1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * Portions Copyright 2010 The FreeBSD Foundation 22 */ 23 24 /* 25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 26 * Use is subject to license terms. 27 */ 28 29 #include <sys/fasttrap_isa.h> 30 #include <sys/fasttrap_impl.h> 31 #include <sys/dtrace.h> 32 #include <sys/dtrace_impl.h> 33 #include <sys/cmn_err.h> 34 #include <sys/types.h> 35 #include <sys/dtrace_bsd.h> 36 #include <sys/proc.h> 37 #include <sys/reg.h> 38 #include <sys/rmlock.h> 39 #include <cddl/dev/dtrace/dtrace_cddl.h> 40 #include <cddl/dev/dtrace/x86/regset.h> 41 #include <machine/segments.h> 42 #include <machine/pcb.h> 43 #include <machine/trap.h> 44 #include <sys/sysmacros.h> 45 #include <sys/ptrace.h> 46 47 #ifdef __i386__ 48 #define r_rax r_eax 49 #define r_rbx r_ebx 50 #define r_rip r_eip 51 #define r_rflags r_eflags 52 #define r_rsp r_esp 53 #define r_rbp r_ebp 54 #endif 55 56 /* 57 * Lossless User-Land Tracing on x86 58 * --------------------------------- 59 * 60 * The execution of most instructions is not dependent on the address; for 61 * these instructions it is sufficient to copy them into the user process's 62 * address space and execute them. To effectively single-step an instruction 63 * in user-land, we copy out the following sequence of instructions to scratch 64 * space in the user thread's ulwp_t structure. 65 * 66 * We then set the program counter (%eip or %rip) to point to this scratch 67 * space. Once execution resumes, the original instruction is executed and 68 * then control flow is redirected to what was originally the subsequent 69 * instruction. If the kernel attemps to deliver a signal while single- 70 * stepping, the signal is deferred and the program counter is moved into the 71 * second sequence of instructions. The second sequence ends in a trap into 72 * the kernel where the deferred signal is then properly handled and delivered. 73 * 74 * For instructions whose execute is position dependent, we perform simple 75 * emulation. These instructions are limited to control transfer 76 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle 77 * of %rip-relative addressing that means that almost any instruction can be 78 * position dependent. For all the details on how we emulate generic 79 * instructions included %rip-relative instructions, see the code in 80 * fasttrap_pid_probe() below where we handle instructions of type 81 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing). 82 */ 83 84 #define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3) 85 #define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7) 86 #define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7) 87 #define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm)) 88 89 #define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3) 90 #define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7) 91 #define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7) 92 93 #define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1) 94 #define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1) 95 #define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1) 96 #define FASTTRAP_REX_B(rex) ((rex) & 1) 97 #define FASTTRAP_REX(w, r, x, b) \ 98 (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b)) 99 100 /* 101 * Single-byte op-codes. 102 */ 103 #define FASTTRAP_PUSHL_EBP 0x55 104 105 #define FASTTRAP_JO 0x70 106 #define FASTTRAP_JNO 0x71 107 #define FASTTRAP_JB 0x72 108 #define FASTTRAP_JAE 0x73 109 #define FASTTRAP_JE 0x74 110 #define FASTTRAP_JNE 0x75 111 #define FASTTRAP_JBE 0x76 112 #define FASTTRAP_JA 0x77 113 #define FASTTRAP_JS 0x78 114 #define FASTTRAP_JNS 0x79 115 #define FASTTRAP_JP 0x7a 116 #define FASTTRAP_JNP 0x7b 117 #define FASTTRAP_JL 0x7c 118 #define FASTTRAP_JGE 0x7d 119 #define FASTTRAP_JLE 0x7e 120 #define FASTTRAP_JG 0x7f 121 122 #define FASTTRAP_NOP 0x90 123 124 #define FASTTRAP_MOV_EAX 0xb8 125 #define FASTTRAP_MOV_ECX 0xb9 126 127 #define FASTTRAP_RET16 0xc2 128 #define FASTTRAP_RET 0xc3 129 130 #define FASTTRAP_LOOPNZ 0xe0 131 #define FASTTRAP_LOOPZ 0xe1 132 #define FASTTRAP_LOOP 0xe2 133 #define FASTTRAP_JCXZ 0xe3 134 135 #define FASTTRAP_CALL 0xe8 136 #define FASTTRAP_JMP32 0xe9 137 #define FASTTRAP_JMP8 0xeb 138 139 #define FASTTRAP_INT3 0xcc 140 #define FASTTRAP_INT 0xcd 141 142 #define FASTTRAP_2_BYTE_OP 0x0f 143 #define FASTTRAP_GROUP5_OP 0xff 144 145 /* 146 * Two-byte op-codes (second byte only). 147 */ 148 #define FASTTRAP_0F_JO 0x80 149 #define FASTTRAP_0F_JNO 0x81 150 #define FASTTRAP_0F_JB 0x82 151 #define FASTTRAP_0F_JAE 0x83 152 #define FASTTRAP_0F_JE 0x84 153 #define FASTTRAP_0F_JNE 0x85 154 #define FASTTRAP_0F_JBE 0x86 155 #define FASTTRAP_0F_JA 0x87 156 #define FASTTRAP_0F_JS 0x88 157 #define FASTTRAP_0F_JNS 0x89 158 #define FASTTRAP_0F_JP 0x8a 159 #define FASTTRAP_0F_JNP 0x8b 160 #define FASTTRAP_0F_JL 0x8c 161 #define FASTTRAP_0F_JGE 0x8d 162 #define FASTTRAP_0F_JLE 0x8e 163 #define FASTTRAP_0F_JG 0x8f 164 165 #define FASTTRAP_EFLAGS_OF 0x800 166 #define FASTTRAP_EFLAGS_DF 0x400 167 #define FASTTRAP_EFLAGS_SF 0x080 168 #define FASTTRAP_EFLAGS_ZF 0x040 169 #define FASTTRAP_EFLAGS_AF 0x010 170 #define FASTTRAP_EFLAGS_PF 0x004 171 #define FASTTRAP_EFLAGS_CF 0x001 172 173 /* 174 * Instruction prefixes. 175 */ 176 #define FASTTRAP_PREFIX_OPERAND 0x66 177 #define FASTTRAP_PREFIX_ADDRESS 0x67 178 #define FASTTRAP_PREFIX_CS 0x2E 179 #define FASTTRAP_PREFIX_DS 0x3E 180 #define FASTTRAP_PREFIX_ES 0x26 181 #define FASTTRAP_PREFIX_FS 0x64 182 #define FASTTRAP_PREFIX_GS 0x65 183 #define FASTTRAP_PREFIX_SS 0x36 184 #define FASTTRAP_PREFIX_LOCK 0xF0 185 #define FASTTRAP_PREFIX_REP 0xF3 186 #define FASTTRAP_PREFIX_REPNE 0xF2 187 188 #define FASTTRAP_NOREG 0xff 189 190 /* 191 * Map between instruction register encodings and the kernel constants which 192 * correspond to indicies into struct regs. 193 */ 194 #ifdef __amd64 195 static const uint8_t regmap[16] = { 196 REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, 197 REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, 198 }; 199 #else 200 static const uint8_t regmap[8] = { 201 EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI 202 }; 203 #endif 204 205 static ulong_t fasttrap_getreg(struct reg *, uint_t); 206 207 static uint64_t 208 fasttrap_anarg(struct reg *rp, int function_entry, int argno) 209 { 210 uint64_t value = 0; 211 int shift = function_entry ? 