xref: /linux/drivers/gpu/drm/xe/xe_gt_tlb_invalidation.c (revision 06103dccbbd29408255a409f6f98f7f02387dc93)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "xe_gt_tlb_invalidation.h"
7 
8 #include "abi/guc_actions_abi.h"
9 #include "xe_device.h"
10 #include "xe_force_wake.h"
11 #include "xe_gt.h"
12 #include "xe_gt_printk.h"
13 #include "xe_guc.h"
14 #include "xe_guc_ct.h"
15 #include "xe_gt_stats.h"
16 #include "xe_mmio.h"
17 #include "xe_pm.h"
18 #include "xe_sriov.h"
19 #include "xe_trace.h"
20 #include "regs/xe_guc_regs.h"
21 
22 #define FENCE_STACK_BIT		DMA_FENCE_FLAG_USER_BITS
23 
24 /*
25  * TLB inval depends on pending commands in the CT queue and then the real
26  * invalidation time. Double up the time to process full CT queue
27  * just to be on the safe side.
28  */
tlb_timeout_jiffies(struct xe_gt * gt)29 static long tlb_timeout_jiffies(struct xe_gt *gt)
30 {
31 	/* this reflects what HW/GuC needs to process TLB inv request */
32 	const long hw_tlb_timeout = HZ / 4;
33 
34 	/* this estimates actual delay caused by the CTB transport */
35 	long delay = xe_guc_ct_queue_proc_time_jiffies(&gt->uc.guc.ct);
36 
37 	return hw_tlb_timeout + 2 * delay;
38 }
39 
xe_gt_tlb_invalidation_fence_fini(struct xe_gt_tlb_invalidation_fence * fence)40 static void xe_gt_tlb_invalidation_fence_fini(struct xe_gt_tlb_invalidation_fence *fence)
41 {
42 	if (WARN_ON_ONCE(!fence->gt))
43 		return;
44 
45 	xe_pm_runtime_put(gt_to_xe(fence->gt));
46 	fence->gt = NULL; /* fini() should be called once */
47 }
48 
49 static void
__invalidation_fence_signal(struct xe_device * xe,struct xe_gt_tlb_invalidation_fence * fence)50 __invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence)
51 {
52 	bool stack = test_bit(FENCE_STACK_BIT, &fence->base.flags);
53 
54 	trace_xe_gt_tlb_invalidation_fence_signal(xe, fence);
55 	xe_gt_tlb_invalidation_fence_fini(fence);
56 	dma_fence_signal(&fence->base);
57 	if (!stack)
58 		dma_fence_put(&fence->base);
59 }
60 
61 static void
invalidation_fence_signal(struct xe_device * xe,struct xe_gt_tlb_invalidation_fence * fence)62 invalidation_fence_signal(struct xe_device *xe, struct xe_gt_tlb_invalidation_fence *fence)
63 {
64 	list_del(&fence->link);
65 	__invalidation_fence_signal(xe, fence);
66 }
67 
xe_gt_tlb_invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence * fence)68 void xe_gt_tlb_invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence)
69 {
70 	if (WARN_ON_ONCE(!fence->gt))
71 		return;
72 
73 	__invalidation_fence_signal(gt_to_xe(fence->gt), fence);
74 }
75 
xe_gt_tlb_fence_timeout(struct work_struct * work)76 static void xe_gt_tlb_fence_timeout(struct work_struct *work)
77 {
78 	struct xe_gt *gt = container_of(work, struct xe_gt,
79 					tlb_invalidation.fence_tdr.work);
80 	struct xe_device *xe = gt_to_xe(gt);
81 	struct xe_gt_tlb_invalidation_fence *fence, *next;
82 
83 	LNL_FLUSH_WORK(&gt->uc.guc.ct.g2h_worker);
84 
85 	spin_lock_irq(&gt->tlb_invalidation.pending_lock);
86 	list_for_each_entry_safe(fence, next,
87 				 &gt->tlb_invalidation.pending_fences, link) {
88 		s64 since_inval_ms = ktime_ms_delta(ktime_get(),
89 						    fence->invalidation_time);
90 
91 		if (msecs_to_jiffies(since_inval_ms) < tlb_timeout_jiffies(gt))
92 			break;
93 
94 		trace_xe_gt_tlb_invalidation_fence_timeout(xe, fence);
95 		xe_gt_err(gt, "TLB invalidation fence timeout, seqno=%d recv=%d",
96 			  fence->seqno, gt->tlb_invalidation.seqno_recv);
97 
98 		fence->base.error = -ETIME;
99 		invalidation_fence_signal(xe, fence);
100 	}
101 	if (!list_empty(&gt->tlb_invalidation.pending_fences))
102 		queue_delayed_work(system_wq,
103 				   &gt->tlb_invalidation.fence_tdr,
104 				   tlb_timeout_jiffies(gt));
105 	spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
106 }
107 
108 /**
109  * xe_gt_tlb_invalidation_init_early - Initialize GT TLB invalidation state
110  * @gt: GT structure
111  *
112  * Initialize GT TLB invalidation state, purely software initialization, should
113  * be called once during driver load.
