xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/MveEmitter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 namespace {
82 
83 class EmitterBase;
84 class Result;
85 
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
89 //
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
97 
98 class Type {
99 public:
100   enum class TypeKind {
101     // Void appears as a return type (for store intrinsics, which are pure
102     // side-effect). It's also used as the parameter type in the Tablegen
103     // when an intrinsic doesn't need to come in various suffixed forms like
104     // vfooq_s8,vfooq_u16,vfooq_f32.
105     Void,
106 
107     // Scalar is used for ordinary int and float types of all sizes.
108     Scalar,
109 
110     // Vector is used for anything that occupies exactly one MVE vector
111     // register, i.e. {uint,int,float}NxM_t.
112     Vector,
113 
114     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115     // interleaving load/store intrinsics v{ld,st}{2,4}q.
116     MultiVector,
117 
118     // Predicate is used by all the predicated intrinsics. Its C
119     // representation is mve_pred16_t (which is just an alias for uint16_t).
120     // But we give more detail here, by indicating that a given predicate
121     // instruction is logically regarded as a vector of i1 containing the
122     // same number of lanes as the input vector type. So our Predicate type
123     // comes with a lane count, which we use to decide which kind of <n x i1>
124     // we'll invoke the pred_i2v IR intrinsic to translate it into.
125     Predicate,
126 
127     // Pointer is used for pointer types (obviously), and comes with a flag
128     // indicating whether it's a pointer to a const or mutable instance of
129     // the pointee type.
130     Pointer,
131   };
132 
133 private:
134   const TypeKind TKind;
135 
136 protected:
Type(TypeKind K)137   Type(TypeKind K) : TKind(K) {}
138 
139 public:
typeKind() const140   TypeKind typeKind() const { return TKind; }
141   virtual ~Type() = default;
142   virtual bool requiresFloat() const = 0;
143   virtual bool requiresMVE() const = 0;
144   virtual unsigned sizeInBits() const = 0;
145   virtual std::string cName() const = 0;
llvmName() const146   virtual std::string llvmName() const {
147     PrintFatalError("no LLVM type name available for type " + cName());
148   }
acleSuffix(std::string) const149   virtual std::string acleSuffix(std::string) const {
150     PrintFatalError("no ACLE suffix available for this type");
151   }
152 };
153 
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
toLetter(ScalarTypeKind kind)155 inline std::string toLetter(ScalarTypeKind kind) {
156   switch (kind) {
157   case ScalarTypeKind::SignedInt:
158     return "s";
159   case ScalarTypeKind::UnsignedInt:
160     return "u";
161   case ScalarTypeKind::Float:
162     return "f";
163   }
164   llvm_unreachable("Unhandled ScalarTypeKind enum");
165 }
toCPrefix(ScalarTypeKind kind)166 inline std::string toCPrefix(ScalarTypeKind kind) {
167   switch (kind) {
168   case ScalarTypeKind::SignedInt:
169     return "int";
170   case ScalarTypeKind::UnsignedInt:
171     return "uint";
172   case ScalarTypeKind::Float:
173     return "float";
174   }
175   llvm_unreachable("Unhandled ScalarTypeKind enum");
176 }
177 
178 class VoidType : public Type {
179 public:
VoidType()180   VoidType() : Type(TypeKind::Void) {}
sizeInBits() const181   unsigned sizeInBits() const override { return 0; }
requiresFloat() const182   bool requiresFloat() const override { return false; }
requiresMVE() const183   bool requiresMVE() const override { return false; }
cName() const184   std::string cName() const override { return "void"; }
185 
classof(const Type * T)186   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
acleSuffix(std::string) const187   std::string acleSuffix(std::string) const override { return ""; }
188 };
189 
190 class PointerType : public Type {
191   const Type *Pointee;
192   bool Const;
193 
194 public:
PointerType(const Type * Pointee,bool Const)195   PointerType(const Type *Pointee, bool Const)
196       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
sizeInBits() const197   unsigned sizeInBits() const override { return 32; }
requiresFloat() const198   bool requiresFloat() const override { return Pointee->requiresFloat(); }
requiresMVE() const199   bool requiresMVE() const override { return Pointee->requiresMVE(); }
cName() const200   std::string cName() const override {
201     std::string Name = Pointee->cName();
202 
203     // The syntax for a pointer in C is different when the pointee is
204     // itself a pointer. The MVE intrinsics don't contain any double
205     // pointers, so we don't need to worry about that wrinkle.
206     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207 
208     if (Const)
209       Name = "const " + Name;
210     return Name + " *";
211   }
llvmName() const212   std::string llvmName() const override {
213     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214   }
getPointeeType() const215   const Type *getPointeeType() const { return Pointee; }
216 
classof(const Type * T)217   static bool classof(const Type *T) {
218     return T->typeKind() == TypeKind::Pointer;
219   }
220 };
221 
222 // Base class for all the types that have a name of the form
223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
224 //
225 // For this sub-hierarchy we invent a cNameBase() method which returns the
226 // whole name except for the trailing "_t", so that Vector and MultiVector can
227 // append an extra "x2" or whatever to their element type's cNameBase(). Then
228 // the main cName() query method puts "_t" on the end for the final type name.
229 
230 class CRegularNamedType : public Type {
231   using Type::Type;
232   virtual std::string cNameBase() const = 0;
233 
234 public:
cName() const235   std::string cName() const override { return cNameBase() + "_t"; }
236 };
237 
238 class ScalarType : public CRegularNamedType {
239   ScalarTypeKind Kind;
240   unsigned Bits;
241   std::string NameOverride;
242 
243 public:
ScalarType(const Record * Record)244   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
245     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
246                .Case("s", ScalarTypeKind::SignedInt)
247                .Case("u", ScalarTypeKind::UnsignedInt)
248                .Case("f", ScalarTypeKind::Float);
249     Bits = Record->getValueAsInt("size");
250     NameOverride = std::string(Record->getValueAsString("nameOverride"));
251   }
sizeInBits() const252   unsigned sizeInBits() const override { return Bits; }
kind() const253   ScalarTypeKind kind() const { return Kind; }
suffix() const254   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
cNameBase() const255   std::string cNameBase() const override {
256     return toCPrefix(Kind) + utostr(Bits);
257   }
cName() const258   std::string cName() const override {
259     if (NameOverride.empty())
260       return CRegularNamedType::cName();
261     return NameOverride;
262   }
llvmName() const263   std::string llvmName() const override {
264     if (Kind == ScalarTypeKind::Float) {
265       if (Bits == 16)
266         return "HalfTy";
267       if (Bits == 32)
268         return "FloatTy";
269       if (Bits == 64)
270         return "DoubleTy";
271       PrintFatalError("bad size for floating type");
272     }
273     return "Int" + utostr(Bits) + "Ty";
274   }
acleSuffix(std::string overrideLetter) const275   std::string acleSuffix(std::string overrideLetter) const override {
276     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
277                + utostr(Bits);
278   }
isInteger() const279   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
requiresFloat() const280   bool requiresFloat() const override { return !isInteger(); }
requiresMVE() const281   bool requiresMVE() const override { return false; }
hasNonstandardName() const282   bool hasNonstandardName() const { return !NameOverride.empty(); }
283 
classof(const Type * T)284   static bool classof(const Type *T) {
285     return T->typeKind() == TypeKind::Scalar;
286   }
287 };
288 
289 class VectorType : public CRegularNamedType {
290   const ScalarType *Element;
291   unsigned Lanes;
292 
293 public:
VectorType(const ScalarType * Element,unsigned Lanes)294   VectorType(const ScalarType *Element, unsigned Lanes)
295       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
sizeInBits() const296   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
lanes() const297   unsigned lanes() const { return Lanes; }
requiresFloat() const298   bool requiresFloat() const override { return Element->requiresFloat(); }
requiresMVE() const299   bool requiresMVE() const override { return true; }
cNameBase() const300   std::string cNameBase() const override {
301     return Element->cNameBase() + "x" + utostr(Lanes);
302   }
llvmName() const303   std::string llvmName() const override {
304     return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
305            utostr(Lanes) + ")";
306   }
307 
classof(const Type * T)308   static bool classof(const Type *T) {
309     return T->typeKind() == TypeKind::Vector;
310   }
311 };
312 
313 class MultiVectorType : public CRegularNamedType {
314   const VectorType *Element;
315   unsigned Registers;
316 
317 public:
MultiVectorType(unsigned Registers,const VectorType * Element)318   MultiVectorType(unsigned Registers, const VectorType *Element)
319       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
320         Registers(Registers) {}
sizeInBits() const321   unsigned sizeInBits() const override {
322     return Registers * Element->sizeInBits();
323   }
registers() const324   unsigned registers() const { return Registers; }
requiresFloat() const325   bool requiresFloat() const override { return Element->requiresFloat(); }
requiresMVE() const326   bool requiresMVE() const override { return true; }
cNameBase() const327   std::string cNameBase() const override {
328     return Element->cNameBase() + "x" + utostr(Registers);
329   }
330 
331   // MultiVectorType doesn't override llvmName, because we don't expect to do
332   // automatic code generation for the MVE intrinsics that use it: the {vld2,
333   // vld4, vst2, vst4} family are the only ones that use these types, so it was
334   // easier to hand-write the codegen for dealing with these structs than to
335   // build in lots of extra automatic machinery that would only be used once.
336 
classof(const Type * T)337   static bool classof(const Type *T) {
338     return T->typeKind() == TypeKind::MultiVector;
339   }
340 };
341 
342 class PredicateType : public CRegularNamedType {
343   unsigned Lanes;
344 
345 public:
PredicateType(unsigned Lanes)346   PredicateType(unsigned Lanes)
347       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
sizeInBits() const348   unsigned sizeInBits() const override { return 16; }
cNameBase() const349   std::string cNameBase() const override { return "mve_pred16"; }
requiresFloat() const350   bool requiresFloat() const override { return false; };
requiresMVE() const351   bool requiresMVE() const override { return true; }
llvmName() const352   std::string llvmName() const override {
353     return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
354            ")";
355   }
356 
classof(const Type * T)357   static bool classof(const Type *T) {
358     return T->typeKind() == TypeKind::Predicate;
359   }
360 };
361 
362 // -----------------------------------------------------------------------------
363 // Class to facilitate merging together the code generation for many intrinsics
364 // by means of varying a few constant or type parameters.
