files and emits ARM ELF .o object files. Different
10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to
11 // delimit regions of data and code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMMCTargetDesc.h"
16 #include "ARMUnwindOpAsm.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmBackend.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCAssembler.h"
28 #include "llvm/MC/MCCodeEmitter.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCELFStreamer.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCFixup.h"
33 #include "llvm/MC/MCFragment.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/MC/MCInstPrinter.h"
36 #include "llvm/MC/MCObjectWriter.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSection.h"
39 #include "llvm/MC/MCSectionELF.h"
40 #include "llvm/MC/MCStreamer.h"
41 #include "llvm/MC/MCSubtargetInfo.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/MC/MCSymbolELF.h"
44 #include "llvm/MC/SectionKind.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <climits>
54 #include <cstddef>
55 #include <cstdint>
56 #include <string>
57
58 using namespace llvm;
59
GetAEABIUnwindPersonalityName(unsigned Index)60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
62 "Invalid personality index");
63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
64 }
65
66 namespace {
67
68 class ARMELFStreamer;
69
70 class ARMTargetAsmStreamer : public ARMTargetStreamer {
71 formatted_raw_ostream &OS;
72 MCInstPrinter &InstPrinter;
73 bool IsVerboseAsm;
74
75 void emitFnStart() override;
76 void emitFnEnd() override;
77 void emitCantUnwind() override;
78 void emitPersonality(const MCSymbol *Personality) override;
79 void emitPersonalityIndex(unsigned Index) override;
80 void emitHandlerData() override;
81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
83 void emitPad(int64_t Offset) override;
84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
85 bool isVector) override;
86 void emitUnwindRaw(int64_t Offset,
87 const SmallVectorImpl<uint8_t> &Opcodes) override;
88
89 void switchVendor(StringRef Vendor) override;
90 void emitAttribute(unsigned Attribute, unsigned Value) override;
91 void emitTextAttribute(unsigned Attribute, StringRef String) override;
92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
93 StringRef StringValue) override;
94 void emitArch(ARM::ArchKind Arch) override;
95 void emitArchExtension(uint64_t ArchExt) override;
96 void emitObjectArch(ARM::ArchKind Arch) override;
97 void emitFPU(ARM::FPUKind FPU) override;
98 void emitInst(uint32_t Inst, char Suffix = '\0') override;
99 void finishAttributeSection() override;
100
101 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
103
104 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override;
105 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override;
106 void emitARMWinCFISaveSP(unsigned Reg) override;
107 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override;
108 void emitARMWinCFISaveLR(unsigned Offset) override;
109 void emitARMWinCFIPrologEnd(bool Fragment) override;
110 void emitARMWinCFINop(bool Wide) override;
111 void emitARMWinCFIEpilogStart(unsigned Condition) override;
112 void emitARMWinCFIEpilogEnd() override;
113 void emitARMWinCFICustom(unsigned Opcode) override;
114
115 public:
116 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
117 MCInstPrinter &InstPrinter);
118 };
119
ARMTargetAsmStreamer(MCStreamer & S,formatted_raw_ostream & OS,MCInstPrinter & InstPrinter)120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
121 formatted_raw_ostream &OS,
122 MCInstPrinter &InstPrinter)
123 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
124 IsVerboseAsm(S.isVerboseAsm()) {}
125
emitFnStart()126 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
emitFnEnd()127 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
emitCantUnwind()128 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
129
emitPersonality(const MCSymbol * Personality)130 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
131 OS << "\t.personality " << Personality->getName() << '\n';
132 }
133
emitPersonalityIndex(unsigned Index)134 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
135 OS << "\t.personalityindex " << Index << '\n';
136 }
137
emitHandlerData()138 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
139
emitSetFP(unsigned FpReg,unsigned SpReg,int64_t Offset)140 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
141 int64_t Offset) {
142 OS << "\t.setfp\t";
143 InstPrinter.printRegName(OS, FpReg);
144 OS << ", ";
145 InstPrinter.printRegName(OS, SpReg);
146 if (Offset)
147 OS << ", #" << Offset;
148 OS << '\n';
149 }
150
emitMovSP(unsigned Reg,int64_t Offset)151 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
152 assert((Reg != ARM::SP && Reg != ARM::PC) &&
153 "the operand of .movsp cannot be either sp or pc");
154
155 OS << "\t.movsp\t";
156 InstPrinter.printRegName(OS, Reg);
157 if (Offset)
158 OS << ", #" << Offset;
159 OS << '\n';
160 }
161
emitPad(int64_t Offset)162 void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
163 OS << "\t.pad\t#" << Offset << '\n';
164 }
165
emitRegSave(const SmallVectorImpl<unsigned> & RegList,bool isVector)166 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
167 bool isVector) {
168 assert(RegList.size() && "RegList should not be empty");
169 if (isVector)
170 OS << "\t.vsave\t{";
171 else
172 OS << "\t.save\t{";
173
174 InstPrinter.printRegName(OS, RegList[0]);
175
176 for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
177 OS << ", ";
178 InstPrinter.printRegName(OS, RegList[i]);
179 }
180
181 OS << "}\n";
182 }
183
switchVendor(StringRef Vendor)184 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {}
185
emitAttribute(unsigned Attribute,unsigned Value)186 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
187 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
188 if (IsVerboseAsm) {
189 StringRef Name = ELFAttrs::attrTypeAsString(
190 Attribute, ARMBuildAttrs::getARMAttributeTags());
191 if (!Name.empty())
192 OS << "\t@ " << Name;
193 }
194 OS << "\n";
195 }
196
emitTextAttribute(unsigned Attribute,StringRef String)197 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
198 StringRef String) {
199 switch (Attribute) {
200 case ARMBuildAttrs::CPU_name:
201 OS << "\t.cpu\t" << String.lower();
202 break;
203 default:
204 OS << "\t.eabi_attribute\t" << Attribute << ", \"";
205 if (Attribute == ARMBuildAttrs::also_compatible_with)
206 OS.write_escaped(String);
207 else
208 OS << String;
209 OS << "\"";
210 if (IsVerboseAsm) {
211 StringRef Name = ELFAttrs::attrTypeAsString(
212 Attribute, ARMBuildAttrs::getARMAttributeTags());
213 if (!Name.empty())
214 OS << "\t@ " << Name;
215 }
216 break;
217 }
218 OS << "\n";
219 }
220
emitIntTextAttribute(unsigned Attribute,unsigned IntValue,StringRef StringValue)221 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
222 unsigned IntValue,
223 StringRef StringValue) {
224 switch (Attribute) {
225 default: llvm_unreachable("unsupported multi-value attribute in asm mode");
226 case ARMBuildAttrs::compatibility:
