1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 1999 by Sun Microsystems, Inc.
24 * All rights reserved.
25 */
26
27 /*
28 * fsck_pcfs -- routines for manipulating the FAT.
29 */
30 #include <stdio.h>
31 #include <unistd.h>
32 #include <stdlib.h>
33 #include <libintl.h>
34 #include <sys/dktp/fdisk.h>
35 #include <sys/fs/pc_fs.h>
36 #include <sys/fs/pc_dir.h>
37 #include <sys/fs/pc_label.h>
38 #include "pcfs_common.h"
39 #include "fsck_pcfs.h"
40
41 extern int32_t BytesPerCluster;
42 extern int32_t TotalClusters;
43 extern int32_t LastCluster;
44 extern off64_t FirstClusterOffset;
45 extern off64_t PartitionOffset;
46 extern bpb_t TheBIOSParameterBlock;
47 extern int ReadOnly;
48 extern int IsFAT32;
49 extern int Verbose;
50
51 static uchar_t *TheFAT;
52 static int FATRewriteNeeded = 0;
53
54 int32_t FATSize;
55 short FATEntrySize;
56
57 static off64_t
seekFAT(int fd)58 seekFAT(int fd)
59 {
60 off64_t seekto;
61 /*
62 * The FAT(s) immediately follows the reserved sectors.
63 */
64 seekto = TheBIOSParameterBlock.bpb.resv_sectors *
65 TheBIOSParameterBlock.bpb.bytes_per_sector + PartitionOffset;
66 return (lseek64(fd, seekto, SEEK_SET));
67 }
68
69 void
getFAT(int fd)70 getFAT(int fd)
71 {
72 ssize_t bytesRead;
73
74 if (TheFAT != NULL) {
75 return;
76 } else if ((TheFAT = (uchar_t *)malloc(FATSize)) == NULL) {
77 mountSanityCheckFails();
78 perror(gettext("No memory for a copy of the FAT"));
79 (void) close(fd);
80 exit(7);
81 }
82 if (seekFAT(fd) < 0) {
83 mountSanityCheckFails();
84 perror(gettext("Cannot seek to FAT"));
85 (void) close(fd);
86 exit(7);
87 }
88 if (Verbose)
89 (void) fprintf(stderr,
90 gettext("Reading FAT\n"));
91 if ((bytesRead = read(fd, TheFAT, FATSize)) != FATSize) {
92 mountSanityCheckFails();
93 if (bytesRead < 0) {
94 perror(gettext("Cannot read a FAT"));
95 } else {
96 (void) fprintf(stderr,
97 gettext("Short read of FAT."));
98 }
99 (void) close(fd);
100 exit(7);
101 }
102 /*
103 * XXX - might want to read the other copies of the FAT
104 * for comparison and/or to use if the first one seems hosed.
105 */
106 if (Verbose) {
107 (void) fprintf(stderr,
108 gettext("Dump of FAT's first 32 bytes.\n"));
109 header_for_dump();
110 dump_bytes(TheFAT, 32);
111 }
112 }
113
114 void
writeFATMods(int fd)115 writeFATMods(int fd)
116 {
117 ssize_t bytesWritten;
118
119 if (TheFAT == NULL) {
120 (void) fprintf(stderr,
121 gettext("Internal error: No FAT to write\n"));
122 (void) close(fd);
123 exit(11);
124 }
125 if (!FATRewriteNeeded) {
126 if (Verbose) {
127 (void) fprintf(stderr,
128 gettext("No FAT changes need to be written.\n"));
129 }
130 return;
131 }
132 if (ReadOnly)
133 return;
134 if (Verbose)
135 (void) fprintf(stderr, gettext("Writing FAT\n"));
136 if (seekFAT(fd) < 0) {
137 perror(gettext("Cannot seek to FAT"));
138 (void) close(fd);
139 exit(11);
140 }
141 if ((bytesWritten = write(fd, TheFAT, FATSize)) != FATSize) {
142 if (bytesWritten < 0) {
143 perror(gettext("Cannot write FAT"));
144 } else {
145 (void) fprintf(stderr,
146 gettext("Short write of FAT."));
147 }
148 (void) close(fd);
149 exit(11);
150 }
151 FATRewriteNeeded = 0;
152 }
153
154 /*
155 * checkFAT32CleanBit()
156 * Return non-zero if the bit indicating proper Windows shutdown has
157 * been set.
158 */
159 int
checkFAT32CleanBit(int fd)160 checkFAT32CleanBit(int fd)
161 {
162 getFAT(fd);
163 return (TheFAT[WIN_SHUTDOWN_STATUS_BYTE] & WIN_SHUTDOWN_BIT_MASK);
164 }
165
166 static uchar_t *
findClusterEntryInFAT(int32_t currentCluster)167 findClusterEntryInFAT(int32_t currentCluster)
168 {
169 int32_t idx;
170 if (FATEntrySize == 32) {
171 idx = currentCluster * 4;
172 } else if (FATEntrySize == 16) {
173 idx = currentCluster * 2;
174 } else {
175 idx = currentCluster + currentCluster/2;
176 }
177 return (TheFAT + idx);
178 }
179
180 /*
181 * {read,write}FATentry
182 * For the 16 and 32 bit FATs these routines are relatively easy
183 * to follow.
