1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/Assumptions.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/SaveAndRestore.h"
37 #include <optional>
38
39 using namespace clang;
40 using namespace CodeGen;
41
42 //===----------------------------------------------------------------------===//
43 // Statement Emission
44 //===----------------------------------------------------------------------===//
45
46 namespace llvm {
47 extern cl::opt<bool> EnableSingleByteCoverage;
48 } // namespace llvm
49
EmitStopPoint(const Stmt * S)50 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
51 if (CGDebugInfo *DI = getDebugInfo()) {
52 SourceLocation Loc;
53 Loc = S->getBeginLoc();
54 DI->EmitLocation(Builder, Loc);
55
56 LastStopPoint = Loc;
57 }
58 }
59
EmitStmt(const Stmt * S,ArrayRef<const Attr * > Attrs)60 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
61 assert(S && "Null statement?");
62 PGO.setCurrentStmt(S);
63
64 // These statements have their own debug info handling.
65 if (EmitSimpleStmt(S, Attrs))
66 return;
67
68 // Check if we are generating unreachable code.
69 if (!HaveInsertPoint()) {
70 // If so, and the statement doesn't contain a label, then we do not need to
71 // generate actual code. This is safe because (1) the current point is
72 // unreachable, so we don't need to execute the code, and (2) we've already
73 // handled the statements which update internal data structures (like the
74 // local variable map) which could be used by subsequent statements.
75 if (!ContainsLabel(S)) {
76 // Verify that any decl statements were handled as simple, they may be in
77 // scope of subsequent reachable statements.
78 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
79 return;
80 }
81
82 // Otherwise, make a new block to hold the code.
83 EnsureInsertPoint();
84 }
85
86 // Generate a stoppoint if we are emitting debug info.
87 EmitStopPoint(S);
88
89 // Ignore all OpenMP directives except for simd if OpenMP with Simd is
90 // enabled.
91 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
92 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
93 EmitSimpleOMPExecutableDirective(*D);
94 return;
95 }
96 }
97
98 switch (S->getStmtClass()) {
99 case Stmt::NoStmtClass:
100 case Stmt::CXXCatchStmtClass:
101 case Stmt::SEHExceptStmtClass:
102 case Stmt::SEHFinallyStmtClass:
103 case Stmt::MSDependentExistsStmtClass:
104 llvm_unreachable("invalid statement class to emit generically");
105 case Stmt::NullStmtClass:
106 case Stmt::CompoundStmtClass:
107 case Stmt::DeclStmtClass:
108 case Stmt::LabelStmtClass:
109 case Stmt::AttributedStmtClass:
110 case Stmt::GotoStmtClass:
111 case Stmt::BreakStmtClass:
112 case Stmt::ContinueStmtClass:
113 case Stmt::DefaultStmtClass:
114 case Stmt::CaseStmtClass:
115 case Stmt::SEHLeaveStmtClass:
116 llvm_unreachable("should have emitted these statements as simple");
117
118 #define STMT(Type, Base)
119 #define ABSTRACT_STMT(Op)
120 #define EXPR(Type, Base) \
121 case Stmt::Type##Class:
122 #include "clang/AST/StmtNodes.inc"
123 {
124 // Remember the block we came in on.
125 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
126 assert(incoming && "expression emission must have an insertion point");
127
128 EmitIgnoredExpr(cast<Expr>(S));
129
130 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
131 assert(outgoing && "expression emission cleared block!");
132
133 // The expression emitters assume (reasonably!) that the insertion
134 // point is always set. To maintain that, the call-emission code
135 // for noreturn functions has to enter a new block with no
136 // predecessors. We want to kill that block and mark the current
137 // insertion point unreachable in the common case of a call like
138 // "exit();". Since expression emission doesn't otherwise create
139 // blocks with no predecessors, we can just test for that.
140 // However, we must be careful not to do this to our incoming
141 // block, because *statement* emission does sometimes create
142 // reachable blocks which will have no predecessors until later in
143 // the function. This occurs with, e.g., labels that are not
144 // reachable by fallthrough.
145 if (incoming != outgoing && outgoing->use_empty()) {
146 outgoing->eraseFromParent();
147 Builder.ClearInsertionPoint();
148 }
149 break;
150 }
151
152 case Stmt::IndirectGotoStmtClass:
153 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
154
155 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
156 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
157 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break;
158 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break;
159
160 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
161
162 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
163 case Stmt::GCCAsmStmtClass: // Intentional fall-through.
164 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
165 case Stmt::CoroutineBodyStmtClass:
166 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
167 break;
168 case Stmt::CoreturnStmtClass:
169 EmitCoreturnStmt(cast<CoreturnStmt>(*S));
170 break;
171 case Stmt::CapturedStmtClass: {
172 const CapturedStmt *CS = cast<CapturedStmt>(S);
173 EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
174 }
175 break;
176 case Stmt::ObjCAtTryStmtClass:
177 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
178 break;
179 case Stmt::ObjCAtCatchStmtClass:
180 llvm_unreachable(
181 "@catch statements should be handled by EmitObjCAtTryStmt");
182 case Stmt::ObjCAtFinallyStmtClass:
183 llvm_unreachable(
184 "@finally statements should be handled by EmitObjCAtTryStmt");
185 case Stmt::ObjCAtThrowStmtClass:
186 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
187 break;
188 case Stmt::ObjCAtSynchronizedStmtClass:
189 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
190 break;
191 case Stmt::ObjCForCollectionStmtClass:
192 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
193 break;
194 case Stmt::ObjCAutoreleasePoolStmtClass:
195 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
196 break;
197
198 case Stmt::CXXTryStmtClass:
199 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
200 break;
201 case Stmt::CXXForRangeStmtClass:
202 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
203 break;
204 case Stmt::SEHTryStmtClass:
205 EmitSEHTryStmt(cast<SEHTryStmt>(*S));
206 break;
207 case Stmt::OMPMetaDirectiveClass:
208 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
209 break;
210 case Stmt::OMPCanonicalLoopClass:
211 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
212 break;
213 case Stmt::OMPParallelDirectiveClass:
214 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
215 break;
216 case Stmt::OMPSimdDirectiveClass:
217 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
218 break;
219 case Stmt::OMPTileDirectiveClass:
220 EmitOMPTileDirective(cast<OMPTileDirective>(*S));
221 break;
222 case Stmt::OMPUnrollDirectiveClass:
223 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
224 break;
225 case Stmt::OMPReverseDirectiveClass:
226 EmitOMPReverseDirective(cast<OMPReverseDirective>(*S));
227 break;
228 case Stmt::OMPInterchangeDirectiveClass:
229 EmitOMPInterchangeDirective(cast<OMPInterchangeDirective>(*S));
230 break;
231 case Stmt::OMPForDirectiveClass:
232 EmitOMPForDirective(cast<OMPForDirective>(*S));
233 break;
234 case Stmt::OMPForSimdDirectiveClass:
235 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
236 break;
237 case Stmt::OMPSectionsDirectiveClass:
238 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
239 break;
240 case Stmt::OMPSectionDirectiveClass:
241 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
242 break;
243 case Stmt::OMPSingleDirectiveClass:
244 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
245 break;
246 case Stmt::OMPMasterDirectiveClass:
247 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
248 break;
249 case Stmt::OMPCriticalDirectiveClass:
250 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
251 break;
252 case Stmt::OMPParallelForDirectiveClass:
253 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
254 break;
255 case Stmt::OMPParallelForSimdDirectiveClass:
256 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
257 break;
258 case Stmt::OMPParallelMasterDirectiveClass:
259 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
260 break;
261 case Stmt::OMPParallelSectionsDirectiveClass:
262 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
263 break;
264 case Stmt::OMPTaskDirectiveClass:
265 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
266 break;
267 case Stmt::OMPTaskyieldDirectiveClass:
268 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
269 break;
270 case Stmt::OMPErrorDirectiveClass:
271 EmitOMPErrorDirective(cast<OMPErrorDirective>(*S));
272 break;
273 case Stmt::OMPBarrierDirectiveClass:
274 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
275 break;
276 case Stmt::OMPTaskwaitDirectiveClass:
277 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
278 break;
279 case Stmt::OMPTaskgroupDirectiveClass:
280 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
281 break;
282 case Stmt::OMPFlushDirectiveClass:
283 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
284 break;
285 case Stmt::OMPDepobjDirectiveClass:
286 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
287 break;
288 case Stmt::OMPScanDirectiveClass:
289 EmitOMPScanDirective(cast<OMPScanDirective>(*S));
290 break;
291 case Stmt::OMPOrderedDirectiveClass:
292 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
293 break;
294 case Stmt::OMPAtomicDirectiveClass:
295 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
296 break;
297 case Stmt::OMPTargetDirectiveClass:
298 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
299 break;
300 case Stmt::OMPTeamsDirectiveClass:
301 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
302 break;
303 case Stmt::OMPCancellationPointDirectiveClass:
304 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
305 break;
306 case Stmt::OMPCancelDirectiveClass:
307 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
308 break;
309 case Stmt::OMPTargetDataDirectiveClass:
310 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
311 break;
312 case Stmt::OMPTargetEnterDataDirectiveClass:
313 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
314 break;
315 case Stmt::OMPTargetExitDataDirectiveClass:
316 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
317 break;
318 case Stmt::OMPTargetParallelDirectiveClass:
319 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
320 break;
321 case Stmt::OMPTargetParallelForDirectiveClass:
322 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
323 break;
324 case Stmt::OMPTaskLoopDirectiveClass:
325 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
326 break;
327 case Stmt::OMPTaskLoopSimdDirectiveClass:
328 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
329 break;
330 case Stmt::OMPMasterTaskLoopDirectiveClass:
331 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
332 break;
333 case Stmt::OMPMaskedTaskLoopDirectiveClass:
334 llvm_unreachable("masked taskloop directive not supported yet.");
335 break;
336 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
337 EmitOMPMasterTaskLoopSimdDirective(
338 cast<OMPMasterTaskLoopSimdDirective>(*S));
339 break;
340 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
341 llvm_unreachable("masked taskloop simd directive not supported yet.");
342 break;
343 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
344 EmitOMPParallelMasterTaskLoopDirective(
345 cast<OMPParallelMasterTaskLoopDirective>(*S));
346 break;
347 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
348 llvm_unreachable("parallel masked taskloop directive not supported yet.");
349 break;
350 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
351 EmitOMPParallelMasterTaskLoopSimdDirective(
352 cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
353 break;
354 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
355 llvm_unreachable(
356 "parallel masked taskloop simd directive not supported yet.");
357 break;
358 case Stmt::OMPDistributeDirectiveClass:
359 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
360 break;
361 case Stmt::OMPTargetUpdateDirectiveClass:
362 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
363 break;
364 case Stmt::OMPDistributeParallelForDirectiveClass:
365 EmitOMPDistributeParallelForDirective(
366 cast<OMPDistributeParallelForDirective>(*S));
367 break;
368 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
369 EmitOMPDistributeParallelForSimdDirective(
370 cast<OMPDistributeParallelForSimdDirective>(*S));
371 break;
372 case Stmt::OMPDistributeSimdDirectiveClass:
373 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
374 break;
375 case Stmt::OMPTargetParallelForSimdDirectiveClass:
376 EmitOMPTargetParallelForSimdDirective(
377 cast<OMPTargetParallelForSimdDirective>(*S));
378 break;
379 case Stmt::OMPTargetSimdDirectiveClass:
380 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
381 break;
382 case Stmt::OMPTeamsDistributeDirectiveClass:
383 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
384 break;
385 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
386 EmitOMPTeamsDistributeSimdDirective(
387 cast<OMPTeamsDistributeSimdDirective>(*S));
388 break;
389 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
390 EmitOMPTeamsDistributeParallelForSimdDirective(
391 cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
392 break;
393 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
394 EmitOMPTeamsDistributeParallelForDirective(
395 cast<OMPTeamsDistributeParallelForDirective>(*S));
396 break;
397 case Stmt::OMPTargetTeamsDirectiveClass:
398 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
399 break;
400 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
401 EmitOMPTargetTeamsDistributeDirective(
402 cast<OMPTargetTeamsDistributeDirective>(*S));
403 break;
404 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
405 EmitOMPTargetTeamsDistributeParallelForDirective(
406 cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
407 break;
408 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
409 EmitOMPTargetTeamsDistributeParallelForSimdDirective(
410 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
411 break;
412 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
413 EmitOMPTargetTeamsDistributeSimdDirective(
414 cast<OMPTargetTeamsDistributeSimdDirective>(*S));
415 break;
416 case Stmt::OMPInteropDirectiveClass:
417 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
418 break;
419 case Stmt::OMPDispatchDirectiveClass:
420 CGM.ErrorUnsupported(S, "OpenMP dispatch directive");
421 break;
422 case Stmt::OMPScopeDirectiveClass:
423 CGM.ErrorUnsupported(S, "scope with FE outlining");
424 break;
425 case Stmt::OMPMaskedDirectiveClass:
426 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
427 break;
428 case Stmt::OMPGenericLoopDirectiveClass:
429 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
430 break;
431 case Stmt::OMPTeamsGenericLoopDirectiveClass:
432 EmitOMPTeamsGenericLoopDirective(cast<OMPTeamsGenericLoopDirective>(*S));
433 break;
434 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
435 EmitOMPTargetTeamsGenericLoopDirective(
436 cast<OMPTargetTeamsGenericLoopDirective>(*S));
437 break;
438 case Stmt::OMPParallelGenericLoopDirectiveClass:
439 EmitOMPParallelGenericLoopDirective(
440 cast<OMPParallelGenericLoopDirective>(*S));
441 break;
442 case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
443 EmitOMPTargetParallelGenericLoopDirective(
444 cast<OMPTargetParallelGenericLoopDirective>(*S));
445 break;
446 case Stmt::OMPParallelMaskedDirectiveClass:
447 EmitOMPParallelMaskedDirective(cast<OMPParallelMaskedDirective>(*S));
448 break;
449 case Stmt::OpenACCComputeConstructClass:
450 EmitOpenACCComputeConstruct(cast<OpenACCComputeConstruct>(*S));
451 break;
452 case Stmt::OpenACCLoopConstructClass:
453 EmitOpenACCLoopConstruct(cast<OpenACCLoopConstruct>(*S));
454 break;
455 }
456 }
457
EmitSimpleStmt(const Stmt * S,ArrayRef<const Attr * > Attrs)458 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
459 ArrayRef<const Attr *> Attrs) {
460 switch (S->getStmtClass()) {
461 default:
462 return false;
463 case Stmt::NullStmtClass:
464 break;
465 case Stmt::CompoundStmtClass:
466 EmitCompoundStmt(cast<CompoundStmt>(*S));
467 break;
468 case Stmt::DeclStmtClass:
469 EmitDeclStmt(cast<DeclStmt>(*S));
470 break;
471 case Stmt::LabelStmtClass:
472 EmitLabelStmt(cast<LabelStmt>(*S));
473 break;
474 case Stmt::AttributedStmtClass:
475 EmitAttributedStmt(cast<AttributedStmt>(*S));
476 break;
477 case Stmt::GotoStmtClass:
478 EmitGotoStmt(cast<GotoStmt>(*S));
479 break;
480 case Stmt::BreakStmtClass:
481 EmitBreakStmt(cast<BreakStmt>(*S));
482 break;
483 case Stmt::ContinueStmtClass:
484 EmitContinueStmt(cast<ContinueStmt>(*S));
485 break;
486 case Stmt::DefaultStmtClass:
487 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
488 break;
489 case Stmt::CaseStmtClass:
490 EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
491 break;
492 case Stmt::SEHLeaveStmtClass:
493 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
494 break;
495 }
496 return true;
497 }
498
499 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
500 /// this captures the expression result of the last sub-statement and returns it
501 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)502 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
503 AggValueSlot AggSlot) {
504 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
505 "LLVM IR generation of compound statement ('{}')");
506
507 // Keep track of the current cleanup stack depth, including debug scopes.
