1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface. See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors. Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52
53 using namespace llvm;
54
55 namespace {
56
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
assert_with_loc(bool Assertion,const std::string & Str)61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62 if (!Assertion) {
63 if (CurrentRecord)
64 PrintFatalError(CurrentRecord->getLoc(), Str);
65 else
66 PrintFatalError(Str);
67 }
68 }
69
70 enum ClassKind {
71 ClassNone,
72 ClassI, // generic integer instruction, e.g., "i8" suffix
73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74 ClassW, // width-specific instruction, e.g., "8" suffix
75 ClassB, // bitcast arguments with enum argument to specify type
76 ClassL, // Logical instructions which are op instructions
77 // but we need to not emit any suffix for in our
78 // tests.
79 ClassNoTest // Instructions which we do not test since they are
80 // not TRUE instructions.
81 };
82
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins. These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89
90 enum EltType {
91 Int8,
92 Int16,
93 Int32,
94 Int64,
95 Poly8,
96 Poly16,
97 Poly64,
98 Poly128,
99 Float16,
100 Float32,
101 Float64,
102 BFloat16
103 };
104
105 } // end namespace NeonTypeFlags
106
107 class NeonEmitter;
108
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
112
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
115 ///
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
fromTypeSpecs(StringRef Str)119 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120 std::vector<TypeSpec> Ret;
121 TypeSpec Acc;
122 for (char I : Str.str()) {
123 if (islower(I)) {
124 Acc.push_back(I);
125 Ret.push_back(TypeSpec(Acc));
126 Acc.clear();
127 } else {
128 Acc.push_back(I);
129 }
130 }
131 return Ret;
132 }
133 };
134
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
138
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142 TypeSpec TS;
143
144 enum TypeKind {
145 Void,
146 Float,
147 SInt,
148 UInt,
149 Poly,
150 BFloat16,
151 };
152 TypeKind Kind;
153 bool Immediate, Constant, Pointer;
154 // ScalarForMangling and NoManglingQ are really not suited to live here as
155 // they are not related to the type. But they live in the TypeSpec (not the
156 // prototype), so this is really the only place to store them.
157 bool ScalarForMangling, NoManglingQ;
158 unsigned Bitwidth, ElementBitwidth, NumVectors;
159
160 public:
Type()161 Type()
162 : Kind(Void), Immediate(false), Constant(false),
163 Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
165
Type(TypeSpec TS,StringRef CharMods)166 Type(TypeSpec TS, StringRef CharMods)
167 : TS(std::move(TS)), Kind(Void), Immediate(false),
168 Constant(false), Pointer(false), ScalarForMangling(false),
169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170 applyModifiers(CharMods);
171 }
172
173 /// Returns a type representing "void".
getVoid()174 static Type getVoid() { return Type(); }
175
operator ==(const Type & Other) const176 bool operator==(const Type &Other) const { return str() == Other.str(); }
operator !=(const Type & Other) const177 bool operator!=(const Type &Other) const { return !operator==(Other); }
178
179 //
180 // Query functions
181 //
isScalarForMangling() const182 bool isScalarForMangling() const { return ScalarForMangling; }
noManglingQ() const183 bool noManglingQ() const { return NoManglingQ; }
184
isPointer() const185 bool isPointer() const { return Pointer; }
isValue() const186 bool isValue() const { return !isVoid() && !isPointer(); }
isScalar() const187 bool isScalar() const { return isValue() && NumVectors == 0; }
isVector() const188 bool isVector() const { return isValue() && NumVectors > 0; }
isConstPointer() const189 bool isConstPointer() const { return Constant; }
isFloating() const190 bool isFloating() const { return Kind == Float; }
isInteger() const191 bool isInteger() const { return Kind == SInt || Kind == UInt; }
isPoly() const192 bool isPoly() const { return Kind == Poly; }
isSigned() const193 bool isSigned() const { return Kind == SInt; }
isImmediate() const194 bool isImmediate() const { return Immediate; }
isFloat() const195 bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
isDouble() const196 bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
isHalf() const197 bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
isChar() const198 bool isChar() const { return ElementBitwidth == 8; }
isShort() const199 bool isShort() const { return isInteger() && ElementBitwidth == 16; }
isInt() const200 bool isInt() const { return isInteger() && ElementBitwidth == 32; }
isLong() const201 bool isLong() const { return isInteger() && ElementBitwidth == 64; }
isVoid() const202 bool isVoid() const { return Kind == Void; }
isBFloat16() const203 bool isBFloat16() const { return Kind == BFloat16; }
getNumElements() const204 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
getSizeInBits() const205 unsigned getSizeInBits() const { return Bitwidth; }
getElementSizeInBits() const206 unsigned getElementSizeInBits() const { return ElementBitwidth; }
getNumVectors() const207 unsigned getNumVectors() const { return NumVectors; }
208
209 //
210 // Mutator functions
211 //
makeUnsigned()212 void makeUnsigned() {
213 assert(!isVoid() && "not a potentially signed type");
214 Kind = UInt;
215 }
makeSigned()216 void makeSigned() {
217 assert(!isVoid() && "not a potentially signed type");
218 Kind = SInt;
219 }
220
makeInteger(unsigned ElemWidth,bool Sign)221 void makeInteger(unsigned ElemWidth, bool Sign) {
222 assert(!isVoid() && "converting void to int probably not useful");
223 Kind = Sign ? SInt : UInt;
224 Immediate = false;
225 ElementBitwidth = ElemWidth;
226 }
227
makeImmediate(unsigned ElemWidth)228 void makeImmediate(unsigned ElemWidth) {
229 Kind = SInt;
230 Immediate = true;
231 ElementBitwidth = ElemWidth;
232 }
233
makeScalar()234 void makeScalar() {
235 Bitwidth = ElementBitwidth;
236 NumVectors = 0;
237 }
238
makeOneVector()239 void makeOneVector() {
240 assert(isVector());
241 NumVectors = 1;
242 }
243
make32BitElement()244 void make32BitElement() {
245 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246 ElementBitwidth = 32;
247 }
248
doubleLanes()249 void doubleLanes() {
250 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251 Bitwidth = 128;
252 }
253
halveLanes()254 void halveLanes() {
255 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256 Bitwidth = 64;
257 }
258
259 /// Return the C string representation of a type, which is the typename
260 /// defined in stdint.h or arm_neon.h.
261 std::string str() const;
262
263 /// Return the string representation of a type, which is an encoded
264 /// string for passing to the BUILTIN() macro in Builtins.def.
265 std::string builtin_str() const;
266
267 /// Return the value in NeonTypeFlags for this type.
268 unsigned getNeonEnum() const;
269
270 /// Parse a type from a stdint.h or arm_neon.h typedef name,
271 /// for example uint32x2_t or int64_t.
272 static Type fromTypedefName(StringRef Name);
273
274 private:
275 /// Creates the type based on the typespec string in TS.
276 /// Sets "Quad" to true if the "Q" or "H" modifiers were
277 /// seen. This is needed by applyModifier as some modifiers
278 /// only take effect if the type size was changed by "Q" or "H".
279 void applyTypespec(bool &Quad);
280 /// Applies prototype modifiers to the type.
281 void applyModifiers(StringRef Mods);
282 };
283
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
287
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290 Type T;
291 std::string N;
292
293 public:
Variable()294 Variable() : T(Type::getVoid()) {}
Variable(Type T,std::string N)295 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
296
getType() const297 Type getType() const { return T; }
getName() const298 std::string getName() const { return "__" + N; }
299 };
300
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
304
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308 /// The Record this intrinsic was created from.
309 Record *R;
310 /// The unmangled name.
311 std::string Name;
312 /// The input and output typespecs. InTS == OutTS except when
313 /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314 TypeSpec OutTS, InTS;
315 /// The base class kind. Most intrinsics use ClassS, which has full type
316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317 /// signedness (i32), while some (ClassB) have no type at all, only a width
318 /// (32).
319 ClassKind CK;
320 /// The list of DAGs for the body. May be empty, in which case we should
321 /// emit a builtin call.
322 ListInit *Body;
323 /// The architectural ifdef guard.
324 std::string ArchGuard;
325 /// The architectural target() guard.
326 std::string TargetGuard;
327 /// Set if the Unavailable bit is 1. This means we don't generate a body,
328 /// just an "unavailable" attribute on a declaration.
329 bool IsUnavailable;
330 /// Is this intrinsic safe for big-endian? or does it need its arguments
331 /// reversing?
332 bool BigEndianSafe;
333
334 /// The types of return value [0] and parameters [1..].
335 std::vector<Type> Types;
336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337 int PolymorphicKeyType;
338 /// The local variables defined.
339 std::map<std::string, Variable> Variables;
340 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341 bool NeededEarly;
342 /// UseMacro - set if we should implement using a macro or unset for a
343 /// function.
344 bool UseMacro;
345 /// The set of intrinsics that this intrinsic uses/requires.
346 std::set<Intrinsic *> Dependencies;
347 /// The "base type", which is Type('d', OutTS). InBaseType is only
348 /// different if CartesianProductWith is non-empty (for vreinterpret).
349 Type BaseType, InBaseType;
350 /// The return variable.
351 Variable RetVar;
352 /// A postfix to apply to every variable. Defaults to "".
353 std::string VariablePostfix;
354
355 NeonEmitter &Emitter;
356 std::stringstream OS;
357
isBigEndianSafe() const358 bool isBigEndianSafe() const {
359 if (BigEndianSafe)
360 return true;
361
362 for (const auto &T : Types){
363 if (T.isVector() && T.getNumElements() > 1)
364 return false;
365 }
366 return true;
367 }
368
369 public:
Intrinsic(Record * R,StringRef Name,StringRef Proto,TypeSpec OutTS,TypeSpec InTS,ClassKind CK,ListInit * Body,NeonEmitter & Emitter,StringRef ArchGuard,StringRef TargetGuard,bool IsUnavailable,bool BigEndianSafe)370 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372 StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374 ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377 Emitter(Emitter) {
378 // Modify the TypeSpec per-argument to get a concrete Type, and create
379 // known variables for each.
380 // Types[0] is the return value.
381 unsigned Pos = 0;
382 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383 StringRef Mods = getNextModifiers(Proto, Pos);
384 while (!Mods.empty()) {
385 Types.emplace_back(InTS, Mods);
386 if (Mods.contains('!'))
387 PolymorphicKeyType = Types.size() - 1;
388
389 Mods = getNextModifiers(Proto, Pos);
390 }
391
392 for (const auto &Type : Types) {
393 // If this builtin takes an immediate argument, we need to #define it rather
394 // than use a standard declaration, so that SemaChecking can range check
395 // the immediate passed by the user.