1 : 0; 212 213 #ifdef __amd64 214 if (curproc->p_model == DATAMODEL_LP64) { 215 uintptr_t *stack; 216 217 /* 218 * In 64-bit mode, the first six arguments are stored in 219 * registers. 220 */ 221 if (argno < 6) 222 switch (argno) { 223 case 0: 224 return (rp->r_rdi); 225 case 1: 226 return (rp->r_rsi); 227 case 2: 228 return (rp->r_rdx); 229 case 3: 230 return (rp->r_rcx); 231 case 4: 232 return (rp->r_r8); 233 case 5: 234 return (rp->r_r9); 235 } 236 237 stack = (uintptr_t *)rp->r_rsp; 238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 239 value = dtrace_fulword(&stack[argno - 6 + shift]); 240 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); 241 } else { 242 #endif 243 uint32_t *stack = (uint32_t *)rp->r_rsp; 244 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 245 value = dtrace_fuword32(&stack[argno + shift]); 246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); 247 #ifdef __amd64 248 } 249 #endif 250 251 return (value); 252 } 253 254 /*ARGSUSED*/ 255 int 256 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc, 257 fasttrap_probe_type_t type) 258 { 259 uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10]; 260 size_t len = FASTTRAP_MAX_INSTR_SIZE; 261 size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET)); 262 uint_t start = 0; 263 int rmindex, size; 264 uint8_t seg, rex = 0; 265 266 /* 267 * Read the instruction at the given address out of the process's 268 * address space. We don't have to worry about a debugger 269 * changing this instruction before we overwrite it with our trap 270 * instruction since P_PR_LOCK is set. Since instructions can span 271 * pages, we potentially read the instruction in two parts. If the 272 * second part fails, we just zero out that part of the instruction. 273 */ 274 if (uread(p, &instr[0], first, pc) != 0) 275 return (-1); 276 if (len > first && 277 uread(p, &instr[first], len - first, pc + first) != 0) { 278 bzero(&instr[first], len - first); 279 len = first; 280 } 281 282 /* 283 * If the disassembly fails, then we have a malformed instruction. 284 */ 285 if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0) 286 return (-1); 287 288 /* 289 * Make sure the disassembler isn't completely broken. 290 */ 291 ASSERT(-1 <= rmindex && rmindex < size); 292 293 /* 294 * If the computed size is greater than the number of bytes read, 295 * then it was a malformed instruction possibly because it fell on a 296 * page boundary and the subsequent page was missing or because of 297 * some malicious user. 298 */ 299 if (size > len) 300 return (-1); 301 302 tp->ftt_size = (uint8_t)size; 303 tp->ftt_segment = FASTTRAP_SEG_NONE; 304 305 /* 306 * Find the start of the instruction's opcode by processing any 307 * legacy prefixes. 308 */ 309 for (;;) { 310 seg = 0; 311 switch (instr[start]) { 312 case FASTTRAP_PREFIX_SS: 313 seg++; 314 /*FALLTHRU*/ 315 case FASTTRAP_PREFIX_GS: 316 seg++; 317 /*FALLTHRU*/ 318 case FASTTRAP_PREFIX_FS: 319 seg++; 320 /*FALLTHRU*/ 321 case FASTTRAP_PREFIX_ES: 322 seg++; 323 /*FALLTHRU*/ 324 case FASTTRAP_PREFIX_DS: 325 seg++; 326 /*FALLTHRU*/ 327 case FASTTRAP_PREFIX_CS: 328 seg++; 329 /*FALLTHRU*/ 330 case FASTTRAP_PREFIX_OPERAND: 331 case FASTTRAP_PREFIX_ADDRESS: 332 case FASTTRAP_PREFIX_LOCK: 333 case FASTTRAP_PREFIX_REP: 334 case FASTTRAP_PREFIX_REPNE: 335 if (seg != 0) { 336 /* 337 * It's illegal for an instruction to specify 338 * two segment prefixes -- give up on this 339 * illegal instruction. 340 */ 341 if (tp->ftt_segment != FASTTRAP_SEG_NONE) 342 return (-1); 343 344 tp->ftt_segment = seg; 345 } 346 start++; 347 continue; 348 } 349 break; 350 } 351 352 #ifdef __amd64 353 /* 354 * Identify the REX prefix on 64-bit processes. 355 */ 356 if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40) 357 rex = instr[start++]; 358 #endif 359 360 /* 361 * Now that we're pretty sure that the instruction is okay, copy the 362 * valid part to the tracepoint. 363 */ 364 bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE); 365 366 tp->ftt_type = FASTTRAP_T_COMMON; 367 if (instr[start] == FASTTRAP_2_BYTE_OP) { 368 switch (instr[start + 1]) { 369 case FASTTRAP_0F_JO: 370 case FASTTRAP_0F_JNO: 371 case FASTTRAP_0F_JB: 372 case FASTTRAP_0F_JAE: 373 case FASTTRAP_0F_JE: 374 case FASTTRAP_0F_JNE: 375 case FASTTRAP_0F_JBE: 376 case FASTTRAP_0F_JA: 377 case FASTTRAP_0F_JS: 378 case FASTTRAP_0F_JNS: 379 case FASTTRAP_0F_JP: 380 case FASTTRAP_0F_JNP: 381 case FASTTRAP_0F_JL: 382 case FASTTRAP_0F_JGE: 383 case FASTTRAP_0F_JLE: 384 case FASTTRAP_0F_JG: 385 tp->ftt_type = FASTTRAP_T_JCC; 386 tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO; 387 tp->ftt_dest = pc + tp->ftt_size + 388 /* LINTED - alignment */ 389 *(int32_t *)&instr[start + 2]; 390 break; 391 } 392 } else if (instr[start] == FASTTRAP_GROUP5_OP) { 393 uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]); 394 uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]); 395 uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]); 396 397 if (reg == 2 || reg == 4) { 398 uint_t i, sz; 399 400 if (reg == 2) 401 tp->ftt_type = FASTTRAP_T_CALL; 402 else 403 tp->ftt_type = FASTTRAP_T_JMP; 404 405 if (mod == 3) 406 tp->ftt_code = 2; 407 else 408 tp->ftt_code = 1; 409 410 ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0); 411 412 /* 413 * See AMD x86-64 Architecture Programmer's Manual 414 * Volume 3, Section 1.2.7, Table 1-12, and 415 * Appendix A.3.1, Table A-15. 416 */ 417 if (mod != 3 && rm == 4) { 418 uint8_t sib = instr[start + 2]; 419 uint_t index = FASTTRAP_SIB_INDEX(sib); 420 uint_t base = FASTTRAP_SIB_BASE(sib); 421 422 tp->ftt_scale = FASTTRAP_SIB_SCALE(sib); 423 424 tp->ftt_index = (index == 4) ? 425 FASTTRAP_NOREG : 426 regmap[index | (FASTTRAP_REX_X(rex) << 3)]; 427 tp->ftt_base = (mod == 0 && base == 5) ? 428 FASTTRAP_NOREG : 429 regmap[base | (FASTTRAP_REX_B(rex) << 3)]; 430 431 i = 3; 432 sz = mod == 1 ? 1 : 4; 433 } else { 434 /* 435 * In 64-bit mode, mod == 0 and r/m == 5 436 * denotes %rip-relative addressing; in 32-bit 437 * mode, the base register isn't used. In both 438 * modes, there is a 32-bit operand. 439 */ 440 if (mod == 0 && rm == 5) { 441 #ifdef __amd64 442 if (p->p_model == DATAMODEL_LP64) 443 tp->ftt_base = REG_RIP; 444 else 445 #endif 446 tp->ftt_base = FASTTRAP_NOREG; 447 sz = 4; 448 } else { 449 uint8_t base = rm | 450 (FASTTRAP_REX_B(rex) << 3); 451 452 tp->ftt_base = regmap[base]; 453 sz = mod == 1 ? 