xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/StructurizeCFG.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/MapVector.h"
12 #include "llvm/ADT/SCCIterator.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/Analysis/UniformityAnalysis.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <utility>
51 
52 using namespace llvm;
53 using namespace llvm::PatternMatch;
54 
55 #define DEBUG_TYPE "structurizecfg"
56 
57 // The name for newly created blocks.
58 const char FlowBlockName[] = "Flow";
59 
60 namespace {
61 
62 static cl::opt<bool> ForceSkipUniformRegions(
63   "structurizecfg-skip-uniform-regions",
64   cl::Hidden,
65   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
66   cl::init(false));
67 
68 static cl::opt<bool>
69     RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
70                           cl::desc("Allow relaxed uniform region checks"),
71                           cl::init(true));
72 
73 // Definition of the complex types used in this pass.
74 
75 using BBValuePair = std::pair<BasicBlock *, Value *>;
76 
77 using RNVector = SmallVector<RegionNode *, 8>;
78 using BBVector = SmallVector<BasicBlock *, 8>;
79 using BranchVector = SmallVector<BranchInst *, 8>;
80 using BBValueVector = SmallVector<BBValuePair, 2>;
81 
82 using BBSet = SmallPtrSet<BasicBlock *, 8>;
83 
84 using PhiMap = MapVector<PHINode *, BBValueVector>;
85 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
86 
87 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
88 using BBPredicates = DenseMap<BasicBlock *, Value *>;
89 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
90 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
91 
92 using BranchDebugLocMap = DenseMap<BasicBlock *, DebugLoc>;
93 
94 // A traits type that is intended to be used in graph algorithms. The graph
95 // traits starts at an entry node, and traverses the RegionNodes that are in
96 // the Nodes set.
97 struct SubGraphTraits {
98   using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
99   using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
100 
101   // This wraps a set of Nodes into the iterator, so we know which edges to
102   // filter out.
103   class WrappedSuccIterator
104       : public iterator_adaptor_base<
105             WrappedSuccIterator, BaseSuccIterator,
106             typename std::iterator_traits<BaseSuccIterator>::iterator_category,
107             NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
108     SmallDenseSet<RegionNode *> *Nodes;
109 
110   public:
WrappedSuccIterator(BaseSuccIterator It,SmallDenseSet<RegionNode * > * Nodes)111     WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
112         : iterator_adaptor_base(It), Nodes(Nodes) {}
113 
operator *() const114     NodeRef operator*() const { return {*I, Nodes}; }
115   };
116 
filterAll__anone8c890770111::SubGraphTraits117   static bool filterAll(const NodeRef &N) { return true; }
filterSet__anone8c890770111::SubGraphTraits118   static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
119 
120   using ChildIteratorType =
121       filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
122 
getEntryNode__anone8c890770111::SubGraphTraits123   static NodeRef getEntryNode(Region *R) {
124     return {GraphTraits<Region *>::getEntryNode(R), nullptr};
125   }
126 
getEntryNode__anone8c890770111::SubGraphTraits127   static NodeRef getEntryNode(NodeRef N) { return N; }
128 
children__anone8c890770111::SubGraphTraits129   static iterator_range<ChildIteratorType> children(const NodeRef &N) {
130     auto *filter = N.second ? &filterSet : &filterAll;
131     return make_filter_range(
132         make_range<WrappedSuccIterator>(
133             {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
134             {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
135         filter);
136   }
137 
child_begin__anone8c890770111::SubGraphTraits138   static ChildIteratorType child_begin(const NodeRef &N) {
139     return children(N).begin();
140   }
141 
child_end__anone8c890770111::SubGraphTraits142   static ChildIteratorType child_end(const NodeRef &N) {
143     return children(N).end();
144   }
145 };
146 
147 /// Finds the nearest common dominator of a set of BasicBlocks.
148 ///
149 /// For every BB you add to the set, you can specify whether we "remember" the
150 /// block.  When you get the common dominator, you can also ask whether it's one
151 /// of the blocks we remembered.
152 class NearestCommonDominator {
153   DominatorTree *DT;
154   BasicBlock *Result = nullptr;
155   bool ResultIsRemembered = false;
156 
157   /// Add BB to the resulting dominator.
addBlock(BasicBlock * BB,bool Remember)158   void addBlock(BasicBlock *BB, bool Remember) {
159     if (!Result) {
160       Result = BB;
161       ResultIsRemembered = Remember;
162       return;
163     }
164 
165     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
166     if (NewResult != Result)
167       ResultIsRemembered = false;
168     if (NewResult == BB)
169       ResultIsRemembered |= Remember;
170     Result = NewResult;
171   }
172 
173 public:
NearestCommonDominator(DominatorTree * DomTree)174   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
175 
addBlock(BasicBlock * BB)176   void addBlock(BasicBlock *BB) {
177     addBlock(BB, /* Remember = */ false);
178   }
179 
addAndRememberBlock(BasicBlock * BB)180   void addAndRememberBlock(BasicBlock *BB) {
181     addBlock(BB, /* Remember = */ true);
182   }
183 
184   /// Get the nearest common dominator of all the BBs added via addBlock() and
185   /// addAndRememberBlock().
result()186   BasicBlock *result() { return Result; }
187 
188   /// Is the BB returned by getResult() one of the blocks we added to the set
189   /// with addAndRememberBlock()?
resultIsRememberedBlock()190   bool resultIsRememberedBlock() { return ResultIsRemembered; }
191 };
192 
193 /// Transforms the control flow graph on one single entry/exit region
194 /// at a time.