365 //
366 // Most obviously, the intrinsics in a single parametrised family will have
367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
368 // and vaddq_u16 will look the same apart from putting a different vector type
369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370 // will often code-generate in the same way, with only a different choice of
371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372 // marshalling the arguments and return values of the IR intrinsic in exactly
373 // the same way. And others might differ only in some other kind of constant,
374 // such as a lane index.
375 //
376 // So, when we generate the IR-building code for all these intrinsics, we keep
377 // track of every value that could possibly be pulled out of the code and
378 // stored ahead of time in a local variable. Then we group together intrinsics
379 // by textual equivalence of the code that would result if _all_ those
380 // parameters were stored in local variables. That gives us maximal sets that
381 // can be implemented by a single piece of IR-building code by changing
382 // parameter values ahead of time.
383 //
384 // After we've done that, we do a second pass in which we only allocate _some_
385 // of the parameters into local variables, by tracking which ones have the same
386 // values as each other (so that a single variable can be reused) and which
387 // ones are the same across the whole set (so that no variable is needed at
388 // all).
389 //
390 // Hence the class below. Its allocParam method is invoked during code
391 // generation by every method of a Result subclass (see below) that wants to
392 // give it the opportunity to pull something out into a switchable parameter.
393 // It returns a variable name for the parameter, or (if it's being used in the
394 // second pass once we've decided that some parameters don't need to be stored
395 // in variables after all) it might just return the input expression unchanged.
396 
397 struct CodeGenParamAllocator {
398   // Accumulated during code generation
399   std::vector<std::string> *ParamTypes = nullptr;
400   std::vector<std::string> *ParamValues = nullptr;
401 
402   // Provided ahead of time in pass 2, to indicate which parameters are being
403   // assigned to what. This vector contains an entry for each call to
404   // allocParam expected during code gen (which we counted up in pass 1), and
405   // indicates the number of the parameter variable that should be returned, or
406   // -1 if this call shouldn't allocate a parameter variable at all.
407   //
408   // We rely on the recursive code generation working identically in passes 1
409   // and 2, so that the same list of calls to allocParam happen in the same
410   // order. That guarantees that the parameter numbers recorded in pass 1 will
411   // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412   // decided to do about each one in pass 2.
413   std::vector<int> *ParamNumberMap = nullptr;
414 
415   // Internally track how many things we've allocated
416   unsigned nparams = 0;
417 
allocParam__anon819a2c470111::CodeGenParamAllocator418   std::string allocParam(StringRef Type, StringRef Value) {
419     unsigned ParamNumber;
420 
421     if (!ParamNumberMap) {
422       // In pass 1, unconditionally assign a new parameter variable to every
423       // value we're asked to process.
424       ParamNumber = nparams++;
425     } else {
426       // In pass 2, consult the map provided by the caller to find out which
427       // variable we should be keeping things in.
428       int MapValue = (*ParamNumberMap)[nparams++];
429       if (MapValue < 0)
430         return std::string(Value);
431       ParamNumber = MapValue;
432     }
433 
434     // If we've allocated a new parameter variable for the first time, store
435     // its type and value to be retrieved after codegen.
436     if (ParamTypes && ParamTypes->size() == ParamNumber)
437       ParamTypes->push_back(std::string(Type));
438     if (ParamValues && ParamValues->size() == ParamNumber)
439       ParamValues->push_back(std::string(Value));
440 
441     // Unimaginative naming scheme for parameter variables.
442     return "Param" + utostr(ParamNumber);
443   }
444 };
445 
446 // -----------------------------------------------------------------------------
447 // System of classes that represent all the intermediate values used during
448 // code-generation for an intrinsic.
449 //
450 // The base class 'Result' can represent a value of the LLVM type 'Value', or
451 // sometimes 'Address' (for loads/stores, including an alignment requirement).
452 //
453 // In the case where the Tablegen provides a value in the codegen dag as a
454 // plain integer literal, the Result object we construct here will be one that
455 // returns true from hasIntegerConstantValue(). This allows the generated C++
456 // code to use the constant directly in contexts which can take a literal
457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458 // effort of calling llvm::ConstantInt::get() and then pulling the constant
459 // back out of the resulting llvm:Value later.
460 
461 class Result {
462 public:
463   // Convenient shorthand for the pointer type we'll be using everywhere.
464   using Ptr = std::shared_ptr<Result>;
465 
466 private:
467   Ptr Predecessor;
468   std::string VarName;
469   bool VarNameUsed = false;
470   unsigned Visited = 0;
471 
472 public:
473   virtual ~Result() = default;
474   using Scope = std::map<std::string, Ptr>;
475   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
hasIntegerConstantValue() const476   virtual bool hasIntegerConstantValue() const { return false; }
integerConstantValue() const477   virtual uint32_t integerConstantValue() const { return 0; }
hasIntegerValue() const478   virtual bool hasIntegerValue() const { return false; }
getIntegerValue(const std::string &)479   virtual std::string getIntegerValue(const std::string &) {
480     llvm_unreachable("non-working Result::getIntegerValue called");
481   }
typeName() const482   virtual std::string typeName() const { return "Value *"; }
483 
484   // Mostly, when a code-generation operation has a dependency on prior
485   // operations, it's because it uses the output values of those operations as
486   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
487   // to indicate that operations have to be performed in sequence regardless of
488   // whether they use each others' output values.
489   //
490   // So, the actual generation of code is done by depth-first search, using the
491   // prerequisites() method to get a list of all the other Results that have to
492   // be computed before this one. That method divides into the 'predecessor',
493   // set by setPredecessor() while processing a 'seq' dag node, and the list
494   // returned by 'morePrerequisites', which each subclass implements to return
495   // a list of the Results it uses as input to whatever its own computation is
496   // doing.
497 
morePrerequisites(std::vector<Ptr> & output) const498   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
prerequisites() const499   std::vector<Ptr> prerequisites() const {
500     std::vector<Ptr> ToRet;
501     if (Predecessor)
502       ToRet.push_back(Predecessor);
503     morePrerequisites(ToRet);
504     return ToRet;
505   }
506 
setPredecessor(Ptr p)507   void setPredecessor(Ptr p) {
508     // If the user has nested one 'seq' node inside another, and this
509     // method is called on the return value of the inner 'seq' (i.e.
510     // the final item inside it), then we can't link _this_ node to p,
511     // because it already has a predecessor. Instead, walk the chain
512     // until we find the first item in the inner seq, and link that to
513     // p, so that nesting seqs has the obvious effect of linking
514     // everything together into one long sequential chain.
515     Result *r = this;
516     while (r->Predecessor)
517       r = r->Predecessor.get();
518     r->Predecessor = p;
519   }
520 
521   // Each Result will be assigned a variable name in the output code, but not
522   // all those variable names will actually be used (e.g. the return value of
523   // Builder.CreateStore has void type, so nobody will want to refer to it). To
524   // prevent annoying compiler warnings, we track whether each Result's
525   // variable name was ever actually mentioned in subsequent statements, so
526   // that it can be left out of the final generated code.
varname()527   std::string varname() {
528     VarNameUsed = true;
529     return VarName;
530   }
setVarname(const StringRef s)531   void setVarname(const StringRef s) { VarName = std::string(s); }
varnameUsed() const532   bool varnameUsed() const { return VarNameUsed; }
533 
534   // Emit code to generate this result as a Value *.
asValue()535   virtual std::string asValue() {
536     return varname();
537   }
538 
539   // Code generation happens in multiple passes. This method tracks whether a
540   // Result has yet been visited in a given pass, without the need for a
541   // tedious loop in between passes that goes through and resets a 'visited'
542   // flag back to false: you just set Pass=1 the first time round, and Pass=2
543   // the second time.
needsVisiting(unsigned Pass)544   bool needsVisiting(unsigned Pass) {
545     bool ToRet = Visited < Pass;
546     Visited = Pass;
547     return ToRet;
548   }
549 };
550 
551 // Result subclass that retrieves one of the arguments to the clang builtin
552 // function. In cases where the argument has pointer type, we call
553 // EmitPointerWithAlignment and store the result in a variable of type Address,
554 // so that load and store IR nodes can know the right alignment. Otherwise, we
555 // call EmitScalarExpr.
556 //
557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559 // vst2q/vst4q family, which is few enough that we just write the code by hand
560 // for those in CGBuiltin.cpp.
561 class BuiltinArgResult : public Result {
562 public:
563   unsigned ArgNum;
564   bool AddressType;
565   bool Immediate;
BuiltinArgResult(unsigned ArgNum,bool AddressType,bool Immediate)566   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
567       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
genCode(raw_ostream & OS,CodeGenParamAllocator &) const568   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
569     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
570        << "(E->getArg(" << ArgNum << "))";
571   }
typeName() const572   std::string typeName() const override {
573     return AddressType ? "Address" : Result::typeName();
574   }
575   // Emit code to generate this result as a Value *.
asValue()576   std::string asValue() override {
577     if (AddressType)
578       return "(" + varname() + ".emitRawPointer(*this))";
579     return Result::asValue();
580   }
hasIntegerValue() const581   bool hasIntegerValue() const override { return Immediate; }
getIntegerValue(const std::string & IntType)582   std::string getIntegerValue(const std::string &IntType) override {
583     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
584            utostr(ArgNum) + "), getContext())";
585   }
586 };
587 
588 // Result subclass for an integer literal appearing in Tablegen. This may need
589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590 // it may be used directly as an integer, depending on which IRBuilder method
591 // it's being passed to.
592 class IntLiteralResult : public Result {
593 public:
594   const ScalarType *IntegerType;
595   uint32_t IntegerValue;
IntLiteralResult(const ScalarType * IntegerType,uint32_t IntegerValue)596   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
597       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const598   void genCode(raw_ostream &OS,
599                CodeGenParamAllocator &ParamAlloc) const override {
600     OS << "llvm::ConstantInt::get("
601        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
602        << ", ";
603     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
604        << ")";
605   }
hasIntegerConstantValue() const606   bool hasIntegerConstantValue() const override { return true; }
integerConstantValue() const607   uint32_t integerConstantValue() const override { return IntegerValue; }
608 };
609 
610 // Result subclass representing a cast between different integer types. We use
611 // our own ScalarType abstraction as the representation of the target type,
612 // which gives both size and signedness.