1 : mod == 2 ? 4 : 0; 454 } 455 tp->ftt_index = FASTTRAP_NOREG; 456 i = 2; 457 } 458 459 if (sz == 1) { 460 tp->ftt_dest = *(int8_t *)&instr[start + i]; 461 } else if (sz == 4) { 462 /* LINTED - alignment */ 463 tp->ftt_dest = *(int32_t *)&instr[start + i]; 464 } else { 465 tp->ftt_dest = 0; 466 } 467 } 468 } else { 469 switch (instr[start]) { 470 case FASTTRAP_RET: 471 tp->ftt_type = FASTTRAP_T_RET; 472 break; 473 474 case FASTTRAP_RET16: 475 tp->ftt_type = FASTTRAP_T_RET16; 476 /* LINTED - alignment */ 477 tp->ftt_dest = *(uint16_t *)&instr[start + 1]; 478 break; 479 480 case FASTTRAP_JO: 481 case FASTTRAP_JNO: 482 case FASTTRAP_JB: 483 case FASTTRAP_JAE: 484 case FASTTRAP_JE: 485 case FASTTRAP_JNE: 486 case FASTTRAP_JBE: 487 case FASTTRAP_JA: 488 case FASTTRAP_JS: 489 case FASTTRAP_JNS: 490 case FASTTRAP_JP: 491 case FASTTRAP_JNP: 492 case FASTTRAP_JL: 493 case FASTTRAP_JGE: 494 case FASTTRAP_JLE: 495 case FASTTRAP_JG: 496 tp->ftt_type = FASTTRAP_T_JCC; 497 tp->ftt_code = instr[start]; 498 tp->ftt_dest = pc + tp->ftt_size + 499 (int8_t)instr[start + 1]; 500 break; 501 502 case FASTTRAP_LOOPNZ: 503 case FASTTRAP_LOOPZ: 504 case FASTTRAP_LOOP: 505 tp->ftt_type = FASTTRAP_T_LOOP; 506 tp->ftt_code = instr[start]; 507 tp->ftt_dest = pc + tp->ftt_size + 508 (int8_t)instr[start + 1]; 509 break; 510 511 case FASTTRAP_JCXZ: 512 tp->ftt_type = FASTTRAP_T_JCXZ; 513 tp->ftt_dest = pc + tp->ftt_size + 514 (int8_t)instr[start + 1]; 515 break; 516 517 case FASTTRAP_CALL: 518 tp->ftt_type = FASTTRAP_T_CALL; 519 tp->ftt_dest = pc + tp->ftt_size + 520 /* LINTED - alignment */ 521 *(int32_t *)&instr[start + 1]; 522 tp->ftt_code = 0; 523 break; 524 525 case FASTTRAP_JMP32: 526 tp->ftt_type = FASTTRAP_T_JMP; 527 tp->ftt_dest = pc + tp->ftt_size + 528 /* LINTED - alignment */ 529 *(int32_t *)&instr[start + 1]; 530 break; 531 case FASTTRAP_JMP8: 532 tp->ftt_type = FASTTRAP_T_JMP; 533 tp->ftt_dest = pc + tp->ftt_size + 534 (int8_t)instr[start + 1]; 535 break; 536 537 case FASTTRAP_PUSHL_EBP: 538 if (start == 0) 539 tp->ftt_type = FASTTRAP_T_PUSHL_EBP; 540 break; 541 542 case FASTTRAP_NOP: 543 #ifdef __amd64 544 ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0); 545 546 /* 547 * On amd64 we have to be careful not to confuse a nop 548 * (actually xchgl %eax, %eax) with an instruction using 549 * the same opcode, but that does something different 550 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax). 551 */ 552 if (FASTTRAP_REX_B(rex) == 0) 553 #endif 554 tp->ftt_type = FASTTRAP_T_NOP; 555 break; 556 557 case FASTTRAP_INT3: 558 /* 559 * The pid provider shares the int3 trap with debugger 560 * breakpoints so we can't instrument them. 561 */ 562 ASSERT(instr[start] == FASTTRAP_INSTR); 563 return (-1); 564 565 case FASTTRAP_INT: 566 /* 567 * Interrupts seem like they could be traced with 568 * no negative implications, but it's possible that 569 * a thread could be redirected by the trap handling 570 * code which would eventually return to the 571 * instruction after the interrupt. If the interrupt 572 * were in our scratch space, the subsequent 573 * instruction might be overwritten before we return. 574 * Accordingly we refuse to instrument any interrupt. 575 */ 576 return (-1); 577 } 578 } 579 580 #ifdef __amd64 581 if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) { 582 /* 583 * If the process is 64-bit and the instruction type is still 584 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an 585 * execute it -- we need to watch for %rip-relative 586 * addressing mode. See the portion of fasttrap_pid_probe() 587 * below where we handle tracepoints with type 588 * FASTTRAP_T_COMMON for how we emulate instructions that 589 * employ %rip-relative addressing. 590 */ 591 if (rmindex != -1) { 592 uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]); 593 uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]); 594 uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]); 595 596 ASSERT(rmindex > start); 597 598 if (mod == 0 && rm == 5) { 599 /* 600 * We need to be sure to avoid other 601 * registers used by this instruction. While 602 * the reg field may determine the op code 603 * rather than denoting a register, assuming 604 * that it denotes a register is always safe. 605 * We leave the REX field intact and use 606 * whatever value's there for simplicity. 607 */ 608 if (reg != 0) { 609 tp->ftt_ripmode = FASTTRAP_RIP_1 | 610 (FASTTRAP_RIP_X * 611 FASTTRAP_REX_B(rex)); 612 rm = 0; 613 } else { 614 tp->ftt_ripmode = FASTTRAP_RIP_2 | 615 (FASTTRAP_RIP_X * 616 FASTTRAP_REX_B(rex)); 617 rm = 1; 618 } 619 620 tp->ftt_modrm = tp->ftt_instr[rmindex]; 621 tp->ftt_instr[rmindex] = 622 FASTTRAP_MODRM(2, reg, rm); 623 } 624 } 625 } 626 #endif 627 628 return (0); 629 } 630 631 int 632 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) 633 { 634 fasttrap_instr_t instr = FASTTRAP_INSTR; 635 636 if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) 637 return (-1); 638 639 return (0); 640 } 641 642 int 643 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) 644 { 645 uint8_t instr; 646 647 /* 648 * Distinguish between read or write failures and a changed 649 * instruction. 650 */ 651 if (uread(p, &instr, 1, tp->ftt_pc) != 0) 652 return (0); 653 if (instr != FASTTRAP_INSTR) 654 return (0); 655 if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) 656 return (-1); 657 658 return (0); 659 } 660 661 #ifdef __amd64 662 static uintptr_t 663 fasttrap_fulword_noerr(const void *uaddr) 664 { 665 uintptr_t ret; 666 667 if ((ret = fasttrap_fulword(uaddr)) != -1) 668 return (ret); 669 670 return (0); 671 } 672 #endif 673 674 static uint32_t 675 fasttrap_fuword32_noerr(const void *uaddr) 676 { 677 uint32_t ret; 678 679 if ((ret = fasttrap_fuword32(uaddr)) != -1) 680 return (ret); 681 682 return (0); 683 } 684 685 static void 686 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid, 687 uintptr_t new_pc) 688 { 689 fasttrap_tracepoint_t *tp; 690 fasttrap_bucket_t *bucket; 691 fasttrap_id_t *id; 692 struct rm_priotracker tracker; 693 694 rm_rlock(&fasttrap_tp_lock, &tracker); 695 bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; 696 697 for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { 698 if (pid == tp->ftt_pid && pc == tp->ftt_pc && 699 tp->ftt_proc->ftpc_acount != 0) 700 break; 701 } 702 703 /* 704 * Don't sweat it if we can't find the tracepoint again; unlike 705 * when we're in fasttrap_pid_probe(), finding the tracepoint here 706 * is not essential to the correct execution of the process. 