396
397 // Pointer arguments need to use macros to avoid hiding aligned attributes
398 // from the pointer type.
399
400 // It is not permitted to pass or return an __fp16 by value, so intrinsics
401 // taking a scalar float16_t must be implemented as macros.
402 if (Type.isImmediate() || Type.isPointer() ||
403 (Type.isScalar() && Type.isHalf()))
404 UseMacro = true;
405 }
406 }
407
408 /// Get the Record that this intrinsic is based off.
getRecord() const409 Record *getRecord() const { return R; }
410 /// Get the set of Intrinsics that this intrinsic calls.
411 /// this is the set of immediate dependencies, NOT the
412 /// transitive closure.
getDependencies() const413 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414 /// Get the architectural guard string (#ifdef).
getArchGuard() const415 std::string getArchGuard() const { return ArchGuard; }
getTargetGuard() const416 std::string getTargetGuard() const { return TargetGuard; }
417 /// Get the non-mangled name.
getName() const418 std::string getName() const { return Name; }
419
420 /// Return true if the intrinsic takes an immediate operand.
hasImmediate() const421 bool hasImmediate() const {
422 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
423 }
424
425 /// Return the parameter index of the immediate operand.
getImmediateIdx() const426 unsigned getImmediateIdx() const {
427 for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428 if (Types[Idx].isImmediate())
429 return Idx - 1;
430 llvm_unreachable("Intrinsic has no immediate");
431 }
432
433
getNumParams() const434 unsigned getNumParams() const { return Types.size() - 1; }
getReturnType() const435 Type getReturnType() const { return Types[0]; }
getParamType(unsigned I) const436 Type getParamType(unsigned I) const { return Types[I + 1]; }
getBaseType() const437 Type getBaseType() const { return BaseType; }
getPolymorphicKeyType() const438 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
439
440 /// Return true if the prototype has a scalar argument.
441 bool protoHasScalar() const;
442
443 /// Return the index that parameter PIndex will sit at
444 /// in a generated function call. This is often just PIndex,
445 /// but may not be as things such as multiple-vector operands
446 /// and sret parameters need to be taken into account.
getGeneratedParamIdx(unsigned PIndex)447 unsigned getGeneratedParamIdx(unsigned PIndex) {
448 unsigned Idx = 0;
449 if (getReturnType().getNumVectors() > 1)
450 // Multiple vectors are passed as sret.
451 ++Idx;
452
453 for (unsigned I = 0; I < PIndex; ++I)
454 Idx += std::max(1U, getParamType(I).getNumVectors());
455
456 return Idx;
457 }
458
hasBody() const459 bool hasBody() const { return Body && !Body->getValues().empty(); }
460
setNeededEarly()461 void setNeededEarly() { NeededEarly = true; }
462
operator <(const Intrinsic & Other) const463 bool operator<(const Intrinsic &Other) const {
464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465 if (ArchGuard != Other.ArchGuard)
466 return ArchGuard < Other.ArchGuard;
467 if (TargetGuard != Other.TargetGuard)
468 return TargetGuard < Other.TargetGuard;
469 return Name < Other.Name;
470 }
471
getClassKind(bool UseClassBIfScalar=false)472 ClassKind getClassKind(bool UseClassBIfScalar = false) {
473 if (UseClassBIfScalar && !protoHasScalar())
474 return ClassB;
475 return CK;
476 }
477
478 /// Return the name, mangled with type information.
479 /// If ForceClassS is true, use ClassS (u32/s32) instead
480 /// of the intrinsic's own type class.
481 std::string getMangledName(bool ForceClassS = false) const;
482 /// Return the type code for a builtin function call.
483 std::string getInstTypeCode(Type T, ClassKind CK) const;
484 /// Return the type string for a BUILTIN() macro in Builtins.def.
485 std::string getBuiltinTypeStr();
486
487 /// Generate the intrinsic, returning code.
488 std::string generate();
489 /// Perform type checking and populate the dependency graph, but
490 /// don't generate code yet.
491 void indexBody();
492
493 private:
494 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
495
496 std::string mangleName(std::string Name, ClassKind CK) const;
497
498 void initVariables();
499 std::string replaceParamsIn(std::string S);
500
501 void emitBodyAsBuiltinCall();
502
503 void generateImpl(bool ReverseArguments,
504 StringRef NamePrefix, StringRef CallPrefix);
505 void emitReturn();
506 void emitBody(StringRef CallPrefix);
507 void emitShadowedArgs();
508 void emitArgumentReversal();
509 void emitReturnVarDecl();
510 void emitReturnReversal();
511 void emitReverseVariable(Variable &Dest, Variable &Src);
512 void emitNewLine();
513 void emitClosingBrace();
514 void emitOpeningBrace();
515 void emitPrototype(StringRef NamePrefix);
516
517 class DagEmitter {
518 Intrinsic &Intr;
519 StringRef CallPrefix;
520
521 public:
DagEmitter(Intrinsic & Intr,StringRef CallPrefix)522 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523 Intr(Intr), CallPrefix(CallPrefix) {
524 }
525 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527 std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528 std::pair<Type, std::string> emitDagDup(DagInit *DI);
529 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530 std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532 std::pair<Type, std::string> emitDagCall(DagInit *DI,
533 bool MatchMangledName);
534 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535 std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536 std::pair<Type, std::string> emitDagOp(DagInit *DI);
537 std::pair<Type, std::string> emitDag(DagInit *DI);
538 };
539 };
540
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
544
545 class NeonEmitter {
546 RecordKeeper &Records;
547 DenseMap<Record *, ClassKind> ClassMap;
548 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549 unsigned UniqueNumber;
550
551 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553 void genStreamingSVECompatibleList(raw_ostream &OS,
554 SmallVectorImpl<Intrinsic *> &Defs);
555 void genOverloadTypeCheckCode(raw_ostream &OS,
556 SmallVectorImpl<Intrinsic *> &Defs);
557 void genIntrinsicRangeCheckCode(raw_ostream &OS,
558 SmallVectorImpl<Intrinsic *> &Defs);
559
560 public:
561 /// Called by Intrinsic - this attempts to get an intrinsic that takes
562 /// the given types as arguments.
563 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
564 std::optional<std::string> MangledName);
565
566 /// Called by Intrinsic - returns a globally-unique number.
getUniqueNumber()567 unsigned getUniqueNumber() { return UniqueNumber++; }
568
NeonEmitter(RecordKeeper & R)569 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
570 Record *SI = R.getClass("SInst");
571 Record *II = R.getClass("IInst");
572 Record *WI = R.getClass("WInst");
573 Record *SOpI = R.getClass("SOpInst");
574 Record *IOpI = R.getClass("IOpInst");
575 Record *WOpI = R.getClass("WOpInst");
576 Record *LOpI = R.getClass("LOpInst");
577 Record *NoTestOpI = R.getClass("NoTestOpInst");
578
579 ClassMap[SI] = ClassS;
580 ClassMap[II] = ClassI;
581 ClassMap[WI] = ClassW;
582 ClassMap[SOpI] = ClassS;
583 ClassMap[IOpI] = ClassI;
584 ClassMap[WOpI] = ClassW;
585 ClassMap[LOpI] = ClassL;
586 ClassMap[NoTestOpI] = ClassNoTest;
587 }
588
589 // Emit arm_neon.h.inc
590 void run(raw_ostream &o);
591
592 // Emit arm_fp16.h.inc
593 void runFP16(raw_ostream &o);
594
595 // Emit arm_bf16.h.inc
596 void runBF16(raw_ostream &o);
597
598 void runVectorTypes(raw_ostream &o);
599
600 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
601 // arm_bf16.h
602 void runHeader(raw_ostream &o);
603 };
604
605 } // end anonymous namespace
606
607 //===----------------------------------------------------------------------===//
608 // Type implementation
609 //===----------------------------------------------------------------------===//
610
str() const611 std::string Type::str() const {
612 if (isVoid())
613 return "void";
614 std::string S;
615
616 if (isInteger() && !isSigned())
617 S += "u";
618
619 if (isPoly())
620 S += "poly";
621 else if (isFloating())
622 S += "float";
623 else if (isBFloat16())
624 S += "bfloat";
625 else
626 S += "int";
627
628 S += utostr(ElementBitwidth);
629 if (isVector())
630 S += "x" + utostr(getNumElements());
631 if (NumVectors > 1)
632 S += "x" + utostr(NumVectors);
633 S += "_t";
634
635 if (Constant)
636 S += " const";
637 if (Pointer)
638 S += " *";
639
640 return S;
641 }
642
builtin_str() const643 std::string Type::builtin_str() const {
644 std::string S;
645 if (isVoid())
646 return "v";
647
648 if (isPointer()) {
649 // All pointers are void pointers.
650 S = "v";
651 if (isConstPointer())
652 S += "C";
653 S += "*";
654 return S;
655 } else if (isInteger())
656 switch (ElementBitwidth) {
657 case 8: S += "c"; break;
658 case 16: S += "s"; break;
659 case 32: S += "i"; break;
660 case 64: S += "Wi"; break;
661 case 128: S += "LLLi"; break;
662 default: llvm_unreachable("Unhandled case!");
663 }
664 else if (isBFloat16()) {
665 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
666 S += "y";
667 } else
668 switch (ElementBitwidth) {
669 case 16: S += "h"; break;
670 case 32: S += "f"; break;
671 case 64: S += "d"; break;
672 default: llvm_unreachable("Unhandled case!");
673 }
674
675 // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
676 if (isChar() && !isPointer() && isSigned())
677 // Make chars explicitly signed.
678 S = "S" + S;
679 else if (isInteger() && !isSigned())
680 S = "U" + S;
681
682 // Constant indices are "int", but have the "constant expression" modifier.
683 if (isImmediate()) {
684 assert(isInteger() && isSigned());
685 S = "I" + S;
686 }
687
688 if (isScalar())
689 return S;
690
691 std::string Ret;
692 for (unsigned I = 0; I < NumVectors; ++I)
693 Ret += "V" + utostr(getNumElements()) + S;
694
695 return Ret;
696 }
697
getNeonEnum() const698 unsigned Type::getNeonEnum() const {
699 unsigned Addend;
700 switch (ElementBitwidth) {
701 case 8: Addend = 0; break;
702 case 16: Addend = 1; break;
703 case 32: Addend = 2; break;
704 case 64: Addend = 3; break;
705 case 128: Addend = 4; break;
706 default: llvm_unreachable("Unhandled element bitwidth!");
707 }
708
709 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
710 if (isPoly()) {
711 // Adjustment needed because Poly32 doesn't exist.