508 LexicalScope Scope(*this, S.getSourceRange());
509
510 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
511 }
512
513 Address
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)514 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
515 bool GetLast,
516 AggValueSlot AggSlot) {
517
518 const Stmt *ExprResult = S.getStmtExprResult();
519 assert((!GetLast || (GetLast && ExprResult)) &&
520 "If GetLast is true then the CompoundStmt must have a StmtExprResult");
521
522 Address RetAlloca = Address::invalid();
523
524 for (auto *CurStmt : S.body()) {
525 if (GetLast && ExprResult == CurStmt) {
526 // We have to special case labels here. They are statements, but when put
527 // at the end of a statement expression, they yield the value of their
528 // subexpression. Handle this by walking through all labels we encounter,
529 // emitting them before we evaluate the subexpr.
530 // Similar issues arise for attributed statements.
531 while (!isa<Expr>(ExprResult)) {
532 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
533 EmitLabel(LS->getDecl());
534 ExprResult = LS->getSubStmt();
535 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
536 // FIXME: Update this if we ever have attributes that affect the
537 // semantics of an expression.
538 ExprResult = AS->getSubStmt();
539 } else {
540 llvm_unreachable("unknown value statement");
541 }
542 }
543
544 EnsureInsertPoint();
545
546 const Expr *E = cast<Expr>(ExprResult);
547 QualType ExprTy = E->getType();
548 if (hasAggregateEvaluationKind(ExprTy)) {
549 EmitAggExpr(E, AggSlot);
550 } else {
551 // We can't return an RValue here because there might be cleanups at
552 // the end of the StmtExpr. Because of that, we have to emit the result
553 // here into a temporary alloca.
554 RetAlloca = CreateMemTemp(ExprTy);
555 EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
556 /*IsInit*/ false);
557 }
558 } else {
559 EmitStmt(CurStmt);
560 }
561 }
562
563 return RetAlloca;
564 }
565
SimplifyForwardingBlocks(llvm::BasicBlock * BB)566 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
567 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
568
569 // If there is a cleanup stack, then we it isn't worth trying to
570 // simplify this block (we would need to remove it from the scope map
571 // and cleanup entry).
572 if (!EHStack.empty())
573 return;
574
575 // Can only simplify direct branches.
576 if (!BI || !BI->isUnconditional())
577 return;
578
579 // Can only simplify empty blocks.
580 if (BI->getIterator() != BB->begin())
581 return;
582
583 BB->replaceAllUsesWith(BI->getSuccessor(0));
584 BI->eraseFromParent();
585 BB->eraseFromParent();
586 }
587
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)588 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
589 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
590
591 // Fall out of the current block (if necessary).
592 EmitBranch(BB);
593
594 if (IsFinished && BB->use_empty()) {
595 delete BB;
596 return;
597 }
598
599 // Place the block after the current block, if possible, or else at
600 // the end of the function.
601 if (CurBB && CurBB->getParent())
602 CurFn->insert(std::next(CurBB->getIterator()), BB);
603 else
604 CurFn->insert(CurFn->end(), BB);
605 Builder.SetInsertPoint(BB);
606 }
607
EmitBranch(llvm::BasicBlock * Target)608 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
609 // Emit a branch from the current block to the target one if this
610 // was a real block. If this was just a fall-through block after a
611 // terminator, don't emit it.
612 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
613
614 if (!CurBB || CurBB->getTerminator()) {
615 // If there is no insert point or the previous block is already
616 // terminated, don't touch it.
617 } else {
618 // Otherwise, create a fall-through branch.
619 Builder.CreateBr(Target);
620 }
621
622 Builder.ClearInsertionPoint();
623 }
624
EmitBlockAfterUses(llvm::BasicBlock * block)625 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
626 bool inserted = false;
627 for (llvm::User *u : block->users()) {
628 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
629 CurFn->insert(std::next(insn->getParent()->getIterator()), block);
630 inserted = true;
631 break;
632 }
633 }
634
635 if (!inserted)
636 CurFn->insert(CurFn->end(), block);
637
638 Builder.SetInsertPoint(block);
639 }
640
641 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)642 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
643 JumpDest &Dest = LabelMap[D];
644 if (Dest.isValid()) return Dest;
645
646 // Create, but don't insert, the new block.
647 Dest = JumpDest(createBasicBlock(D->getName()),
648 EHScopeStack::stable_iterator::invalid(),
649 NextCleanupDestIndex++);
650 return Dest;
651 }
652
EmitLabel(const LabelDecl * D)653 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
654 // Add this label to the current lexical scope if we're within any
655 // normal cleanups. Jumps "in" to this label --- when permitted by
656 // the language --- may need to be routed around such cleanups.
657 if (EHStack.hasNormalCleanups() && CurLexicalScope)
658 CurLexicalScope->addLabel(D);
659
660 JumpDest &Dest = LabelMap[D];
661
662 // If we didn't need a forward reference to this label, just go
663 // ahead and create a destination at the current scope.
664 if (!Dest.isValid()) {
665 Dest = getJumpDestInCurrentScope(D->getName());
666
667 // Otherwise, we need to give this label a target depth and remove
668 // it from the branch-fixups list.
669 } else {
670 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
671 Dest.setScopeDepth(EHStack.stable_begin());
672 ResolveBranchFixups(Dest.getBlock());
673 }
674
675 EmitBlock(Dest.getBlock());
676
677 // Emit debug info for labels.
678 if (CGDebugInfo *DI = getDebugInfo()) {
679 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
680 DI->setLocation(D->getLocation());
681 DI->EmitLabel(D, Builder);
682 }
683 }
684
685 incrementProfileCounter(D->getStmt());
686 }
687
688 /// Change the cleanup scope of the labels in this lexical scope to
689 /// match the scope of the enclosing context.
rescopeLabels()690 void CodeGenFunction::LexicalScope::rescopeLabels() {
691 assert(!Labels.empty());
692 EHScopeStack::stable_iterator innermostScope
693 = CGF.EHStack.getInnermostNormalCleanup();
694
695 // Change the scope depth of all the labels.
696 for (SmallVectorImpl<const LabelDecl*>::const_iterator
697 i = Labels.begin(), e = Labels.end(); i != e; ++i) {
698 assert(CGF.LabelMap.count(*i));
699 JumpDest &dest = CGF.LabelMap.find(*i)->second;
700 assert(dest.getScopeDepth().isValid());
701 assert(innermostScope.encloses(dest.getScopeDepth()));
702 dest.setScopeDepth(innermostScope);
703 }
704
705 // Reparent the labels if the new scope also has cleanups.
706 if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
707 ParentScope->Labels.append(Labels.begin(), Labels.end());
708 }
709 }
710
711
EmitLabelStmt(const LabelStmt & S)712 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
713 EmitLabel(S.getDecl());
714
715 // IsEHa - emit eha.scope.begin if it's a side entry of a scope
716 if (getLangOpts().EHAsynch && S.isSideEntry())
717 EmitSehCppScopeBegin();
718
719 EmitStmt(S.getSubStmt());
720 }
721
EmitAttributedStmt(const AttributedStmt & S)722 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
723 bool nomerge = false;
724 bool noinline = false;
725 bool alwaysinline = false;
726 const CallExpr *musttail = nullptr;
727
728 for (const auto *A : S.getAttrs()) {
729 switch (A->getKind()) {
730 default:
731 break;
732 case attr::NoMerge:
733 nomerge = true;
734 break;
735 case attr::NoInline:
736 noinline = true;
737 break;
738 case attr::AlwaysInline:
739 alwaysinline = true;
740 break;
741 case attr::MustTail: {
742 const Stmt *Sub = S.getSubStmt();
743 const ReturnStmt *R = cast<ReturnStmt>(Sub);
744 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
745 } break;
746 case attr::CXXAssume: {
747 const Expr *Assumption = cast<CXXAssumeAttr>(A)->getAssumption();
748 if (getLangOpts().CXXAssumptions && Builder.GetInsertBlock() &&
749 !Assumption->HasSideEffects(getContext())) {
750 llvm::Value *AssumptionVal = EvaluateExprAsBool(Assumption);
751 Builder.CreateAssumption(AssumptionVal);
752 }
753 } break;
754 }
755 }
756 SaveAndRestore save_nomerge(InNoMergeAttributedStmt, nomerge);
757 SaveAndRestore save_noinline(InNoInlineAttributedStmt, noinline);
758 SaveAndRestore save_alwaysinline(InAlwaysInlineAttributedStmt, alwaysinline);
759 SaveAndRestore save_musttail(MustTailCall, musttail);
760 EmitStmt(S.getSubStmt(), S.getAttrs());
761 }
762
EmitGotoStmt(const GotoStmt & S)763 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
764 // If this code is reachable then emit a stop point (if generating
765 // debug info). We have to do this ourselves because we are on the
766 // "simple" statement path.
767 if (HaveInsertPoint())
768 EmitStopPoint(&S);
769
770 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
771 }
772
773
EmitIndirectGotoStmt(const IndirectGotoStmt & S)774 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
775 if (const LabelDecl *Target = S.getConstantTarget()) {
776 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
777 return;
778 }
779
780 // Ensure that we have an i8* for our PHI node.
781 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
782 Int8PtrTy, "addr");
783 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
784
785 // Get the basic block for the indirect goto.
786 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
787
788 // The first instruction in the block has to be the PHI for the switch dest,
789 // add an entry for this branch.
790 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
791
792 EmitBranch(IndGotoBB);
793 }
794
EmitIfStmt(const IfStmt & S)795 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
796 // The else branch of a consteval if statement is always the only branch that
797 // can be runtime evaluated.
798 if (S.isConsteval()) {
799 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
800 if (Executed) {
801 RunCleanupsScope ExecutedScope(*this);
802 EmitStmt(Executed);
803 }
804 return;
805 }
806
807 // C99 6.8.4.1: The first substatement is executed if the expression compares
808 // unequal to 0. The condition must be a scalar type.
809 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
810
811 if (S.getInit())
812 EmitStmt(S.getInit());
813
814 if (S.getConditionVariable())
815 EmitDecl(*S.getConditionVariable());
816
817 // If the condition constant folds and can be elided, try to avoid emitting
818 // the condition and the dead arm of the if/else.
819 bool CondConstant;
820 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
821 S.isConstexpr())) {
822 // Figure out which block (then or else) is executed.
823 const Stmt *Executed = S.getThen();
824 const Stmt *Skipped = S.getElse();
825 if (!CondConstant) // Condition false?
826 std::swap(Executed, Skipped);
827
828 // If the skipped block has no labels in it, just emit the executed block.
829 // This avoids emitting dead code and simplifies the CFG substantially.
830 if (S.isConstexpr() || !ContainsLabel(Skipped)) {
831 if (CondConstant)
832 incrementProfileCounter(&S);
833 if (Executed) {
834 RunCleanupsScope ExecutedScope(*this);
835 EmitStmt(Executed);
836 }
837 return;
838 }
839 }
840
841 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
842 // the conditional branch.
843 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
844 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
845 llvm::BasicBlock *ElseBlock = ContBlock;
846 if (S.getElse())
847 ElseBlock = createBasicBlock("if.else");
848
849 // Prefer the PGO based weights over the likelihood attribute.
850 // When the build isn't optimized the metadata isn't used, so don't generate
851 // it.
852 // Also, differentiate between disabled PGO and a never executed branch with
853 // PGO. Assuming PGO is in use:
854 // - we want to ignore the [[likely]] attribute if the branch is never
855 // executed,
856 // - assuming the profile is poor, preserving the attribute may still be
857 // beneficial.
858 // As an approximation, preserve the attribute only if both the branch and the
859 // parent context were not executed.
860 Stmt::Likelihood LH = Stmt::LH_None;
861 uint64_t ThenCount = getProfileCount(S.getThen());
862 if (!ThenCount && !getCurrentProfileCount() &&
863 CGM.getCodeGenOpts().OptimizationLevel)
864 LH = Stmt::getLikelihood(S.getThen(), S.getElse());
865
866 // When measuring MC/DC, always fully evaluate the condition up front using
867 // EvaluateExprAsBool() so that the test vector bitmap can be updated prior to
868 // executing the body of the if.then or if.else. This is useful for when
869 // there is a 'return' within the body, but this is particularly beneficial
870 // when one if-stmt is nested within another if-stmt so that all of the MC/DC
871 // updates are kept linear and consistent.
872 if (!CGM.getCodeGenOpts().MCDCCoverage)
873 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, ThenCount, LH);
874 else {
875 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
876 Builder.CreateCondBr(BoolCondVal, ThenBlock, ElseBlock);
877 }
878
879 // Emit the 'then' code.
880 EmitBlock(ThenBlock);
881 if (llvm::EnableSingleByteCoverage)
882 incrementProfileCounter(S.getThen());
883 else
884 incrementProfileCounter(&S);
885 {
886 RunCleanupsScope ThenScope(*this);
887 EmitStmt(S.getThen());
888 }
889 EmitBranch(ContBlock);
890
891 // Emit the 'else' code if present.
892 if (const Stmt *Else = S.getElse()) {
893 {
894 // There is no need to emit line number for an unconditional branch.
895 auto NL = ApplyDebugLocation::CreateEmpty(*this);
896 EmitBlock(ElseBlock);
897 }
898 // When single byte coverage mode is enabled, add a counter to else block.
899 if (llvm::EnableSingleByteCoverage)
900 incrementProfileCounter(Else);
901 {
902 RunCleanupsScope ElseScope(*this);
903 EmitStmt(Else);
904 }
905 {
906 // There is no need to emit line number for an unconditional branch.
907 auto NL = ApplyDebugLocation::CreateEmpty(*this);
908 EmitBranch(ContBlock);
909 }
910 }
911
912 // Emit the continuation block for code after the if.
