xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for SI+ GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUCodeGenPassBuilder.h"
19 #include "AMDGPUCtorDtorLowering.h"
20 #include "AMDGPUExportClustering.h"
21 #include "AMDGPUIGroupLP.h"
22 #include "AMDGPUISelDAGToDAG.h"
23 #include "AMDGPUMacroFusion.h"
24 #include "AMDGPURegBankSelect.h"
25 #include "AMDGPUSplitModule.h"
26 #include "AMDGPUTargetObjectFile.h"
27 #include "AMDGPUTargetTransformInfo.h"
28 #include "AMDGPUUnifyDivergentExitNodes.h"
29 #include "GCNIterativeScheduler.h"
30 #include "GCNSchedStrategy.h"
31 #include "GCNVOPDUtils.h"
32 #include "R600.h"
33 #include "R600MachineFunctionInfo.h"
34 #include "R600TargetMachine.h"
35 #include "SIMachineFunctionInfo.h"
36 #include "SIMachineScheduler.h"
37 #include "TargetInfo/AMDGPUTargetInfo.h"
38 #include "Utils/AMDGPUBaseInfo.h"
39 #include "llvm/Analysis/CGSCCPassManager.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
42 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
43 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
44 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
45 #include "llvm/CodeGen/GlobalISel/Localizer.h"
46 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
47 #include "llvm/CodeGen/MIRParser/MIParser.h"
48 #include "llvm/CodeGen/Passes.h"
49 #include "llvm/CodeGen/RegAllocRegistry.h"
50 #include "llvm/CodeGen/TargetPassConfig.h"
51 #include "llvm/IR/IntrinsicsAMDGPU.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/MC/TargetRegistry.h"
56 #include "llvm/Passes/PassBuilder.h"
57 #include "llvm/Transforms/HipStdPar/HipStdPar.h"
58 #include "llvm/Transforms/IPO.h"
59 #include "llvm/Transforms/IPO/AlwaysInliner.h"
60 #include "llvm/Transforms/IPO/ExpandVariadics.h"
61 #include "llvm/Transforms/IPO/GlobalDCE.h"
62 #include "llvm/Transforms/IPO/Internalize.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Scalar/GVN.h"
65 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
66 #include "llvm/Transforms/Utils.h"
67 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
68 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
69 #include <optional>
70 
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73 
74 namespace {
75 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
76 public:
SGPRRegisterRegAlloc(const char * N,const char * D,FunctionPassCtor C)77   SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
78     : RegisterRegAllocBase(N, D, C) {}
79 };
80 
81 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
82 public:
VGPRRegisterRegAlloc(const char * N,const char * D,FunctionPassCtor C)83   VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
84     : RegisterRegAllocBase(N, D, C) {}
85 };
86 
onlyAllocateSGPRs(const TargetRegisterInfo & TRI,const MachineRegisterInfo & MRI,const Register Reg)87 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
88                               const MachineRegisterInfo &MRI,
89                               const Register Reg) {
90   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
91   return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(RC);
92 }
93 
onlyAllocateVGPRs(const TargetRegisterInfo & TRI,const MachineRegisterInfo & MRI,const Register Reg)94 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
95                               const MachineRegisterInfo &MRI,
96                               const Register Reg) {
97   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
98   return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(RC);
99 }
100 
101 /// -{sgpr|vgpr}-regalloc=... command line option.
useDefaultRegisterAllocator()102 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
103 
104 /// A dummy default pass factory indicates whether the register allocator is
105 /// overridden on the command line.
106 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
107 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
108 
109 static SGPRRegisterRegAlloc
110 defaultSGPRRegAlloc("default",
111                     "pick SGPR register allocator based on -O option",
112                     useDefaultRegisterAllocator);
113 
114 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
115                RegisterPassParser<SGPRRegisterRegAlloc>>
116 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
117              cl::desc("Register allocator to use for SGPRs"));
118 
119 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
120                RegisterPassParser<VGPRRegisterRegAlloc>>
121 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
122              cl::desc("Register allocator to use for VGPRs"));
123 
124 
initializeDefaultSGPRRegisterAllocatorOnce()125 static void initializeDefaultSGPRRegisterAllocatorOnce() {
126   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
127 
128   if (!Ctor) {
129     Ctor = SGPRRegAlloc;
130     SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
131   }
132 }
133 
initializeDefaultVGPRRegisterAllocatorOnce()134 static void initializeDefaultVGPRRegisterAllocatorOnce() {
135   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
136 
137   if (!Ctor) {
138     Ctor = VGPRRegAlloc;
139     VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
140   }
141 }
142 
createBasicSGPRRegisterAllocator()143 static FunctionPass *createBasicSGPRRegisterAllocator() {
144   return createBasicRegisterAllocator(onlyAllocateSGPRs);
145 }
146 
createGreedySGPRRegisterAllocator()147 static FunctionPass *createGreedySGPRRegisterAllocator() {
148   return createGreedyRegisterAllocator(onlyAllocateSGPRs);
149 }
150 
createFastSGPRRegisterAllocator()151 static FunctionPass *createFastSGPRRegisterAllocator() {
152   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
153 }
154 
createBasicVGPRRegisterAllocator()155 static FunctionPass *createBasicVGPRRegisterAllocator() {
156   return createBasicRegisterAllocator(onlyAllocateVGPRs);
157 }
158 
createGreedyVGPRRegisterAllocator()159 static FunctionPass *createGreedyVGPRRegisterAllocator() {
160   return createGreedyRegisterAllocator(onlyAllocateVGPRs);
161 }
162 
createFastVGPRRegisterAllocator()163 static FunctionPass *createFastVGPRRegisterAllocator() {
164   return createFastRegisterAllocator(onlyAllocateVGPRs, true);
165 }
166 
167 static SGPRRegisterRegAlloc basicRegAllocSGPR(
168   "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
169 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
170   "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
171 
172 static SGPRRegisterRegAlloc fastRegAllocSGPR(
173   "fast", "fast register allocator", createFastSGPRRegisterAllocator);
174 
175 
176 static VGPRRegisterRegAlloc basicRegAllocVGPR(
177   "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
178 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
179   "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
180 
181 static VGPRRegisterRegAlloc fastRegAllocVGPR(
182   "fast", "fast register allocator", createFastVGPRRegisterAllocator);
183 } // anonymous namespace
184 
185 static cl::opt<bool>
186 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
187                         cl::desc("Run early if-conversion"),
188                         cl::init(false));
189 
190 static cl::opt<bool>
191 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
192             cl::desc("Run pre-RA exec mask optimizations"),
193             cl::init(true));
194 
195 static cl::opt<bool>
196     LowerCtorDtor("amdgpu-lower-global-ctor-dtor",
197                   cl::desc("Lower GPU ctor / dtors to globals on the device."),
198                   cl::init(true), cl::Hidden);
199 
200 // Option to disable vectorizer for tests.
201 static cl::opt<bool> EnableLoadStoreVectorizer(
202   "amdgpu-load-store-vectorizer",
203   cl::desc("Enable load store vectorizer"),
204   cl::init(true),
205   cl::Hidden);
206 
207 // Option to control global loads scalarization
208 static cl::opt<bool> ScalarizeGlobal(
209   "amdgpu-scalarize-global-loads",
210   cl::desc("Enable global load scalarization"),
211   cl::init(true),
212   cl::Hidden);
213 
214 // Option to run internalize pass.
215 static cl::opt<bool> InternalizeSymbols(
216   "amdgpu-internalize-symbols",
217   cl::desc("Enable elimination of non-kernel functions and unused globals"),
218   cl::init(false),
219   cl::Hidden);
220 
221 // Option to inline all early.