613 class IntCastResult : public Result {
614 public:
615   const ScalarType *IntegerType;
616   Ptr V;
IntCastResult(const ScalarType * IntegerType,Ptr V)617   IntCastResult(const ScalarType *IntegerType, Ptr V)
618       : IntegerType(IntegerType), V(V) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const619   void genCode(raw_ostream &OS,
620                CodeGenParamAllocator &ParamAlloc) const override {
621     OS << "Builder.CreateIntCast(" << V->varname() << ", "
622        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
623        << ParamAlloc.allocParam("bool",
624                                 IntegerType->kind() == ScalarTypeKind::SignedInt
625                                     ? "true"
626                                     : "false")
627        << ")";
628   }
morePrerequisites(std::vector<Ptr> & output) const629   void morePrerequisites(std::vector<Ptr> &output) const override {
630     output.push_back(V);
631   }
632 };
633 
634 // Result subclass representing a cast between different pointer types.
635 class PointerCastResult : public Result {
636 public:
637   const PointerType *PtrType;
638   Ptr V;
PointerCastResult(const PointerType * PtrType,Ptr V)639   PointerCastResult(const PointerType *PtrType, Ptr V)
640       : PtrType(PtrType), V(V) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const641   void genCode(raw_ostream &OS,
642                CodeGenParamAllocator &ParamAlloc) const override {
643     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
644        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
645   }
morePrerequisites(std::vector<Ptr> & output) const646   void morePrerequisites(std::vector<Ptr> &output) const override {
647     output.push_back(V);
648   }
649 };
650 
651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
652 // method we want to use will have a Tablegen record giving the method name and
653 // describing any important details of how to call it, such as whether a
654 // particular argument should be an integer constant instead of an llvm::Value.
655 class IRBuilderResult : public Result {
656 public:
657   StringRef CallPrefix;
658   std::vector<Ptr> Args;
659   std::set<unsigned> AddressArgs;
660   std::map<unsigned, std::string> IntegerArgs;
IRBuilderResult(StringRef CallPrefix,const std::vector<Ptr> & Args,const std::set<unsigned> & AddressArgs,const std::map<unsigned,std::string> & IntegerArgs)661   IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args,
662                   const std::set<unsigned> &AddressArgs,
663                   const std::map<unsigned, std::string> &IntegerArgs)
664       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
665         IntegerArgs(IntegerArgs) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const666   void genCode(raw_ostream &OS,
667                CodeGenParamAllocator &ParamAlloc) const override {
668     OS << CallPrefix;
669     const char *Sep = "";
670     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
671       Ptr Arg = Args[i];
672       auto it = IntegerArgs.find(i);
673 
674       OS << Sep;
675       Sep = ", ";
676 
677       if (it != IntegerArgs.end()) {
678         if (Arg->hasIntegerConstantValue())
679           OS << "static_cast<" << it->second << ">("
680              << ParamAlloc.allocParam(it->second,
681                                       utostr(Arg->integerConstantValue()))
682              << ")";
683         else if (Arg->hasIntegerValue())
684           OS << ParamAlloc.allocParam(it->second,
685                                       Arg->getIntegerValue(it->second));
686       } else {
687         OS << Arg->varname();
688       }
689     }
690     OS << ")";
691   }
morePrerequisites(std::vector<Ptr> & output) const692   void morePrerequisites(std::vector<Ptr> &output) const override {
693     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
694       Ptr Arg = Args[i];
695       if (IntegerArgs.find(i) != IntegerArgs.end())
696         continue;
697       output.push_back(Arg);
698     }
699   }
700 };
701 
702 // Result subclass representing making an Address out of a Value.
703 class AddressResult : public Result {
704 public:
705   Ptr Arg;
706   const Type *Ty;
707   unsigned Align;
AddressResult(Ptr Arg,const Type * Ty,unsigned Align)708   AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
709       : Arg(Arg), Ty(Ty), Align(Align) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const710   void genCode(raw_ostream &OS,
711                CodeGenParamAllocator &ParamAlloc) const override {
712     OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
713        << ", CharUnits::fromQuantity(" << Align << "))";
714   }
typeName() const715   std::string typeName() const override {
716     return "Address";
717   }
morePrerequisites(std::vector<Ptr> & output) const718   void morePrerequisites(std::vector<Ptr> &output) const override {
719     output.push_back(Arg);
720   }
721 };
722 
723 // Result subclass representing a call to an IR intrinsic, which we first have
724 // to look up using an Intrinsic::ID constant and an array of types.
725 class IRIntrinsicResult : public Result {
726 public:
727   std::string IntrinsicID;
728   std::vector<const Type *> ParamTypes;
729   std::vector<Ptr> Args;
IRIntrinsicResult(StringRef IntrinsicID,const std::vector<const Type * > & ParamTypes,const std::vector<Ptr> & Args)730   IRIntrinsicResult(StringRef IntrinsicID,
731                     const std::vector<const Type *> &ParamTypes,
732                     const std::vector<Ptr> &Args)
733       : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
734         Args(Args) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const735   void genCode(raw_ostream &OS,
736                CodeGenParamAllocator &ParamAlloc) const override {
737     std::string IntNo = ParamAlloc.allocParam(
738         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
739     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
740     if (!ParamTypes.empty()) {
741       OS << ", {";
742       const char *Sep = "";
743       for (auto T : ParamTypes) {
744         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
745         Sep = ", ";
746       }
747       OS << "}";
748     }
749     OS << "), {";
750     const char *Sep = "";
751     for (auto Arg : Args) {
752       OS << Sep << Arg->asValue();
753       Sep = ", ";
754     }
755     OS << "})";
756   }
morePrerequisites(std::vector<Ptr> & output) const757   void morePrerequisites(std::vector<Ptr> &output) const override {
758     output.insert(output.end(), Args.begin(), Args.end());
759   }
760 };
761 
762 // Result subclass that specifies a type, for use in IRBuilder operations such
763 // as CreateBitCast that take a type argument.
764 class TypeResult : public Result {
765 public:
766   const Type *T;
TypeResult(const Type * T)767   TypeResult(const Type *T) : T(T) {}
genCode(raw_ostream & OS,CodeGenParamAllocator &) const768   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
769     OS << T->llvmName();
770   }
typeName() const771   std::string typeName() const override {
772     return "llvm::Type *";
773   }
774 };
775 
776 // -----------------------------------------------------------------------------
777 // Class that describes a single ACLE intrinsic.
778 //
779 // A Tablegen record will typically describe more than one ACLE intrinsic, by
780 // means of setting the 'list<Type> Params' field to a list of multiple
781 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
782 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
783 // rather than a single one for all of them. Hence, the constructor takes both
784 // a Tablegen record and the current value of the parameter type.
785 
786 class ACLEIntrinsic {
787   // Structure documenting that one of the intrinsic's arguments is required to
788   // be a compile-time constant integer, and what constraints there are on its
789   // value. Used when generating Sema checking code.
790   struct ImmediateArg {
791     enum class BoundsType { ExplicitRange, UInt };
792     BoundsType boundsType;
793     int64_t i1, i2;
794     StringRef ExtraCheckType, ExtraCheckArgs;
795     const Type *ArgType;
796   };
797 
798   // For polymorphic intrinsics, FullName is the explicit name that uniquely
799   // identifies this variant of the intrinsic, and ShortName is the name it
800   // shares with at least one other intrinsic.
801   std::string ShortName, FullName;
802 
803   // Name of the architecture extension, used in the Clang builtin name
804   StringRef BuiltinExtension;
805 
806   // A very small number of intrinsics _only_ have a polymorphic
807   // variant (vuninitializedq taking an unevaluated argument).
808   bool PolymorphicOnly;
809 
810   // Another rarely-used flag indicating that the builtin doesn't
811   // evaluate its argument(s) at all.
812   bool NonEvaluating;
813 
814   // True if the intrinsic needs only the C header part (no codegen, semantic
815   // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
816   bool HeaderOnly;
817 
818   const Type *ReturnType;
819   std::vector<const Type *> ArgTypes;
820   std::map<unsigned, ImmediateArg> ImmediateArgs;
821   Result::Ptr Code;
822 
823   std::map<std::string, std::string> CustomCodeGenArgs;
824 
825   // Recursive function that does the internals of code generation.
genCodeDfs(Result::Ptr V,std::list<Result::Ptr> & Used,unsigned Pass) const826   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
827                   unsigned Pass) const {
828     if (!V->needsVisiting(Pass))
829       return;
830 
831     for (Result::Ptr W : V->prerequisites())
832       genCodeDfs(W, Used, Pass);
833 
834     Used.push_back(V);
835   }
836 
837 public:
shortName() const838   const std::string &shortName() const { return ShortName; }
fullName() const839   const std::string &fullName() const { return FullName; }
builtinExtension() const840   StringRef builtinExtension() const { return BuiltinExtension; }
returnType() const841   const Type *returnType() const { return ReturnType; }
argTypes() const842   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
requiresFloat() const843   bool requiresFloat() const {
844     if (ReturnType->requiresFloat())
845       return true;
846     for (const Type *T : ArgTypes)
847       if (T->requiresFloat())
848         return true;
849     return false;
850   }
requiresMVE() const851   bool requiresMVE() const {
852     return ReturnType->requiresMVE() ||
853            any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
854   }
polymorphic() const855   bool polymorphic() const { return ShortName != FullName; }
polymorphicOnly() const856   bool polymorphicOnly() const { return PolymorphicOnly; }
nonEvaluating() const857   bool nonEvaluating() const { return NonEvaluating; }
headerOnly() const858   bool headerOnly() const { return HeaderOnly; }
859 
860   // External entry point for code generation, called from EmitterBase.