227 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
228 if (!StringValue.empty())
229 OS << ", \"" << StringValue << "\"";
230 if (IsVerboseAsm)
231 OS << "\t@ "
232 << ELFAttrs::attrTypeAsString(Attribute,
233 ARMBuildAttrs::getARMAttributeTags());
234 break;
235 }
236 OS << "\n";
237 }
238
emitArch(ARM::ArchKind Arch)239 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) {
240 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n";
241 }
242
emitArchExtension(uint64_t ArchExt)243 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) {
244 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n";
245 }
246
emitObjectArch(ARM::ArchKind Arch)247 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) {
248 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n';
249 }
250
emitFPU(ARM::FPUKind FPU)251 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) {
252 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n";
253 }
254
finishAttributeSection()255 void ARMTargetAsmStreamer::finishAttributeSection() {}
256
annotateTLSDescriptorSequence(const MCSymbolRefExpr * S)257 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence(
258 const MCSymbolRefExpr *S) {
259 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n";
260 }
261
emitThumbSet(MCSymbol * Symbol,const MCExpr * Value)262 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
263 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
264
265 OS << "\t.thumb_set\t";
266 Symbol->print(OS, MAI);
267 OS << ", ";
268 Value->print(OS, MAI);
269 OS << '\n';
270 }
271
emitInst(uint32_t Inst,char Suffix)272 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
273 OS << "\t.inst";
274 if (Suffix)
275 OS << "." << Suffix;
276 OS << "\t0x" << Twine::utohexstr(Inst) << "\n";
277 }
278
emitUnwindRaw(int64_t Offset,const SmallVectorImpl<uint8_t> & Opcodes)279 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
280 const SmallVectorImpl<uint8_t> &Opcodes) {
281 OS << "\t.unwind_raw " << Offset;
282 for (uint8_t Opcode : Opcodes)
283 OS << ", 0x" << Twine::utohexstr(Opcode);
284 OS << '\n';
285 }
286
emitARMWinCFIAllocStack(unsigned Size,bool Wide)287 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) {
288 if (Wide)
289 OS << "\t.seh_stackalloc_w\t" << Size << "\n";
290 else
291 OS << "\t.seh_stackalloc\t" << Size << "\n";
292 }
293
printRegs(formatted_raw_ostream & OS,ListSeparator & LS,int First,int Last)294 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First,
295 int Last) {
296 if (First != Last)
297 OS << LS << "r" << First << "-r" << Last;
298 else
299 OS << LS << "r" << First;
300 }
301
emitARMWinCFISaveRegMask(unsigned Mask,bool Wide)302 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) {
303 if (Wide)
304 OS << "\t.seh_save_regs_w\t";
305 else
306 OS << "\t.seh_save_regs\t";
307 ListSeparator LS;
308 int First = -1;
309 OS << "{";
310 for (int I = 0; I <= 12; I++) {
311 if (Mask & (1 << I)) {
312 if (First < 0)
313 First = I;
314 } else {
315 if (First >= 0) {
316 printRegs(OS, LS, First, I - 1);
317 First = -1;
318 }
319 }
320 }
321 if (First >= 0)
322 printRegs(OS, LS, First, 12);
323 if (Mask & (1 << 14))
324 OS << LS << "lr";
325 OS << "}\n";
326 }
327
emitARMWinCFISaveSP(unsigned Reg)328 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) {
329 OS << "\t.seh_save_sp\tr" << Reg << "\n";
330 }
331
emitARMWinCFISaveFRegs(unsigned First,unsigned Last)332 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First,
333 unsigned Last) {
334 if (First != Last)
335 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n";
336 else
337 OS << "\t.seh_save_fregs\t{d" << First << "}\n";
338 }
339
emitARMWinCFISaveLR(unsigned Offset)340 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) {
341 OS << "\t.seh_save_lr\t" << Offset << "\n";
342 }
343
emitARMWinCFIPrologEnd(bool Fragment)344 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) {
345 if (Fragment)
346 OS << "\t.seh_endprologue_fragment\n";
347 else
348 OS << "\t.seh_endprologue\n";
349 }
350
emitARMWinCFINop(bool Wide)351 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) {
352 if (Wide)
353 OS << "\t.seh_nop_w\n";
354 else
355 OS << "\t.seh_nop\n";
356 }
357
emitARMWinCFIEpilogStart(unsigned Condition)358 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) {
359 if (Condition == ARMCC::AL)
360 OS << "\t.seh_startepilogue\n";
361 else
362 OS << "\t.seh_startepilogue_cond\t"
363 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n";
364 }
365
emitARMWinCFIEpilogEnd()366 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() {
367 OS << "\t.seh_endepilogue\n";
368 }
369
emitARMWinCFICustom(unsigned Opcode)370 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) {
371 int I;
372 for (I = 3; I > 0; I--)
373 if (Opcode & (0xffu << (8 * I)))
374 break;
375 ListSeparator LS;
376 OS << "\t.seh_custom\t";
377 for (; I >= 0; I--)
378 OS << LS << ((Opcode >> (8 * I)) & 0xff);
379 OS << "\n";
380 }
381
382 class ARMTargetELFStreamer : public ARMTargetStreamer {
383 private:
384 StringRef CurrentVendor;
385 ARM::FPUKind FPU = ARM::FK_INVALID;
386 ARM::ArchKind Arch = ARM::ArchKind::INVALID;
387 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID;
388
389 MCSection *AttributeSection = nullptr;
390
391 void emitArchDefaultAttributes();
392 void emitFPUDefaultAttributes();
393
394 ARMELFStreamer &getStreamer();
395
396 void emitFnStart() override;
397 void emitFnEnd() override;
398 void emitCantUnwind() override;
399 void emitPersonality(const MCSymbol *Personality) override;
400 void emitPersonalityIndex(unsigned Index) override;
401 void emitHandlerData() override;
402 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
403 void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
404 void emitPad(int64_t Offset) override;
405 void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
406 bool isVector) override;
407 void emitUnwindRaw(int64_t Offset,
408 const SmallVectorImpl<uint8_t> &Opcodes) override;
409
410 void switchVendor(StringRef Vendor) override;
411 void emitAttribute(unsigned Attribute, unsigned Value) override;
412 void emitTextAttribute(unsigned Attribute, StringRef String) override;
413 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
414 StringRef StringValue) override;
415 void emitArch(ARM::ArchKind Arch) override;
416 void emitObjectArch(ARM::ArchKind Arch) override;
417 void emitFPU(ARM::FPUKind FPU) override;
418 void emitInst(uint32_t Inst, char Suffix = '\0') override;
419 void finishAttributeSection() override;
420 void emitLabel(MCSymbol *Symbol) override;
421
422 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
423 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
424
425 // Reset state between object emissions
426 void reset() override;
427
428 void finish() override;
429
430 public:
ARMTargetELFStreamer(MCStreamer & S)431 ARMTargetELFStreamer(MCStreamer &S)
432 : ARMTargetStreamer(S), CurrentVendor("aeabi") {}
433 };
434
435 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at
436 /// the appropriate points in the object files. These symbols are defined in the
437 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf.
