xref: /freebsd/sys/dev/random/fenestrasX/fx_pool.c (revision 8bd9a9e9e4cb3e293c1639319692ce201eb8fc53)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/domainset.h>
30 #include <sys/fail.h>
31 #include <sys/limits.h>
32 #include <sys/lock.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/random.h>
38 #include <sys/sdt.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 
43 #include <machine/atomic.h>
44 #include <machine/smp.h>
45 
46 #include <dev/random/randomdev.h>
47 #include <dev/random/random_harvestq.h>
48 
49 #include <dev/random/fenestrasX/fx_brng.h>
50 #include <dev/random/fenestrasX/fx_hash.h>
51 #include <dev/random/fenestrasX/fx_pool.h>
52 #include <dev/random/fenestrasX/fx_priv.h>
53 #include <dev/random/fenestrasX/fx_pub.h>
54 
55 /*
56  * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
57  */
58 #define	FXENT_RESSED_INTVL_GFACT	3
59 #define	FXENT_RESEED_INTVL_MAX		3600
60 
61 /*
62  * Pool reseed schedule.  Initially, only pool 0 is active.  Until the timer
63  * interval reaches INTVL_MAX, only pool 0 is used.
64  *
65  * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
66  * (if active) every 3^k timer reseeds.  (§ 3.3)
67  *
68  * (Entropy harvesting only round robins across active pools.)
69  */
70 #define	FXENT_RESEED_BASE		3
71 
72 /*
73  * Number of bytes from high quality sources to allocate to pool 0 before
74  * normal round-robin allocation after each timer reseed. (§ 3.4)
75  */
76 #define	FXENT_HI_SRC_POOL0_BYTES	32
77 
78 /*
79  * § 3.1
80  *
81  * Low sources provide unconditioned entropy, such as mouse movements; high
82  * sources are assumed to provide high-quality random bytes.  Pull sources are
83  * those which can be polled, i.e., anything randomdev calls a "random_source."
84  *
85  * In the whitepaper, low sources are pull.  For us, at least in the existing
86  * design, low-quality sources push into some global ring buffer and then get
87  * forwarded into the RNG by a thread that continually polls.  Presumably their
88  * design batches low entopy signals in some way (SHA512?) and only requests
89  * them dynamically on reseed.  I'm not sure what the benefit is vs feeding
90  * into the pools directly.
91  */
92 enum fxrng_ent_access_cls {
93 	FXRNG_PUSH,
94 	FXRNG_PULL,
95 };
96 enum fxrng_ent_source_cls {
97 	FXRNG_HI,
98 	FXRNG_LO,
99 	FXRNG_GARBAGE,
100 };
101 struct fxrng_ent_cls {
102 	enum fxrng_ent_access_cls	entc_axx_cls;
103 	enum fxrng_ent_source_cls	entc_src_cls;
104 };
105 
106 static const struct fxrng_ent_cls fxrng_hi_pull = {
107 	.entc_axx_cls = FXRNG_PULL,
108 	.entc_src_cls = FXRNG_HI,
109 };
110 static const struct fxrng_ent_cls fxrng_hi_push = {
111 	.entc_axx_cls = FXRNG_PUSH,
112 	.entc_src_cls = FXRNG_HI,
113 };
114 static const struct fxrng_ent_cls fxrng_lo_push = {
115 	.entc_axx_cls = FXRNG_PUSH,
116 	.entc_src_cls = FXRNG_LO,
117 };
118 static const struct fxrng_ent_cls fxrng_garbage = {
119 	.entc_axx_cls = FXRNG_PUSH,
120 	.entc_src_cls = FXRNG_GARBAGE,
121 };
122 
123 /*
124  * This table is a mapping of randomdev's current source abstractions to the
125  * designations above; at some point, if the design seems reasonable, it would
126  * make more sense to pull this up into the abstraction layer instead.
