xref: /freebsd/sys/vm/vm_fault.c (revision 22cce201da76a1916be5c993201f0478f3048292)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include "opt_ktrace.h"
75 #include "opt_vm.h"
76 
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mman.h>
81 #include <sys/mutex.h>
82 #include <sys/pctrie.h>
83 #include <sys/proc.h>
84 #include <sys/racct.h>
85 #include <sys/refcount.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/sysent.h>
91 #include <sys/vmmeter.h>
92 #include <sys/vnode.h>
93 #ifdef KTRACE
94 #include <sys/ktrace.h>
95 #endif
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/pmap.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_pager.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109 
110 #define PFBAK 4
111 #define PFFOR 4
112 
113 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
114 
115 #define	VM_FAULT_DONTNEED_MIN	1048576
116 
117 struct faultstate {
118 	/* Fault parameters. */
119 	vm_offset_t	vaddr;
120 	vm_page_t	*m_hold;
121 	vm_prot_t	fault_type;
122 	vm_prot_t	prot;
123 	int		fault_flags;
124 	boolean_t	wired;
125 
126 	/* Control state. */
127 	struct timeval	oom_start_time;
128 	bool		oom_started;
129 	int		nera;
130 	bool		can_read_lock;
131 
132 	/* Page reference for cow. */
133 	vm_page_t m_cow;
134 
135 	/* Current object. */
136 	vm_object_t	object;
137 	vm_pindex_t	pindex;
138 	vm_page_t	m;
139 
140 	/* Top-level map object. */
141 	vm_object_t	first_object;
142 	vm_pindex_t	first_pindex;
143 	vm_page_t	first_m;
144 
145 	/* Map state. */
146 	vm_map_t	map;
147 	vm_map_entry_t	entry;
148 	int		map_generation;
149 	bool		lookup_still_valid;
150 
151 	/* Vnode if locked. */
152 	struct vnode	*vp;
153 };
154 
155 /*
156  * Return codes for internal fault routines.
157  */
158 enum fault_status {
159 	FAULT_SUCCESS = 10000,	/* Return success to user. */
160 	FAULT_FAILURE,		/* Return failure to user. */
161 	FAULT_CONTINUE,		/* Continue faulting. */
162 	FAULT_RESTART,		/* Restart fault. */
163 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
164 	FAULT_HARD,		/* Performed I/O. */
165 	FAULT_SOFT,		/* Found valid page. */
166 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
167 };
168 
169 enum fault_next_status {
170 	FAULT_NEXT_GOTOBJ = 1,
171 	FAULT_NEXT_NOOBJ,
172 	FAULT_NEXT_RESTART,
173 };
174 
175 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
176 	    int ahead);
177 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
178 	    int backward, int forward, bool obj_locked);
179 
180 static int vm_pfault_oom_attempts = 3;
181 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
182     &vm_pfault_oom_attempts, 0,
183     "Number of page allocation attempts in page fault handler before it "
184     "triggers OOM handling");
185 
186 static int vm_pfault_oom_wait = 10;
187 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
188     &vm_pfault_oom_wait, 0,
189     "Number of seconds to wait for free pages before retrying "
190     "the page fault handler");
191 
192 static inline void
vm_fault_page_release(vm_page_t * mp)193 vm_fault_page_release(vm_page_t *mp)
194 {
195 	vm_page_t m;
196 
197 	m = *mp;
198 	if (m != NULL) {
199 		/*
200 		 * We are likely to loop around again and attempt to busy
201 		 * this page.  Deactivating it leaves it available for
202 		 * pageout while optimizing fault restarts.
203 		 */
204 		vm_page_deactivate(m);
205 		if (vm_page_xbusied(m))
206 			vm_page_xunbusy(m);
207 		else
208 			vm_page_sunbusy(m);
209 		*mp = NULL;
210 	}
211 }
212 
213 static inline void
vm_fault_page_free(vm_page_t * mp)214 vm_fault_page_free(vm_page_t *mp)
215 {
216 	vm_page_t m;
217 
218 	m = *mp;
219 	if (m != NULL) {
220 		VM_OBJECT_ASSERT_WLOCKED(m->object);
221 		if (!vm_page_wired(m))
222 			vm_page_free(m);
223 		else
224 			vm_page_xunbusy(m);
225 		*mp = NULL;
226 	}
227 }
228 
229 /*
230  * Return true if a vm_pager_get_pages() call is needed in order to check
231  * whether the pager might have a particular page, false if it can be determined
232  * immediately that the pager can not have a copy.  For swap objects, this can
233  * be checked quickly.
234  */
235 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)236 vm_fault_object_needs_getpages(vm_object_t object)
237 {
238 	VM_OBJECT_ASSERT_LOCKED(object);
239 
240 	return ((object->flags & OBJ_SWAP) == 0 ||
241 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
242 }
243 
244 static inline void
vm_fault_unlock_map(struct faultstate * fs)245 vm_fault_unlock_map(struct faultstate *fs)
246 {
247 
248 	if (fs->lookup_still_valid) {
249 		vm_map_lookup_done(fs->map, fs->entry);
250 		fs->lookup_still_valid = false;
251 	}
252 }
253 
254 static void
vm_fault_unlock_vp(struct faultstate * fs)255 vm_fault_unlock_vp(struct faultstate *fs)
256 {
257 
258 	if (fs->vp != NULL) {
259 		vput(fs->vp);
260 		fs->vp = NULL;
261 	}
262 }
263 
264 static bool
vm_fault_might_be_cow(struct faultstate * fs)265 vm_fault_might_be_cow(struct faultstate *fs)
266 {
267 	return (fs->object != fs->first_object);
268 }
269 
270 static void
vm_fault_deallocate(struct faultstate * fs)271 vm_fault_deallocate(struct faultstate *fs)
272 {
273 
274 	vm_fault_page_release(&fs->m_cow);
275 	vm_fault_page_release(&fs->m);
276 	vm_object_pip_wakeup(fs->object);
277 	if (vm_fault_might_be_cow(fs)) {
278 		VM_OBJECT_WLOCK(fs->first_object);
279 		vm_fault_page_free(&fs->first_m);
280 		VM_OBJECT_WUNLOCK(fs->first_object);
281 		vm_object_pip_wakeup(fs->first_object);
282 	}
283 	vm_object_deallocate(fs->first_object);
284 	vm_fault_unlock_map(fs);
285 	vm_fault_unlock_vp(fs);
286 }
287 
288 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)289 vm_fault_unlock_and_deallocate(struct faultstate *fs)
290 {
291 
292 	VM_OBJECT_UNLOCK(fs->object);
293 	vm_fault_deallocate(fs);
294 }
295 
296 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)297 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
298 {
299 	bool need_dirty;
300 
301 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
302 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
303 	    (m->oflags & VPO_UNMANAGED) != 0)
304 		return;
305 
306 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
307 
308 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
309 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
310 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
311 
312 	vm_object_set_writeable_dirty(m->object);
313 
314 	/*
315 	 * If the fault is a write, we know that this page is being
316 	 * written NOW so dirty it explicitly to save on
317 	 * pmap_is_modified() calls later.
318 	 *
319 	 * Also, since the page is now dirty, we can possibly tell
320 	 * the pager to release any swap backing the page.
321 	 */
322 	if (need_dirty && vm_page_set_dirty(m) == 0) {
323 		/*
324 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
325 		 * if the page is already dirty to prevent data written with
326 		 * the expectation of being synced from not being synced.
327 		 * Likewise if this entry does not request NOSYNC then make
328 		 * sure the page isn't marked NOSYNC.  Applications sharing
329 		 * data should use the same flags to avoid ping ponging.
330 		 */
331 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
332 			vm_page_aflag_set(m, PGA_NOSYNC);
333 		else
334 			vm_page_aflag_clear(m, PGA_NOSYNC);
335 	}
336 
337 }
338 
339 static bool
vm_fault_is_read(const struct faultstate * fs)340 vm_fault_is_read(const struct faultstate *fs)
341 {
342 	return ((fs->prot & VM_PROT_WRITE) == 0 &&
343 	    (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
344 }
345 
346 /*
347  * Unlocks fs.first_object and fs.map on success.
348  */
349 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)350 vm_fault_soft_fast(struct faultstate *fs)
351 {
352 	vm_page_t m, m_map;
353 #if VM_NRESERVLEVEL > 0
354 	vm_page_t m_super;
355 	int flags;
356 #endif
357 	int psind;
358 	vm_offset_t vaddr;
359 
360 	MPASS(fs->vp == NULL);
361 
362 	/*
363 	 * If we fail, vast majority of the time it is because the page is not
364 	 * there to begin with. Opportunistically perform the lookup and
365 	 * subsequent checks without the object lock, revalidate later.
366 	 *
367 	 * Note: a busy page can be mapped for read|execute access.
368 	 */
369 	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
370 	if (m == NULL || !vm_page_all_valid(m) ||
371 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
372 		VM_OBJECT_WLOCK(fs->first_object);
373 		return (FAULT_FAILURE);
374 	}
375 
376 	vaddr = fs->vaddr;
377 
378 	VM_OBJECT_RLOCK(fs->first_object);
379 
380 	/*
381 	 * Now that we stabilized the state, revalidate the page is in the shape
382 	 * we encountered above.
383 	 */
384 
385 	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
386 		goto fail;
387 
388 	vm_object_busy(fs->first_object);
389 
390 	if (!vm_page_all_valid(m) ||
391 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
392 		goto fail_busy;
393 
394 	m_map = m;
395 	psind = 0;
396 #if VM_NRESERVLEVEL > 0
397 	if ((m->flags & PG_FICTITIOUS) == 0 &&
398 	    (m_super = vm_reserv_to_superpage(m)) != NULL) {
399 		psind = m_super->psind;
400 		KASSERT(psind > 0,
401 		    ("psind %d of m_super %p < 1", psind, m_super));
402 		flags = PS_ALL_VALID;
403 		if ((fs->prot & VM_PROT_WRITE) != 0) {
404 			/*
405 			 * Create a superpage mapping allowing write access
406 			 * only if none of the constituent pages are busy and
407 			 * all of them are already dirty (except possibly for
408 			 * the page that was faulted on).