114  *
115  * Return: 0 on success, negative error code on error.
116  */
xe_gt_tlb_invalidation_init_early(struct xe_gt * gt)117 int xe_gt_tlb_invalidation_init_early(struct xe_gt *gt)
118 {
119 	gt->tlb_invalidation.seqno = 1;
120 	INIT_LIST_HEAD(&gt->tlb_invalidation.pending_fences);
121 	spin_lock_init(&gt->tlb_invalidation.pending_lock);
122 	spin_lock_init(&gt->tlb_invalidation.lock);
123 	INIT_DELAYED_WORK(&gt->tlb_invalidation.fence_tdr,
124 			  xe_gt_tlb_fence_timeout);
125 
126 	return 0;
127 }
128 
129 /**
130  * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset
131  * @gt: GT structure
132  *
133  * Signal any pending invalidation fences, should be called during a GT reset
134  */
xe_gt_tlb_invalidation_reset(struct xe_gt * gt)135 void xe_gt_tlb_invalidation_reset(struct xe_gt *gt)
136 {
137 	struct xe_gt_tlb_invalidation_fence *fence, *next;
138 	int pending_seqno;
139 
140 	/*
141 	 * CT channel is already disabled at this point. No new TLB requests can
142 	 * appear.
143 	 */
144 
145 	mutex_lock(&gt->uc.guc.ct.lock);
146 	spin_lock_irq(&gt->tlb_invalidation.pending_lock);
147 	cancel_delayed_work(&gt->tlb_invalidation.fence_tdr);
148 	/*
149 	 * We might have various kworkers waiting for TLB flushes to complete
150 	 * which are not tracked with an explicit TLB fence, however at this
151 	 * stage that will never happen since the CT is already disabled, so
152 	 * make sure we signal them here under the assumption that we have
153 	 * completed a full GT reset.
154 	 */
155 	if (gt->tlb_invalidation.seqno == 1)
156 		pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1;
157 	else
158 		pending_seqno = gt->tlb_invalidation.seqno - 1;
159 	WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno);
160 
161 	list_for_each_entry_safe(fence, next,
162 				 &gt->tlb_invalidation.pending_fences, link)
163 		invalidation_fence_signal(gt_to_xe(gt), fence);
164 	spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
165 	mutex_unlock(&gt->uc.guc.ct.lock);
166 }
167 
tlb_invalidation_seqno_past(struct xe_gt * gt,int seqno)168 static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno)
169 {
170 	int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv);
171 
172 	if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2))
173 		return false;
174 
175 	if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2))
176 		return true;
177 
178 	return seqno_recv >= seqno;
179 }
180 
send_tlb_invalidation(struct xe_guc * guc,struct xe_gt_tlb_invalidation_fence * fence,u32 * action,int len)181 static int send_tlb_invalidation(struct xe_guc *guc,
182 				 struct xe_gt_tlb_invalidation_fence *fence,
183 				 u32 *action, int len)
184 {
185 	struct xe_gt *gt = guc_to_gt(guc);
186 	struct xe_device *xe = gt_to_xe(gt);
187 	int seqno;
188 	int ret;
189 
190 	xe_gt_assert(gt, fence);
191 
192 	/*
193 	 * XXX: The seqno algorithm relies on TLB invalidation being processed
194 	 * in order which they currently are, if that changes the algorithm will
195 	 * need to be updated.
196 	 */
197 
198 	mutex_lock(&guc->ct.lock);
199 	seqno = gt->tlb_invalidation.seqno;
200 	fence->seqno = seqno;
201 	trace_xe_gt_tlb_invalidation_fence_send(xe, fence);
202 	action[1] = seqno;
203 	ret = xe_guc_ct_send_locked(&guc->ct, action, len,
204 				    G2H_LEN_DW_TLB_INVALIDATE, 1);
205 	if (!ret) {
206 		spin_lock_irq(&gt->tlb_invalidation.pending_lock);
207 		/*
208 		 * We haven't actually published the TLB fence as per
209 		 * pending_fences, but in theory our seqno could have already
210 		 * been written as we acquired the pending_lock. In such a case
211 		 * we can just go ahead and signal the fence here.
