1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990 William Jolitz.
5 * Copyright (c) 1991 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/domainset.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 #include <sys/sysent.h>
46 #include <sys/tslog.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 #include <x86/ifunc.h>
63
64 /*
65 * Floating point support.
66 */
67
68 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw))
69 #define fnclex() __asm __volatile("fnclex")
70 #define fninit() __asm __volatile("fninit")
71 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
72 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr)))
73 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr)))
74 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
75 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr))
76 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : "=m" (*(addr)))
77
78 static __inline void
xrstor32(char * addr,uint64_t mask)79 xrstor32(char *addr, uint64_t mask)
80 {
81 uint32_t low, hi;
82
83 low = mask;
84 hi = mask >> 32;
85 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
86 }
87
88 static __inline void
xrstor64(char * addr,uint64_t mask)89 xrstor64(char *addr, uint64_t mask)
90 {
91 uint32_t low, hi;
92
93 low = mask;
94 hi = mask >> 32;
95 __asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
96 }
97
98 static __inline void
xsave32(char * addr,uint64_t mask)99 xsave32(char *addr, uint64_t mask)
100 {
101 uint32_t low, hi;
102
103 low = mask;
104 hi = mask >> 32;
105 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
106 "memory");
107 }
108
109 static __inline void
xsave64(char * addr,uint64_t mask)110 xsave64(char *addr, uint64_t mask)
111 {
112 uint32_t low, hi;
113
114 low = mask;
115 hi = mask >> 32;
116 __asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
117 "memory");
118 }
119
120 static __inline void
xsaveopt32(char * addr,uint64_t mask)121 xsaveopt32(char *addr, uint64_t mask)
122 {
123 uint32_t low, hi;
124
125 low = mask;
126 hi = mask >> 32;
127 __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
128 "memory");
129 }
130
131 static __inline void
xsaveopt64(char * addr,uint64_t mask)132 xsaveopt64(char *addr, uint64_t mask)
133 {
134 uint32_t low, hi;
135
136 low = mask;
137 hi = mask >> 32;
138 __asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
139 "memory");
140 }
141
142 CTASSERT(sizeof(struct savefpu) == 512);
143 CTASSERT(sizeof(struct xstate_hdr) == 64);
144 CTASSERT(sizeof(struct savefpu_ymm) == 832);
145
146 /*
147 * This requirement is to make it easier for asm code to calculate
148 * offset of the fpu save area from the pcb address. FPU save area
149 * must be 64-byte aligned.
150 */
151 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
152
153 /*
154 * Ensure the copy of XCR0 saved in a core is contained in the padding
155 * area.
156 */
157 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
158 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
159
160 static void fpu_clean_state(void);
161
162 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
163 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
164
165 int use_xsave; /* non-static for cpu_switch.S */
166 uint64_t xsave_mask; /* the same */
167 static uma_zone_t fpu_save_area_zone;
168 static struct savefpu *fpu_initialstate;
169
170 static struct xsave_area_elm_descr {
171 u_int offset;
172 u_int size;
173 } *xsave_area_desc;
174
175 static void
fpusave_xsaveopt64(void * addr)176 fpusave_xsaveopt64(void *addr)
177 {
178 xsaveopt64((char *)addr, xsave_mask);
179 }
180
181 static void
fpusave_xsaveopt3264(void * addr)182 fpusave_xsaveopt3264(void *addr)
183 {
184 if (SV_CURPROC_FLAG(SV_ILP32))
185 xsaveopt32((char *)addr, xsave_mask);
186 else
187 xsaveopt64((char *)addr, xsave_mask);
188 }
189
190 static void
fpusave_xsave64(void * addr)191 fpusave_xsave64(void *addr)
192 {
193 xsave64((char *)addr, xsave_mask);
194 }
195
196 static void
fpusave_xsave3264(void * addr)197 fpusave_xsave3264(void *addr)
198 {
199 if (SV_CURPROC_FLAG(SV_ILP32))
200 xsave32((char *)addr, xsave_mask);
201 else
202 xsave64((char *)addr, xsave_mask);
203 }
204
205 static void
fpurestore_xrstor64(void * addr)206 fpurestore_xrstor64(void *addr)
207 {
208 xrstor64((char *)addr, xsave_mask);
209 }
210
211 static void
fpurestore_xrstor3264(void * addr)212 fpurestore_xrstor3264(void *addr)