409 			 */
410 			flags |= PS_NONE_BUSY;
411 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
412 				flags |= PS_ALL_DIRTY;
413 		}
414 		while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
415 		    roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
416 		    (vaddr & (pagesizes[psind] - 1)) !=
417 		    (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
418 		    !vm_page_ps_test(m_super, psind, flags, m) ||
419 		    !pmap_ps_enabled(fs->map->pmap)) {
420 			psind--;
421 			if (psind == 0)
422 				break;
423 			m_super += rounddown2(m - m_super,
424 			    atop(pagesizes[psind]));
425 			KASSERT(m_super->psind >= psind,
426 			    ("psind %d of m_super %p < %d", m_super->psind,
427 			    m_super, psind));
428 		}
429 		if (psind > 0) {
430 			m_map = m_super;
431 			vaddr = rounddown2(vaddr, pagesizes[psind]);
432 			/* Preset the modified bit for dirty superpages. */
433 			if ((flags & PS_ALL_DIRTY) != 0)
434 				fs->fault_type |= VM_PROT_WRITE;
435 		}
436 	}
437 #endif
438 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
439 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
440 	    KERN_SUCCESS)
441 		goto fail_busy;
442 	if (fs->m_hold != NULL) {
443 		(*fs->m_hold) = m;
444 		vm_page_wire(m);
445 	}
446 	if (psind == 0 && !fs->wired)
447 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
448 	VM_OBJECT_RUNLOCK(fs->first_object);
449 	vm_fault_dirty(fs, m);
450 	vm_object_unbusy(fs->first_object);
451 	vm_map_lookup_done(fs->map, fs->entry);
452 	curthread->td_ru.ru_minflt++;
453 	return (FAULT_SUCCESS);
454 fail_busy:
455 	vm_object_unbusy(fs->first_object);
456 fail:
457 	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
458 		VM_OBJECT_RUNLOCK(fs->first_object);
459 		VM_OBJECT_WLOCK(fs->first_object);
460 	}
461 	return (FAULT_FAILURE);
462 }
463 
464 static void
vm_fault_restore_map_lock(struct faultstate * fs)465 vm_fault_restore_map_lock(struct faultstate *fs)
466 {
467 
468 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
469 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
470 
471 	if (!vm_map_trylock_read(fs->map)) {
472 		VM_OBJECT_WUNLOCK(fs->first_object);
473 		vm_map_lock_read(fs->map);
474 		VM_OBJECT_WLOCK(fs->first_object);
475 	}
476 	fs->lookup_still_valid = true;
477 }
478 
479 static void
vm_fault_populate_check_page(vm_page_t m)480 vm_fault_populate_check_page(vm_page_t m)
481 {
482 
483 	/*
484 	 * Check each page to ensure that the pager is obeying the
485 	 * interface: the page must be installed in the object, fully
486 	 * valid, and exclusively busied.
487 	 */
488 	MPASS(m != NULL);
489 	MPASS(vm_page_all_valid(m));
490 	MPASS(vm_page_xbusied(m));
491 }
492 
493 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)494 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
495     vm_pindex_t last)
496 {
497 	struct pctrie_iter pages;
498 	vm_page_t m;
499 
500 	VM_OBJECT_ASSERT_WLOCKED(object);
501 	MPASS(first <= last);
502 	vm_page_iter_limit_init(&pages, object, last + 1);
503 	VM_RADIX_FORALL_FROM(m, &pages, first) {
504 		vm_fault_populate_check_page(m);
505 		vm_page_deactivate(m);
506 		vm_page_xunbusy(m);
507 	}
508 	KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
509 }
510 
511 static enum fault_status
vm_fault_populate(struct faultstate * fs)512 vm_fault_populate(struct faultstate *fs)
513 {
514 	vm_offset_t vaddr;
515 	vm_page_t m;
516 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
517 	int bdry_idx, i, npages, psind, rv;
518 	enum fault_status res;
519 
520 	MPASS(fs->object == fs->first_object);
521 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
522 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
523 	MPASS(fs->first_object->backing_object == NULL);
524 	MPASS(fs->lookup_still_valid);
525 
526 	pager_first = OFF_TO_IDX(fs->entry->offset);
527 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
528 	vm_fault_unlock_map(fs);
529 	vm_fault_unlock_vp(fs);
530 
531 	res = FAULT_SUCCESS;
532 
533 	/*
534 	 * Call the pager (driver) populate() method.
535 	 *
536 	 * There is no guarantee that the method will be called again
537 	 * if the current fault is for read, and a future fault is
538 	 * for write.  Report the entry's maximum allowed protection
539 	 * to the driver.
540 	 */
541 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
542 	    fs->fault_type, fs->entry->max_protection, &pager_first,
543 	    &pager_last);
544 
545 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
546 	if (rv == VM_PAGER_BAD) {
547 		/*
548 		 * VM_PAGER_BAD is the backdoor for a pager to request
549 		 * normal fault handling.
550 		 */
551 		vm_fault_restore_map_lock(fs);
552 		if (fs->map->timestamp != fs->map_generation)
553 			return (FAULT_RESTART);
554 		return (FAULT_CONTINUE);
555 	}
556 	if (rv != VM_PAGER_OK)
557 		return (FAULT_FAILURE); /* AKA SIGSEGV */
558 
559 	/* Ensure that the driver is obeying the interface. */
560 	MPASS(pager_first <= pager_last);
561 	MPASS(fs->first_pindex <= pager_last);
562 	MPASS(fs->first_pindex >= pager_first);
563 	MPASS(pager_last < fs->first_object->size);
564 
565 	vm_fault_restore_map_lock(fs);
566 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
567 	if (fs->map->timestamp != fs->map_generation) {
568 		if (bdry_idx == 0) {
569 			vm_fault_populate_cleanup(fs->first_object, pager_first,
570 			    pager_last);
571 		} else {
572 			m = vm_page_lookup(fs->first_object, pager_first);
573 			if (m != fs->m)
574 				vm_page_xunbusy(m);
575 		}
576 		return (FAULT_RESTART);
577 	}
578 
579 	/*
580 	 * The map is unchanged after our last unlock.  Process the fault.
581 	 *
582 	 * First, the special case of largepage mappings, where
583 	 * populate only busies the first page in superpage run.
584 	 */
585 	if (bdry_idx != 0) {
586 		KASSERT(PMAP_HAS_LARGEPAGES,
587 		    ("missing pmap support for large pages"));
588 		m = vm_page_lookup(fs->first_object, pager_first);
589 		vm_fault_populate_check_page(m);
590 		VM_OBJECT_WUNLOCK(fs->first_object);
591 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
592 		    fs->entry->offset;
593 		/* assert alignment for entry */
594 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
595     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
596 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
597 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
598 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
599 		    ("unaligned superpage m %p %#jx", m,
600 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
601 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
602 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
603 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
604 		VM_OBJECT_WLOCK(fs->first_object);
605 		vm_page_xunbusy(m);
606 		if (rv != KERN_SUCCESS) {
607 			res = FAULT_FAILURE;
608 			goto out;
609 		}
610 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
611 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
612 				vm_page_wire(m + i);
613 		}
614 		if (fs->m_hold != NULL) {
615 			*fs->m_hold = m + (fs->first_pindex - pager_first);
616 			vm_page_wire(*fs->m_hold);
617 		}
618 		goto out;
619 	}
620 
621 	/*
622 	 * The range [pager_first, pager_last] that is given to the
623 	 * pager is only a hint.  The pager may populate any range
624 	 * within the object that includes the requested page index.
625 	 * In case the pager expanded the range, clip it to fit into
626 	 * the map entry.
627 	 */
628 	map_first = OFF_TO_IDX(fs->entry->offset);
629 	if (map_first > pager_first) {
630 		vm_fault_populate_cleanup(fs->first_object, pager_first,
631 		    map_first - 1);
632 		pager_first = map_first;
633 	}
634 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
635 	if (map_last < pager_last) {
636 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
637 		    pager_last);
638 		pager_last = map_last;
639 	}
640 	for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
641 		m = vm_page_lookup(fs->first_object, pidx);
642 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
643 		KASSERT(m != NULL && m->pindex == pidx,
644 		    ("%s: pindex mismatch", __func__));
645 		psind = m->psind;
646 		while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
647 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
648 		    !pmap_ps_enabled(fs->map->pmap)))
649 			psind--;
650 
651 		npages = atop(pagesizes[psind]);
652 		for (i = 0; i < npages; i++) {
653 			vm_fault_populate_check_page(&m[i]);
654 			vm_fault_dirty(fs, &m[i]);
655 		}
656 		VM_OBJECT_WUNLOCK(fs->first_object);
657 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
658 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
659 
660 		/*
661 		 * pmap_enter() may fail for a superpage mapping if additional
662 		 * protection policies prevent the full mapping.
663 		 * For example, this will happen on amd64 if the entire
664 		 * address range does not share the same userspace protection
665 		 * key.  Revert to single-page mappings if this happens.
666 		 */
667 		MPASS(rv == KERN_SUCCESS ||
668 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
669 		if (__predict_false(psind > 0 &&
670 		    rv == KERN_PROTECTION_FAILURE)) {
671 			MPASS(!fs->wired);
672 			for (i = 0; i < npages; i++) {
673 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
674 				    &m[i], fs->prot, fs->fault_type, 0);
675 				MPASS(rv == KERN_SUCCESS);
676 			}
677 		}
678 
679 		VM_OBJECT_WLOCK(fs->first_object);
680 		for (i = 0; i < npages; i++) {
681 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
682 			    m[i].pindex == fs->first_pindex)
683 				vm_page_wire(&m[i]);
684 			else
685 				vm_page_activate(&m[i]);
686 			if (fs->m_hold != NULL &&
687 			    m[i].pindex == fs->first_pindex) {
688 				(*fs->m_hold) = &m[i];
689 				vm_page_wire(&m[i]);
690 			}
691 			vm_page_xunbusy(&m[i]);
692 		}
693 	}
694 out:
695 	curthread->td_ru.ru_majflt++;
696 	return (res);
697 }
698 
699 static int prot_fault_translation;
700 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
701     &prot_fault_translation, 0,
702     "Control signal to deliver on protection fault");
703 
704 /* compat definition to keep common code for signal translation */
705 #define	UCODE_PAGEFLT	12
706 #ifdef T_PAGEFLT
707 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
708 #endif
709 
710 /*
711  * vm_fault_trap:
712  *
713  * Helper for the page fault trap handlers, wrapping vm_fault().
714  * Issues ktrace(2) tracepoints for the faults.
