xref: /linux/drivers/spi/spi-aspeed-smc.c (revision 8cbd01ba9c38eb16f3a572300da486ac544519b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ASPEED FMC/SPI Memory Controller Driver
4  *
5  * Copyright (c) 2015-2022, IBM Corporation.
6  * Copyright (c) 2020, ASPEED Corporation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/spi/spi-mem.h>
16 
17 #define DEVICE_NAME "spi-aspeed-smc"
18 
19 /* Type setting Register */
20 #define CONFIG_REG			0x0
21 #define   CONFIG_TYPE_SPI		0x2
22 
23 /* CE Control Register */
24 #define CE_CTRL_REG			0x4
25 
26 /* CEx Control Register */
27 #define CE0_CTRL_REG			0x10
28 #define   CTRL_IO_MODE_MASK		GENMASK(30, 28)
29 #define   CTRL_IO_SINGLE_DATA	        0x0
30 #define   CTRL_IO_DUAL_DATA		BIT(29)
31 #define   CTRL_IO_QUAD_DATA		BIT(30)
32 #define   CTRL_COMMAND_SHIFT		16
33 #define   CTRL_IO_ADDRESS_4B		BIT(13)	/* AST2400 SPI only */
34 #define   CTRL_IO_DUMMY_SET(dummy)					\
35 	(((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
36 #define   CTRL_FREQ_SEL_SHIFT		8
37 #define   CTRL_FREQ_SEL_MASK		GENMASK(11, CTRL_FREQ_SEL_SHIFT)
38 #define   CTRL_CE_STOP_ACTIVE		BIT(2)
39 #define   CTRL_IO_MODE_CMD_MASK		GENMASK(1, 0)
40 #define   CTRL_IO_MODE_NORMAL		0x0
41 #define   CTRL_IO_MODE_READ		0x1
42 #define   CTRL_IO_MODE_WRITE		0x2
43 #define   CTRL_IO_MODE_USER		0x3
44 
45 #define   CTRL_IO_CMD_MASK		0xf0ff40c3
46 
47 /* CEx Address Decoding Range Register */
48 #define CE0_SEGMENT_ADDR_REG		0x30
49 
50 /* CEx Read timing compensation register */
51 #define CE0_TIMING_COMPENSATION_REG	0x94
52 
53 enum aspeed_spi_ctl_reg_value {
54 	ASPEED_SPI_BASE,
55 	ASPEED_SPI_READ,
56 	ASPEED_SPI_WRITE,
57 	ASPEED_SPI_MAX,
58 };
59 
60 struct aspeed_spi;
61 
62 struct aspeed_spi_chip {
63 	struct aspeed_spi	*aspi;
64 	u32			 cs;
65 	void __iomem		*ctl;
66 	void __iomem		*ahb_base;
67 	u32			 ahb_window_size;
68 	u32			 ctl_val[ASPEED_SPI_MAX];
69 	u32			 clk_freq;
70 };
71 
72 struct aspeed_spi_data {
73 	u32	ctl0;
74 	u32	max_cs;
75 	bool	hastype;
76 	u32	mode_bits;
77 	u32	we0;
78 	u32	timing;
79 	u32	hclk_mask;
80 	u32	hdiv_max;
81 
82 	u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
83 	u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
84 	u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
85 	int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
86 			 const u8 *golden_buf, u8 *test_buf);
87 };
88 
89 #define ASPEED_SPI_MAX_NUM_CS	5
90 
91 struct aspeed_spi {
92 	const struct aspeed_spi_data	*data;
93 
94 	void __iomem		*regs;
95 	void __iomem		*ahb_base;
96 	u32			 ahb_base_phy;
97 	u32			 ahb_window_size;
98 	struct device		*dev;
99 
100 	struct clk		*clk;
101 	u32			 clk_freq;
102 
103 	struct aspeed_spi_chip	 chips[ASPEED_SPI_MAX_NUM_CS];
104 };
105 
aspeed_spi_get_io_mode(const struct spi_mem_op * op)106 static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
107 {
108 	switch (op->data.buswidth) {
109 	case 1:
110 		return CTRL_IO_SINGLE_DATA;
111 	case 2:
112 		return CTRL_IO_DUAL_DATA;
113 	case 4:
114 		return CTRL_IO_QUAD_DATA;
115 	default:
116 		return CTRL_IO_SINGLE_DATA;
117 	}
118 }
119 
aspeed_spi_set_io_mode(struct aspeed_spi_chip * chip,u32 io_mode)120 static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
121 {
122 	u32 ctl;
123 
124 	if (io_mode > 0) {
125 		ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
126 		ctl |= io_mode;
127 		writel(ctl, chip->ctl);
128 	}
129 }
130 
aspeed_spi_start_user(struct aspeed_spi_chip * chip)131 static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
132 {
133 	u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
134 
135 	ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
136 	writel(ctl, chip->ctl);
137 
138 	ctl &= ~CTRL_CE_STOP_ACTIVE;
139 	writel(ctl, chip->ctl);
140 }
141 
aspeed_spi_stop_user(struct aspeed_spi_chip * chip)142 static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
143 {
144 	u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
145 		CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
146 
147 	writel(ctl, chip->ctl);
148 
149 	/* Restore defaults */
150 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
151 }
152 
aspeed_spi_read_from_ahb(void * buf,void __iomem * src,size_t len)153 static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
154 {
155 	size_t offset = 0;
156 
157 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
158 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
159 		ioread32_rep(src, buf, len >> 2);
160 		offset = len & ~0x3;
161 		len -= offset;
162 	}
163 	ioread8_rep(src, (u8 *)buf + offset, len);
164 	return 0;
165 }
166 
aspeed_spi_write_to_ahb(void __iomem * dst,const void * buf,size_t len)167 static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
168 {
169 	size_t offset = 0;
170 
171 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
172 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
173 		iowrite32_rep(dst, buf, len >> 2);
174 		offset = len & ~0x3;