195 ///
196 /// After the transform all "If"/"Then"/"Else" style control flow looks like
197 /// this:
198 ///
199 /// \verbatim
200 /// 1
201 /// ||
202 /// | |
203 /// 2 |
204 /// | /
205 /// |/
206 /// 3
207 /// ||   Where:
208 /// | |  1 = "If" block, calculates the condition
209 /// 4 |  2 = "Then" subregion, runs if the condition is true
210 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
211 /// |/   4 = "Else" optional subregion, runs if the condition is false
212 /// 5    5 = "End" block, also rejoins the control flow
213 /// \endverbatim
214 ///
215 /// Control flow is expressed as a branch where the true exit goes into the
216 /// "Then"/"Else" region, while the false exit skips the region
217 /// The condition for the optional "Else" region is expressed as a PHI node.
218 /// The incoming values of the PHI node are true for the "If" edge and false
219 /// for the "Then" edge.
220 ///
221 /// Additionally to that even complicated loops look like this:
222 ///
223 /// \verbatim
224 /// 1
225 /// ||
226 /// | |
227 /// 2 ^  Where:
228 /// | /  1 = "Entry" block
229 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
230 /// 3    3 = "Flow" block, with back edge to entry block
231 /// |
232 /// \endverbatim
233 ///
234 /// The back edge of the "Flow" block is always on the false side of the branch
235 /// while the true side continues the general flow. So the loop condition
236 /// consist of a network of PHI nodes where the true incoming values expresses
237 /// breaks and the false values expresses continue states.
238 
239 class StructurizeCFG {
240   Type *Boolean;
241   ConstantInt *BoolTrue;
242   ConstantInt *BoolFalse;
243   Value *BoolPoison;
244 
245   Function *Func;
246   Region *ParentRegion;
247 
248   UniformityInfo *UA = nullptr;
249   DominatorTree *DT;
250 
251   SmallVector<RegionNode *, 8> Order;
252   BBSet Visited;
253   BBSet FlowSet;
254 
255   SmallVector<WeakVH, 8> AffectedPhis;
256   BBPhiMap DeletedPhis;
257   BB2BBVecMap AddedPhis;
258 
259   PredMap Predicates;
260   BranchVector Conditions;
261 
262   BB2BBMap Loops;
263   PredMap LoopPreds;
264   BranchVector LoopConds;
265 
266   BranchDebugLocMap TermDL;
267 
268   RegionNode *PrevNode;
269 
270   void orderNodes();
271 
272   void analyzeLoops(RegionNode *N);
273 
274   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
275 
276   void gatherPredicates(RegionNode *N);
277 
278   void collectInfos();
279 
280   void insertConditions(bool Loops);
281 
282   void simplifyConditions();
283 
284   void delPhiValues(BasicBlock *From, BasicBlock *To);
285 
286   void addPhiValues(BasicBlock *From, BasicBlock *To);
287 
288   void findUndefBlocks(BasicBlock *PHIBlock,
289                        const SmallSet<BasicBlock *, 8> &Incomings,
290                        SmallVector<BasicBlock *> &UndefBlks) const;
291   void setPhiValues();
292 
293   void simplifyAffectedPhis();
294 
295   void killTerminator(BasicBlock *BB);
296 
297   void changeExit(RegionNode *Node, BasicBlock *NewExit,
298                   bool IncludeDominator);
299 
300   BasicBlock *getNextFlow(BasicBlock *Dominator);
301 
302   BasicBlock *needPrefix(bool NeedEmpty);
303 
304   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
305 
306   void setPrevNode(BasicBlock *BB);
307 
308   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
309 
310   bool isPredictableTrue(RegionNode *Node);
311 
312   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
313 
314   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
315 
316   void createFlow();
317 
318   void rebuildSSA();
319 
320 public:
321   void init(Region *R);
322   bool run(Region *R, DominatorTree *DT);
323   bool makeUniformRegion(Region *R, UniformityInfo &UA);
324 };
325 
326 class StructurizeCFGLegacyPass : public RegionPass {
327   bool SkipUniformRegions;
328 
329 public:
330   static char ID;
331 
StructurizeCFGLegacyPass(bool SkipUniformRegions_=false)332   explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
333       : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
334     if (ForceSkipUniformRegions.getNumOccurrences())
335       SkipUniformRegions = ForceSkipUniformRegions.getValue();
336     initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
337   }
338 
runOnRegion(Region * R,RGPassManager & RGM)339   bool runOnRegion(Region *R, RGPassManager &RGM) override {
340     StructurizeCFG SCFG;
341     SCFG.init(R);
342     if (SkipUniformRegions) {
343       UniformityInfo &UA =
344           getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
345       if (SCFG.makeUniformRegion(R, UA))
346         return false;
347     }
348     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
349     return SCFG.run(R, DT);
350   }
351 
getPassName() const352   StringRef getPassName() const override { return "Structurize control flow"; }
353 
getAnalysisUsage(AnalysisUsage & AU) const354   void getAnalysisUsage(AnalysisUsage &AU) const override {
355     if (SkipUniformRegions)
356       AU.addRequired<UniformityInfoWrapperPass>();
357     AU.addRequired<DominatorTreeWrapperPass>();
358 
359     AU.addPreserved<DominatorTreeWrapperPass>();
360     RegionPass::getAnalysisUsage(AU);
361   }
362 };
363 
364 } // end anonymous namespace
365 
366 char StructurizeCFGLegacyPass::ID = 0;
367 
368 INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
369                       "Structurize the CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)370 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
371 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
372 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
373 INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
374                     "Structurize the CFG", false, false)
375 
376 /// Build up the general order of nodes, by performing a topological sort of the
377 /// parent region's nodes, while ensuring that there is no outer cycle node
378 /// between any two inner cycle nodes.