438 ///
439 /// In brief: $a, $t or $d should be emitted at the start of each contiguous
440 /// region of ARM code, Thumb code or data in a section. In practice, this
441 /// emission does not rely on explicit assembler directives but on inherent
442 /// properties of the directives doing the emission (e.g. ".byte" is data, "add
443 /// r0, r0, r0" an instruction).
444 ///
445 /// As a result this system is orthogonal to the DataRegion infrastructure used
446 /// by MachO. Beware!
447 class ARMELFStreamer : public MCELFStreamer {
448 public:
449 friend class ARMTargetELFStreamer;
450
ARMELFStreamer(MCContext & Context,std::unique_ptr<MCAsmBackend> TAB,std::unique_ptr<MCObjectWriter> OW,std::unique_ptr<MCCodeEmitter> Emitter,bool IsThumb,bool IsAndroid)451 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
452 std::unique_ptr<MCObjectWriter> OW,
453 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb,
454 bool IsAndroid)
455 : MCELFStreamer(Context, std::move(TAB), std::move(OW),
456 std::move(Emitter)),
457 IsThumb(IsThumb), IsAndroid(IsAndroid) {
458 EHReset();
459 }
460
461 ~ARMELFStreamer() override = default;
462
463 // ARM exception handling directives
464 void emitFnStart();
465 void emitFnEnd();
466 void emitCantUnwind();
467 void emitPersonality(const MCSymbol *Per);
468 void emitPersonalityIndex(unsigned index);
469 void emitHandlerData();
470 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
471 void emitMovSP(unsigned Reg, int64_t Offset = 0);
472 void emitPad(int64_t Offset);
473 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
474 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
emitFill(const MCExpr & NumBytes,uint64_t FillValue,SMLoc Loc)475 void emitFill(const MCExpr &NumBytes, uint64_t FillValue,
476 SMLoc Loc) override {
477 emitDataMappingSymbol();
478 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc);
479 }
480
changeSection(MCSection * Section,uint32_t Subsection)481 void changeSection(MCSection *Section, uint32_t Subsection) override {
482 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo);
483 MCELFStreamer::changeSection(Section, Subsection);
484 auto LastMappingSymbol = LastMappingSymbols.find(Section);
485 if (LastMappingSymbol != LastMappingSymbols.end()) {
486 LastEMSInfo = std::move(LastMappingSymbol->second);
487 return;
488 }
489 LastEMSInfo.reset(new ElfMappingSymbolInfo);
490 }
491
492 /// This function is the one used to emit instruction data into the ELF
493 /// streamer. We override it to add the appropriate mapping symbol if
494 /// necessary.
emitInstruction(const MCInst & Inst,const MCSubtargetInfo & STI)495 void emitInstruction(const MCInst &Inst,
496 const MCSubtargetInfo &STI) override {
497 if (IsThumb)
498 EmitThumbMappingSymbol();
499 else
500 EmitARMMappingSymbol();
501
502 MCELFStreamer::emitInstruction(Inst, STI);
503 }
504
emitInst(uint32_t Inst,char Suffix)505 void emitInst(uint32_t Inst, char Suffix) {
506 unsigned Size;
507 char Buffer[4];
508 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
509
510 switch (Suffix) {
511 case '\0':
512 Size = 4;
513
514 assert(!IsThumb);
515 EmitARMMappingSymbol();
516 for (unsigned II = 0, IE = Size; II != IE; II++) {
517 const unsigned I = LittleEndian ? (Size - II - 1) : II;
518 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
519 }
520
521 break;
522 case 'n':
523 case 'w':
524 Size = (Suffix == 'n' ? 2 : 4);
525
526 assert(IsThumb);
527 EmitThumbMappingSymbol();
528 // Thumb wide instructions are emitted as a pair of 16-bit words of the
529 // appropriate endianness.
530 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
531 const unsigned I0 = LittleEndian ? II + 0 : II + 1;
532 const unsigned I1 = LittleEndian ? II + 1 : II + 0;
533 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
534 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
535 }
536
537 break;
538 default:
539 llvm_unreachable("Invalid Suffix");
540 }
541
542 MCELFStreamer::emitBytes(StringRef(Buffer, Size));
543 }
544
545 /// This is one of the functions used to emit data into an ELF section, so the
546 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
547 /// necessary.
emitBytes(StringRef Data)548 void emitBytes(StringRef Data) override {
549 emitDataMappingSymbol();
550 MCELFStreamer::emitBytes(Data);
551 }
552
FlushPendingMappingSymbol()553 void FlushPendingMappingSymbol() {
554 if (!LastEMSInfo->hasInfo())
555 return;
556 ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
557 emitMappingSymbol("$d", *EMS->F, EMS->Offset);
558 EMS->resetInfo();
559 }
560
561 /// This is one of the functions used to emit data into an ELF section, so the
562 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
563 /// necessary.
emitValueImpl(const MCExpr * Value,unsigned Size,SMLoc Loc)564 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
565 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) {
566 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) {
567 getContext().reportError(Loc, "relocated expression must be 32-bit");
568 return;
569 }
570 getOrCreateDataFragment();
571 }
572
573 emitDataMappingSymbol();
574 MCELFStreamer::emitValueImpl(Value, Size, Loc);
575 }
576
emitAssemblerFlag(MCAssemblerFlag Flag)577 void emitAssemblerFlag(MCAssemblerFlag Flag) override {
578 MCELFStreamer::emitAssemblerFlag(Flag);
579
580 switch (Flag) {
581 case MCAF_SyntaxUnified:
582 return; // no-op here.