913 EmitBlock(ContBlock, true);
914
915 // When single byte coverage mode is enabled, add a counter to continuation
916 // block.
917 if (llvm::EnableSingleByteCoverage)
918 incrementProfileCounter(&S);
919 }
920
checkIfLoopMustProgress(const Expr * ControllingExpression,bool HasEmptyBody)921 bool CodeGenFunction::checkIfLoopMustProgress(const Expr *ControllingExpression,
922 bool HasEmptyBody) {
923 if (CGM.getCodeGenOpts().getFiniteLoops() ==
924 CodeGenOptions::FiniteLoopsKind::Never)
925 return false;
926
927 // Now apply rules for plain C (see 6.8.5.6 in C11).
928 // Loops with constant conditions do not have to make progress in any C
929 // version.
930 // As an extension, we consisider loops whose constant expression
931 // can be constant-folded.
932 Expr::EvalResult Result;
933 bool CondIsConstInt =
934 !ControllingExpression ||
935 (ControllingExpression->EvaluateAsInt(Result, getContext()) &&
936 Result.Val.isInt());
937
938 bool CondIsTrue = CondIsConstInt && (!ControllingExpression ||
939 Result.Val.getInt().getBoolValue());
940
941 // Loops with non-constant conditions must make progress in C11 and later.
942 if (getLangOpts().C11 && !CondIsConstInt)
943 return true;
944
945 // [C++26][intro.progress] (DR)
946 // The implementation may assume that any thread will eventually do one of the
947 // following:
948 // [...]
949 // - continue execution of a trivial infinite loop ([stmt.iter.general]).
950 if (CGM.getCodeGenOpts().getFiniteLoops() ==
951 CodeGenOptions::FiniteLoopsKind::Always ||
952 getLangOpts().CPlusPlus11) {
953 if (HasEmptyBody && CondIsTrue) {
954 CurFn->removeFnAttr(llvm::Attribute::MustProgress);
955 return false;
956 }
957 return true;
958 }
959 return false;
960 }
961
962 // [C++26][stmt.iter.general] (DR)
963 // A trivially empty iteration statement is an iteration statement matching one
964 // of the following forms:
965 // - while ( expression ) ;
966 // - while ( expression ) { }
967 // - do ; while ( expression ) ;
968 // - do { } while ( expression ) ;
969 // - for ( init-statement expression(opt); ) ;
970 // - for ( init-statement expression(opt); ) { }
hasEmptyLoopBody(const LoopStmt & S)971 template <typename LoopStmt> static bool hasEmptyLoopBody(const LoopStmt &S) {
972 if constexpr (std::is_same_v<LoopStmt, ForStmt>) {
973 if (S.getInc())
974 return false;
975 }
976 const Stmt *Body = S.getBody();
977 if (!Body || isa<NullStmt>(Body))
978 return true;
979 if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body))
980 return Compound->body_empty();
981 return false;
982 }
983
EmitWhileStmt(const WhileStmt & S,ArrayRef<const Attr * > WhileAttrs)984 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
985 ArrayRef<const Attr *> WhileAttrs) {
986 // Emit the header for the loop, which will also become
987 // the continue target.
988 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
989 EmitBlock(LoopHeader.getBlock());
990
991 if (CGM.shouldEmitConvergenceTokens())
992 ConvergenceTokenStack.push_back(emitConvergenceLoopToken(
993 LoopHeader.getBlock(), ConvergenceTokenStack.back()));
994
995 // Create an exit block for when the condition fails, which will
996 // also become the break target.
997 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
998
999 // Store the blocks to use for break and continue.
1000 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
1001
1002 // C++ [stmt.while]p2:
1003 // When the condition of a while statement is a declaration, the
1004 // scope of the variable that is declared extends from its point
1005 // of declaration (3.3.2) to the end of the while statement.
1006 // [...]
1007 // The object created in a condition is destroyed and created
1008 // with each iteration of the loop.
1009 RunCleanupsScope ConditionScope(*this);
1010
1011 if (S.getConditionVariable())
1012 EmitDecl(*S.getConditionVariable());
1013
1014 // Evaluate the conditional in the while header. C99 6.8.5.1: The
1015 // evaluation of the controlling expression takes place before each
1016 // execution of the loop body.
1017 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1018
1019 // while(1) is common, avoid extra exit blocks. Be sure
1020 // to correctly handle break/continue though.
1021 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
1022 bool EmitBoolCondBranch = !C || !C->isOne();
1023 const SourceRange &R = S.getSourceRange();
1024 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
1025 WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
1026 SourceLocToDebugLoc(R.getEnd()),
1027 checkIfLoopMustProgress(S.getCond(), hasEmptyLoopBody(S)));
1028
1029 // When single byte coverage mode is enabled, add a counter to loop condition.
1030 if (llvm::EnableSingleByteCoverage)
1031 incrementProfileCounter(S.getCond());
1032
1033 // As long as the condition is true, go to the loop body.
1034 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
1035 if (EmitBoolCondBranch) {
1036 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1037 if (ConditionScope.requiresCleanups())
1038 ExitBlock = createBasicBlock("while.exit");
1039 llvm::MDNode *Weights =
1040 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1041 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1042 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1043 BoolCondVal, Stmt::getLikelihood(S.getBody()));
1044 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
1045
1046 if (ExitBlock != LoopExit.getBlock()) {
1047 EmitBlock(ExitBlock);
1048 EmitBranchThroughCleanup(LoopExit);
1049 }
1050 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
1051 CGM.getDiags().Report(A->getLocation(),
1052 diag::warn_attribute_has_no_effect_on_infinite_loop)
1053 << A << A->getRange();
1054 CGM.getDiags().Report(
1055 S.getWhileLoc(),
1056 diag::note_attribute_has_no_effect_on_infinite_loop_here)
1057 << SourceRange(S.getWhileLoc(), S.getRParenLoc());
1058 }
1059
1060 // Emit the loop body. We have to emit this in a cleanup scope
1061 // because it might be a singleton DeclStmt.
1062 {
1063 RunCleanupsScope BodyScope(*this);
1064 EmitBlock(LoopBody);
1065 // When single byte coverage mode is enabled, add a counter to the body.
1066 if (llvm::EnableSingleByteCoverage)
1067 incrementProfileCounter(S.getBody());
1068 else
1069 incrementProfileCounter(&S);
1070 EmitStmt(S.getBody());
1071 }
1072
1073 BreakContinueStack.pop_back();
1074
1075 // Immediately force cleanup.
1076 ConditionScope.ForceCleanup();
1077
1078 EmitStopPoint(&S);
1079 // Branch to the loop header again.
1080 EmitBranch(LoopHeader.getBlock());
1081
1082 LoopStack.pop();
1083
1084 // Emit the exit block.
1085 EmitBlock(LoopExit.getBlock(), true);
1086
1087 // The LoopHeader typically is just a branch if we skipped emitting
1088 // a branch, try to erase it.
1089 if (!EmitBoolCondBranch)
1090 SimplifyForwardingBlocks(LoopHeader.getBlock());
1091
1092 // When single byte coverage mode is enabled, add a counter to continuation
1093 // block.
1094 if (llvm::EnableSingleByteCoverage)
1095 incrementProfileCounter(&S);
1096
1097 if (CGM.shouldEmitConvergenceTokens())
1098 ConvergenceTokenStack.pop_back();
1099 }
1100
EmitDoStmt(const DoStmt & S,ArrayRef<const Attr * > DoAttrs)1101 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
1102 ArrayRef<const Attr *> DoAttrs) {
1103 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
1104 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
1105
1106 uint64_t ParentCount = getCurrentProfileCount();
1107
1108 // Store the blocks to use for break and continue.
1109 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
1110
1111 // Emit the body of the loop.
1112 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
1113
1114 if (llvm::EnableSingleByteCoverage)
1115 EmitBlockWithFallThrough(LoopBody, S.getBody());
1116 else
1117 EmitBlockWithFallThrough(LoopBody, &S);
1118
1119 if (CGM.shouldEmitConvergenceTokens())
1120 ConvergenceTokenStack.push_back(
1121 emitConvergenceLoopToken(LoopBody, ConvergenceTokenStack.back()));
1122
1123 {
1124 RunCleanupsScope BodyScope(*this);
1125 EmitStmt(S.getBody());
1126 }
1127
1128 EmitBlock(LoopCond.getBlock());
1129 // When single byte coverage mode is enabled, add a counter to loop condition.
1130 if (llvm::EnableSingleByteCoverage)
1131 incrementProfileCounter(S.getCond());
1132
1133 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
1134 // after each execution of the loop body."
1135
1136 // Evaluate the conditional in the while header.
1137 // C99 6.8.5p2/p4: The first substatement is executed if the expression
1138 // compares unequal to 0. The condition must be a scalar type.
1139 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1140
1141 BreakContinueStack.pop_back();
1142
1143 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
1144 // to correctly handle break/continue though.
1145 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
1146 bool EmitBoolCondBranch = !C || !C->isZero();
1147
1148 const SourceRange &R = S.getSourceRange();
1149 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
1150 SourceLocToDebugLoc(R.getBegin()),
1151 SourceLocToDebugLoc(R.getEnd()),
1152 checkIfLoopMustProgress(S.getCond(), hasEmptyLoopBody(S)));
1153
1154 // As long as the condition is true, iterate the loop.
1155 if (EmitBoolCondBranch) {
1156 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
1157 Builder.CreateCondBr(
1158 BoolCondVal, LoopBody, LoopExit.getBlock(),
1159 createProfileWeightsForLoop(S.getCond(), BackedgeCount));
1160 }
1161
1162 LoopStack.pop();
1163
1164 // Emit the exit block.
1165 EmitBlock(LoopExit.getBlock());
1166
1167 // The DoCond block typically is just a branch if we skipped
1168 // emitting a branch, try to erase it.
1169 if (!EmitBoolCondBranch)
1170 SimplifyForwardingBlocks(LoopCond.getBlock());
1171
1172 // When single byte coverage mode is enabled, add a counter to continuation
1173 // block.
1174 if (llvm::EnableSingleByteCoverage)
1175 incrementProfileCounter(&S);
1176
1177 if (CGM.shouldEmitConvergenceTokens())
1178 ConvergenceTokenStack.pop_back();
1179 }
1180
EmitForStmt(const ForStmt & S,ArrayRef<const Attr * > ForAttrs)1181 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1182 ArrayRef<const Attr *> ForAttrs) {
1183 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1184
1185 LexicalScope ForScope(*this, S.getSourceRange());
1186
1187 // Evaluate the first part before the loop.
1188 if (S.getInit())
1189 EmitStmt(S.getInit());
1190
1191 // Start the loop with a block that tests the condition.
1192 // If there's an increment, the continue scope will be overwritten
1193 // later.
1194 JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1195 llvm::BasicBlock *CondBlock = CondDest.getBlock();
1196 EmitBlock(CondBlock);
1197
1198 if (CGM.shouldEmitConvergenceTokens())
1199 ConvergenceTokenStack.push_back(
1200 emitConvergenceLoopToken(CondBlock, ConvergenceTokenStack.back()));
1201
1202 const SourceRange &R = S.getSourceRange();
1203 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1204 SourceLocToDebugLoc(R.getBegin()),
1205 SourceLocToDebugLoc(R.getEnd()),
1206 checkIfLoopMustProgress(S.getCond(), hasEmptyLoopBody(S)));
1207
1208 // Create a cleanup scope for the condition variable cleanups.
1209 LexicalScope ConditionScope(*this, S.getSourceRange());
1210
1211 // If the for loop doesn't have an increment we can just use the condition as
1212 // the continue block. Otherwise, if there is no condition variable, we can
1213 // form the continue block now. If there is a condition variable, we can't
1214 // form the continue block until after we've emitted the condition, because
1215 // the condition is in scope in the increment, but Sema's jump diagnostics
1216 // ensure that there are no continues from the condition variable that jump
1217 // to the loop increment.
1218 JumpDest Continue;
1219 if (!S.getInc())
1220 Continue = CondDest;
1221 else if (!S.getConditionVariable())
1222 Continue = getJumpDestInCurrentScope("for.inc");
1223 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1224
1225 if (S.getCond()) {
1226 // If the for statement has a condition scope, emit the local variable
1227 // declaration.
1228 if (S.getConditionVariable()) {
1229 EmitDecl(*S.getConditionVariable());
1230
1231 // We have entered the condition variable's scope, so we're now able to
1232 // jump to the continue block.
1233 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1234 BreakContinueStack.back().ContinueBlock = Continue;
1235 }
1236
1237 // When single byte coverage mode is enabled, add a counter to loop
1238 // condition.
1239 if (llvm::EnableSingleByteCoverage)
1240 incrementProfileCounter(S.getCond());
1241
1242 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1243 // If there are any cleanups between here and the loop-exit scope,
1244 // create a block to stage a loop exit along.
1245 if (ForScope.requiresCleanups())
1246 ExitBlock = createBasicBlock("for.cond.cleanup");
1247
1248 // As long as the condition is true, iterate the loop.
1249 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1250
1251 // C99 6.8.5p2/p4: The first substatement is executed if the expression
1252 // compares unequal to 0. The condition must be a scalar type.
1253 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1254 llvm::MDNode *Weights =
1255 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1256 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1257 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1258 BoolCondVal, Stmt::getLikelihood(S.getBody()));
1259
1260 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1261
1262 if (ExitBlock != LoopExit.getBlock()) {
1263 EmitBlock(ExitBlock);
1264 EmitBranchThroughCleanup(LoopExit);
1265 }
1266
1267 EmitBlock(ForBody);
1268 } else {
1269 // Treat it as a non-zero constant. Don't even create a new block for the
1270 // body, just fall into it.
1271 }
1272
1273 // When single byte coverage mode is enabled, add a counter to the body.
1274 if (llvm::EnableSingleByteCoverage)
1275 incrementProfileCounter(S.getBody());
1276 else
1277 incrementProfileCounter(&S);
1278 {
1279 // Create a separate cleanup scope for the body, in case it is not
1280 // a compound statement.
1281 RunCleanupsScope BodyScope(*this);
1282 EmitStmt(S.getBody());
1283 }
1284
1285 // If there is an increment, emit it next.
1286 if (S.getInc()) {
1287 EmitBlock(Continue.getBlock());
1288 EmitStmt(S.getInc());
1289 if (llvm::EnableSingleByteCoverage)
1290 incrementProfileCounter(S.getInc());
1291 }
1292
1293 BreakContinueStack.pop_back();
1294
1295 ConditionScope.ForceCleanup();
1296
1297 EmitStopPoint(&S);
1298 EmitBranch(CondBlock);
1299
1300 ForScope.ForceCleanup();
1301
1302 LoopStack.pop();
1303
1304 // Emit the fall-through block.
1305 EmitBlock(LoopExit.getBlock(), true);
1306
1307 // When single byte coverage mode is enabled, add a counter to continuation
1308 // block.