379 void StructurizeCFG::orderNodes() {
380   Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
381                              GraphTraits<Region *>::nodes_end(ParentRegion)));
382   if (Order.empty())
383     return;
384 
385   SmallDenseSet<RegionNode *> Nodes;
386   auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
387 
388   // A list of range indices of SCCs in Order, to be processed.
389   SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
390   unsigned I = 0, E = Order.size();
391   while (true) {
392     // Run through all the SCCs in the subgraph starting with Entry.
393     for (auto SCCI =
394              scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
395                  EntryNode);
396          !SCCI.isAtEnd(); ++SCCI) {
397       auto &SCC = *SCCI;
398 
399       // An SCC up to the size of 2, can be reduced to an entry (the last node),
400       // and a possible additional node. Therefore, it is already in order, and
401       // there is no need to add it to the work-list.
402       unsigned Size = SCC.size();
403       if (Size > 2)
404         WorkList.emplace_back(I, I + Size);
405 
406       // Add the SCC nodes to the Order array.
407       for (const auto &N : SCC) {
408         assert(I < E && "SCC size mismatch!");
409         Order[I++] = N.first;
410       }
411     }
412     assert(I == E && "SCC size mismatch!");
413 
414     // If there are no more SCCs to order, then we are done.
415     if (WorkList.empty())
416       break;
417 
418     std::tie(I, E) = WorkList.pop_back_val();
419 
420     // Collect the set of nodes in the SCC's subgraph. These are only the
421     // possible child nodes; we do not add the entry (last node) otherwise we
422     // will have the same exact SCC all over again.
423     Nodes.clear();
424     Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
425 
426     // Update the entry node.
427     EntryNode.first = Order[E - 1];
428     EntryNode.second = &Nodes;
429   }
430 }
431 
432 /// Determine the end of the loops
analyzeLoops(RegionNode * N)433 void StructurizeCFG::analyzeLoops(RegionNode *N) {
434   if (N->isSubRegion()) {
435     // Test for exit as back edge
436     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
437     if (Visited.count(Exit))
438       Loops[Exit] = N->getEntry();
439 
440   } else {
441     // Test for successors as back edge
442     BasicBlock *BB = N->getNodeAs<BasicBlock>();
443     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
444 
445     for (BasicBlock *Succ : Term->successors())
446       if (Visited.count(Succ))
447         Loops[Succ] = BB;
448   }
449 }
450 
451 /// Build the condition for one edge
buildCondition(BranchInst * Term,unsigned Idx,bool Invert)452 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
453                                       bool Invert) {
454   Value *Cond = Invert ? BoolFalse : BoolTrue;
455   if (Term->isConditional()) {
456     Cond = Term->getCondition();
457 
458     if (Idx != (unsigned)Invert)
459       Cond = invertCondition(Cond);
460   }
461   return Cond;
462 }
463 
464 /// Analyze the predecessors of each block and build up predicates
gatherPredicates(RegionNode * N)465 void StructurizeCFG::gatherPredicates(RegionNode *N) {
466   RegionInfo *RI = ParentRegion->getRegionInfo();
467   BasicBlock *BB = N->getEntry();
468   BBPredicates &Pred = Predicates[BB];
469   BBPredicates &LPred = LoopPreds[BB];
470 
471   for (BasicBlock *P : predecessors(BB)) {
472     // Ignore it if it's a branch from outside into our region entry
473     if (!ParentRegion->contains(P))
474       continue;
475 
476     Region *R = RI->getRegionFor(P);
477     if (R == ParentRegion) {
478       // It's a top level block in our region
479       BranchInst *Term = cast<BranchInst>(P->getTerminator());
480       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
481         BasicBlock *Succ = Term->getSuccessor(i);
482         if (Succ != BB)
483           continue;
484 
485         if (Visited.count(P)) {
486           // Normal forward edge
487           if (Term->isConditional()) {
488             // Try to treat it like an ELSE block
489             BasicBlock *Other = Term->getSuccessor(!i);
490             if (Visited.count(Other) && !Loops.count(Other) &&
491                 !Pred.count(Other) && !Pred.count(P)) {
492 
493               Pred[Other] = BoolFalse;
494               Pred[P] = BoolTrue;
495               continue;
496             }
497           }
498           Pred[P] = buildCondition(Term, i, false);
499         } else {
500           // Back edge
501           LPred[P] = buildCondition(Term, i, true);
502         }
503       }
504     } else {
505       // It's an exit from a sub region
506       while (R->getParent() != ParentRegion)
507         R = R->getParent();
508 
509       // Edge from inside a subregion to its entry, ignore it
510       if (*R == *N)
511         continue;