175 		len -= offset;
176 	}
177 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
178 	return 0;
179 }
180 
aspeed_spi_send_cmd_addr(struct aspeed_spi_chip * chip,u8 addr_nbytes,u64 offset,u32 opcode)181 static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
182 				    u64 offset, u32 opcode)
183 {
184 	__be32 temp;
185 	u32 cmdaddr;
186 
187 	switch (addr_nbytes) {
188 	case 3:
189 		cmdaddr = offset & 0xFFFFFF;
190 		cmdaddr |= opcode << 24;
191 
192 		temp = cpu_to_be32(cmdaddr);
193 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
194 		break;
195 	case 4:
196 		temp = cpu_to_be32(offset);
197 		aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
198 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
199 		break;
200 	default:
201 		WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
202 		return -EOPNOTSUPP;
203 	}
204 	return 0;
205 }
206 
aspeed_spi_read_reg(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)207 static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
208 			       const struct spi_mem_op *op)
209 {
210 	aspeed_spi_start_user(chip);
211 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
212 	aspeed_spi_read_from_ahb(op->data.buf.in,
213 				 chip->ahb_base, op->data.nbytes);
214 	aspeed_spi_stop_user(chip);
215 	return 0;
216 }
217 
aspeed_spi_write_reg(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)218 static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
219 				const struct spi_mem_op *op)
220 {
221 	aspeed_spi_start_user(chip);
222 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
223 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
224 				op->data.nbytes);
225 	aspeed_spi_stop_user(chip);
226 	return 0;
227 }
228 
aspeed_spi_read_user(struct aspeed_spi_chip * chip,const struct spi_mem_op * op,u64 offset,size_t len,void * buf)229 static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
230 				    const struct spi_mem_op *op,
231 				    u64 offset, size_t len, void *buf)
232 {
233 	int io_mode = aspeed_spi_get_io_mode(op);
234 	u8 dummy = 0xFF;
235 	int i;
236 	int ret;
237 
238 	aspeed_spi_start_user(chip);
239 
240 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
241 	if (ret < 0)
242 		goto stop_user;
243 
244 	if (op->dummy.buswidth && op->dummy.nbytes) {
245 		for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
246 			aspeed_spi_write_to_ahb(chip->ahb_base, &dummy,	sizeof(dummy));
247 	}
248 
249 	aspeed_spi_set_io_mode(chip, io_mode);
250 
251 	aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
252 stop_user:
253 	aspeed_spi_stop_user(chip);
254 	return ret;
255 }
256 
aspeed_spi_write_user(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)257 static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
258 				     const struct spi_mem_op *op)
259 {
260 	int ret;
261 
262 	aspeed_spi_start_user(chip);
263 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
264 	if (ret < 0)
265 		goto stop_user;
266 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
267 stop_user:
268 	aspeed_spi_stop_user(chip);
269 	return ret;
270 }
271 
272 /* support for 1-1-1, 1-1-2 or 1-1-4 */
aspeed_spi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)273 static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
274 {
275 	if (op->cmd.buswidth > 1)
276 		return false;
277 
278 	if (op->addr.nbytes != 0) {
279 		if (op->addr.buswidth > 1)
280 			return false;
281 		if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
282 			return false;
283 	}
284 
285 	if (op->dummy.nbytes != 0) {
286 		if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
287 			return false;
288 	}
289 
290 	if (op->data.nbytes != 0 && op->data.buswidth > 4)
291 		return false;
292 
293 	return spi_mem_default_supports_op(mem, op);
294 }
295 
296 static const struct aspeed_spi_data ast2400_spi_data;
297 
do_aspeed_spi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)298 static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
299 {
300 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
301 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(mem->spi, 0)];
302 	u32 addr_mode, addr_mode_backup;
303 	u32 ctl_val;
304 	int ret = 0;
305 
306 	dev_dbg(aspi->dev,
307 		"CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
308 		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
309 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
310 		op->dummy.buswidth, op->data.buswidth,
311 		op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
312 
313 	addr_mode = readl(aspi->regs + CE_CTRL_REG);
314 	addr_mode_backup = addr_mode;
315 
316 	ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
317 	ctl_val &= ~CTRL_IO_CMD_MASK;
318 
319 	ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
320 
321 	/* 4BYTE address mode */
322 	if (op->addr.nbytes) {
323 		if (op->addr.nbytes == 4)
324 			addr_mode |= (0x11 << chip->cs);
325 		else
326 			addr_mode &= ~(0x11 << chip->cs);
327 