222 static cl::opt<bool> EarlyInlineAll(
223   "amdgpu-early-inline-all",
224   cl::desc("Inline all functions early"),
225   cl::init(false),
226   cl::Hidden);
227 
228 static cl::opt<bool> RemoveIncompatibleFunctions(
229     "amdgpu-enable-remove-incompatible-functions", cl::Hidden,
230     cl::desc("Enable removal of functions when they"
231              "use features not supported by the target GPU"),
232     cl::init(true));
233 
234 static cl::opt<bool> EnableSDWAPeephole(
235   "amdgpu-sdwa-peephole",
236   cl::desc("Enable SDWA peepholer"),
237   cl::init(true));
238 
239 static cl::opt<bool> EnableDPPCombine(
240   "amdgpu-dpp-combine",
241   cl::desc("Enable DPP combiner"),
242   cl::init(true));
243 
244 // Enable address space based alias analysis
245 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
246   cl::desc("Enable AMDGPU Alias Analysis"),
247   cl::init(true));
248 
249 // Option to run late CFG structurizer
250 static cl::opt<bool, true> LateCFGStructurize(
251   "amdgpu-late-structurize",
252   cl::desc("Enable late CFG structurization"),
253   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
254   cl::Hidden);
255 
256 // Disable structurizer-based control-flow lowering in order to test convergence
257 // control tokens. This should eventually be replaced by the wave-transform.
258 static cl::opt<bool, true> DisableStructurizer(
259     "amdgpu-disable-structurizer",
260     cl::desc("Disable structurizer for experiments; produces unusable code"),
261     cl::location(AMDGPUTargetMachine::DisableStructurizer), cl::ReallyHidden);
262 
263 // Enable lib calls simplifications
264 static cl::opt<bool> EnableLibCallSimplify(
265   "amdgpu-simplify-libcall",
266   cl::desc("Enable amdgpu library simplifications"),
267   cl::init(true),
268   cl::Hidden);
269 
270 static cl::opt<bool> EnableLowerKernelArguments(
271   "amdgpu-ir-lower-kernel-arguments",
272   cl::desc("Lower kernel argument loads in IR pass"),
273   cl::init(true),
274   cl::Hidden);
275 
276 static cl::opt<bool> EnableRegReassign(
277   "amdgpu-reassign-regs",
278   cl::desc("Enable register reassign optimizations on gfx10+"),
279   cl::init(true),
280   cl::Hidden);
281 
282 static cl::opt<bool> OptVGPRLiveRange(
283     "amdgpu-opt-vgpr-liverange",
284     cl::desc("Enable VGPR liverange optimizations for if-else structure"),
285     cl::init(true), cl::Hidden);
286 
287 static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy(
288     "amdgpu-atomic-optimizer-strategy",
289     cl::desc("Select DPP or Iterative strategy for scan"),
290     cl::init(ScanOptions::Iterative),
291     cl::values(
292         clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"),
293         clEnumValN(ScanOptions::Iterative, "Iterative",
294                    "Use Iterative approach for scan"),
295         clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer")));
296 
297 // Enable Mode register optimization
298 static cl::opt<bool> EnableSIModeRegisterPass(
299   "amdgpu-mode-register",
300   cl::desc("Enable mode register pass"),
301   cl::init(true),
302   cl::Hidden);
303 
304 // Enable GFX11.5+ s_singleuse_vdst insertion
305 static cl::opt<bool>
306     EnableInsertSingleUseVDST("amdgpu-enable-single-use-vdst",
307                               cl::desc("Enable s_singleuse_vdst insertion"),
308                               cl::init(false), cl::Hidden);
309 
310 // Enable GFX11+ s_delay_alu insertion
311 static cl::opt<bool>
312     EnableInsertDelayAlu("amdgpu-enable-delay-alu",
313                          cl::desc("Enable s_delay_alu insertion"),
314                          cl::init(true), cl::Hidden);
315 
316 // Enable GFX11+ VOPD
317 static cl::opt<bool>
318     EnableVOPD("amdgpu-enable-vopd",
319                cl::desc("Enable VOPD, dual issue of VALU in wave32"),
320                cl::init(true), cl::Hidden);
321 
322 // Option is used in lit tests to prevent deadcoding of patterns inspected.
323 static cl::opt<bool>
324 EnableDCEInRA("amdgpu-dce-in-ra",
325     cl::init(true), cl::Hidden,
326     cl::desc("Enable machine DCE inside regalloc"));
327 
328 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority",
329                                            cl::desc("Adjust wave priority"),
330                                            cl::init(false), cl::Hidden);
331 
332 static cl::opt<bool> EnableScalarIRPasses(
333   "amdgpu-scalar-ir-passes",
334   cl::desc("Enable scalar IR passes"),
335   cl::init(true),
336   cl::Hidden);
337 
338 static cl::opt<bool> EnableStructurizerWorkarounds(
339     "amdgpu-enable-structurizer-workarounds",
340     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
341     cl::Hidden);
342 
343 static cl::opt<bool, true> EnableLowerModuleLDS(
344     "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
345     cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
346     cl::Hidden);
347 
348 static cl::opt<bool> EnablePreRAOptimizations(
349     "amdgpu-enable-pre-ra-optimizations",
350     cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
351     cl::Hidden);
352 
353 static cl::opt<bool> EnablePromoteKernelArguments(
354     "amdgpu-enable-promote-kernel-arguments",
355     cl::desc("Enable promotion of flat kernel pointer arguments to global"),
356     cl::Hidden, cl::init(true));
357 
358 static cl::opt<bool> EnableImageIntrinsicOptimizer(
359     "amdgpu-enable-image-intrinsic-optimizer",
360     cl::desc("Enable image intrinsic optimizer pass"), cl::init(true),
361     cl::Hidden);
362 
363 static cl::opt<bool>
364     EnableLoopPrefetch("amdgpu-loop-prefetch",
365                        cl::desc("Enable loop data prefetch on AMDGPU"),
366                        cl::Hidden, cl::init(false));
367 
368 static cl::opt<bool> EnableMaxIlpSchedStrategy(
369     "amdgpu-enable-max-ilp-scheduling-strategy",
370     cl::desc("Enable scheduling strategy to maximize ILP for a single wave."),
371     cl::Hidden, cl::init(false));
372 
373 static cl::opt<bool> EnableRewritePartialRegUses(
374     "amdgpu-enable-rewrite-partial-reg-uses",
375     cl::desc("Enable rewrite partial reg uses pass"), cl::init(true),
376     cl::Hidden);
377 
378 static cl::opt<bool> EnableHipStdPar(
379   "amdgpu-enable-hipstdpar",
380   cl::desc("Enable HIP Standard Parallelism Offload support"), cl::init(false),
381   cl::Hidden);
382 
LLVMInitializeAMDGPUTarget()383 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
384   // Register the target
385   RegisterTargetMachine<R600TargetMachine> X(getTheR600Target());
386   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
387 
388   PassRegistry *PR = PassRegistry::getPassRegistry();
389   initializeR600ClauseMergePassPass(*PR);
390   initializeR600ControlFlowFinalizerPass(*PR);
391   initializeR600PacketizerPass(*PR);
392   initializeR600ExpandSpecialInstrsPassPass(*PR);
393   initializeR600VectorRegMergerPass(*PR);
394   initializeGlobalISel(*PR);
395   initializeAMDGPUDAGToDAGISelLegacyPass(*PR);
396   initializeGCNDPPCombinePass(*PR);
397   initializeSILowerI1CopiesPass(*PR);
398   initializeAMDGPUGlobalISelDivergenceLoweringPass(*PR);
399   initializeSILowerWWMCopiesPass(*PR);
400   initializeAMDGPUMarkLastScratchLoadPass(*PR);
401   initializeSILowerSGPRSpillsPass(*PR);
402   initializeSIFixSGPRCopiesPass(*PR);
403   initializeSIFixVGPRCopiesPass(*PR);
404   initializeSIFoldOperandsPass(*PR);
405   initializeSIPeepholeSDWAPass(*PR);
406   initializeSIShrinkInstructionsPass(*PR);
407   initializeSIOptimizeExecMaskingPreRAPass(*PR);
408   initializeSIOptimizeVGPRLiveRangePass(*PR);
409   initializeSILoadStoreOptimizerPass(*PR);
410   initializeAMDGPUCtorDtorLoweringLegacyPass(*PR);
411   initializeAMDGPUAlwaysInlinePass(*PR);
412   initializeAMDGPUAttributorLegacyPass(*PR);