512 
513       BasicBlock *Entry = R->getEntry();
514       if (Visited.count(Entry))
515         Pred[Entry] = BoolTrue;
516       else
517         LPred[Entry] = BoolFalse;
518     }
519   }
520 }
521 
522 /// Collect various loop and predicate infos
collectInfos()523 void StructurizeCFG::collectInfos() {
524   // Reset predicate
525   Predicates.clear();
526 
527   // and loop infos
528   Loops.clear();
529   LoopPreds.clear();
530 
531   // Reset the visited nodes
532   Visited.clear();
533 
534   for (RegionNode *RN : reverse(Order)) {
535     LLVM_DEBUG(dbgs() << "Visiting: "
536                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
537                       << RN->getEntry()->getName() << "\n");
538 
539     // Analyze all the conditions leading to a node
540     gatherPredicates(RN);
541 
542     // Remember that we've seen this node
543     Visited.insert(RN->getEntry());
544 
545     // Find the last back edges
546     analyzeLoops(RN);
547   }
548 
549   // Reset the collected term debug locations
550   TermDL.clear();
551 
552   for (BasicBlock &BB : *Func) {
553     if (const DebugLoc &DL = BB.getTerminator()->getDebugLoc())
554       TermDL[&BB] = DL;
555   }
556 }
557 
558 /// Insert the missing branch conditions
insertConditions(bool Loops)559 void StructurizeCFG::insertConditions(bool Loops) {
560   BranchVector &Conds = Loops ? LoopConds : Conditions;
561   Value *Default = Loops ? BoolTrue : BoolFalse;
562   SSAUpdater PhiInserter;
563 
564   for (BranchInst *Term : Conds) {
565     assert(Term->isConditional());
566 
567     BasicBlock *Parent = Term->getParent();
568     BasicBlock *SuccTrue = Term->getSuccessor(0);
569     BasicBlock *SuccFalse = Term->getSuccessor(1);
570 
571     PhiInserter.Initialize(Boolean, "");
572     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
573     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
574 
575     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
576 
577     NearestCommonDominator Dominator(DT);
578     Dominator.addBlock(Parent);
579 
580     Value *ParentValue = nullptr;
581     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
582       BasicBlock *BB = BBAndPred.first;
583       Value *Pred = BBAndPred.second;
584 
585       if (BB == Parent) {
586         ParentValue = Pred;
587         break;
588       }
589       PhiInserter.AddAvailableValue(BB, Pred);
590       Dominator.addAndRememberBlock(BB);
591     }
592 
593     if (ParentValue) {
594       Term->setCondition(ParentValue);
595     } else {
596       if (!Dominator.resultIsRememberedBlock())
597         PhiInserter.AddAvailableValue(Dominator.result(), Default);
598 
599       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
600     }
601   }
602 }
603 
604 /// Simplify any inverted conditions that were built by buildConditions.
simplifyConditions()605 void StructurizeCFG::simplifyConditions() {
606   SmallVector<Instruction *> InstToErase;
607   for (auto &I : concat<PredMap::value_type>(Predicates, LoopPreds)) {
608     auto &Preds = I.second;
609     for (auto &J : Preds) {
610       auto &Cond = J.second;
611       Instruction *Inverted;
612       if (match(Cond, m_Not(m_OneUse(m_Instruction(Inverted)))) &&
613           !Cond->use_empty()) {
614         if (auto *InvertedCmp = dyn_cast<CmpInst>(Inverted)) {
615           InvertedCmp->setPredicate(InvertedCmp->getInversePredicate());
616           Cond->replaceAllUsesWith(InvertedCmp);
617           InstToErase.push_back(cast<Instruction>(Cond));
618         }
619       }
620     }
621   }
622   for (auto *I : InstToErase)
623     I->eraseFromParent();
624 }
625 
626 /// Remove all PHI values coming from "From" into "To" and remember
627 /// them in DeletedPhis
delPhiValues(BasicBlock * From,BasicBlock * To)628 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
629   PhiMap &Map = DeletedPhis[To];
630   for (PHINode &Phi : To->phis()) {
631     bool Recorded = false;
632     while (Phi.getBasicBlockIndex(From) != -1) {
633       Value *Deleted = Phi.removeIncomingValue(From, false);
634       Map[&Phi].push_back(std::make_pair(From, Deleted));
635       if (!Recorded) {
636         AffectedPhis.push_back(&Phi);
637         Recorded = true;
638       }
639     }
640   }
641 }
642 
643 /// Add a dummy PHI value as soon as we knew the new predecessor
addPhiValues(BasicBlock * From,BasicBlock * To)644 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
645   for (PHINode &Phi : To->phis()) {
646     Value *Undef = UndefValue::get(Phi.getType());
647     Phi.addIncoming(Undef, From);
648   }
649   AddedPhis[To].push_back(From);
650 }
651 
652 /// When we are reconstructing a PHI inside \p PHIBlock with incoming values
653 /// from predecessors \p Incomings, we have a chance to mark the available value
654 /// from some blocks as undefined. The function will find out all such blocks
655 /// and return in \p UndefBlks.