213 {
214 if (SV_CURPROC_FLAG(SV_ILP32))
215 xrstor32((char *)addr, xsave_mask);
216 else
217 xrstor64((char *)addr, xsave_mask);
218 }
219
220 static void
fpusave_fxsave(void * addr)221 fpusave_fxsave(void *addr)
222 {
223
224 fxsave((char *)addr);
225 }
226
227 static void
fpurestore_fxrstor(void * addr)228 fpurestore_fxrstor(void *addr)
229 {
230
231 fxrstor((char *)addr);
232 }
233
234 DEFINE_IFUNC(, void, fpusave, (void *))
235 {
236 u_int cp[4];
237
238 if (!use_xsave)
239 return (fpusave_fxsave);
240 cpuid_count(0xd, 0x1, cp);
241 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
242 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
243 fpusave_xsaveopt64 : fpusave_xsaveopt3264);
244 }
245 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
246 fpusave_xsave64 : fpusave_xsave3264);
247 }
248
249 DEFINE_IFUNC(, void, fpurestore, (void *))
250 {
251 if (!use_xsave)
252 return (fpurestore_fxrstor);
253 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
254 fpurestore_xrstor64 : fpurestore_xrstor3264);
255 }
256
257 void
fpususpend(void * addr)258 fpususpend(void *addr)
259 {
260 u_long cr0;
261
262 cr0 = rcr0();
263 fpu_enable();
264 fpusave(addr);
265 load_cr0(cr0);
266 }
267
268 void
fpuresume(void * addr)269 fpuresume(void *addr)
270 {
271 u_long cr0;
272
273 cr0 = rcr0();
274 fpu_enable();
275 fninit();
276 if (use_xsave)
277 load_xcr(XCR0, xsave_mask);
278 fpurestore(addr);
279 load_cr0(cr0);
280 }
281
282 /*
283 * Enable XSAVE if supported and allowed by user.
284 * Calculate the xsave_mask.
285 */
286 static void
fpuinit_bsp1(void)287 fpuinit_bsp1(void)
288 {
289 u_int cp[4];
290 uint64_t xsave_mask_user;
291 bool old_wp;
292
293 if (!use_xsave)
294 return;
295 cpuid_count(0xd, 0x0, cp);
296 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
297 if ((cp[0] & xsave_mask) != xsave_mask)
298 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
299 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
300 xsave_mask_user = xsave_mask;
301 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
302 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
303 xsave_mask &= xsave_mask_user;
304 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
305 xsave_mask &= ~XFEATURE_AVX512;
306 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
307 xsave_mask &= ~XFEATURE_MPX;
308
309 cpuid_count(0xd, 0x1, cp);
310 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
311 /*
312 * Patch the XSAVE instruction in the cpu_switch code
313 * to XSAVEOPT. We assume that XSAVE encoding used
314 * REX byte, and set the bit 4 of the r/m byte.
315 *
316 * It seems that some BIOSes give control to the OS
317 * with CR0.WP already set, making the kernel text
318 * read-only before cpu_startup().
319 */
320 old_wp = disable_wp();
321 ctx_switch_xsave32[3] |= 0x10;
322 ctx_switch_xsave[3] |= 0x10;
323 restore_wp(old_wp);
324 }
325 }
326
327 /*
328 * Calculate the fpu save area size.
329 */
330 static void
fpuinit_bsp2(void)331 fpuinit_bsp2(void)
332 {
333 u_int cp[4];
334
335 if (use_xsave) {
336 cpuid_count(0xd, 0x0, cp);
337 cpu_max_ext_state_size = cp[1];
338
339 /*
340 * Reload the cpu_feature2, since we enabled OSXSAVE.
341 */
342 do_cpuid(1, cp);
343 cpu_feature2 = cp[2];
344 } else
345 cpu_max_ext_state_size = sizeof(struct savefpu);
346 }
347
348 /*
349 * Initialize the floating point unit.
350 */
351 void
fpuinit(void)352 fpuinit(void)
353 {
354 register_t saveintr;
355 uint64_t cr4;
356 u_int mxcsr;
357 u_short control;
358
359 TSENTER();
360 if (IS_BSP())
361 fpuinit_bsp1();
362
363 if (use_xsave) {
364 cr4 = rcr4();
365
366 /*
367 * Revert enablement of PKRU if user disabled its
368 * saving on context switches by clearing the bit in
369 * the xsave mask. Also redundantly clear the bit in
370 * cpu_stdext_feature2 to prevent pmap from ever
371 * trying to set the page table bits.
372 */
373 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
374 (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
375 cr4 &= ~CR4_PKE;
376 cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
377 }
378
379 load_cr4(cr4 | CR4_XSAVE);
380 load_xcr(XCR0, xsave_mask);
381 }
382
383 /*
384 * XCR0 shall be set up before CPU can report the save area size.
385 */
386 if (IS_BSP())
387 fpuinit_bsp2();
388
389 /*
390 * It is too early for critical_enter() to work on AP.