413   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
414   initializeAMDGPUAnnotateUniformValuesPass(*PR);
415   initializeAMDGPUArgumentUsageInfoPass(*PR);
416   initializeAMDGPUAtomicOptimizerPass(*PR);
417   initializeAMDGPULowerKernelArgumentsPass(*PR);
418   initializeAMDGPUPromoteKernelArgumentsPass(*PR);
419   initializeAMDGPULowerKernelAttributesPass(*PR);
420   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
421   initializeAMDGPUPostLegalizerCombinerPass(*PR);
422   initializeAMDGPUPreLegalizerCombinerPass(*PR);
423   initializeAMDGPURegBankCombinerPass(*PR);
424   initializeAMDGPURegBankSelectPass(*PR);
425   initializeAMDGPUPromoteAllocaPass(*PR);
426   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
427   initializeAMDGPUCodeGenPreparePass(*PR);
428   initializeAMDGPULateCodeGenPreparePass(*PR);
429   initializeAMDGPURemoveIncompatibleFunctionsPass(*PR);
430   initializeAMDGPULowerModuleLDSLegacyPass(*PR);
431   initializeAMDGPULowerBufferFatPointersPass(*PR);
432   initializeAMDGPURewriteOutArgumentsPass(*PR);
433   initializeAMDGPURewriteUndefForPHILegacyPass(*PR);
434   initializeAMDGPUUnifyMetadataPass(*PR);
435   initializeSIAnnotateControlFlowPass(*PR);
436   initializeAMDGPUInsertSingleUseVDSTPass(*PR);
437   initializeAMDGPUInsertDelayAluPass(*PR);
438   initializeSIInsertHardClausesPass(*PR);
439   initializeSIInsertWaitcntsPass(*PR);
440   initializeSIModeRegisterPass(*PR);
441   initializeSIWholeQuadModePass(*PR);
442   initializeSILowerControlFlowPass(*PR);
443   initializeSIPreEmitPeepholePass(*PR);
444   initializeSILateBranchLoweringPass(*PR);
445   initializeSIMemoryLegalizerPass(*PR);
446   initializeSIOptimizeExecMaskingPass(*PR);
447   initializeSIPreAllocateWWMRegsPass(*PR);
448   initializeSIFormMemoryClausesPass(*PR);
449   initializeSIPostRABundlerPass(*PR);
450   initializeGCNCreateVOPDPass(*PR);
451   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
452   initializeAMDGPUAAWrapperPassPass(*PR);
453   initializeAMDGPUExternalAAWrapperPass(*PR);
454   initializeAMDGPUImageIntrinsicOptimizerPass(*PR);
455   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
456   initializeAMDGPUResourceUsageAnalysisPass(*PR);
457   initializeGCNNSAReassignPass(*PR);
458   initializeGCNPreRAOptimizationsPass(*PR);
459   initializeGCNPreRALongBranchRegPass(*PR);
460   initializeGCNRewritePartialRegUsesPass(*PR);
461   initializeGCNRegPressurePrinterPass(*PR);
462 }
463 
createTLOF(const Triple & TT)464 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
465   return std::make_unique<AMDGPUTargetObjectFile>();
466 }
467 
createSIMachineScheduler(MachineSchedContext * C)468 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
469   return new SIScheduleDAGMI(C);
470 }
471 
472 static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)473 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
474   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
475   ScheduleDAGMILive *DAG =
476     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
477   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
478   if (ST.shouldClusterStores())
479     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
480   DAG->addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::Initial));
481   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
482   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
483   return DAG;
484 }
485 
486 static ScheduleDAGInstrs *
createGCNMaxILPMachineScheduler(MachineSchedContext * C)487 createGCNMaxILPMachineScheduler(MachineSchedContext *C) {
488   ScheduleDAGMILive *DAG =
489       new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C));
490   DAG->addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::Initial));
491   return DAG;
492 }
493 
494 static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)495 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
496   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
497   auto DAG = new GCNIterativeScheduler(C,
498     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
499   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
500   if (ST.shouldClusterStores())
501     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
502   return DAG;
503 }
504 
createMinRegScheduler(MachineSchedContext * C)505 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
506   return new GCNIterativeScheduler(C,
507     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
508 }
509 
510 static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext * C)511 createIterativeILPMachineScheduler(MachineSchedContext *C) {
512   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
513   auto DAG = new GCNIterativeScheduler(C,
514     GCNIterativeScheduler::SCHEDULE_ILP);
515   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
516   if (ST.shouldClusterStores())
517     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
518   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
519   return DAG;
520 }
521 
522 static MachineSchedRegistry
523 SISchedRegistry("si", "Run SI's custom scheduler",
524                 createSIMachineScheduler);
525 
526 static MachineSchedRegistry
527 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
528                              "Run GCN scheduler to maximize occupancy",
529                              createGCNMaxOccupancyMachineScheduler);
530 
531 static MachineSchedRegistry
532     GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp",
533                            createGCNMaxILPMachineScheduler);
534 
535 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry(
536     "gcn-iterative-max-occupancy-experimental",
537     "Run GCN scheduler to maximize occupancy (experimental)",
538     createIterativeGCNMaxOccupancyMachineScheduler);
539 
540 static MachineSchedRegistry GCNMinRegSchedRegistry(
541     "gcn-iterative-minreg",
542     "Run GCN iterative scheduler for minimal register usage (experimental)",
543     createMinRegScheduler);
544 
545 static MachineSchedRegistry GCNILPSchedRegistry(
546     "gcn-iterative-ilp",
547     "Run GCN iterative scheduler for ILP scheduling (experimental)",
548     createIterativeILPMachineScheduler);
549 
computeDataLayout(const Triple & TT)550 static StringRef computeDataLayout(const Triple &TT) {
551   if (TT.getArch() == Triple::r600) {
552     // 32-bit pointers.
553     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
554            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
555   }
556 
557   // 32-bit private, local, and region pointers. 64-bit global, constant and
558   // flat. 160-bit non-integral fat buffer pointers that include a 128-bit
559   // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values
560   // (address space 7), and 128-bit non-integral buffer resourcees (address
561   // space 8) which cannot be non-trivilally accessed by LLVM memory operations
562   // like getelementptr.
563   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
564          "-p7:160:256:256:32-p8:128:128-p9:192:256:256:32-i64:64-v16:16-v24:32-"
565          "v32:32-v48:64-v96:"
566          "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-"
567          "G1-ni:7:8:9";
568 }
569 
570 LLVM_READNONE
getGPUOrDefault(const Triple & TT,StringRef GPU)571 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
572   if (!GPU.empty())
573     return GPU;
574 
575   // Need to default to a target with flat support for HSA.
576   if (TT.getArch() == Triple::amdgcn)
577     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
578 
579   return "r600";
580 }
581 
getEffectiveRelocModel(std::optional<Reloc::Model> RM)582 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
583   // The AMDGPU toolchain only supports generating shared objects, so we
584   // must always use PIC.