184 *
185 * 12 bit FATs are kind of strange, though. The magic index for
186 * 12 bit FATS computed below, 1.5 * clusterNum, is a
187 * simplification that there are 8 bits in a byte, so you need
188 * 1.5 bytes per entry.
189 *
190 * It's easiest to think about FAT12 entries in pairs:
191 *
192 * ---------------------------------------------
193 * | mid1 | low1 | low2 | high1 | high2 | mid2 |
194 * ---------------------------------------------
195 *
196 * Each box in the diagram represents a nibble (4 bits) of a FAT
197 * entry. A FAT entry is made up of three nibbles. So if you
198 * look closely, you'll see that first byte of the pair of
199 * entries contains the low and middle nibbles of the first
200 * entry. The second byte has the low nibble of the second entry
201 * and the high nibble of the first entry. Those two bytes alone
202 * are enough to read the first entry. The second FAT entry is
203 * finished out by the last nibble pair.
204 */
205 int32_t
readFATEntry(int32_t currentCluster)206 readFATEntry(int32_t currentCluster)
207 {
208 int32_t value;
209 uchar_t *ep;
210
211 ep = findClusterEntryInFAT(currentCluster);
212 if (FATEntrySize == 32) {
213 read_32_bits(ep, (uint32_t *)&value);
214 } else if (FATEntrySize == 16) {
215 read_16_bits(ep, (uint32_t *)&value);
216 /*
217 * Convert 16 bit entry to 32 bit if we are
218 * into the reserved or higher values.
219 */
220 if (value >= PCF_RESCLUSTER)
221 value |= 0xFFF0000;
222 } else {
223 value = 0;
224 if (currentCluster & 1) {
225 /*
226 * Odd numbered cluster
227 */
228 value = (((unsigned int)*ep++ & 0xf0) >> 4);
229 value += (*ep << 4);
230 } else {
231 value = *ep++;
232 value += ((*ep & 0x0f) << 8);
233 }
234 /*
235 * Convert 12 bit entry to 32 bit if we are
236 * into the reserved or higher values.
237 */
238 if (value >= PCF_12BCLUSTER)
239 value |= 0xFFFF000;
240 }
241 return (value);
242 }
243
244 void
writeFATEntry(int32_t currentCluster,int32_t value)245 writeFATEntry(int32_t currentCluster, int32_t value)
246 {
247 uchar_t *ep;
248
249 FATRewriteNeeded = 1;
250 ep = findClusterEntryInFAT(currentCluster);
251 if (FATEntrySize == 32) {
252 store_32_bits(&ep, value);
253 } else if (FATEntrySize == 16) {
254 store_16_bits(&ep, value);
255 } else {
256 if (currentCluster & 1) {
257 /*
258 * Odd numbered cluster
259 */
260 *ep = (*ep & 0x0f) | ((value << 4) & 0xf0);
261 ep++;
262 *ep = (value >> 4) & 0xff;
263 } else {
264 *ep++ = value & 0xff;
265 *ep = (*ep & 0xf0) | ((value >> 8) & 0x0f);
266 }
267 }
268 }
269
270 /*
271 * reservedInFAT - Is this cluster marked in the reserved range?
272 * The range from PCF_RESCLUSTER32 to PCF_BADCLUSTER32 - 1,
273 * have been reserved by Microsoft. No cluster should be
274 * marked with these; they are effectively invalid cluster values.
275 */
276 int
reservedInFAT(int32_t clusterNum)277 reservedInFAT(int32_t clusterNum)
278 {
279 int32_t e;
280
281 e = readFATEntry(clusterNum);
282 return (e >= PCF_RESCLUSTER32 && e < PCF_BADCLUSTER32);
283 }
284
285 /*
286 * badInFAT - Is this cluster marked as bad? I.e., is it inaccessible?
287 */
288 int
badInFAT(int32_t clusterNum)289 badInFAT(int32_t clusterNum)
290 {
291 return (readFATEntry(clusterNum) == PCF_BADCLUSTER32);
292 }
293
294 /*
295 * lastInFAT - Is this cluster marked as free? I.e., is it available
296 * for use?
297 */
298 int
freeInFAT(int32_t clusterNum)299 freeInFAT(int32_t clusterNum)
300 {
301 return (readFATEntry(clusterNum) == PCF_FREECLUSTER);
302 }
303
304 /*
305 * lastInFAT - Is this cluster the last in its cluster chain?
306 */
307 int
lastInFAT(int32_t clusterNum)308 lastInFAT(int32_t clusterNum)
309 {
310 return (readFATEntry(clusterNum) == PCF_LASTCLUSTER32);
311 }
312
313 /*
314 * markLastInFAT - Mark this cluster as the last in its cluster chain.
315 */
316 void
markLastInFAT(int32_t clusterNum)317 markLastInFAT(int32_t clusterNum)
318 {
319 writeFATEntry(clusterNum, PCF_LASTCLUSTER32);
320 }
321
322 void
markFreeInFAT(int32_t clusterNum)323 markFreeInFAT(int32_t clusterNum)
324 {
325 writeFATEntry(clusterNum, PCF_FREECLUSTER);
326 }
327
328 void
markBadInFAT(int32_t clusterNum)329 markBadInFAT(int32_t clusterNum)
330 {
331 writeFATEntry(clusterNum, PCF_BADCLUSTER32);
332 }
333