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc,unsigned Pass) const861   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
862                unsigned Pass) const {
863     assert(!headerOnly() && "Called genCode for header-only intrinsic");
864     if (!hasCode()) {
865       for (auto kv : CustomCodeGenArgs)
866         OS << "  " << kv.first << " = " << kv.second << ";\n";
867       OS << "  break; // custom code gen\n";
868       return;
869     }
870     std::list<Result::Ptr> Used;
871     genCodeDfs(Code, Used, Pass);
872 
873     unsigned varindex = 0;
874     for (Result::Ptr V : Used)
875       if (V->varnameUsed())
876         V->setVarname("Val" + utostr(varindex++));
877 
878     for (Result::Ptr V : Used) {
879       OS << "  ";
880       if (V == Used.back()) {
881         assert(!V->varnameUsed());
882         OS << "return "; // FIXME: what if the top-level thing is void?
883       } else if (V->varnameUsed()) {
884         std::string Type = V->typeName();
885         OS << V->typeName();
886         if (!StringRef(Type).ends_with("*"))
887           OS << " ";
888         OS << V->varname() << " = ";
889       }
890       V->genCode(OS, ParamAlloc);
891       OS << ";\n";
892     }
893   }
hasCode() const894   bool hasCode() const { return Code != nullptr; }
895 
signedHexLiteral(const llvm::APInt & iOrig)896   static std::string signedHexLiteral(const llvm::APInt &iOrig) {
897     llvm::APInt i = iOrig.trunc(64);
898     SmallString<40> s;
899     i.toString(s, 16, true, true);
900     return std::string(s);
901   }
902 
genSema() const903   std::string genSema() const {
904     assert(!headerOnly() && "Called genSema for header-only intrinsic");
905     std::vector<std::string> SemaChecks;
906 
907     for (const auto &kv : ImmediateArgs) {
908       const ImmediateArg &IA = kv.second;
909 
910       llvm::APInt lo(128, 0), hi(128, 0);
911       switch (IA.boundsType) {
912       case ImmediateArg::BoundsType::ExplicitRange:
913         lo = IA.i1;
914         hi = IA.i2;
915         break;
916       case ImmediateArg::BoundsType::UInt:
917         lo = 0;
918         hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
919         break;
920       }
921 
922       std::string Index = utostr(kv.first);
923 
924       // Emit a range check if the legal range of values for the
925       // immediate is smaller than the _possible_ range of values for
926       // its type.
927       unsigned ArgTypeBits = IA.ArgType->sizeInBits();
928       llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
929       llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
930       if (ActualRange.ult(ArgTypeRange))
931         SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " +
932                              Index + ", " + signedHexLiteral(lo) + ", " +
933                              signedHexLiteral(hi) + ")");
934 
935       if (!IA.ExtraCheckType.empty()) {
936         std::string Suffix;
937         if (!IA.ExtraCheckArgs.empty()) {
938           std::string tmp;
939           StringRef Arg = IA.ExtraCheckArgs;
940           if (Arg == "!lanesize") {
941             tmp = utostr(IA.ArgType->sizeInBits());
942             Arg = tmp;
943           }
944           Suffix = (Twine(", ") + Arg).str();
945         }
946         SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") +
947                               IA.ExtraCheckType + "(TheCall, " + Index +
948                               Suffix + ")")
949                                  .str());
950       }
951 
952       assert(!SemaChecks.empty());
953     }
954     if (SemaChecks.empty())
955       return "";
956     return join(std::begin(SemaChecks), std::end(SemaChecks),
957                 " ||\n         ") +
958            ";\n";
959   }
960 
961   ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
962 };
963 
964 // -----------------------------------------------------------------------------
965 // The top-level class that holds all the state from analyzing the entire
966 // Tablegen input.
967 
968 class EmitterBase {
969 protected:
970   // EmitterBase holds a collection of all the types we've instantiated.
971   VoidType Void;
972   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
973   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
974            std::unique_ptr<VectorType>>
975       VectorTypes;
976   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
977       MultiVectorTypes;
978   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
979   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
980 
981   // And all the ACLEIntrinsic instances we've created.
982   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
983 
984 public:
985   // Methods to create a Type object, or return the right existing one from the
986   // maps stored in this object.
getVoidType()987   const VoidType *getVoidType() { return &Void; }
getScalarType(StringRef Name)988   const ScalarType *getScalarType(StringRef Name) {
989     return ScalarTypes[std::string(Name)].get();
990   }
getScalarType(Record * R)991   const ScalarType *getScalarType(Record *R) {
992     return getScalarType(R->getName());
993   }
getVectorType(const ScalarType * ST,unsigned Lanes)994   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
995     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
996                                                        ST->sizeInBits(), Lanes);
997     if (VectorTypes.find(key) == VectorTypes.end())
998       VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
999     return VectorTypes[key].get();
1000   }
getVectorType(const ScalarType * ST)1001   const VectorType *getVectorType(const ScalarType *ST) {
1002     return getVectorType(ST, 128 / ST->sizeInBits());
1003   }
getMultiVectorType(unsigned Registers,const VectorType * VT)1004   const MultiVectorType *getMultiVectorType(unsigned Registers,
1005                                             const VectorType *VT) {
1006     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1007     if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
1008       MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
1009     return MultiVectorTypes[key].get();
1010   }
getPredicateType(unsigned Lanes)1011   const PredicateType *getPredicateType(unsigned Lanes) {
1012     unsigned key = Lanes;
1013     if (PredicateTypes.find(key) == PredicateTypes.end())
1014       PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
1015     return PredicateTypes[key].get();
1016   }
getPointerType(const Type * T,bool Const)1017   const PointerType *getPointerType(const Type *T, bool Const) {
1018     PointerType PT(T, Const);
1019     std::string key = PT.cName();
1020     if (PointerTypes.find(key) == PointerTypes.end())
1021       PointerTypes[key] = std::make_unique<PointerType>(PT);
1022     return PointerTypes[key].get();
1023   }
1024 
1025   // Methods to construct a type from various pieces of Tablegen. These are
1026   // always called in the context of setting up a particular ACLEIntrinsic, so
1027   // there's always an ambient parameter type (because we're iterating through
1028   // the Params list in the Tablegen record for the intrinsic), which is used
1029   // to expand Tablegen classes like 'Vector' which mean something different in
1030   // each member of a parametric family.
1031   const Type *getType(Record *R, const Type *Param);
1032   const Type *getType(DagInit *D, const Type *Param);
1033   const Type *getType(Init *I, const Type *Param);
1034 
1035   // Functions that translate the Tablegen representation of an intrinsic's
1036   // code generation into a collection of Value objects (which will then be
1037   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1038   Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1039                             const Type *Param);
1040   Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1041                                const Result::Scope &Scope, const Type *Param);
1042   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1043                             bool Immediate);
1044 
1045   void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1046 
1047   // Constructor and top-level functions.
1048 
1049   EmitterBase(RecordKeeper &Records);
1050   virtual ~EmitterBase() = default;
1051 
1052   virtual void EmitHeader(raw_ostream &OS) = 0;
1053   virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1054   virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1055   void EmitBuiltinCG(raw_ostream &OS);
1056   void EmitBuiltinAliases(raw_ostream &OS);
1057 };
1058 
getType(Init * I,const Type * Param)1059 const Type *EmitterBase::getType(Init *I, const Type *Param) {
1060   if (auto Dag = dyn_cast<DagInit>(I))
1061     return getType(Dag, Param);
1062   if (auto Def = dyn_cast<DefInit>(I))
1063     return getType(Def->getDef(), Param);
1064 
1065   PrintFatalError("Could not convert this value into a type");
1066 }
1067 
getType(Record * R,const Type * Param)1068 const Type *EmitterBase::getType(Record *R, const Type *Param) {
1069   // Pass to a subfield of any wrapper records. We don't expect more than one
1070   // of these: immediate operands are used as plain numbers rather than as
1071   // llvm::Value, so it's meaningless to promote their type anyway.
1072   if (R->isSubClassOf("Immediate"))
1073     R = R->getValueAsDef("type");
1074   else if (R->isSubClassOf("unpromoted"))
1075     R = R->getValueAsDef("underlying_type");
1076 
1077   if (R->getName() == "Void")
1078     return getVoidType();
1079   if (R->isSubClassOf("PrimitiveType"))
1080     return getScalarType(R);
1081   if (R->isSubClassOf("ComplexType"))
1082     return getType(R->getValueAsDag("spec"), Param);
1083 
1084   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1085 }
1086 
getType(DagInit * D,const Type * Param)1087 const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
1088   // The meat of the getType system: types in the Tablegen are represented by a
1089   // dag whose operators select sub-cases of this function.