328 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
329 			ctl_val |= CTRL_IO_ADDRESS_4B;
330 	}
331 
332 	if (op->dummy.nbytes)
333 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
334 
335 	if (op->data.nbytes)
336 		ctl_val |= aspeed_spi_get_io_mode(op);
337 
338 	if (op->data.dir == SPI_MEM_DATA_OUT)
339 		ctl_val |= CTRL_IO_MODE_WRITE;
340 	else
341 		ctl_val |= CTRL_IO_MODE_READ;
342 
343 	if (addr_mode != addr_mode_backup)
344 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
345 	writel(ctl_val, chip->ctl);
346 
347 	if (op->data.dir == SPI_MEM_DATA_IN) {
348 		if (!op->addr.nbytes)
349 			ret = aspeed_spi_read_reg(chip, op);
350 		else
351 			ret = aspeed_spi_read_user(chip, op, op->addr.val,
352 						   op->data.nbytes, op->data.buf.in);
353 	} else {
354 		if (!op->addr.nbytes)
355 			ret = aspeed_spi_write_reg(chip, op);
356 		else
357 			ret = aspeed_spi_write_user(chip, op);
358 	}
359 
360 	/* Restore defaults */
361 	if (addr_mode != addr_mode_backup)
362 		writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
363 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
364 	return ret;
365 }
366 
aspeed_spi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)367 static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
368 {
369 	int ret;
370 
371 	ret = do_aspeed_spi_exec_op(mem, op);
372 	if (ret)
373 		dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
374 	return ret;
375 }
376 
aspeed_spi_get_name(struct spi_mem * mem)377 static const char *aspeed_spi_get_name(struct spi_mem *mem)
378 {
379 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
380 	struct device *dev = aspi->dev;
381 
382 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
383 			      spi_get_chipselect(mem->spi, 0));
384 }
385 
386 struct aspeed_spi_window {
387 	u32 cs;
388 	u32 offset;
389 	u32 size;
390 };
391 
aspeed_spi_get_windows(struct aspeed_spi * aspi,struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])392 static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
393 				   struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
394 {
395 	const struct aspeed_spi_data *data = aspi->data;
396 	u32 reg_val;
397 	u32 cs;
398 
399 	for (cs = 0; cs < aspi->data->max_cs; cs++) {
400 		reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
401 		windows[cs].cs = cs;
402 		windows[cs].size = data->segment_end(aspi, reg_val) -
403 			data->segment_start(aspi, reg_val);
404 		windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
405 		dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
406 			 windows[cs].offset, windows[cs].size);
407 	}
408 }
409 
410 /*
411  * On the AST2600, some CE windows are closed by default at reset but
412  * U-Boot should open all.
413  */
aspeed_spi_chip_set_default_window(struct aspeed_spi_chip * chip)414 static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
415 {
416 	struct aspeed_spi *aspi = chip->aspi;
417 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
418 	struct aspeed_spi_window *win = &windows[chip->cs];
419 
420 	/* No segment registers for the AST2400 SPI controller */
421 	if (aspi->data == &ast2400_spi_data) {
422 		win->offset = 0;
423 		win->size = aspi->ahb_window_size;
424 	} else {
425 		aspeed_spi_get_windows(aspi, windows);
426 	}
427 
428 	chip->ahb_base = aspi->ahb_base + win->offset;
429 	chip->ahb_window_size = win->size;
430 
431 	dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
432 		chip->cs, aspi->ahb_base_phy + win->offset,
433 		aspi->ahb_base_phy + win->offset + win->size - 1,
434 		win->size >> 20);
435 
436 	return chip->ahb_window_size ? 0 : -1;
437 }
438 
aspeed_spi_set_window(struct aspeed_spi * aspi,const struct aspeed_spi_window * win)439 static int aspeed_spi_set_window(struct aspeed_spi *aspi,
440 				 const struct aspeed_spi_window *win)
441 {
442 	u32 start = aspi->ahb_base_phy + win->offset;
443 	u32 end = start + win->size;
444 	void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
445 	u32 seg_val_backup = readl(seg_reg);
446 	u32 seg_val = aspi->data->segment_reg(aspi, start, end);
447 
448 	if (seg_val == seg_val_backup)
449 		return 0;
450 
451 	writel(seg_val, seg_reg);
452 
453 	/*
454 	 * Restore initial value if something goes wrong else we could
455 	 * loose access to the chip.
456 	 */
457 	if (seg_val != readl(seg_reg)) {
458 		dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
459 			win->cs, start, end - 1, win->size >> 20);
460 		writel(seg_val_backup, seg_reg);
461 		return -EIO;
462 	}
463 
464 	if (win->size)
465 		dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
466 			win->cs, start, end - 1,  win->size >> 20);
467 	else
468 		dev_dbg(aspi->dev, "CE%d window closed", win->cs);
469 
470 	return 0;
471 }
472 
473 /*
474  * Yet to be done when possible :
475  * - Align mappings on flash size (we don't have the info)
476  * - ioremap each window, not strictly necessary since the overall window
477  *   is correct.