212 		 */
213 		if (tlb_invalidation_seqno_past(gt, seqno)) {
214 			__invalidation_fence_signal(xe, fence);
215 		} else {
216 			fence->invalidation_time = ktime_get();
217 			list_add_tail(&fence->link,
218 				      &gt->tlb_invalidation.pending_fences);
219 
220 			if (list_is_singular(&gt->tlb_invalidation.pending_fences))
221 				queue_delayed_work(system_wq,
222 						   &gt->tlb_invalidation.fence_tdr,
223 						   tlb_timeout_jiffies(gt));
224 		}
225 		spin_unlock_irq(&gt->tlb_invalidation.pending_lock);
226 	} else {
227 		__invalidation_fence_signal(xe, fence);
228 	}
229 	if (!ret) {
230 		gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) %
231 			TLB_INVALIDATION_SEQNO_MAX;
232 		if (!gt->tlb_invalidation.seqno)
233 			gt->tlb_invalidation.seqno = 1;
234 	}
235 	mutex_unlock(&guc->ct.lock);
236 	xe_gt_stats_incr(gt, XE_GT_STATS_ID_TLB_INVAL, 1);
237 
238 	return ret;
239 }
240 
241 #define MAKE_INVAL_OP(type)	((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \
242 		XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \
243 		XE_GUC_TLB_INVAL_FLUSH_CACHE)
244 
245 /**
246  * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC
247  * @gt: GT structure
248  * @fence: invalidation fence which will be signal on TLB invalidation
249  * completion
250  *
251  * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and
252  * caller can use the invalidation fence to wait for completion.
253  *
254  * Return: 0 on success, negative error code on error
255  */
xe_gt_tlb_invalidation_guc(struct xe_gt * gt,struct xe_gt_tlb_invalidation_fence * fence)256 static int xe_gt_tlb_invalidation_guc(struct xe_gt *gt,
257 				      struct xe_gt_tlb_invalidation_fence *fence)
258 {
259 	u32 action[] = {
260 		XE_GUC_ACTION_TLB_INVALIDATION,
261 		0,  /* seqno, replaced in send_tlb_invalidation */
262 		MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC),
263 	};
264 	int ret;
265 
266 	ret = send_tlb_invalidation(&gt->uc.guc, fence, action,
267 				    ARRAY_SIZE(action));
268 	/*
269 	 * -ECANCELED indicates the CT is stopped for a GT reset. TLB caches
270 	 *  should be nuked on a GT reset so this error can be ignored.
271 	 */
272 	if (ret == -ECANCELED)
273 		return 0;
274 
275 	return ret;
276 }
277 
278 /**
279  * xe_gt_tlb_invalidation_ggtt - Issue a TLB invalidation on this GT for the GGTT
280  * @gt: GT structure
281  *
282  * Issue a TLB invalidation for the GGTT. Completion of TLB invalidation is
283  * synchronous.
284  *
285  * Return: 0 on success, negative error code on error
286  */
xe_gt_tlb_invalidation_ggtt(struct xe_gt * gt)287 int xe_gt_tlb_invalidation_ggtt(struct xe_gt *gt)
288 {
289 	struct xe_device *xe = gt_to_xe(gt);
290 	unsigned int fw_ref;
291 
292 	if (xe_guc_ct_enabled(&gt->uc.guc.ct) &&
293 	    gt->uc.guc.submission_state.enabled) {
294 		struct xe_gt_tlb_invalidation_fence fence;
295 		int ret;
296 
297 		xe_gt_tlb_invalidation_fence_init(gt, &fence, true);
298 		ret = xe_gt_tlb_invalidation_guc(gt, &fence);
299 		if (ret)
300 			return ret;
301 
302 		xe_gt_tlb_invalidation_fence_wait(&fence);
303 	} else if (xe_device_uc_enabled(xe) && !xe_device_wedged(xe)) {
304 		struct xe_mmio *mmio = &gt->mmio;
305 
306 		if (IS_SRIOV_VF(xe))
307 			return 0;
308 
309 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
310 		if (xe->info.platform == XE_PVC || GRAPHICS_VER(xe) >= 20) {
311 			xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC1,
312 					PVC_GUC_TLB_INV_DESC1_INVALIDATE);
313 			xe_mmio_write32(mmio, PVC_GUC_TLB_INV_DESC0,
314 					PVC_GUC_TLB_INV_DESC0_VALID);
315 		} else {
316 			xe_mmio_write32(mmio, GUC_TLB_INV_CR,
317 					GUC_TLB_INV_CR_INVALIDATE);
318 		}
319 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
320 	}
321 
322 	return 0;
323 }
324 
325 /**
326  * xe_gt_tlb_invalidation_range - Issue a TLB invalidation on this GT for an
327  * address range
328  *
329  * @gt: GT structure
330  * @fence: invalidation fence which will be signal on TLB invalidation
331  * completion
332  * @start: start address
333  * @end: end address
334  * @asid: address space id
335  *
336  * Issue a range based TLB invalidation if supported, if not fallback to a full
337  * TLB invalidation. Completion of TLB is asynchronous and caller can use
338  * the invalidation fence to wait for completion.