391 */
392 saveintr = intr_disable();
393 fpu_enable();
394 fninit();
395 control = __INITIAL_FPUCW__;
396 fldcw(control);
397 mxcsr = __INITIAL_MXCSR__;
398 ldmxcsr(mxcsr);
399 fpu_disable();
400 intr_restore(saveintr);
401 TSEXIT();
402 }
403
404 /*
405 * On the boot CPU we generate a clean state that is used to
406 * initialize the floating point unit when it is first used by a
407 * process.
408 */
409 static void
fpuinitstate(void * arg __unused)410 fpuinitstate(void *arg __unused)
411 {
412 uint64_t *xstate_bv;
413 register_t saveintr;
414 int cp[4], i, max_ext_n;
415
416 /* Do potentially blocking operations before disabling interrupts. */
417 fpu_save_area_zone = uma_zcreate("FPU_save_area",
418 cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
419 XSAVE_AREA_ALIGN - 1, 0);
420 fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
421 if (use_xsave) {
422 max_ext_n = flsl(xsave_mask);
423 xsave_area_desc = malloc(max_ext_n * sizeof(struct
424 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
425 }
426
427 cpu_thread_alloc(&thread0);
428
429 saveintr = intr_disable();
430 fpu_enable();
431
432 fpusave_fxsave(fpu_initialstate);
433 if (fpu_initialstate->sv_env.en_mxcsr_mask)
434 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
435 else
436 cpu_mxcsr_mask = 0xFFBF;
437
438 /*
439 * The fninit instruction does not modify XMM registers or x87
440 * registers (MM/ST). The fpusave call dumped the garbage
441 * contained in the registers after reset to the initial state
442 * saved. Clear XMM and x87 registers file image to make the
443 * startup program state and signal handler XMM/x87 register
444 * content predictable.
445 */
446 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
447 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
448
449 /*
450 * Create a table describing the layout of the CPU Extended
451 * Save Area. See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
452 * Region of an XSAVE Area" for the source of offsets/sizes.
453 */
454 if (use_xsave) {
455 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
456 offsetof(struct xstate_hdr, xstate_bv));
457 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
458
459 /* x87 state */
460 xsave_area_desc[0].offset = 0;
461 xsave_area_desc[0].size = 160;
462 /* XMM */
463 xsave_area_desc[1].offset = 160;
464 xsave_area_desc[1].size = 416 - 160;
465
466 for (i = 2; i < max_ext_n; i++) {
467 cpuid_count(0xd, i, cp);
468 xsave_area_desc[i].offset = cp[1];
469 xsave_area_desc[i].size = cp[0];
470 }
471 }
472
473 fpu_disable();
474 intr_restore(saveintr);
475 }
476 /* EFIRT needs this to be initialized before we can enter our EFI environment */
477 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
478
479 /*
480 * Free coprocessor (if we have it).
481 */
482 void
fpuexit(struct thread * td)483 fpuexit(struct thread *td)
484 {
485
486 critical_enter();
487 if (curthread == PCPU_GET(fpcurthread)) {
488 fpu_enable();
489 fpusave(curpcb->pcb_save);
490 fpu_disable();
491 PCPU_SET(fpcurthread, NULL);
492 }
493 critical_exit();
494 }
495
496 int
fpuformat(void)497 fpuformat(void)
498 {
499
500 return (_MC_FPFMT_XMM);
501 }
502
503 /*
504 * The following mechanism is used to ensure that the FPE_... value
505 * that is passed as a trapcode to the signal handler of the user
506 * process does not have more than one bit set.
507 *
508 * Multiple bits may be set if the user process modifies the control
509 * word while a status word bit is already set. While this is a sign
510 * of bad coding, we have no choice than to narrow them down to one
511 * bit, since we must not send a trapcode that is not exactly one of
512 * the FPE_ macros.
513 *
514 * The mechanism has a static table with 127 entries. Each combination
515 * of the 7 FPU status word exception bits directly translates to a
516 * position in this table, where a single FPE_... value is stored.
517 * This FPE_... value stored there is considered the "most important"
518 * of the exception bits and will be sent as the signal code. The
519 * precedence of the bits is based upon Intel Document "Numerical
520 * Applications", Chapter "Special Computational Situations".
521 *
522 * The macro to choose one of these values does these steps: 1) Throw
523 * away status word bits that cannot be masked. 2) Throw away the bits
524 * currently masked in the control word, assuming the user isn't
525 * interested in them anymore. 3) Reinsert status word bit 7 (stack
526 * fault) if it is set, which cannot be masked but must be presered.
527 * 4) Use the remaining bits to point into the trapcode table.
528 *
529 * The 6 maskable bits in order of their preference, as stated in the
530 * above referenced Intel manual:
531 * 1 Invalid operation (FP_X_INV)
532 * 1a Stack underflow
533 * 1b Stack overflow
534 * 1c Operand of unsupported format
535 * 1d SNaN operand.