478  */
479 static const struct aspeed_spi_data ast2500_spi_data;
480 static const struct aspeed_spi_data ast2600_spi_data;
481 static const struct aspeed_spi_data ast2600_fmc_data;
482 
aspeed_spi_chip_adjust_window(struct aspeed_spi_chip * chip,u32 local_offset,u32 size)483 static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
484 					 u32 local_offset, u32 size)
485 {
486 	struct aspeed_spi *aspi = chip->aspi;
487 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
488 	struct aspeed_spi_window *win = &windows[chip->cs];
489 	int ret;
490 
491 	/* No segment registers for the AST2400 SPI controller */
492 	if (aspi->data == &ast2400_spi_data)
493 		return 0;
494 
495 	/*
496 	 * Due to an HW issue on the AST2500 SPI controller, the CE0
497 	 * window size should be smaller than the maximum 128MB.
498 	 */
499 	if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
500 		size = 120 << 20;
501 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
502 			 chip->cs, size >> 20);
503 	}
504 
505 	/*
506 	 * The decoding size of AST2600 SPI controller should set at
507 	 * least 2MB.
508 	 */
509 	if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
510 	    size < SZ_2M) {
511 		size = SZ_2M;
512 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
513 			 chip->cs, size >> 20);
514 	}
515 
516 	aspeed_spi_get_windows(aspi, windows);
517 
518 	/* Adjust this chip window */
519 	win->offset += local_offset;
520 	win->size = size;
521 
522 	if (win->offset + win->size > aspi->ahb_window_size) {
523 		win->size = aspi->ahb_window_size - win->offset;
524 		dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
525 	}
526 
527 	ret = aspeed_spi_set_window(aspi, win);
528 	if (ret)
529 		return ret;
530 
531 	/* Update chip mapping info */
532 	chip->ahb_base = aspi->ahb_base + win->offset;
533 	chip->ahb_window_size = win->size;
534 
535 	/*
536 	 * Also adjust next chip window to make sure that it does not
537 	 * overlap with the current window.
538 	 */
539 	if (chip->cs < aspi->data->max_cs - 1) {
540 		struct aspeed_spi_window *next = &windows[chip->cs + 1];
541 
542 		/* Change offset and size to keep the same end address */
543 		if ((next->offset + next->size) > (win->offset + win->size))
544 			next->size = (next->offset + next->size) - (win->offset + win->size);
545 		else
546 			next->size = 0;
547 		next->offset = win->offset + win->size;
548 
549 		aspeed_spi_set_window(aspi, next);
550 	}
551 	return 0;
552 }
553 
554 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
555 
aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc * desc)556 static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
557 {
558 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
559 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
560 	struct spi_mem_op *op = &desc->info.op_tmpl;
561 	u32 ctl_val;
562 	int ret = 0;
563 
564 	dev_dbg(aspi->dev,
565 		"CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
566 		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
567 		desc->info.offset, desc->info.offset + desc->info.length,
568 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
569 		op->dummy.buswidth, op->data.buswidth,
570 		op->addr.nbytes, op->dummy.nbytes);
571 
572 	chip->clk_freq = desc->mem->spi->max_speed_hz;
573 
574 	/* Only for reads */
575 	if (op->data.dir != SPI_MEM_DATA_IN)
576 		return -EOPNOTSUPP;
577 
578 	aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
579 
580 	if (desc->info.length > chip->ahb_window_size)
581 		dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
582 			 chip->cs, chip->ahb_window_size >> 20);
583 
584 	/* Define the default IO read settings */
585 	ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
586 	ctl_val |= aspeed_spi_get_io_mode(op) |
587 		op->cmd.opcode << CTRL_COMMAND_SHIFT |
588 		CTRL_IO_MODE_READ;
589 
590 	if (op->dummy.nbytes)
591 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
592 
593 	/* Tune 4BYTE address mode */
594 	if (op->addr.nbytes) {
595 		u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
596 
597 		if (op->addr.nbytes == 4)
598 			addr_mode |= (0x11 << chip->cs);
599 		else
600 			addr_mode &= ~(0x11 << chip->cs);
601 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
602 
603 		/* AST2400 SPI controller sets 4BYTE address mode in
604 		 * CE0 Control Register
605 		 */
606 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
607 			ctl_val |= CTRL_IO_ADDRESS_4B;
608 	}
609 
610 	/* READ mode is the controller default setting */
611 	chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
612 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
613 
614 	ret = aspeed_spi_do_calibration(chip);
615 
616 	dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
617 		 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
618 
619 	return ret;
620 }
621 
aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offset,size_t len,void * buf)622 static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
623 				      u64 offset, size_t len, void *buf)
624 {
625 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
626 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