715  *
716  * If a fault cannot be handled successfully by satisfying the
717  * required mapping, and the faulted instruction cannot be restarted,
718  * the signal number and si_code values are returned for trapsignal()
719  * to deliver.
720  *
721  * Returns Mach error codes, but callers should only check for
722  * KERN_SUCCESS.
723  */
724 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)725 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
726     int fault_flags, int *signo, int *ucode)
727 {
728 	int result;
729 
730 	MPASS(signo == NULL || ucode != NULL);
731 #ifdef KTRACE
732 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
733 		ktrfault(vaddr, fault_type);
734 #endif
735 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
736 	    NULL);
737 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
738 	    result == KERN_INVALID_ADDRESS ||
739 	    result == KERN_RESOURCE_SHORTAGE ||
740 	    result == KERN_PROTECTION_FAILURE ||
741 	    result == KERN_OUT_OF_BOUNDS,
742 	    ("Unexpected Mach error %d from vm_fault()", result));
743 #ifdef KTRACE
744 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
745 		ktrfaultend(result);
746 #endif
747 	if (result != KERN_SUCCESS && signo != NULL) {
748 		switch (result) {
749 		case KERN_FAILURE:
750 		case KERN_INVALID_ADDRESS:
751 			*signo = SIGSEGV;
752 			*ucode = SEGV_MAPERR;
753 			break;
754 		case KERN_RESOURCE_SHORTAGE:
755 			*signo = SIGBUS;
756 			*ucode = BUS_OOMERR;
757 			break;
758 		case KERN_OUT_OF_BOUNDS:
759 			*signo = SIGBUS;
760 			*ucode = BUS_OBJERR;
761 			break;
762 		case KERN_PROTECTION_FAILURE:
763 			if (prot_fault_translation == 0) {
764 				/*
765 				 * Autodetect.  This check also covers
766 				 * the images without the ABI-tag ELF
767 				 * note.
768 				 */
769 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
770 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
771 					*signo = SIGSEGV;
772 					*ucode = SEGV_ACCERR;
773 				} else {
774 					*signo = SIGBUS;
775 					*ucode = UCODE_PAGEFLT;
776 				}
777 			} else if (prot_fault_translation == 1) {
778 				/* Always compat mode. */
779 				*signo = SIGBUS;
780 				*ucode = UCODE_PAGEFLT;
781 			} else {
782 				/* Always SIGSEGV mode. */
783 				*signo = SIGSEGV;
784 				*ucode = SEGV_ACCERR;
785 			}
786 			break;
787 		default:
788 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
789 			    result));
790 			break;
791 		}
792 	}
793 	return (result);
794 }
795 
796 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)797 vm_fault_object_ensure_wlocked(struct faultstate *fs)
798 {
799 	if (fs->object == fs->first_object)
800 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
801 
802 	if (!fs->can_read_lock)  {
803 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
804 		return (true);
805 	}
806 
807 	if (VM_OBJECT_WOWNED(fs->object))
808 		return (true);
809 
810 	if (VM_OBJECT_TRYUPGRADE(fs->object))
811 		return (true);
812 
813 	return (false);
814 }
815 
816 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)817 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
818 {
819 	struct vnode *vp;
820 	int error, locked;
821 
822 	if (fs->object->type != OBJT_VNODE)
823 		return (FAULT_CONTINUE);
824 	vp = fs->object->handle;
825 	if (vp == fs->vp) {
826 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
827 		return (FAULT_CONTINUE);
828 	}
829 
830 	/*
831 	 * Perform an unlock in case the desired vnode changed while
832 	 * the map was unlocked during a retry.
833 	 */
834 	vm_fault_unlock_vp(fs);
835 
836 	locked = VOP_ISLOCKED(vp);
837 	if (locked != LK_EXCLUSIVE)
838 		locked = LK_SHARED;
839 
840 	/*
841 	 * We must not sleep acquiring the vnode lock while we have
842 	 * the page exclusive busied or the object's
843 	 * paging-in-progress count incremented.  Otherwise, we could
844 	 * deadlock.
845 	 */
846 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
847 	if (error == 0) {
848 		fs->vp = vp;
849 		return (FAULT_CONTINUE);
850 	}
851 
852 	vhold(vp);
853 	if (objlocked)
854 		vm_fault_unlock_and_deallocate(fs);
855 	else
856 		vm_fault_deallocate(fs);
857 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
858 	vdrop(vp);
859 	fs->vp = vp;
860 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
861 	return (FAULT_RESTART);
862 }
863 
864 /*
865  * Calculate the desired readahead.  Handle drop-behind.
866  *
867  * Returns the number of readahead blocks to pass to the pager.
868  */
869 static int
vm_fault_readahead(struct faultstate * fs)870 vm_fault_readahead(struct faultstate *fs)
871 {
872 	int era, nera;
873 	u_char behavior;
874 
875 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
876 	era = fs->entry->read_ahead;
877 	behavior = vm_map_entry_behavior(fs->entry);
878 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
879 		nera = 0;
880 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
881 		nera = VM_FAULT_READ_AHEAD_MAX;
882 		if (fs->vaddr == fs->entry->next_read)
883 			vm_fault_dontneed(fs, fs->vaddr, nera);
884 	} else if (fs->vaddr == fs->entry->next_read) {
885 		/*
886 		 * This is a sequential fault.  Arithmetically
887 		 * increase the requested number of pages in
888 		 * the read-ahead window.  The requested
889 		 * number of pages is "# of sequential faults
890 		 * x (read ahead min + 1) + read ahead min"
891 		 */
892 		nera = VM_FAULT_READ_AHEAD_MIN;
893 		if (era > 0) {
894 			nera += era + 1;
895 			if (nera > VM_FAULT_READ_AHEAD_MAX)
896 				nera = VM_FAULT_READ_AHEAD_MAX;
897 		}
898 		if (era == VM_FAULT_READ_AHEAD_MAX)
899 			vm_fault_dontneed(fs, fs->vaddr, nera);
900 	} else {
901 		/*
902 		 * This is a non-sequential fault.
903 		 */
904 		nera = 0;
905 	}
906 	if (era != nera) {
907 		/*
908 		 * A read lock on the map suffices to update
909 		 * the read ahead count safely.
910 		 */
911 		fs->entry->read_ahead = nera;
912 	}
913 
914 	return (nera);
915 }
916 
917 static int
vm_fault_lookup(struct faultstate * fs)918 vm_fault_lookup(struct faultstate *fs)
919 {
920 	int result;
921 
922 	KASSERT(!fs->lookup_still_valid,
923 	   ("vm_fault_lookup: Map already locked."));
924 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
925 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
926 	    &fs->first_pindex, &fs->prot, &fs->wired);
927 	if (result != KERN_SUCCESS) {
928 		vm_fault_unlock_vp(fs);
929 		return (result);
930 	}
931 
932 	fs->map_generation = fs->map->timestamp;
933 
934 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
935 		panic("%s: fault on nofault entry, addr: %#lx",
936 		    __func__, (u_long)fs->vaddr);
937 	}
938 
939 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
940 	    fs->entry->wiring_thread != curthread) {
941 		vm_map_unlock_read(fs->map);
942 		vm_map_lock(fs->map);
943 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
944 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
945 			vm_fault_unlock_vp(fs);
946 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
947 			vm_map_unlock_and_wait(fs->map, 0);
948 		} else
949 			vm_map_unlock(fs->map);
950 		return (KERN_RESOURCE_SHORTAGE);
951 	}
952 
953 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
954 
955 	if (fs->wired)
956 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
957 	else
958 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
959 		    ("!fs->wired && VM_FAULT_WIRE"));
960 	fs->lookup_still_valid = true;
961 
962 	return (KERN_SUCCESS);
963 }
964 
965 static int
vm_fault_relookup(struct faultstate * fs)966 vm_fault_relookup(struct faultstate *fs)
967 {
968 	vm_object_t retry_object;
969 	vm_pindex_t retry_pindex;
970 	vm_prot_t retry_prot;
971 	int result;
972 
973 	if (!vm_map_trylock_read(fs->map))
974 		return (KERN_RESTART);
975 
976 	fs->lookup_still_valid = true;
977 	if (fs->map->timestamp == fs->map_generation)
978 		return (KERN_SUCCESS);
979 
980 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
981 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
982 	    &fs->wired);
983 	if (result != KERN_SUCCESS) {
984 		/*
985 		 * If retry of map lookup would have blocked then
986 		 * retry fault from start.
987 		 */
988 		if (result == KERN_FAILURE)
989 			return (KERN_RESTART);
990 		return (result);
991 	}
992 	if (retry_object != fs->first_object ||
993 	    retry_pindex != fs->first_pindex)
994 		return (KERN_RESTART);
995 
996 	/*
997 	 * Check whether the protection has changed or the object has
998 	 * been copied while we left the map unlocked. Changing from
999 	 * read to write permission is OK - we leave the page
1000 	 * write-protected, and catch the write fault. Changing from
1001 	 * write to read permission means that we can't mark the page
1002 	 * write-enabled after all.
1003 	 */
1004 	fs->prot &= retry_prot;
1005 	fs->fault_type &= retry_prot;
1006 	if (fs->prot == 0)
1007 		return (KERN_RESTART);
1008 
1009 	/* Reassert because wired may have changed. */
1010 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1011 	    ("!wired && VM_FAULT_WIRE"));
1012 
1013 	return (KERN_SUCCESS);
1014 }
1015 
1016 static bool
vm_fault_can_cow_rename(struct faultstate * fs)1017 vm_fault_can_cow_rename(struct faultstate *fs)
1018 {
1019 	return (
1020 	    /* Only one shadow object and no other refs. */
1021 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1022 	    /* No other ways to look the object up. */
1023 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1024 }
1025 
1026 static void
vm_fault_cow(struct faultstate * fs)1027 vm_fault_cow(struct faultstate *fs)
1028 {
1029 	bool is_first_object_locked, rename_cow;
1030 
1031 	KASSERT(vm_fault_might_be_cow(fs),
1032 	    ("source and target COW objects are identical"));
1033 
1034 	/*
1035 	 * This allows pages to be virtually copied from a backing_object
1036 	 * into the first_object, where the backing object has no other
1037 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1038 	 * we just move the page from the backing object to the first
1039 	 * object.  Note that we must mark the page dirty in the first
1040 	 * object so that it will go out to swap when needed.