339  *
340  * Return: Negative error code on error, 0 on success
341  */
xe_gt_tlb_invalidation_range(struct xe_gt * gt,struct xe_gt_tlb_invalidation_fence * fence,u64 start,u64 end,u32 asid)342 int xe_gt_tlb_invalidation_range(struct xe_gt *gt,
343 				 struct xe_gt_tlb_invalidation_fence *fence,
344 				 u64 start, u64 end, u32 asid)
345 {
346 	struct xe_device *xe = gt_to_xe(gt);
347 #define MAX_TLB_INVALIDATION_LEN	7
348 	u32 action[MAX_TLB_INVALIDATION_LEN];
349 	int len = 0;
350 
351 	xe_gt_assert(gt, fence);
352 
353 	/* Execlists not supported */
354 	if (gt_to_xe(gt)->info.force_execlist) {
355 		__invalidation_fence_signal(xe, fence);
356 		return 0;
357 	}
358 
359 	action[len++] = XE_GUC_ACTION_TLB_INVALIDATION;
360 	action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */
361 	if (!xe->info.has_range_tlb_invalidation) {
362 		action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL);
363 	} else {
364 		u64 orig_start = start;
365 		u64 length = end - start;
366 		u64 align;
367 
368 		if (length < SZ_4K)
369 			length = SZ_4K;
370 
371 		/*
372 		 * We need to invalidate a higher granularity if start address
373 		 * is not aligned to length. When start is not aligned with
374 		 * length we need to find the length large enough to create an
375 		 * address mask covering the required range.
376 		 */
377 		align = roundup_pow_of_two(length);
378 		start = ALIGN_DOWN(start, align);
379 		end = ALIGN(end, align);
380 		length = align;
381 		while (start + length < end) {
382 			length <<= 1;
383 			start = ALIGN_DOWN(orig_start, length);
384 		}
385 
386 		/*
387 		 * Minimum invalidation size for a 2MB page that the hardware
388 		 * expects is 16MB
389 		 */
390 		if (length >= SZ_2M) {
391 			length = max_t(u64, SZ_16M, length);
392 			start = ALIGN_DOWN(orig_start, length);
393 		}
394 
395 		xe_gt_assert(gt, length >= SZ_4K);
396 		xe_gt_assert(gt, is_power_of_2(length));
397 		xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1,
398 						    ilog2(SZ_2M) + 1)));
399 		xe_gt_assert(gt, IS_ALIGNED(start, length));
400 
401 		action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE);
402 		action[len++] = asid;
403 		action[len++] = lower_32_bits(start);
404 		action[len++] = upper_32_bits(start);
405 		action[len++] = ilog2(length) - ilog2(SZ_4K);
406 	}
407 
408 	xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN);
409 
410 	return send_tlb_invalidation(&gt->uc.guc, fence, action, len);
411 }
412 
413 /**
414  * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA
415  * @gt: GT structure
416  * @fence: invalidation fence which will be signal on TLB invalidation
417  * completion, can be NULL
418  * @vma: VMA to invalidate
419  *
420  * Issue a range based TLB invalidation if supported, if not fallback to a full
421  * TLB invalidation. Completion of TLB is asynchronous and caller can use
422  * the invalidation fence to wait for completion.
423  *
424  * Return: Negative error code on error, 0 on success
425  */
xe_gt_tlb_invalidation_vma(struct xe_gt * gt,struct xe_gt_tlb_invalidation_fence * fence,struct xe_vma * vma)426 int xe_gt_tlb_invalidation_vma(struct xe_gt *gt,
427 			       struct xe_gt_tlb_invalidation_fence *fence,
428 			       struct xe_vma *vma)
429 {
430 	xe_gt_assert(gt, vma);
431 
432 	return xe_gt_tlb_invalidation_range(gt, fence, xe_vma_start(vma),
433 					    xe_vma_end(vma),
434 					    xe_vma_vm(vma)->usm.asid);
435 }
436 
437 /**
438  * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler
439  * @guc: guc
440  * @msg: message indicating TLB invalidation done
441  * @len: length of message
442  *
443  * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any
444  * invalidation fences for seqno. Algorithm for this depends on seqno being
445  * received in-order and asserts this assumption.