627 
628 	/* Switch to USER command mode if mapping window is too small */
629 	if (chip->ahb_window_size < offset + len) {
630 		int ret;
631 
632 		ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
633 		if (ret < 0)
634 			return ret;
635 	} else {
636 		memcpy_fromio(buf, chip->ahb_base + offset, len);
637 	}
638 
639 	return len;
640 }
641 
642 static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
643 	.supports_op = aspeed_spi_supports_op,
644 	.exec_op = aspeed_spi_exec_op,
645 	.get_name = aspeed_spi_get_name,
646 	.dirmap_create = aspeed_spi_dirmap_create,
647 	.dirmap_read = aspeed_spi_dirmap_read,
648 };
649 
aspeed_spi_chip_set_type(struct aspeed_spi * aspi,unsigned int cs,int type)650 static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
651 {
652 	u32 reg;
653 
654 	reg = readl(aspi->regs + CONFIG_REG);
655 	reg &= ~(0x3 << (cs * 2));
656 	reg |= type << (cs * 2);
657 	writel(reg, aspi->regs + CONFIG_REG);
658 }
659 
aspeed_spi_chip_enable(struct aspeed_spi * aspi,unsigned int cs,bool enable)660 static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
661 {
662 	u32 we_bit = BIT(aspi->data->we0 + cs);
663 	u32 reg = readl(aspi->regs + CONFIG_REG);
664 
665 	if (enable)
666 		reg |= we_bit;
667 	else
668 		reg &= ~we_bit;
669 	writel(reg, aspi->regs + CONFIG_REG);
670 }
671 
aspeed_spi_setup(struct spi_device * spi)672 static int aspeed_spi_setup(struct spi_device *spi)
673 {
674 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
675 	const struct aspeed_spi_data *data = aspi->data;
676 	unsigned int cs = spi_get_chipselect(spi, 0);
677 	struct aspeed_spi_chip *chip = &aspi->chips[cs];
678 
679 	chip->aspi = aspi;
680 	chip->cs = cs;
681 	chip->ctl = aspi->regs + data->ctl0 + cs * 4;
682 
683 	/* The driver only supports SPI type flash */
684 	if (data->hastype)
685 		aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
686 
687 	if (aspeed_spi_chip_set_default_window(chip) < 0) {
688 		dev_warn(aspi->dev, "CE%d window invalid", cs);
689 		return -EINVAL;
690 	}
691 
692 	aspeed_spi_chip_enable(aspi, cs, true);
693 
694 	chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
695 
696 	dev_dbg(aspi->dev, "CE%d setup done\n", cs);
697 	return 0;
698 }
699 
aspeed_spi_cleanup(struct spi_device * spi)700 static void aspeed_spi_cleanup(struct spi_device *spi)
701 {
702 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
703 	unsigned int cs = spi_get_chipselect(spi, 0);
704 
705 	aspeed_spi_chip_enable(aspi, cs, false);
706 
707 	dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
708 }
709 
aspeed_spi_enable(struct aspeed_spi * aspi,bool enable)710 static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
711 {
712 	int cs;
713 
714 	for (cs = 0; cs < aspi->data->max_cs; cs++)
715 		aspeed_spi_chip_enable(aspi, cs, enable);
716 }
717 
aspeed_spi_probe(struct platform_device * pdev)718 static int aspeed_spi_probe(struct platform_device *pdev)
719 {
720 	struct device *dev = &pdev->dev;
721 	const struct aspeed_spi_data *data;
722 	struct spi_controller *ctlr;
723 	struct aspeed_spi *aspi;
724 	struct resource *res;
725 	int ret;
726 
727 	data = of_device_get_match_data(&pdev->dev);
728 	if (!data)
729 		return -ENODEV;
730 
731 	ctlr = devm_spi_alloc_host(dev, sizeof(*aspi));
732 	if (!ctlr)
733 		return -ENOMEM;
734 
735 	aspi = spi_controller_get_devdata(ctlr);
736 	platform_set_drvdata(pdev, aspi);
737 	aspi->data = data;
738 	aspi->dev = dev;
739 
740 	aspi->regs = devm_platform_ioremap_resource(pdev, 0);
741 	if (IS_ERR(aspi->regs))
742 		return PTR_ERR(aspi->regs);
743 
744 	aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
745 	if (IS_ERR(aspi->ahb_base)) {
746 		dev_err(dev, "missing AHB mapping window\n");
747 		return PTR_ERR(aspi->ahb_base);
748 	}
749 
750 	aspi->ahb_window_size = resource_size(res);
751 	aspi->ahb_base_phy = res->start;
752 
753 	aspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
754 	if (IS_ERR(aspi->clk)) {
755 		dev_err(dev, "missing clock\n");
756 		return PTR_ERR(aspi->clk);
757 	}
758 
759 	aspi->clk_freq = clk_get_rate(aspi->clk);
760 	if (!aspi->clk_freq) {
761 		dev_err(dev, "invalid clock\n");
762 		return -EINVAL;
763 	}
764 
765 	/* IRQ is for DMA, which the driver doesn't support yet */
766 
767 	ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
768 	ctlr->bus_num = pdev->id;
769 	ctlr->mem_ops = &aspeed_spi_mem_ops;
770 	ctlr->setup = aspeed_spi_setup;
771 	ctlr->cleanup = aspeed_spi_cleanup;
772 	ctlr->num_chipselect = data->max_cs;
773 	ctlr->dev.of_node = dev->of_node;
774 
775 	ret = devm_spi_register_controller(dev, ctlr);
776 	if (ret)
777 		dev_err(&pdev->dev, "spi_register_controller failed\n");
778 
779 	return ret;
780 }
781 
aspeed_spi_remove(struct platform_device * pdev)782 static void aspeed_spi_remove(struct platform_device *pdev)
783 {
784 	struct aspeed_spi *aspi = platform_get_drvdata(pdev);
785 
786 	aspeed_spi_enable(aspi, false);
787 }
788 
789 /*
790  * AHB mappings
791  */
792 
793 /*
794  * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
795  * The address range is encoded with absolute addresses in the overall
796  * mapping window.