1041 	 */
1042 	is_first_object_locked = false;
1043 	rename_cow = false;
1044 
1045 	if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1046 		/*
1047 		 * Check that we don't chase down the shadow chain and
1048 		 * we can acquire locks.  Recheck the conditions for
1049 		 * rename after the shadow chain is stable after the
1050 		 * object locking.
1051 		 */
1052 		is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1053 		if (is_first_object_locked &&
1054 		    fs->object == fs->first_object->backing_object) {
1055 			if (VM_OBJECT_TRYWLOCK(fs->object)) {
1056 				rename_cow = vm_fault_can_cow_rename(fs);
1057 				if (!rename_cow)
1058 					VM_OBJECT_WUNLOCK(fs->object);
1059 			}
1060 		}
1061 	}
1062 
1063 	if (rename_cow) {
1064 		vm_page_assert_xbusied(fs->m);
1065 
1066 		/*
1067 		 * Remove but keep xbusy for replace.  fs->m is moved into
1068 		 * fs->first_object and left busy while fs->first_m is
1069 		 * conditionally freed.
1070 		 */
1071 		vm_page_remove_xbusy(fs->m);
1072 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1073 		    fs->first_m);
1074 		vm_page_dirty(fs->m);
1075 #if VM_NRESERVLEVEL > 0
1076 		/*
1077 		 * Rename the reservation.
1078 		 */
1079 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1080 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1081 #endif
1082 		VM_OBJECT_WUNLOCK(fs->object);
1083 		VM_OBJECT_WUNLOCK(fs->first_object);
1084 		fs->first_m = fs->m;
1085 		fs->m = NULL;
1086 		VM_CNT_INC(v_cow_optim);
1087 	} else {
1088 		if (is_first_object_locked)
1089 			VM_OBJECT_WUNLOCK(fs->first_object);
1090 		/*
1091 		 * Oh, well, lets copy it.
1092 		 */
1093 		pmap_copy_page(fs->m, fs->first_m);
1094 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1095 			vm_page_wire(fs->first_m);
1096 			vm_page_unwire(fs->m, PQ_INACTIVE);
1097 		}
1098 		/*
1099 		 * Save the COW page to be released after pmap_enter is
1100 		 * complete.  The new copy will be marked valid when we're ready
1101 		 * to map it.
1102 		 */
1103 		fs->m_cow = fs->m;
1104 		fs->m = NULL;
1105 
1106 		/*
1107 		 * Typically, the shadow object is either private to this
1108 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1109 		 * In the highly unusual case where the pages of a shadow object
1110 		 * are read/write shared between this and other address spaces,
1111 		 * we need to ensure that any pmap-level mappings to the
1112 		 * original, copy-on-write page from the backing object are
1113 		 * removed from those other address spaces.
1114 		 *
1115 		 * The flag check is racy, but this is tolerable: if
1116 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1117 		 * ensures that new mappings of m_cow can't be created.
1118 		 * pmap_enter() will replace an existing mapping in the current
1119 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1120 		 * removing mappings will at worse trigger some unnecessary page
1121 		 * faults.
1122 		 *
1123 		 * In the fs->m shared busy case, the xbusy state of
1124 		 * fs->first_m prevents new mappings of fs->m from
1125 		 * being created because a parallel fault on this
1126 		 * shadow chain should wait for xbusy on fs->first_m.
1127 		 */
1128 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1129 			pmap_remove_all(fs->m_cow);
1130 	}
1131 
1132 	vm_object_pip_wakeup(fs->object);
1133 
1134 	/*
1135 	 * Only use the new page below...
1136 	 */
1137 	fs->object = fs->first_object;
1138 	fs->pindex = fs->first_pindex;
1139 	fs->m = fs->first_m;
1140 	VM_CNT_INC(v_cow_faults);
1141 	curthread->td_cow++;
1142 }
1143 
1144 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1145 vm_fault_next(struct faultstate *fs)
1146 {
1147 	vm_object_t next_object;
1148 
1149 	if (fs->object == fs->first_object || !fs->can_read_lock)
1150 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1151 	else
1152 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1153 
1154 	/*
1155 	 * The requested page does not exist at this object/
1156 	 * offset.  Remove the invalid page from the object,
1157 	 * waking up anyone waiting for it, and continue on to
1158 	 * the next object.  However, if this is the top-level
1159 	 * object, we must leave the busy page in place to
1160 	 * prevent another process from rushing past us, and
1161 	 * inserting the page in that object at the same time
1162 	 * that we are.
1163 	 */
1164 	if (fs->object == fs->first_object) {
1165 		fs->first_m = fs->m;
1166 		fs->m = NULL;
1167 	} else if (fs->m != NULL) {
1168 		if (!vm_fault_object_ensure_wlocked(fs)) {
1169 			fs->can_read_lock = false;
1170 			vm_fault_unlock_and_deallocate(fs);
1171 			return (FAULT_NEXT_RESTART);
1172 		}
1173 		vm_fault_page_free(&fs->m);
1174 	}
1175 
1176 	/*
1177 	 * Move on to the next object.  Lock the next object before
1178 	 * unlocking the current one.
1179 	 */
1180 	next_object = fs->object->backing_object;
1181 	if (next_object == NULL)
1182 		return (FAULT_NEXT_NOOBJ);
1183 	MPASS(fs->first_m != NULL);
1184 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1185 	if (fs->can_read_lock)
1186 		VM_OBJECT_RLOCK(next_object);
1187 	else
1188 		VM_OBJECT_WLOCK(next_object);
1189 	vm_object_pip_add(next_object, 1);
1190 	if (fs->object != fs->first_object)
1191 		vm_object_pip_wakeup(fs->object);
1192 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1193 	VM_OBJECT_UNLOCK(fs->object);
1194 	fs->object = next_object;
1195 
1196 	return (FAULT_NEXT_GOTOBJ);
1197 }
1198 
1199 static void
vm_fault_zerofill(struct faultstate * fs)1200 vm_fault_zerofill(struct faultstate *fs)
1201 {
1202 
1203 	/*
1204 	 * If there's no object left, fill the page in the top
1205 	 * object with zeros.
1206 	 */
1207 	if (vm_fault_might_be_cow(fs)) {
1208 		vm_object_pip_wakeup(fs->object);
1209 		fs->object = fs->first_object;
1210 		fs->pindex = fs->first_pindex;
1211 	}
1212 	MPASS(fs->first_m != NULL);
1213 	MPASS(fs->m == NULL);
1214 	fs->m = fs->first_m;
1215 	fs->first_m = NULL;
1216 
1217 	/*
1218 	 * Zero the page if necessary and mark it valid.
1219 	 */
1220 	if ((fs->m->flags & PG_ZERO) == 0) {
1221 		pmap_zero_page(fs->m);
1222 	} else {
1223 		VM_CNT_INC(v_ozfod);
1224 	}
1225 	VM_CNT_INC(v_zfod);
1226 	vm_page_valid(fs->m);
1227 }
1228 
1229 /*
1230  * Initiate page fault after timeout.  Returns true if caller should
1231  * do vm_waitpfault() after the call.
1232  */
1233 static bool
vm_fault_allocate_oom(struct faultstate * fs)1234 vm_fault_allocate_oom(struct faultstate *fs)
1235 {
1236 	struct timeval now;
1237 
1238 	vm_fault_unlock_and_deallocate(fs);
1239 	if (vm_pfault_oom_attempts < 0)
1240 		return (true);
1241 	if (!fs->oom_started) {
1242 		fs->oom_started = true;
1243 		getmicrotime(&fs->oom_start_time);
1244 		return (true);
1245 	}
1246 
1247 	getmicrotime(&now);
1248 	timevalsub(&now, &fs->oom_start_time);
1249 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1250 		return (true);
1251 
1252 	if (bootverbose)
1253 		printf(
1254 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1255 		    curproc->p_pid, curproc->p_comm);
1256 	vm_pageout_oom(VM_OOM_MEM_PF);
1257 	fs->oom_started = false;
1258 	return (false);
1259 }
1260 
1261 /*
1262  * Allocate a page directly or via the object populate method.
1263  */
1264 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1265 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1266 {
1267 	struct domainset *dset;
1268 	enum fault_status res;
1269 
1270 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1271 		res = vm_fault_lock_vnode(fs, true);
1272 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1273 		if (res == FAULT_RESTART)
1274 			return (res);
1275 	}
1276 
1277 	if (fs->pindex >= fs->object->size) {
1278 		vm_fault_unlock_and_deallocate(fs);
1279 		return (FAULT_OUT_OF_BOUNDS);
1280 	}
1281 
1282 	if (fs->object == fs->first_object &&
1283 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1284 	    fs->first_object->shadow_count == 0) {
1285 		res = vm_fault_populate(fs);
1286 		switch (res) {
1287 		case FAULT_SUCCESS:
1288 		case FAULT_FAILURE:
1289 		case FAULT_RESTART:
1290 			vm_fault_unlock_and_deallocate(fs);
1291 			return (res);
1292 		case FAULT_CONTINUE:
1293 			pctrie_iter_reset(pages);
1294 			/*
1295 			 * Pager's populate() method
1296 			 * returned VM_PAGER_BAD.
1297 			 */
1298 			break;
1299 		default:
1300 			panic("inconsistent return codes");
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * Allocate a new page for this object/offset pair.
1306 	 *
1307 	 * If the process has a fatal signal pending, prioritize the allocation
1308 	 * with the expectation that the process will exit shortly and free some
1309 	 * pages.  In particular, the signal may have been posted by the page
1310 	 * daemon in an attempt to resolve an out-of-memory condition.
1311 	 *
1312 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1313 	 * might be not observed here, and allocation fails, causing a restart
1314 	 * and new reading of the p_flag.
1315 	 */
1316 	dset = fs->object->domain.dr_policy;
1317 	if (dset == NULL)
1318 		dset = curthread->td_domain.dr_policy;
1319 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1320 #if VM_NRESERVLEVEL > 0
1321 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1322 #endif
1323 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1324 			vm_fault_unlock_and_deallocate(fs);
1325 			return (FAULT_FAILURE);
1326 		}
1327 		fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1328 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1329 	}
1330 	if (fs->m == NULL) {
1331 		if (vm_fault_allocate_oom(fs))
1332 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1333 		return (FAULT_RESTART);
1334 	}
1335 	fs->oom_started = false;
1336 
1337 	return (FAULT_CONTINUE);
1338 }
1339 
1340 /*
1341  * Call the pager to retrieve the page if there is a chance
1342  * that the pager has it, and potentially retrieve additional
1343  * pages at the same time.