707 */ 708 if (tp == NULL) { 709 rm_runlock(&fasttrap_tp_lock, &tracker); 710 return; 711 } 712 713 for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { 714 /* 715 * If there's a branch that could act as a return site, we 716 * need to trace it, and check here if the program counter is 717 * external to the function. 718 */ 719 if (tp->ftt_type != FASTTRAP_T_RET && 720 tp->ftt_type != FASTTRAP_T_RET16 && 721 new_pc - id->fti_probe->ftp_faddr < 722 id->fti_probe->ftp_fsize) 723 continue; 724 725 dtrace_probe(id->fti_probe->ftp_id, 726 pc - id->fti_probe->ftp_faddr, 727 rp->r_rax, rp->r_rbx, 0, 0); 728 } 729 730 rm_runlock(&fasttrap_tp_lock, &tracker); 731 } 732 733 static void 734 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr) 735 { 736 ksiginfo_t ksi; 737 738 ksiginfo_init(&ksi); 739 ksi.ksi_signo = SIGSEGV; 740 ksi.ksi_code = SEGV_MAPERR; 741 ksi.ksi_addr = (caddr_t)addr; 742 PROC_LOCK(p); 743 (void)tdksignal(t, SIGSEGV, &ksi); 744 PROC_UNLOCK(p); 745 } 746 747 #ifdef __amd64 748 static void 749 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc, 750 uintptr_t *argv) 751 { 752 int i, x, cap = MIN(argc, probe->ftp_nargs); 753 uintptr_t *stack = (uintptr_t *)rp->r_rsp; 754 755 for (i = 0; i < cap; i++) { 756 x = probe->ftp_argmap[i]; 757 758 if (x < 6) 759 argv[i] = (&rp->r_rdi)[x]; 760 else 761 argv[i] = fasttrap_fulword_noerr(&stack[x]); 762 } 763 764 for (; i < argc; i++) { 765 argv[i] = 0; 766 } 767 } 768 #endif 769 770 static void 771 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc, 772 uint32_t *argv) 773 { 774 int i, x, cap = MIN(argc, probe->ftp_nargs); 775 uint32_t *stack = (uint32_t *)rp->r_rsp; 776 777 for (i = 0; i < cap; i++) { 778 x = probe->ftp_argmap[i]; 779 780 argv[i] = fasttrap_fuword32_noerr(&stack[x]); 781 } 782 783 for (; i < argc; i++) { 784 argv[i] = 0; 785 } 786 } 787 788 static int 789 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr) 790 { 791 proc_t *p = curproc; 792 #ifdef __i386__ 793 struct segment_descriptor *desc; 794 #else 795 struct user_segment_descriptor *desc; 796 #endif 797 uint16_t sel = 0, ndx, type; 798 uintptr_t limit; 799 800 switch (tp->ftt_segment) { 801 case FASTTRAP_SEG_CS: 802 sel = rp->r_cs; 803 break; 804 case FASTTRAP_SEG_DS: 805 sel = rp->r_ds; 806 break; 807 case FASTTRAP_SEG_ES: 808 sel = rp->r_es; 809 break; 810 case FASTTRAP_SEG_FS: 811 sel = rp->r_fs; 812 break; 813 case FASTTRAP_SEG_GS: 814 sel = rp->r_gs; 815 break; 816 case FASTTRAP_SEG_SS: 817 sel = rp->r_ss; 818 break; 819 } 820 821 /* 822 * Make sure the given segment register specifies a user priority 823 * selector rather than a kernel selector. 824 */ 825 if (ISPL(sel) != SEL_UPL) 826 return (-1); 827 828 ndx = IDXSEL(sel); 829 830 /* 831 * Check the bounds and grab the descriptor out of the specified 832 * descriptor table. 833 */ 834 if (ISLDT(sel)) { 835 #ifdef __i386__ 836 if (ndx > p->p_md.md_ldt->ldt_len) 837 return (-1); 838 839 desc = (struct segment_descriptor *) 840 p->p_md.md_ldt[ndx].ldt_base; 841 #else 842 if (ndx > max_ldt_segment) 843 return (-1); 844 845 desc = (struct user_segment_descriptor *) 846 p->p_md.md_ldt[ndx].ldt_base; 847 #endif 848 849 } else { 850 if (ndx >= NGDT) 851 return (-1); 852 853 #ifdef __i386__ 854 desc = &gdt[ndx].sd; 855 #else 856 desc = PCPU_PTR(gdt)[ndx]; 857 #endif 858 } 859 860 /* 861 * The descriptor must have user privilege level and it must be 862 * present in memory. 863 */ 864 if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1) 865 return (-1); 866 867 type = desc->sd_type; 868 869 /* 870 * If the S bit in the type field is not set, this descriptor can 871 * only be used in system context. 872 */ 873 if ((type & 0x10) != 0x10) 874 return (-1); 875 876 limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1); 877 878 if (tp->ftt_segment == FASTTRAP_SEG_CS) { 879 /* 880 * The code/data bit and readable bit must both be set. 881 */ 882 if ((type & 0xa) != 0xa) 883 return (-1); 884 885 if (*addr > limit) 886 return (-1); 887 } else { 888 /* 889 * The code/data bit must be clear. 890 */ 891 if ((type & 0x8) != 0) 892 return (-1); 893 894 /* 895 * If the expand-down bit is clear, we just check the limit as 896 * it would naturally be applied. Otherwise, we need to check 897 * that the address is the range [limit + 1 .. 0xffff] or 898 * [limit + 1 ... 0xffffffff] depending on if the default 899 * operand size bit is set. 900 */ 901 if ((type & 0x4) == 0) { 902 if (*addr > limit) 903 return (-1); 904 } else if (desc->sd_def32) { 905 if (*addr < limit + 1 || 0xffff < *addr) 906 return (-1); 907 } else { 908 if (*addr < limit + 1 || 0xffffffff < *addr) 909 return (-1); 910 } 911 } 912 913 *addr += USD_GETBASE(desc); 914 915 return (0); 916 } 917 918 int 919 fasttrap_pid_probe(struct trapframe *tf) 920 { 921 struct reg reg, *rp; 922 proc_t *p = curproc, *pp; 923 struct rm_priotracker tracker; 924 uint64_t gen; 925 uintptr_t pc; 926 uintptr_t new_pc = 0; 927 fasttrap_bucket_t *bucket; 928 fasttrap_tracepoint_t *tp, tp_local; 929 pid_t pid; 930 dtrace_icookie_t cookie; 931 uint_t is_enabled = 0; 932 933 fill_frame_regs(tf, ®); 934 rp = ® 935 936 pc = rp->r_rip - 1; 937 938 /* 939 * It's possible that a user (in a veritable orgy of bad planning) 940 * could redirect this thread's flow of control before it reached the 941 * return probe fasttrap. In this case we need to kill the process 942 * since it's in a unrecoverable state. 943 */ 944 if (curthread->t_dtrace_step) { 945 ASSERT(curthread->t_dtrace_on); 946 fasttrap_sigtrap(p, curthread, pc); 947 return (0); 948 } 949 950 /* 951 * Clear all user tracing flags. 