127  */
128 static const struct fxrng_ent_char {
129 	const struct fxrng_ent_cls	*entc_cls;
130 } fxrng_ent_char[/*ENTROPYSOURCE*/] = {
131 	[RANDOM_CACHED] = {
132 		.entc_cls = &fxrng_hi_push,
133 	},
134 	[RANDOM_ATTACH] = {
135 		.entc_cls = &fxrng_lo_push,
136 	},
137 	[RANDOM_KEYBOARD] = {
138 		.entc_cls = &fxrng_lo_push,
139 	},
140 	[RANDOM_MOUSE] = {
141 		.entc_cls = &fxrng_lo_push,
142 	},
143 	[RANDOM_NET_TUN] = {
144 		.entc_cls = &fxrng_lo_push,
145 	},
146 	[RANDOM_NET_ETHER] = {
147 		.entc_cls = &fxrng_lo_push,
148 	},
149 	[RANDOM_NET_NG] = {
150 		.entc_cls = &fxrng_lo_push,
151 	},
152 	[RANDOM_INTERRUPT] = {
153 		.entc_cls = &fxrng_lo_push,
154 	},
155 	[RANDOM_SWI] = {
156 		.entc_cls = &fxrng_lo_push,
157 	},
158 	[RANDOM_FS_ATIME] = {
159 		.entc_cls = &fxrng_lo_push,
160 	},
161 	[RANDOM_UMA] = {
162 		.entc_cls = &fxrng_lo_push,
163 	},
164 	[RANDOM_CALLOUT] = {
165 		.entc_cls = &fxrng_lo_push,
166 	},
167 	[RANDOM_RANDOMDEV] = {
168 		.entc_cls = &fxrng_lo_push,
169 	},
170 	[RANDOM_PURE_SAFE] = {
171 		.entc_cls = &fxrng_hi_push,
172 	},
173 	[RANDOM_PURE_GLXSB] = {
174 		.entc_cls = &fxrng_hi_push,
175 	},
176 	[RANDOM_PURE_RDRAND] = {
177 		.entc_cls = &fxrng_hi_pull,
178 	},
179 	[RANDOM_PURE_RDSEED] = {
180 		.entc_cls = &fxrng_hi_pull,
181 	},
182 	[RANDOM_PURE_NEHEMIAH] = {
183 		.entc_cls = &fxrng_hi_pull,
184 	},
185 	[RANDOM_PURE_RNDTEST] = {
186 		.entc_cls = &fxrng_garbage,
187 	},
188 	[RANDOM_PURE_VIRTIO] = {
189 		.entc_cls = &fxrng_hi_pull,
190 	},
191 	[RANDOM_PURE_BROADCOM] = {
192 		.entc_cls = &fxrng_hi_push,
193 	},
194 	[RANDOM_PURE_CCP] = {
195 		.entc_cls = &fxrng_hi_pull,
196 	},
197 	[RANDOM_PURE_DARN] = {
198 		.entc_cls = &fxrng_hi_pull,
199 	},
200 	[RANDOM_PURE_TPM] = {
201 		.entc_cls = &fxrng_hi_push,
202 	},
203 	[RANDOM_PURE_VMGENID] = {
204 		.entc_cls = &fxrng_hi_push,
205 	},
206 	[RANDOM_PURE_QUALCOMM] = {
207 		.entc_cls = &fxrng_hi_pull,
208 	},
209 	[RANDOM_PURE_ARMV8] = {
210 		.entc_cls = &fxrng_hi_pull,
211 	},
212 	[RANDOM_PURE_ARM_TRNG] = {
213 		.entc_cls = &fxrng_hi_pull,
214 	},
215 };
216 CTASSERT(nitems(fxrng_ent_char) == ENTROPYSOURCE);
217 
218 /* Useful for single-bit-per-source state. */
219 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
220 
221 /* XXX Borrowed from not-yet-committed D22702. */
222 #ifndef BIT_TEST_SET_ATOMIC_ACQ
223 #define	BIT_TEST_SET_ATOMIC_ACQ(_s, n, p)	\
224 	(atomic_testandset_acq_long(		\
225 	    &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
226 #endif
227 #define	FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
228 	BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
229 
230 /* For special behavior on first-time entropy sources. (§ 3.1) */
231 static struct fxrng_bits __read_mostly fxrng_seen;
232 
233 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
234 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
235 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
236 
237 /* Entropy pools.  Lock order is ENT -> RNG(root) -> RNG(leaf). */
238 static struct mtx fxent_pool_lk;
239 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
240 #define	FXENT_LOCK()		mtx_lock(&fxent_pool_lk)
241 #define	FXENT_UNLOCK()		mtx_unlock(&fxent_pool_lk)
242 #define	FXENT_ASSERT(rng)	mtx_assert(&fxent_pool_lk, MA_OWNED)
243 #define	FXENT_ASSERT_NOT(rng)	mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
244 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
245 static unsigned __read_mostly fxent_nactpools = 1;
246 static struct timeout_task fxent_reseed_timer;
247 static int __read_mostly fxent_timer_ready;
248 
249 /*
250  * Track number of bytes of entropy harvested from high-quality sources prior
251  * to initial keying.  The idea is to collect more jitter entropy when fewer
252  * high-quality bytes were available and less if we had other good sources.  We
253  * want to provide always-on availability but don't necessarily have *any*
254  * great sources on some platforms.