1309 if (llvm::EnableSingleByteCoverage)
1310 incrementProfileCounter(&S);
1311
1312 if (CGM.shouldEmitConvergenceTokens())
1313 ConvergenceTokenStack.pop_back();
1314 }
1315
1316 void
EmitCXXForRangeStmt(const CXXForRangeStmt & S,ArrayRef<const Attr * > ForAttrs)1317 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1318 ArrayRef<const Attr *> ForAttrs) {
1319 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1320
1321 LexicalScope ForScope(*this, S.getSourceRange());
1322
1323 // Evaluate the first pieces before the loop.
1324 if (S.getInit())
1325 EmitStmt(S.getInit());
1326 EmitStmt(S.getRangeStmt());
1327 EmitStmt(S.getBeginStmt());
1328 EmitStmt(S.getEndStmt());
1329
1330 // Start the loop with a block that tests the condition.
1331 // If there's an increment, the continue scope will be overwritten
1332 // later.
1333 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1334 EmitBlock(CondBlock);
1335
1336 if (CGM.shouldEmitConvergenceTokens())
1337 ConvergenceTokenStack.push_back(
1338 emitConvergenceLoopToken(CondBlock, ConvergenceTokenStack.back()));
1339
1340 const SourceRange &R = S.getSourceRange();
1341 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1342 SourceLocToDebugLoc(R.getBegin()),
1343 SourceLocToDebugLoc(R.getEnd()));
1344
1345 // If there are any cleanups between here and the loop-exit scope,
1346 // create a block to stage a loop exit along.
1347 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1348 if (ForScope.requiresCleanups())
1349 ExitBlock = createBasicBlock("for.cond.cleanup");
1350
1351 // The loop body, consisting of the specified body and the loop variable.
1352 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1353
1354 // The body is executed if the expression, contextually converted
1355 // to bool, is true.
1356 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1357 llvm::MDNode *Weights =
1358 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1359 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1360 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1361 BoolCondVal, Stmt::getLikelihood(S.getBody()));
1362 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1363
1364 if (ExitBlock != LoopExit.getBlock()) {
1365 EmitBlock(ExitBlock);
1366 EmitBranchThroughCleanup(LoopExit);
1367 }
1368
1369 EmitBlock(ForBody);
1370 if (llvm::EnableSingleByteCoverage)
1371 incrementProfileCounter(S.getBody());
1372 else
1373 incrementProfileCounter(&S);
1374
1375 // Create a block for the increment. In case of a 'continue', we jump there.
1376 JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1377
1378 // Store the blocks to use for break and continue.
1379 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1380
1381 {
1382 // Create a separate cleanup scope for the loop variable and body.
1383 LexicalScope BodyScope(*this, S.getSourceRange());
1384 EmitStmt(S.getLoopVarStmt());
1385 EmitStmt(S.getBody());
1386 }
1387
1388 EmitStopPoint(&S);
1389 // If there is an increment, emit it next.
1390 EmitBlock(Continue.getBlock());
1391 EmitStmt(S.getInc());
1392
1393 BreakContinueStack.pop_back();
1394
1395 EmitBranch(CondBlock);
1396
1397 ForScope.ForceCleanup();
1398
1399 LoopStack.pop();
1400
1401 // Emit the fall-through block.
1402 EmitBlock(LoopExit.getBlock(), true);
1403
1404 // When single byte coverage mode is enabled, add a counter to continuation
1405 // block.
1406 if (llvm::EnableSingleByteCoverage)
1407 incrementProfileCounter(&S);
1408
1409 if (CGM.shouldEmitConvergenceTokens())
1410 ConvergenceTokenStack.pop_back();
1411 }
1412
EmitReturnOfRValue(RValue RV,QualType Ty)1413 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1414 if (RV.isScalar()) {
1415 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1416 } else if (RV.isAggregate()) {
1417 LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1418 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1419 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1420 } else {
1421 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1422 /*init*/ true);
1423 }
1424 EmitBranchThroughCleanup(ReturnBlock);
1425 }
1426
1427 namespace {
1428 // RAII struct used to save and restore a return statment's result expression.
1429 struct SaveRetExprRAII {
SaveRetExprRAII__anon725605700111::SaveRetExprRAII1430 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1431 : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1432 CGF.RetExpr = RetExpr;
1433 }
~SaveRetExprRAII__anon725605700111::SaveRetExprRAII1434 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1435 const Expr *OldRetExpr;
1436 CodeGenFunction &CGF;
1437 };
1438 } // namespace
1439
1440 /// Determine if the given call uses the swiftasync calling convention.
isSwiftAsyncCallee(const CallExpr * CE)1441 static bool isSwiftAsyncCallee(const CallExpr *CE) {
1442 auto calleeQualType = CE->getCallee()->getType();
1443 const FunctionType *calleeType = nullptr;
1444 if (calleeQualType->isFunctionPointerType() ||
1445 calleeQualType->isFunctionReferenceType() ||
1446 calleeQualType->isBlockPointerType() ||
1447 calleeQualType->isMemberFunctionPointerType()) {
1448 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1449 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1450 calleeType = ty;
1451 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1452 if (auto methodDecl = CMCE->getMethodDecl()) {
1453 // getMethodDecl() doesn't handle member pointers at the moment.
1454 calleeType = methodDecl->getType()->castAs<FunctionType>();
1455 } else {
1456 return false;
1457 }
1458 } else {
1459 return false;
1460 }
1461 return calleeType->getCallConv() == CallingConv::CC_SwiftAsync;
1462 }
1463
1464 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1465 /// if the function returns void, or may be missing one if the function returns
1466 /// non-void. Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)1467 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1468 if (requiresReturnValueCheck()) {
1469 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1470 auto *SLocPtr =
1471 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1472 llvm::GlobalVariable::PrivateLinkage, SLoc);
1473 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1474 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1475 assert(ReturnLocation.isValid() && "No valid return location");
1476 Builder.CreateStore(SLocPtr, ReturnLocation);
1477 }
1478
1479 // Returning from an outlined SEH helper is UB, and we already warn on it.
1480 if (IsOutlinedSEHHelper) {
1481 Builder.CreateUnreachable();
1482 Builder.ClearInsertionPoint();
1483 }
1484
1485 // Emit the result value, even if unused, to evaluate the side effects.
1486 const Expr *RV = S.getRetValue();
1487
1488 // Record the result expression of the return statement. The recorded
1489 // expression is used to determine whether a block capture's lifetime should
1490 // end at the end of the full expression as opposed to the end of the scope
1491 // enclosing the block expression.
1492 //
1493 // This permits a small, easily-implemented exception to our over-conservative
1494 // rules about not jumping to statements following block literals with
1495 // non-trivial cleanups.
1496 SaveRetExprRAII SaveRetExpr(RV, *this);
1497
1498 RunCleanupsScope cleanupScope(*this);
1499 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1500 RV = EWC->getSubExpr();
1501
1502 // If we're in a swiftasynccall function, and the return expression is a
1503 // call to a swiftasynccall function, mark the call as the musttail call.
1504 std::optional<llvm::SaveAndRestore<const CallExpr *>> SaveMustTail;
1505 if (RV && CurFnInfo &&
1506 CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync) {
1507 if (auto CE = dyn_cast<CallExpr>(RV)) {
1508 if (isSwiftAsyncCallee(CE)) {
1509 SaveMustTail.emplace(MustTailCall, CE);
1510 }
1511 }
1512 }
1513
1514 // FIXME: Clean this up by using an LValue for ReturnTemp,
1515 // EmitStoreThroughLValue, and EmitAnyExpr.
1516 // Check if the NRVO candidate was not globalized in OpenMP mode.
1517 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1518 S.getNRVOCandidate()->isNRVOVariable() &&
1519 (!getLangOpts().OpenMP ||
1520 !CGM.getOpenMPRuntime()
1521 .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1522 .isValid())) {
1523 // Apply the named return value optimization for this return statement,
1524 // which means doing nothing: the appropriate result has already been
1525 // constructed into the NRVO variable.
1526
1527 // If there is an NRVO flag for this variable, set it to 1 into indicate
1528 // that the cleanup code should not destroy the variable.
1529 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1530 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1531 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1532 // Make sure not to return anything, but evaluate the expression
1533 // for side effects.
1534 if (RV) {
1535 EmitAnyExpr(RV);
1536 }
1537 } else if (!RV) {
1538 // Do nothing (return value is left uninitialized)
1539 } else if (FnRetTy->isReferenceType()) {
1540 // If this function returns a reference, take the address of the expression
1541 // rather than the value.
1542 RValue Result = EmitReferenceBindingToExpr(RV);
1543 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1544 } else {
1545 switch (getEvaluationKind(RV->getType())) {
1546 case TEK_Scalar: {
1547 llvm::Value *Ret = EmitScalarExpr(RV);
1548 if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
1549 EmitStoreOfScalar(Ret, MakeAddrLValue(ReturnValue, RV->getType()),
1550 /*isInit*/ true);
1551 else
1552 Builder.CreateStore(Ret, ReturnValue);
1553 break;
1554 }
1555 case TEK_Complex:
1556 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1557 /*isInit*/ true);
1558 break;
1559 case TEK_Aggregate:
1560 EmitAggExpr(RV, AggValueSlot::forAddr(
1561 ReturnValue, Qualifiers(),
1562 AggValueSlot::IsDestructed,
1563 AggValueSlot::DoesNotNeedGCBarriers,
1564 AggValueSlot::IsNotAliased,
1565 getOverlapForReturnValue()));
1566 break;
1567 }
1568 }
1569
1570 ++NumReturnExprs;
1571 if (!RV || RV->isEvaluatable(getContext()))
1572 ++NumSimpleReturnExprs;
1573
1574 cleanupScope.ForceCleanup();
1575 EmitBranchThroughCleanup(ReturnBlock);
1576 }
1577
EmitDeclStmt(const DeclStmt & S)1578 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1579 // As long as debug info is modeled with instructions, we have to ensure we
1580 // have a place to insert here and write the stop point here.
1581 if (HaveInsertPoint())
1582 EmitStopPoint(&S);
1583
1584 for (const auto *I : S.decls())
1585 EmitDecl(*I);
1586 }
1587
EmitBreakStmt(const BreakStmt & S)1588 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1589 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1590
1591 // If this code is reachable then emit a stop point (if generating
1592 // debug info). We have to do this ourselves because we are on the
1593 // "simple" statement path.
1594 if (HaveInsertPoint())
1595 EmitStopPoint(&S);
1596
1597 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1598 }
1599
EmitContinueStmt(const ContinueStmt & S)1600 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1601 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1602
1603 // If this code is reachable then emit a stop point (if generating
1604 // debug info). We have to do this ourselves because we are on the
1605 // "simple" statement path.
1606 if (HaveInsertPoint())
1607 EmitStopPoint(&S);
1608
1609 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1610 }
1611
1612 /// EmitCaseStmtRange - If case statement range is not too big then
1613 /// add multiple cases to switch instruction, one for each value within
1614 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S,ArrayRef<const Attr * > Attrs)1615 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1616 ArrayRef<const Attr *> Attrs) {
1617 assert(S.getRHS() && "Expected RHS value in CaseStmt");
1618
1619 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1620 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1621
1622 // Emit the code for this case. We do this first to make sure it is
1623 // properly chained from our predecessor before generating the
1624 // switch machinery to enter this block.
1625 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1626 EmitBlockWithFallThrough(CaseDest, &S);
1627 EmitStmt(S.getSubStmt());
1628
1629 // If range is empty, do nothing.
1630 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1631 return;
1632
1633 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1634 llvm::APInt Range = RHS - LHS;
1635 // FIXME: parameters such as this should not be hardcoded.
1636 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1637 // Range is small enough to add multiple switch instruction cases.
1638 uint64_t Total = getProfileCount(&S);
1639 unsigned NCases = Range.getZExtValue() + 1;
1640 // We only have one region counter for the entire set of cases here, so we
1641 // need to divide the weights evenly between the generated cases, ensuring
1642 // that the total weight is preserved. E.g., a weight of 5 over three cases
1643 // will be distributed as weights of 2, 2, and 1.
1644 uint64_t Weight = Total / NCases, Rem = Total % NCases;
1645 for (unsigned I = 0; I != NCases; ++I) {
1646 if (SwitchWeights)
1647 SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1648 else if (SwitchLikelihood)
1649 SwitchLikelihood->push_back(LH);
1650
1651 if (Rem)
1652 Rem--;
1653 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1654 ++LHS;
1655 }
1656 return;
1657 }
1658
1659 // The range is too big. Emit "if" condition into a new block,
1660 // making sure to save and restore the current insertion point.
1661 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1662
1663 // Push this test onto the chain of range checks (which terminates
1664 // in the default basic block). The switch's default will be changed
1665 // to the top of this chain after switch emission is complete.
1666 llvm::BasicBlock *FalseDest = CaseRangeBlock;
1667 CaseRangeBlock = createBasicBlock("sw.caserange");
1668
1669 CurFn->insert(CurFn->end(), CaseRangeBlock);
1670 Builder.SetInsertPoint(CaseRangeBlock);
1671
1672 // Emit range check.
1673 llvm::Value *Diff =
1674 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1675 llvm::Value *Cond =
1676 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1677
1678 llvm::MDNode *Weights = nullptr;
1679 if (SwitchWeights) {
1680 uint64_t ThisCount = getProfileCount(&S);
1681 uint64_t DefaultCount = (*SwitchWeights)[0];
1682 Weights = createProfileWeights(ThisCount, DefaultCount);
1683
1684 // Since we're chaining the switch default through each large case range, we
1685 // need to update the weight for the default, ie, the first case, to include
1686 // this case.
1687 (*SwitchWeights)[0] += ThisCount;
1688 } else if (SwitchLikelihood)
1689 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1690
1691 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1692
1693 // Restore the appropriate insertion point.
1694 if (RestoreBB)
1695 Builder.SetInsertPoint(RestoreBB);
1696 else
1697 Builder.ClearInsertionPoint();
1698 }
1699
EmitCaseStmt(const CaseStmt & S,ArrayRef<const Attr * > Attrs)1700 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1701 ArrayRef<const Attr *> Attrs) {
1702 // If there is no enclosing switch instance that we're aware of, then this
1703 // case statement and its block can be elided. This situation only happens
1704 // when we've constant-folded the switch, are emitting the constant case,
1705 // and part of the constant case includes another case statement. For
1706 // instance: switch (4) { case 4: do { case 5: } while (1); }
1707 if (!SwitchInsn) {
1708 EmitStmt(S.getSubStmt());
1709 return;
1710 }
1711
1712 // Handle case ranges.
1713 if (S.getRHS()) {
1714 EmitCaseStmtRange(S, Attrs);
1715 return;
1716 }
1717
1718 llvm::ConstantInt *CaseVal =
1719 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1720
1721 // Emit debuginfo for the case value if it is an enum value.