797  */
aspeed_spi_segment_start(struct aspeed_spi * aspi,u32 reg)798 static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
799 {
800 	return ((reg >> 16) & 0xFF) << 23;
801 }
802 
aspeed_spi_segment_end(struct aspeed_spi * aspi,u32 reg)803 static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
804 {
805 	return ((reg >> 24) & 0xFF) << 23;
806 }
807 
aspeed_spi_segment_reg(struct aspeed_spi * aspi,u32 start,u32 end)808 static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
809 {
810 	return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
811 }
812 
813 /*
814  * The Segment Registers of the AST2600 use a 1MB unit. The address
815  * range is encoded with offsets in the overall mapping window.
816  */
817 
818 #define AST2600_SEG_ADDR_MASK 0x0ff00000
819 
aspeed_spi_segment_ast2600_start(struct aspeed_spi * aspi,u32 reg)820 static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
821 					    u32 reg)
822 {
823 	u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
824 
825 	return aspi->ahb_base_phy + start_offset;
826 }
827 
aspeed_spi_segment_ast2600_end(struct aspeed_spi * aspi,u32 reg)828 static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
829 					  u32 reg)
830 {
831 	u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
832 
833 	/* segment is disabled */
834 	if (!end_offset)
835 		return aspi->ahb_base_phy;
836 
837 	return aspi->ahb_base_phy + end_offset + 0x100000;
838 }
839 
aspeed_spi_segment_ast2600_reg(struct aspeed_spi * aspi,u32 start,u32 end)840 static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
841 					  u32 start, u32 end)
842 {
843 	/* disable zero size segments */
844 	if (start == end)
845 		return 0;
846 
847 	return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
848 		((end - 1) & AST2600_SEG_ADDR_MASK);
849 }
850 
851 /*
852  * Read timing compensation sequences
853  */
854 
855 #define CALIBRATE_BUF_SIZE SZ_16K
856 
aspeed_spi_check_reads(struct aspeed_spi_chip * chip,const u8 * golden_buf,u8 * test_buf)857 static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
858 				   const u8 *golden_buf, u8 *test_buf)
859 {
860 	int i;
861 
862 	for (i = 0; i < 10; i++) {
863 		memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
864 		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
865 #if defined(VERBOSE_DEBUG)
866 			print_hex_dump_bytes(DEVICE_NAME "  fail: ", DUMP_PREFIX_NONE,
867 					     test_buf, 0x100);
868 #endif
869 			return false;
870 		}
871 	}
872 	return true;
873 }
874 
875 #define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))
876 
877 /*
878  * The timing register is shared by all devices. Only update for CE0.
879  */
aspeed_spi_calibrate(struct aspeed_spi_chip * chip,u32 hdiv,const u8 * golden_buf,u8 * test_buf)880 static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
881 				const u8 *golden_buf, u8 *test_buf)
882 {
883 	struct aspeed_spi *aspi = chip->aspi;
884 	const struct aspeed_spi_data *data = aspi->data;
885 	int i;
886 	int good_pass = -1, pass_count = 0;
887 	u32 shift = (hdiv - 1) << 2;
888 	u32 mask = ~(0xfu << shift);
889 	u32 fread_timing_val = 0;
890 
891 	/* Try HCLK delay 0..5, each one with/without delay and look for a
892 	 * good pair.
893 	 */
894 	for (i = 0; i < 12; i++) {
895 		bool pass;
896 
897 		if (chip->cs == 0) {
898 			fread_timing_val &= mask;
899 			fread_timing_val |= FREAD_TPASS(i) << shift;
900 			writel(fread_timing_val, aspi->regs + data->timing);
901 		}
902 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
903 		dev_dbg(aspi->dev,
904 			"  * [%08x] %d HCLK delay, %dns DI delay : %s",
905 			fread_timing_val, i / 2, (i & 1) ? 0 : 4,
906 			pass ? "PASS" : "FAIL");
907 		if (pass) {
908 			pass_count++;
909 			if (pass_count == 3) {
910 				good_pass = i - 1;
911 				break;
912 			}
913 		} else {
914 			pass_count = 0;
915 		}
916 	}
917 
918 	/* No good setting for this frequency */
919 	if (good_pass < 0)
920 		return -1;
921 
922 	/* We have at least one pass of margin, let's use first pass */
923 	if (chip->cs == 0) {
924 		fread_timing_val &= mask;
925 		fread_timing_val |= FREAD_TPASS(good_pass) << shift;
926 		writel(fread_timing_val, aspi->regs + data->timing);
927 	}
928 	dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
929 		good_pass, fread_timing_val);
930 	return 0;
931 }
932 
aspeed_spi_check_calib_data(const u8 * test_buf,u32 size)933 static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
934 {
935 	const u32 *tb32 = (const u32 *)test_buf;
936 	u32 i, cnt = 0;
937 
938 	/* We check if we have enough words that are neither all 0
939 	 * nor all 1's so the calibration can be considered valid.