findUndefBlocks(BasicBlock * PHIBlock,const SmallSet<BasicBlock *,8> & Incomings,SmallVector<BasicBlock * > & UndefBlks) const656 void StructurizeCFG::findUndefBlocks(
657     BasicBlock *PHIBlock, const SmallSet<BasicBlock *, 8> &Incomings,
658     SmallVector<BasicBlock *> &UndefBlks) const {
659   //  We may get a post-structured CFG like below:
660   //
661   //  | P1
662   //  |/
663   //  F1
664   //  |\
665   //  | N
666   //  |/
667   //  F2
668   //  |\
669   //  | P2
670   //  |/
671   //  F3
672   //  |\
673   //  B
674   //
675   // B is the block that has a PHI being reconstructed. P1/P2 are predecessors
676   // of B before structurization. F1/F2/F3 are flow blocks inserted during
677   // structurization process. Block N is not a predecessor of B before
678   // structurization, but are placed between the predecessors(P1/P2) of B after
679   // structurization. This usually means that threads went to N never take the
680   // path N->F2->F3->B. For example, the threads take the branch F1->N may
681   // always take the branch F2->P2. So, when we are reconstructing a PHI
682   // originally in B, we can safely say the incoming value from N is undefined.
683   SmallSet<BasicBlock *, 8> VisitedBlock;
684   SmallVector<BasicBlock *, 8> Stack;
685   if (PHIBlock == ParentRegion->getExit()) {
686     for (auto P : predecessors(PHIBlock)) {
687       if (ParentRegion->contains(P))
688         Stack.push_back(P);
689     }
690   } else {
691     append_range(Stack, predecessors(PHIBlock));
692   }
693 
694   // Do a backward traversal over the CFG, and stop further searching if
695   // the block is not a Flow. If a block is neither flow block nor the
696   // incoming predecessor, then the incoming value from the block is
697   // undefined value for the PHI being reconstructed.
698   while (!Stack.empty()) {
699     BasicBlock *Current = Stack.pop_back_val();
700     if (VisitedBlock.contains(Current))
701       continue;
702 
703     VisitedBlock.insert(Current);
704     if (FlowSet.contains(Current)) {
705       for (auto P : predecessors(Current))
706         Stack.push_back(P);
707     } else if (!Incomings.contains(Current)) {
708       UndefBlks.push_back(Current);
709     }
710   }
711 }
712 
713 /// Add the real PHI value as soon as everything is set up
setPhiValues()714 void StructurizeCFG::setPhiValues() {
715   SmallVector<PHINode *, 8> InsertedPhis;
716   SSAUpdater Updater(&InsertedPhis);
717   for (const auto &AddedPhi : AddedPhis) {
718     BasicBlock *To = AddedPhi.first;
719     const BBVector &From = AddedPhi.second;
720 
721     if (!DeletedPhis.count(To))
722       continue;
723 
724     SmallVector<BasicBlock *> UndefBlks;
725     bool CachedUndefs = false;
726     PhiMap &Map = DeletedPhis[To];
727     for (const auto &PI : Map) {
728       PHINode *Phi = PI.first;
729       Value *Undef = UndefValue::get(Phi->getType());
730       Updater.Initialize(Phi->getType(), "");
731       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
732       Updater.AddAvailableValue(To, Undef);
733 
734       SmallSet<BasicBlock *, 8> Incomings;
735       SmallVector<BasicBlock *> ConstantPreds;
736       for (const auto &VI : PI.second) {
737         Incomings.insert(VI.first);
738         Updater.AddAvailableValue(VI.first, VI.second);
739         if (isa<Constant>(VI.second))
740           ConstantPreds.push_back(VI.first);
741       }
742 
743       if (!CachedUndefs) {
744         findUndefBlocks(To, Incomings, UndefBlks);
745         CachedUndefs = true;
746       }
747 
748       for (auto UB : UndefBlks) {
749         // If this undef block is dominated by any predecessor(before
750         // structurization) of reconstructed PHI with constant incoming value,
751         // don't mark the available value as undefined. Setting undef to such
752         // block will stop us from getting optimal phi insertion.
753         if (any_of(ConstantPreds,
754                    [&](BasicBlock *CP) { return DT->dominates(CP, UB); }))
755           continue;
756         Updater.AddAvailableValue(UB, Undef);
757       }
758 
759       for (BasicBlock *FI : From)
760         Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
761       AffectedPhis.push_back(Phi);
762     }
763 
764     DeletedPhis.erase(To);
765   }
766   assert(DeletedPhis.empty());
767 
768   AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
769 }
770 
simplifyAffectedPhis()771 void StructurizeCFG::simplifyAffectedPhis() {
772   bool Changed;
773   do {
774     Changed = false;
775     SimplifyQuery Q(Func->getDataLayout());
776     Q.DT = DT;
777     // Setting CanUseUndef to true might extend value liveness, set it to false
778     // to achieve better register pressure.