1722 const ConstantExpr *CE;
1723 if (auto ICE = dyn_cast<ImplicitCastExpr>(S.getLHS()))
1724 CE = dyn_cast<ConstantExpr>(ICE->getSubExpr());
1725 else
1726 CE = dyn_cast<ConstantExpr>(S.getLHS());
1727 if (CE) {
1728 if (auto DE = dyn_cast<DeclRefExpr>(CE->getSubExpr()))
1729 if (CGDebugInfo *Dbg = getDebugInfo())
1730 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
1731 Dbg->EmitGlobalVariable(DE->getDecl(),
1732 APValue(llvm::APSInt(CaseVal->getValue())));
1733 }
1734
1735 if (SwitchLikelihood)
1736 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1737
1738 // If the body of the case is just a 'break', try to not emit an empty block.
1739 // If we're profiling or we're not optimizing, leave the block in for better
1740 // debug and coverage analysis.
1741 if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1742 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1743 isa<BreakStmt>(S.getSubStmt())) {
1744 JumpDest Block = BreakContinueStack.back().BreakBlock;
1745
1746 // Only do this optimization if there are no cleanups that need emitting.
1747 if (isObviouslyBranchWithoutCleanups(Block)) {
1748 if (SwitchWeights)
1749 SwitchWeights->push_back(getProfileCount(&S));
1750 SwitchInsn->addCase(CaseVal, Block.getBlock());
1751
1752 // If there was a fallthrough into this case, make sure to redirect it to
1753 // the end of the switch as well.
1754 if (Builder.GetInsertBlock()) {
1755 Builder.CreateBr(Block.getBlock());
1756 Builder.ClearInsertionPoint();
1757 }
1758 return;
1759 }
1760 }
1761
1762 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1763 EmitBlockWithFallThrough(CaseDest, &S);
1764 if (SwitchWeights)
1765 SwitchWeights->push_back(getProfileCount(&S));
1766 SwitchInsn->addCase(CaseVal, CaseDest);
1767
1768 // Recursively emitting the statement is acceptable, but is not wonderful for
1769 // code where we have many case statements nested together, i.e.:
1770 // case 1:
1771 // case 2:
1772 // case 3: etc.
1773 // Handling this recursively will create a new block for each case statement
1774 // that falls through to the next case which is IR intensive. It also causes
1775 // deep recursion which can run into stack depth limitations. Handle
1776 // sequential non-range case statements specially.
1777 //
1778 // TODO When the next case has a likelihood attribute the code returns to the
1779 // recursive algorithm. Maybe improve this case if it becomes common practice
1780 // to use a lot of attributes.
1781 const CaseStmt *CurCase = &S;
1782 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1783
1784 // Otherwise, iteratively add consecutive cases to this switch stmt.
1785 while (NextCase && NextCase->getRHS() == nullptr) {
1786 CurCase = NextCase;
1787 llvm::ConstantInt *CaseVal =
1788 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1789
1790 if (SwitchWeights)
1791 SwitchWeights->push_back(getProfileCount(NextCase));
1792 if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1793 CaseDest = createBasicBlock("sw.bb");
1794 EmitBlockWithFallThrough(CaseDest, CurCase);
1795 }
1796 // Since this loop is only executed when the CaseStmt has no attributes
1797 // use a hard-coded value.
1798 if (SwitchLikelihood)
1799 SwitchLikelihood->push_back(Stmt::LH_None);
1800
1801 SwitchInsn->addCase(CaseVal, CaseDest);
1802 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1803 }
1804
1805 // Generate a stop point for debug info if the case statement is
1806 // followed by a default statement. A fallthrough case before a
1807 // default case gets its own branch target.
1808 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1809 EmitStopPoint(CurCase);
1810
1811 // Normal default recursion for non-cases.
1812 EmitStmt(CurCase->getSubStmt());
1813 }
1814
EmitDefaultStmt(const DefaultStmt & S,ArrayRef<const Attr * > Attrs)1815 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1816 ArrayRef<const Attr *> Attrs) {
1817 // If there is no enclosing switch instance that we're aware of, then this
1818 // default statement can be elided. This situation only happens when we've
1819 // constant-folded the switch.
1820 if (!SwitchInsn) {
1821 EmitStmt(S.getSubStmt());
1822 return;
1823 }
1824
1825 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1826 assert(DefaultBlock->empty() &&
1827 "EmitDefaultStmt: Default block already defined?");
1828
1829 if (SwitchLikelihood)
1830 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1831
1832 EmitBlockWithFallThrough(DefaultBlock, &S);
1833
1834 EmitStmt(S.getSubStmt());
1835 }
1836
1837 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1838 /// constant value that is being switched on, see if we can dead code eliminate
1839 /// the body of the switch to a simple series of statements to emit. Basically,
1840 /// on a switch (5) we want to find these statements:
1841 /// case 5:
1842 /// printf(...); <--
1843 /// ++i; <--
1844 /// break;
1845 ///
1846 /// and add them to the ResultStmts vector. If it is unsafe to do this
1847 /// transformation (for example, one of the elided statements contains a label
1848 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1849 /// should include statements after it (e.g. the printf() line is a substmt of
1850 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1851 /// statement, then return CSFC_Success.
1852 ///
1853 /// If Case is non-null, then we are looking for the specified case, checking
1854 /// that nothing we jump over contains labels. If Case is null, then we found
1855 /// the case and are looking for the break.
1856 ///
1857 /// If the recursive walk actually finds our Case, then we set FoundCase to
1858 /// true.
1859 ///
1860 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1861 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1862 const SwitchCase *Case,
1863 bool &FoundCase,
1864 SmallVectorImpl<const Stmt*> &ResultStmts) {
1865 // If this is a null statement, just succeed.
1866 if (!S)
1867 return Case ? CSFC_Success : CSFC_FallThrough;
1868
1869 // If this is the switchcase (case 4: or default) that we're looking for, then
1870 // we're in business. Just add the substatement.
1871 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1872 if (S == Case) {
1873 FoundCase = true;
1874 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1875 ResultStmts);
1876 }
1877
1878 // Otherwise, this is some other case or default statement, just ignore it.
1879 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1880 ResultStmts);
1881 }
1882
1883 // If we are in the live part of the code and we found our break statement,
1884 // return a success!
1885 if (!Case && isa<BreakStmt>(S))
1886 return CSFC_Success;
1887
1888 // If this is a switch statement, then it might contain the SwitchCase, the
1889 // break, or neither.
1890 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1891 // Handle this as two cases: we might be looking for the SwitchCase (if so
1892 // the skipped statements must be skippable) or we might already have it.
1893 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1894 bool StartedInLiveCode = FoundCase;
1895 unsigned StartSize = ResultStmts.size();
1896
1897 // If we've not found the case yet, scan through looking for it.
1898 if (Case) {
1899 // Keep track of whether we see a skipped declaration. The code could be
1900 // using the declaration even if it is skipped, so we can't optimize out
1901 // the decl if the kept statements might refer to it.
1902 bool HadSkippedDecl = false;
1903
1904 // If we're looking for the case, just see if we can skip each of the
1905 // substatements.
1906 for (; Case && I != E; ++I) {
1907 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1908
1909 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1910 case CSFC_Failure: return CSFC_Failure;
1911 case CSFC_Success:
1912 // A successful result means that either 1) that the statement doesn't
1913 // have the case and is skippable, or 2) does contain the case value
1914 // and also contains the break to exit the switch. In the later case,
1915 // we just verify the rest of the statements are elidable.
1916 if (FoundCase) {
1917 // If we found the case and skipped declarations, we can't do the
1918 // optimization.
1919 if (HadSkippedDecl)
1920 return CSFC_Failure;
1921
1922 for (++I; I != E; ++I)
1923 if (CodeGenFunction::ContainsLabel(*I, true))
1924 return CSFC_Failure;
1925 return CSFC_Success;
1926 }
1927 break;
1928 case CSFC_FallThrough:
1929 // If we have a fallthrough condition, then we must have found the
1930 // case started to include statements. Consider the rest of the
1931 // statements in the compound statement as candidates for inclusion.
1932 assert(FoundCase && "Didn't find case but returned fallthrough?");
1933 // We recursively found Case, so we're not looking for it anymore.
1934 Case = nullptr;
1935
1936 // If we found the case and skipped declarations, we can't do the
1937 // optimization.
1938 if (HadSkippedDecl)
1939 return CSFC_Failure;
1940 break;
1941 }
1942 }
1943
1944 if (!FoundCase)
1945 return CSFC_Success;
1946
1947 assert(!HadSkippedDecl && "fallthrough after skipping decl");
1948 }
1949
1950 // If we have statements in our range, then we know that the statements are
1951 // live and need to be added to the set of statements we're tracking.
1952 bool AnyDecls = false;
1953 for (; I != E; ++I) {
1954 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1955
1956 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1957 case CSFC_Failure: return CSFC_Failure;
1958 case CSFC_FallThrough:
1959 // A fallthrough result means that the statement was simple and just
1960 // included in ResultStmt, keep adding them afterwards.
1961 break;
1962 case CSFC_Success:
1963 // A successful result means that we found the break statement and
1964 // stopped statement inclusion. We just ensure that any leftover stmts
1965 // are skippable and return success ourselves.
1966 for (++I; I != E; ++I)
1967 if (CodeGenFunction::ContainsLabel(*I, true))
1968 return CSFC_Failure;
1969 return CSFC_Success;
1970 }
1971 }
1972
1973 // If we're about to fall out of a scope without hitting a 'break;', we
1974 // can't perform the optimization if there were any decls in that scope
1975 // (we'd lose their end-of-lifetime).
1976 if (AnyDecls) {
1977 // If the entire compound statement was live, there's one more thing we
1978 // can try before giving up: emit the whole thing as a single statement.
1979 // We can do that unless the statement contains a 'break;'.
1980 // FIXME: Such a break must be at the end of a construct within this one.
1981 // We could emit this by just ignoring the BreakStmts entirely.
1982 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1983 ResultStmts.resize(StartSize);
1984 ResultStmts.push_back(S);
1985 } else {
1986 return CSFC_Failure;
1987 }
1988 }
1989
1990 return CSFC_FallThrough;
1991 }
1992
1993 // Okay, this is some other statement that we don't handle explicitly, like a
1994 // for statement or increment etc. If we are skipping over this statement,
1995 // just verify it doesn't have labels, which would make it invalid to elide.
1996 if (Case) {
1997 if (CodeGenFunction::ContainsLabel(S, true))
1998 return CSFC_Failure;
1999 return CSFC_Success;
2000 }
2001
2002 // Otherwise, we want to include this statement. Everything is cool with that
2003 // so long as it doesn't contain a break out of the switch we're in.
2004 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
2005
2006 // Otherwise, everything is great. Include the statement and tell the caller
2007 // that we fall through and include the next statement as well.
2008 ResultStmts.push_back(S);
2009 return CSFC_FallThrough;
2010 }
2011
2012 /// FindCaseStatementsForValue - Find the case statement being jumped to and
2013 /// then invoke CollectStatementsForCase to find the list of statements to emit
2014 /// for a switch on constant. See the comment above CollectStatementsForCase
2015 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C,const SwitchCase * & ResultCase)2016 static bool FindCaseStatementsForValue(const SwitchStmt &S,
2017 const llvm::APSInt &ConstantCondValue,
2018 SmallVectorImpl<const Stmt*> &ResultStmts,
2019 ASTContext &C,
2020 const SwitchCase *&ResultCase) {
2021 // First step, find the switch case that is being branched to. We can do this
2022 // efficiently by scanning the SwitchCase list.
2023 const SwitchCase *Case = S.getSwitchCaseList();
2024 const DefaultStmt *DefaultCase = nullptr;
2025
2026 for (; Case; Case = Case->getNextSwitchCase()) {
2027 // It's either a default or case. Just remember the default statement in
2028 // case we're not jumping to any numbered cases.
2029 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
2030 DefaultCase = DS;
2031 continue;
2032 }
2033
2034 // Check to see if this case is the one we're looking for.
2035 const CaseStmt *CS = cast<CaseStmt>(Case);
2036 // Don't handle case ranges yet.
2037 if (CS->getRHS()) return false;
2038
2039 // If we found our case, remember it as 'case'.
2040 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
2041 break;
2042 }
2043
2044 // If we didn't find a matching case, we use a default if it exists, or we
2045 // elide the whole switch body!
2046 if (!Case) {
2047 // It is safe to elide the body of the switch if it doesn't contain labels
2048 // etc. If it is safe, return successfully with an empty ResultStmts list.
2049 if (!DefaultCase)
2050 return !CodeGenFunction::ContainsLabel(&S);
2051 Case = DefaultCase;
2052 }
2053
2054 // Ok, we know which case is being jumped to, try to collect all the
2055 // statements that follow it. This can fail for a variety of reasons. Also,
2056 // check to see that the recursive walk actually found our case statement.
2057 // Insane cases like this can fail to find it in the recursive walk since we
2058 // don't handle every stmt kind:
2059 // switch (4) {
2060 // while (1) {
2061 // case 4: ...
2062 bool FoundCase = false;
2063 ResultCase = Case;
2064 return CollectStatementsForCase(S.getBody(), Case, FoundCase,
2065 ResultStmts) != CSFC_Failure &&
2066 FoundCase;
2067 }
2068
2069 static std::optional<SmallVector<uint64_t, 16>>
getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods)2070 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
2071 // Are there enough branches to weight them?
2072 if (Likelihoods.size() <= 1)
2073 return std::nullopt;
2074
2075 uint64_t NumUnlikely = 0;
2076 uint64_t NumNone = 0;
2077 uint64_t NumLikely = 0;
2078 for (const auto LH : Likelihoods) {
2079 switch (LH) {
2080 case Stmt::LH_Unlikely:
2081 ++NumUnlikely;
2082 break;
2083 case Stmt::LH_None:
2084 ++NumNone;
2085 break;
2086 case Stmt::LH_Likely:
2087 ++NumLikely;
2088 break;
2089 }
2090 }
2091
2092 // Is there a likelihood attribute used?
2093 if (NumUnlikely == 0 && NumLikely == 0)
2094 return std::nullopt;
2095
2096 // When multiple cases share the same code they can be combined during
2097 // optimization. In that case the weights of the branch will be the sum of
2098 // the individual weights. Make sure the combined sum of all neutral cases
2099 // doesn't exceed the value of a single likely attribute.
2100 // The additions both avoid divisions by 0 and make sure the weights of None
2101 // don't exceed the weight of Likely.