940 	 *
941 	 * I use an arbitrary threshold for now of 64
942 	 */
943 	size >>= 2;
944 	for (i = 0; i < size; i++) {
945 		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
946 			cnt++;
947 	}
948 	return cnt >= 64;
949 }
950 
951 static const u32 aspeed_spi_hclk_divs[] = {
952 	0xf, /* HCLK */
953 	0x7, /* HCLK/2 */
954 	0xe, /* HCLK/3 */
955 	0x6, /* HCLK/4 */
956 	0xd, /* HCLK/5 */
957 };
958 
959 #define ASPEED_SPI_HCLK_DIV(i) \
960 	(aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
961 
aspeed_spi_do_calibration(struct aspeed_spi_chip * chip)962 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
963 {
964 	struct aspeed_spi *aspi = chip->aspi;
965 	const struct aspeed_spi_data *data = aspi->data;
966 	u32 ahb_freq = aspi->clk_freq;
967 	u32 max_freq = chip->clk_freq;
968 	u32 ctl_val;
969 	u8 *golden_buf = NULL;
970 	u8 *test_buf = NULL;
971 	int i, rc, best_div = -1;
972 
973 	dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
974 		ahb_freq / 1000000);
975 
976 	/*
977 	 * use the related low frequency to get check calibration data
978 	 * and get golden data.
979 	 */
980 	ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
981 	writel(ctl_val, chip->ctl);
982 
983 	test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
984 	if (!test_buf)
985 		return -ENOMEM;
986 
987 	golden_buf = test_buf + CALIBRATE_BUF_SIZE;
988 
989 	memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
990 	if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
991 		dev_info(aspi->dev, "Calibration area too uniform, using low speed");
992 		goto no_calib;
993 	}
994 
995 #if defined(VERBOSE_DEBUG)
996 	print_hex_dump_bytes(DEVICE_NAME "  good: ", DUMP_PREFIX_NONE,
997 			     golden_buf, 0x100);
998 #endif
999 
1000 	/* Now we iterate the HCLK dividers until we find our breaking point */
1001 	for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1002 		u32 tv, freq;
1003 
1004 		freq = ahb_freq / i;
1005 		if (freq > max_freq)
1006 			continue;
1007 
1008 		/* Set the timing */
1009 		tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1010 		writel(tv, chip->ctl);
1011 		dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1012 		rc = data->calibrate(chip, i, golden_buf, test_buf);
1013 		if (rc == 0)
1014 			best_div = i;
1015 	}
1016 
1017 	/* Nothing found ? */
1018 	if (best_div < 0) {
1019 		dev_warn(aspi->dev, "No good frequency, using dumb slow");
1020 	} else {
1021 		dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1022 
1023 		/* Record the freq */
1024 		for (i = 0; i < ASPEED_SPI_MAX; i++)
1025 			chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1026 				ASPEED_SPI_HCLK_DIV(best_div);
1027 	}
1028 
1029 no_calib:
1030 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1031 	kfree(test_buf);
1032 	return 0;
1033 }
1034 
1035 #define TIMING_DELAY_DI		BIT(3)
1036 #define TIMING_DELAY_HCYCLE_MAX	5
1037 #define TIMING_REG_AST2600(chip)				\
1038 	((chip)->aspi->regs + (chip)->aspi->data->timing +	\
1039 	 (chip)->cs * 4)
1040 
aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip * chip,u32 hdiv,const u8 * golden_buf,u8 * test_buf)1041 static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1042 					const u8 *golden_buf, u8 *test_buf)
1043 {
1044 	struct aspeed_spi *aspi = chip->aspi;
1045 	int hcycle;
1046 	u32 shift = (hdiv - 2) << 3;
1047 	u32 mask = ~(0xfu << shift);
1048 	u32 fread_timing_val = 0;
1049 
1050 	for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1051 		int delay_ns;
1052 		bool pass = false;
1053 
1054 		fread_timing_val &= mask;
1055 		fread_timing_val |= hcycle << shift;
1056 
1057 		/* no DI input delay first  */
1058 		writel(fread_timing_val, TIMING_REG_AST2600(chip));
1059 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1060 		dev_dbg(aspi->dev,
1061 			"  * [%08x] %d HCLK delay, DI delay none : %s",
1062 			fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1063 		if (pass)
1064 			return 0;
1065 
1066 		/* Add DI input delays  */
1067 		fread_timing_val &= mask;
1068 		fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1069 
1070 		for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1071 			fread_timing_val &= ~(0xf << (4 + shift));
1072 			fread_timing_val |= delay_ns << (4 + shift);
1073 
1074 			writel(fread_timing_val, TIMING_REG_AST2600(chip));
1075 			pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1076 			dev_dbg(aspi->dev,
1077 				"  * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1078 				fread_timing_val, hcycle, (delay_ns + 1) / 2,
1079 				(delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1080 			/*
1081 			 * TODO: This is optimistic. We should look
1082 			 * for a working interval and save the middle
1083 			 * value in the read timing register.