536 * 2 QNaN operand (not an exception, irrelavant here)
537 * 3 Any other invalid-operation not mentioned above or zero divide
538 * (FP_X_INV, FP_X_DZ)
539 * 4 Denormal operand (FP_X_DNML)
540 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
541 * 6 Inexact result (FP_X_IMP)
542 */
543 static char fpetable[128] = {
544 0,
545 FPE_FLTINV, /* 1 - INV */
546 FPE_FLTUND, /* 2 - DNML */
547 FPE_FLTINV, /* 3 - INV | DNML */
548 FPE_FLTDIV, /* 4 - DZ */
549 FPE_FLTINV, /* 5 - INV | DZ */
550 FPE_FLTDIV, /* 6 - DNML | DZ */
551 FPE_FLTINV, /* 7 - INV | DNML | DZ */
552 FPE_FLTOVF, /* 8 - OFL */
553 FPE_FLTINV, /* 9 - INV | OFL */
554 FPE_FLTUND, /* A - DNML | OFL */
555 FPE_FLTINV, /* B - INV | DNML | OFL */
556 FPE_FLTDIV, /* C - DZ | OFL */
557 FPE_FLTINV, /* D - INV | DZ | OFL */
558 FPE_FLTDIV, /* E - DNML | DZ | OFL */
559 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
560 FPE_FLTUND, /* 10 - UFL */
561 FPE_FLTINV, /* 11 - INV | UFL */
562 FPE_FLTUND, /* 12 - DNML | UFL */
563 FPE_FLTINV, /* 13 - INV | DNML | UFL */
564 FPE_FLTDIV, /* 14 - DZ | UFL */
565 FPE_FLTINV, /* 15 - INV | DZ | UFL */
566 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
567 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
568 FPE_FLTOVF, /* 18 - OFL | UFL */
569 FPE_FLTINV, /* 19 - INV | OFL | UFL */
570 FPE_FLTUND, /* 1A - DNML | OFL | UFL */
571 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
572 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
573 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
574 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
575 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
576 FPE_FLTRES, /* 20 - IMP */
577 FPE_FLTINV, /* 21 - INV | IMP */
578 FPE_FLTUND, /* 22 - DNML | IMP */
579 FPE_FLTINV, /* 23 - INV | DNML | IMP */
580 FPE_FLTDIV, /* 24 - DZ | IMP */
581 FPE_FLTINV, /* 25 - INV | DZ | IMP */
582 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
583 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
584 FPE_FLTOVF, /* 28 - OFL | IMP */
585 FPE_FLTINV, /* 29 - INV | OFL | IMP */
586 FPE_FLTUND, /* 2A - DNML | OFL | IMP */
587 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
588 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
589 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
590 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
591 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
592 FPE_FLTUND, /* 30 - UFL | IMP */
593 FPE_FLTINV, /* 31 - INV | UFL | IMP */
594 FPE_FLTUND, /* 32 - DNML | UFL | IMP */
595 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
596 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
597 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
598 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
599 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
600 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
601 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
602 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
603 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
604 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
605 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
606 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
607 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
608 FPE_FLTSUB, /* 40 - STK */
609 FPE_FLTSUB, /* 41 - INV | STK */
610 FPE_FLTUND, /* 42 - DNML | STK */
611 FPE_FLTSUB, /* 43 - INV | DNML | STK */
612 FPE_FLTDIV, /* 44 - DZ | STK */
613 FPE_FLTSUB, /* 45 - INV | DZ | STK */
614 FPE_FLTDIV, /* 46 - DNML | DZ | STK */
615 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
616 FPE_FLTOVF, /* 48 - OFL | STK */
617 FPE_FLTSUB, /* 49 - INV | OFL | STK */
618 FPE_FLTUND, /* 4A - DNML | OFL | STK */
619 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
620 FPE_FLTDIV, /* 4C - DZ | OFL | STK */
621 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
622 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
623 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
624 FPE_FLTUND, /* 50 - UFL | STK */
625 FPE_FLTSUB, /* 51 - INV | UFL | STK */
626 FPE_FLTUND, /* 52 - DNML | UFL | STK */
627 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
628 FPE_FLTDIV, /* 54 - DZ | UFL | STK */
629 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
630 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
631 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
632 FPE_FLTOVF, /* 58 - OFL | UFL | STK */
633 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
634 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
635 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
636 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
637 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
638 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
639 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
640 FPE_FLTRES, /* 60 - IMP | STK */
641 FPE_FLTSUB, /* 61 - INV | IMP | STK */
642 FPE_FLTUND, /* 62 - DNML | IMP | STK */
643 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
644 FPE_FLTDIV, /* 64 - DZ | IMP | STK */
645 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
646 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
647 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
648 FPE_FLTOVF, /* 68 - OFL | IMP | STK */
649 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
650 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
651 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
652 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
653 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
654 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
655 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
656 FPE_FLTUND, /* 70 - UFL | IMP | STK */
657 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
658 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
659 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
660 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
661 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
662 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
663 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
664 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
665 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
666 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
667 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
668 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
669 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
670 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
671 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
672 };
673
674 /*
675 * Read the FP status and control words, then generate si_code value
676 * for SIGFPE. The error code chosen will be one of the
677 * FPE_... macros. It will be sent as the second argument to old
678 * BSD-style signal handlers and as "siginfo_t->si_code" (second
679 * argument) to SA_SIGINFO signal handlers.