446  *
447  * Return: 0 on success, -EPROTO for malformed messages.
448  */
xe_guc_tlb_invalidation_done_handler(struct xe_guc * guc,u32 * msg,u32 len)449 int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
450 {
451 	struct xe_gt *gt = guc_to_gt(guc);
452 	struct xe_device *xe = gt_to_xe(gt);
453 	struct xe_gt_tlb_invalidation_fence *fence, *next;
454 	unsigned long flags;
455 
456 	if (unlikely(len != 1))
457 		return -EPROTO;
458 
459 	/*
460 	 * This can also be run both directly from the IRQ handler and also in
461 	 * process_g2h_msg(). Only one may process any individual CT message,
462 	 * however the order they are processed here could result in skipping a
463 	 * seqno. To handle that we just process all the seqnos from the last
464 	 * seqno_recv up to and including the one in msg[0]. The delta should be
465 	 * very small so there shouldn't be much of pending_fences we actually
466 	 * need to iterate over here.
467 	 *
468 	 * From GuC POV we expect the seqnos to always appear in-order, so if we
469 	 * see something later in the timeline we can be sure that anything
470 	 * appearing earlier has already signalled, just that we have yet to
471 	 * officially process the CT message like if racing against
472 	 * process_g2h_msg().
473 	 */
474 	spin_lock_irqsave(&gt->tlb_invalidation.pending_lock, flags);
475 	if (tlb_invalidation_seqno_past(gt, msg[0])) {
476 		spin_unlock_irqrestore(&gt->tlb_invalidation.pending_lock, flags);
477 		return 0;
478 	}
479 
480 	WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]);
481 
482 	list_for_each_entry_safe(fence, next,
483 				 &gt->tlb_invalidation.pending_fences, link) {
484 		trace_xe_gt_tlb_invalidation_fence_recv(xe, fence);
485 
486 		if (!tlb_invalidation_seqno_past(gt, fence->seqno))
487 			break;
488 
489 		invalidation_fence_signal(xe, fence);
490 	}
491 
492 	if (!list_empty(&gt->tlb_invalidation.pending_fences))
493 		mod_delayed_work(system_wq,
494 				 &gt->tlb_invalidation.fence_tdr,
495 				 tlb_timeout_jiffies(gt));
496 	else
497 		cancel_delayed_work(&gt->tlb_invalidation.fence_tdr);
498 
499 	spin_unlock_irqrestore(&gt->tlb_invalidation.pending_lock, flags);
500 
501 	return 0;
502 }
503 
504 static const char *
invalidation_fence_get_driver_name(struct dma_fence * dma_fence)505 invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
506 {
507 	return "xe";
508 }
509 
510 static const char *
invalidation_fence_get_timeline_name(struct dma_fence * dma_fence)511 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
512 {
513 	return "invalidation_fence";
514 }
515 
516 static const struct dma_fence_ops invalidation_fence_ops = {
517 	.get_driver_name = invalidation_fence_get_driver_name,
518 	.get_timeline_name = invalidation_fence_get_timeline_name,
519 };
520 
521 /**
522  * xe_gt_tlb_invalidation_fence_init - Initialize TLB invalidation fence
523  * @gt: GT
524  * @fence: TLB invalidation fence to initialize
525  * @stack: fence is stack variable
526  *
527  * Initialize TLB invalidation fence for use. xe_gt_tlb_invalidation_fence_fini
528  * will be automatically called when fence is signalled (all fences must signal),
529  * even on error.
530  */
xe_gt_tlb_invalidation_fence_init(struct xe_gt * gt,struct xe_gt_tlb_invalidation_fence * fence,bool stack)531 void xe_gt_tlb_invalidation_fence_init(struct xe_gt *gt,
532 				       struct xe_gt_tlb_invalidation_fence *fence,
533 				       bool stack)
534 {
535 	xe_pm_runtime_get_noresume(gt_to_xe(gt));
536 
537 	spin_lock_irq(&gt->tlb_invalidation.lock);
538 	dma_fence_init(&fence->base, &invalidation_fence_ops,
539 		       &gt->tlb_invalidation.lock,
540 		       dma_fence_context_alloc(1), 1);
541 	spin_unlock_irq(&gt->tlb_invalidation.lock);
542 	INIT_LIST_HEAD(&fence->link);
543 	if (stack)
544 		set_bit(FENCE_STACK_BIT, &fence->base.flags);
545 	else
546 		dma_fence_get(&fence->base);
547 	fence->gt = gt;
548 }
549