1344  */
1345 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1346 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1347 {
1348 	vm_offset_t e_end, e_start;
1349 	int ahead, behind, cluster_offset, rv;
1350 	enum fault_status status;
1351 	u_char behavior;
1352 
1353 	/*
1354 	 * Prepare for unlocking the map.  Save the map
1355 	 * entry's start and end addresses, which are used to
1356 	 * optimize the size of the pager operation below.
1357 	 * Even if the map entry's addresses change after
1358 	 * unlocking the map, using the saved addresses is
1359 	 * safe.
1360 	 */
1361 	e_start = fs->entry->start;
1362 	e_end = fs->entry->end;
1363 	behavior = vm_map_entry_behavior(fs->entry);
1364 
1365 	/*
1366 	 * If the pager for the current object might have
1367 	 * the page, then determine the number of additional
1368 	 * pages to read and potentially reprioritize
1369 	 * previously read pages for earlier reclamation.
1370 	 * These operations should only be performed once per
1371 	 * page fault.  Even if the current pager doesn't
1372 	 * have the page, the number of additional pages to
1373 	 * read will apply to subsequent objects in the
1374 	 * shadow chain.
1375 	 */
1376 	if (fs->nera == -1 && !P_KILLED(curproc))
1377 		fs->nera = vm_fault_readahead(fs);
1378 
1379 	/*
1380 	 * Release the map lock before locking the vnode or
1381 	 * sleeping in the pager.  (If the current object has
1382 	 * a shadow, then an earlier iteration of this loop
1383 	 * may have already unlocked the map.)
1384 	 */
1385 	vm_fault_unlock_map(fs);
1386 
1387 	status = vm_fault_lock_vnode(fs, false);
1388 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1389 	if (status == FAULT_RESTART)
1390 		return (status);
1391 	KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1392 	    ("vm_fault: vnode-backed object mapped by system map"));
1393 
1394 	/*
1395 	 * Page in the requested page and hint the pager,
1396 	 * that it may bring up surrounding pages.
1397 	 */
1398 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1399 	    P_KILLED(curproc)) {
1400 		behind = 0;
1401 		ahead = 0;
1402 	} else {
1403 		/* Is this a sequential fault? */
1404 		if (fs->nera > 0) {
1405 			behind = 0;
1406 			ahead = fs->nera;
1407 		} else {
1408 			/*
1409 			 * Request a cluster of pages that is
1410 			 * aligned to a VM_FAULT_READ_DEFAULT
1411 			 * page offset boundary within the
1412 			 * object.  Alignment to a page offset
1413 			 * boundary is more likely to coincide
1414 			 * with the underlying file system
1415 			 * block than alignment to a virtual
1416 			 * address boundary.
1417 			 */
1418 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1419 			behind = ulmin(cluster_offset,
1420 			    atop(fs->vaddr - e_start));
1421 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1422 		}
1423 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1424 	}
1425 	*behindp = behind;
1426 	*aheadp = ahead;
1427 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1428 	if (rv == VM_PAGER_OK)
1429 		return (FAULT_HARD);
1430 	if (rv == VM_PAGER_ERROR)
1431 		printf("vm_fault: pager read error, pid %d (%s)\n",
1432 		    curproc->p_pid, curproc->p_comm);
1433 	/*
1434 	 * If an I/O error occurred or the requested page was
1435 	 * outside the range of the pager, clean up and return
1436 	 * an error.
1437 	 */
1438 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1439 		VM_OBJECT_WLOCK(fs->object);
1440 		vm_fault_page_free(&fs->m);
1441 		vm_fault_unlock_and_deallocate(fs);
1442 		return (FAULT_OUT_OF_BOUNDS);
1443 	}
1444 	KASSERT(rv == VM_PAGER_FAIL,
1445 	    ("%s: unexpected pager error %d", __func__, rv));
1446 	return (FAULT_CONTINUE);
1447 }
1448 
1449 /*
1450  * Wait/Retry if the page is busy.  We have to do this if the page is
1451  * either exclusive or shared busy because the vm_pager may be using
1452  * read busy for pageouts (and even pageins if it is the vnode pager),
1453  * and we could end up trying to pagein and pageout the same page
1454  * simultaneously.
1455  *
1456  * We allow the busy case on a read fault if the page is valid.  We
1457  * cannot under any circumstances mess around with a shared busied
1458  * page except, perhaps, to pmap it.  This is controlled by the
1459  * VM_ALLOC_SBUSY bit in the allocflags argument.
1460  */
1461 static void
vm_fault_busy_sleep(struct faultstate * fs,int allocflags)1462 vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1463 {
1464 	/*
1465 	 * Reference the page before unlocking and
1466 	 * sleeping so that the page daemon is less
1467 	 * likely to reclaim it.
1468 	 */
1469 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1470 	if (vm_fault_might_be_cow(fs)) {
1471 		vm_fault_page_release(&fs->first_m);
1472 		vm_object_pip_wakeup(fs->first_object);
1473 	}
1474 	vm_object_pip_wakeup(fs->object);
1475 	vm_fault_unlock_map(fs);
1476 	if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1477 		VM_OBJECT_UNLOCK(fs->object);
1478 	VM_CNT_INC(v_intrans);
1479 	vm_object_deallocate(fs->first_object);
1480 }
1481 
1482 /*
1483  * Handle page lookup, populate, allocate, page-in for the current
1484  * object.
1485  *
1486  * The object is locked on entry and will remain locked with a return
1487  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1488  * Otherwise, the object will be unlocked upon return.
1489  */
1490 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1491 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1492 {
1493 	struct pctrie_iter pages;
1494 	enum fault_status res;
1495 	bool dead;
1496 
1497 	if (fs->object == fs->first_object || !fs->can_read_lock)
1498 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1499 	else
1500 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1501 
1502 	/*
1503 	 * If the object is marked for imminent termination, we retry
1504 	 * here, since the collapse pass has raced with us.  Otherwise,
1505 	 * if we see terminally dead object, return fail.
1506 	 */
1507 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1508 		dead = fs->object->type == OBJT_DEAD;
1509 		vm_fault_unlock_and_deallocate(fs);
1510 		if (dead)
1511 			return (FAULT_PROTECTION_FAILURE);
1512 		pause("vmf_de", 1);
1513 		return (FAULT_RESTART);
1514 	}
1515 
1516 	/*
1517 	 * See if the page is resident.
1518 	 */
1519 	vm_page_iter_init(&pages, fs->object);
1520 	fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1521 	if (fs->m != NULL) {
1522 		/*
1523 		 * If the found page is valid, will be either shadowed
1524 		 * or mapped read-only, and will not be renamed for
1525 		 * COW, then busy it in shared mode.  This allows
1526 		 * other faults needing this page to proceed in
1527 		 * parallel.
1528 		 *
1529 		 * Unlocked check for validity, rechecked after busy
1530 		 * is obtained.
1531 		 */
1532 		if (vm_page_all_valid(fs->m) &&
1533 		    /*
1534 		     * No write permissions for the new fs->m mapping,
1535 		     * or the first object has only one mapping, so
1536 		     * other writeable COW mappings of fs->m cannot
1537 		     * appear under us.
1538 		     */
1539 		    (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1540 		    /*
1541 		     * fs->m cannot be renamed from object to
1542 		     * first_object.  These conditions will be
1543 		     * re-checked with proper synchronization in
1544 		     * vm_fault_cow().
1545 		     */
1546 		    (!vm_fault_can_cow_rename(fs) ||
1547 		    fs->object != fs->first_object->backing_object)) {
1548 			if (!vm_page_trysbusy(fs->m)) {
1549 				vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1550 				return (FAULT_RESTART);
1551 			}
1552 
1553 			/*
1554 			 * Now make sure that racily checked
1555 			 * conditions are still valid.
1556 			 */
1557 			if (__predict_true(vm_page_all_valid(fs->m) &&
1558 			    (vm_fault_is_read(fs) ||
1559 			    vm_fault_might_be_cow(fs)))) {
1560 				VM_OBJECT_UNLOCK(fs->object);
1561 				return (FAULT_SOFT);
1562 			}
1563 
1564 			vm_page_sunbusy(fs->m);
1565 		}
1566 
1567 		if (!vm_page_tryxbusy(fs->m)) {
1568 			vm_fault_busy_sleep(fs, 0);
1569 			return (FAULT_RESTART);
1570 		}
1571 
1572 		/*
1573 		 * The page is marked busy for other processes and the
1574 		 * pagedaemon.  If it is still completely valid we are
1575 		 * done.
1576 		 */
1577 		if (vm_page_all_valid(fs->m)) {
1578 			VM_OBJECT_UNLOCK(fs->object);
1579 			return (FAULT_SOFT);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Page is not resident.  If the pager might contain the page
1585 	 * or this is the beginning of the search, allocate a new
1586 	 * page.
1587 	 */
1588 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1589 	    fs->object == fs->first_object)) {
1590 		if (!vm_fault_object_ensure_wlocked(fs)) {
1591 			fs->can_read_lock = false;
1592 			vm_fault_unlock_and_deallocate(fs);
1593 			return (FAULT_RESTART);
1594 		}
1595 		res = vm_fault_allocate(fs, &pages);
1596 		if (res != FAULT_CONTINUE)
1597 			return (res);
1598 	}
1599 
1600 	/*
1601 	 * Check to see if the pager can possibly satisfy this fault.
1602 	 * If not, skip to the next object without dropping the lock to
1603 	 * preserve atomicity of shadow faults.
1604 	 */
1605 	if (vm_fault_object_needs_getpages(fs->object)) {
1606 		/*
1607 		 * At this point, we have either allocated a new page
1608 		 * or found an existing page that is only partially
1609 		 * valid.
1610 		 *
1611 		 * We hold a reference on the current object and the
1612 		 * page is exclusive busied.  The exclusive busy
1613 		 * prevents simultaneous faults and collapses while
1614 		 * the object lock is dropped.