712 if (Addend >= 2)
713 --Addend;
714 Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
715 }
716 if (isFloating()) {
717 assert(Addend != 0 && "Float8 doesn't exist!");
718 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
719 }
720
721 if (isBFloat16()) {
722 assert(Addend == 1 && "BFloat16 is only 16 bit");
723 Base = (unsigned)NeonTypeFlags::BFloat16;
724 }
725
726 if (Bitwidth == 128)
727 Base |= (unsigned)NeonTypeFlags::QuadFlag;
728 if (isInteger() && !isSigned())
729 Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
730
731 return Base;
732 }
733
fromTypedefName(StringRef Name)734 Type Type::fromTypedefName(StringRef Name) {
735 Type T;
736 T.Kind = SInt;
737
738 if (Name.consume_front("u"))
739 T.Kind = UInt;
740
741 if (Name.consume_front("float")) {
742 T.Kind = Float;
743 } else if (Name.consume_front("poly")) {
744 T.Kind = Poly;
745 } else if (Name.consume_front("bfloat")) {
746 T.Kind = BFloat16;
747 } else {
748 assert(Name.starts_with("int"));
749 Name = Name.drop_front(3);
750 }
751
752 unsigned I = 0;
753 for (I = 0; I < Name.size(); ++I) {
754 if (!isdigit(Name[I]))
755 break;
756 }
757 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
758 Name = Name.drop_front(I);
759
760 T.Bitwidth = T.ElementBitwidth;
761 T.NumVectors = 1;
762
763 if (Name.consume_front("x")) {
764 unsigned I = 0;
765 for (I = 0; I < Name.size(); ++I) {
766 if (!isdigit(Name[I]))
767 break;
768 }
769 unsigned NumLanes;
770 Name.substr(0, I).getAsInteger(10, NumLanes);
771 Name = Name.drop_front(I);
772 T.Bitwidth = T.ElementBitwidth * NumLanes;
773 } else {
774 // Was scalar.
775 T.NumVectors = 0;
776 }
777 if (Name.consume_front("x")) {
778 unsigned I = 0;
779 for (I = 0; I < Name.size(); ++I) {
780 if (!isdigit(Name[I]))
781 break;
782 }
783 Name.substr(0, I).getAsInteger(10, T.NumVectors);
784 Name = Name.drop_front(I);
785 }
786
787 assert(Name.starts_with("_t") && "Malformed typedef!");
788 return T;
789 }
790
applyTypespec(bool & Quad)791 void Type::applyTypespec(bool &Quad) {
792 std::string S = TS;
793 ScalarForMangling = false;
794 Kind = SInt;
795 ElementBitwidth = ~0U;
796 NumVectors = 1;
797
798 for (char I : S) {
799 switch (I) {
800 case 'S':
801 ScalarForMangling = true;
802 break;
803 case 'H':
804 NoManglingQ = true;
805 Quad = true;
806 break;
807 case 'Q':
808 Quad = true;
809 break;
810 case 'P':
811 Kind = Poly;
812 break;
813 case 'U':
814 Kind = UInt;
815 break;
816 case 'c':
817 ElementBitwidth = 8;
818 break;
819 case 'h':
820 Kind = Float;
821 [[fallthrough]];
822 case 's':
823 ElementBitwidth = 16;
824 break;
825 case 'f':
826 Kind = Float;
827 [[fallthrough]];
828 case 'i':
829 ElementBitwidth = 32;
830 break;
831 case 'd':
832 Kind = Float;
833 [[fallthrough]];
834 case 'l':
835 ElementBitwidth = 64;
836 break;
837 case 'k':
838 ElementBitwidth = 128;
839 // Poly doesn't have a 128x1 type.
840 if (isPoly())
841 NumVectors = 0;
842 break;
843 case 'b':
844 Kind = BFloat16;
845 ElementBitwidth = 16;
846 break;
847 default:
848 llvm_unreachable("Unhandled type code!");
849 }
850 }
851 assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
852
853 Bitwidth = Quad ? 128 : 64;
854 }
855
applyModifiers(StringRef Mods)856 void Type::applyModifiers(StringRef Mods) {
857 bool AppliedQuad = false;
858 applyTypespec(AppliedQuad);
859
860 for (char Mod : Mods) {
861 switch (Mod) {
862 case '.':
863 break;
864 case 'v':
865 Kind = Void;
866 break;
867 case 'S':
868 Kind = SInt;
869 break;
870 case 'U':
871 Kind = UInt;
872 break;
873 case 'B':
874 Kind = BFloat16;
875 ElementBitwidth = 16;
876 break;
877 case 'F':
878 Kind = Float;
879 break;
880 case 'P':
881 Kind = Poly;
882 break;
883 case '>':
884 assert(ElementBitwidth < 128);
885 ElementBitwidth *= 2;
886 break;
887 case '<':
888 assert(ElementBitwidth > 8);
889 ElementBitwidth /= 2;
890 break;
891 case '1':
892 NumVectors = 0;
893 break;
894 case '2':
895 NumVectors = 2;
896 break;
897 case '3':
898 NumVectors = 3;
899 break;
900 case '4':
901 NumVectors = 4;
902 break;
903 case '*':
904 Pointer = true;
905 break;
906 case 'c':
907 Constant = true;
908 break;
909 case 'Q':
910 Bitwidth = 128;
911 break;
912 case 'q':
913 Bitwidth = 64;
914 break;
915 case 'I':
916 Kind = SInt;
917 ElementBitwidth = Bitwidth = 32;
918 NumVectors = 0;
919 Immediate = true;
920 break;
921 case 'p':
922 if (isPoly())
923 Kind = UInt;
924 break;
925 case '!':
926 // Key type, handled elsewhere.
927 break;
928 default:
929 llvm_unreachable("Unhandled character!");
930 }
931 }
932 }
933
934 //===----------------------------------------------------------------------===//
935 // Intrinsic implementation
936 //===----------------------------------------------------------------------===//
937
getNextModifiers(StringRef Proto,unsigned & Pos) const938 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
939 if (Proto.size() == Pos)
940 return StringRef();
941 else if (Proto[Pos] != '(')
942 return Proto.substr(Pos++, 1);
943
944 size_t Start = Pos + 1;
945 size_t End = Proto.find(')', Start);
946 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
947 Pos = End + 1;
948 return Proto.slice(Start, End);
949 }
950
getInstTypeCode(Type T,ClassKind CK) const951 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
952 char typeCode = '\0';
953 bool printNumber = true;
954
955 if (CK == ClassB && TargetGuard == "neon")
956 return "";
957
958 if (T.isBFloat16())
959 return "bf16";
960
961 if (T.isPoly())
962 typeCode = 'p';
963 else if (T.isInteger())
964 typeCode = T.isSigned() ? 's' : 'u';
965 else
966 typeCode = 'f';
967
968 if (CK == ClassI) {
969 switch (typeCode) {
970 default:
971 break;
972 case 's':
973 case 'u':
974 case 'p':
975 typeCode = 'i';
976 break;
977 }
978 }
979 if (CK == ClassB && TargetGuard == "neon") {
980 typeCode = '\0';
981 }
982
983 std::string S;
984 if (typeCode != '\0')
985 S.push_back(typeCode);
986 if (printNumber)
987 S += utostr(T.getElementSizeInBits());
988
989 return S;
990 }
991
getBuiltinTypeStr()992 std::string Intrinsic::getBuiltinTypeStr() {
993 ClassKind LocalCK = getClassKind(true);
994 std::string S;
995
996 Type RetT = getReturnType();
997 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
998 !RetT.isFloating() && !RetT.isBFloat16())
999 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1000
1001 // Since the return value must be one type, return a vector type of the
1002 // appropriate width which we will bitcast. An exception is made for
1003 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1004 // fashion, storing them to a pointer arg.
1005 if (RetT.getNumVectors() > 1) {
1006 S += "vv*"; // void result with void* first argument
1007 } else {
1008 if (RetT.isPoly())
1009 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1010 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1011 RetT.makeSigned();
1012
1013 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1014 // Cast to vector of 8-bit elements.
1015 RetT.makeInteger(8, true);
1016
1017 S += RetT.builtin_str();
1018 }
1019
1020 for (unsigned I = 0; I < getNumParams(); ++I) {
1021 Type T = getParamType(I);
1022 if (T.isPoly())
1023 T.makeInteger(T.getElementSizeInBits(), false);
1024
1025 if (LocalCK == ClassB && !T.isScalar())
1026 T.makeInteger(8, true);
1027 // Halves always get converted to 8-bit elements.
1028 if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1029 T.makeInteger(8, true);
1030
1031 if (LocalCK == ClassI && T.isInteger())
1032 T.makeSigned();
1033
1034 if (hasImmediate() && getImmediateIdx() == I)
1035 T.makeImmediate(32);
1036
1037 S += T.builtin_str();
1038 }
1039
1040 // Extra constant integer to hold type class enum for this function, e.g. s8
1041 if (LocalCK == ClassB)
1042 S += "i";
1043
1044 return S;
1045 }
1046
getMangledName(bool ForceClassS) const1047 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1048 // Check if the prototype has a scalar operand with the type of the vector
1049 // elements. If not, bitcasting the args will take care of arg checking.
1050 // The actual signedness etc. will be taken care of with special enums.
1051 ClassKind LocalCK = CK;
1052 if (!protoHasScalar())
1053 LocalCK = ClassB;
1054
1055 return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1056 }
1057
mangleName(std::string Name,ClassKind LocalCK) const1058 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1059 std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1060 std::string S = Name;
1061
1062 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1063 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1064 Name == "vcvt_f32_bf16")
1065 return Name;
1066
1067 if (!typeCode.empty()) {
1068 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1069 if (Name.size() >= 3 && isdigit(Name.back()) &&
1070 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1071 S.insert(S.length() - 3, "_" + typeCode);
1072 else
1073 S += "_" + typeCode;
1074 }
1075
1076 if (BaseType != InBaseType) {
1077 // A reinterpret - out the input base type at the end.
1078 S += "_" + getInstTypeCode(InBaseType, LocalCK);
1079 }
1080
1081 if (LocalCK == ClassB && TargetGuard == "neon")
1082 S += "_v";
1083
1084 // Insert a 'q' before the first '_' character so that it ends up before
1085 // _lane or _n on vector-scalar operations.