952 */ 953 curthread->t_dtrace_ft = 0; 954 curthread->t_dtrace_pc = 0; 955 curthread->t_dtrace_npc = 0; 956 curthread->t_dtrace_scrpc = 0; 957 curthread->t_dtrace_astpc = 0; 958 #ifdef __amd64 959 curthread->t_dtrace_regv = 0; 960 #endif 961 962 /* 963 * Treat a child created by a call to vfork(2) as if it were its 964 * parent. We know that there's only one thread of control in such a 965 * process: this one. 966 */ 967 pp = p; 968 sx_slock(&proctree_lock); 969 while (pp->p_vmspace == pp->p_pptr->p_vmspace) 970 pp = pp->p_pptr; 971 pid = pp->p_pid; 972 if (pp != p) { 973 PROC_LOCK(pp); 974 if ((pp->p_flag & P_WEXIT) != 0) { 975 /* 976 * This can happen if the child was created with 977 * rfork(2). Userspace tracing cannot work reliably in 978 * such a scenario, but we can at least try. 979 */ 980 PROC_UNLOCK(pp); 981 sx_sunlock(&proctree_lock); 982 return (-1); 983 } 984 _PHOLD(pp); 985 PROC_UNLOCK(pp); 986 } 987 sx_sunlock(&proctree_lock); 988 989 rm_rlock(&fasttrap_tp_lock, &tracker); 990 991 bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; 992 993 /* 994 * Lookup the tracepoint that the process just hit. 995 */ 996 for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { 997 if (pid == tp->ftt_pid && pc == tp->ftt_pc && 998 tp->ftt_proc->ftpc_acount != 0) 999 break; 1000 } 1001 1002 /* 1003 * If we couldn't find a matching tracepoint, either a tracepoint has 1004 * been inserted without using the pid<pid> ioctl interface (see 1005 * fasttrap_ioctl), or somehow we have mislaid this tracepoint. 1006 */ 1007 if (tp == NULL) { 1008 rm_runlock(&fasttrap_tp_lock, &tracker); 1009 gen = atomic_load_acq_64(&pp->p_fasttrap_tp_gen); 1010 if (pp != p) 1011 PRELE(pp); 1012 if (curthread->t_fasttrap_tp_gen != gen) { 1013 /* 1014 * At least one tracepoint associated with this PID has 1015 * been removed from the table since #BP was raised. 1016 * Speculate that we hit a tracepoint that has since 1017 * been removed, and retry the instruction. 1018 */ 1019 curthread->t_fasttrap_tp_gen = gen; 1020 #ifdef __amd64 1021 tf->tf_rip = pc; 1022 #else 1023 tf->tf_eip = pc; 1024 #endif 1025 return (0); 1026 } 1027 return (-1); 1028 } 1029 if (pp != p) 1030 PRELE(pp); 1031 1032 /* 1033 * Set the program counter to the address of the traced instruction 1034 * so that it looks right in ustack() output. 1035 */ 1036 rp->r_rip = pc; 1037 1038 if (tp->ftt_ids != NULL) { 1039 fasttrap_id_t *id; 1040 1041 #ifdef __amd64 1042 if (p->p_model == DATAMODEL_LP64) { 1043 for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { 1044 fasttrap_probe_t *probe = id->fti_probe; 1045 1046 if (id->fti_ptype == DTFTP_ENTRY) { 1047 /* 1048 * We note that this was an entry 1049 * probe to help ustack() find the 1050 * first caller. 1051 */ 1052 cookie = dtrace_interrupt_disable(); 1053 DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); 1054 dtrace_probe(probe->ftp_id, rp->r_rdi, 1055 rp->r_rsi, rp->r_rdx, rp->r_rcx, 1056 rp->r_r8); 1057 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); 1058 dtrace_interrupt_enable(cookie); 1059 } else if (id->fti_ptype == DTFTP_IS_ENABLED) { 1060 /* 1061 * Note that in this case, we don't 1062 * call dtrace_probe() since it's only 1063 * an artificial probe meant to change 1064 * the flow of control so that it 1065 * encounters the true probe. 1066 */ 1067 is_enabled = 1; 1068 } else if (probe->ftp_argmap == NULL) { 1069 dtrace_probe(probe->ftp_id, rp->r_rdi, 1070 rp->r_rsi, rp->r_rdx, rp->r_rcx, 1071 rp->r_r8); 1072 } else { 1073 uintptr_t t[5]; 1074 1075 fasttrap_usdt_args64(probe, rp, 1076 sizeof (t) / sizeof (t[0]), t); 1077 1078 dtrace_probe(probe->ftp_id, t[0], t[1], 1079 t[2], t[3], t[4]); 1080 } 1081 } 1082 } else { 1083 #endif 1084 uintptr_t s0, s1, s2, s3, s4, s5; 1085 uint32_t *stack = (uint32_t *)rp->r_rsp; 1086 1087 /* 1088 * In 32-bit mode, all arguments are passed on the 1089 * stack. If this is a function entry probe, we need 1090 * to skip the first entry on the stack as it 1091 * represents the return address rather than a 1092 * parameter to the function. 1093 */ 1094 s0 = fasttrap_fuword32_noerr(&stack[0]); 1095 s1 = fasttrap_fuword32_noerr(&stack[1]); 1096 s2 = fasttrap_fuword32_noerr(&stack[2]); 1097 s3 = fasttrap_fuword32_noerr(&stack[3]); 1098 s4 = fasttrap_fuword32_noerr(&stack[4]); 1099 s5 = fasttrap_fuword32_noerr(&stack[5]); 1100 1101 for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { 1102 fasttrap_probe_t *probe = id->fti_probe; 1103 1104 if (id->fti_ptype == DTFTP_ENTRY) { 1105 /* 1106 * We note that this was an entry 1107 * probe to help ustack() find the 1108 * first caller. 1109 */ 1110 cookie = dtrace_interrupt_disable(); 1111 DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); 1112 dtrace_probe(probe->ftp_id, s1, s2, 1113 s3, s4, s5); 1114 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); 1115 dtrace_interrupt_enable(cookie); 1116 } else if (id->fti_ptype == DTFTP_IS_ENABLED) { 1117 /* 1118 * Note that in this case, we don't 1119 * call dtrace_probe() since it's only 1120 * an artificial probe meant to change 1121 * the flow of control so that it 1122 * encounters the true probe. 1123 */ 1124 is_enabled = 1; 1125 } else if (probe->ftp_argmap == NULL) { 1126 dtrace_probe(probe->ftp_id, s0, s1, 1127 s2, s3, s4); 1128 } else { 1129 uint32_t t[5]; 1130 1131 fasttrap_usdt_args32(probe, rp, 1132 sizeof (t) / sizeof (t[0]), t); 1133 1134 dtrace_probe(probe->ftp_id, t[0], t[1], 1135 t[2], t[3], t[4]); 1136 } 1137 } 1138 #ifdef __amd64 1139 } 1140 #endif 1141 } 1142 1143 /* 1144 * We're about to do a bunch of work so we cache a local copy of 1145 * the tracepoint to emulate the instruction, and then find the 1146 * tracepoint again later if we need to light up any return probes. 1147 */ 1148 tp_local = *tp; 1149 rm_runlock(&fasttrap_tp_lock, &tracker); 1150 tp = &tp_local; 1151 1152 /* 1153 * Set the program counter to appear as though the traced instruction 1154 * had completely executed. This ensures that fasttrap_getreg() will 1155 * report the expected value for REG_RIP. 1156 */ 1157 rp->r_rip = pc + tp->ftt_size; 1158 1159 /* 1160 * If there's an is-enabled probe connected to this tracepoint it 1161 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' 1162 * instruction that was placed there by DTrace when the binary was 1163 * linked. As this probe is, in fact, enabled, we need to stuff 1 1164 * into %eax or %rax. Accordingly, we can bypass all the instruction 1165 * emulation logic since we know the inevitable result. It's possible 1166 * that a user could construct a scenario where the 'is-enabled' 1167 * probe was on some other instruction, but that would be a rather 1168 * exotic way to shoot oneself in the foot. 1169 */ 1170 if (is_enabled) { 1171 rp->r_rax = 1; 1172 new_pc = rp->r_rip; 1173 goto done; 1174 } 1175 1176 /* 1177 * We emulate certain types of instructions to ensure correctness 1178 * (in the case of position dependent instructions) or optimize 1179 * common cases. The rest we have the thread execute back in user- 1180 * land. 1181 */ 1182 switch (tp->ftt_type) { 1183 case FASTTRAP_T_RET: 1184 case FASTTRAP_T_RET16: 1185 { 1186 uintptr_t dst = 0; 1187 uintptr_t addr = 0; 1188 int ret = 0; 1189 1190 /* 1191 * We have to emulate _every_ facet of the behavior of a ret 1192 * instruction including what happens if the load from %esp 1193 * fails; in that case, we send a SIGSEGV. 