585   return Reloc::PIC_;
586 }
587 
AMDGPUTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,std::optional<Reloc::Model> RM,std::optional<CodeModel::Model> CM,CodeGenOptLevel OptLevel)588 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
589                                          StringRef CPU, StringRef FS,
590                                          const TargetOptions &Options,
591                                          std::optional<Reloc::Model> RM,
592                                          std::optional<CodeModel::Model> CM,
593                                          CodeGenOptLevel OptLevel)
594     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
595                         FS, Options, getEffectiveRelocModel(RM),
596                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
597       TLOF(createTLOF(getTargetTriple())) {
598   initAsmInfo();
599   if (TT.getArch() == Triple::amdgcn) {
600     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
601       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
602     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
603       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
604   }
605 }
606 
607 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
608 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
609 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
610 bool AMDGPUTargetMachine::DisableStructurizer = false;
611 
612 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
613 
getGPUName(const Function & F) const614 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
615   Attribute GPUAttr = F.getFnAttribute("target-cpu");
616   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
617 }
618 
getFeatureString(const Function & F) const619 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
620   Attribute FSAttr = F.getFnAttribute("target-features");
621 
622   return FSAttr.isValid() ? FSAttr.getValueAsString()
623                           : getTargetFeatureString();
624 }
625 
626 /// Predicate for Internalize pass.
mustPreserveGV(const GlobalValue & GV)627 static bool mustPreserveGV(const GlobalValue &GV) {
628   if (const Function *F = dyn_cast<Function>(&GV))
629     return F->isDeclaration() || F->getName().starts_with("__asan_") ||
630            F->getName().starts_with("__sanitizer_") ||
631            AMDGPU::isEntryFunctionCC(F->getCallingConv());
632 
633   GV.removeDeadConstantUsers();
634   return !GV.use_empty();
635 }
636 
registerDefaultAliasAnalyses(AAManager & AAM)637 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
638   AAM.registerFunctionAnalysis<AMDGPUAA>();
639 }
640 
641 static Expected<ScanOptions>
parseAMDGPUAtomicOptimizerStrategy(StringRef Params)642 parseAMDGPUAtomicOptimizerStrategy(StringRef Params) {
643   if (Params.empty())
644     return ScanOptions::Iterative;
645   Params.consume_front("strategy=");
646   auto Result = StringSwitch<std::optional<ScanOptions>>(Params)
647                     .Case("dpp", ScanOptions::DPP)
648                     .Cases("iterative", "", ScanOptions::Iterative)
649                     .Case("none", ScanOptions::None)
650                     .Default(std::nullopt);
651   if (Result)
652     return *Result;
653   return make_error<StringError>("invalid parameter", inconvertibleErrorCode());
654 }
655 
buildCodeGenPipeline(ModulePassManager & MPM,raw_pwrite_stream & Out,raw_pwrite_stream * DwoOut,CodeGenFileType FileType,const CGPassBuilderOption & Opts,PassInstrumentationCallbacks * PIC)656 Error AMDGPUTargetMachine::buildCodeGenPipeline(
657     ModulePassManager &MPM, raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
658     CodeGenFileType FileType, const CGPassBuilderOption &Opts,
659     PassInstrumentationCallbacks *PIC) {
660   AMDGPUCodeGenPassBuilder CGPB(*this, Opts, PIC);
661   return CGPB.buildPipeline(MPM, Out, DwoOut, FileType);
662 }
663 
registerPassBuilderCallbacks(PassBuilder & PB)664 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
665 
666 #define GET_PASS_REGISTRY "AMDGPUPassRegistry.def"
667 #include "llvm/Passes/TargetPassRegistry.inc"
668 
669   PB.registerPipelineStartEPCallback(
670       [](ModulePassManager &PM, OptimizationLevel Level) {
671         FunctionPassManager FPM;
672         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
673         if (EnableHipStdPar)
674           PM.addPass(HipStdParAcceleratorCodeSelectionPass());
675       });
676 
677   PB.registerPipelineEarlySimplificationEPCallback(
678       [](ModulePassManager &PM, OptimizationLevel Level) {
679         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
680 
681         if (Level == OptimizationLevel::O0)
682           return;
683 
684         PM.addPass(AMDGPUUnifyMetadataPass());
685 
686         if (InternalizeSymbols) {
687           PM.addPass(InternalizePass(mustPreserveGV));
688           PM.addPass(GlobalDCEPass());
689         }
690 
691         if (EarlyInlineAll && !EnableFunctionCalls)
692           PM.addPass(AMDGPUAlwaysInlinePass());
693       });
694 
695   PB.registerPeepholeEPCallback(
696       [](FunctionPassManager &FPM, OptimizationLevel Level) {
697         if (Level == OptimizationLevel::O0)
698           return;
699 
700         FPM.addPass(AMDGPUUseNativeCallsPass());
701         if (EnableLibCallSimplify)
702           FPM.addPass(AMDGPUSimplifyLibCallsPass());
703       });
704 
705   PB.registerCGSCCOptimizerLateEPCallback(
706       [this](CGSCCPassManager &PM, OptimizationLevel Level) {
707         if (Level == OptimizationLevel::O0)
708           return;
709 
710         FunctionPassManager FPM;
711 
712         // Add promote kernel arguments pass to the opt pipeline right before
713         // infer address spaces which is needed to do actual address space
714         // rewriting.
715         if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() &&
716             EnablePromoteKernelArguments)
717           FPM.addPass(AMDGPUPromoteKernelArgumentsPass());
718 
719         // Add infer address spaces pass to the opt pipeline after inlining
720         // but before SROA to increase SROA opportunities.
721         FPM.addPass(InferAddressSpacesPass());
722 
723         // This should run after inlining to have any chance of doing
724         // anything, and before other cleanup optimizations.
725         FPM.addPass(AMDGPULowerKernelAttributesPass());
726 
727         if (Level != OptimizationLevel::O0) {
728           // Promote alloca to vector before SROA and loop unroll. If we
729           // manage to eliminate allocas before unroll we may choose to unroll
730           // less.
731           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
732         }
733 
734         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
735       });
736 
737   // FIXME: Why is AMDGPUAttributor not in CGSCC?
738   PB.registerOptimizerLastEPCallback(
739       [this](ModulePassManager &MPM, OptimizationLevel Level) {
740         if (Level != OptimizationLevel::O0) {
741           MPM.addPass(AMDGPUAttributorPass(*this));
742         }
743       });
744 
745   PB.registerFullLinkTimeOptimizationLastEPCallback(
746       [this](ModulePassManager &PM, OptimizationLevel Level) {
747         // We want to support the -lto-partitions=N option as "best effort".
748         // For that, we need to lower LDS earlier in the pipeline before the
749         // module is partitioned for codegen.
750         if (EnableLowerModuleLDS)
751           PM.addPass(AMDGPULowerModuleLDSPass(*this));
752       });
753 
754   PB.registerRegClassFilterParsingCallback(
755       [](StringRef FilterName) -> RegAllocFilterFunc {
756         if (FilterName == "sgpr")
757           return onlyAllocateSGPRs;
758         if (FilterName == "vgpr")
759           return onlyAllocateVGPRs;
760         return nullptr;
761       });
762 }
763 
getNullPointerValue(unsigned AddrSpace)764 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
765   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
766           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
767           AddrSpace == AMDGPUAS::REGION_ADDRESS)
768              ? -1
769              : 0;
770 }
771 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const772 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
773                                               unsigned DestAS) const {
774   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
775          AMDGPU::isFlatGlobalAddrSpace(DestAS);
776 }
777 
getAssumedAddrSpace(const Value * V) const778 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
779   const auto *LD = dyn_cast<LoadInst>(V);
780   if (!LD)
781     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
782 
783   // It must be a generic pointer loaded.
784   assert(V->getType()->isPointerTy() &&
785          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
786 
787   const auto *Ptr = LD->getPointerOperand();
788   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
789     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
790   // For a generic pointer loaded from the constant memory, it could be assumed
791   // as a global pointer since the constant memory is only populated on the
792   // host side. As implied by the offload programming model, only global
793   // pointers could be referenced on the host side.
794   return AMDGPUAS::GLOBAL_ADDRESS;
795 }
796 
797 std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V) const798 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const {
799   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
800     switch (II->getIntrinsicID()) {
801     case Intrinsic::amdgcn_is_shared:
802       return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS);
803     case Intrinsic::amdgcn_is_private:
804       return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS);
805     default:
806       break;
807     }
808     return std::pair(nullptr, -1);
809   }
810   // Check the global pointer predication based on
811   // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and
812   // the order of 'is_shared' and 'is_private' is not significant.