1086 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1087 size_t Pos = S.find('_');
1088 S.insert(Pos, "q");
1089 }
1090
1091 char Suffix = '\0';
1092 if (BaseType.isScalarForMangling()) {
1093 switch (BaseType.getElementSizeInBits()) {
1094 case 8: Suffix = 'b'; break;
1095 case 16: Suffix = 'h'; break;
1096 case 32: Suffix = 's'; break;
1097 case 64: Suffix = 'd'; break;
1098 default: llvm_unreachable("Bad suffix!");
1099 }
1100 }
1101 if (Suffix != '\0') {
1102 size_t Pos = S.find('_');
1103 S.insert(Pos, &Suffix, 1);
1104 }
1105
1106 return S;
1107 }
1108
replaceParamsIn(std::string S)1109 std::string Intrinsic::replaceParamsIn(std::string S) {
1110 while (S.find('$') != std::string::npos) {
1111 size_t Pos = S.find('$');
1112 size_t End = Pos + 1;
1113 while (isalpha(S[End]))
1114 ++End;
1115
1116 std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1117 assert_with_loc(Variables.find(VarName) != Variables.end(),
1118 "Variable not defined!");
1119 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1120 }
1121
1122 return S;
1123 }
1124
initVariables()1125 void Intrinsic::initVariables() {
1126 Variables.clear();
1127
1128 // Modify the TypeSpec per-argument to get a concrete Type, and create
1129 // known variables for each.
1130 for (unsigned I = 1; I < Types.size(); ++I) {
1131 char NameC = '0' + (I - 1);
1132 std::string Name = "p";
1133 Name.push_back(NameC);
1134
1135 Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1136 }
1137 RetVar = Variable(Types[0], "ret" + VariablePostfix);
1138 }
1139
emitPrototype(StringRef NamePrefix)1140 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1141 if (UseMacro) {
1142 OS << "#define ";
1143 } else {
1144 OS << "__ai ";
1145 if (TargetGuard != "")
1146 OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1147 OS << Types[0].str() << " ";
1148 }
1149
1150 OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1151
1152 for (unsigned I = 0; I < getNumParams(); ++I) {
1153 if (I != 0)
1154 OS << ", ";
1155
1156 char NameC = '0' + I;
1157 std::string Name = "p";
1158 Name.push_back(NameC);
1159 assert(Variables.find(Name) != Variables.end());
1160 Variable &V = Variables[Name];
1161
1162 if (!UseMacro)
1163 OS << V.getType().str() << " ";
1164 OS << V.getName();
1165 }
1166
1167 OS << ")";
1168 }
1169
emitOpeningBrace()1170 void Intrinsic::emitOpeningBrace() {
1171 if (UseMacro)
1172 OS << " __extension__ ({";
1173 else
1174 OS << " {";
1175 emitNewLine();
1176 }
1177
emitClosingBrace()1178 void Intrinsic::emitClosingBrace() {
1179 if (UseMacro)
1180 OS << "})";
1181 else
1182 OS << "}";
1183 }
1184
emitNewLine()1185 void Intrinsic::emitNewLine() {
1186 if (UseMacro)
1187 OS << " \\\n";
1188 else
1189 OS << "\n";
1190 }
1191
emitReverseVariable(Variable & Dest,Variable & Src)1192 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1193 if (Dest.getType().getNumVectors() > 1) {
1194 emitNewLine();
1195
1196 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1197 OS << " " << Dest.getName() << ".val[" << K << "] = "
1198 << "__builtin_shufflevector("
1199 << Src.getName() << ".val[" << K << "], "
1200 << Src.getName() << ".val[" << K << "]";
1201 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1202 OS << ", " << J;
1203 OS << ");";
1204 emitNewLine();
1205 }
1206 } else {
1207 OS << " " << Dest.getName()
1208 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1209 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1210 OS << ", " << J;
1211 OS << ");";
1212 emitNewLine();
1213 }
1214 }
1215
emitArgumentReversal()1216 void Intrinsic::emitArgumentReversal() {
1217 if (isBigEndianSafe())
1218 return;
1219
1220 // Reverse all vector arguments.
1221 for (unsigned I = 0; I < getNumParams(); ++I) {
1222 std::string Name = "p" + utostr(I);
1223 std::string NewName = "rev" + utostr(I);
1224
1225 Variable &V = Variables[Name];
1226 Variable NewV(V.getType(), NewName + VariablePostfix);
1227
1228 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1229 continue;
1230
1231 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
1232 emitReverseVariable(NewV, V);
1233 V = NewV;
1234 }
1235 }
1236
emitReturnVarDecl()1237 void Intrinsic::emitReturnVarDecl() {
1238 assert(RetVar.getType() == Types[0]);
1239 // Create a return variable, if we're not void.
1240 if (!RetVar.getType().isVoid()) {
1241 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1242 emitNewLine();
1243 }
1244 }
1245
emitReturnReversal()1246 void Intrinsic::emitReturnReversal() {
1247 if (isBigEndianSafe())
1248 return;
1249 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1250 getReturnType().getNumElements() == 1)
1251 return;
1252 emitReverseVariable(RetVar, RetVar);
1253 }
1254
emitShadowedArgs()1255 void Intrinsic::emitShadowedArgs() {
1256 // Macro arguments are not type-checked like inline function arguments,
1257 // so assign them to local temporaries to get the right type checking.
1258 if (!UseMacro)
1259 return;
1260
1261 for (unsigned I = 0; I < getNumParams(); ++I) {
1262 // Do not create a temporary for an immediate argument.
1263 // That would defeat the whole point of using a macro!
1264 if (getParamType(I).isImmediate())
1265 continue;
1266 // Do not create a temporary for pointer arguments. The input
1267 // pointer may have an alignment hint.
1268 if (getParamType(I).isPointer())
1269 continue;
1270
1271 std::string Name = "p" + utostr(I);
1272
1273 assert(Variables.find(Name) != Variables.end());
1274 Variable &V = Variables[Name];
1275
1276 std::string NewName = "s" + utostr(I);
1277 Variable V2(V.getType(), NewName + VariablePostfix);
1278
1279 OS << " " << V2.getType().str() << " " << V2.getName() << " = "
1280 << V.getName() << ";";
1281 emitNewLine();
1282
1283 V = V2;
1284 }
1285 }
1286
protoHasScalar() const1287 bool Intrinsic::protoHasScalar() const {
1288 return llvm::any_of(
1289 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1290 }
1291
emitBodyAsBuiltinCall()1292 void Intrinsic::emitBodyAsBuiltinCall() {
1293 std::string S;
1294
1295 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1296 // sret-like argument.
1297 bool SRet = getReturnType().getNumVectors() >= 2;
1298
1299 StringRef N = Name;
1300 ClassKind LocalCK = CK;
1301 if (!protoHasScalar())
1302 LocalCK = ClassB;
1303
1304 if (!getReturnType().isVoid() && !SRet)
1305 S += "(" + RetVar.getType().str() + ") ";
1306
1307 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1308
1309 if (SRet)
1310 S += "&" + RetVar.getName() + ", ";
1311
1312 for (unsigned I = 0; I < getNumParams(); ++I) {
1313 Variable &V = Variables["p" + utostr(I)];
1314 Type T = V.getType();
1315
1316 // Handle multiple-vector values specially, emitting each subvector as an
1317 // argument to the builtin.
1318 if (T.getNumVectors() > 1) {
1319 // Check if an explicit cast is needed.
1320 std::string Cast;
1321 if (LocalCK == ClassB) {
1322 Type T2 = T;
1323 T2.makeOneVector();
1324 T2.makeInteger(8, /*Sign=*/true);
1325 Cast = "(" + T2.str() + ")";
1326 }
1327
1328 for (unsigned J = 0; J < T.getNumVectors(); ++J)
1329 S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1330 continue;
1331 }
1332
1333 std::string Arg = V.getName();
1334 Type CastToType = T;
1335
1336 // Check if an explicit cast is needed.
1337 if (CastToType.isVector() &&
1338 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1339 CastToType.makeInteger(8, true);
1340 Arg = "(" + CastToType.str() + ")" + Arg;
1341 } else if (CastToType.isVector() && LocalCK == ClassI) {
1342 if (CastToType.isInteger())
1343 CastToType.makeSigned();
1344 Arg = "(" + CastToType.str() + ")" + Arg;
1345 }
1346
1347 S += Arg + ", ";
1348 }
1349
1350 // Extra constant integer to hold type class enum for this function, e.g. s8
1351 if (getClassKind(true) == ClassB) {
1352 S += utostr(getPolymorphicKeyType().getNeonEnum());
1353 } else {
1354 // Remove extraneous ", ".
1355 S.pop_back();
1356 S.pop_back();
1357 }
1358 S += ");";
1359
1360 std::string RetExpr;
1361 if (!SRet && !RetVar.getType().isVoid())
1362 RetExpr = RetVar.getName() + " = ";
1363
1364 OS << " " << RetExpr << S;
1365 emitNewLine();
1366 }
1367
emitBody(StringRef CallPrefix)1368 void Intrinsic::emitBody(StringRef CallPrefix) {
1369 std::vector<std::string> Lines;
1370
1371 if (!Body || Body->getValues().empty()) {
1372 // Nothing specific to output - must output a builtin.
1373 emitBodyAsBuiltinCall();
1374 return;
1375 }
1376
1377 // We have a list of "things to output". The last should be returned.
1378 for (auto *I : Body->getValues()) {
1379 if (StringInit *SI = dyn_cast<StringInit>(I)) {
1380 Lines.push_back(replaceParamsIn(SI->getAsString()));
1381 } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1382 DagEmitter DE(*this, CallPrefix);
1383 Lines.push_back(DE.emitDag(DI).second + ";");
1384 }
1385 }
1386
1387 assert(!Lines.empty() && "Empty def?");
1388 if (!RetVar.getType().isVoid())
1389 Lines.back().insert(0, RetVar.getName() + " = ");
1390
1391 for (auto &L : Lines) {
1392 OS << " " << L;
1393 emitNewLine();
1394 }
1395 }
1396
emitReturn()1397 void Intrinsic::emitReturn() {
1398 if (RetVar.getType().isVoid())
1399 return;
1400 if (UseMacro)
1401 OS << " " << RetVar.getName() << ";";
1402 else
1403 OS << " return " << RetVar.getName() << ";";
1404 emitNewLine();
1405 }
1406
emitDag(DagInit * DI)1407 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1408 // At this point we should only be seeing a def.