2102 const uint64_t Likely = INT32_MAX / (NumLikely + 2);
2103 const uint64_t None = Likely / (NumNone + 1);
2104 const uint64_t Unlikely = 0;
2105
2106 SmallVector<uint64_t, 16> Result;
2107 Result.reserve(Likelihoods.size());
2108 for (const auto LH : Likelihoods) {
2109 switch (LH) {
2110 case Stmt::LH_Unlikely:
2111 Result.push_back(Unlikely);
2112 break;
2113 case Stmt::LH_None:
2114 Result.push_back(None);
2115 break;
2116 case Stmt::LH_Likely:
2117 Result.push_back(Likely);
2118 break;
2119 }
2120 }
2121
2122 return Result;
2123 }
2124
EmitSwitchStmt(const SwitchStmt & S)2125 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
2126 // Handle nested switch statements.
2127 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
2128 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
2129 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
2130 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
2131
2132 // See if we can constant fold the condition of the switch and therefore only
2133 // emit the live case statement (if any) of the switch.
2134 llvm::APSInt ConstantCondValue;
2135 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
2136 SmallVector<const Stmt*, 4> CaseStmts;
2137 const SwitchCase *Case = nullptr;
2138 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
2139 getContext(), Case)) {
2140 if (Case)
2141 incrementProfileCounter(Case);
2142 RunCleanupsScope ExecutedScope(*this);
2143
2144 if (S.getInit())
2145 EmitStmt(S.getInit());
2146
2147 // Emit the condition variable if needed inside the entire cleanup scope
2148 // used by this special case for constant folded switches.
2149 if (S.getConditionVariable())
2150 EmitDecl(*S.getConditionVariable());
2151
2152 // At this point, we are no longer "within" a switch instance, so
2153 // we can temporarily enforce this to ensure that any embedded case
2154 // statements are not emitted.
2155 SwitchInsn = nullptr;
2156
2157 // Okay, we can dead code eliminate everything except this case. Emit the
2158 // specified series of statements and we're good.
2159 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
2160 EmitStmt(CaseStmts[i]);
2161 incrementProfileCounter(&S);
2162
2163 // Now we want to restore the saved switch instance so that nested
2164 // switches continue to function properly
2165 SwitchInsn = SavedSwitchInsn;
2166
2167 return;
2168 }
2169 }
2170
2171 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
2172
2173 RunCleanupsScope ConditionScope(*this);
2174
2175 if (S.getInit())
2176 EmitStmt(S.getInit());
2177
2178 if (S.getConditionVariable())
2179 EmitDecl(*S.getConditionVariable());
2180 llvm::Value *CondV = EmitScalarExpr(S.getCond());
2181
2182 // Create basic block to hold stuff that comes after switch
2183 // statement. We also need to create a default block now so that
2184 // explicit case ranges tests can have a place to jump to on
2185 // failure.
2186 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
2187 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
2188 if (PGO.haveRegionCounts()) {
2189 // Walk the SwitchCase list to find how many there are.
2190 uint64_t DefaultCount = 0;
2191 unsigned NumCases = 0;
2192 for (const SwitchCase *Case = S.getSwitchCaseList();
2193 Case;
2194 Case = Case->getNextSwitchCase()) {
2195 if (isa<DefaultStmt>(Case))
2196 DefaultCount = getProfileCount(Case);
2197 NumCases += 1;
2198 }
2199 SwitchWeights = new SmallVector<uint64_t, 16>();
2200 SwitchWeights->reserve(NumCases);
2201 // The default needs to be first. We store the edge count, so we already
2202 // know the right weight.
2203 SwitchWeights->push_back(DefaultCount);
2204 } else if (CGM.getCodeGenOpts().OptimizationLevel) {
2205 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
2206 // Initialize the default case.
2207 SwitchLikelihood->push_back(Stmt::LH_None);
2208 }
2209
2210 CaseRangeBlock = DefaultBlock;
2211
2212 // Clear the insertion point to indicate we are in unreachable code.
2213 Builder.ClearInsertionPoint();
2214
2215 // All break statements jump to NextBlock. If BreakContinueStack is non-empty
2216 // then reuse last ContinueBlock.
2217 JumpDest OuterContinue;
2218 if (!BreakContinueStack.empty())
2219 OuterContinue = BreakContinueStack.back().ContinueBlock;
2220
2221 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
2222
2223 // Emit switch body.
2224 EmitStmt(S.getBody());
2225
2226 BreakContinueStack.pop_back();
2227
2228 // Update the default block in case explicit case range tests have
2229 // been chained on top.
2230 SwitchInsn->setDefaultDest(CaseRangeBlock);
2231
2232 // If a default was never emitted:
2233 if (!DefaultBlock->getParent()) {
2234 // If we have cleanups, emit the default block so that there's a
2235 // place to jump through the cleanups from.
2236 if (ConditionScope.requiresCleanups()) {
2237 EmitBlock(DefaultBlock);
2238
2239 // Otherwise, just forward the default block to the switch end.
2240 } else {
2241 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2242 delete DefaultBlock;
2243 }
2244 }
2245
2246 ConditionScope.ForceCleanup();
2247
2248 // Emit continuation.
2249 EmitBlock(SwitchExit.getBlock(), true);
2250 incrementProfileCounter(&S);
2251
2252 // If the switch has a condition wrapped by __builtin_unpredictable,
2253 // create metadata that specifies that the switch is unpredictable.
2254 // Don't bother if not optimizing because that metadata would not be used.
2255 auto *Call = dyn_cast<CallExpr>(S.getCond());
2256 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2257 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2258 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2259 llvm::MDBuilder MDHelper(getLLVMContext());
2260 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2261 MDHelper.createUnpredictable());
2262 }
2263 }
2264
2265 if (SwitchWeights) {
2266 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2267 "switch weights do not match switch cases");
2268 // If there's only one jump destination there's no sense weighting it.
2269 if (SwitchWeights->size() > 1)
2270 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2271 createProfileWeights(*SwitchWeights));
2272 delete SwitchWeights;
2273 } else if (SwitchLikelihood) {
2274 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2275 "switch likelihoods do not match switch cases");
2276 std::optional<SmallVector<uint64_t, 16>> LHW =
2277 getLikelihoodWeights(*SwitchLikelihood);
2278 if (LHW) {
2279 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2280 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2281 createProfileWeights(*LHW));
2282 }
2283 delete SwitchLikelihood;
2284 }
2285 SwitchInsn = SavedSwitchInsn;
2286 SwitchWeights = SavedSwitchWeights;
2287 SwitchLikelihood = SavedSwitchLikelihood;
2288 CaseRangeBlock = SavedCRBlock;
2289 }
2290
2291 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=nullptr)2292 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2293 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2294 std::string Result;
2295
2296 while (*Constraint) {
2297 switch (*Constraint) {
2298 default:
2299 Result += Target.convertConstraint(Constraint);
2300 break;
2301 // Ignore these
2302 case '*':
2303 case '?':
2304 case '!':
2305 case '=': // Will see this and the following in mult-alt constraints.
2306 case '+':
2307 break;
2308 case '#': // Ignore the rest of the constraint alternative.
2309 while (Constraint[1] && Constraint[1] != ',')
2310 Constraint++;
2311 break;
2312 case '&':
2313 case '%':
2314 Result += *Constraint;
2315 while (Constraint[1] && Constraint[1] == *Constraint)
2316 Constraint++;
2317 break;
2318 case ',':
2319 Result += "|";
2320 break;
2321 case 'g':
2322 Result += "imr";
2323 break;
2324 case '[': {
2325 assert(OutCons &&
2326 "Must pass output names to constraints with a symbolic name");
2327 unsigned Index;
2328 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2329 assert(result && "Could not resolve symbolic name"); (void)result;
2330 Result += llvm::utostr(Index);
2331 break;
2332 }
2333 }
2334
2335 Constraint++;
2336 }
2337
2338 return Result;
2339 }
2340
2341 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2342 /// as using a particular register add that as a constraint that will be used
2343 /// in this asm stmt.
2344 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt,const bool EarlyClobber,std::string * GCCReg=nullptr)2345 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2346 const TargetInfo &Target, CodeGenModule &CGM,
2347 const AsmStmt &Stmt, const bool EarlyClobber,
2348 std::string *GCCReg = nullptr) {
2349 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2350 if (!AsmDeclRef)
2351 return Constraint;
2352 const ValueDecl &Value = *AsmDeclRef->getDecl();
2353 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2354 if (!Variable)
2355 return Constraint;
2356 if (Variable->getStorageClass() != SC_Register)
2357 return Constraint;
2358 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2359 if (!Attr)
2360 return Constraint;
2361 StringRef Register = Attr->getLabel();
2362 assert(Target.isValidGCCRegisterName(Register));
2363 // We're using validateOutputConstraint here because we only care if
2364 // this is a register constraint.
2365 TargetInfo::ConstraintInfo Info(Constraint, "");
2366 if (Target.validateOutputConstraint(Info) &&
2367 !Info.allowsRegister()) {
2368 CGM.ErrorUnsupported(&Stmt, "__asm__");
2369 return Constraint;
2370 }
2371 // Canonicalize the register here before returning it.
2372 Register = Target.getNormalizedGCCRegisterName(Register);
2373 if (GCCReg != nullptr)
2374 *GCCReg = Register.str();
2375 return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2376 }
2377
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr,SourceLocation Loc)2378 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2379 const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2380 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2381 if (Info.allowsRegister() || !Info.allowsMemory()) {
2382 if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2383 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2384
2385 llvm::Type *Ty = ConvertType(InputType);
2386 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2387 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2388 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2389 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2390
2391 return {Builder.CreateLoad(InputValue.getAddress().withElementType(Ty)),
2392 nullptr};
2393 }
2394 }
2395
2396 Address Addr = InputValue.getAddress();
2397 ConstraintStr += '*';
2398 return {InputValue.getPointer(*this), Addr.getElementType()};
2399 }
2400
2401 std::pair<llvm::Value *, llvm::Type *>
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)2402 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2403 const Expr *InputExpr,
2404 std::string &ConstraintStr) {
2405 // If this can't be a register or memory, i.e., has to be a constant
2406 // (immediate or symbolic), try to emit it as such.
2407 if (!Info.allowsRegister() && !Info.allowsMemory()) {
2408 if (Info.requiresImmediateConstant()) {
2409 Expr::EvalResult EVResult;
2410 InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2411
2412 llvm::APSInt IntResult;
2413 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2414 getContext()))
2415 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2416 }
2417
2418 Expr::EvalResult Result;
2419 if (InputExpr->EvaluateAsInt(Result, getContext()))
2420 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2421 nullptr};
2422 }
2423
2424 if (Info.allowsRegister() || !Info.allowsMemory())
2425 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2426 return {EmitScalarExpr(InputExpr), nullptr};
2427 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2428 return {EmitScalarExpr(InputExpr), nullptr};
2429 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2430 LValue Dest = EmitLValue(InputExpr);
2431 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2432 InputExpr->getExprLoc());
2433 }
2434
2435 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2436 /// asm call instruction. The !srcloc MDNode contains a list of constant
2437 /// integers which are the source locations of the start of each line in the
2438 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)2439 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2440 CodeGenFunction &CGF) {
2441 SmallVector<llvm::Metadata *, 8> Locs;
2442 // Add the location of the first line to the MDNode.
2443 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2444 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2445 StringRef StrVal = Str->getString();
2446 if (!StrVal.empty()) {
2447 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2448 const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2449 unsigned StartToken = 0;
2450 unsigned ByteOffset = 0;
2451
2452 // Add the location of the start of each subsequent line of the asm to the
2453 // MDNode.
2454 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2455 if (StrVal[i] != '\n') continue;
2456 SourceLocation LineLoc = Str->getLocationOfByte(
2457 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2458 Locs.push_back(llvm::ConstantAsMetadata::get(
2459 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2460 }
2461 }
2462
2463 return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2464 }
2465
UpdateAsmCallInst(llvm::CallBase & Result,bool HasSideEffect,bool HasUnwindClobber,bool ReadOnly,bool ReadNone,bool NoMerge,const AsmStmt & S,const std::vector<llvm::Type * > & ResultRegTypes,const std::vector<llvm::Type * > & ArgElemTypes,CodeGenFunction & CGF,std::vector<llvm::Value * > & RegResults)2466 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2467 bool HasUnwindClobber, bool ReadOnly,
2468 bool ReadNone, bool NoMerge, const AsmStmt &S,
2469 const std::vector<llvm::Type *> &ResultRegTypes,
2470 const std::vector<llvm::Type *> &ArgElemTypes,
2471 CodeGenFunction &CGF,
2472 std::vector<llvm::Value *> &RegResults) {
2473 if (!HasUnwindClobber)
2474 Result.addFnAttr(llvm::Attribute::NoUnwind);
2475
2476 if (NoMerge)
2477 Result.addFnAttr(llvm::Attribute::NoMerge);
2478 // Attach readnone and readonly attributes.
2479 if (!HasSideEffect) {
2480 if (ReadNone)
2481 Result.setDoesNotAccessMemory();
2482 else if (ReadOnly)
2483 Result.setOnlyReadsMemory();
2484 }
2485
2486 // Add elementtype attribute for indirect constraints.
2487 for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2488 if (Pair.value()) {
2489 auto Attr = llvm::Attribute::get(
2490 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2491 Result.addParamAttr(Pair.index(), Attr);
2492 }
2493 }
2494
2495 // Slap the source location of the inline asm into a !srcloc metadata on the
2496 // call.
2497 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2498 Result.setMetadata("srcloc",
2499 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2500 else {
2501 // At least put the line number on MS inline asm blobs.
2502 llvm::Constant *Loc =
2503 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2504 Result.setMetadata("srcloc",
2505 llvm::MDNode::get(CGF.getLLVMContext(),
2506 llvm::ConstantAsMetadata::get(Loc)));
2507 }
2508
2509 if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2510 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2511 // convergent (meaning, they may call an intrinsically convergent op, such
2512 // as bar.sync, and so can't have certain optimizations applied around
2513 // them).
2514 Result.addFnAttr(llvm::Attribute::Convergent);
2515 // Extract all of the register value results from the asm.
2516 if (ResultRegTypes.size() == 1) {
2517 RegResults.push_back(&Result);
2518 } else {
2519 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2520 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2521 RegResults.push_back(Tmp);
2522 }
2523 }
2524 }
2525
2526 static void
EmitAsmStores(CodeGenFunction & CGF,const AsmStmt & S,const llvm::ArrayRef<llvm::Value * > RegResults,const llvm::ArrayRef<llvm::Type * > ResultRegTypes,const llvm::ArrayRef<llvm::Type * > ResultTruncRegTypes,const llvm::ArrayRef<LValue> ResultRegDests,const llvm::ArrayRef<QualType> ResultRegQualTys,const llvm::BitVector & ResultTypeRequiresCast,const llvm::BitVector & ResultRegIsFlagReg)2527 EmitAsmStores(CodeGenFunction &CGF, const AsmStmt &S,
2528 const llvm::ArrayRef<llvm::Value *> RegResults,
2529 const llvm::ArrayRef<llvm::Type *> ResultRegTypes,
2530 const llvm::ArrayRef<llvm::Type *> ResultTruncRegTypes,
2531 const llvm::ArrayRef<LValue> ResultRegDests,
2532 const llvm::ArrayRef<QualType> ResultRegQualTys,
2533 const llvm::BitVector &ResultTypeRequiresCast,
2534 const llvm::BitVector &ResultRegIsFlagReg) {
2535 CGBuilderTy &Builder = CGF.Builder;
2536 CodeGenModule &CGM = CGF.CGM;
2537 llvm::LLVMContext &CTX = CGF.getLLVMContext();
2538
2539 assert(RegResults.size() == ResultRegTypes.size());
2540 assert(RegResults.size() == ResultTruncRegTypes.size());
2541 assert(RegResults.size() == ResultRegDests.size());
2542 // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2543 // in which case its size may grow.