1090 
1091   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1092   if (!Op->isSubClassOf("ComplexTypeOp"))
1093     PrintFatalError(
1094         "Expected ComplexTypeOp as dag operator in type expression");
1095 
1096   if (Op->getName() == "CTO_Parameter") {
1097     if (isa<VoidType>(Param))
1098       PrintFatalError("Parametric type in unparametrised context");
1099     return Param;
1100   }
1101 
1102   if (Op->getName() == "CTO_Vec") {
1103     const Type *Element = getType(D->getArg(0), Param);
1104     if (D->getNumArgs() == 1) {
1105       return getVectorType(cast<ScalarType>(Element));
1106     } else {
1107       const Type *ExistingVector = getType(D->getArg(1), Param);
1108       return getVectorType(cast<ScalarType>(Element),
1109                            cast<VectorType>(ExistingVector)->lanes());
1110     }
1111   }
1112 
1113   if (Op->getName() == "CTO_Pred") {
1114     const Type *Element = getType(D->getArg(0), Param);
1115     return getPredicateType(128 / Element->sizeInBits());
1116   }
1117 
1118   if (Op->isSubClassOf("CTO_Tuple")) {
1119     unsigned Registers = Op->getValueAsInt("n");
1120     const Type *Element = getType(D->getArg(0), Param);
1121     return getMultiVectorType(Registers, cast<VectorType>(Element));
1122   }
1123 
1124   if (Op->isSubClassOf("CTO_Pointer")) {
1125     const Type *Pointee = getType(D->getArg(0), Param);
1126     return getPointerType(Pointee, Op->getValueAsBit("const"));
1127   }
1128 
1129   if (Op->getName() == "CTO_CopyKind") {
1130     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1131     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1132     for (const auto &kv : ScalarTypes) {
1133       const ScalarType *RT = kv.second.get();
1134       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1135         return RT;
1136     }
1137     PrintFatalError("Cannot find a type to satisfy CopyKind");
1138   }
1139 
1140   if (Op->isSubClassOf("CTO_ScaleSize")) {
1141     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1142     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1143     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1144     for (const auto &kv : ScalarTypes) {
1145       const ScalarType *RT = kv.second.get();
1146       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1147         return RT;
1148     }
1149     PrintFatalError("Cannot find a type to satisfy ScaleSize");
1150   }
1151 
1152   PrintFatalError("Bad operator in type dag expression");
1153 }
1154 
getCodeForDag(DagInit * D,const Result::Scope & Scope,const Type * Param)1155 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1156                                        const Type *Param) {
1157   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1158 
1159   if (Op->getName() == "seq") {
1160     Result::Scope SubScope = Scope;
1161     Result::Ptr PrevV = nullptr;
1162     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1163       // We don't use getCodeForDagArg here, because the argument name
1164       // has different semantics in a seq
1165       Result::Ptr V =
1166           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1167       StringRef ArgName = D->getArgNameStr(i);
1168       if (!ArgName.empty())
1169         SubScope[std::string(ArgName)] = V;
1170       if (PrevV)
1171         V->setPredecessor(PrevV);
1172       PrevV = V;
1173     }
1174     return PrevV;
1175   } else if (Op->isSubClassOf("Type")) {
1176     if (D->getNumArgs() != 1)
1177       PrintFatalError("Type casts should have exactly one argument");
1178     const Type *CastType = getType(Op, Param);
1179     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1180     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1181       if (!ST->requiresFloat()) {
1182         if (Arg->hasIntegerConstantValue())
1183           return std::make_shared<IntLiteralResult>(
1184               ST, Arg->integerConstantValue());
1185         else
1186           return std::make_shared<IntCastResult>(ST, Arg);
1187       }
1188     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1189       return std::make_shared<PointerCastResult>(PT, Arg);
1190     }
1191     PrintFatalError("Unsupported type cast");
1192   } else if (Op->getName() == "address") {
1193     if (D->getNumArgs() != 2)
1194       PrintFatalError("'address' should have two arguments");
1195     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1196 
1197     const Type *Ty = nullptr;
1198     if (auto *DI = dyn_cast<DagInit>(D->getArg(0)))
1199       if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
1200         Ty = PTy->getPointeeType();
1201     if (!Ty)
1202       PrintFatalError("'address' pointer argument should be a pointer");
1203 
1204     unsigned Alignment;
1205     if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1206       Alignment = II->getValue();
1207     } else {
1208       PrintFatalError("'address' alignment argument should be an integer");
1209     }
1210     return std::make_shared<AddressResult>(Arg, Ty, Alignment);
1211   } else if (Op->getName() == "unsignedflag") {
1212     if (D->getNumArgs() != 1)
1213       PrintFatalError("unsignedflag should have exactly one argument");
1214     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1215     if (!TypeRec->isSubClassOf("Type"))
1216       PrintFatalError("unsignedflag's argument should be a type");
1217     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1218       return std::make_shared<IntLiteralResult>(
1219         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1220     } else {
1221       PrintFatalError("unsignedflag's argument should be a scalar type");
1222     }
1223   } else if (Op->getName() == "bitsize") {
1224     if (D->getNumArgs() != 1)
1225       PrintFatalError("bitsize should have exactly one argument");
1226     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1227     if (!TypeRec->isSubClassOf("Type"))
1228       PrintFatalError("bitsize's argument should be a type");
1229     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1230       return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1231                                                 ST->sizeInBits());
1232     } else {
1233       PrintFatalError("bitsize's argument should be a scalar type");
1234     }
1235   } else {
1236     std::vector<Result::Ptr> Args;
1237     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1238       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1239     if (Op->isSubClassOf("IRBuilderBase")) {
1240       std::set<unsigned> AddressArgs;
1241       std::map<unsigned, std::string> IntegerArgs;
1242       for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1243         unsigned Index = sp->getValueAsInt("index");
1244         if (sp->isSubClassOf("IRBuilderAddrParam")) {
1245           AddressArgs.insert(Index);
1246         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1247           IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1248         }
1249       }
1250       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1251                                                Args, AddressArgs, IntegerArgs);
1252     } else if (Op->isSubClassOf("IRIntBase")) {
1253       std::vector<const Type *> ParamTypes;
1254       for (Record *RParam : Op->getValueAsListOfDefs("params"))
1255         ParamTypes.push_back(getType(RParam, Param));
1256       std::string IntName = std::string(Op->getValueAsString("intname"));
1257       if (Op->getValueAsBit("appendKind"))
1258         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1259       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1260     } else {
1261       PrintFatalError("Unsupported dag node " + Op->getName());
1262     }
1263   }
1264 }
1265 
getCodeForDagArg(DagInit * D,unsigned ArgNum,const Result::Scope & Scope,const Type * Param)1266 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1267                                           const Result::Scope &Scope,
1268                                           const Type *Param) {
1269   Init *Arg = D->getArg(ArgNum);
1270   StringRef Name = D->getArgNameStr(ArgNum);
1271 
1272   if (!Name.empty()) {
1273     if (!isa<UnsetInit>(Arg))
1274       PrintFatalError(
1275           "dag operator argument should not have both a value and a name");
1276     auto it = Scope.find(std::string(Name));
1277     if (it == Scope.end())
1278       PrintFatalError("unrecognized variable name '" + Name + "'");
1279     return it->second;
1280   }
1281 
1282   // Sometimes the Arg is a bit. Prior to multiclass template argument
1283   // checking, integers would sneak through the bit declaration,
1284   // but now they really are bits.
1285   if (auto *BI = dyn_cast<BitInit>(Arg))
1286     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1287                                               BI->getValue());
1288 
1289   if (auto *II = dyn_cast<IntInit>(Arg))
1290     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1291                                               II->getValue());
1292 
1293   if (auto *DI = dyn_cast<DagInit>(Arg))
1294     return getCodeForDag(DI, Scope, Param);
1295 
1296   if (auto *DI = dyn_cast<DefInit>(Arg)) {
1297     Record *Rec = DI->getDef();
1298     if (Rec->isSubClassOf("Type")) {
1299       const Type *T = getType(Rec, Param);
1300       return std::make_shared<TypeResult>(T);
1301     }
1302   }
1303 
1304   PrintError("bad DAG argument type for code generation");
1305   PrintNote("DAG: " + D->getAsString());
1306   if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
1307     PrintNote("argument type: " + Typed->getType()->getAsString());
1308   PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1309 }
1310 
getCodeForArg(unsigned ArgNum,const Type * ArgType,bool Promote,bool Immediate)1311 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1312                                        bool Promote, bool Immediate) {
1313   Result::Ptr V = std::make_shared<BuiltinArgResult>(
1314       ArgNum, isa<PointerType>(ArgType), Immediate);
1315 
1316   if (Promote) {
1317     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1318       if (ST->isInteger() && ST->sizeInBits() < 32)
1319         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1320     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1321       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1322       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1323                                               std::vector<const Type *>{PT},
1324                                               std::vector<Result::Ptr>{V});
1325     }
1326   }
1327 
1328   return V;
1329 }
1330 
ACLEIntrinsic(EmitterBase & ME,Record * R,const Type * Param)1331 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
1332     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1333   // Derive the intrinsic's full name, by taking the name of the
1334   // Tablegen record (or override) and appending the suffix from its
1335   // parameter type. (If the intrinsic is unparametrised, its
1336   // parameter type will be given as Void, which returns the empty
1337   // string for acleSuffix.)
1338   StringRef BaseName =
1339       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1340                                        : R->getName());
1341   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1342   FullName =
1343       (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1344 
1345   // Derive the intrinsic's polymorphic name, by removing components from the
1346   // full name as specified by its 'pnt' member ('polymorphic name type'),
1347   // which indicates how many type suffixes to remove, and any other piece of
1348   // the name that should be removed.
1349   Record *PolymorphicNameType = R->getValueAsDef("pnt");
1350   SmallVector<StringRef, 8> NameParts;
1351   StringRef(FullName).split(NameParts, '_');
1352   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1353                            "NumTypeSuffixesToDiscard");
1354        i < e; ++i)
1355     NameParts.pop_back();
1356   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1357     StringRef ExtraSuffix =
1358         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1359     auto it = NameParts.end();
1360     while (it != NameParts.begin()) {
1361       --it;
1362       if (*it == ExtraSuffix) {
1363         NameParts.erase(it);
1364         break;
1365       }
1366     }
1367   }
1368   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1369 
1370   BuiltinExtension = R->getValueAsString("builtinExtension");
1371 
1372   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1373   NonEvaluating = R->getValueAsBit("nonEvaluating");
1374   HeaderOnly = R->getValueAsBit("headerOnly");
1375 
1376   // Process the intrinsic's argument list.
1377   DagInit *ArgsDag = R->getValueAsDag("args");
1378   Result::Scope Scope;
1379   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1380     Init *TypeInit = ArgsDag->getArg(i);
1381 
1382     bool Promote = true;
1383     if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1384       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1385         Promote = false;
1386 
1387     // Work out the type of the argument, for use in the function prototype in
1388     // the header file.
1389     const Type *ArgType = ME.getType(TypeInit, Param);
1390     ArgTypes.push_back(ArgType);
1391 
1392     // If the argument is a subclass of Immediate, record the details about
1393     // what values it can take, for Sema checking.