1409 DefInit *DefI = cast<DefInit>(DI->getOperator());
1410 std::string Op = DefI->getAsString();
1411
1412 if (Op == "cast" || Op == "bitcast")
1413 return emitDagCast(DI, Op == "bitcast");
1414 if (Op == "shuffle")
1415 return emitDagShuffle(DI);
1416 if (Op == "dup")
1417 return emitDagDup(DI);
1418 if (Op == "dup_typed")
1419 return emitDagDupTyped(DI);
1420 if (Op == "splat")
1421 return emitDagSplat(DI);
1422 if (Op == "save_temp")
1423 return emitDagSaveTemp(DI);
1424 if (Op == "op")
1425 return emitDagOp(DI);
1426 if (Op == "call" || Op == "call_mangled")
1427 return emitDagCall(DI, Op == "call_mangled");
1428 if (Op == "name_replace")
1429 return emitDagNameReplace(DI);
1430 if (Op == "literal")
1431 return emitDagLiteral(DI);
1432 assert_with_loc(false, "Unknown operation!");
1433 return std::make_pair(Type::getVoid(), "");
1434 }
1435
emitDagOp(DagInit * DI)1436 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1437 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1438 if (DI->getNumArgs() == 2) {
1439 // Unary op.
1440 std::pair<Type, std::string> R =
1441 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1442 return std::make_pair(R.first, Op + R.second);
1443 } else {
1444 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1445 std::pair<Type, std::string> R1 =
1446 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1447 std::pair<Type, std::string> R2 =
1448 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1449 assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1450 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1451 }
1452 }
1453
1454 std::pair<Type, std::string>
emitDagCall(DagInit * DI,bool MatchMangledName)1455 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1456 std::vector<Type> Types;
1457 std::vector<std::string> Values;
1458 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1459 std::pair<Type, std::string> R =
1460 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1461 Types.push_back(R.first);
1462 Values.push_back(R.second);
1463 }
1464
1465 // Look up the called intrinsic.
1466 std::string N;
1467 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1468 N = SI->getAsUnquotedString();
1469 else
1470 N = emitDagArg(DI->getArg(0), "").second;
1471 std::optional<std::string> MangledName;
1472 if (MatchMangledName) {
1473 if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1474 N += "q";
1475 MangledName = Intr.mangleName(N, ClassS);
1476 }
1477 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1478
1479 // Make sure the callee is known as an early def.
1480 Callee.setNeededEarly();
1481 Intr.Dependencies.insert(&Callee);
1482
1483 // Now create the call itself.
1484 std::string S;
1485 if (!Callee.isBigEndianSafe())
1486 S += CallPrefix.str();
1487 S += Callee.getMangledName(true) + "(";
1488 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1489 if (I != 0)
1490 S += ", ";
1491 S += Values[I];
1492 }
1493 S += ")";
1494
1495 return std::make_pair(Callee.getReturnType(), S);
1496 }
1497
emitDagCast(DagInit * DI,bool IsBitCast)1498 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1499 bool IsBitCast){
1500 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1501 std::pair<Type, std::string> R =
1502 emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1503 std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1504 Type castToType = R.first;
1505 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1506
1507 // MOD can take several forms:
1508 // 1. $X - take the type of parameter / variable X.
1509 // 2. The value "R" - take the type of the return type.
1510 // 3. a type string
1511 // 4. The value "U" or "S" to switch the signedness.
1512 // 5. The value "H" or "D" to half or double the bitwidth.
1513 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1514 if (!DI->getArgNameStr(ArgIdx).empty()) {
1515 assert_with_loc(Intr.Variables.find(std::string(
1516 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1517 "Variable not found");
1518 castToType =
1519 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1520 } else {
1521 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1522 assert_with_loc(SI, "Expected string type or $Name for cast type");
1523
1524 if (SI->getAsUnquotedString() == "R") {
1525 castToType = Intr.getReturnType();
1526 } else if (SI->getAsUnquotedString() == "U") {
1527 castToType.makeUnsigned();
1528 } else if (SI->getAsUnquotedString() == "S") {
1529 castToType.makeSigned();
1530 } else if (SI->getAsUnquotedString() == "H") {
1531 castToType.halveLanes();
1532 } else if (SI->getAsUnquotedString() == "D") {
1533 castToType.doubleLanes();
1534 } else if (SI->getAsUnquotedString() == "8") {
1535 castToType.makeInteger(8, true);
1536 } else if (SI->getAsUnquotedString() == "32") {
1537 castToType.make32BitElement();
1538 } else {
1539 castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1540 assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1541 }
1542 }
1543 }
1544
1545 std::string S;
1546 if (IsBitCast) {
1547 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1548 // a temporary.
1549 std::string N = "reint";
1550 unsigned I = 0;
1551 while (Intr.Variables.find(N) != Intr.Variables.end())
1552 N = "reint" + utostr(++I);
1553 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1554
1555 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1556 << R.second << ";";
1557 Intr.emitNewLine();
1558
1559 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1560 } else {
1561 // Emit a normal (static) cast.
1562 S = "(" + castToType.str() + ")(" + R.second + ")";
1563 }
1564
1565 return std::make_pair(castToType, S);
1566 }
1567
emitDagShuffle(DagInit * DI)1568 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1569 // See the documentation in arm_neon.td for a description of these operators.
1570 class LowHalf : public SetTheory::Operator {
1571 public:
1572 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1573 ArrayRef<SMLoc> Loc) override {
1574 SetTheory::RecSet Elts2;
1575 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1576 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1577 }
1578 };
1579
1580 class HighHalf : public SetTheory::Operator {
1581 public:
1582 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1583 ArrayRef<SMLoc> Loc) override {
1584 SetTheory::RecSet Elts2;
1585 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1586 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1587 }
1588 };
1589
1590 class Rev : public SetTheory::Operator {
1591 unsigned ElementSize;
1592
1593 public:
1594 Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1595
1596 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1597 ArrayRef<SMLoc> Loc) override {
1598 SetTheory::RecSet Elts2;
1599 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1600
1601 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1602 VectorSize /= ElementSize;
1603
1604 std::vector<Record *> Revved;
1605 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1606 for (int LI = VectorSize - 1; LI >= 0; --LI) {
1607 Revved.push_back(Elts2[VI + LI]);
1608 }
1609 }
1610
1611 Elts.insert(Revved.begin(), Revved.end());
1612 }
1613 };
1614
1615 class MaskExpander : public SetTheory::Expander {
1616 unsigned N;
1617
1618 public:
1619 MaskExpander(unsigned N) : N(N) {}
1620
1621 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1622 unsigned Addend = 0;
1623 if (R->getName() == "mask0")
1624 Addend = 0;
1625 else if (R->getName() == "mask1")
1626 Addend = N;
1627 else
1628 return;
1629 for (unsigned I = 0; I < N; ++I)
1630 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1631 }
1632 };
1633
1634 // (shuffle arg1, arg2, sequence)
1635 std::pair<Type, std::string> Arg1 =
1636 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1637 std::pair<Type, std::string> Arg2 =
1638 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1639 assert_with_loc(Arg1.first == Arg2.first,
1640 "Different types in arguments to shuffle!");
1641
1642 SetTheory ST;
1643 SetTheory::RecSet Elts;
1644 ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1645 ST.addOperator("highhalf", std::make_unique<HighHalf>());
1646 ST.addOperator("rev",
1647 std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1648 ST.addExpander("MaskExpand",
1649 std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1650 ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1651
1652 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1653 for (auto &E : Elts) {
1654 StringRef Name = E->getName();
1655 assert_with_loc(Name.starts_with("sv"),
1656 "Incorrect element kind in shuffle mask!");
1657 S += ", " + Name.drop_front(2).str();
1658 }
1659 S += ")";
1660
1661 // Recalculate the return type - the shuffle may have halved or doubled it.
1662 Type T(Arg1.first);
1663 if (Elts.size() > T.getNumElements()) {
1664 assert_with_loc(
1665 Elts.size() == T.getNumElements() * 2,
1666 "Can only double or half the number of elements in a shuffle!");
1667 T.doubleLanes();
1668 } else if (Elts.size() < T.getNumElements()) {
1669 assert_with_loc(
1670 Elts.size() == T.getNumElements() / 2,
1671 "Can only double or half the number of elements in a shuffle!");
1672 T.halveLanes();
1673 }
1674
1675 return std::make_pair(T, S);
1676 }
1677
emitDagDup(DagInit * DI)1678 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1679 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1680 std::pair<Type, std::string> A =
1681 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1682 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1683
1684 Type T = Intr.getBaseType();
1685 assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1686 std::string S = "(" + T.str() + ") {";
1687 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1688 if (I != 0)
1689 S += ", ";
1690 S += A.second;
1691 }
1692 S += "}";
1693
1694 return std::make_pair(T, S);
1695 }
1696
emitDagDupTyped(DagInit * DI)1697 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1698 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1699 std::pair<Type, std::string> B =
1700 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1701 assert_with_loc(B.first.isScalar(),
1702 "dup_typed() requires a scalar as the second argument");
1703 Type T;
1704 // If the type argument is a constant string, construct the type directly.
1705 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1706 T = Type::fromTypedefName(SI->getAsUnquotedString());
1707 assert_with_loc(!T.isVoid(), "Unknown typedef");
1708 } else
1709 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1710
1711 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1712 std::string S = "(" + T.str() + ") {";
1713 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1714 if (I != 0)
1715 S += ", ";
1716 S += B.second;
1717 }
1718 S += "}";
1719
1720 return std::make_pair(T, S);
1721 }
1722
emitDagSplat(DagInit * DI)1723 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1724 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1725 std::pair<Type, std::string> A =
1726 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1727 std::pair<Type, std::string> B =
1728 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1729
1730 assert_with_loc(B.first.isScalar(),
1731 "splat() requires a scalar int as the second argument");
1732
1733 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1734 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1735 S += ", " + B.second;
1736 }
1737 S += ")";
1738
1739 return std::make_pair(Intr.getBaseType(), S);
1740 }
1741
emitDagSaveTemp(DagInit * DI)1742 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1743 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1744 std::pair<Type, std::string> A =
1745 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1746
1747 assert_with_loc(!A.first.isVoid(),
1748 "Argument to save_temp() must have non-void type!");
1749
1750 std::string N = std::string(DI->getArgNameStr(0));
1751 assert_with_loc(!N.empty(),
1752 "save_temp() expects a name as the first argument");
1753
1754 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1755 "Variable already defined!");
1756 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1757
1758 std::string S =
1759 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1760
1761 return std::make_pair(Type::getVoid(), S);
1762 }
1763
1764 std::pair<Type, std::string>
emitDagNameReplace(DagInit * DI)1765 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1766 std::string S = Intr.Name;
1767
1768 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1769 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1770 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1771
1772 size_t Idx = S.find(ToReplace);
1773
1774 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1775 S.replace(Idx, ToReplace.size(), ReplaceWith);
1776
1777 return std::make_pair(Type::getVoid(), S);
1778 }
1779
emitDagLiteral(DagInit * DI)1780 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1781 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1782 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1783 return std::make_pair(Type::fromTypedefName(Ty), Value);
1784 }
1785
1786 std::pair<Type, std::string>
emitDagArg(Init * Arg,std::string ArgName)1787 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1788 if (!ArgName.empty()) {
1789 assert_with_loc(!Arg->isComplete(),
1790 "Arguments must either be DAGs or names, not both!");
1791 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1792 "Variable not defined!");
1793 Variable &V = Intr.Variables[ArgName];
1794 return std::make_pair(V.getType(), V.getName());
1795 }
1796
1797 assert(Arg && "Neither ArgName nor Arg?!");
1798 DagInit *DI = dyn_cast<DagInit>(Arg);
1799 assert_with_loc(DI, "Arguments must either be DAGs or names!");
1800
1801 return emitDag(DI);
1802 }
1803
generate()1804 std::string Intrinsic::generate() {
1805 // Avoid duplicated code for big and little endian
1806 if (isBigEndianSafe()) {
1807 generateImpl(false, "", "");
1808 return OS.str();
1809 }
1810 // Little endian intrinsics are simple and don't require any argument
1811 // swapping.