813   Value *Ptr;
814   if (match(
815           const_cast<Value *>(V),
816           m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))),
817                   m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>(
818                       m_Deferred(Ptr))))))
819     return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS);
820 
821   return std::pair(nullptr, -1);
822 }
823 
824 unsigned
getAddressSpaceForPseudoSourceKind(unsigned Kind) const825 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
826   switch (Kind) {
827   case PseudoSourceValue::Stack:
828   case PseudoSourceValue::FixedStack:
829     return AMDGPUAS::PRIVATE_ADDRESS;
830   case PseudoSourceValue::ConstantPool:
831   case PseudoSourceValue::GOT:
832   case PseudoSourceValue::JumpTable:
833   case PseudoSourceValue::GlobalValueCallEntry:
834   case PseudoSourceValue::ExternalSymbolCallEntry:
835     return AMDGPUAS::CONSTANT_ADDRESS;
836   }
837   return AMDGPUAS::FLAT_ADDRESS;
838 }
839 
splitModule(Module & M,unsigned NumParts,function_ref<void (std::unique_ptr<Module> MPart)> ModuleCallback)840 bool AMDGPUTargetMachine::splitModule(
841     Module &M, unsigned NumParts,
842     function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
843   // FIXME(?): Would be better to use an already existing Analysis/PassManager,
844   // but all current users of this API don't have one ready and would need to
845   // create one anyway. Let's hide the boilerplate for now to keep it simple.
846 
847   LoopAnalysisManager LAM;
848   FunctionAnalysisManager FAM;
849   CGSCCAnalysisManager CGAM;
850   ModuleAnalysisManager MAM;
851 
852   PassBuilder PB(this);
853   PB.registerModuleAnalyses(MAM);
854   PB.registerFunctionAnalyses(FAM);
855   PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
856 
857   ModulePassManager MPM;
858   MPM.addPass(AMDGPUSplitModulePass(NumParts, ModuleCallback));
859   MPM.run(M, MAM);
860   return true;
861 }
862 
863 //===----------------------------------------------------------------------===//
864 // GCN Target Machine (SI+)
865 //===----------------------------------------------------------------------===//
866 
GCNTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,std::optional<Reloc::Model> RM,std::optional<CodeModel::Model> CM,CodeGenOptLevel OL,bool JIT)867 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
868                                    StringRef CPU, StringRef FS,
869                                    const TargetOptions &Options,
870                                    std::optional<Reloc::Model> RM,
871                                    std::optional<CodeModel::Model> CM,
872                                    CodeGenOptLevel OL, bool JIT)
873     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
874 
875 const TargetSubtargetInfo *
getSubtargetImpl(const Function & F) const876 GCNTargetMachine::getSubtargetImpl(const Function &F) const {
877   StringRef GPU = getGPUName(F);
878   StringRef FS = getFeatureString(F);
879 
880   SmallString<128> SubtargetKey(GPU);
881   SubtargetKey.append(FS);
882 
883   auto &I = SubtargetMap[SubtargetKey];
884   if (!I) {
885     // This needs to be done before we create a new subtarget since any
886     // creation will depend on the TM and the code generation flags on the
887     // function that reside in TargetOptions.
888     resetTargetOptions(F);
889     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
890   }
891 
892   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
893 
894   return I.get();
895 }
896 
897 TargetTransformInfo
getTargetTransformInfo(const Function & F) const898 GCNTargetMachine::getTargetTransformInfo(const Function &F) const {
899   return TargetTransformInfo(GCNTTIImpl(this, F));
900 }
901 
902 //===----------------------------------------------------------------------===//
903 // AMDGPU Pass Setup
904 //===----------------------------------------------------------------------===//
905 
getCSEConfig() const906 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const {
907   return getStandardCSEConfigForOpt(TM->getOptLevel());
908 }
909 
910 namespace {
911 
912 class GCNPassConfig final : public AMDGPUPassConfig {
913 public:
GCNPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)914   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
915     : AMDGPUPassConfig(TM, PM) {
916     // It is necessary to know the register usage of the entire call graph.  We
917     // allow calls without EnableAMDGPUFunctionCalls if they are marked
918     // noinline, so this is always required.
919     setRequiresCodeGenSCCOrder(true);
920     substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
921   }
922 
getGCNTargetMachine() const923   GCNTargetMachine &getGCNTargetMachine() const {
924     return getTM<GCNTargetMachine>();
925   }
926 
927   ScheduleDAGInstrs *
928   createMachineScheduler(MachineSchedContext *C) const override;
929 
930   ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const931   createPostMachineScheduler(MachineSchedContext *C) const override {
932     ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive(
933         C, std::make_unique<PostGenericScheduler>(C),
934         /*RemoveKillFlags=*/true);
935     const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
936     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
937     if (ST.shouldClusterStores())
938       DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
939     DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII));
940     DAG->addMutation(
941         createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PostRA));
942     if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
943       DAG->addMutation(createVOPDPairingMutation());
944     return DAG;
945   }
946 
947   bool addPreISel() override;
948   void addMachineSSAOptimization() override;
949   bool addILPOpts() override;
950   bool addInstSelector() override;
951   bool addIRTranslator() override;
952   void addPreLegalizeMachineIR() override;
953   bool addLegalizeMachineIR() override;
954   void addPreRegBankSelect() override;
955   bool addRegBankSelect() override;
956   void addPreGlobalInstructionSelect() override;
957   bool addGlobalInstructionSelect() override;
958   void addFastRegAlloc() override;
959   void addOptimizedRegAlloc() override;
960 
961   FunctionPass *createSGPRAllocPass(bool Optimized);
962   FunctionPass *createVGPRAllocPass(bool Optimized);
963   FunctionPass *createRegAllocPass(bool Optimized) override;
964 
965   bool addRegAssignAndRewriteFast() override;
966   bool addRegAssignAndRewriteOptimized() override;
967 
968   void addPreRegAlloc() override;
969   bool addPreRewrite() override;
970   void addPostRegAlloc() override;
971   void addPreSched2() override;
972   void addPreEmitPass() override;
973 };
974 
975 } // end anonymous namespace
976 
AMDGPUPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)977 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
978     : TargetPassConfig(TM, PM) {
979   // Exceptions and StackMaps are not supported, so these passes will never do
980   // anything.
981   disablePass(&StackMapLivenessID);
982   disablePass(&FuncletLayoutID);
983   // Garbage collection is not supported.
984   disablePass(&GCLoweringID);
985   disablePass(&ShadowStackGCLoweringID);
986 }
987 
addEarlyCSEOrGVNPass()988 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
989   if (getOptLevel() == CodeGenOptLevel::Aggressive)
990     addPass(createGVNPass());
991   else
992     addPass(createEarlyCSEPass());
993 }
994 
addStraightLineScalarOptimizationPasses()995 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
996   if (isPassEnabled(EnableLoopPrefetch, CodeGenOptLevel::Aggressive))
997     addPass(createLoopDataPrefetchPass());
998   addPass(createSeparateConstOffsetFromGEPPass());
999   // ReassociateGEPs exposes more opportunities for SLSR. See
1000   // the example in reassociate-geps-and-slsr.ll.
1001   addPass(createStraightLineStrengthReducePass());
1002   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
1003   // EarlyCSE can reuse.
1004   addEarlyCSEOrGVNPass();
1005   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
1006   addPass(createNaryReassociatePass());
1007   // NaryReassociate on GEPs creates redundant common expressions, so run
1008   // EarlyCSE after it.
1009   addPass(createEarlyCSEPass());
1010 }
1011 
addIRPasses()1012 void AMDGPUPassConfig::addIRPasses() {
1013   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
1014 
1015   Triple::ArchType Arch = TM.getTargetTriple().getArch();
1016   if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn)
1017     addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM));
1018 
1019   // There is no reason to run these.
1020   disablePass(&StackMapLivenessID);
1021   disablePass(&FuncletLayoutID);
1022   disablePass(&PatchableFunctionID);
1023 
1024   addPass(createAMDGPUPrintfRuntimeBinding());
1025   if (LowerCtorDtor)
1026     addPass(createAMDGPUCtorDtorLoweringLegacyPass());
1027 
1028   if (isPassEnabled(EnableImageIntrinsicOptimizer))
1029     addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM));
1030 
1031   // This can be disabled by passing ::Disable here or on the command line
1032   // with --expand-variadics-override=disable.
1033   addPass(createExpandVariadicsPass(ExpandVariadicsMode::Lowering));
1034 
1035   // Function calls are not supported, so make sure we inline everything.
1036   addPass(createAMDGPUAlwaysInlinePass());
1037   addPass(createAlwaysInlinerLegacyPass());
1038 
1039   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
1040   if (Arch == Triple::r600)
1041     addPass(createR600OpenCLImageTypeLoweringPass());
1042 
1043   // Replace OpenCL enqueued block function pointers with global variables.