583 case MCAF_Code16:
584 IsThumb = true;
585 return; // Change to Thumb mode
586 case MCAF_Code32:
587 IsThumb = false;
588 return; // Change to ARM mode
589 case MCAF_Code64:
590 return;
591 case MCAF_SubsectionsViaSymbols:
592 return;
593 }
594 }
595
596 /// If a label is defined before the .type directive sets the label's type
597 /// then the label can't be recorded as thumb function when the label is
598 /// defined. We override emitSymbolAttribute() which is called as part of the
599 /// parsing of .type so that if the symbol has already been defined we can
600 /// record the label as Thumb. FIXME: there is a corner case where the state
601 /// is changed in between the label definition and the .type directive, this
602 /// is not expected to occur in practice and handling it would require the
603 /// backend to track IsThumb for every label.
emitSymbolAttribute(MCSymbol * Symbol,MCSymbolAttr Attribute)604 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override {
605 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute);
606
607 if (!IsThumb)
608 return Val;
609
610 unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
611 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) &&
612 Symbol->isDefined())
613 getAssembler().setIsThumbFunc(Symbol);
614
615 return Val;
616 };
617
618 private:
619 enum ElfMappingSymbol {
620 EMS_None,
621 EMS_ARM,
622 EMS_Thumb,
623 EMS_Data
624 };
625
626 struct ElfMappingSymbolInfo {
resetInfo__anonf150d5940111::ARMELFStreamer::ElfMappingSymbolInfo627 void resetInfo() {
628 F = nullptr;
629 Offset = 0;
630 }
hasInfo__anonf150d5940111::ARMELFStreamer::ElfMappingSymbolInfo631 bool hasInfo() { return F != nullptr; }
632 MCDataFragment *F = nullptr;
633 uint64_t Offset = 0;
634 ElfMappingSymbol State = EMS_None;
635 };
636
emitDataMappingSymbol()637 void emitDataMappingSymbol() {
638 if (LastEMSInfo->State == EMS_Data)
639 return;
640 else if (LastEMSInfo->State == EMS_None) {
641 // This is a tentative symbol, it won't really be emitted until it's
642 // actually needed.
643 ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
644 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
645 if (!DF)
646 return;
647 EMS->F = DF;
648 EMS->Offset = DF->getContents().size();
649 LastEMSInfo->State = EMS_Data;
650 return;
651 }
652 EmitMappingSymbol("$d");
653 LastEMSInfo->State = EMS_Data;
654 }
655
EmitThumbMappingSymbol()656 void EmitThumbMappingSymbol() {
657 if (LastEMSInfo->State == EMS_Thumb)
658 return;
659 FlushPendingMappingSymbol();
660 EmitMappingSymbol("$t");
661 LastEMSInfo->State = EMS_Thumb;
662 }
663
EmitARMMappingSymbol()664 void EmitARMMappingSymbol() {
665 if (LastEMSInfo->State == EMS_ARM)
666 return;
667 FlushPendingMappingSymbol();
668 EmitMappingSymbol("$a");
669 LastEMSInfo->State = EMS_ARM;
670 }
671
EmitMappingSymbol(StringRef Name)672 void EmitMappingSymbol(StringRef Name) {
673 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name));
674 emitLabel(Symbol);
675
676 Symbol->setType(ELF::STT_NOTYPE);
677 Symbol->setBinding(ELF::STB_LOCAL);
678 }
679
emitMappingSymbol(StringRef Name,MCDataFragment & F,uint64_t Offset)680 void emitMappingSymbol(StringRef Name, MCDataFragment &F, uint64_t Offset) {
681 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name));
682 emitLabelAtPos(Symbol, SMLoc(), F, Offset);
683 Symbol->setType(ELF::STT_NOTYPE);
684 Symbol->setBinding(ELF::STB_LOCAL);
685 }
686
emitThumbFunc(MCSymbol * Func)687 void emitThumbFunc(MCSymbol *Func) override {
688 getAssembler().setIsThumbFunc(Func);
689 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
690 }
691
692 // Helper functions for ARM exception handling directives
693 void EHReset();
694
695 // Reset state between object emissions
696 void reset() override;
697
698 void EmitPersonalityFixup(StringRef Name);
699 void FlushPendingOffset();
700 void FlushUnwindOpcodes(bool NoHandlerData);
701
702 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags,
703 SectionKind Kind, const MCSymbol &Fn);
704 void SwitchToExTabSection(const MCSymbol &FnStart);
705 void SwitchToExIdxSection(const MCSymbol &FnStart);
706
707 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
708
709 bool IsThumb;
710 bool IsAndroid;
711
712 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>>
713 LastMappingSymbols;
714
715 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo;
716
717 // ARM Exception Handling Frame Information
718 MCSymbol *ExTab;
719 MCSymbol *FnStart;
720 const MCSymbol *Personality;
721 unsigned PersonalityIndex;
722 unsigned FPReg; // Frame pointer register
723 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp)
724 int64_t SPOffset; // Offset: (final $sp) - (initial $sp)
725 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp)
726 bool UsedFP;
727 bool CantUnwind;
728 SmallVector<uint8_t, 64> Opcodes;
729 UnwindOpcodeAssembler UnwindOpAsm;
730 };
731
732 } // end anonymous namespace
733
getStreamer()734 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
735 return static_cast<ARMELFStreamer &>(Streamer);
736 }
737
emitFnStart()738 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
emitFnEnd()739 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
emitCantUnwind()740 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
741
emitPersonality(const MCSymbol * Personality)742 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
743 getStreamer().emitPersonality(Personality);
744 }
745
emitPersonalityIndex(unsigned Index)746 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
747 getStreamer().emitPersonalityIndex(Index);
748 }
749
emitHandlerData()750 void ARMTargetELFStreamer::emitHandlerData() {
751 getStreamer().emitHandlerData();
752 }
753
emitSetFP(unsigned FpReg,unsigned SpReg,int64_t Offset)754 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
755 int64_t Offset) {
756 getStreamer().emitSetFP(FpReg, SpReg, Offset);
757 }
758
emitMovSP(unsigned Reg,int64_t Offset)759 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
760 getStreamer().emitMovSP(Reg, Offset);
761 }
762
emitPad(int64_t Offset)763 void ARMTargetELFStreamer::emitPad(int64_t Offset) {
764 getStreamer().emitPad(Offset);
765 }
766
emitRegSave(const SmallVectorImpl<unsigned> & RegList,bool isVector)767 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
768 bool isVector) {
769 getStreamer().emitRegSave(RegList, isVector);
770 }
771
emitUnwindRaw(int64_t Offset,const SmallVectorImpl<uint8_t> & Opcodes)772 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
773 const SmallVectorImpl<uint8_t> &Opcodes) {
774 getStreamer().emitUnwindRaw(Offset, Opcodes);
775 }
776