1812 OS << "#ifdef __LITTLE_ENDIAN__\n";
1813
1814 generateImpl(false, "", "");
1815
1816 OS << "#else\n";
1817
1818 // Big endian intrinsics are more complex. The user intended these
1819 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1820 // but we load as-if (V)LD1. So we should swap all arguments and
1821 // swap the return value too.
1822 //
1823 // If we call sub-intrinsics, we should call a version that does
1824 // not re-swap the arguments!
1825 generateImpl(true, "", "__noswap_");
1826
1827 // If we're needed early, create a non-swapping variant for
1828 // big-endian.
1829 if (NeededEarly) {
1830 generateImpl(false, "__noswap_", "__noswap_");
1831 }
1832 OS << "#endif\n\n";
1833
1834 return OS.str();
1835 }
1836
generateImpl(bool ReverseArguments,StringRef NamePrefix,StringRef CallPrefix)1837 void Intrinsic::generateImpl(bool ReverseArguments,
1838 StringRef NamePrefix, StringRef CallPrefix) {
1839 CurrentRecord = R;
1840
1841 // If we call a macro, our local variables may be corrupted due to
1842 // lack of proper lexical scoping. So, add a globally unique postfix
1843 // to every variable.
1844 //
1845 // indexBody() should have set up the Dependencies set by now.
1846 for (auto *I : Dependencies)
1847 if (I->UseMacro) {
1848 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1849 break;
1850 }
1851
1852 initVariables();
1853
1854 emitPrototype(NamePrefix);
1855
1856 if (IsUnavailable) {
1857 OS << " __attribute__((unavailable));";
1858 } else {
1859 emitOpeningBrace();
1860 // Emit return variable declaration first as to not trigger
1861 // -Wdeclaration-after-statement.
1862 emitReturnVarDecl();
1863 emitShadowedArgs();
1864 if (ReverseArguments)
1865 emitArgumentReversal();
1866 emitBody(CallPrefix);
1867 if (ReverseArguments)
1868 emitReturnReversal();
1869 emitReturn();
1870 emitClosingBrace();
1871 }
1872 OS << "\n";
1873
1874 CurrentRecord = nullptr;
1875 }
1876
indexBody()1877 void Intrinsic::indexBody() {
1878 CurrentRecord = R;
1879
1880 initVariables();
1881 // Emit return variable declaration first as to not trigger
1882 // -Wdeclaration-after-statement.
1883 emitReturnVarDecl();
1884 emitBody("");
1885 OS.str("");
1886
1887 CurrentRecord = nullptr;
1888 }
1889
1890 //===----------------------------------------------------------------------===//
1891 // NeonEmitter implementation
1892 //===----------------------------------------------------------------------===//
1893
getIntrinsic(StringRef Name,ArrayRef<Type> Types,std::optional<std::string> MangledName)1894 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1895 std::optional<std::string> MangledName) {
1896 // First, look up the name in the intrinsic map.
1897 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1898 ("Intrinsic '" + Name + "' not found!").str());
1899 auto &V = IntrinsicMap.find(Name.str())->second;
1900 std::vector<Intrinsic *> GoodVec;
1901
1902 // Create a string to print if we end up failing.
1903 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1904 for (unsigned I = 0; I < Types.size(); ++I) {
1905 if (I != 0)
1906 ErrMsg += ", ";
1907 ErrMsg += Types[I].str();
1908 }
1909 ErrMsg += ")'\n";
1910 ErrMsg += "Available overloads:\n";
1911
1912 // Now, look through each intrinsic implementation and see if the types are
1913 // compatible.
1914 for (auto &I : V) {
1915 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
1916 ErrMsg += "(";
1917 for (unsigned A = 0; A < I.getNumParams(); ++A) {
1918 if (A != 0)
1919 ErrMsg += ", ";
1920 ErrMsg += I.getParamType(A).str();
1921 }
1922 ErrMsg += ")\n";
1923
1924 if (MangledName && MangledName != I.getMangledName(true))
1925 continue;
1926
1927 if (I.getNumParams() != Types.size())
1928 continue;
1929
1930 unsigned ArgNum = 0;
1931 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1932 return Type == I.getParamType(ArgNum++);
1933 });
1934
1935 if (MatchingArgumentTypes)
1936 GoodVec.push_back(&I);
1937 }
1938
1939 assert_with_loc(!GoodVec.empty(),
1940 "No compatible intrinsic found - " + ErrMsg);
1941 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1942
1943 return *GoodVec.front();
1944 }
1945
createIntrinsic(Record * R,SmallVectorImpl<Intrinsic * > & Out)1946 void NeonEmitter::createIntrinsic(Record *R,
1947 SmallVectorImpl<Intrinsic *> &Out) {
1948 std::string Name = std::string(R->getValueAsString("Name"));
1949 std::string Proto = std::string(R->getValueAsString("Prototype"));
1950 std::string Types = std::string(R->getValueAsString("Types"));
1951 Record *OperationRec = R->getValueAsDef("Operation");
1952 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
1953 std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1954 std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1955 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1956 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1957
1958 // Set the global current record. This allows assert_with_loc to produce
1959 // decent location information even when highly nested.
1960 CurrentRecord = R;
1961
1962 ListInit *Body = OperationRec->getValueAsListInit("Ops");
1963
1964 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1965
1966 ClassKind CK = ClassNone;
1967 if (R->getSuperClasses().size() >= 2)
1968 CK = ClassMap[R->getSuperClasses()[1].first];
1969
1970 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1971 if (!CartesianProductWith.empty()) {
1972 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1973 for (auto TS : TypeSpecs) {
1974 Type DefaultT(TS, ".");
1975 for (auto SrcTS : ProductTypeSpecs) {
1976 Type DefaultSrcT(SrcTS, ".");
1977 if (TS == SrcTS ||
1978 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1979 continue;
1980 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1981 }
1982 }
1983 } else {
1984 for (auto TS : TypeSpecs) {
1985 NewTypeSpecs.push_back(std::make_pair(TS, TS));
1986 }
1987 }
1988
1989 llvm::sort(NewTypeSpecs);
1990 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1991 NewTypeSpecs.end());
1992 auto &Entry = IntrinsicMap[Name];
1993
1994 for (auto &I : NewTypeSpecs) {
1995 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1996 ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
1997 Out.push_back(&Entry.back());
1998 }
1999
2000 CurrentRecord = nullptr;
2001 }
2002
2003 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
2004 /// declaration of builtins, checking for unique builtin declarations.
genBuiltinsDef(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2005 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2006 SmallVectorImpl<Intrinsic *> &Defs) {
2007 OS << "#ifdef GET_NEON_BUILTINS\n";
2008
2009 // We only want to emit a builtin once, and we want to emit them in
2010 // alphabetical order, so use a std::set.
2011 std::set<std::pair<std::string, std::string>> Builtins;
2012
2013 for (auto *Def : Defs) {
2014 if (Def->hasBody())
2015 continue;
2016
2017 std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2018 S += Def->getBuiltinTypeStr();
2019 S += "\", \"n\"";
2020
2021 Builtins.emplace(S, Def->getTargetGuard());
2022 }
2023
2024 for (auto &S : Builtins) {
2025 if (S.second == "")
2026 OS << "BUILTIN(";
2027 else
2028 OS << "TARGET_BUILTIN(";
2029 OS << S.first;
2030 if (S.second == "")
2031 OS << ")\n";
2032 else
2033 OS << ", \"" << S.second << "\")\n";
2034 }
2035
2036 OS << "#endif\n\n";
2037 }
2038
genStreamingSVECompatibleList(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2039 void NeonEmitter::genStreamingSVECompatibleList(
2040 raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) {
2041 OS << "#ifdef GET_NEON_STREAMING_COMPAT_FLAG\n";
2042
2043 std::set<std::string> Emitted;
2044 for (auto *Def : Defs) {
2045 // If the def has a body (that is, it has Operation DAGs), it won't call
2046 // __builtin_neon_* so we don't need to generate a definition for it.
2047 if (Def->hasBody())
2048 continue;
2049
2050 std::string Name = Def->getMangledName();
2051 if (Emitted.find(Name) != Emitted.end())
2052 continue;
2053
2054 // FIXME: We should make exceptions here for some NEON builtins that are
2055 // permitted in streaming mode.
2056 OS << "case NEON::BI__builtin_neon_" << Name
2057 << ": BuiltinType = ArmNonStreaming; break;\n";
2058 Emitted.insert(Name);
2059 }
2060 OS << "#endif\n\n";
2061 }
2062
2063 /// Generate the ARM and AArch64 overloaded type checking code for
2064 /// SemaChecking.cpp, checking for unique builtin declarations.
genOverloadTypeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2065 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2066 SmallVectorImpl<Intrinsic *> &Defs) {
2067 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2068
2069 // We record each overload check line before emitting because subsequent Inst
2070 // definitions may extend the number of permitted types (i.e. augment the
2071 // Mask). Use std::map to avoid sorting the table by hash number.
2072 struct OverloadInfo {
2073 uint64_t Mask = 0ULL;
2074 int PtrArgNum = 0;
2075 bool HasConstPtr = false;
2076 OverloadInfo() = default;
2077 };
2078 std::map<std::string, OverloadInfo> OverloadMap;
2079
2080 for (auto *Def : Defs) {
2081 // If the def has a body (that is, it has Operation DAGs), it won't call
2082 // __builtin_neon_* so we don't need to generate a definition for it.