779     Q.CanUseUndef = false;
780     for (WeakVH VH : AffectedPhis) {
781       if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
782         if (auto NewValue = simplifyInstruction(Phi, Q)) {
783           Phi->replaceAllUsesWith(NewValue);
784           Phi->eraseFromParent();
785           Changed = true;
786         }
787       }
788     }
789   } while (Changed);
790 }
791 
792 /// Remove phi values from all successors and then remove the terminator.
killTerminator(BasicBlock * BB)793 void StructurizeCFG::killTerminator(BasicBlock *BB) {
794   Instruction *Term = BB->getTerminator();
795   if (!Term)
796     return;
797 
798   for (BasicBlock *Succ : successors(BB))
799     delPhiValues(BB, Succ);
800 
801   Term->eraseFromParent();
802 }
803 
804 /// Let node exit(s) point to NewExit
changeExit(RegionNode * Node,BasicBlock * NewExit,bool IncludeDominator)805 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
806                                 bool IncludeDominator) {
807   if (Node->isSubRegion()) {
808     Region *SubRegion = Node->getNodeAs<Region>();
809     BasicBlock *OldExit = SubRegion->getExit();
810     BasicBlock *Dominator = nullptr;
811 
812     // Find all the edges from the sub region to the exit.
813     // We use make_early_inc_range here because we modify BB's terminator.
814     for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) {
815       if (!SubRegion->contains(BB))
816         continue;
817 
818       // Modify the edges to point to the new exit
819       delPhiValues(BB, OldExit);
820       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
821       addPhiValues(BB, NewExit);
822 
823       // Find the new dominator (if requested)
824       if (IncludeDominator) {
825         if (!Dominator)
826           Dominator = BB;
827         else
828           Dominator = DT->findNearestCommonDominator(Dominator, BB);
829       }
830     }
831 
832     // Change the dominator (if requested)
833     if (Dominator)
834       DT->changeImmediateDominator(NewExit, Dominator);
835 
836     // Update the region info
837     SubRegion->replaceExit(NewExit);
838   } else {
839     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
840     killTerminator(BB);
841     BranchInst *Br = BranchInst::Create(NewExit, BB);
842     Br->setDebugLoc(TermDL[BB]);
843     addPhiValues(BB, NewExit);
844     if (IncludeDominator)
845       DT->changeImmediateDominator(NewExit, BB);
846   }
847 }
848 
849 /// Create a new flow node and update dominator tree and region info
getNextFlow(BasicBlock * Dominator)850 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
851   LLVMContext &Context = Func->getContext();
852   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
853                        Order.back()->getEntry();
854   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
855                                         Func, Insert);
856   FlowSet.insert(Flow);
857 
858   // use a temporary variable to avoid a use-after-free if the map's storage is
859   // reallocated
860   DebugLoc DL = TermDL[Dominator];
861   TermDL[Flow] = std::move(DL);
862 
863   DT->addNewBlock(Flow, Dominator);
864   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
865   return Flow;
866 }
867 
868 /// Create a new or reuse the previous node as flow node
needPrefix(bool NeedEmpty)869 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
870   BasicBlock *Entry = PrevNode->getEntry();
871 
872   if (!PrevNode->isSubRegion()) {
873     killTerminator(Entry);
874     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
875       return Entry;
876   }
877 
878   // create a new flow node
879   BasicBlock *Flow = getNextFlow(Entry);
880 
881   // and wire it up
882   changeExit(PrevNode, Flow, true);
883   PrevNode = ParentRegion->getBBNode(Flow);
884   return Flow;
885 }
886 
887 /// Returns the region exit if possible, otherwise just a new flow node
needPostfix(BasicBlock * Flow,bool ExitUseAllowed)888 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
889                                         bool ExitUseAllowed) {
890   if (!Order.empty() || !ExitUseAllowed)
891     return getNextFlow(Flow);
892 
893   BasicBlock *Exit = ParentRegion->getExit();
894   DT->changeImmediateDominator(Exit, Flow);
895   addPhiValues(Flow, Exit);
896   return Exit;
897 }
898 
899 /// Set the previous node
setPrevNode(BasicBlock * BB)900 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
901   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
902                                         : nullptr;
903 }
904 
905 /// Does BB dominate all the predicates of Node?
dominatesPredicates(BasicBlock * BB,RegionNode * Node)906 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
907   BBPredicates &Preds = Predicates[Node->getEntry()];
908   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
909     return DT->dominates(BB, Pred.first);
910   });
911 }
912 
913 /// Can we predict that this node will always be called?