switchVendor(StringRef Vendor)777 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
778 assert(!Vendor.empty() && "Vendor cannot be empty.");
779
780 if (CurrentVendor == Vendor)
781 return;
782
783 if (!CurrentVendor.empty())
784 finishAttributeSection();
785
786 assert(getStreamer().Contents.empty() &&
787 ".ARM.attributes should be flushed before changing vendor");
788 CurrentVendor = Vendor;
789
790 }
791
emitAttribute(unsigned Attribute,unsigned Value)792 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
793 getStreamer().setAttributeItem(Attribute, Value,
794 /* OverwriteExisting= */ true);
795 }
796
emitTextAttribute(unsigned Attribute,StringRef Value)797 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
798 StringRef Value) {
799 getStreamer().setAttributeItem(Attribute, Value,
800 /* OverwriteExisting= */ true);
801 }
802
emitIntTextAttribute(unsigned Attribute,unsigned IntValue,StringRef StringValue)803 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
804 unsigned IntValue,
805 StringRef StringValue) {
806 getStreamer().setAttributeItems(Attribute, IntValue, StringValue,
807 /* OverwriteExisting= */ true);
808 }
809
emitArch(ARM::ArchKind Value)810 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) {
811 Arch = Value;
812 }
813
emitObjectArch(ARM::ArchKind Value)814 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) {
815 EmittedArch = Value;
816 }
817
emitArchDefaultAttributes()818 void ARMTargetELFStreamer::emitArchDefaultAttributes() {
819 using namespace ARMBuildAttrs;
820 ARMELFStreamer &S = getStreamer();
821
822 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false);
823
824 if (EmittedArch == ARM::ArchKind::INVALID)
825 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false);
826 else
827 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false);
828
829 switch (Arch) {
830 case ARM::ArchKind::ARMV4:
831 S.setAttributeItem(ARM_ISA_use, Allowed, false);
832 break;
833
834 case ARM::ArchKind::ARMV4T:
835 case ARM::ArchKind::ARMV5T:
836 case ARM::ArchKind::XSCALE:
837 case ARM::ArchKind::ARMV5TE:
838 case ARM::ArchKind::ARMV6:
839 S.setAttributeItem(ARM_ISA_use, Allowed, false);
840 S.setAttributeItem(THUMB_ISA_use, Allowed, false);
841 break;
842
843 case ARM::ArchKind::ARMV6T2:
844 S.setAttributeItem(ARM_ISA_use, Allowed, false);
845 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
846 break;
847
848 case ARM::ArchKind::ARMV6K:
849 case ARM::ArchKind::ARMV6KZ:
850 S.setAttributeItem(ARM_ISA_use, Allowed, false);
851 S.setAttributeItem(THUMB_ISA_use, Allowed, false);
852 S.setAttributeItem(Virtualization_use, AllowTZ, false);
853 break;
854
855 case ARM::ArchKind::ARMV6M:
856 S.setAttributeItem(THUMB_ISA_use, Allowed, false);
857 break;
858
859 case ARM::ArchKind::ARMV7A:
860 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
861 S.setAttributeItem(ARM_ISA_use, Allowed, false);
862 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
863 break;
864
865 case ARM::ArchKind::ARMV7R:
866 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
867 S.setAttributeItem(ARM_ISA_use, Allowed, false);
868 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
869 break;
870
871 case ARM::ArchKind::ARMV7EM:
872 case ARM::ArchKind::ARMV7M:
873 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
874 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
875 break;
876
877 case ARM::ArchKind::ARMV8A:
878 case ARM::ArchKind::ARMV8_1A:
879 case ARM::ArchKind::ARMV8_2A:
880 case ARM::ArchKind::ARMV8_3A:
881 case ARM::ArchKind::ARMV8_4A:
882 case ARM::ArchKind::ARMV8_5A:
883 case ARM::ArchKind::ARMV8_6A:
884 case ARM::ArchKind::ARMV8_7A:
885 case ARM::ArchKind::ARMV8_8A:
886 case ARM::ArchKind::ARMV8_9A:
887 case ARM::ArchKind::ARMV9A:
888 case ARM::ArchKind::ARMV9_1A:
889 case ARM::ArchKind::ARMV9_2A:
890 case ARM::ArchKind::ARMV9_3A:
891 case ARM::ArchKind::ARMV9_4A:
892 case ARM::ArchKind::ARMV9_5A:
893 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
894 S.setAttributeItem(ARM_ISA_use, Allowed, false);
895 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
896 S.setAttributeItem(MPextension_use, Allowed, false);
897 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
898 break;
899
900 case ARM::ArchKind::ARMV8MBaseline:
901 case ARM::ArchKind::ARMV8MMainline:
902 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false);
903 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
904 break;
905
906 case ARM::ArchKind::IWMMXT:
907 S.setAttributeItem(ARM_ISA_use, Allowed, false);
908 S.setAttributeItem(THUMB_ISA_use, Allowed, false);
909 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false);
910 break;
911
912 case ARM::ArchKind::IWMMXT2:
913 S.setAttributeItem(ARM_ISA_use, Allowed, false);
914 S.setAttributeItem(THUMB_ISA_use, Allowed, false);
915 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false);
916 break;
917
918 default:
919 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch)));
920 break;
921 }
922 }
923
emitFPU(ARM::FPUKind Value)924 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; }
925
emitFPUDefaultAttributes()926 void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
927 ARMELFStreamer &S = getStreamer();
928
929 switch (FPU) {
930 case ARM::FK_VFP:
931 case ARM::FK_VFPV2:
932 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2,
933 /* OverwriteExisting= */ false);
934 break;
935
936 case ARM::FK_VFPV3:
937 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
938 /* OverwriteExisting= */ false);
939 break;
940
941 case ARM::FK_VFPV3_FP16:
942 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
943 /* OverwriteExisting= */ false);
944 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
945 /* OverwriteExisting= */ false);
946 break;
947
948 case ARM::FK_VFPV3_D16:
949 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
950 /* OverwriteExisting= */ false);
951 break;
952
953 case ARM::FK_VFPV3_D16_FP16:
954 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
955 /* OverwriteExisting= */ false);
956 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
957 /* OverwriteExisting= */ false);
958 break;
959
960 case ARM::FK_VFPV3XD:
961 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
962 /* OverwriteExisting= */ false);
963 break;
964 case ARM::FK_VFPV3XD_FP16:
965 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
966 /* OverwriteExisting= */ false);
967 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
968 /* OverwriteExisting= */ false);
969 break;
970
971 case ARM::FK_VFPV4:
972 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
973 /* OverwriteExisting= */ false);
974 break;
975
976 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same
977 // as _D16 here.