1194 */ 1195 #ifdef __amd64 1196 if (p->p_model == DATAMODEL_NATIVE) { 1197 ret = dst = fasttrap_fulword((void *)rp->r_rsp); 1198 addr = rp->r_rsp + sizeof (uintptr_t); 1199 } else { 1200 #endif 1201 uint32_t dst32; 1202 ret = dst32 = fasttrap_fuword32((void *)rp->r_rsp); 1203 dst = dst32; 1204 addr = rp->r_rsp + sizeof (uint32_t); 1205 #ifdef __amd64 1206 } 1207 #endif 1208 1209 if (ret == -1) { 1210 fasttrap_sigsegv(p, curthread, rp->r_rsp); 1211 new_pc = pc; 1212 break; 1213 } 1214 1215 if (tp->ftt_type == FASTTRAP_T_RET16) 1216 addr += tp->ftt_dest; 1217 1218 rp->r_rsp = addr; 1219 new_pc = dst; 1220 break; 1221 } 1222 1223 case FASTTRAP_T_JCC: 1224 { 1225 uint_t taken = 0; 1226 1227 switch (tp->ftt_code) { 1228 case FASTTRAP_JO: 1229 taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0; 1230 break; 1231 case FASTTRAP_JNO: 1232 taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0; 1233 break; 1234 case FASTTRAP_JB: 1235 taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0; 1236 break; 1237 case FASTTRAP_JAE: 1238 taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0; 1239 break; 1240 case FASTTRAP_JE: 1241 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; 1242 break; 1243 case FASTTRAP_JNE: 1244 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; 1245 break; 1246 case FASTTRAP_JBE: 1247 taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 || 1248 (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; 1249 break; 1250 case FASTTRAP_JA: 1251 taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 && 1252 (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; 1253 break; 1254 case FASTTRAP_JS: 1255 taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0; 1256 break; 1257 case FASTTRAP_JNS: 1258 taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0; 1259 break; 1260 case FASTTRAP_JP: 1261 taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0; 1262 break; 1263 case FASTTRAP_JNP: 1264 taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0; 1265 break; 1266 case FASTTRAP_JL: 1267 taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != 1268 ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); 1269 break; 1270 case FASTTRAP_JGE: 1271 taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == 1272 ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); 1273 break; 1274 case FASTTRAP_JLE: 1275 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 || 1276 ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != 1277 ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); 1278 break; 1279 case FASTTRAP_JG: 1280 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && 1281 ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == 1282 ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); 1283 break; 1284 1285 } 1286 1287 if (taken) 1288 new_pc = tp->ftt_dest; 1289 else 1290 new_pc = pc + tp->ftt_size; 1291 break; 1292 } 1293 1294 case FASTTRAP_T_LOOP: 1295 { 1296 uint_t taken = 0; 1297 #ifdef __amd64 1298 greg_t cx = rp->r_rcx--; 1299 #else 1300 greg_t cx = rp->r_ecx--; 1301 #endif 1302 1303 switch (tp->ftt_code) { 1304 case FASTTRAP_LOOPNZ: 1305 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && 1306 cx != 0; 1307 break; 1308 case FASTTRAP_LOOPZ: 1309 taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 && 1310 cx != 0; 1311 break; 1312 case FASTTRAP_LOOP: 1313 taken = (cx != 0); 1314 break; 1315 } 1316 1317 if (taken) 1318 new_pc = tp->ftt_dest; 1319 else 1320 new_pc = pc + tp->ftt_size; 1321 break; 1322 } 1323 1324 case FASTTRAP_T_JCXZ: 1325 { 1326 #ifdef __amd64 1327 greg_t cx = rp->r_rcx; 1328 #else 1329 greg_t cx = rp->r_ecx; 1330 #endif 1331 1332 if (cx == 0) 1333 new_pc = tp->ftt_dest; 1334 else 1335 new_pc = pc + tp->ftt_size; 1336 break; 1337 } 1338 1339 case FASTTRAP_T_PUSHL_EBP: 1340 { 1341 int ret = 0; 1342 1343 #ifdef __amd64 1344 if (p->p_model == DATAMODEL_NATIVE) { 1345 rp->r_rsp -= sizeof (uintptr_t); 1346 ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp); 1347 } else { 1348 #endif 1349 rp->r_rsp -= sizeof (uint32_t); 1350 ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp); 1351 #ifdef __amd64 1352 } 1353 #endif 1354 1355 if (ret == -1) { 1356 fasttrap_sigsegv(p, curthread, rp->r_rsp); 1357 new_pc = pc; 1358 break; 1359 } 1360 1361 new_pc = pc + tp->ftt_size; 1362 break; 1363 } 1364 1365 case FASTTRAP_T_NOP: 1366 new_pc = pc + tp->ftt_size; 1367 break; 1368 1369 case FASTTRAP_T_JMP: 1370 case FASTTRAP_T_CALL: 1371 if (tp->ftt_code == 0) { 1372 new_pc = tp->ftt_dest; 1373 } else { 1374 uintptr_t value, addr = tp->ftt_dest; 1375 1376 if (tp->ftt_base != FASTTRAP_NOREG) 1377 addr += fasttrap_getreg(rp, tp->ftt_base); 1378 if (tp->ftt_index != FASTTRAP_NOREG) 1379 addr += fasttrap_getreg(rp, tp->ftt_index) << 1380 tp->ftt_scale; 1381 1382 if (tp->ftt_code == 1) { 1383 /* 1384 * If there's a segment prefix for this 1385 * instruction, we'll need to check permissions 1386 * and bounds on the given selector, and adjust 1387 * the address accordingly. 1388 */ 1389 if (tp->ftt_segment != FASTTRAP_SEG_NONE && 1390 fasttrap_do_seg(tp, rp, &addr) != 0) { 1391 fasttrap_sigsegv(p, curthread, addr); 1392 new_pc = pc; 1393 break; 1394 } 1395 1396 #ifdef __amd64 1397 if (p->p_model == DATAMODEL_NATIVE) { 1398 #endif 1399 if ((value = fasttrap_fulword((void *)addr)) 1400 == -1) { 1401 fasttrap_sigsegv(p, curthread, 1402 addr); 1403 new_pc = pc; 1404 break; 1405 } 1406 new_pc = value; 1407 #ifdef __amd64 1408 } else { 1409 uint32_t value32; 1410 addr = (uintptr_t)(uint32_t)addr; 1411 if ((value32 = fasttrap_fuword32((void *)addr)) 1412 == -1) { 1413 fasttrap_sigsegv(p, curthread, 1414 addr); 1415 new_pc = pc; 1416 break; 1417 } 1418 new_pc = value32; 1419 } 1420 #endif 1421 } else { 1422 new_pc = addr; 1423 } 1424 } 1425 1426 /* 1427 * If this is a call instruction, we need to push the return 1428 * address onto the stack. If this fails, we send the process 1429 * a SIGSEGV and reset the pc to emulate what would happen if 1430 * this instruction weren't traced. 