255  *
256  * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
257  * make more sense to pull this up into the abstraction layer instead.
258  *
259  * Jitter entropy is unimplemented for now.
260  */
261 static unsigned long fxrng_preseed_ent;
262 
263 void
fxrng_pools_init(void)264 fxrng_pools_init(void)
265 {
266 	size_t i;
267 
268 	for (i = 0; i < nitems(fxent_pool); i++)
269 		fxrng_hash_init(&fxent_pool[i]);
270 }
271 
272 static inline bool
fxrng_hi_source(enum random_entropy_source src)273 fxrng_hi_source(enum random_entropy_source src)
274 {
275 	return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
276 }
277 
278 /*
279  * A racy check that this high-entropy source's event should contribute to
280  * pool0 on the basis of per-source byte count.  The check is racy for two
281  * reasons:
282  *   - Performance: The vast majority of the time, we've already taken 32 bytes
283  *     from any present high quality source and the racy check lets us avoid
284  *     dirtying the cache for the global array.
285  *   - Correctness: It's fine that the check is racy.  The failure modes are:
286  *     • False positive: We will detect when we take the lock.
287  *     • False negative: We still collect the entropy; it just won't be
288  *       preferentially placed in pool0 in this case.
289  */
290 static inline bool
fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)291 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
292 {
293 	return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
294 	    FXENT_HI_SRC_POOL0_BYTES);
295 }
296 
297 /*
298  * Top level entropy processing API from randomdev.
299  *
300  * Invoked by the core randomdev subsystem both for preload entropy, "push"
301  * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
302  */
303 void
fxrng_event_processor(struct harvest_event * event)304 fxrng_event_processor(struct harvest_event *event)
305 {
306 	enum random_entropy_source src;
307 	unsigned pool;
308 	bool first_time, first_32;
309 
310 	src = event->he_source;
311 
312 	ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
313 	    "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
314 	    (unsigned)event->he_size, sizeof(event->he_entropy));
315 
316 	/*
317 	 * Zero bytes of source entropy doesn't count as observing this source
318 	 * for the first time.  We still harvest the counter entropy.
319 	 */
320 	first_time = event->he_size > 0 &&
321 	    !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
322 	if (__predict_false(first_time)) {
323 		/*
324 		 * "The first time [any source] provides entropy, it is used to
325 		 * directly reseed the root PRNG.  The entropy pools are
326 		 * bypassed." (§ 3.1)
327 		 *
328 		 * Unlike Windows, we cannot rely on loader(8) seed material
329 		 * being present, so we perform initial keying in the kernel.
330 		 * We use brng_generation 0 to represent an unkeyed state.
331 		 *
332 		 * Prior to initial keying, it doesn't make sense to try to mix
333 		 * the entropy directly with the root PRNG state, as the root
334 		 * PRNG is unkeyed.  Instead, we collect pre-keying dynamic
335 		 * entropy in pool0 and do not bump the root PRNG seed version
336 		 * or set its key.  Initial keying will incorporate pool0 and
337 		 * bump the brng_generation (seed version).
338 		 *
339 		 * After initial keying, we do directly mix in first-time
340 		 * entropy sources.  We use the root BRNG to generate 32 bytes
341 		 * and use fxrng_hash to mix it with the new entropy source and
342 		 * re-key with the first 256 bits of hash output.
343 		 */
344 		FXENT_LOCK();
345 		FXRNG_BRNG_LOCK(&fxrng_root);
346 		if (__predict_true(fxrng_root.brng_generation > 0)) {
347 			/* Bypass the pools: */
348 			FXENT_UNLOCK();
349 			fxrng_brng_src_reseed(event);
350 			FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
351 			return;
352 		}
353 
354 		/*
355 		 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
356 		 * lock, so we only need to hold on to the pool lock to prevent
357 		 * initial keying without this entropy.