1615 		 */
1616 		VM_OBJECT_UNLOCK(fs->object);
1617 		res = vm_fault_getpages(fs, behindp, aheadp);
1618 		if (res == FAULT_CONTINUE)
1619 			VM_OBJECT_WLOCK(fs->object);
1620 	} else {
1621 		res = FAULT_CONTINUE;
1622 	}
1623 	return (res);
1624 }
1625 
1626 /*
1627  * vm_fault:
1628  *
1629  * Handle a page fault occurring at the given address, requiring the
1630  * given permissions, in the map specified.  If successful, the page
1631  * is inserted into the associated physical map, and optionally
1632  * referenced and returned in *m_hold.
1633  *
1634  * The given address should be truncated to the proper page address.
1635  *
1636  * KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1637  * Mach error specifying why the fault is fatal is returned.
1638  *
1639  * The map in question must be alive, either being the map for current
1640  * process, or the owner process hold count incremented to prevent
1641  * exit().
1642  *
1643  * If the thread private TDP_NOFAULTING flag is set, any fault results
1644  * in immediate protection failure.  Otherwise the fault is processed,
1645  * and caller may hold no locks.
1646  */
1647 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1648 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1649     int fault_flags, vm_page_t *m_hold)
1650 {
1651 	struct pctrie_iter pages;
1652 	struct faultstate fs;
1653 	int ahead, behind, faultcount, rv;
1654 	enum fault_status res;
1655 	enum fault_next_status res_next;
1656 	bool hardfault;
1657 
1658 	VM_CNT_INC(v_vm_faults);
1659 
1660 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1661 		return (KERN_PROTECTION_FAILURE);
1662 
1663 	fs.vp = NULL;
1664 	fs.vaddr = vaddr;
1665 	fs.m_hold = m_hold;
1666 	fs.fault_flags = fault_flags;
1667 	fs.map = map;
1668 	fs.lookup_still_valid = false;
1669 	fs.oom_started = false;
1670 	fs.nera = -1;
1671 	fs.can_read_lock = true;
1672 	faultcount = 0;
1673 	hardfault = false;
1674 
1675 RetryFault:
1676 	fs.fault_type = fault_type;
1677 
1678 	/*
1679 	 * Find the backing store object and offset into it to begin the
1680 	 * search.
1681 	 */
1682 	rv = vm_fault_lookup(&fs);
1683 	if (rv != KERN_SUCCESS) {
1684 		if (rv == KERN_RESOURCE_SHORTAGE)
1685 			goto RetryFault;
1686 		return (rv);
1687 	}
1688 
1689 	/*
1690 	 * Try to avoid lock contention on the top-level object through
1691 	 * special-case handling of some types of page faults, specifically,
1692 	 * those that are mapping an existing page from the top-level object.
1693 	 * Under this condition, a read lock on the object suffices, allowing
1694 	 * multiple page faults of a similar type to run in parallel.
1695 	 */
1696 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1697 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1698 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1699 		res = vm_fault_soft_fast(&fs);
1700 		if (res == FAULT_SUCCESS) {
1701 			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1702 			return (KERN_SUCCESS);
1703 		}
1704 		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1705 	} else {
1706 		vm_page_iter_init(&pages, fs.first_object);
1707 		VM_OBJECT_WLOCK(fs.first_object);
1708 	}
1709 
1710 	/*
1711 	 * Make a reference to this object to prevent its disposal while we
1712 	 * are messing with it.  Once we have the reference, the map is free
1713 	 * to be diddled.  Since objects reference their shadows (and copies),
1714 	 * they will stay around as well.
1715 	 *
1716 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1717 	 * truncation operations) during I/O.
1718 	 */
1719 	vm_object_reference_locked(fs.first_object);
1720 	vm_object_pip_add(fs.first_object, 1);
1721 
1722 	fs.m_cow = fs.m = fs.first_m = NULL;
1723 
1724 	/*
1725 	 * Search for the page at object/offset.
1726 	 */
1727 	fs.object = fs.first_object;
1728 	fs.pindex = fs.first_pindex;
1729 
1730 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1731 		res = vm_fault_allocate(&fs, &pages);
1732 		switch (res) {
1733 		case FAULT_RESTART:
1734 			goto RetryFault;
1735 		case FAULT_SUCCESS:
1736 			return (KERN_SUCCESS);
1737 		case FAULT_FAILURE:
1738 			return (KERN_FAILURE);
1739 		case FAULT_OUT_OF_BOUNDS:
1740 			return (KERN_OUT_OF_BOUNDS);
1741 		case FAULT_CONTINUE:
1742 			break;
1743 		default:
1744 			panic("vm_fault: Unhandled status %d", res);
1745 		}
1746 	}
1747 
1748 	while (TRUE) {
1749 		KASSERT(fs.m == NULL,
1750 		    ("page still set %p at loop start", fs.m));
1751 
1752 		res = vm_fault_object(&fs, &behind, &ahead);
1753 		switch (res) {
1754 		case FAULT_SOFT:
1755 			goto found;
1756 		case FAULT_HARD:
1757 			faultcount = behind + 1 + ahead;
1758 			hardfault = true;
1759 			goto found;
1760 		case FAULT_RESTART:
1761 			goto RetryFault;
1762 		case FAULT_SUCCESS:
1763 			return (KERN_SUCCESS);
1764 		case FAULT_FAILURE:
1765 			return (KERN_FAILURE);
1766 		case FAULT_OUT_OF_BOUNDS:
1767 			return (KERN_OUT_OF_BOUNDS);
1768 		case FAULT_PROTECTION_FAILURE:
1769 			return (KERN_PROTECTION_FAILURE);
1770 		case FAULT_CONTINUE:
1771 			break;
1772 		default:
1773 			panic("vm_fault: Unhandled status %d", res);
1774 		}
1775 
1776 		/*
1777 		 * The page was not found in the current object.  Try to
1778 		 * traverse into a backing object or zero fill if none is
1779 		 * found.
1780 		 */
1781 		res_next = vm_fault_next(&fs);
1782 		if (res_next == FAULT_NEXT_RESTART)
1783 			goto RetryFault;
1784 		else if (res_next == FAULT_NEXT_GOTOBJ)
1785 			continue;
1786 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1787 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1788 			if (fs.first_object == fs.object)
1789 				vm_fault_page_free(&fs.first_m);
1790 			vm_fault_unlock_and_deallocate(&fs);
1791 			return (KERN_OUT_OF_BOUNDS);
1792 		}
1793 		VM_OBJECT_UNLOCK(fs.object);
1794 		vm_fault_zerofill(&fs);
1795 		/* Don't try to prefault neighboring pages. */
1796 		faultcount = 1;
1797 		break;
1798 	}
1799 
1800 found:
1801 	/*
1802 	 * A valid page has been found and busied.  The object lock
1803 	 * must no longer be held if the page was busied.
1804 	 *
1805 	 * Regardless of the busy state of fs.m, fs.first_m is always
1806 	 * exclusively busied after the first iteration of the loop
1807 	 * calling vm_fault_object().  This is an ordering point for
1808 	 * the parallel faults occuring in on the same page.
1809 	 */
1810 	vm_page_assert_busied(fs.m);
1811 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1812 
1813 	/*
1814 	 * If the page is being written, but isn't already owned by the
1815 	 * top-level object, we have to copy it into a new page owned by the
1816 	 * top-level object.
1817 	 */
1818 	if (vm_fault_might_be_cow(&fs)) {
1819 		/*
1820 		 * We only really need to copy if we want to write it.
1821 		 */
1822 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1823 			vm_fault_cow(&fs);
1824 			/*
1825 			 * We only try to prefault read-only mappings to the
1826 			 * neighboring pages when this copy-on-write fault is
1827 			 * a hard fault.  In other cases, trying to prefault
1828 			 * is typically wasted effort.
1829 			 */
1830 			if (faultcount == 0)
1831 				faultcount = 1;
1832 
1833 		} else {
1834 			fs.prot &= ~VM_PROT_WRITE;
1835 		}
1836 	}
1837 
1838 	/*
1839 	 * We must verify that the maps have not changed since our last
1840 	 * lookup.
1841 	 */
1842 	if (!fs.lookup_still_valid) {
1843 		rv = vm_fault_relookup(&fs);
1844 		if (rv != KERN_SUCCESS) {
1845 			vm_fault_deallocate(&fs);
1846 			if (rv == KERN_RESTART)
1847 				goto RetryFault;
1848 			return (rv);
1849 		}
1850 	}
1851 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1852 
1853 	/*
1854 	 * If the page was filled by a pager, save the virtual address that
1855 	 * should be faulted on next under a sequential access pattern to the
1856 	 * map entry.  A read lock on the map suffices to update this address
1857 	 * safely.
1858 	 */
1859 	if (hardfault)
1860 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1861 
1862 	/*
1863 	 * If the page to be mapped was copied from a backing object, we defer
1864 	 * marking it valid until here, where the fault handler is guaranteed to
1865 	 * succeed.  Otherwise we can end up with a shadowed, mapped page in the
1866 	 * backing object, which violates an invariant of vm_object_collapse()
1867 	 * that shadowed pages are not mapped.
1868 	 */
1869 	if (fs.m_cow != NULL) {
1870 		KASSERT(vm_page_none_valid(fs.m),
1871 		    ("vm_fault: page %p is already valid", fs.m_cow));
1872 		vm_page_valid(fs.m);
1873 	}
1874 
1875 	/*
1876 	 * Page must be completely valid or it is not fit to
1877 	 * map into user space.  vm_pager_get_pages() ensures this.
1878 	 */
1879 	vm_page_assert_busied(fs.m);
1880 	KASSERT(vm_page_all_valid(fs.m),
1881 	    ("vm_fault: page %p partially invalid", fs.m));
1882 
1883 	vm_fault_dirty(&fs, fs.m);
1884 
1885 	/*
1886 	 * Put this page into the physical map.  We had to do the unlock above
1887 	 * because pmap_enter() may sleep.  We don't put the page
1888 	 * back on the active queue until later so that the pageout daemon
1889 	 * won't find it (yet).
1890 	 */
1891 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1892 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1893 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1894 	    fs.wired == 0)
1895 		vm_fault_prefault(&fs, vaddr,
1896 		    faultcount > 0 ? behind : PFBAK,
1897 		    faultcount > 0 ? ahead : PFFOR, false);
1898 
1899 	/*
1900 	 * If the page is not wired down, then put it where the pageout daemon
1901 	 * can find it.