978 case ARM::FK_FPV4_SP_D16:
979 case ARM::FK_VFPV4_D16:
980 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B,
981 /* OverwriteExisting= */ false);
982 break;
983
984 case ARM::FK_FP_ARMV8:
985 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
986 /* OverwriteExisting= */ false);
987 break;
988
989 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so
990 // uses the FP_ARMV8_D16 build attribute.
991 case ARM::FK_FPV5_SP_D16:
992 case ARM::FK_FPV5_D16:
993 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B,
994 /* OverwriteExisting= */ false);
995 break;
996
997 case ARM::FK_NEON:
998 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
999 /* OverwriteExisting= */ false);
1000 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1001 ARMBuildAttrs::AllowNeon,
1002 /* OverwriteExisting= */ false);
1003 break;
1004
1005 case ARM::FK_NEON_FP16:
1006 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
1007 /* OverwriteExisting= */ false);
1008 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1009 ARMBuildAttrs::AllowNeon,
1010 /* OverwriteExisting= */ false);
1011 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
1012 /* OverwriteExisting= */ false);
1013 break;
1014
1015 case ARM::FK_NEON_VFPV4:
1016 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
1017 /* OverwriteExisting= */ false);
1018 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1019 ARMBuildAttrs::AllowNeon2,
1020 /* OverwriteExisting= */ false);
1021 break;
1022
1023 case ARM::FK_NEON_FP_ARMV8:
1024 case ARM::FK_CRYPTO_NEON_FP_ARMV8:
1025 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
1026 /* OverwriteExisting= */ false);
1027 // 'Advanced_SIMD_arch' must be emitted not here, but within
1028 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a()
1029 break;
1030
1031 case ARM::FK_SOFTVFP:
1032 case ARM::FK_NONE:
1033 break;
1034
1035 default:
1036 report_fatal_error("Unknown FPU: " + Twine(FPU));
1037 break;
1038 }
1039 }
1040
finishAttributeSection()1041 void ARMTargetELFStreamer::finishAttributeSection() {
1042 ARMELFStreamer &S = getStreamer();
1043
1044 if (FPU != ARM::FK_INVALID)
1045 emitFPUDefaultAttributes();
1046
1047 if (Arch != ARM::ArchKind::INVALID)
1048 emitArchDefaultAttributes();
1049
1050 if (S.Contents.empty())
1051 return;
1052
1053 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS,
1054 const MCELFStreamer::AttributeItem &RHS) -> bool {
1055 // The conformance tag must be emitted first when serialised into an
1056 // object file. Specifically, the addenda to the ARM ABI states that
1057 // (2.3.7.4):
1058 //
1059 // "To simplify recognition by consumers in the common case of claiming
1060 // conformity for the whole file, this tag should be emitted first in a
1061 // file-scope sub-subsection of the first public subsection of the
1062 // attributes section."
1063 //
1064 // So it is special-cased in this comparison predicate when the
1065 // attributes are sorted in finishAttributeSection().
1066 return (RHS.Tag != ARMBuildAttrs::conformance) &&
1067 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
1068 };
1069 llvm::sort(S.Contents, LessTag);
1070
1071 S.emitAttributesSection(CurrentVendor, ".ARM.attributes",
1072 ELF::SHT_ARM_ATTRIBUTES, AttributeSection);
1073
1074 FPU = ARM::FK_INVALID;
1075 }
1076
emitLabel(MCSymbol * Symbol)1077 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
1078 ARMELFStreamer &Streamer = getStreamer();
1079 if (!Streamer.IsThumb)
1080 return;
1081
1082 Streamer.getAssembler().registerSymbol(*Symbol);
1083 unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
1084 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)
1085 Streamer.emitThumbFunc(Symbol);
1086 }
1087
annotateTLSDescriptorSequence(const MCSymbolRefExpr * S)1088 void ARMTargetELFStreamer::annotateTLSDescriptorSequence(
1089 const MCSymbolRefExpr *S) {
1090 getStreamer().EmitFixup(S, FK_Data_4);
1091 }
1092
emitThumbSet(MCSymbol * Symbol,const MCExpr * Value)1093 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
1094 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
1095 const MCSymbol &Sym = SRE->getSymbol();
1096 if (!Sym.isDefined()) {
1097 getStreamer().emitAssignment(Symbol, Value);
1098 return;
1099 }
1100 }
1101
1102 getStreamer().emitThumbFunc(Symbol);
1103 getStreamer().emitAssignment(Symbol, Value);
1104 }
1105
emitInst(uint32_t Inst,char Suffix)1106 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
1107 getStreamer().emitInst(Inst, Suffix);
1108 }
1109
reset()1110 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; }
1111
finish()1112 void ARMTargetELFStreamer::finish() {
1113 ARMTargetStreamer::finish();
1114 finishAttributeSection();
1115 }
1116
reset()1117 void ARMELFStreamer::reset() {
1118 MCTargetStreamer &TS = *getTargetStreamer();
1119 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1120 ATS.reset();
1121 MCELFStreamer::reset();
1122 LastMappingSymbols.clear();
1123 LastEMSInfo.reset();
1124 // MCELFStreamer clear's the assembler's e_flags. However, for
1125 // arm we manually set the ABI version on streamer creation, so
1126 // do the same here
1127 getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1128 }
1129
SwitchToEHSection(StringRef Prefix,unsigned Type,unsigned Flags,SectionKind Kind,const MCSymbol & Fn)1130 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix,
1131 unsigned Type,
1132 unsigned Flags,
1133 SectionKind Kind,
1134 const MCSymbol &Fn) {
1135 const MCSectionELF &FnSection =
1136 static_cast<const MCSectionELF &>(Fn.getSection());
1137
1138 // Create the name for new section
1139 StringRef FnSecName(FnSection.getName());
1140 SmallString<128> EHSecName(Prefix);
1141 if (FnSecName != ".text") {
1142 EHSecName += FnSecName;
1143 }
1144
1145 // Get .ARM.extab or .ARM.exidx section
1146 const MCSymbolELF *Group = FnSection.getGroup();
1147 if (Group)
1148 Flags |= ELF::SHF_GROUP;
1149 MCSectionELF *EHSection = getContext().getELFSection(
1150 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true,
1151 FnSection.getUniqueID(),
1152 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol()));
1153
1154 assert(EHSection && "Failed to get the required EH section");
1155