1044   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
1045 
1046   // Runs before PromoteAlloca so the latter can account for function uses
1047   if (EnableLowerModuleLDS) {
1048     addPass(createAMDGPULowerModuleLDSLegacyPass(&TM));
1049   }
1050 
1051   if (TM.getOptLevel() > CodeGenOptLevel::None)
1052     addPass(createInferAddressSpacesPass());
1053 
1054   // Run atomic optimizer before Atomic Expand
1055   if ((TM.getTargetTriple().getArch() == Triple::amdgcn) &&
1056       (TM.getOptLevel() >= CodeGenOptLevel::Less) &&
1057       (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) {
1058     addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy));
1059   }
1060 
1061   addPass(createAtomicExpandLegacyPass());
1062 
1063   if (TM.getOptLevel() > CodeGenOptLevel::None) {
1064     addPass(createAMDGPUPromoteAlloca());
1065 
1066     if (isPassEnabled(EnableScalarIRPasses))
1067       addStraightLineScalarOptimizationPasses();
1068 
1069     if (EnableAMDGPUAliasAnalysis) {
1070       addPass(createAMDGPUAAWrapperPass());
1071       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1072                                              AAResults &AAR) {
1073         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1074           AAR.addAAResult(WrapperPass->getResult());
1075         }));
1076     }
1077 
1078     if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1079       // TODO: May want to move later or split into an early and late one.
1080       addPass(createAMDGPUCodeGenPreparePass());
1081     }
1082 
1083     // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may
1084     // have expanded.
1085     if (TM.getOptLevel() > CodeGenOptLevel::Less)
1086       addPass(createLICMPass());
1087   }
1088 
1089   TargetPassConfig::addIRPasses();
1090 
1091   // EarlyCSE is not always strong enough to clean up what LSR produces. For
1092   // example, GVN can combine
1093   //
1094   //   %0 = add %a, %b
1095   //   %1 = add %b, %a
1096   //
1097   // and
1098   //
1099   //   %0 = shl nsw %a, 2
1100   //   %1 = shl %a, 2
1101   //
1102   // but EarlyCSE can do neither of them.
1103   if (isPassEnabled(EnableScalarIRPasses))
1104     addEarlyCSEOrGVNPass();
1105 }
1106 
addCodeGenPrepare()1107 void AMDGPUPassConfig::addCodeGenPrepare() {
1108   if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
1109     // FIXME: This pass adds 2 hacky attributes that can be replaced with an
1110     // analysis, and should be removed.
1111     addPass(createAMDGPUAnnotateKernelFeaturesPass());
1112   }
1113 
1114   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1115       EnableLowerKernelArguments)
1116     addPass(createAMDGPULowerKernelArgumentsPass());
1117 
1118   if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
1119     // This lowering has been placed after codegenprepare to take advantage of
1120     // address mode matching (which is why it isn't put with the LDS lowerings).
1121     // It could be placed anywhere before uniformity annotations (an analysis
1122     // that it changes by splitting up fat pointers into their components)
1123     // but has been put before switch lowering and CFG flattening so that those
1124     // passes can run on the more optimized control flow this pass creates in
1125     // many cases.
1126     //
1127     // FIXME: This should ideally be put after the LoadStoreVectorizer.
1128     // However, due to some annoying facts about ResourceUsageAnalysis,
1129     // (especially as exercised in the resource-usage-dead-function test),
1130     // we need all the function passes codegenprepare all the way through
1131     // said resource usage analysis to run on the call graph produced
1132     // before codegenprepare runs (because codegenprepare will knock some
1133     // nodes out of the graph, which leads to function-level passes not
1134     // being run on them, which causes crashes in the resource usage analysis).
1135     addPass(createAMDGPULowerBufferFatPointersPass());
1136     // In accordance with the above FIXME, manually force all the
1137     // function-level passes into a CGSCCPassManager.
1138     addPass(new DummyCGSCCPass());
1139   }
1140 
1141   TargetPassConfig::addCodeGenPrepare();
1142 
1143   if (isPassEnabled(EnableLoadStoreVectorizer))
1144     addPass(createLoadStoreVectorizerPass());
1145 
1146   // LowerSwitch pass may introduce unreachable blocks that can
1147   // cause unexpected behavior for subsequent passes. Placing it
1148   // here seems better that these blocks would get cleaned up by
1149   // UnreachableBlockElim inserted next in the pass flow.
1150   addPass(createLowerSwitchPass());
1151 }
1152 
addPreISel()1153 bool AMDGPUPassConfig::addPreISel() {
1154   if (TM->getOptLevel() > CodeGenOptLevel::None)
1155     addPass(createFlattenCFGPass());
1156   return false;
1157 }
1158 
addInstSelector()1159 bool AMDGPUPassConfig::addInstSelector() {
1160   addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel()));
1161   return false;
1162 }
1163 
addGCPasses()1164 bool AMDGPUPassConfig::addGCPasses() {
1165   // Do nothing. GC is not supported.
1166   return false;
1167 }
1168 
1169 llvm::ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const1170 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const {
1171   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1172   ScheduleDAGMILive *DAG = createGenericSchedLive(C);
1173   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1174   if (ST.shouldClusterStores())
1175     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1176   return DAG;
1177 }
1178 
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI) const1179 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo(
1180     BumpPtrAllocator &Allocator, const Function &F,
1181     const TargetSubtargetInfo *STI) const {
1182   return R600MachineFunctionInfo::create<R600MachineFunctionInfo>(
1183       Allocator, F, static_cast<const R600Subtarget *>(STI));
1184 }
1185 
1186 //===----------------------------------------------------------------------===//
1187 // GCN Pass Setup
1188 //===----------------------------------------------------------------------===//
1189 
createMachineScheduler(MachineSchedContext * C) const1190 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1191   MachineSchedContext *C) const {
1192   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1193   if (ST.enableSIScheduler())
1194     return createSIMachineScheduler(C);
1195 
1196   if (EnableMaxIlpSchedStrategy)
1197     return createGCNMaxILPMachineScheduler(C);
1198 
1199   return createGCNMaxOccupancyMachineScheduler(C);
1200 }
1201 
addPreISel()1202 bool GCNPassConfig::addPreISel() {
1203   AMDGPUPassConfig::addPreISel();
1204 
1205   if (TM->getOptLevel() > CodeGenOptLevel::None)
1206     addPass(createSinkingPass());
1207 
1208   if (TM->getOptLevel() > CodeGenOptLevel::None)
1209     addPass(createAMDGPULateCodeGenPreparePass());
1210 
1211   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1212   // regions formed by them.
1213   addPass(&AMDGPUUnifyDivergentExitNodesID);
1214   if (!LateCFGStructurize && !DisableStructurizer) {
1215     if (EnableStructurizerWorkarounds) {
1216       addPass(createFixIrreduciblePass());
1217       addPass(createUnifyLoopExitsPass());
1218     }
1219     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1220   }
1221   addPass(createAMDGPUAnnotateUniformValues());
1222   if (!LateCFGStructurize && !DisableStructurizer) {
1223     addPass(createSIAnnotateControlFlowPass());
1224     // TODO: Move this right after structurizeCFG to avoid extra divergence
1225     // analysis. This depends on stopping SIAnnotateControlFlow from making
1226     // control flow modifications.
1227     addPass(createAMDGPURewriteUndefForPHILegacyPass());
1228   }
1229   addPass(createLCSSAPass());
1230 
1231   if (TM->getOptLevel() > CodeGenOptLevel::Less)
1232     addPass(&AMDGPUPerfHintAnalysisID);
1233 
1234   return false;
1235 }
1236 
addMachineSSAOptimization()1237 void GCNPassConfig::addMachineSSAOptimization() {
1238   TargetPassConfig::addMachineSSAOptimization();
1239 
1240   // We want to fold operands after PeepholeOptimizer has run (or as part of
1241   // it), because it will eliminate extra copies making it easier to fold the
1242   // real source operand. We want to eliminate dead instructions after, so that
1243   // we see fewer uses of the copies. We then need to clean up the dead
1244   // instructions leftover after the operands are folded as well.