1084 			 */
1085 			if (pass)
1086 				return 0;
1087 		}
1088 	}
1089 
1090 	/* No good setting for this frequency */
1091 	return -1;
1092 }
1093 
1094 /*
1095  * Platform definitions
1096  */
1097 static const struct aspeed_spi_data ast2400_fmc_data = {
1098 	.max_cs	       = 5,
1099 	.hastype       = true,
1100 	.we0	       = 16,
1101 	.ctl0	       = CE0_CTRL_REG,
1102 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1103 	.hclk_mask     = 0xfffff0ff,
1104 	.hdiv_max      = 1,
1105 	.calibrate     = aspeed_spi_calibrate,
1106 	.segment_start = aspeed_spi_segment_start,
1107 	.segment_end   = aspeed_spi_segment_end,
1108 	.segment_reg   = aspeed_spi_segment_reg,
1109 };
1110 
1111 static const struct aspeed_spi_data ast2400_spi_data = {
1112 	.max_cs	       = 1,
1113 	.hastype       = false,
1114 	.we0	       = 0,
1115 	.ctl0	       = 0x04,
1116 	.timing	       = 0x14,
1117 	.hclk_mask     = 0xfffff0ff,
1118 	.hdiv_max      = 1,
1119 	.calibrate     = aspeed_spi_calibrate,
1120 	/* No segment registers */
1121 };
1122 
1123 static const struct aspeed_spi_data ast2500_fmc_data = {
1124 	.max_cs	       = 3,
1125 	.hastype       = true,
1126 	.we0	       = 16,
1127 	.ctl0	       = CE0_CTRL_REG,
1128 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1129 	.hclk_mask     = 0xffffd0ff,
1130 	.hdiv_max      = 1,
1131 	.calibrate     = aspeed_spi_calibrate,
1132 	.segment_start = aspeed_spi_segment_start,
1133 	.segment_end   = aspeed_spi_segment_end,
1134 	.segment_reg   = aspeed_spi_segment_reg,
1135 };
1136 
1137 static const struct aspeed_spi_data ast2500_spi_data = {
1138 	.max_cs	       = 2,
1139 	.hastype       = false,
1140 	.we0	       = 16,
1141 	.ctl0	       = CE0_CTRL_REG,
1142 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1143 	.hclk_mask     = 0xffffd0ff,
1144 	.hdiv_max      = 1,
1145 	.calibrate     = aspeed_spi_calibrate,
1146 	.segment_start = aspeed_spi_segment_start,
1147 	.segment_end   = aspeed_spi_segment_end,
1148 	.segment_reg   = aspeed_spi_segment_reg,
1149 };
1150 
1151 static const struct aspeed_spi_data ast2600_fmc_data = {
1152 	.max_cs	       = 3,
1153 	.hastype       = false,
1154 	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1155 	.we0	       = 16,
1156 	.ctl0	       = CE0_CTRL_REG,
1157 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1158 	.hclk_mask     = 0xf0fff0ff,
1159 	.hdiv_max      = 2,
1160 	.calibrate     = aspeed_spi_ast2600_calibrate,
1161 	.segment_start = aspeed_spi_segment_ast2600_start,
1162 	.segment_end   = aspeed_spi_segment_ast2600_end,
1163 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1164 };
1165 
1166 static const struct aspeed_spi_data ast2600_spi_data = {
1167 	.max_cs	       = 2,
1168 	.hastype       = false,
1169 	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1170 	.we0	       = 16,
1171 	.ctl0	       = CE0_CTRL_REG,
1172 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1173 	.hclk_mask     = 0xf0fff0ff,
1174 	.hdiv_max      = 2,
1175 	.calibrate     = aspeed_spi_ast2600_calibrate,
1176 	.segment_start = aspeed_spi_segment_ast2600_start,
1177 	.segment_end   = aspeed_spi_segment_ast2600_end,
1178 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1179 };
1180 
1181 static const struct of_device_id aspeed_spi_matches[] = {
1182 	{ .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1183 	{ .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1184 	{ .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1185 	{ .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1186 	{ .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1187 	{ .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1188 	{ }
1189 };
1190 MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1191 
1192 static struct platform_driver aspeed_spi_driver = {
1193 	.probe			= aspeed_spi_probe,
1194 	.remove			= aspeed_spi_remove,
1195 	.driver	= {
1196 		.name		= DEVICE_NAME,
1197 		.of_match_table = aspeed_spi_matches,
1198 	}
1199 };
1200 
1201 module_platform_driver(aspeed_spi_driver);
1202 
1203 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1204 MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1205 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1206 MODULE_LICENSE("GPL v2");
1207