358 		 */
359 		FXRNG_BRNG_UNLOCK(&fxrng_root);
360 
361 		/* Root PRNG hasn't been keyed yet, just accumulate event. */
362 		fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
363 		    sizeof(event->he_somecounter));
364 		fxrng_hash_update(&fxent_pool[0], event->he_entropy,
365 		    event->he_size);
366 
367 		if (fxrng_hi_source(src)) {
368 			/* Prevent overflow. */
369 			if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
370 				fxrng_preseed_ent += event->he_size;
371 		}
372 		FXENT_UNLOCK();
373 		return;
374 	}
375 	/* !first_time */
376 
377 	/*
378 	 * "The first 32 bytes produced by a high entropy source after a reseed
379 	 * from the pools is always put in pool 0." (§ 3.4)
380 	 *
381 	 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
382 	 * fxent_timer_reseed_npools() below.
383 	 */
384 	first_32 = event->he_size > 0 &&
385 	    fxrng_hi_source(src) &&
386 	    atomic_load_acq_int(&fxent_nactpools) > 1 &&
387 	    fxrng_hi_pool0_eligible_racy(src);
388 	if (__predict_false(first_32)) {
389 		unsigned rem, seen;
390 
391 		FXENT_LOCK();
392 		seen = fxrng_reseed_seen[src];
393 		if (seen == FXENT_HI_SRC_POOL0_BYTES)
394 			goto round_robin;
395 
396 		rem = FXENT_HI_SRC_POOL0_BYTES - seen;
397 		rem = MIN(rem, event->he_size);
398 
399 		fxrng_reseed_seen[src] = seen + rem;
400 
401 		/*
402 		 * We put 'rem' bytes in pool0, and any remaining bytes are
403 		 * round-robin'd across other pools.
404 		 */
405 		fxrng_hash_update(&fxent_pool[0],
406 		    ((uint8_t *)event->he_entropy) + event->he_size - rem,
407 		    rem);
408 		if (rem == event->he_size) {
409 			fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
410 			    sizeof(event->he_somecounter));
411 			FXENT_UNLOCK();
412 			return;
413 		}
414 
415 		/*
416 		 * If fewer bytes were needed than this even provied, We only
417 		 * take the last rem bytes of the entropy buffer and leave the
418 		 * timecounter to be round-robin'd with the remaining entropy.
419 		 */
420 		event->he_size -= rem;
421 		goto round_robin;
422 	}
423 	/* !first_32 */
424 
425 	FXENT_LOCK();
426 
427 round_robin:
428 	FXENT_ASSERT();
429 	pool = event->he_destination % fxent_nactpools;
430 	fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
431 	    event->he_size);
432 	fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
433 	    sizeof(event->he_somecounter));
434 
435 	if (__predict_false(fxrng_hi_source(src) &&
436 	    atomic_load_acq_64(&fxrng_root_generation) == 0)) {
437 		/* Prevent overflow. */
438 		if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
439 			fxrng_preseed_ent += event->he_size;
440 	}
441 	FXENT_UNLOCK();
442 }
443 
444 /*
445  * Top level "seeded" API/signal from randomdev.
446  *
447  * This is our warning that a request is coming: we need to be seeded.  In
448  * fenestrasX, a request for random bytes _never_ fails.  "We (ed: ditto) have
449  * observed that there are many callers that never check for the error code,
450  * even if they are generating cryptographic key material." (§ 1.6)
451  *
452  * If we returned 'false', both read_random(9) and chacha20_randomstir()
453  * (arc4random(9)) will blindly charge on with something almost certainly worse
454  * than what we've got, or are able to get quickly enough.
455  */
456 bool
fxrng_alg_seeded(void)457 fxrng_alg_seeded(void)
458 {
459 	uint8_t hash[FXRNG_HASH_SZ];
460 	sbintime_t sbt;
461 
462 	/* The vast majority of the time, we expect to already be seeded. */
463 	if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
464 		return (true);
465 
466 	/*
467 	 * Take the lock and recheck; only one thread needs to do the initial
468 	 * seeding work.
469 	 */
470 	FXENT_LOCK();
471 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
472 		FXENT_UNLOCK();
473 		return (true);
474 	}
475 	/* XXX Any one-off initial seeding goes here. */
476 
477 	fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
478 	fxrng_hash_init(&fxent_pool[0]);
479 
480 	fxrng_brng_reseed(hash, sizeof(hash));
481 	FXENT_UNLOCK();
482 
483 	randomdev_unblock();
484 	explicit_bzero(hash, sizeof(hash));
485 
486 	/*
487 	 * This may be called too early for taskqueue_thread to be initialized.
488 	 * fxent_pool_timer_init will detect if we've already unblocked and
489 	 * queue the first timer reseed at that point.