1245   //
1246   // XXX - Can we get away without running DeadMachineInstructionElim again?
1247   addPass(&SIFoldOperandsID);
1248   if (EnableDPPCombine)
1249     addPass(&GCNDPPCombineID);
1250   addPass(&SILoadStoreOptimizerID);
1251   if (isPassEnabled(EnableSDWAPeephole)) {
1252     addPass(&SIPeepholeSDWAID);
1253     addPass(&EarlyMachineLICMID);
1254     addPass(&MachineCSEID);
1255     addPass(&SIFoldOperandsID);
1256   }
1257   addPass(&DeadMachineInstructionElimID);
1258   addPass(createSIShrinkInstructionsPass());
1259 }
1260 
addILPOpts()1261 bool GCNPassConfig::addILPOpts() {
1262   if (EnableEarlyIfConversion)
1263     addPass(&EarlyIfConverterID);
1264 
1265   TargetPassConfig::addILPOpts();
1266   return false;
1267 }
1268 
addInstSelector()1269 bool GCNPassConfig::addInstSelector() {
1270   AMDGPUPassConfig::addInstSelector();
1271   addPass(&SIFixSGPRCopiesID);
1272   addPass(createSILowerI1CopiesPass());
1273   return false;
1274 }
1275 
addIRTranslator()1276 bool GCNPassConfig::addIRTranslator() {
1277   addPass(new IRTranslator(getOptLevel()));
1278   return false;
1279 }
1280 
addPreLegalizeMachineIR()1281 void GCNPassConfig::addPreLegalizeMachineIR() {
1282   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1283   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1284   addPass(new Localizer());
1285 }
1286 
addLegalizeMachineIR()1287 bool GCNPassConfig::addLegalizeMachineIR() {
1288   addPass(new Legalizer());
1289   return false;
1290 }
1291 
addPreRegBankSelect()1292 void GCNPassConfig::addPreRegBankSelect() {
1293   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1294   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1295   addPass(createAMDGPUGlobalISelDivergenceLoweringPass());
1296 }
1297 
addRegBankSelect()1298 bool GCNPassConfig::addRegBankSelect() {
1299   addPass(new AMDGPURegBankSelect());
1300   return false;
1301 }
1302 
addPreGlobalInstructionSelect()1303 void GCNPassConfig::addPreGlobalInstructionSelect() {
1304   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1305   addPass(createAMDGPURegBankCombiner(IsOptNone));
1306 }
1307 
addGlobalInstructionSelect()1308 bool GCNPassConfig::addGlobalInstructionSelect() {
1309   addPass(new InstructionSelect(getOptLevel()));
1310   return false;
1311 }
1312 
addPreRegAlloc()1313 void GCNPassConfig::addPreRegAlloc() {
1314   if (LateCFGStructurize) {
1315     addPass(createAMDGPUMachineCFGStructurizerPass());
1316   }
1317 }
1318 
addFastRegAlloc()1319 void GCNPassConfig::addFastRegAlloc() {
1320   // FIXME: We have to disable the verifier here because of PHIElimination +
1321   // TwoAddressInstructions disabling it.
1322 
1323   // This must be run immediately after phi elimination and before
1324   // TwoAddressInstructions, otherwise the processing of the tied operand of
1325   // SI_ELSE will introduce a copy of the tied operand source after the else.
1326   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1327 
1328   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1329 
1330   TargetPassConfig::addFastRegAlloc();
1331 }
1332 
addOptimizedRegAlloc()1333 void GCNPassConfig::addOptimizedRegAlloc() {
1334   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1335   // instructions that cause scheduling barriers.
1336   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1337 
1338   if (OptExecMaskPreRA)
1339     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1340 
1341   if (EnableRewritePartialRegUses)
1342     insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID);
1343 
1344   if (isPassEnabled(EnablePreRAOptimizations))
1345     insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1346 
1347   // This is not an essential optimization and it has a noticeable impact on
1348   // compilation time, so we only enable it from O2.
1349   if (TM->getOptLevel() > CodeGenOptLevel::Less)
1350     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1351 
1352   // FIXME: when an instruction has a Killed operand, and the instruction is
1353   // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1354   // the register in LiveVariables, this would trigger a failure in verifier,
1355   // we should fix it and enable the verifier.
1356   if (OptVGPRLiveRange)
1357     insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID);
1358   // This must be run immediately after phi elimination and before
1359   // TwoAddressInstructions, otherwise the processing of the tied operand of
1360   // SI_ELSE will introduce a copy of the tied operand source after the else.
1361   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1362 
1363   if (EnableDCEInRA)
1364     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1365 
1366   TargetPassConfig::addOptimizedRegAlloc();
1367 }
1368 
addPreRewrite()1369 bool GCNPassConfig::addPreRewrite() {
1370   addPass(&SILowerWWMCopiesID);
1371   if (EnableRegReassign)
1372     addPass(&GCNNSAReassignID);
1373   return true;
1374 }
1375 
createSGPRAllocPass(bool Optimized)1376 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1377   // Initialize the global default.
1378   llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1379                   initializeDefaultSGPRRegisterAllocatorOnce);
1380 
1381   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1382   if (Ctor != useDefaultRegisterAllocator)
1383     return Ctor();
1384 
1385   if (Optimized)
1386     return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1387 
1388   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1389 }
1390 
createVGPRAllocPass(bool Optimized)1391 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1392   // Initialize the global default.
1393   llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1394                   initializeDefaultVGPRRegisterAllocatorOnce);
1395 
1396   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1397   if (Ctor != useDefaultRegisterAllocator)
1398     return Ctor();
1399 
1400   if (Optimized)
1401     return createGreedyVGPRRegisterAllocator();
1402 
1403   return createFastVGPRRegisterAllocator();
1404 }
1405 
createRegAllocPass(bool Optimized)1406 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1407   llvm_unreachable("should not be used");
1408 }
1409 
1410 static const char RegAllocOptNotSupportedMessage[] =
1411   "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1412 
addRegAssignAndRewriteFast()1413 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1414   if (!usingDefaultRegAlloc())
1415     report_fatal_error(RegAllocOptNotSupportedMessage);
1416 
1417   addPass(&GCNPreRALongBranchRegID);
1418 
1419   addPass(createSGPRAllocPass(false));
1420 
1421   // Equivalent of PEI for SGPRs.
1422   addPass(&SILowerSGPRSpillsID);
1423   addPass(&SIPreAllocateWWMRegsID);
1424 
1425   addPass(createVGPRAllocPass(false));
1426 
1427   addPass(&SILowerWWMCopiesID);
1428   return true;
1429 }
1430 
addRegAssignAndRewriteOptimized()1431 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1432   if (!usingDefaultRegAlloc())
1433     report_fatal_error(RegAllocOptNotSupportedMessage);
1434 
1435   addPass(&GCNPreRALongBranchRegID);
1436 
1437   addPass(createSGPRAllocPass(true));
1438 
1439   // Commit allocated register changes. This is mostly necessary because too
1440   // many things rely on the use lists of the physical registers, such as the
1441   // verifier. This is only necessary with allocators which use LiveIntervals,
1442   // since FastRegAlloc does the replacements itself.
1443   addPass(createVirtRegRewriter(false));
1444 
1445   // Equivalent of PEI for SGPRs.