1394     bool Immediate = false;
1395     if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1396       Record *TypeRec = TypeDI->getDef();
1397       if (TypeRec->isSubClassOf("Immediate")) {
1398         Immediate = true;
1399 
1400         Record *Bounds = TypeRec->getValueAsDef("bounds");
1401         ImmediateArg &IA = ImmediateArgs[i];
1402         if (Bounds->isSubClassOf("IB_ConstRange")) {
1403           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1404           IA.i1 = Bounds->getValueAsInt("lo");
1405           IA.i2 = Bounds->getValueAsInt("hi");
1406         } else if (Bounds->getName() == "IB_UEltValue") {
1407           IA.boundsType = ImmediateArg::BoundsType::UInt;
1408           IA.i1 = Param->sizeInBits();
1409         } else if (Bounds->getName() == "IB_LaneIndex") {
1410           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1411           IA.i1 = 0;
1412           IA.i2 = 128 / Param->sizeInBits() - 1;
1413         } else if (Bounds->isSubClassOf("IB_EltBit")) {
1414           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1415           IA.i1 = Bounds->getValueAsInt("base");
1416           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1417           IA.i2 = IA.i1 + T->sizeInBits() - 1;
1418         } else {
1419           PrintFatalError("unrecognised ImmediateBounds subclass");
1420         }
1421 
1422         IA.ArgType = ArgType;
1423 
1424         if (!TypeRec->isValueUnset("extra")) {
1425           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1426           if (!TypeRec->isValueUnset("extraarg"))
1427             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1428         }
1429       }
1430     }
1431 
1432     // The argument will usually have a name in the arguments dag, which goes
1433     // into the variable-name scope that the code gen will refer to.
1434     StringRef ArgName = ArgsDag->getArgNameStr(i);
1435     if (!ArgName.empty())
1436       Scope[std::string(ArgName)] =
1437           ME.getCodeForArg(i, ArgType, Promote, Immediate);
1438   }
1439 
1440   // Finally, go through the codegen dag and translate it into a Result object
1441   // (with an arbitrary DAG of depended-on Results hanging off it).
1442   DagInit *CodeDag = R->getValueAsDag("codegen");
1443   Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1444   if (MainOp->isSubClassOf("CustomCodegen")) {
1445     // Or, if it's the special case of CustomCodegen, just accumulate
1446     // a list of parameters we're going to assign to variables before
1447     // breaking from the loop.
1448     CustomCodeGenArgs["CustomCodeGenType"] =
1449         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1450     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1451       StringRef Name = CodeDag->getArgNameStr(i);
1452       if (Name.empty()) {
1453         PrintFatalError("Operands to CustomCodegen should have names");
1454       } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1455         CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1456       } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1457         CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1458       } else {
1459         PrintFatalError("Operands to CustomCodegen should be integers");
1460       }
1461     }
1462   } else {
1463     Code = ME.getCodeForDag(CodeDag, Scope, Param);
1464   }
1465 }
1466 
EmitterBase(RecordKeeper & Records)1467 EmitterBase::EmitterBase(RecordKeeper &Records) {
1468   // Construct the whole EmitterBase.
1469 
1470   // First, look up all the instances of PrimitiveType. This gives us the list
1471   // of vector typedefs we have to put in arm_mve.h, and also allows us to
1472   // collect all the useful ScalarType instances into a big list so that we can
1473   // use it for operations such as 'find the unsigned version of this signed
1474   // integer type'.
1475   for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1476     ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1477 
1478   // Now go through the instances of Intrinsic, and for each one, iterate
1479   // through its list of type parameters making an ACLEIntrinsic for each one.
1480   for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1481     for (Record *RParam : R->getValueAsListOfDefs("params")) {
1482       const Type *Param = getType(RParam, getVoidType());
1483       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1484       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1485     }
1486   }
1487 }
1488 
1489 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1490 /// having to point it at one elsewhere. (In other words, it works just like
1491 /// std::ostringstream; also, this makes it convenient to declare a whole array
1492 /// of them at once.)
1493 ///
1494 /// We have to set this up using multiple inheritance, to ensure that the
1495 /// string member has been constructed before raw_string_ostream's constructor
1496 /// is given a pointer to it.
1497 class string_holder {
1498 protected:
1499   std::string S;
1500 };
1501 class raw_self_contained_string_ostream : private string_holder,
1502                                           public raw_string_ostream {
1503 public:
raw_self_contained_string_ostream()1504   raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1505 };
1506 
1507 const char LLVMLicenseHeader[] =
1508     " *\n"
1509     " *\n"
1510     " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1511     " Exceptions.\n"
1512     " * See https://llvm.org/LICENSE.txt for license information.\n"
1513     " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1514     " *\n"
1515     " *===-----------------------------------------------------------------"
1516     "------===\n"
1517     " */\n"
1518     "\n";
1519 
1520 // Machinery for the grouping of intrinsics by similar codegen.
1521 //
1522 // The general setup is that 'MergeableGroup' stores the things that a set of
1523 // similarly shaped intrinsics have in common: the text of their code
1524 // generation, and the number and type of their parameter variables.
1525 // MergeableGroup is the key in a std::map whose value is a set of
1526 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1527 // specializes the MergeableGroup's generic description: the function name and
1528 // the _values_ of the parameter variables.
1529 
1530 struct ComparableStringVector : std::vector<std::string> {
1531   // Infrastructure: a derived class of vector<string> which comes with an
1532   // ordering, so that it can be used as a key in maps and an element in sets.
1533   // There's no requirement on the ordering beyond being deterministic.
operator <__anon819a2c470111::ComparableStringVector1534   bool operator<(const ComparableStringVector &rhs) const {
1535     if (size() != rhs.size())
1536       return size() < rhs.size();
1537     for (size_t i = 0, e = size(); i < e; ++i)
1538       if ((*this)[i] != rhs[i])
1539         return (*this)[i] < rhs[i];
1540     return false;
1541   }
1542 };
1543 
1544 struct OutputIntrinsic {
1545   const ACLEIntrinsic *Int;
1546   std::string Name;
1547   ComparableStringVector ParamValues;
operator <__anon819a2c470111::OutputIntrinsic1548   bool operator<(const OutputIntrinsic &rhs) const {
1549     if (Name != rhs.Name)
1550       return Name < rhs.Name;
1551     return ParamValues < rhs.ParamValues;
1552   }
1553 };
1554 struct MergeableGroup {
1555   std::string Code;
1556   ComparableStringVector ParamTypes;
operator <__anon819a2c470111::MergeableGroup1557   bool operator<(const MergeableGroup &rhs) const {
1558     if (Code != rhs.Code)
1559       return Code < rhs.Code;
1560     return ParamTypes < rhs.ParamTypes;
1561   }
1562 };
1563 
EmitBuiltinCG(raw_ostream & OS)1564 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1565   // Pass 1: generate code for all the intrinsics as if every type or constant
1566   // that can possibly be abstracted out into a parameter variable will be.
1567   // This identifies the sets of intrinsics we'll group together into a single
1568   // piece of code generation.
1569 
1570   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1571 
1572   for (const auto &kv : ACLEIntrinsics) {
1573     const ACLEIntrinsic &Int = *kv.second;
1574     if (Int.headerOnly())
1575       continue;
1576 
1577     MergeableGroup MG;
1578     OutputIntrinsic OI;
1579 
1580     OI.Int = &Int;
1581     OI.Name = Int.fullName();
1582     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1583     raw_string_ostream OS(MG.Code);
1584     Int.genCode(OS, ParamAllocPrelim, 1);
1585     OS.flush();
1586 
1587     MergeableGroupsPrelim[MG].insert(OI);
1588   }
1589 
1590   // Pass 2: for each of those groups, optimize the parameter variable set by
1591   // eliminating 'parameters' that are the same for all intrinsics in the
1592   // group, and merging together pairs of parameter variables that take the
1593   // same values as each other for all intrinsics in the group.
1594 
1595   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1596 
1597   for (const auto &kv : MergeableGroupsPrelim) {
1598     const MergeableGroup &MG = kv.first;
1599     std::vector<int> ParamNumbers;
1600     std::map<ComparableStringVector, int> ParamNumberMap;
1601 
1602     // Loop over the parameters for this group.
1603     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1604       // Is this parameter the same for all intrinsics in the group?
1605       const OutputIntrinsic &OI_first = *kv.second.begin();
1606       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1607         return OI.ParamValues[i] == OI_first.ParamValues[i];
1608       });
1609 
1610       // If so, record it as -1, meaning 'no parameter variable needed'. Then
1611       // the corresponding call to allocParam in pass 2 will not generate a
1612       // variable at all, and just use the value inline.
1613       if (Constant) {
1614         ParamNumbers.push_back(-1);
1615         continue;
1616       }
1617 
1618       // Otherwise, make a list of the values this parameter takes for each
1619       // intrinsic, and see if that value vector matches anything we already
1620       // have. We also record the parameter type, so that we don't accidentally
1621       // match up two parameter variables with different types. (Not that
1622       // there's much chance of them having textually equivalent values, but in
1623       // _principle_ it could happen.)
1624       ComparableStringVector key;
1625       key.push_back(MG.ParamTypes[i]);
1626       for (const auto &OI : kv.second)
1627         key.push_back(OI.ParamValues[i]);
1628 
1629       auto Found = ParamNumberMap.find(key);
1630       if (Found != ParamNumberMap.end()) {
1631         // Yes, an existing parameter variable can be reused for this.
1632         ParamNumbers.push_back(Found->second);
1633         continue;
1634       }
1635 
1636       // No, we need a new parameter variable.
1637       int ExistingIndex = ParamNumberMap.size();
1638       ParamNumberMap[key] = ExistingIndex;
1639       ParamNumbers.push_back(ExistingIndex);
1640     }
1641 
1642     // Now we're ready to do the pass 2 code generation, which will emit the
1643     // reduced set of parameter variables we've just worked out.
1644 
1645     for (const auto &OI_prelim : kv.second) {
1646       const ACLEIntrinsic *Int = OI_prelim.Int;
1647 
1648       MergeableGroup MG;
1649       OutputIntrinsic OI;
1650 
1651       OI.Int = OI_prelim.Int;
1652       OI.Name = OI_prelim.Name;
1653       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1654                                        &ParamNumbers};
1655       raw_string_ostream OS(MG.Code);
1656       Int->genCode(OS, ParamAlloc, 2);
1657       OS.flush();
1658 
1659       MergeableGroups[MG].insert(OI);
1660     }
1661   }
1662 
1663   // Output the actual C++ code.
1664 
1665   for (const auto &kv : MergeableGroups) {
1666     const MergeableGroup &MG = kv.first;
1667 
1668     // List of case statements in the main switch on BuiltinID, and an open
1669     // brace.