2544 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2545 assert(ResultRegIsFlagReg.size() <= ResultRegDests.size());
2546
2547 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2548 llvm::Value *Tmp = RegResults[i];
2549 llvm::Type *TruncTy = ResultTruncRegTypes[i];
2550
2551 if ((i < ResultRegIsFlagReg.size()) && ResultRegIsFlagReg[i]) {
2552 // Target must guarantee the Value `Tmp` here is lowered to a boolean
2553 // value.
2554 llvm::Constant *Two = llvm::ConstantInt::get(Tmp->getType(), 2);
2555 llvm::Value *IsBooleanValue =
2556 Builder.CreateCmp(llvm::CmpInst::ICMP_ULT, Tmp, Two);
2557 llvm::Function *FnAssume = CGM.getIntrinsic(llvm::Intrinsic::assume);
2558 Builder.CreateCall(FnAssume, IsBooleanValue);
2559 }
2560
2561 // If the result type of the LLVM IR asm doesn't match the result type of
2562 // the expression, do the conversion.
2563 if (ResultRegTypes[i] != TruncTy) {
2564
2565 // Truncate the integer result to the right size, note that TruncTy can be
2566 // a pointer.
2567 if (TruncTy->isFloatingPointTy())
2568 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2569 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2570 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2571 Tmp = Builder.CreateTrunc(
2572 Tmp, llvm::IntegerType::get(CTX, (unsigned)ResSize));
2573 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2574 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2575 uint64_t TmpSize =
2576 CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2577 Tmp = Builder.CreatePtrToInt(
2578 Tmp, llvm::IntegerType::get(CTX, (unsigned)TmpSize));
2579 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2580 } else if (Tmp->getType()->isIntegerTy() && TruncTy->isIntegerTy()) {
2581 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2582 } else if (Tmp->getType()->isVectorTy() || TruncTy->isVectorTy()) {
2583 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2584 }
2585 }
2586
2587 LValue Dest = ResultRegDests[i];
2588 // ResultTypeRequiresCast elements correspond to the first
2589 // ResultTypeRequiresCast.size() elements of RegResults.
2590 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2591 unsigned Size = CGF.getContext().getTypeSize(ResultRegQualTys[i]);
2592 Address A = Dest.getAddress().withElementType(ResultRegTypes[i]);
2593 if (CGF.getTargetHooks().isScalarizableAsmOperand(CGF, TruncTy)) {
2594 Builder.CreateStore(Tmp, A);
2595 continue;
2596 }
2597
2598 QualType Ty =
2599 CGF.getContext().getIntTypeForBitwidth(Size, /*Signed=*/false);
2600 if (Ty.isNull()) {
2601 const Expr *OutExpr = S.getOutputExpr(i);
2602 CGM.getDiags().Report(OutExpr->getExprLoc(),
2603 diag::err_store_value_to_reg);
2604 return;
2605 }
2606 Dest = CGF.MakeAddrLValue(A, Ty);
2607 }
2608 CGF.EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2609 }
2610 }
2611
EmitHipStdParUnsupportedAsm(CodeGenFunction * CGF,const AsmStmt & S)2612 static void EmitHipStdParUnsupportedAsm(CodeGenFunction *CGF,
2613 const AsmStmt &S) {
2614 constexpr auto Name = "__ASM__hipstdpar_unsupported";
2615
2616 StringRef Asm;
2617 if (auto GCCAsm = dyn_cast<GCCAsmStmt>(&S))
2618 Asm = GCCAsm->getAsmString()->getString();
2619
2620 auto &Ctx = CGF->CGM.getLLVMContext();
2621
2622 auto StrTy = llvm::ConstantDataArray::getString(Ctx, Asm);
2623 auto FnTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx),
2624 {StrTy->getType()}, false);
2625 auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2626
2627 CGF->Builder.CreateCall(UBF, {StrTy});
2628 }
2629
EmitAsmStmt(const AsmStmt & S)2630 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2631 // Pop all cleanup blocks at the end of the asm statement.
2632 CodeGenFunction::RunCleanupsScope Cleanups(*this);
2633
2634 // Assemble the final asm string.
2635 std::string AsmString = S.generateAsmString(getContext());
2636
2637 // Get all the output and input constraints together.
2638 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2639 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2640
2641 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2642 bool IsValidTargetAsm = true;
2643 for (unsigned i = 0, e = S.getNumOutputs(); i != e && IsValidTargetAsm; i++) {
2644 StringRef Name;
2645 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2646 Name = GAS->getOutputName(i);
2647 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2648 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2649 if (IsHipStdPar && !IsValid)
2650 IsValidTargetAsm = false;
2651 else
2652 assert(IsValid && "Failed to parse output constraint");
2653 OutputConstraintInfos.push_back(Info);
2654 }
2655
2656 for (unsigned i = 0, e = S.getNumInputs(); i != e && IsValidTargetAsm; i++) {
2657 StringRef Name;
2658 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2659 Name = GAS->getInputName(i);
2660 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2661 bool IsValid =
2662 getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2663 if (IsHipStdPar && !IsValid)
2664 IsValidTargetAsm = false;
2665 else
2666 assert(IsValid && "Failed to parse input constraint");
2667 InputConstraintInfos.push_back(Info);
2668 }
2669
2670 if (!IsValidTargetAsm)
2671 return EmitHipStdParUnsupportedAsm(this, S);
2672
2673 std::string Constraints;
2674
2675 std::vector<LValue> ResultRegDests;
2676 std::vector<QualType> ResultRegQualTys;
2677 std::vector<llvm::Type *> ResultRegTypes;
2678 std::vector<llvm::Type *> ResultTruncRegTypes;
2679 std::vector<llvm::Type *> ArgTypes;
2680 std::vector<llvm::Type *> ArgElemTypes;
2681 std::vector<llvm::Value*> Args;
2682 llvm::BitVector ResultTypeRequiresCast;
2683 llvm::BitVector ResultRegIsFlagReg;
2684
2685 // Keep track of inout constraints.
2686 std::string InOutConstraints;
2687 std::vector<llvm::Value*> InOutArgs;
2688 std::vector<llvm::Type*> InOutArgTypes;
2689 std::vector<llvm::Type*> InOutArgElemTypes;
2690
2691 // Keep track of out constraints for tied input operand.
2692 std::vector<std::string> OutputConstraints;
2693
2694 // Keep track of defined physregs.
2695 llvm::SmallSet<std::string, 8> PhysRegOutputs;
2696
2697 // An inline asm can be marked readonly if it meets the following conditions:
2698 // - it doesn't have any sideeffects
2699 // - it doesn't clobber memory
2700 // - it doesn't return a value by-reference
2701 // It can be marked readnone if it doesn't have any input memory constraints
2702 // in addition to meeting the conditions listed above.
2703 bool ReadOnly = true, ReadNone = true;
2704
2705 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2706 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2707
2708 // Simplify the output constraint.
2709 std::string OutputConstraint(S.getOutputConstraint(i));
2710 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2711 getTarget(), &OutputConstraintInfos);
2712
2713 const Expr *OutExpr = S.getOutputExpr(i);
2714 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2715
2716 std::string GCCReg;
2717 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2718 getTarget(), CGM, S,
2719 Info.earlyClobber(),
2720 &GCCReg);
2721 // Give an error on multiple outputs to same physreg.
2722 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2723 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2724
2725 OutputConstraints.push_back(OutputConstraint);
2726 LValue Dest = EmitLValue(OutExpr);
2727 if (!Constraints.empty())
2728 Constraints += ',';
2729
2730 // If this is a register output, then make the inline asm return it
2731 // by-value. If this is a memory result, return the value by-reference.
2732 QualType QTy = OutExpr->getType();
2733 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2734 hasAggregateEvaluationKind(QTy);
2735 if (!Info.allowsMemory() && IsScalarOrAggregate) {
2736
2737 Constraints += "=" + OutputConstraint;
2738 ResultRegQualTys.push_back(QTy);
2739 ResultRegDests.push_back(Dest);
2740
2741 bool IsFlagReg = llvm::StringRef(OutputConstraint).starts_with("{@cc");
2742 ResultRegIsFlagReg.push_back(IsFlagReg);
2743
2744 llvm::Type *Ty = ConvertTypeForMem(QTy);
2745 const bool RequiresCast = Info.allowsRegister() &&
2746 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2747 Ty->isAggregateType());
2748
2749 ResultTruncRegTypes.push_back(Ty);
2750 ResultTypeRequiresCast.push_back(RequiresCast);
2751
2752 if (RequiresCast) {
2753 unsigned Size = getContext().getTypeSize(QTy);
2754 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2755 }
2756 ResultRegTypes.push_back(Ty);
2757 // If this output is tied to an input, and if the input is larger, then
2758 // we need to set the actual result type of the inline asm node to be the
2759 // same as the input type.
2760 if (Info.hasMatchingInput()) {
2761 unsigned InputNo;
2762 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2763 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2764 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2765 break;
2766 }
2767 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2768
2769 QualType InputTy = S.getInputExpr(InputNo)->getType();
2770 QualType OutputType = OutExpr->getType();
2771
2772 uint64_t InputSize = getContext().getTypeSize(InputTy);
2773 if (getContext().getTypeSize(OutputType) < InputSize) {
2774 // Form the asm to return the value as a larger integer or fp type.
2775 ResultRegTypes.back() = ConvertType(InputTy);
2776 }
2777 }
2778 if (llvm::Type* AdjTy =
2779 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2780 ResultRegTypes.back()))
2781 ResultRegTypes.back() = AdjTy;
2782 else {
2783 CGM.getDiags().Report(S.getAsmLoc(),
2784 diag::err_asm_invalid_type_in_input)
2785 << OutExpr->getType() << OutputConstraint;
2786 }
2787
2788 // Update largest vector width for any vector types.
2789 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2790 LargestVectorWidth =
2791 std::max((uint64_t)LargestVectorWidth,
2792 VT->getPrimitiveSizeInBits().getKnownMinValue());
2793 } else {
2794 Address DestAddr = Dest.getAddress();
2795 // Matrix types in memory are represented by arrays, but accessed through
2796 // vector pointers, with the alignment specified on the access operation.
2797 // For inline assembly, update pointer arguments to use vector pointers.
2798 // Otherwise there will be a mis-match if the matrix is also an
2799 // input-argument which is represented as vector.
2800 if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2801 DestAddr = DestAddr.withElementType(ConvertType(OutExpr->getType()));
2802
2803 ArgTypes.push_back(DestAddr.getType());
2804 ArgElemTypes.push_back(DestAddr.getElementType());
2805 Args.push_back(DestAddr.emitRawPointer(*this));
2806 Constraints += "=*";
2807 Constraints += OutputConstraint;
2808 ReadOnly = ReadNone = false;
2809 }
2810
2811 if (Info.isReadWrite()) {
2812 InOutConstraints += ',';
2813
2814 const Expr *InputExpr = S.getOutputExpr(i);
2815 llvm::Value *Arg;
2816 llvm::Type *ArgElemType;
2817 std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2818 Info, Dest, InputExpr->getType(), InOutConstraints,
2819 InputExpr->getExprLoc());
2820
2821 if (llvm::Type* AdjTy =
2822 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2823 Arg->getType()))
2824 Arg = Builder.CreateBitCast(Arg, AdjTy);
2825
2826 // Update largest vector width for any vector types.
2827 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2828 LargestVectorWidth =
2829 std::max((uint64_t)LargestVectorWidth,
2830 VT->getPrimitiveSizeInBits().getKnownMinValue());
2831 // Only tie earlyclobber physregs.
2832 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2833 InOutConstraints += llvm::utostr(i);
2834 else
2835 InOutConstraints += OutputConstraint;
2836
2837 InOutArgTypes.push_back(Arg->getType());
2838 InOutArgElemTypes.push_back(ArgElemType);
2839 InOutArgs.push_back(Arg);
2840 }
2841 }
2842
2843 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2844 // to the return value slot. Only do this when returning in registers.
2845 if (isa<MSAsmStmt>(&S)) {
2846 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2847 if (RetAI.isDirect() || RetAI.isExtend()) {
2848 // Make a fake lvalue for the return value slot.
2849 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2850 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2851 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2852 ResultRegDests, AsmString, S.getNumOutputs());
2853 SawAsmBlock = true;
2854 }
2855 }
2856
2857 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2858 const Expr *InputExpr = S.getInputExpr(i);
2859
2860 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2861
2862 if (Info.allowsMemory())
2863 ReadNone = false;
2864
2865 if (!Constraints.empty())
2866 Constraints += ',';
2867
2868 // Simplify the input constraint.
2869 std::string InputConstraint(S.getInputConstraint(i));
2870 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2871 &OutputConstraintInfos);
2872
2873 InputConstraint = AddVariableConstraints(
2874 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2875 getTarget(), CGM, S, false /* No EarlyClobber */);
2876
2877 std::string ReplaceConstraint (InputConstraint);
2878 llvm::Value *Arg;
2879 llvm::Type *ArgElemType;
2880 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2881
2882 // If this input argument is tied to a larger output result, extend the
2883 // input to be the same size as the output. The LLVM backend wants to see
2884 // the input and output of a matching constraint be the same size. Note
2885 // that GCC does not define what the top bits are here. We use zext because
2886 // that is usually cheaper, but LLVM IR should really get an anyext someday.
2887 if (Info.hasTiedOperand()) {
2888 unsigned Output = Info.getTiedOperand();
2889 QualType OutputType = S.getOutputExpr(Output)->getType();
2890 QualType InputTy = InputExpr->getType();
2891
2892 if (getContext().getTypeSize(OutputType) >
2893 getContext().getTypeSize(InputTy)) {
2894 // Use ptrtoint as appropriate so that we can do our extension.