1446   addPass(&SILowerSGPRSpillsID);
1447   addPass(&SIPreAllocateWWMRegsID);
1448 
1449   addPass(createVGPRAllocPass(true));
1450 
1451   addPreRewrite();
1452   addPass(&VirtRegRewriterID);
1453 
1454   addPass(&AMDGPUMarkLastScratchLoadID);
1455 
1456   return true;
1457 }
1458 
addPostRegAlloc()1459 void GCNPassConfig::addPostRegAlloc() {
1460   addPass(&SIFixVGPRCopiesID);
1461   if (getOptLevel() > CodeGenOptLevel::None)
1462     addPass(&SIOptimizeExecMaskingID);
1463   TargetPassConfig::addPostRegAlloc();
1464 }
1465 
addPreSched2()1466 void GCNPassConfig::addPreSched2() {
1467   if (TM->getOptLevel() > CodeGenOptLevel::None)
1468     addPass(createSIShrinkInstructionsPass());
1469   addPass(&SIPostRABundlerID);
1470 }
1471 
addPreEmitPass()1472 void GCNPassConfig::addPreEmitPass() {
1473   if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
1474     addPass(&GCNCreateVOPDID);
1475   addPass(createSIMemoryLegalizerPass());
1476   addPass(createSIInsertWaitcntsPass());
1477 
1478   addPass(createSIModeRegisterPass());
1479 
1480   if (getOptLevel() > CodeGenOptLevel::None)
1481     addPass(&SIInsertHardClausesID);
1482 
1483   addPass(&SILateBranchLoweringPassID);
1484   if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less))
1485     addPass(createAMDGPUSetWavePriorityPass());
1486   if (getOptLevel() > CodeGenOptLevel::None)
1487     addPass(&SIPreEmitPeepholeID);
1488   // The hazard recognizer that runs as part of the post-ra scheduler does not
1489   // guarantee to be able handle all hazards correctly. This is because if there
1490   // are multiple scheduling regions in a basic block, the regions are scheduled
1491   // bottom up, so when we begin to schedule a region we don't know what
1492   // instructions were emitted directly before it.
1493   //
1494   // Here we add a stand-alone hazard recognizer pass which can handle all
1495   // cases.
1496   addPass(&PostRAHazardRecognizerID);
1497 
1498   if (isPassEnabled(EnableInsertSingleUseVDST, CodeGenOptLevel::Less))
1499     addPass(&AMDGPUInsertSingleUseVDSTID);
1500 
1501   if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less))
1502     addPass(&AMDGPUInsertDelayAluID);
1503 
1504   addPass(&BranchRelaxationPassID);
1505 }
1506 
createPassConfig(PassManagerBase & PM)1507 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1508   return new GCNPassConfig(*this, PM);
1509 }
1510 
registerMachineRegisterInfoCallback(MachineFunction & MF) const1511 void GCNTargetMachine::registerMachineRegisterInfoCallback(
1512     MachineFunction &MF) const {
1513   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1514   MF.getRegInfo().addDelegate(MFI);
1515 }
1516 
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI) const1517 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo(
1518     BumpPtrAllocator &Allocator, const Function &F,
1519     const TargetSubtargetInfo *STI) const {
1520   return SIMachineFunctionInfo::create<SIMachineFunctionInfo>(
1521       Allocator, F, static_cast<const GCNSubtarget *>(STI));
1522 }
1523 
createDefaultFuncInfoYAML() const1524 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1525   return new yaml::SIMachineFunctionInfo();
1526 }
1527 
1528 yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF) const1529 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1530   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1531   return new yaml::SIMachineFunctionInfo(
1532       *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF);
1533 }
1534 
parseMachineFunctionInfo(const yaml::MachineFunctionInfo & MFI_,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange) const1535 bool GCNTargetMachine::parseMachineFunctionInfo(
1536     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1537     SMDiagnostic &Error, SMRange &SourceRange) const {
1538   const yaml::SIMachineFunctionInfo &YamlMFI =
1539       static_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1540   MachineFunction &MF = PFS.MF;
1541   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1542   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1543 
1544   if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1545     return true;
1546 
1547   if (MFI->Occupancy == 0) {
1548     // Fixup the subtarget dependent default value.
1549     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1550   }
1551 
1552   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1553     Register TempReg;
1554     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1555       SourceRange = RegName.SourceRange;
1556       return true;
1557     }
1558     RegVal = TempReg;
1559 
1560     return false;
1561   };
1562 
1563   auto parseOptionalRegister = [&](const yaml::StringValue &RegName,
1564                                    Register &RegVal) {
1565     return !RegName.Value.empty() && parseRegister(RegName, RegVal);
1566   };
1567 
1568   if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy))
1569     return true;
1570 
1571   if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy))
1572     return true;
1573 
1574   if (parseOptionalRegister(YamlMFI.LongBranchReservedReg,
1575                             MFI->LongBranchReservedReg))
1576     return true;
1577 
1578   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1579     // Create a diagnostic for a the register string literal.
1580     const MemoryBuffer &Buffer =
1581         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1582     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1583                          RegName.Value.size(), SourceMgr::DK_Error,
1584                          "incorrect register class for field", RegName.Value,
1585                          std::nullopt, std::nullopt);
1586     SourceRange = RegName.SourceRange;
1587     return true;
1588   };
1589 
1590   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1591       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1592       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1593     return true;
1594 
1595   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1596       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1597     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1598   }
1599 
1600   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1601       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1602     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1603   }
1604 
1605   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1606       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1607     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1608   }
1609 
1610   for (const auto &YamlReg : YamlMFI.WWMReservedRegs) {
1611     Register ParsedReg;
1612     if (parseRegister(YamlReg, ParsedReg))
1613       return true;
1614 
1615     MFI->reserveWWMRegister(ParsedReg);
1616   }
1617 
1618   auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A,
1619                                    const TargetRegisterClass &RC,
1620                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1621                                    unsigned SystemSGPRs) {
1622     // Skip parsing if it's not present.
1623     if (!A)
1624       return false;
1625 
1626     if (A->IsRegister) {
1627       Register Reg;
1628       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1629         SourceRange = A->RegisterName.SourceRange;
1630         return true;
1631       }
1632       if (!RC.contains(Reg))
1633         return diagnoseRegisterClass(A->RegisterName);
1634       Arg = ArgDescriptor::createRegister(Reg);
1635     } else
1636       Arg = ArgDescriptor::createStack(A->StackOffset);
1637     // Check and apply the optional mask.
1638     if (A->Mask)
1639       Arg = ArgDescriptor::createArg(Arg, *A->Mask);
1640 
1641     MFI->NumUserSGPRs += UserSGPRs;
1642     MFI->NumSystemSGPRs += SystemSGPRs;
1643     return false;
1644   };
1645 
1646   if (YamlMFI.ArgInfo &&
1647       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1648                              AMDGPU::SGPR_128RegClass,
1649                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1650        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1651                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1652                              2, 0) ||
1653        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1654                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1655        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1656                              AMDGPU::SReg_64RegClass,
1657                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1658        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1659                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1660                              2, 0) ||
1661        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1662                              AMDGPU::SReg_64RegClass,
1663                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1664        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1665                              AMDGPU::SGPR_32RegClass,
1666                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1667        parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId,
1668                              AMDGPU::SGPR_32RegClass,
1669                              MFI->ArgInfo.LDSKernelId, 0, 1) ||
1670        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1671                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1672                              0, 1) ||
1673        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1674                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1675                              0, 1) ||
1676        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1677                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1678                              0, 1) ||
1679        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1680                              AMDGPU::SGPR_32RegClass,
1681                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1682        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1683                              AMDGPU::SGPR_32RegClass,
1684                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1685        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1686                              AMDGPU::SReg_64RegClass,
1687                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1688        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1689                              AMDGPU::SReg_64RegClass,
1690                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1691        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1692                              AMDGPU::VGPR_32RegClass,
1693                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1694        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1695                              AMDGPU::VGPR_32RegClass,
1696                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1697        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1698                              AMDGPU::VGPR_32RegClass,
1699                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1700     return true;
1701 
1702   if (ST.hasIEEEMode())
1703     MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1704   if (ST.hasDX10ClampMode())
1705     MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1706 
1707   // FIXME: Move proper support for denormal-fp-math into base MachineFunction
1708   MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals
1709                                       ? DenormalMode::IEEE
1710                                       : DenormalMode::PreserveSign;
1711   MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals
1712                                        ? DenormalMode::IEEE
1713                                        : DenormalMode::PreserveSign;
1714 
1715   MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals
1716                                           ? DenormalMode::IEEE
1717                                           : DenormalMode::PreserveSign;
1718   MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals
1719                                            ? DenormalMode::IEEE
1720                                            : DenormalMode::PreserveSign;
1721 
1722   return false;
1723 }
1724