2083 if (Def->hasBody())
2084 continue;
2085 // Functions which have a scalar argument cannot be overloaded, no need to
2086 // check them if we are emitting the type checking code.
2087 if (Def->protoHasScalar())
2088 continue;
2089
2090 uint64_t Mask = 0ULL;
2091 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2092
2093 // Check if the function has a pointer or const pointer argument.
2094 int PtrArgNum = -1;
2095 bool HasConstPtr = false;
2096 for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2097 const auto &Type = Def->getParamType(I);
2098 if (Type.isPointer()) {
2099 PtrArgNum = I;
2100 HasConstPtr = Type.isConstPointer();
2101 }
2102 }
2103
2104 // For sret builtins, adjust the pointer argument index.
2105 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2106 PtrArgNum += 1;
2107
2108 std::string Name = Def->getName();
2109 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2110 // vst1_lane, vldap1_lane, and vstl1_lane intrinsics. Using a pointer to
2111 // the vector element type with one of those operations causes codegen to
2112 // select an aligned load/store instruction. If you want an unaligned
2113 // operation, the pointer argument needs to have less alignment than element
2114 // type, so just accept any pointer type.
2115 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" ||
2116 Name == "vldap1_lane" || Name == "vstl1_lane") {
2117 PtrArgNum = -1;
2118 HasConstPtr = false;
2119 }
2120
2121 if (Mask) {
2122 std::string Name = Def->getMangledName();
2123 OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2124 OverloadInfo &OI = OverloadMap[Name];
2125 OI.Mask |= Mask;
2126 OI.PtrArgNum |= PtrArgNum;
2127 OI.HasConstPtr = HasConstPtr;
2128 }
2129 }
2130
2131 for (auto &I : OverloadMap) {
2132 OverloadInfo &OI = I.second;
2133
2134 OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2135 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2136 if (OI.PtrArgNum >= 0)
2137 OS << "; PtrArgNum = " << OI.PtrArgNum;
2138 if (OI.HasConstPtr)
2139 OS << "; HasConstPtr = true";
2140 OS << "; break;\n";
2141 }
2142 OS << "#endif\n\n";
2143 }
2144
genIntrinsicRangeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2145 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2146 SmallVectorImpl<Intrinsic *> &Defs) {
2147 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2148
2149 std::set<std::string> Emitted;
2150
2151 for (auto *Def : Defs) {
2152 if (Def->hasBody())
2153 continue;
2154 // Functions which do not have an immediate do not need to have range
2155 // checking code emitted.
2156 if (!Def->hasImmediate())
2157 continue;
2158 if (Emitted.find(Def->getMangledName()) != Emitted.end())
2159 continue;
2160
2161 std::string LowerBound, UpperBound;
2162
2163 Record *R = Def->getRecord();
2164 if (R->getValueAsBit("isVXAR")) {
2165 //VXAR takes an immediate in the range [0, 63]
2166 LowerBound = "0";
2167 UpperBound = "63";
2168 } else if (R->getValueAsBit("isVCVT_N")) {
2169 // VCVT between floating- and fixed-point values takes an immediate
2170 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2171 LowerBound = "1";
2172 if (Def->getBaseType().getElementSizeInBits() == 16 ||
2173 Def->getName().find('h') != std::string::npos)
2174 // VCVTh operating on FP16 intrinsics in range [1, 16)
2175 UpperBound = "15";
2176 else if (Def->getBaseType().getElementSizeInBits() == 32)
2177 UpperBound = "31";
2178 else
2179 UpperBound = "63";
2180 } else if (R->getValueAsBit("isScalarShift")) {
2181 // Right shifts have an 'r' in the name, left shifts do not. Convert
2182 // instructions have the same bounds and right shifts.
2183 if (Def->getName().find('r') != std::string::npos ||
2184 Def->getName().find("cvt") != std::string::npos)
2185 LowerBound = "1";
2186
2187 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2188 } else if (R->getValueAsBit("isShift")) {
2189 // Builtins which are overloaded by type will need to have their upper
2190 // bound computed at Sema time based on the type constant.
2191
2192 // Right shifts have an 'r' in the name, left shifts do not.
2193 if (Def->getName().find('r') != std::string::npos)
2194 LowerBound = "1";
2195 UpperBound = "RFT(TV, true)";
2196 } else if (Def->getClassKind(true) == ClassB) {
2197 // ClassB intrinsics have a type (and hence lane number) that is only
2198 // known at runtime.
2199 if (R->getValueAsBit("isLaneQ"))
2200 UpperBound = "RFT(TV, false, true)";
2201 else
2202 UpperBound = "RFT(TV, false, false)";
2203 } else {
2204 // The immediate generally refers to a lane in the preceding argument.
2205 assert(Def->getImmediateIdx() > 0);
2206 Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2207 UpperBound = utostr(T.getNumElements() - 1);
2208 }
2209
2210 // Calculate the index of the immediate that should be range checked.
2211 unsigned Idx = Def->getNumParams();
2212 if (Def->hasImmediate())
2213 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2214
2215 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2216 << "i = " << Idx << ";";
2217 if (!LowerBound.empty())
2218 OS << " l = " << LowerBound << ";";
2219 if (!UpperBound.empty())
2220 OS << " u = " << UpperBound << ";";
2221 OS << " break;\n";
2222
2223 Emitted.insert(Def->getMangledName());
2224 }
2225
2226 OS << "#endif\n\n";
2227 }
2228
2229 /// runHeader - Emit a file with sections defining:
2230 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2231 /// 2. the SemaChecking code for the type overload checking.
2232 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
runHeader(raw_ostream & OS)2233 void NeonEmitter::runHeader(raw_ostream &OS) {
2234 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2235
2236 SmallVector<Intrinsic *, 128> Defs;
2237 for (auto *R : RV)
2238 createIntrinsic(R, Defs);
2239
2240 // Generate shared BuiltinsXXX.def
2241 genBuiltinsDef(OS, Defs);
2242
2243 // Generate ARM overloaded type checking code for SemaChecking.cpp
2244 genOverloadTypeCheckCode(OS, Defs);
2245
2246 genStreamingSVECompatibleList(OS, Defs);
2247
2248 // Generate ARM range checking code for shift/lane immediates.
2249 genIntrinsicRangeCheckCode(OS, Defs);
2250 }
2251
emitNeonTypeDefs(const std::string & types,raw_ostream & OS)2252 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2253 std::string TypedefTypes(types);
2254 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2255
2256 // Emit vector typedefs.
2257 bool InIfdef = false;
2258 for (auto &TS : TDTypeVec) {
2259 bool IsA64 = false;
2260 Type T(TS, ".");
2261 if (T.isDouble())
2262 IsA64 = true;
2263
2264 if (InIfdef && !IsA64) {
2265 OS << "#endif\n";
2266 InIfdef = false;
2267 }
2268 if (!InIfdef && IsA64) {
2269 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2270 InIfdef = true;
2271 }
2272
2273 if (T.isPoly())
2274 OS << "typedef __attribute__((neon_polyvector_type(";
2275 else
2276 OS << "typedef __attribute__((neon_vector_type(";
2277
2278 Type T2 = T;
2279 T2.makeScalar();
2280 OS << T.getNumElements() << "))) ";
2281 OS << T2.str();
2282 OS << " " << T.str() << ";\n";
2283 }
2284 if (InIfdef)
2285 OS << "#endif\n";
2286 OS << "\n";
2287
2288 // Emit struct typedefs.
2289 InIfdef = false;
2290 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2291 for (auto &TS : TDTypeVec) {
2292 bool IsA64 = false;
2293 Type T(TS, ".");
2294 if (T.isDouble())
2295 IsA64 = true;
2296
2297 if (InIfdef && !IsA64) {
2298 OS << "#endif\n";
2299 InIfdef = false;
2300 }
2301 if (!InIfdef && IsA64) {
2302 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2303 InIfdef = true;
2304 }
2305
2306 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2307 Type VT(TS, Mods);
2308 OS << "typedef struct " << VT.str() << " {\n";
2309 OS << " " << T.str() << " val";
2310 OS << "[" << NumMembers << "]";
2311 OS << ";\n} ";
2312 OS << VT.str() << ";\n";
2313 OS << "\n";
2314 }
2315 }
2316 if (InIfdef)
2317 OS << "#endif\n";
2318 }
2319
2320 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2321 /// is comprised of type definitions and function declarations.
run(raw_ostream & OS)2322 void NeonEmitter::run(raw_ostream &OS) {
2323 OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2324 "------------------------------"
2325 "---===\n"
2326 " *\n"
2327 " * Permission is hereby granted, free of charge, to any person "
2328 "obtaining "
2329 "a copy\n"
2330 " * of this software and associated documentation files (the "
2331 "\"Software\"),"
2332 " to deal\n"
2333 " * in the Software without restriction, including without limitation "
2334 "the "
2335 "rights\n"
2336 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2337 "and/or sell\n"
2338 " * copies of the Software, and to permit persons to whom the Software "
2339 "is\n"
2340 " * furnished to do so, subject to the following conditions:\n"
2341 " *\n"
2342 " * The above copyright notice and this permission notice shall be "
2343 "included in\n"
2344 " * all copies or substantial portions of the Software.\n"
2345 " *\n"
2346 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2347 "EXPRESS OR\n"
2348 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2349 "MERCHANTABILITY,\n"
2350 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2351 "SHALL THE\n"
2352 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2353 "OTHER\n"
2354 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2355 "ARISING FROM,\n"
2356 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2357 "DEALINGS IN\n"
2358 " * THE SOFTWARE.\n"
2359 " *\n"
2360 " *===-----------------------------------------------------------------"
2361 "---"
2362 "---===\n"
2363 " */\n\n";
2364
2365 OS << "#ifndef __ARM_NEON_H\n";
2366 OS << "#define __ARM_NEON_H\n\n";
2367
2368 OS << "#ifndef __ARM_FP\n";
2369 OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2370 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2371 OS << "#else\n\n";
2372
2373 OS << "#include <stdint.h>\n\n";
2374
2375 OS << "#include <arm_bf16.h>\n";
2376
2377 OS << "#include <arm_vector_types.h>\n";
2378
2379 // For now, signedness of polynomial types depends on target
2380 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2381 OS << "typedef uint8_t poly8_t;\n";
2382 OS << "typedef uint16_t poly16_t;\n";
2383 OS << "typedef uint64_t poly64_t;\n";
2384 OS << "typedef __uint128_t poly128_t;\n";
2385 OS << "#else\n";
2386 OS << "typedef int8_t poly8_t;\n";
2387 OS << "typedef int16_t poly16_t;\n";
2388 OS << "typedef int64_t poly64_t;\n";
2389 OS << "#endif\n";
2390 emitNeonTypeDefs("PcQPcPsQPsPlQPl", OS);
2391
2392 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2393 "__nodebug__))\n\n";
2394
2395 SmallVector<Intrinsic *, 128> Defs;
2396 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2397 for (auto *R : RV)
2398 createIntrinsic(R, Defs);
2399
2400 for (auto *I : Defs)
2401 I->indexBody();
2402
2403 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2404
2405 // Only emit a def when its requirements have been met.