680 *
681 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
682 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The
683 * usermode code which understands the FPU hardware enough to enable
684 * the exceptions, can also handle clearing the exception state in the
685 * handler. The only consequence of not clearing the exception is the
686 * rethrow of the SIGFPE on return from the signal handler and
687 * reexecution of the corresponding instruction.
688 *
689 * For XMM traps, the exceptions were never cleared.
690 */
691 int
fputrap_x87(void)692 fputrap_x87(void)
693 {
694 struct savefpu *pcb_save;
695 u_short control, status;
696
697 critical_enter();
698
699 /*
700 * Interrupt handling (for another interrupt) may have pushed the
701 * state to memory. Fetch the relevant parts of the state from
702 * wherever they are.
703 */
704 if (PCPU_GET(fpcurthread) != curthread) {
705 pcb_save = curpcb->pcb_save;
706 control = pcb_save->sv_env.en_cw;
707 status = pcb_save->sv_env.en_sw;
708 } else {
709 fnstcw(&control);
710 fnstsw(&status);
711 }
712
713 critical_exit();
714 return (fpetable[status & ((~control & 0x3f) | 0x40)]);
715 }
716
717 int
fputrap_sse(void)718 fputrap_sse(void)
719 {
720 u_int mxcsr;
721
722 critical_enter();
723 if (PCPU_GET(fpcurthread) != curthread)
724 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
725 else
726 stmxcsr(&mxcsr);
727 critical_exit();
728 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
729 }
730
731 static void
restore_fpu_curthread(struct thread * td)732 restore_fpu_curthread(struct thread *td)
733 {
734 struct pcb *pcb;
735
736 /*
737 * Record new context early in case frstor causes a trap.
738 */
739 PCPU_SET(fpcurthread, td);
740
741 fpu_enable();
742 fpu_clean_state();
743 pcb = td->td_pcb;
744
745 if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
746 /*
747 * This is the first time this thread has used the FPU or
748 * the PCB doesn't contain a clean FPU state. Explicitly
749 * load an initial state.
750 *
751 * We prefer to restore the state from the actual save
752 * area in PCB instead of directly loading from
753 * fpu_initialstate, to ignite the XSAVEOPT
754 * tracking engine.
755 */
756 bcopy(fpu_initialstate, pcb->pcb_save,
757 cpu_max_ext_state_size);
758 fpurestore(pcb->pcb_save);
759 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
760 fldcw(pcb->pcb_initial_fpucw);
761 if (PCB_USER_FPU(pcb))
762 set_pcb_flags(pcb, PCB_FPUINITDONE |
763 PCB_USERFPUINITDONE);
764 else
765 set_pcb_flags(pcb, PCB_FPUINITDONE);
766 } else
767 fpurestore(pcb->pcb_save);
768 }
769
770 /*
771 * Device Not Available (DNA, #NM) exception handler.
772 *
773 * It would be better to switch FP context here (if curthread !=
774 * fpcurthread) and not necessarily for every context switch, but it
775 * is too hard to access foreign pcb's.
776 */
777 void
fpudna(void)778 fpudna(void)
779 {
780 struct thread *td;
781
782 td = curthread;
783 /*
784 * This handler is entered with interrupts enabled, so context
785 * switches may occur before critical_enter() is executed. If
786 * a context switch occurs, then when we regain control, our
787 * state will have been completely restored. The CPU may
788 * change underneath us, but the only part of our context that
789 * lives in the CPU is CR0.TS and that will be "restored" by
790 * setting it on the new CPU.
791 */
792 critical_enter();
793
794 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
795 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
796 if (__predict_false(PCPU_GET(fpcurthread) == td)) {
797 /*
798 * Some virtual machines seems to set %cr0.TS at
799 * arbitrary moments. Silently clear the TS bit
800 * regardless of the eager/lazy FPU context switch
801 * mode.