1156 // Switch to .ARM.extab or .ARM.exidx section
1157 switchSection(EHSection);
1158 emitValueToAlignment(Align(4), 0, 1, 0);
1159 }
1160
SwitchToExTabSection(const MCSymbol & FnStart)1161 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
1162 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC,
1163 SectionKind::getData(), FnStart);
1164 }
1165
SwitchToExIdxSection(const MCSymbol & FnStart)1166 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
1167 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX,
1168 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
1169 SectionKind::getData(), FnStart);
1170 }
1171
EmitFixup(const MCExpr * Expr,MCFixupKind Kind)1172 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
1173 MCDataFragment *Frag = getOrCreateDataFragment();
1174 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr,
1175 Kind));
1176 }
1177
EHReset()1178 void ARMELFStreamer::EHReset() {
1179 ExTab = nullptr;
1180 FnStart = nullptr;
1181 Personality = nullptr;
1182 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
1183 FPReg = ARM::SP;
1184 FPOffset = 0;
1185 SPOffset = 0;
1186 PendingOffset = 0;
1187 UsedFP = false;
1188 CantUnwind = false;
1189
1190 Opcodes.clear();
1191 UnwindOpAsm.Reset();
1192 }
1193
emitFnStart()1194 void ARMELFStreamer::emitFnStart() {
1195 assert(FnStart == nullptr);
1196 FnStart = getContext().createTempSymbol();
1197 emitLabel(FnStart);
1198 }
1199
emitFnEnd()1200 void ARMELFStreamer::emitFnEnd() {
1201 assert(FnStart && ".fnstart must precedes .fnend");
1202
1203 // Emit unwind opcodes if there is no .handlerdata directive
1204 if (!ExTab && !CantUnwind)
1205 FlushUnwindOpcodes(true);
1206
1207 // Emit the exception index table entry
1208 SwitchToExIdxSection(*FnStart);
1209
1210 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the
1211 // personality routine to protect it from an arbitrary platform's static
1212 // linker garbage collection. We disable this for Android where the unwinder
1213 // is either dynamically linked or directly references the personality
1214 // routine.
1215 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid)
1216 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
1217
1218 const MCSymbolRefExpr *FnStartRef =
1219 MCSymbolRefExpr::create(FnStart,
1220 MCSymbolRefExpr::VK_ARM_PREL31,
1221 getContext());
1222
1223 emitValue(FnStartRef, 4);
1224
1225 if (CantUnwind) {
1226 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND);
1227 } else if (ExTab) {
1228 // Emit a reference to the unwind opcodes in the ".ARM.extab" section.
1229 const MCSymbolRefExpr *ExTabEntryRef =
1230 MCSymbolRefExpr::create(ExTab,
1231 MCSymbolRefExpr::VK_ARM_PREL31,
1232 getContext());
1233 emitValue(ExTabEntryRef, 4);
1234 } else {
1235 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in
1236 // the second word of exception index table entry. The size of the unwind
1237 // opcodes should always be 4 bytes.
1238 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
1239 "Compact model must use __aeabi_unwind_cpp_pr0 as personality");
1240 assert(Opcodes.size() == 4u &&
1241 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
1242 uint64_t Intval = Opcodes[0] |
1243 Opcodes[1] << 8 |
1244 Opcodes[2] << 16 |
1245 Opcodes[3] << 24;
1246 emitIntValue(Intval, Opcodes.size());
1247 }
1248
1249 // Switch to the section containing FnStart
1250 switchSection(&FnStart->getSection());
1251
1252 // Clean exception handling frame information
1253 EHReset();
1254 }
1255
emitCantUnwind()1256 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
1257
1258 // Add the R_ARM_NONE fixup at the same position
EmitPersonalityFixup(StringRef Name)1259 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
1260 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name);
1261
1262 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(
1263 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
1264
1265 visitUsedExpr(*PersonalityRef);
1266 MCDataFragment *DF = getOrCreateDataFragment();
1267 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(),
1268 PersonalityRef,
1269 MCFixup::getKindForSize(4, false)));
1270 }
1271
FlushPendingOffset()1272 void ARMELFStreamer::FlushPendingOffset() {
1273 if (PendingOffset != 0) {
1274 UnwindOpAsm.EmitSPOffset(-PendingOffset);
1275 PendingOffset = 0;
1276 }
1277 }
1278
FlushUnwindOpcodes(bool NoHandlerData)1279 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
1280 // Emit the unwind opcode to restore $sp.
1281 if (UsedFP) {
1282 const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1283 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
1284 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
1285 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1286 } else {
1287 FlushPendingOffset();
1288 }
1289
1290 // Finalize the unwind opcode sequence
1291 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
1292
1293 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx
1294 // section. Thus, we don't have to create an entry in the .ARM.extab
1295 // section.
1296 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
1297 return;
1298
1299 // Switch to .ARM.extab section.
1300 SwitchToExTabSection(*FnStart);
1301
1302 // Create .ARM.extab label for offset in .ARM.exidx
1303 assert(!ExTab);
1304 ExTab = getContext().createTempSymbol();
1305 emitLabel(ExTab);
1306
1307 // Emit personality
1308 if (Personality) {
1309 const MCSymbolRefExpr *PersonalityRef =
1310 MCSymbolRefExpr::create(Personality,
1311 MCSymbolRefExpr::VK_ARM_PREL31,
1312 getContext());
1313
1314 emitValue(PersonalityRef, 4);
1315 }
1316
1317 // Emit unwind opcodes
1318 assert((Opcodes.size() % 4) == 0 &&
1319 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
1320 for (unsigned I = 0; I != Opcodes.size(); I += 4) {
1321 uint64_t Intval = Opcodes[I] |
1322 Opcodes[I + 1] << 8 |
1323 Opcodes[I + 2] << 16 |
1324 Opcodes[I + 3] << 24;
1325 emitInt32(Intval);
1326 }
1327
1328 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or
1329 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted
1330 // after the unwind opcodes. The handler data consists of several 32-bit
1331 // words, and should be terminated by zero.