isPredictableTrue(RegionNode * Node)914 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
915   BBPredicates &Preds = Predicates[Node->getEntry()];
916   bool Dominated = false;
917 
918   // Regionentry is always true
919   if (!PrevNode)
920     return true;
921 
922   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
923     BasicBlock *BB = Pred.first;
924     Value *V = Pred.second;
925 
926     if (V != BoolTrue)
927       return false;
928 
929     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
930       Dominated = true;
931   }
932 
933   // TODO: The dominator check is too strict
934   return Dominated;
935 }
936 
937 /// Take one node from the order vector and wire it up
wireFlow(bool ExitUseAllowed,BasicBlock * LoopEnd)938 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
939                               BasicBlock *LoopEnd) {
940   RegionNode *Node = Order.pop_back_val();
941   Visited.insert(Node->getEntry());
942 
943   if (isPredictableTrue(Node)) {
944     // Just a linear flow
945     if (PrevNode) {
946       changeExit(PrevNode, Node->getEntry(), true);
947     }
948     PrevNode = Node;
949   } else {
950     // Insert extra prefix node (or reuse last one)
951     BasicBlock *Flow = needPrefix(false);
952 
953     // Insert extra postfix node (or use exit instead)
954     BasicBlock *Entry = Node->getEntry();
955     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
956 
957     // let it point to entry and next block
958     BranchInst *Br = BranchInst::Create(Entry, Next, BoolPoison, Flow);
959     Br->setDebugLoc(TermDL[Flow]);
960     Conditions.push_back(Br);
961     addPhiValues(Flow, Entry);
962     DT->changeImmediateDominator(Entry, Flow);
963 
964     PrevNode = Node;
965     while (!Order.empty() && !Visited.count(LoopEnd) &&
966            dominatesPredicates(Entry, Order.back())) {
967       handleLoops(false, LoopEnd);
968     }
969 
970     changeExit(PrevNode, Next, false);
971     setPrevNode(Next);
972   }
973 }
974 
handleLoops(bool ExitUseAllowed,BasicBlock * LoopEnd)975 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
976                                  BasicBlock *LoopEnd) {
977   RegionNode *Node = Order.back();
978   BasicBlock *LoopStart = Node->getEntry();
979 
980   if (!Loops.count(LoopStart)) {
981     wireFlow(ExitUseAllowed, LoopEnd);
982     return;
983   }
984 
985   if (!isPredictableTrue(Node))
986     LoopStart = needPrefix(true);
987 
988   LoopEnd = Loops[Node->getEntry()];
989   wireFlow(false, LoopEnd);
990   while (!Visited.count(LoopEnd)) {
991     handleLoops(false, LoopEnd);
992   }
993 
994   assert(LoopStart != &LoopStart->getParent()->getEntryBlock());
995 
996   // Create an extra loop end node
997   LoopEnd = needPrefix(false);
998   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
999   BranchInst *Br = BranchInst::Create(Next, LoopStart, BoolPoison, LoopEnd);
1000   Br->setDebugLoc(TermDL[LoopEnd]);
1001   LoopConds.push_back(Br);
1002   addPhiValues(LoopEnd, LoopStart);
1003   setPrevNode(Next);
1004 }
1005 
1006 /// After this function control flow looks like it should be, but
1007 /// branches and PHI nodes only have undefined conditions.
createFlow()1008 void StructurizeCFG::createFlow() {
1009   BasicBlock *Exit = ParentRegion->getExit();
1010   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
1011 
1012   AffectedPhis.clear();
1013   DeletedPhis.clear();
1014   AddedPhis.clear();
1015   Conditions.clear();
1016   LoopConds.clear();
1017 
1018   PrevNode = nullptr;
1019   Visited.clear();
1020 
1021   while (!Order.empty()) {
1022     handleLoops(EntryDominatesExit, nullptr);
1023   }
1024 
1025   if (PrevNode)
1026     changeExit(PrevNode, Exit, EntryDominatesExit);
1027   else
1028     assert(EntryDominatesExit);
1029 }
1030 
1031 /// Handle a rare case where the disintegrated nodes instructions
1032 /// no longer dominate all their uses. Not sure if this is really necessary
rebuildSSA()1033 void StructurizeCFG::rebuildSSA() {
1034   SSAUpdater Updater;
1035   for (BasicBlock *BB : ParentRegion->blocks())
1036     for (Instruction &I : *BB) {
1037       bool Initialized = false;
1038       // We may modify the use list as we iterate over it, so we use
1039       // make_early_inc_range.
1040       for (Use &U : llvm::make_early_inc_range(I.uses())) {
1041         Instruction *User = cast<Instruction>(U.getUser());
1042         if (User->getParent() == BB) {
1043           continue;
1044         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1045           if (UserPN->getIncomingBlock(U) == BB)
1046             continue;
1047         }
1048 
1049         if (DT->dominates(&I, User))
1050           continue;
1051 
1052         if (!Initialized) {
1053           Value *Undef = UndefValue::get(I.getType());
1054           Updater.Initialize(I.getType(), "");
1055           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
1056           Updater.AddAvailableValue(BB, &I);
1057           Initialized = true;
1058         }
1059         Updater.RewriteUseAfterInsertions(U);
1060       }
1061     }
1062 }
1063 
hasOnlyUniformBranches(Region * R,unsigned UniformMDKindID,const UniformityInfo & UA)1064 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
1065                                    const UniformityInfo &UA) {
1066   // Bool for if all sub-regions are uniform.
1067   bool SubRegionsAreUniform = true;
1068   // Count of how many direct children are conditional.
1069   unsigned ConditionalDirectChildren = 0;
1070 
1071   for (auto *E : R->elements()) {
1072     if (!E->isSubRegion()) {
1073       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
1074       if (!Br || !Br->isConditional())
1075         continue;
1076 
1077       if (!UA.isUniform(Br))
1078         return false;
1079 
1080       // One of our direct children is conditional.
1081       ConditionalDirectChildren++;
1082 
1083       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
1084                         << " has uniform terminator\n");
1085     } else {
1086       // Explicitly refuse to treat regions as uniform if they have non-uniform
1087       // subregions. We cannot rely on UniformityAnalysis for branches in
1088       // subregions because those branches may have been removed and re-created,
1089       // so we look for our metadata instead.