802 */
803 fpu_enable();
804 } else {
805 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
806 panic(
807 "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
808 PCPU_GET(fpcurthread),
809 PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
810 }
811 restore_fpu_curthread(td);
812 }
813 critical_exit();
814 }
815
816 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
817 void
fpu_activate_sw(struct thread * td)818 fpu_activate_sw(struct thread *td)
819 {
820
821 if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
822 PCPU_SET(fpcurthread, NULL);
823 fpu_disable();
824 } else if (PCPU_GET(fpcurthread) != td) {
825 restore_fpu_curthread(td);
826 }
827 }
828
829 void
fpudrop(void)830 fpudrop(void)
831 {
832 struct thread *td;
833
834 td = PCPU_GET(fpcurthread);
835 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
836 CRITICAL_ASSERT(td);
837 PCPU_SET(fpcurthread, NULL);
838 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
839 fpu_disable();
840 }
841
842 /*
843 * Get the user state of the FPU into pcb->pcb_user_save without
844 * dropping ownership (if possible). It returns the FPU ownership
845 * status.
846 */
847 int
fpugetregs(struct thread * td)848 fpugetregs(struct thread *td)
849 {
850 struct pcb *pcb;
851 uint64_t *xstate_bv, bit;
852 char *sa;
853 struct savefpu *s;
854 uint32_t mxcsr, mxcsr_mask;
855 int max_ext_n, i, owned;
856 bool do_mxcsr;
857
858 pcb = td->td_pcb;
859 critical_enter();
860 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
861 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
862 cpu_max_ext_state_size);
863 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
864 pcb->pcb_initial_fpucw;
865 fpuuserinited(td);
866 critical_exit();
867 return (_MC_FPOWNED_PCB);
868 }
869 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
870 fpusave(get_pcb_user_save_pcb(pcb));
871 owned = _MC_FPOWNED_FPU;
872 } else {
873 owned = _MC_FPOWNED_PCB;
874 }
875 if (use_xsave) {
876 /*
877 * Handle partially saved state.
878 */
879 sa = (char *)get_pcb_user_save_pcb(pcb);
880 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
881 offsetof(struct xstate_hdr, xstate_bv));
882 max_ext_n = flsl(xsave_mask);
883 for (i = 0; i < max_ext_n; i++) {
884 bit = 1ULL << i;
885 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
886 continue;
887 do_mxcsr = false;
888 if (i == 0 && (*xstate_bv & (XFEATURE_ENABLED_SSE |
889 XFEATURE_ENABLED_AVX)) != 0) {
890 /*
891 * x87 area was not saved by XSAVEOPT,
892 * but one of XMM or AVX was. Then we need
893 * to preserve MXCSR from being overwritten
894 * with the default value.
895 */
896 s = (struct savefpu *)sa;
897 mxcsr = s->sv_env.en_mxcsr;
898 mxcsr_mask = s->sv_env.en_mxcsr_mask;
899 do_mxcsr = true;
900 }
901 bcopy((char *)fpu_initialstate +
902 xsave_area_desc[i].offset,
903 sa + xsave_area_desc[i].offset,
904 xsave_area_desc[i].size);
905 if (do_mxcsr) {
906 s->sv_env.en_mxcsr = mxcsr;
907 s->sv_env.en_mxcsr_mask = mxcsr_mask;
908 }
909 *xstate_bv |= bit;
910 }
911 }
912 critical_exit();
913 return (owned);
914 }
915
916 void
fpuuserinited(struct thread * td)917 fpuuserinited(struct thread *td)
918 {
919 struct pcb *pcb;
920
921 CRITICAL_ASSERT(td);
922 pcb = td->td_pcb;
923 if (PCB_USER_FPU(pcb))
924 set_pcb_flags(pcb,
925 PCB_FPUINITDONE | PCB_USERFPUINITDONE);
926 else
927 set_pcb_flags(pcb, PCB_FPUINITDONE);
928 }
929
930 int
fpusetxstate(struct thread * td,char * xfpustate,size_t xfpustate_size)931 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
932 {
933 struct xstate_hdr *hdr, *ehdr;
934 size_t len, max_len;
935 uint64_t bv;
936
937 /* XXXKIB should we clear all extended state in xstate_bv instead ? */
938 if (xfpustate == NULL)
939 return (0);
940 if (!use_xsave)
941 return (EOPNOTSUPP);
942
943 len = xfpustate_size;
944 if (len < sizeof(struct xstate_hdr))
945 return (EINVAL);
946 max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
947 if (len > max_len)
948 return (EINVAL);
949
950 ehdr = (struct xstate_hdr *)xfpustate;
951 bv = ehdr->xstate_bv;
952
953 /*
954 * Avoid #gp.