2895 if (isa<llvm::PointerType>(Arg->getType()))
2896 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2897 llvm::Type *OutputTy = ConvertType(OutputType);
2898 if (isa<llvm::IntegerType>(OutputTy))
2899 Arg = Builder.CreateZExt(Arg, OutputTy);
2900 else if (isa<llvm::PointerType>(OutputTy))
2901 Arg = Builder.CreateZExt(Arg, IntPtrTy);
2902 else if (OutputTy->isFloatingPointTy())
2903 Arg = Builder.CreateFPExt(Arg, OutputTy);
2904 }
2905 // Deal with the tied operands' constraint code in adjustInlineAsmType.
2906 ReplaceConstraint = OutputConstraints[Output];
2907 }
2908 if (llvm::Type* AdjTy =
2909 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2910 Arg->getType()))
2911 Arg = Builder.CreateBitCast(Arg, AdjTy);
2912 else
2913 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2914 << InputExpr->getType() << InputConstraint;
2915
2916 // Update largest vector width for any vector types.
2917 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2918 LargestVectorWidth =
2919 std::max((uint64_t)LargestVectorWidth,
2920 VT->getPrimitiveSizeInBits().getKnownMinValue());
2921
2922 ArgTypes.push_back(Arg->getType());
2923 ArgElemTypes.push_back(ArgElemType);
2924 Args.push_back(Arg);
2925 Constraints += InputConstraint;
2926 }
2927
2928 // Append the "input" part of inout constraints.
2929 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2930 ArgTypes.push_back(InOutArgTypes[i]);
2931 ArgElemTypes.push_back(InOutArgElemTypes[i]);
2932 Args.push_back(InOutArgs[i]);
2933 }
2934 Constraints += InOutConstraints;
2935
2936 // Labels
2937 SmallVector<llvm::BasicBlock *, 16> Transfer;
2938 llvm::BasicBlock *Fallthrough = nullptr;
2939 bool IsGCCAsmGoto = false;
2940 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) {
2941 IsGCCAsmGoto = GS->isAsmGoto();
2942 if (IsGCCAsmGoto) {
2943 for (const auto *E : GS->labels()) {
2944 JumpDest Dest = getJumpDestForLabel(E->getLabel());
2945 Transfer.push_back(Dest.getBlock());
2946 if (!Constraints.empty())
2947 Constraints += ',';
2948 Constraints += "!i";
2949 }
2950 Fallthrough = createBasicBlock("asm.fallthrough");
2951 }
2952 }
2953
2954 bool HasUnwindClobber = false;
2955
2956 // Clobbers
2957 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2958 StringRef Clobber = S.getClobber(i);
2959
2960 if (Clobber == "memory")
2961 ReadOnly = ReadNone = false;
2962 else if (Clobber == "unwind") {
2963 HasUnwindClobber = true;
2964 continue;
2965 } else if (Clobber != "cc") {
2966 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2967 if (CGM.getCodeGenOpts().StackClashProtector &&
2968 getTarget().isSPRegName(Clobber)) {
2969 CGM.getDiags().Report(S.getAsmLoc(),
2970 diag::warn_stack_clash_protection_inline_asm);
2971 }
2972 }
2973
2974 if (isa<MSAsmStmt>(&S)) {
2975 if (Clobber == "eax" || Clobber == "edx") {
2976 if (Constraints.find("=&A") != std::string::npos)
2977 continue;
2978 std::string::size_type position1 =
2979 Constraints.find("={" + Clobber.str() + "}");
2980 if (position1 != std::string::npos) {
2981 Constraints.insert(position1 + 1, "&");
2982 continue;
2983 }
2984 std::string::size_type position2 = Constraints.find("=A");
2985 if (position2 != std::string::npos) {
2986 Constraints.insert(position2 + 1, "&");
2987 continue;
2988 }
2989 }
2990 }
2991 if (!Constraints.empty())
2992 Constraints += ',';
2993
2994 Constraints += "~{";
2995 Constraints += Clobber;
2996 Constraints += '}';
2997 }
2998
2999 assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
3000 "unwind clobber can't be used with asm goto");
3001
3002 // Add machine specific clobbers
3003 std::string_view MachineClobbers = getTarget().getClobbers();
3004 if (!MachineClobbers.empty()) {
3005 if (!Constraints.empty())
3006 Constraints += ',';
3007 Constraints += MachineClobbers;
3008 }
3009
3010 llvm::Type *ResultType;
3011 if (ResultRegTypes.empty())
3012 ResultType = VoidTy;
3013 else if (ResultRegTypes.size() == 1)
3014 ResultType = ResultRegTypes[0];
3015 else
3016 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
3017
3018 llvm::FunctionType *FTy =
3019 llvm::FunctionType::get(ResultType, ArgTypes, false);
3020
3021 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
3022
3023 llvm::InlineAsm::AsmDialect GnuAsmDialect =
3024 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
3025 ? llvm::InlineAsm::AD_ATT
3026 : llvm::InlineAsm::AD_Intel;
3027 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
3028 llvm::InlineAsm::AD_Intel : GnuAsmDialect;
3029
3030 llvm::InlineAsm *IA = llvm::InlineAsm::get(
3031 FTy, AsmString, Constraints, HasSideEffect,
3032 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
3033 std::vector<llvm::Value*> RegResults;
3034 llvm::CallBrInst *CBR;
3035 llvm::DenseMap<llvm::BasicBlock *, SmallVector<llvm::Value *, 4>>
3036 CBRRegResults;
3037 if (IsGCCAsmGoto) {
3038 CBR = Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
3039 EmitBlock(Fallthrough);
3040 UpdateAsmCallInst(*CBR, HasSideEffect, false, ReadOnly, ReadNone,
3041 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
3042 *this, RegResults);
3043 // Because we are emitting code top to bottom, we don't have enough
3044 // information at this point to know precisely whether we have a critical
3045 // edge. If we have outputs, split all indirect destinations.
3046 if (!RegResults.empty()) {
3047 unsigned i = 0;
3048 for (llvm::BasicBlock *Dest : CBR->getIndirectDests()) {
3049 llvm::Twine SynthName = Dest->getName() + ".split";
3050 llvm::BasicBlock *SynthBB = createBasicBlock(SynthName);
3051 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
3052 Builder.SetInsertPoint(SynthBB);
3053
3054 if (ResultRegTypes.size() == 1) {
3055 CBRRegResults[SynthBB].push_back(CBR);
3056 } else {
3057 for (unsigned j = 0, e = ResultRegTypes.size(); j != e; ++j) {
3058 llvm::Value *Tmp = Builder.CreateExtractValue(CBR, j, "asmresult");
3059 CBRRegResults[SynthBB].push_back(Tmp);
3060 }
3061 }
3062
3063 EmitBranch(Dest);
3064 EmitBlock(SynthBB);
3065 CBR->setIndirectDest(i++, SynthBB);
3066 }
3067 }
3068 } else if (HasUnwindClobber) {
3069 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
3070 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
3071 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
3072 *this, RegResults);
3073 } else {
3074 llvm::CallInst *Result =
3075 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
3076 UpdateAsmCallInst(*Result, HasSideEffect, false, ReadOnly, ReadNone,
3077 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
3078 *this, RegResults);
3079 }
3080
3081 EmitAsmStores(*this, S, RegResults, ResultRegTypes, ResultTruncRegTypes,
3082 ResultRegDests, ResultRegQualTys, ResultTypeRequiresCast,
3083 ResultRegIsFlagReg);
3084
3085 // If this is an asm goto with outputs, repeat EmitAsmStores, but with a
3086 // different insertion point; one for each indirect destination and with
3087 // CBRRegResults rather than RegResults.
3088 if (IsGCCAsmGoto && !CBRRegResults.empty()) {
3089 for (llvm::BasicBlock *Succ : CBR->getIndirectDests()) {
3090 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
3091 Builder.SetInsertPoint(Succ, --(Succ->end()));
3092 EmitAsmStores(*this, S, CBRRegResults[Succ], ResultRegTypes,
3093 ResultTruncRegTypes, ResultRegDests, ResultRegQualTys,
3094 ResultTypeRequiresCast, ResultRegIsFlagReg);
3095 }
3096 }
3097 }
3098
InitCapturedStruct(const CapturedStmt & S)3099 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
3100 const RecordDecl *RD = S.getCapturedRecordDecl();
3101 QualType RecordTy = getContext().getRecordType(RD);
3102
3103 // Initialize the captured struct.
3104 LValue SlotLV =
3105 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
3106
3107 RecordDecl::field_iterator CurField = RD->field_begin();
3108 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
3109 E = S.capture_init_end();
3110 I != E; ++I, ++CurField) {
3111 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
3112 if (CurField->hasCapturedVLAType()) {
3113 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
3114 } else {
3115 EmitInitializerForField(*CurField, LV, *I);
3116 }
3117 }
3118
3119 return SlotLV;
3120 }
3121
3122 /// Generate an outlined function for the body of a CapturedStmt, store any
3123 /// captured variables into the captured struct, and call the outlined function.
3124 llvm::Function *
EmitCapturedStmt(const CapturedStmt & S,CapturedRegionKind K)3125 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
3126 LValue CapStruct = InitCapturedStruct(S);
3127
3128 // Emit the CapturedDecl
3129 CodeGenFunction CGF(CGM, true);
3130 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
3131 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
3132 delete CGF.CapturedStmtInfo;
3133
3134 // Emit call to the helper function.
3135 EmitCallOrInvoke(F, CapStruct.getPointer(*this));
3136
3137 return F;
3138 }
3139
GenerateCapturedStmtArgument(const CapturedStmt & S)3140 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
3141 LValue CapStruct = InitCapturedStruct(S);
3142 return CapStruct.getAddress();
3143 }
3144
3145 /// Creates the outlined function for a CapturedStmt.
3146 llvm::Function *
GenerateCapturedStmtFunction(const CapturedStmt & S)3147 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
3148 assert(CapturedStmtInfo &&
3149 "CapturedStmtInfo should be set when generating the captured function");
3150 const CapturedDecl *CD = S.getCapturedDecl();
3151 const RecordDecl *RD = S.getCapturedRecordDecl();
3152 SourceLocation Loc = S.getBeginLoc();
3153 assert(CD->hasBody() && "missing CapturedDecl body");
3154
3155 // Build the argument list.
3156 ASTContext &Ctx = CGM.getContext();
3157 FunctionArgList Args;
3158 Args.append(CD->param_begin(), CD->param_end());
3159
3160 // Create the function declaration.
3161 const CGFunctionInfo &FuncInfo =
3162 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
3163 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
3164
3165 llvm::Function *F =
3166 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
3167 CapturedStmtInfo->getHelperName(), &CGM.getModule());
3168 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
3169 if (CD->isNothrow())
3170 F->addFnAttr(llvm::Attribute::NoUnwind);
3171
3172 // Generate the function.
3173 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
3174 CD->getBody()->getBeginLoc());
3175 // Set the context parameter in CapturedStmtInfo.
3176 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
3177 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
3178
3179 // Initialize variable-length arrays.
3180 LValue Base = MakeNaturalAlignRawAddrLValue(
3181 CapturedStmtInfo->getContextValue(), Ctx.getTagDeclType(RD));
3182 for (auto *FD : RD->fields()) {
3183 if (FD->hasCapturedVLAType()) {
3184 auto *ExprArg =
3185 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
3186 .getScalarVal();
3187 auto VAT = FD->getCapturedVLAType();
3188 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
3189 }
3190 }
3191
3192 // If 'this' is captured, load it into CXXThisValue.
3193 if (CapturedStmtInfo->isCXXThisExprCaptured()) {
3194 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
3195 LValue ThisLValue = EmitLValueForField(Base, FD);
3196 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
3197 }
3198
3199 PGO.assignRegionCounters(GlobalDecl(CD), F);
3200 CapturedStmtInfo->EmitBody(*this, CD->getBody());
3201 FinishFunction(CD->getBodyRBrace());
3202
3203 return F;
3204 }
3205
3206 namespace {
3207 // Returns the first convergence entry/loop/anchor instruction found in |BB|.
3208 // std::nullptr otherwise.
getConvergenceToken(llvm::BasicBlock * BB)3209 llvm::IntrinsicInst *getConvergenceToken(llvm::BasicBlock *BB) {
3210 for (auto &I : *BB) {
3211 auto *II = dyn_cast<llvm::IntrinsicInst>(&I);
3212 if (II && llvm::isConvergenceControlIntrinsic(II->getIntrinsicID()))
3213 return II;
3214 }
3215 return nullptr;
3216 }
3217
3218 } // namespace
3219
3220 llvm::CallBase *
addConvergenceControlToken(llvm::CallBase * Input,llvm::Value * ParentToken)3221 CodeGenFunction::addConvergenceControlToken(llvm::CallBase *Input,
3222 llvm::Value *ParentToken) {
3223 llvm::Value *bundleArgs[] = {ParentToken};
3224 llvm::OperandBundleDef OB("convergencectrl", bundleArgs);
3225 auto Output = llvm::CallBase::addOperandBundle(
3226 Input, llvm::LLVMContext::OB_convergencectrl, OB, Input);
3227 Input->replaceAllUsesWith(Output);
3228 Input->eraseFromParent();
3229 return Output;
3230 }
3231
3232 llvm::IntrinsicInst *
emitConvergenceLoopToken(llvm::BasicBlock * BB,llvm::Value * ParentToken)3233 CodeGenFunction::emitConvergenceLoopToken(llvm::BasicBlock *BB,
3234 llvm::Value *ParentToken) {
3235 CGBuilderTy::InsertPoint IP = Builder.saveIP();
3236 if (BB->empty())
3237 Builder.SetInsertPoint(BB);
3238 else
3239 Builder.SetInsertPoint(BB->getFirstInsertionPt());
3240
3241 llvm::CallBase *CB = Builder.CreateIntrinsic(
3242 llvm::Intrinsic::experimental_convergence_loop, {}, {});
3243 Builder.restoreIP(IP);
3244
3245 llvm::CallBase *I = addConvergenceControlToken(CB, ParentToken);
3246 return cast<llvm::IntrinsicInst>(I);
3247 }
3248
3249 llvm::IntrinsicInst *
getOrEmitConvergenceEntryToken(llvm::Function * F)3250 CodeGenFunction::getOrEmitConvergenceEntryToken(llvm::Function *F) {
3251 llvm::BasicBlock *BB = &F->getEntryBlock();
3252 llvm::IntrinsicInst *Token = getConvergenceToken(BB);
3253 if (Token)
3254 return Token;
3255
3256 // Adding a convergence token requires the function to be marked as
3257 // convergent.
3258 F->setConvergent();
3259
3260 CGBuilderTy::InsertPoint IP = Builder.saveIP();
3261 Builder.SetInsertPoint(&BB->front());
3262 llvm::CallBase *I = Builder.CreateIntrinsic(
3263 llvm::Intrinsic::experimental_convergence_entry, {}, {});
3264 assert(isa<llvm::IntrinsicInst>(I));
3265 Builder.restoreIP(IP);
3266
3267 return cast<llvm::IntrinsicInst>(I);
3268 }
3269