1902 	 */
1903 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1904 		vm_page_wire(fs.m);
1905 	else
1906 		vm_page_activate(fs.m);
1907 	if (fs.m_hold != NULL) {
1908 		(*fs.m_hold) = fs.m;
1909 		vm_page_wire(fs.m);
1910 	}
1911 
1912 	KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1913 	    ("first_m must be xbusy"));
1914 	if (vm_page_xbusied(fs.m))
1915 		vm_page_xunbusy(fs.m);
1916 	else
1917 		vm_page_sunbusy(fs.m);
1918 	fs.m = NULL;
1919 
1920 	/*
1921 	 * Unlock everything, and return
1922 	 */
1923 	vm_fault_deallocate(&fs);
1924 	if (hardfault) {
1925 		VM_CNT_INC(v_io_faults);
1926 		curthread->td_ru.ru_majflt++;
1927 #ifdef RACCT
1928 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1929 			PROC_LOCK(curproc);
1930 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1931 				racct_add_force(curproc, RACCT_WRITEBPS,
1932 				    PAGE_SIZE + behind * PAGE_SIZE);
1933 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1934 			} else {
1935 				racct_add_force(curproc, RACCT_READBPS,
1936 				    PAGE_SIZE + ahead * PAGE_SIZE);
1937 				racct_add_force(curproc, RACCT_READIOPS, 1);
1938 			}
1939 			PROC_UNLOCK(curproc);
1940 		}
1941 #endif
1942 	} else
1943 		curthread->td_ru.ru_minflt++;
1944 
1945 	return (KERN_SUCCESS);
1946 }
1947 
1948 /*
1949  * Speed up the reclamation of pages that precede the faulting pindex within
1950  * the first object of the shadow chain.  Essentially, perform the equivalent
1951  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1952  * the faulting pindex by the cluster size when the pages read by vm_fault()
1953  * cross a cluster-size boundary.  The cluster size is the greater of the
1954  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1955  *
1956  * When "fs->first_object" is a shadow object, the pages in the backing object
1957  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1958  * function must only be concerned with pages in the first object.
1959  */
1960 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1961 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1962 {
1963 	struct pctrie_iter pages;
1964 	vm_map_entry_t entry;
1965 	vm_object_t first_object;
1966 	vm_offset_t end, start;
1967 	vm_page_t m;
1968 	vm_size_t size;
1969 
1970 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1971 	first_object = fs->first_object;
1972 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1973 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1974 		VM_OBJECT_RLOCK(first_object);
1975 		size = VM_FAULT_DONTNEED_MIN;
1976 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1977 			size = pagesizes[1];
1978 		end = rounddown2(vaddr, size);
1979 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1980 		    (entry = fs->entry)->start < end) {
1981 			if (end - entry->start < size)
1982 				start = entry->start;
1983 			else
1984 				start = end - size;
1985 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1986 			vm_page_iter_limit_init(&pages, first_object,
1987 			    OFF_TO_IDX(entry->offset) +
1988 			    atop(end - entry->start));
1989 			VM_RADIX_FOREACH_FROM(m, &pages,
1990 			    OFF_TO_IDX(entry->offset) +
1991 			    atop(start - entry->start)) {
1992 				if (!vm_page_all_valid(m) ||
1993 				    vm_page_busied(m))
1994 					continue;
1995 
1996 				/*
1997 				 * Don't clear PGA_REFERENCED, since it would
1998 				 * likely represent a reference by a different
1999 				 * process.
2000 				 *
2001 				 * Typically, at this point, prefetched pages
2002 				 * are still in the inactive queue.  Only
2003 				 * pages that triggered page faults are in the
2004 				 * active queue.  The test for whether the page
2005 				 * is in the inactive queue is racy; in the
2006 				 * worst case we will requeue the page
2007 				 * unnecessarily.
2008 				 */
2009 				if (!vm_page_inactive(m))
2010 					vm_page_deactivate(m);
2011 			}
2012 		}
2013 		VM_OBJECT_RUNLOCK(first_object);
2014 	}
2015 }
2016 
2017 /*
2018  * vm_fault_prefault provides a quick way of clustering
2019  * pagefaults into a processes address space.  It is a "cousin"
2020  * of vm_map_pmap_enter, except it runs at page fault time instead
2021  * of mmap time.
2022  */
2023 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)2024 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2025     int backward, int forward, bool obj_locked)
2026 {
2027 	pmap_t pmap;
2028 	vm_map_entry_t entry;
2029 	vm_object_t backing_object, lobject;
2030 	vm_offset_t addr, starta;
2031 	vm_pindex_t pindex;
2032 	vm_page_t m;
2033 	vm_prot_t prot;
2034 	int i;
2035 
2036 	pmap = fs->map->pmap;
2037 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2038 		return;
2039 
2040 	entry = fs->entry;
2041 
2042 	if (addra < backward * PAGE_SIZE) {
2043 		starta = entry->start;
2044 	} else {
2045 		starta = addra - backward * PAGE_SIZE;
2046 		if (starta < entry->start)
2047 			starta = entry->start;
2048 	}
2049 	prot = entry->protection;
2050 
2051 	/*
2052 	 * If pmap_enter() has enabled write access on a nearby mapping, then
2053 	 * don't attempt promotion, because it will fail.
2054 	 */
2055 	if ((fs->prot & VM_PROT_WRITE) != 0)
2056 		prot |= VM_PROT_NO_PROMOTE;
2057 
2058 	/*
2059 	 * Generate the sequence of virtual addresses that are candidates for
2060 	 * prefaulting in an outward spiral from the faulting virtual address,
2061 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
2062 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2063 	 * If the candidate address doesn't have a backing physical page, then
2064 	 * the loop immediately terminates.
2065 	 */
2066 	for (i = 0; i < 2 * imax(backward, forward); i++) {
2067 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2068 		    PAGE_SIZE);
2069 		if (addr > addra + forward * PAGE_SIZE)
2070 			addr = 0;
2071 
2072 		if (addr < starta || addr >= entry->end)
2073 			continue;
2074 
2075 		if (!pmap_is_prefaultable(pmap, addr))
2076 			continue;
2077 
2078 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2079 		lobject = entry->object.vm_object;
2080 		if (!obj_locked)
2081 			VM_OBJECT_RLOCK(lobject);
2082 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2083 		    !vm_fault_object_needs_getpages(lobject) &&
2084 		    (backing_object = lobject->backing_object) != NULL) {
2085 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2086 			    0, ("vm_fault_prefault: unaligned object offset"));
2087 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2088 			VM_OBJECT_RLOCK(backing_object);
2089 			if (!obj_locked || lobject != entry->object.vm_object)
2090 				VM_OBJECT_RUNLOCK(lobject);
2091 			lobject = backing_object;
2092 		}
2093 		if (m == NULL) {
2094 			if (!obj_locked || lobject != entry->object.vm_object)
2095 				VM_OBJECT_RUNLOCK(lobject);
2096 			break;
2097 		}
2098 		if (vm_page_all_valid(m) &&
2099 		    (m->flags & PG_FICTITIOUS) == 0)
2100 			pmap_enter_quick(pmap, addr, m, prot);
2101 		if (!obj_locked || lobject != entry->object.vm_object)
2102 			VM_OBJECT_RUNLOCK(lobject);
2103 	}
2104 }
2105 
2106 /*
2107  * Hold each of the physical pages that are mapped by the specified
2108  * range of virtual addresses, ["addr", "addr" + "len"), if those
2109  * mappings are valid and allow the specified types of access, "prot".
2110  * If all of the implied pages are successfully held, then the number
2111  * of held pages is assigned to *ppages_count, together with pointers
2112  * to those pages in the array "ma". The returned value is zero.
2113  *
2114  * However, if any of the pages cannot be held, an error is returned,
2115  * and no pages are held.
2116  * Error values:
2117  *   ENOMEM - the range is not valid
2118  *   EINVAL - the provided vm_page array is too small to hold all pages
2119  *   EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2120  *   EFAULT - a page with requested permissions cannot be mapped
2121  *            (more detailed result from vm_fault() is lost)
2122  */
2123 int
vm_fault_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count,int * ppages_count)2124 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2125     vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2126 {
2127 	vm_offset_t end, va;
2128 	vm_page_t *mp;
2129 	int count, error;
2130 	boolean_t pmap_failed;
2131 
2132 	if (len == 0) {
2133 		*ppages_count = 0;
2134 		return (0);
2135 	}
2136 	end = round_page(addr + len);
2137 	addr = trunc_page(addr);
2138 
2139 	if (!vm_map_range_valid(map, addr, end))
2140 		return (ENOMEM);
2141 
2142 	if (atop(end - addr) > max_count)
2143 		return (EINVAL);
2144 	count = atop(end - addr);
2145 
2146 	/*
2147 	 * Most likely, the physical pages are resident in the pmap, so it is
2148 	 * faster to try pmap_extract_and_hold() first.
2149 	 */
2150 	pmap_failed = FALSE;
2151 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2152 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2153 		if (*mp == NULL)
2154 			pmap_failed = TRUE;
2155 		else if ((prot & VM_PROT_WRITE) != 0 &&
2156 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2157 			/*
2158 			 * Explicitly dirty the physical page.  Otherwise, the
2159 			 * caller's changes may go unnoticed because they are
2160 			 * performed through an unmanaged mapping or by a DMA
2161 			 * operation.
2162 			 *
2163 			 * The object lock is not held here.
2164 			 * See vm_page_clear_dirty_mask().
2165 			 */
2166 			vm_page_dirty(*mp);
2167 		}
2168 	}
2169 	if (pmap_failed) {
2170 		/*
2171 		 * One or more pages could not be held by the pmap.  Either no
2172 		 * page was mapped at the specified virtual address or that
2173 		 * mapping had insufficient permissions.  Attempt to fault in
2174 		 * and hold these pages.
2175 		 *
2176 		 * If vm_fault_disable_pagefaults() was called,
2177 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2178 		 * acquire MD VM locks, which means we must not call
2179 		 * vm_fault().  Some (out of tree) callers mark
2180 		 * too wide a code area with vm_fault_disable_pagefaults()
2181 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2182 		 * the proper behaviour explicitly.