1670     const char *prefix = "";
1671     for (const auto &OI : kv.second) {
1672       OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1673          << "_" << OI.Name << ":";
1674 
1675       prefix = "\n";
1676     }
1677     OS << " {\n";
1678 
1679     if (!MG.ParamTypes.empty()) {
1680       // If we've got some parameter variables, then emit their declarations...
1681       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1682         StringRef Type = MG.ParamTypes[i];
1683         OS << "  " << Type;
1684         if (!Type.ends_with("*"))
1685           OS << " ";
1686         OS << " Param" << utostr(i) << ";\n";
1687       }
1688 
1689       // ... and an inner switch on BuiltinID that will fill them in with each
1690       // individual intrinsic's values.
1691       OS << "  switch (BuiltinID) {\n";
1692       for (const auto &OI : kv.second) {
1693         OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1694            << "_" << OI.Name << ":\n";
1695         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1696           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1697         OS << "    break;\n";
1698       }
1699       OS << "  }\n";
1700     }
1701 
1702     // And finally, output the code, and close the outer pair of braces. (The
1703     // code will always end with a 'return' statement, so we need not insert a
1704     // 'break' here.)
1705     OS << MG.Code << "}\n";
1706   }
1707 }
1708 
EmitBuiltinAliases(raw_ostream & OS)1709 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1710   // Build a sorted table of:
1711   // - intrinsic id number
1712   // - full name
1713   // - polymorphic name or -1
1714   StringToOffsetTable StringTable;
1715   OS << "static const IntrinToName MapData[] = {\n";
1716   for (const auto &kv : ACLEIntrinsics) {
1717     const ACLEIntrinsic &Int = *kv.second;
1718     if (Int.headerOnly())
1719       continue;
1720     int32_t ShortNameOffset =
1721         Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1722                           : -1;
1723     OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1724        << Int.fullName() << ", "
1725        << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1726        << ShortNameOffset << "},\n";
1727   }
1728   OS << "};\n\n";
1729 
1730   OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1731 
1732   OS << "static const char IntrinNames[] = {\n";
1733   StringTable.EmitString(OS);
1734   OS << "};\n\n";
1735 }
1736 
GroupSemaChecks(std::map<std::string,std::set<std::string>> & Checks)1737 void EmitterBase::GroupSemaChecks(
1738     std::map<std::string, std::set<std::string>> &Checks) {
1739   for (const auto &kv : ACLEIntrinsics) {
1740     const ACLEIntrinsic &Int = *kv.second;
1741     if (Int.headerOnly())
1742       continue;
1743     std::string Check = Int.genSema();
1744     if (!Check.empty())
1745       Checks[Check].insert(Int.fullName());
1746   }
1747 }
1748 
1749 // -----------------------------------------------------------------------------
1750 // The class used for generating arm_mve.h and related Clang bits
1751 //
1752 
1753 class MveEmitter : public EmitterBase {
1754 public:
MveEmitter(RecordKeeper & Records)1755   MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
1756   void EmitHeader(raw_ostream &OS) override;
1757   void EmitBuiltinDef(raw_ostream &OS) override;
1758   void EmitBuiltinSema(raw_ostream &OS) override;
1759 };
1760 
EmitHeader(raw_ostream & OS)1761 void MveEmitter::EmitHeader(raw_ostream &OS) {
1762   // Accumulate pieces of the header file that will be enabled under various
1763   // different combinations of #ifdef. The index into parts[] is made up of
1764   // the following bit flags.
1765   constexpr unsigned Float = 1;
1766   constexpr unsigned UseUserNamespace = 2;
1767 
1768   constexpr unsigned NumParts = 4;
1769   raw_self_contained_string_ostream parts[NumParts];
1770 
1771   // Write typedefs for all the required vector types, and a few scalar
1772   // types that don't already have the name we want them to have.
1773 
1774   parts[0] << "typedef uint16_t mve_pred16_t;\n";
1775   parts[Float] << "typedef __fp16 float16_t;\n"
1776                   "typedef float float32_t;\n";
1777   for (const auto &kv : ScalarTypes) {
1778     const ScalarType *ST = kv.second.get();
1779     if (ST->hasNonstandardName())
1780       continue;
1781     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1782     const VectorType *VT = getVectorType(ST);
1783 
1784     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1785        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1786        << VT->cName() << ";\n";
1787 
1788     // Every vector type also comes with a pair of multi-vector types for
1789     // the VLD2 and VLD4 instructions.
1790     for (unsigned n = 2; n <= 4; n += 2) {
1791       const MultiVectorType *MT = getMultiVectorType(n, VT);
1792       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1793          << MT->cName() << ";\n";
1794     }
1795   }
1796   parts[0] << "\n";
1797   parts[Float] << "\n";
1798 
1799   // Write declarations for all the intrinsics.
1800 
1801   for (const auto &kv : ACLEIntrinsics) {
1802     const ACLEIntrinsic &Int = *kv.second;
1803 
1804     // We generate each intrinsic twice, under its full unambiguous
1805     // name and its shorter polymorphic name (if the latter exists).
1806     for (bool Polymorphic : {false, true}) {
1807       if (Polymorphic && !Int.polymorphic())
1808         continue;
1809       if (!Polymorphic && Int.polymorphicOnly())
1810         continue;
1811 
1812       // We also generate each intrinsic under a name like __arm_vfooq
1813       // (which is in C language implementation namespace, so it's
1814       // safe to define in any conforming user program) and a shorter
1815       // one like vfooq (which is in user namespace, so a user might
1816       // reasonably have used it for something already). If so, they
1817       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1818       // including the header, which will suppress the shorter names
1819       // and leave only the implementation-namespace ones. Then they
1820       // have to write __arm_vfooq everywhere, of course.
1821 
1822       for (bool UserNamespace : {false, true}) {
1823         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1824                                 (UserNamespace ? UseUserNamespace : 0)];
1825 
1826         // Make the name of the function in this declaration.
1827 
1828         std::string FunctionName =
1829             Polymorphic ? Int.shortName() : Int.fullName();
1830         if (!UserNamespace)
1831           FunctionName = "__arm_" + FunctionName;
1832 
1833         // Make strings for the types involved in the function's
1834         // prototype.
1835 
1836         std::string RetTypeName = Int.returnType()->cName();
1837         if (!StringRef(RetTypeName).ends_with("*"))
1838           RetTypeName += " ";
1839 
1840         std::vector<std::string> ArgTypeNames;
1841         for (const Type *ArgTypePtr : Int.argTypes())
1842           ArgTypeNames.push_back(ArgTypePtr->cName());
1843         std::string ArgTypesString =
1844             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1845 
1846         // Emit the actual declaration. All these functions are
1847         // declared 'static inline' without a body, which is fine
1848         // provided clang recognizes them as builtins, and has the
1849         // effect that this type signature is used in place of the one
1850         // that Builtins.td didn't provide. That's how we can get
1851         // structure types that weren't defined until this header was
1852         // included to be part of the type signature of a builtin that
1853         // was known to clang already.
1854         //
1855         // The declarations use __attribute__(__clang_arm_builtin_alias),
1856         // so that each function declared will be recognized as the
1857         // appropriate MVE builtin in spite of its user-facing name.
1858         //
1859         // (That's better than making them all wrapper functions,
1860         // partly because it avoids any compiler error message citing
1861         // the wrapper function definition instead of the user's code,
1862         // and mostly because some MVE intrinsics have arguments
1863         // required to be compile-time constants, and that property
1864         // can't be propagated through a wrapper function. It can be
1865         // propagated through a macro, but macros can't be overloaded
1866         // on argument types very easily - you have to use _Generic,
1867         // which makes error messages very confusing when the user
1868         // gets it wrong.)
1869         //
1870         // Finally, the polymorphic versions of the intrinsics are
1871         // also defined with __attribute__(overloadable), so that when
1872         // the same name is defined with several type signatures, the
1873         // right thing happens. Each one of the overloaded
1874         // declarations is given a different builtin id, which
1875         // has exactly the effect we want: first clang resolves the
1876         // overload to the right function, then it knows which builtin
1877         // it's referring to, and then the Sema checking for that
1878         // builtin can check further things like the constant
1879         // arguments.
1880         //
1881         // One more subtlety is the newline just before the return
1882         // type name. That's a cosmetic tweak to make the error
1883         // messages legible if the user gets the types wrong in a call
1884         // to a polymorphic function: this way, clang will print just
1885         // the _final_ line of each declaration in the header, to show
1886         // the type signatures that would have been legal. So all the
1887         // confusing machinery with __attribute__ is left out of the
1888         // error message, and the user sees something that's more or
1889         // less self-documenting: "here's a list of actually readable
1890         // type signatures for vfooq(), and here's why each one didn't
1891         // match your call".
1892 
1893         OS << "static __inline__ __attribute__(("
1894            << (Polymorphic ? "__overloadable__, " : "")
1895            << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1896            << ")))\n"
1897            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1898       }
1899     }
1900   }
1901   for (auto &part : parts)
1902     part << "\n";
1903 
1904   // Now we've finished accumulating bits and pieces into the parts[] array.
1905   // Put it all together to write the final output file.