1332 //
1333 // In case that the .handlerdata directive is not specified by the
1334 // programmer, we should emit zero to terminate the handler data.
1335 if (NoHandlerData && !Personality)
1336 emitInt32(0);
1337 }
1338
emitHandlerData()1339 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
1340
emitPersonality(const MCSymbol * Per)1341 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
1342 Personality = Per;
1343 UnwindOpAsm.setPersonality(Per);
1344 }
1345
emitPersonalityIndex(unsigned Index)1346 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
1347 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
1348 PersonalityIndex = Index;
1349 }
1350
emitSetFP(unsigned NewFPReg,unsigned NewSPReg,int64_t Offset)1351 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
1352 int64_t Offset) {
1353 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
1354 "the operand of .setfp directive should be either $sp or $fp");
1355
1356 UsedFP = true;
1357 FPReg = NewFPReg;
1358
1359 if (NewSPReg == ARM::SP)
1360 FPOffset = SPOffset + Offset;
1361 else
1362 FPOffset += Offset;
1363 }
1364
emitMovSP(unsigned Reg,int64_t Offset)1365 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
1366 assert((Reg != ARM::SP && Reg != ARM::PC) &&
1367 "the operand of .movsp cannot be either sp or pc");
1368 assert(FPReg == ARM::SP && "current FP must be SP");
1369
1370 FlushPendingOffset();
1371
1372 FPReg = Reg;
1373 FPOffset = SPOffset + Offset;
1374
1375 const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1376 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1377 }
1378
emitPad(int64_t Offset)1379 void ARMELFStreamer::emitPad(int64_t Offset) {
1380 // Track the change of the $sp offset
1381 SPOffset -= Offset;
1382
1383 // To squash multiple .pad directives, we should delay the unwind opcode
1384 // until the .save, .vsave, .handlerdata, or .fnend directives.
1385 PendingOffset -= Offset;
1386 }
1387
1388 static std::pair<unsigned, unsigned>
collectHWRegs(const MCRegisterInfo & MRI,unsigned Idx,const SmallVectorImpl<unsigned> & RegList,bool IsVector,uint32_t & Mask_)1389 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx,
1390 const SmallVectorImpl<unsigned> &RegList, bool IsVector,
1391 uint32_t &Mask_) {
1392 uint32_t Mask = 0;
1393 unsigned Count = 0;
1394 while (Idx > 0) {
1395 unsigned Reg = RegList[Idx - 1];
1396 if (Reg == ARM::RA_AUTH_CODE)
1397 break;
1398 Reg = MRI.getEncodingValue(Reg);
1399 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
1400 unsigned Bit = (1u << Reg);
1401 if ((Mask & Bit) == 0) {
1402 Mask |= Bit;
1403 ++Count;
1404 }
1405 --Idx;
1406 }
1407
1408 Mask_ = Mask;
1409 return {Idx, Count};
1410 }
1411
emitRegSave(const SmallVectorImpl<unsigned> & RegList,bool IsVector)1412 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
1413 bool IsVector) {
1414 uint32_t Mask;
1415 unsigned Idx, Count;
1416 const MCRegisterInfo &MRI = *getContext().getRegisterInfo();
1417
1418 // Collect the registers in the register list. Issue unwinding instructions in
1419 // three parts: ordinary hardware registers, return address authentication
1420 // code pseudo register, the rest of the registers. The RA PAC is kept in an
1421 // architectural register (usually r12), but we treat it as a special case in
1422 // order to distinguish between that register containing RA PAC or a general
1423 // value.
1424 Idx = RegList.size();
1425 while (Idx > 0) {
1426 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask);
1427 if (Count) {
1428 // Track the change the $sp offset: For the .save directive, the
1429 // corresponding push instruction will decrease the $sp by (4 * Count).
1430 // For the .vsave directive, the corresponding vpush instruction will
1431 // decrease $sp by (8 * Count).
1432 SPOffset -= Count * (IsVector ? 8 : 4);
1433
1434 // Emit the opcode
1435 FlushPendingOffset();
1436 if (IsVector)
1437 UnwindOpAsm.EmitVFPRegSave(Mask);
1438 else
1439 UnwindOpAsm.EmitRegSave(Mask);
1440 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) {
1441 --Idx;
1442 SPOffset -= 4;
1443 FlushPendingOffset();
1444 UnwindOpAsm.EmitRegSave(0);
1445 }
1446 }
1447 }
1448
emitUnwindRaw(int64_t Offset,const SmallVectorImpl<uint8_t> & Opcodes)1449 void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
1450 const SmallVectorImpl<uint8_t> &Opcodes) {
1451 FlushPendingOffset();
1452 SPOffset = SPOffset - Offset;
1453 UnwindOpAsm.EmitRaw(Opcodes);
1454 }
1455
1456 namespace llvm {
1457
createARMTargetAsmStreamer(MCStreamer & S,formatted_raw_ostream & OS,MCInstPrinter * InstPrint)1458 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S,
1459 formatted_raw_ostream &OS,
1460 MCInstPrinter *InstPrint) {
1461 return new ARMTargetAsmStreamer(S, OS, *InstPrint);
1462 }
1463
createARMNullTargetStreamer(MCStreamer & S)1464 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) {
1465 return new ARMTargetStreamer(S);
1466 }
1467
createARMObjectTargetELFStreamer(MCStreamer & S)1468 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) {
1469 return new ARMTargetELFStreamer(S);
1470 }
1471
createARMELFStreamer(MCContext & Context,std::unique_ptr<MCAsmBackend> TAB,std::unique_ptr<MCObjectWriter> OW,std::unique_ptr<MCCodeEmitter> Emitter,bool IsThumb,bool IsAndroid)1472 MCELFStreamer *createARMELFStreamer(MCContext &Context,
1473 std::unique_ptr<MCAsmBackend> TAB,
1474 std::unique_ptr<MCObjectWriter> OW,
1475 std::unique_ptr<MCCodeEmitter> Emitter,
1476 bool IsThumb, bool IsAndroid) {
1477 ARMELFStreamer *S =
1478 new ARMELFStreamer(Context, std::move(TAB), std::move(OW),
1479 std::move(Emitter), IsThumb, IsAndroid);
1480 // FIXME: This should eventually end up somewhere else where more
1481 // intelligent flag decisions can be made. For now we are just maintaining
1482 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
1483 S->getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1484
1485 return S;
1486 }
1487
1488 } // end namespace llvm
1489