2183 		 */
2184 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2185 		    (curthread->td_pflags & TDP_NOFAULTING) != 0) {
2186 			error = EAGAIN;
2187 			goto fail;
2188 		}
2189 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2190 			if (*mp == NULL && vm_fault(map, va, prot,
2191 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2192 				error = EFAULT;
2193 				goto fail;
2194 			}
2195 		}
2196 	}
2197 	*ppages_count = count;
2198 	return (0);
2199 fail:
2200 	for (mp = ma; mp < ma + count; mp++)
2201 		if (*mp != NULL)
2202 			vm_page_unwire(*mp, PQ_INACTIVE);
2203 	return (error);
2204 }
2205 
2206  /*
2207  * Hold each of the physical pages that are mapped by the specified range of
2208  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2209  * and allow the specified types of access, "prot".  If all of the implied
2210  * pages are successfully held, then the number of held pages is returned
2211  * together with pointers to those pages in the array "ma".  However, if any
2212  * of the pages cannot be held, -1 is returned.
2213  */
2214 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2215 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2216     vm_prot_t prot, vm_page_t *ma, int max_count)
2217 {
2218 	int error, pages_count;
2219 
2220 	error = vm_fault_hold_pages(map, addr, len, prot, ma,
2221 	    max_count, &pages_count);
2222 	if (error != 0) {
2223 		if (error == EINVAL)
2224 			panic("vm_fault_quick_hold_pages: count > max_count");
2225 		return (-1);
2226 	}
2227 	return (pages_count);
2228 }
2229 
2230 /*
2231  *	Routine:
2232  *		vm_fault_copy_entry
2233  *	Function:
2234  *		Create new object backing dst_entry with private copy of all
2235  *		underlying pages. When src_entry is equal to dst_entry, function
2236  *		implements COW for wired-down map entry. Otherwise, it forks
2237  *		wired entry into dst_map.
2238  *
2239  *	In/out conditions:
2240  *		The source and destination maps must be locked for write.
2241  *		The source map entry must be wired down (or be a sharing map
2242  *		entry corresponding to a main map entry that is wired down).
2243  */
2244 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2245 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2246     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2247     vm_ooffset_t *fork_charge)
2248 {
2249 	struct pctrie_iter pages;
2250 	vm_object_t backing_object, dst_object, object, src_object;
2251 	vm_pindex_t dst_pindex, pindex, src_pindex;
2252 	vm_prot_t access, prot;
2253 	vm_offset_t vaddr;
2254 	vm_page_t dst_m;
2255 	vm_page_t src_m;
2256 	bool upgrade;
2257 
2258 	upgrade = src_entry == dst_entry;
2259 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2260 	    ("vm_fault_copy_entry: vm_object not NULL"));
2261 
2262 	/*
2263 	 * If not an upgrade, then enter the mappings in the pmap as
2264 	 * read and/or execute accesses.  Otherwise, enter them as
2265 	 * write accesses.
2266 	 *
2267 	 * A writeable large page mapping is only created if all of
2268 	 * the constituent small page mappings are modified. Marking
2269 	 * PTEs as modified on inception allows promotion to happen
2270 	 * without taking potentially large number of soft faults.
2271 	 */
2272 	access = prot = dst_entry->protection;
2273 	if (!upgrade)
2274 		access &= ~VM_PROT_WRITE;
2275 
2276 	src_object = src_entry->object.vm_object;
2277 	src_pindex = OFF_TO_IDX(src_entry->offset);
2278 
2279 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2280 		dst_object = src_object;
2281 		vm_object_reference(dst_object);
2282 	} else {
2283 		/*
2284 		 * Create the top-level object for the destination entry.
2285 		 * Doesn't actually shadow anything - we copy the pages
2286 		 * directly.
2287 		 */
2288 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2289 		    dst_entry->start), NULL, NULL, 0);
2290 #if VM_NRESERVLEVEL > 0
2291 		dst_object->flags |= OBJ_COLORED;
2292 		dst_object->pg_color = atop(dst_entry->start);
2293 #endif
2294 		dst_object->domain = src_object->domain;
2295 		dst_object->charge = dst_entry->end - dst_entry->start;
2296 
2297 		dst_entry->object.vm_object = dst_object;
2298 		dst_entry->offset = 0;
2299 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2300 	}
2301 
2302 	VM_OBJECT_WLOCK(dst_object);
2303 	if (fork_charge != NULL) {
2304 		KASSERT(dst_entry->cred == NULL,
2305 		    ("vm_fault_copy_entry: leaked swp charge"));
2306 		dst_object->cred = curthread->td_ucred;
2307 		crhold(dst_object->cred);
2308 		*fork_charge += dst_object->charge;
2309 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2310 	    dst_object->cred == NULL) {
2311 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2312 		    dst_entry));
2313 		dst_object->cred = dst_entry->cred;
2314 		dst_entry->cred = NULL;
2315 	}
2316 
2317 	/*
2318 	 * Loop through all of the virtual pages within the entry's
2319 	 * range, copying each page from the source object to the
2320 	 * destination object.  Since the source is wired, those pages
2321 	 * must exist.  In contrast, the destination is pageable.
2322 	 * Since the destination object doesn't share any backing storage
2323 	 * with the source object, all of its pages must be dirtied,
2324 	 * regardless of whether they can be written.
2325 	 */
2326 	vm_page_iter_init(&pages, dst_object);
2327 	for (vaddr = dst_entry->start, dst_pindex = 0;
2328 	    vaddr < dst_entry->end;
2329 	    vaddr += PAGE_SIZE, dst_pindex++) {
2330 again:
2331 		/*
2332 		 * Find the page in the source object, and copy it in.
2333 		 * Because the source is wired down, the page will be
2334 		 * in memory.
2335 		 */
2336 		if (src_object != dst_object)
2337 			VM_OBJECT_RLOCK(src_object);
2338 		object = src_object;
2339 		pindex = src_pindex + dst_pindex;
2340 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2341 		    (backing_object = object->backing_object) != NULL) {
2342 			/*
2343 			 * Unless the source mapping is read-only or
2344 			 * it is presently being upgraded from
2345 			 * read-only, the first object in the shadow
2346 			 * chain should provide all of the pages.  In
2347 			 * other words, this loop body should never be
2348 			 * executed when the source mapping is already
2349 			 * read/write.
2350 			 */
2351 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2352 			    upgrade,
2353 			    ("vm_fault_copy_entry: main object missing page"));
2354 
2355 			VM_OBJECT_RLOCK(backing_object);
2356 			pindex += OFF_TO_IDX(object->backing_object_offset);
2357 			if (object != dst_object)
2358 				VM_OBJECT_RUNLOCK(object);
2359 			object = backing_object;
2360 		}
2361 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2362 
2363 		if (object != dst_object) {
2364 			/*
2365 			 * Allocate a page in the destination object.
2366 			 */
2367 			pindex = (src_object == dst_object ? src_pindex : 0) +
2368 			    dst_pindex;
2369 			dst_m = vm_page_alloc_iter(dst_object, pindex,
2370 			    VM_ALLOC_NORMAL, &pages);
2371 			if (dst_m == NULL) {
2372 				VM_OBJECT_WUNLOCK(dst_object);
2373 				VM_OBJECT_RUNLOCK(object);
2374 				vm_wait(dst_object);
2375 				VM_OBJECT_WLOCK(dst_object);
2376 				pctrie_iter_reset(&pages);
2377 				goto again;
2378 			}
2379 
2380 			/*
2381 			 * See the comment in vm_fault_cow().
2382 			 */
2383 			if (src_object == dst_object &&
2384 			    (object->flags & OBJ_ONEMAPPING) == 0)
2385 				pmap_remove_all(src_m);
2386 			pmap_copy_page(src_m, dst_m);
2387 
2388 			/*
2389 			 * The object lock does not guarantee that "src_m" will
2390 			 * transition from invalid to valid, but it does ensure
2391 			 * that "src_m" will not transition from valid to
2392 			 * invalid.
2393 			 */
2394 			dst_m->dirty = dst_m->valid = src_m->valid;
2395 			VM_OBJECT_RUNLOCK(object);
2396 		} else {
2397 			dst_m = src_m;
2398 			if (vm_page_busy_acquire(
2399 			    dst_m, VM_ALLOC_WAITFAIL) == 0) {
2400 				pctrie_iter_reset(&pages);
2401 				goto again;
2402 			}
2403 			if (dst_m->pindex >= dst_object->size) {
2404 				/*
2405 				 * We are upgrading.  Index can occur
2406 				 * out of bounds if the object type is
2407 				 * vnode and the file was truncated.
2408 				 */
2409 				vm_page_xunbusy(dst_m);
2410 				break;
2411 			}
2412 		}
2413 
2414 		/*
2415 		 * Enter it in the pmap. If a wired, copy-on-write
2416 		 * mapping is being replaced by a write-enabled
2417 		 * mapping, then wire that new mapping.
2418 		 *
2419 		 * The page can be invalid if the user called
2420 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2421 		 * or shared memory object.  In this case, do not
2422 		 * insert it into pmap, but still do the copy so that
2423 		 * all copies of the wired map entry have similar
2424 		 * backing pages.
2425 		 */
2426 		if (vm_page_all_valid(dst_m)) {
2427 			VM_OBJECT_WUNLOCK(dst_object);
2428 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2429 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2430 			VM_OBJECT_WLOCK(dst_object);
2431 		}
2432 
2433 		/*
2434 		 * Mark it no longer busy, and put it on the active list.
2435 		 */
2436 		if (upgrade) {
2437 			if (src_m != dst_m) {
2438 				vm_page_unwire(src_m, PQ_INACTIVE);
2439 				vm_page_wire(dst_m);
2440 			} else {
2441 				KASSERT(vm_page_wired(dst_m),
2442 				    ("dst_m %p is not wired", dst_m));
2443 			}
2444 		} else {
2445 			vm_page_activate(dst_m);
2446 		}
2447 		vm_page_xunbusy(dst_m);
2448 	}
2449 	VM_OBJECT_WUNLOCK(dst_object);
2450 	if (upgrade) {
2451 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2452 		vm_object_deallocate(src_object);
2453 	}
2454 }
2455 
2456 /*
2457  * Block entry into the machine-independent layer's page fault handler by
2458  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2459  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2460  * spurious page faults.
2461  */
2462 int
vm_fault_disable_pagefaults(void)2463 vm_fault_disable_pagefaults(void)
2464 {
2465 
2466 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2467 }
2468 
2469 void
vm_fault_enable_pagefaults(int save)2470 vm_fault_enable_pagefaults(int save)
2471 {
2472 
2473 	curthread_pflags_restore(save);
2474 }
2475