955 */
956 if (bv & ~xsave_mask)
957 return (EINVAL);
958
959 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
960
961 hdr->xstate_bv = bv;
962 bcopy(xfpustate + sizeof(struct xstate_hdr),
963 (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
964
965 return (0);
966 }
967
968 /*
969 * Set the state of the FPU.
970 */
971 int
fpusetregs(struct thread * td,struct savefpu * addr,char * xfpustate,size_t xfpustate_size)972 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
973 size_t xfpustate_size)
974 {
975 struct pcb *pcb;
976 int error;
977
978 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
979 pcb = td->td_pcb;
980 error = 0;
981 critical_enter();
982 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
983 error = fpusetxstate(td, xfpustate, xfpustate_size);
984 if (error == 0) {
985 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
986 fpurestore(get_pcb_user_save_td(td));
987 set_pcb_flags(pcb, PCB_FPUINITDONE |
988 PCB_USERFPUINITDONE);
989 }
990 } else {
991 error = fpusetxstate(td, xfpustate, xfpustate_size);
992 if (error == 0) {
993 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
994 fpuuserinited(td);
995 }
996 }
997 critical_exit();
998 return (error);
999 }
1000
1001 /*
1002 * On AuthenticAMD processors, the fxrstor instruction does not restore
1003 * the x87's stored last instruction pointer, last data pointer, and last
1004 * opcode values, except in the rare case in which the exception summary
1005 * (ES) bit in the x87 status word is set to 1.
1006 *
1007 * In order to avoid leaking this information across processes, we clean
1008 * these values by performing a dummy load before executing fxrstor().
1009 */
1010 static void
fpu_clean_state(void)1011 fpu_clean_state(void)
1012 {
1013 static float dummy_variable = 0.0;
1014 u_short status;
1015
1016 /*
1017 * Clear the ES bit in the x87 status word if it is currently
1018 * set, in order to avoid causing a fault in the upcoming load.
1019 */
1020 fnstsw(&status);
1021 if (status & 0x80)
1022 fnclex();
1023
1024 /*
1025 * Load the dummy variable into the x87 stack. This mangles
1026 * the x87 stack, but we don't care since we're about to call
1027 * fxrstor() anyway.
1028 */
1029 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1030 }
1031
1032 /*
1033 * This really sucks. We want the acpi version only, but it requires
1034 * the isa_if.h file in order to get the definitions.
1035 */
1036 #include "opt_isa.h"
1037 #ifdef DEV_ISA
1038 #include <isa/isavar.h>
1039 /*
1040 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1041 */
1042 static struct isa_pnp_id fpupnp_ids[] = {
1043 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1044 { 0 }
1045 };
1046
1047 static int
fpupnp_probe(device_t dev)1048 fpupnp_probe(device_t dev)
1049 {
1050 int result;
1051
1052 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1053 if (result <= 0)
1054 device_quiet(dev);
1055 return (result);
1056 }
1057
1058 static int
fpupnp_attach(device_t dev)1059 fpupnp_attach(device_t dev)
1060 {
1061
1062 return (0);
1063 }
1064
1065 static device_method_t fpupnp_methods[] = {
1066 /* Device interface */
1067 DEVMETHOD(device_probe, fpupnp_probe),
1068 DEVMETHOD(device_attach, fpupnp_attach),
1069 { 0, 0 }
1070 };
1071
1072 static driver_t fpupnp_driver = {
1073 "fpupnp",
1074 fpupnp_methods,
1075 1, /* no softc */
1076 };
1077
1078 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1079 ISA_PNP_INFO(fpupnp_ids);
1080 #endif /* DEV_ISA */
1081
1082 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1083 "Kernel contexts for FPU state");
1084
1085 #define FPU_KERN_CTX_FPUINITDONE 0x01
1086 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */
1087 #define FPU_KERN_CTX_INUSE 0x04
1088
1089 struct fpu_kern_ctx {
1090 struct savefpu *prev;
1091 uint32_t flags;
1092 char hwstate1[];
1093 };
1094
1095 static inline size_t __pure2
fpu_kern_alloc_sz(u_int max_est)1096 fpu_kern_alloc_sz(u_int max_est)
1097 {
1098 return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1099 }
1100
1101 static inline int __pure2
fpu_kern_malloc_flags(u_int fpflags)1102 fpu_kern_malloc_flags(u_int fpflags)
1103 {
1104 return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1105 }
1106
1107 struct fpu_kern_ctx *
fpu_kern_alloc_ctx_domain(int domain,u_int flags)1108 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1109 {
1110 return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1111 M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1112 fpu_kern_malloc_flags(flags)));
1113 }
1114
1115 struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)1116 fpu_kern_alloc_ctx(u_int flags)
1117 {
1118 return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1119 M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1120 }
1121
1122 void
fpu_kern_free_ctx(struct fpu_kern_ctx * ctx)1123 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1124 {
1125
1126 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1127 /* XXXKIB clear the memory ? */