1431 */ 1432 if (tp->ftt_type == FASTTRAP_T_CALL) { 1433 int ret = 0; 1434 uintptr_t addr = 0, pcps; 1435 #ifdef __amd64 1436 if (p->p_model == DATAMODEL_NATIVE) { 1437 addr = rp->r_rsp - sizeof (uintptr_t); 1438 pcps = pc + tp->ftt_size; 1439 ret = fasttrap_sulword((void *)addr, pcps); 1440 } else { 1441 #endif 1442 addr = rp->r_rsp - sizeof (uint32_t); 1443 pcps = (uint32_t)(pc + tp->ftt_size); 1444 ret = fasttrap_suword32((void *)addr, pcps); 1445 #ifdef __amd64 1446 } 1447 #endif 1448 1449 if (ret == -1) { 1450 fasttrap_sigsegv(p, curthread, addr); 1451 new_pc = pc; 1452 break; 1453 } 1454 1455 rp->r_rsp = addr; 1456 } 1457 1458 break; 1459 1460 case FASTTRAP_T_COMMON: 1461 { 1462 uintptr_t addr; 1463 #if defined(__amd64) 1464 uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; 1465 #else 1466 uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; 1467 #endif 1468 uint_t i = 0; 1469 fasttrap_scrspace_t *scrspace; 1470 scrspace = fasttrap_scraddr(curthread, tp->ftt_proc); 1471 if (scrspace == NULL) { 1472 /* 1473 * We failed to allocate scratch space for this thread. 1474 * Try to write the original instruction back out and 1475 * reset the pc. 1476 */ 1477 if (fasttrap_copyout(tp->ftt_instr, (void *)pc, 1478 tp->ftt_size)) 1479 fasttrap_sigtrap(p, curthread, pc); 1480 new_pc = pc; 1481 break; 1482 } 1483 addr = scrspace->ftss_addr; 1484 1485 /* 1486 * Generic Instruction Tracing 1487 * --------------------------- 1488 * 1489 * This is the layout of the scratch space in the user-land 1490 * thread structure for our generated instructions. 1491 * 1492 * 32-bit mode bytes 1493 * ------------------------ ----- 1494 * a: <original instruction> <= 15 1495 * jmp <pc + tp->ftt_size> 5 1496 * b: <original instruction> <= 15 1497 * int T_DTRACE_RET 2 1498 * ----- 1499 * <= 37 1500 * 1501 * 64-bit mode bytes 1502 * ------------------------ ----- 1503 * a: <original instruction> <= 15 1504 * jmp 0(%rip) 6 1505 * <pc + tp->ftt_size> 8 1506 * b: <original instruction> <= 15 1507 * int T_DTRACE_RET 2 1508 * ----- 1509 * <= 46 1510 * 1511 * The %pc is set to a, and curthread->t_dtrace_astpc is set 1512 * to b. If we encounter a signal on the way out of the 1513 * kernel, trap() will set %pc to curthread->t_dtrace_astpc 1514 * so that we execute the original instruction and re-enter 1515 * the kernel rather than redirecting to the next instruction. 1516 * 1517 * If there are return probes (so we know that we're going to 1518 * need to reenter the kernel after executing the original 1519 * instruction), the scratch space will just contain the 1520 * original instruction followed by an interrupt -- the same 1521 * data as at b. 1522 * 1523 * %rip-relative Addressing 1524 * ------------------------ 1525 * 1526 * There's a further complication in 64-bit mode due to %rip- 1527 * relative addressing. While this is clearly a beneficial 1528 * architectural decision for position independent code, it's 1529 * hard not to see it as a personal attack against the pid 1530 * provider since before there was a relatively small set of 1531 * instructions to emulate; with %rip-relative addressing, 1532 * almost every instruction can potentially depend on the 1533 * address at which it's executed. Rather than emulating 1534 * the broad spectrum of instructions that can now be 1535 * position dependent, we emulate jumps and others as in 1536 * 32-bit mode, and take a different tack for instructions 1537 * using %rip-relative addressing. 1538 * 1539 * For every instruction that uses the ModRM byte, the 1540 * in-kernel disassembler reports its location. We use the 1541 * ModRM byte to identify that an instruction uses 1542 * %rip-relative addressing and to see what other registers 1543 * the instruction uses. To emulate those instructions, 1544 * we modify the instruction to be %rax-relative rather than 1545 * %rip-relative (or %rcx-relative if the instruction uses 1546 * %rax; or %r8- or %r9-relative if the REX.B is present so 1547 * we don't have to rewrite the REX prefix). We then load 1548 * the value that %rip would have been into the scratch 1549 * register and generate an instruction to reset the scratch 1550 * register back to its original value. The instruction 1551 * sequence looks like this: 1552 * 1553 * 64-mode %rip-relative bytes 1554 * ------------------------ ----- 1555 * a: <modified instruction> <= 15 1556 * movq $<value>, %<scratch> 6 1557 * jmp 0(%rip) 6 1558 * <pc + tp->ftt_size> 8 1559 * b: <modified instruction> <= 15 1560 * int T_DTRACE_RET 2 1561 * ----- 1562 * 52 1563 * 1564 * We set curthread->t_dtrace_regv so that upon receiving 1565 * a signal we can reset the value of the scratch register. 1566 */ 1567 1568 ASSERT(tp->ftt_size <= FASTTRAP_MAX_INSTR_SIZE); 1569 1570 curthread->t_dtrace_scrpc = addr; 1571 bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); 1572 i += tp->ftt_size; 1573 1574 #ifdef __amd64 1575 if (tp->ftt_ripmode != 0) { 1576 greg_t *reg = NULL; 1577 1578 ASSERT(p->p_model == DATAMODEL_LP64); 1579 ASSERT(tp->ftt_ripmode & 1580 (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); 1581 1582 /* 1583 * If this was a %rip-relative instruction, we change 1584 * it to be either a %rax- or %rcx-relative 1585 * instruction (depending on whether those registers 1586 * are used as another operand; or %r8- or %r9- 1587 * relative depending on the value of REX.B). We then 1588 * set that register and generate a movq instruction 1589 * to reset the value. 1590 */ 1591 if (tp->ftt_ripmode & FASTTRAP_RIP_X) 1592 scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); 1593 else 1594 scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); 1595 1596 if (tp->ftt_ripmode & FASTTRAP_RIP_1) 1597 scratch[i++] = FASTTRAP_MOV_EAX; 1598 else 1599 scratch[i++] = FASTTRAP_MOV_ECX; 1600 1601 switch (tp->ftt_ripmode) { 1602 case FASTTRAP_RIP_1: 1603 reg = &rp->r_rax; 1604 curthread->t_dtrace_reg = REG_RAX; 1605 break; 1606 case FASTTRAP_RIP_2: 1607 reg = &rp->r_rcx; 1608 curthread->t_dtrace_reg = REG_RCX; 1609 break; 1610 case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: 1611 reg = &rp->r_r8; 1612 curthread->t_dtrace_reg = REG_R8; 1613 break; 1614 case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: 1615 reg = &rp->r_r9; 1616 curthread->t_dtrace_reg = REG_R9; 1617 break; 1618 } 1619 1620 /* LINTED - alignment */ 1621 *(uint64_t *)&scratch[i] = *reg; 1622 curthread->t_dtrace_regv = *reg; 1623 *reg = pc + tp->ftt_size; 1624 i += sizeof (uint64_t); 1625 } 1626 #endif 1627 1628 /* 1629 * Generate the branch instruction to what would have 1630 * normally been the subsequent instruction. In 32-bit mode, 1631 * this is just a relative branch; in 64-bit mode this is a 1632 * %rip-relative branch that loads the 64-bit pc value 1633 * immediately after the jmp instruction. 