1090       //
1091       // Warning: It would be nice to treat regions as uniform based only on
1092       // their direct child basic blocks' terminators, regardless of whether
1093       // subregions are uniform or not. However, this requires a very careful
1094       // look at SIAnnotateControlFlow to make sure nothing breaks there.
1095       for (auto *BB : E->getNodeAs<Region>()->blocks()) {
1096         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
1097         if (!Br || !Br->isConditional())
1098           continue;
1099 
1100         if (!Br->getMetadata(UniformMDKindID)) {
1101           // Early exit if we cannot have relaxed uniform regions.
1102           if (!RelaxedUniformRegions)
1103             return false;
1104 
1105           SubRegionsAreUniform = false;
1106           break;
1107         }
1108       }
1109     }
1110   }
1111 
1112   // Our region is uniform if:
1113   // 1. All conditional branches that are direct children are uniform (checked
1114   // above).
1115   // 2. And either:
1116   //   a. All sub-regions are uniform.
1117   //   b. There is one or less conditional branches among the direct children.
1118   return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
1119 }
1120 
init(Region * R)1121 void StructurizeCFG::init(Region *R) {
1122   LLVMContext &Context = R->getEntry()->getContext();
1123 
1124   Boolean = Type::getInt1Ty(Context);
1125   BoolTrue = ConstantInt::getTrue(Context);
1126   BoolFalse = ConstantInt::getFalse(Context);
1127   BoolPoison = PoisonValue::get(Boolean);
1128 
1129   this->UA = nullptr;
1130 }
1131 
makeUniformRegion(Region * R,UniformityInfo & UA)1132 bool StructurizeCFG::makeUniformRegion(Region *R, UniformityInfo &UA) {
1133   if (R->isTopLevelRegion())
1134     return false;
1135 
1136   this->UA = &UA;
1137 
1138   // TODO: We could probably be smarter here with how we handle sub-regions.
1139   // We currently rely on the fact that metadata is set by earlier invocations
1140   // of the pass on sub-regions, and that this metadata doesn't get lost --
1141   // but we shouldn't rely on metadata for correctness!
1142   unsigned UniformMDKindID =
1143       R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
1144 
1145   if (hasOnlyUniformBranches(R, UniformMDKindID, UA)) {
1146     LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
1147                       << '\n');
1148 
1149     // Mark all direct child block terminators as having been treated as
1150     // uniform. To account for a possible future in which non-uniform
1151     // sub-regions are treated more cleverly, indirect children are not
1152     // marked as uniform.
1153     MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
1154     for (RegionNode *E : R->elements()) {
1155       if (E->isSubRegion())
1156         continue;
1157 
1158       if (Instruction *Term = E->getEntry()->getTerminator())
1159         Term->setMetadata(UniformMDKindID, MD);
1160     }
1161 
1162     return true;
1163   }
1164   return false;
1165 }
1166 
1167 /// Run the transformation for each region found
run(Region * R,DominatorTree * DT)1168 bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
1169   if (R->isTopLevelRegion())
1170     return false;
1171 
1172   this->DT = DT;
1173 
1174   Func = R->getEntry()->getParent();
1175   assert(hasOnlySimpleTerminator(*Func) && "Unsupported block terminator.");
1176 
1177   ParentRegion = R;
1178 
1179   orderNodes();
1180   collectInfos();
1181   createFlow();
1182   insertConditions(false);
1183   insertConditions(true);
1184   setPhiValues();
1185   simplifyConditions();
1186   simplifyAffectedPhis();
1187   rebuildSSA();
1188 
1189   // Cleanup
1190   Order.clear();
1191   Visited.clear();
1192   DeletedPhis.clear();
1193   AddedPhis.clear();
1194   Predicates.clear();
1195   Conditions.clear();
1196   Loops.clear();
1197   LoopPreds.clear();
1198   LoopConds.clear();
1199   FlowSet.clear();
1200   TermDL.clear();
1201 
1202   return true;
1203 }
1204 
createStructurizeCFGPass(bool SkipUniformRegions)1205 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1206   return new StructurizeCFGLegacyPass(SkipUniformRegions);
1207 }
1208 
addRegionIntoQueue(Region & R,std::vector<Region * > & Regions)1209 static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
1210   Regions.push_back(&R);
1211   for (const auto &E : R)
1212     addRegionIntoQueue(*E, Regions);
1213 }
1214 
run(Function & F,FunctionAnalysisManager & AM)1215 PreservedAnalyses StructurizeCFGPass::run(Function &F,
1216                                           FunctionAnalysisManager &AM) {
1217 
1218   bool Changed = false;
1219   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1220   auto &RI = AM.getResult<RegionInfoAnalysis>(F);
1221   std::vector<Region *> Regions;
1222   addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
1223   while (!Regions.empty()) {
1224     Region *R = Regions.back();
1225     StructurizeCFG SCFG;
1226     SCFG.init(R);
1227     Changed |= SCFG.run(R, DT);
1228     Regions.pop_back();
1229   }
1230   if (!Changed)
1231     return PreservedAnalyses::all();
1232   PreservedAnalyses PA;
1233   PA.preserve<DominatorTreeAnalysis>();
1234   return PA;
1235 }
1236