1128 free(ctx, M_FPUKERN_CTX);
1129 }
1130
1131 static struct savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx * ctx)1132 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1133 {
1134 vm_offset_t p;
1135
1136 p = (vm_offset_t)&ctx->hwstate1;
1137 p = roundup2(p, XSAVE_AREA_ALIGN);
1138 return ((struct savefpu *)p);
1139 }
1140
1141 void
fpu_kern_enter(struct thread * td,struct fpu_kern_ctx * ctx,u_int flags)1142 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1143 {
1144 struct pcb *pcb;
1145
1146 pcb = td->td_pcb;
1147 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1148 ("ctx is required when !FPU_KERN_NOCTX"));
1149 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1150 ("using inuse ctx"));
1151 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1152 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1153
1154 if ((flags & FPU_KERN_NOCTX) != 0) {
1155 critical_enter();
1156 fpu_enable();
1157 if (curthread == PCPU_GET(fpcurthread)) {
1158 fpusave(curpcb->pcb_save);
1159 PCPU_SET(fpcurthread, NULL);
1160 } else {
1161 KASSERT(PCPU_GET(fpcurthread) == NULL,
1162 ("invalid fpcurthread"));
1163 }
1164
1165 /*
1166 * This breaks XSAVEOPT tracker, but
1167 * PCB_FPUNOSAVE state is supposed to never need to
1168 * save FPU context at all.
1169 */
1170 fpurestore(fpu_initialstate);
1171 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1172 PCB_FPUINITDONE);
1173 return;
1174 }
1175 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1176 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1177 return;
1178 }
1179 critical_enter();
1180 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1181 get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1182 ctx->flags = FPU_KERN_CTX_INUSE;
1183 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1184 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1185 fpuexit(td);
1186 ctx->prev = pcb->pcb_save;
1187 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1188 set_pcb_flags(pcb, PCB_KERNFPU);
1189 clear_pcb_flags(pcb, PCB_FPUINITDONE);
1190 critical_exit();
1191 }
1192
1193 int
fpu_kern_leave(struct thread * td,struct fpu_kern_ctx * ctx)1194 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1195 {
1196 struct pcb *pcb;
1197
1198 pcb = td->td_pcb;
1199
1200 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1201 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1202 KASSERT(PCPU_GET(fpcurthread) == NULL,
1203 ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1204 CRITICAL_ASSERT(td);
1205
1206 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE);
1207 fpu_disable();
1208 } else {
1209 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1210 ("leaving not inuse ctx"));
1211 ctx->flags &= ~FPU_KERN_CTX_INUSE;
1212
1213 if (is_fpu_kern_thread(0) &&
1214 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1215 return (0);
1216 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1217 ("dummy ctx"));
1218 critical_enter();
1219 if (curthread == PCPU_GET(fpcurthread))
1220 fpudrop();
1221 pcb->pcb_save = ctx->prev;
1222 }
1223
1224 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1225 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1226 set_pcb_flags(pcb, PCB_FPUINITDONE);
1227 if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1228 clear_pcb_flags(pcb, PCB_KERNFPU);
1229 } else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1230 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1231 } else {
1232 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1233 set_pcb_flags(pcb, PCB_FPUINITDONE);
1234 else
1235 clear_pcb_flags(pcb, PCB_FPUINITDONE);
1236 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1237 }
1238 critical_exit();
1239 return (0);
1240 }
1241
1242 int
fpu_kern_thread(u_int flags)1243 fpu_kern_thread(u_int flags)
1244 {
1245
1246 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1247 ("Only kthread may use fpu_kern_thread"));
1248 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1249 ("mangled pcb_save"));
1250 KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1251
1252 set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1253 return (0);
1254 }
1255
1256 int
is_fpu_kern_thread(u_int flags)1257 is_fpu_kern_thread(u_int flags)
1258 {
1259
1260 if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1261 return (0);
1262 return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1263 }
1264
1265 /*
1266 * FPU save area alloc/free/init utility routines
1267 */
1268 struct savefpu *
fpu_save_area_alloc(void)1269 fpu_save_area_alloc(void)
1270 {
1271
1272 return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1273 }
1274
1275 void
fpu_save_area_free(struct savefpu * fsa)1276 fpu_save_area_free(struct savefpu *fsa)
1277 {
1278
1279 uma_zfree(fpu_save_area_zone, fsa);
1280 }
1281
1282 void
fpu_save_area_reset(struct savefpu * fsa)1283 fpu_save_area_reset(struct savefpu *fsa)
1284 {
1285
1286 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1287 }
1288