1634 */ 1635 #ifdef __amd64 1636 if (p->p_model == DATAMODEL_LP64) { 1637 scratch[i++] = FASTTRAP_GROUP5_OP; 1638 scratch[i++] = FASTTRAP_MODRM(0, 4, 5); 1639 /* LINTED - alignment */ 1640 *(uint32_t *)&scratch[i] = 0; 1641 i += sizeof (uint32_t); 1642 /* LINTED - alignment */ 1643 *(uint64_t *)&scratch[i] = pc + tp->ftt_size; 1644 i += sizeof (uint64_t); 1645 } else { 1646 #endif 1647 /* 1648 * Set up the jmp to the next instruction; note that 1649 * the size of the traced instruction cancels out. 1650 */ 1651 scratch[i++] = FASTTRAP_JMP32; 1652 /* LINTED - alignment */ 1653 *(uint32_t *)&scratch[i] = pc - addr - 5; 1654 i += sizeof (uint32_t); 1655 #ifdef __amd64 1656 } 1657 #endif 1658 1659 curthread->t_dtrace_astpc = addr + i; 1660 bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); 1661 i += tp->ftt_size; 1662 scratch[i++] = FASTTRAP_INT; 1663 scratch[i++] = T_DTRACE_RET; 1664 1665 ASSERT(i <= sizeof (scratch)); 1666 1667 if (uwrite(curproc, scratch, i, addr) != 0) { 1668 fasttrap_sigtrap(p, curthread, pc); 1669 new_pc = pc; 1670 break; 1671 } 1672 if (tp->ftt_retids != NULL) { 1673 curthread->t_dtrace_step = 1; 1674 curthread->t_dtrace_ret = 1; 1675 new_pc = curthread->t_dtrace_astpc; 1676 } else { 1677 new_pc = curthread->t_dtrace_scrpc; 1678 } 1679 1680 curthread->t_dtrace_pc = pc; 1681 curthread->t_dtrace_npc = pc + tp->ftt_size; 1682 curthread->t_dtrace_on = 1; 1683 break; 1684 } 1685 1686 default: 1687 panic("fasttrap: mishandled an instruction"); 1688 } 1689 1690 done: 1691 /* 1692 * If there were no return probes when we first found the tracepoint, 1693 * we should feel no obligation to honor any return probes that were 1694 * subsequently enabled -- they'll just have to wait until the next 1695 * time around. 1696 */ 1697 if (tp->ftt_retids != NULL) { 1698 /* 1699 * We need to wait until the results of the instruction are 1700 * apparent before invoking any return probes. If this 1701 * instruction was emulated we can just call 1702 * fasttrap_return_common(); if it needs to be executed, we 1703 * need to wait until the user thread returns to the kernel. 1704 */ 1705 if (tp->ftt_type != FASTTRAP_T_COMMON) { 1706 /* 1707 * Set the program counter to the address of the traced 1708 * instruction so that it looks right in ustack() 1709 * output. We had previously set it to the end of the 1710 * instruction to simplify %rip-relative addressing. 1711 */ 1712 rp->r_rip = pc; 1713 1714 fasttrap_return_common(rp, pc, pid, new_pc); 1715 } else { 1716 ASSERT(curthread->t_dtrace_ret != 0); 1717 ASSERT(curthread->t_dtrace_pc == pc); 1718 ASSERT(curthread->t_dtrace_scrpc != 0); 1719 ASSERT(new_pc == curthread->t_dtrace_astpc); 1720 } 1721 } 1722 1723 rp->r_rip = new_pc; 1724 1725 PROC_LOCK(p); 1726 proc_write_regs(curthread, rp); 1727 PROC_UNLOCK(p); 1728 1729 return (0); 1730 } 1731 1732 int 1733 fasttrap_return_probe(struct trapframe *tf) 1734 { 1735 struct reg reg, *rp; 1736 proc_t *p = curproc; 1737 uintptr_t pc = curthread->t_dtrace_pc; 1738 uintptr_t npc = curthread->t_dtrace_npc; 1739 1740 fill_frame_regs(tf, ®); 1741 rp = ® 1742 1743 curthread->t_dtrace_pc = 0; 1744 curthread->t_dtrace_npc = 0; 1745 curthread->t_dtrace_scrpc = 0; 1746 curthread->t_dtrace_astpc = 0; 1747 1748 #ifdef illumos 1749 /* 1750 * Treat a child created by a call to vfork(2) as if it were its 1751 * parent. We know that there's only one thread of control in such a 1752 * process: this one. 1753 */ 1754 while (p->p_flag & SVFORK) { 1755 p = p->p_parent; 1756 } 1757 #endif 1758 1759 /* 1760 * We set rp->r_rip to the address of the traced instruction so 1761 * that it appears to dtrace_probe() that we're on the original 1762 * instruction. 1763 */ 1764 rp->r_rip = pc; 1765 1766 fasttrap_return_common(rp, pc, p->p_pid, npc); 1767 1768 return (0); 1769 } 1770 1771 /*ARGSUSED*/ 1772 uint64_t 1773 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, 1774 int aframes) 1775 { 1776 struct reg r; 1777 1778 fill_regs(curthread, &r); 1779 1780 return (fasttrap_anarg(&r, 1, argno)); 1781 } 1782 1783 /*ARGSUSED*/ 1784 uint64_t 1785 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, 1786 int aframes) 1787 { 1788 struct reg r; 1789 1790 fill_regs(curthread, &r); 1791 1792 return (fasttrap_anarg(&r, 0, argno)); 1793 } 1794 1795 static ulong_t 1796 fasttrap_getreg(struct reg *rp, uint_t reg) 1797 { 1798 #ifdef __amd64 1799 switch (reg) { 1800 case REG_R15: return (rp->r_r15); 1801 case REG_R14: return (rp->r_r14); 1802 case REG_R13: return (rp->r_r13); 1803 case REG_R12: return (rp->r_r12); 1804 case REG_R11: return (rp->r_r11); 1805 case REG_R10: return (rp->r_r10); 1806 case REG_R9: return (rp->r_r9); 1807 case REG_R8: return (rp->r_r8); 1808 case REG_RDI: return (rp->r_rdi); 1809 case REG_RSI: return (rp->r_rsi); 1810 case REG_RBP: return (rp->r_rbp); 1811 case REG_RBX: return (rp->r_rbx); 1812 case REG_RDX: return (rp->r_rdx); 1813 case REG_RCX: return (rp->r_rcx); 1814 case REG_RAX: return (rp->r_rax); 1815 case REG_TRAPNO: return (rp->r_trapno); 1816 case REG_ERR: return (rp->r_err); 1817 case REG_RIP: return (rp->r_rip); 1818 case REG_CS: return (rp->r_cs); 1819 case REG_RFL: return (rp->r_rflags); 1820 case REG_RSP: return (rp->r_rsp); 1821 case REG_SS: return (rp->r_ss); 1822 case REG_FS: return (rp->r_fs); 1823 case REG_GS: return (rp->r_gs); 1824 case REG_DS: return (rp->r_ds); 1825 case REG_ES: return (rp->r_es); 1826 case REG_FSBASE: return (rdmsr(MSR_FSBASE)); 1827 case REG_GSBASE: return (rdmsr(MSR_GSBASE)); 1828 } 1829 1830 panic("dtrace: illegal register constant"); 1831 /*NOTREACHED*/ 1832 #else 1833 #define _NGREG 19 1834 if (reg >= _NGREG) 1835 panic("dtrace: illegal register constant"); 1836 1837 return (((greg_t *)&rp->r_gs)[reg]); 1838 #endif 1839 } 1840