2406 // FIXME: This loop could be made faster, but it's fast enough for now.
2407 bool MadeProgress = true;
2408 std::string InGuard;
2409 while (!Defs.empty() && MadeProgress) {
2410 MadeProgress = false;
2411
2412 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2413 I != Defs.end(); /*No step*/) {
2414 bool DependenciesSatisfied = true;
2415 for (auto *II : (*I)->getDependencies()) {
2416 if (llvm::is_contained(Defs, II))
2417 DependenciesSatisfied = false;
2418 }
2419 if (!DependenciesSatisfied) {
2420 // Try the next one.
2421 ++I;
2422 continue;
2423 }
2424
2425 // Emit #endif/#if pair if needed.
2426 if ((*I)->getArchGuard() != InGuard) {
2427 if (!InGuard.empty())
2428 OS << "#endif\n";
2429 InGuard = (*I)->getArchGuard();
2430 if (!InGuard.empty())
2431 OS << "#if " << InGuard << "\n";
2432 }
2433
2434 // Actually generate the intrinsic code.
2435 OS << (*I)->generate();
2436
2437 MadeProgress = true;
2438 I = Defs.erase(I);
2439 }
2440 }
2441 assert(Defs.empty() && "Some requirements were not satisfied!");
2442 if (!InGuard.empty())
2443 OS << "#endif\n";
2444
2445 OS << "\n";
2446 OS << "#undef __ai\n\n";
2447 OS << "#endif /* if !defined(__ARM_NEON) */\n";
2448 OS << "#endif /* ifndef __ARM_FP */\n";
2449 }
2450
2451 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h
2452 /// is comprised of type definitions and function declarations.
runFP16(raw_ostream & OS)2453 void NeonEmitter::runFP16(raw_ostream &OS) {
2454 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2455 "------------------------------"
2456 "---===\n"
2457 " *\n"
2458 " * Permission is hereby granted, free of charge, to any person "
2459 "obtaining a copy\n"
2460 " * of this software and associated documentation files (the "
2461 "\"Software\"), to deal\n"
2462 " * in the Software without restriction, including without limitation "
2463 "the rights\n"
2464 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2465 "and/or sell\n"
2466 " * copies of the Software, and to permit persons to whom the Software "
2467 "is\n"
2468 " * furnished to do so, subject to the following conditions:\n"
2469 " *\n"
2470 " * The above copyright notice and this permission notice shall be "
2471 "included in\n"
2472 " * all copies or substantial portions of the Software.\n"
2473 " *\n"
2474 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2475 "EXPRESS OR\n"
2476 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2477 "MERCHANTABILITY,\n"
2478 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2479 "SHALL THE\n"
2480 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2481 "OTHER\n"
2482 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2483 "ARISING FROM,\n"
2484 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2485 "DEALINGS IN\n"
2486 " * THE SOFTWARE.\n"
2487 " *\n"
2488 " *===-----------------------------------------------------------------"
2489 "---"
2490 "---===\n"
2491 " */\n\n";
2492
2493 OS << "#ifndef __ARM_FP16_H\n";
2494 OS << "#define __ARM_FP16_H\n\n";
2495
2496 OS << "#include <stdint.h>\n\n";
2497
2498 OS << "typedef __fp16 float16_t;\n";
2499
2500 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2501 "__nodebug__))\n\n";
2502
2503 SmallVector<Intrinsic *, 128> Defs;
2504 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2505 for (auto *R : RV)
2506 createIntrinsic(R, Defs);
2507
2508 for (auto *I : Defs)
2509 I->indexBody();
2510
2511 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2512
2513 // Only emit a def when its requirements have been met.
2514 // FIXME: This loop could be made faster, but it's fast enough for now.
2515 bool MadeProgress = true;
2516 std::string InGuard;
2517 while (!Defs.empty() && MadeProgress) {
2518 MadeProgress = false;
2519
2520 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2521 I != Defs.end(); /*No step*/) {
2522 bool DependenciesSatisfied = true;
2523 for (auto *II : (*I)->getDependencies()) {
2524 if (llvm::is_contained(Defs, II))
2525 DependenciesSatisfied = false;
2526 }
2527 if (!DependenciesSatisfied) {
2528 // Try the next one.
2529 ++I;
2530 continue;
2531 }
2532
2533 // Emit #endif/#if pair if needed.
2534 if ((*I)->getArchGuard() != InGuard) {
2535 if (!InGuard.empty())
2536 OS << "#endif\n";
2537 InGuard = (*I)->getArchGuard();
2538 if (!InGuard.empty())
2539 OS << "#if " << InGuard << "\n";
2540 }
2541
2542 // Actually generate the intrinsic code.
2543 OS << (*I)->generate();
2544
2545 MadeProgress = true;
2546 I = Defs.erase(I);
2547 }
2548 }
2549 assert(Defs.empty() && "Some requirements were not satisfied!");
2550 if (!InGuard.empty())
2551 OS << "#endif\n";
2552
2553 OS << "\n";
2554 OS << "#undef __ai\n\n";
2555 OS << "#endif /* __ARM_FP16_H */\n";
2556 }
2557
runVectorTypes(raw_ostream & OS)2558 void NeonEmitter::runVectorTypes(raw_ostream &OS) {
2559 OS << "/*===---- arm_vector_types - ARM vector type "
2560 "------===\n"
2561 " *\n"
2562 " *\n"
2563 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2564 "Exceptions.\n"
2565 " * See https://llvm.org/LICENSE.txt for license information.\n"
2566 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2567 " *\n"
2568 " *===-----------------------------------------------------------------"
2569 "------===\n"
2570 " */\n\n";
2571 OS << "#if !defined(__ARM_NEON_H) && !defined(__ARM_SVE_H)\n";
2572 OS << "#error \"This file should not be used standalone. Please include"
2573 " arm_neon.h or arm_sve.h instead\"\n\n";
2574 OS << "#endif\n";
2575 OS << "#ifndef __ARM_NEON_TYPES_H\n";
2576 OS << "#define __ARM_NEON_TYPES_H\n";
2577 OS << "typedef float float32_t;\n";
2578 OS << "typedef __fp16 float16_t;\n";
2579
2580 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2581 OS << "typedef double float64_t;\n";
2582 OS << "#endif\n\n";
2583
2584 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQd", OS);
2585
2586 emitNeonTypeDefs("bQb", OS);
2587 OS << "#endif // __ARM_NEON_TYPES_H\n";
2588 }
2589
runBF16(raw_ostream & OS)2590 void NeonEmitter::runBF16(raw_ostream &OS) {
2591 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2592 "-----------------------------------===\n"
2593 " *\n"
2594 " *\n"
2595 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2596 "Exceptions.\n"
2597 " * See https://llvm.org/LICENSE.txt for license information.\n"
2598 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2599 " *\n"
2600 " *===-----------------------------------------------------------------"
2601 "------===\n"
2602 " */\n\n";
2603
2604 OS << "#ifndef __ARM_BF16_H\n";
2605 OS << "#define __ARM_BF16_H\n\n";
2606
2607 OS << "typedef __bf16 bfloat16_t;\n";
2608
2609 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2610 "__nodebug__))\n\n";
2611
2612 SmallVector<Intrinsic *, 128> Defs;
2613 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2614 for (auto *R : RV)
2615 createIntrinsic(R, Defs);
2616
2617 for (auto *I : Defs)
2618 I->indexBody();
2619
2620 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2621
2622 // Only emit a def when its requirements have been met.
2623 // FIXME: This loop could be made faster, but it's fast enough for now.
2624 bool MadeProgress = true;
2625 std::string InGuard;
2626 while (!Defs.empty() && MadeProgress) {
2627 MadeProgress = false;
2628
2629 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2630 I != Defs.end(); /*No step*/) {
2631 bool DependenciesSatisfied = true;
2632 for (auto *II : (*I)->getDependencies()) {
2633 if (llvm::is_contained(Defs, II))
2634 DependenciesSatisfied = false;
2635 }
2636 if (!DependenciesSatisfied) {
2637 // Try the next one.
2638 ++I;
2639 continue;
2640 }
2641
2642 // Emit #endif/#if pair if needed.
2643 if ((*I)->getArchGuard() != InGuard) {
2644 if (!InGuard.empty())
2645 OS << "#endif\n";
2646 InGuard = (*I)->getArchGuard();
2647 if (!InGuard.empty())
2648 OS << "#if " << InGuard << "\n";
2649 }
2650
2651 // Actually generate the intrinsic code.
2652 OS << (*I)->generate();
2653
2654 MadeProgress = true;
2655 I = Defs.erase(I);
2656 }
2657 }
2658 assert(Defs.empty() && "Some requirements were not satisfied!");
2659 if (!InGuard.empty())
2660 OS << "#endif\n";
2661
2662 OS << "\n";
2663 OS << "#undef __ai\n\n";
2664
2665 OS << "#endif\n";
2666 }
2667
EmitNeon(RecordKeeper & Records,raw_ostream & OS)2668 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2669 NeonEmitter(Records).run(OS);
2670 }
2671
EmitFP16(RecordKeeper & Records,raw_ostream & OS)2672 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2673 NeonEmitter(Records).runFP16(OS);
2674 }
2675
EmitBF16(RecordKeeper & Records,raw_ostream & OS)2676 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2677 NeonEmitter(Records).runBF16(OS);
2678 }
2679
EmitNeonSema(RecordKeeper & Records,raw_ostream & OS)2680 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2681 NeonEmitter(Records).runHeader(OS);
2682 }
2683
EmitVectorTypes(RecordKeeper & Records,raw_ostream & OS)2684 void clang::EmitVectorTypes(RecordKeeper &Records, raw_ostream &OS) {
2685 NeonEmitter(Records).runVectorTypes(OS);
2686 }
2687
EmitNeonTest(RecordKeeper & Records,raw_ostream & OS)2688 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2689 llvm_unreachable("Neon test generation no longer implemented!");
2690 }
2691