490 	 */
491 	if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
492 		sbt = SBT_1S;
493 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
494 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
495 	}
496 	return (true);
497 }
498 
499 /*
500  * Timer-based reseeds and pool expansion.
501  */
502 static void
fxent_timer_reseed_npools(unsigned n)503 fxent_timer_reseed_npools(unsigned n)
504 {
505 	/*
506 	 * 64 * 8 => moderately large 512 bytes.  Could be static, as we are
507 	 * only used in a static context.  On the other hand, this is in
508 	 * threadqueue TASK context and we're likely nearly at top of stack
509 	 * already.
510 	 */
511 	uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
512 	unsigned i;
513 
514 	ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
515 
516 	FXENT_ASSERT();
517 	/*
518 	 * Collect entropy from pools 0..n-1 by concatenating the output hashes
519 	 * and then feeding them into fxrng_brng_reseed, which will hash the
520 	 * aggregate together with the current root PRNG keystate to produce a
521 	 * new key.  It will also bump the global generation counter
522 	 * appropriately.
523 	 */
524 	for (i = 0; i < n; i++) {
525 		fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
526 		    FXRNG_HASH_SZ);
527 		fxrng_hash_init(&fxent_pool[i]);
528 	}
529 
530 	fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
531 	explicit_bzero(hash, n * FXRNG_HASH_SZ);
532 
533 	/*
534 	 * "The first 32 bytes produced by a high entropy source after a reseed
535 	 * from the pools is always put in pool 0." (§ 3.4)
536 	 *
537 	 * So here we reset the tracking (somewhat naively given the majority
538 	 * of sources on most machines are not what we consider "high", but at
539 	 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
540 	 * prioritized into pool0.
541 	 *
542 	 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
543 	 */
544 	memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
545 	FXENT_ASSERT();
546 }
547 
548 static void
fxent_timer_reseed(void * ctx __unused,int pending __unused)549 fxent_timer_reseed(void *ctx __unused, int pending __unused)
550 {
551 	static unsigned reseed_intvl_sec = 1;
552 	/* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
553 	static uint64_t reseed_number = 1;
554 
555 	unsigned next_ival, i, k;
556 	sbintime_t sbt;
557 
558 	if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
559 		next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
560 		if (next_ival > FXENT_RESEED_INTVL_MAX)
561 			next_ival = FXENT_RESEED_INTVL_MAX;
562 		FXENT_LOCK();
563 		fxent_timer_reseed_npools(1);
564 		FXENT_UNLOCK();
565 	} else {
566 		/*
567 		 * The creation of entropy pools beyond 0 is enabled when the
568 		 * reseed interval hits the maximum. (§ 3.3)
569 		 */
570 		next_ival = reseed_intvl_sec;
571 
572 		/*
573 		 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
574 		 * general, pool n..0 every 3^n reseeds.
575 		 */
576 		k = reseed_number;
577 		reseed_number++;
578 
579 		/* Count how many pools, from [0, i), to use for reseed. */
580 		for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
581 			if ((k % FXENT_RESEED_BASE) != 0)
582 				break;
583 			k /= FXENT_RESEED_BASE;
584 		}
585 
586 		/*
587 		 * If we haven't activated pool i yet, activate it and only
588 		 * reseed from [0, i-1).  (§ 3.3)
589 		 */
590 		FXENT_LOCK();
591 		if (i == fxent_nactpools + 1) {
592 			fxent_timer_reseed_npools(fxent_nactpools);
593 			fxent_nactpools++;
594 		} else {
595 			/* Just reseed from [0, i). */
596 			fxent_timer_reseed_npools(i);
597 		}
598 		FXENT_UNLOCK();
599 	}
600 
601 	/* Schedule the next reseed. */
602 	sbt = next_ival * SBT_1S;
603 	taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
604 	    -sbt, (sbt / 3), C_PREL(2));
605 
606 	reseed_intvl_sec = next_ival;
607 }
608 
609 static void
fxent_pool_timer_init(void * dummy __unused)610 fxent_pool_timer_init(void *dummy __unused)
611 {
612 	sbintime_t sbt;
613 
614 	TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
615 	    fxent_timer_reseed, NULL);
616 
617 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
618 		sbt = SBT_1S;
619 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
620 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
621 	}
622 	atomic_store_rel_int(&fxent_timer_ready, 1);
623 }
624 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
625 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
626     fxent_pool_timer_init, NULL);
627