1906 
1907   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1908         "-----------------------------------===\n"
1909      << LLVMLicenseHeader
1910      << "#ifndef __ARM_MVE_H\n"
1911         "#define __ARM_MVE_H\n"
1912         "\n"
1913         "#if !__ARM_FEATURE_MVE\n"
1914         "#error \"MVE support not enabled\"\n"
1915         "#endif\n"
1916         "\n"
1917         "#include <stdint.h>\n"
1918         "\n"
1919         "#ifdef __cplusplus\n"
1920         "extern \"C\" {\n"
1921         "#endif\n"
1922         "\n";
1923 
1924   for (size_t i = 0; i < NumParts; ++i) {
1925     std::vector<std::string> conditions;
1926     if (i & Float)
1927       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1928     if (i & UseUserNamespace)
1929       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1930 
1931     std::string condition =
1932         join(std::begin(conditions), std::end(conditions), " && ");
1933     if (!condition.empty())
1934       OS << "#if " << condition << "\n\n";
1935     OS << parts[i].str();
1936     if (!condition.empty())
1937       OS << "#endif /* " << condition << " */\n\n";
1938   }
1939 
1940   OS << "#ifdef __cplusplus\n"
1941         "} /* extern \"C\" */\n"
1942         "#endif\n"
1943         "\n"
1944         "#endif /* __ARM_MVE_H */\n";
1945 }
1946 
EmitBuiltinDef(raw_ostream & OS)1947 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1948   for (const auto &kv : ACLEIntrinsics) {
1949     const ACLEIntrinsic &Int = *kv.second;
1950     OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1951        << ", \"\", \"n\")\n";
1952   }
1953 
1954   std::set<std::string> ShortNamesSeen;
1955 
1956   for (const auto &kv : ACLEIntrinsics) {
1957     const ACLEIntrinsic &Int = *kv.second;
1958     if (Int.polymorphic()) {
1959       StringRef Name = Int.shortName();
1960       if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1961         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1962         if (Int.nonEvaluating())
1963           OS << "u"; // indicate that this builtin doesn't evaluate its args
1964         OS << "\")\n";
1965         ShortNamesSeen.insert(std::string(Name));
1966       }
1967     }
1968   }
1969 }
1970 
EmitBuiltinSema(raw_ostream & OS)1971 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1972   std::map<std::string, std::set<std::string>> Checks;
1973   GroupSemaChecks(Checks);
1974 
1975   for (const auto &kv : Checks) {
1976     for (StringRef Name : kv.second)
1977       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1978     OS << "  return " << kv.first;
1979   }
1980 }
1981 
1982 // -----------------------------------------------------------------------------
1983 // Class that describes an ACLE intrinsic implemented as a macro.
1984 //
1985 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1986 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1987 // fixed types.
1988 
1989 class FunctionMacro {
1990   std::vector<StringRef> Params;
1991   StringRef Definition;
1992 
1993 public:
1994   FunctionMacro(const Record &R);
1995 
getParams() const1996   const std::vector<StringRef> &getParams() const { return Params; }
getDefinition() const1997   StringRef getDefinition() const { return Definition; }
1998 };
1999 
FunctionMacro(const Record & R)2000 FunctionMacro::FunctionMacro(const Record &R) {
2001   Params = R.getValueAsListOfStrings("params");
2002   Definition = R.getValueAsString("definition");
2003 }
2004 
2005 // -----------------------------------------------------------------------------
2006 // The class used for generating arm_cde.h and related Clang bits
2007 //
2008 
2009 class CdeEmitter : public EmitterBase {
2010   std::map<StringRef, FunctionMacro> FunctionMacros;
2011 
2012 public:
2013   CdeEmitter(RecordKeeper &Records);
2014   void EmitHeader(raw_ostream &OS) override;
2015   void EmitBuiltinDef(raw_ostream &OS) override;
2016   void EmitBuiltinSema(raw_ostream &OS) override;
2017 };
2018 
CdeEmitter(RecordKeeper & Records)2019 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
2020   for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2021     FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2022 }
2023 
EmitHeader(raw_ostream & OS)2024 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2025   // Accumulate pieces of the header file that will be enabled under various
2026   // different combinations of #ifdef. The index into parts[] is one of the
2027   // following:
2028   constexpr unsigned None = 0;
2029   constexpr unsigned MVE = 1;
2030   constexpr unsigned MVEFloat = 2;
2031 
2032   constexpr unsigned NumParts = 3;
2033   raw_self_contained_string_ostream parts[NumParts];
2034 
2035   // Write typedefs for all the required vector types, and a few scalar
2036   // types that don't already have the name we want them to have.
2037 
2038   parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2039   parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2040                      "typedef float float32_t;\n";
2041   for (const auto &kv : ScalarTypes) {
2042     const ScalarType *ST = kv.second.get();
2043     if (ST->hasNonstandardName())
2044       continue;
2045     // We don't have float64x2_t
2046     if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2047       continue;
2048     raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2049     const VectorType *VT = getVectorType(ST);
2050 
2051     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2052        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2053        << VT->cName() << ";\n";
2054   }
2055   parts[MVE] << "\n";
2056   parts[MVEFloat] << "\n";
2057 
2058   // Write declarations for all the intrinsics.
2059 
2060   for (const auto &kv : ACLEIntrinsics) {
2061     const ACLEIntrinsic &Int = *kv.second;
2062 
2063     // We generate each intrinsic twice, under its full unambiguous
2064     // name and its shorter polymorphic name (if the latter exists).
2065     for (bool Polymorphic : {false, true}) {
2066       if (Polymorphic && !Int.polymorphic())
2067         continue;
2068       if (!Polymorphic && Int.polymorphicOnly())
2069         continue;
2070 
2071       raw_ostream &OS =
2072           parts[Int.requiresFloat() ? MVEFloat
2073                                     : Int.requiresMVE() ? MVE : None];
2074 
2075       // Make the name of the function in this declaration.
2076       std::string FunctionName =
2077           "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2078 
2079       // Make strings for the types involved in the function's
2080       // prototype.
2081       std::string RetTypeName = Int.returnType()->cName();
2082       if (!StringRef(RetTypeName).ends_with("*"))
2083         RetTypeName += " ";
2084 
2085       std::vector<std::string> ArgTypeNames;
2086       for (const Type *ArgTypePtr : Int.argTypes())
2087         ArgTypeNames.push_back(ArgTypePtr->cName());
2088       std::string ArgTypesString =
2089           join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2090 
2091       // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2092       // comments
2093       OS << "static __inline__ __attribute__(("
2094          << (Polymorphic ? "__overloadable__, " : "")
2095          << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2096          << "_" << Int.fullName() << ")))\n"
2097          << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2098     }
2099   }
2100 
2101   for (const auto &kv : FunctionMacros) {
2102     StringRef Name = kv.first;
2103     const FunctionMacro &FM = kv.second;
2104 
2105     raw_ostream &OS = parts[MVE];
2106     OS << "#define "
2107        << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2108        << FM.getDefinition() << "\n";
2109   }
2110 
2111   for (auto &part : parts)
2112     part << "\n";
2113 
2114   // Now we've finished accumulating bits and pieces into the parts[] array.
2115   // Put it all together to write the final output file.
2116 
2117   OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2118         "-----------------------------------===\n"
2119      << LLVMLicenseHeader
2120      << "#ifndef __ARM_CDE_H\n"
2121         "#define __ARM_CDE_H\n"
2122         "\n"
2123         "#if !__ARM_FEATURE_CDE\n"
2124         "#error \"CDE support not enabled\"\n"
2125         "#endif\n"
2126         "\n"
2127         "#include <stdint.h>\n"
2128         "\n"
2129         "#ifdef __cplusplus\n"
2130         "extern \"C\" {\n"
2131         "#endif\n"
2132         "\n";
2133 
2134   for (size_t i = 0; i < NumParts; ++i) {
2135     std::string condition;
2136     if (i == MVEFloat)
2137       condition = "__ARM_FEATURE_MVE & 2";
2138     else if (i == MVE)
2139       condition = "__ARM_FEATURE_MVE";
2140 
2141     if (!condition.empty())
2142       OS << "#if " << condition << "\n\n";
2143     OS << parts[i].str();
2144     if (!condition.empty())
2145       OS << "#endif /* " << condition << " */\n\n";
2146   }
2147 
2148   OS << "#ifdef __cplusplus\n"
2149         "} /* extern \"C\" */\n"
2150         "#endif\n"
2151         "\n"
2152         "#endif /* __ARM_CDE_H */\n";
2153 }
2154 
EmitBuiltinDef(raw_ostream & OS)2155 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2156   for (const auto &kv : ACLEIntrinsics) {
2157     if (kv.second->headerOnly())
2158       continue;
2159     const ACLEIntrinsic &Int = *kv.second;
2160     OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2161        << ", \"\", \"ncU\")\n";
2162   }
2163 }
2164 
EmitBuiltinSema(raw_ostream & OS)2165 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2166   std::map<std::string, std::set<std::string>> Checks;
2167   GroupSemaChecks(Checks);
2168 
2169   for (const auto &kv : Checks) {
2170     for (StringRef Name : kv.second)
2171       OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2172     OS << "  Err = " << kv.first << "  break;\n";
2173   }
2174 }
2175 
2176 } // namespace
2177 
2178 namespace clang {
2179 
2180 // MVE
2181 
EmitMveHeader(RecordKeeper & Records,raw_ostream & OS)2182 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
2183   MveEmitter(Records).EmitHeader(OS);
2184 }
2185 
EmitMveBuiltinDef(RecordKeeper & Records,raw_ostream & OS)2186 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2187   MveEmitter(Records).EmitBuiltinDef(OS);
2188 }
2189 
EmitMveBuiltinSema(RecordKeeper & Records,raw_ostream & OS)2190 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2191   MveEmitter(Records).EmitBuiltinSema(OS);
2192 }
2193 
EmitMveBuiltinCG(RecordKeeper & Records,raw_ostream & OS)2194 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2195   MveEmitter(Records).EmitBuiltinCG(OS);
2196 }
2197 
EmitMveBuiltinAliases(RecordKeeper & Records,raw_ostream & OS)2198 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2199   MveEmitter(Records).EmitBuiltinAliases(OS);
2200 }
2201 
2202 // CDE
2203 
EmitCdeHeader(RecordKeeper & Records,raw_ostream & OS)2204 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
2205   CdeEmitter(Records).EmitHeader(OS);
2206 }
2207 
EmitCdeBuiltinDef(RecordKeeper & Records,raw_ostream & OS)2208 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2209   CdeEmitter(Records).EmitBuiltinDef(OS);
2210 }
2211 
EmitCdeBuiltinSema(RecordKeeper & Records,raw_ostream & OS)2212 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2213   CdeEmitter(Records).EmitBuiltinSema(OS);
2214 }
2215 
EmitCdeBuiltinCG(RecordKeeper & Records,raw_ostream & OS)2216 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2217   CdeEmitter(Records).EmitBuiltinCG(OS);
2218 }
2219 
EmitCdeBuiltinAliases(RecordKeeper & Records,raw_ostream & OS)2220 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2221   CdeEmitter(Records).EmitBuiltinAliases(OS);
2222 }
2223 
2224 } // end namespace clang
2225