1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sx.h>
45 #include <sys/vnode.h>
46
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vnode_pager.h>
57 #include <vm/swap_pager.h>
58 #include <vm/uma.h>
59
60 #include <machine/cpu.h>
61 #include <machine/pcb.h>
62 #include <machine/smp.h>
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66 #include <x86/ifunc.h>
67
68 #include <machine/vmm.h>
69 #include <machine/vmm_instruction_emul.h>
70 #include <machine/vmm_snapshot.h>
71
72 #include <dev/vmm/vmm_dev.h>
73 #include <dev/vmm/vmm_ktr.h>
74 #include <dev/vmm/vmm_mem.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 /*
135 * Initialization:
136 * (o) initialized the first time the VM is created
137 * (i) initialized when VM is created and when it is reinitialized
138 * (x) initialized before use
139 *
140 * Locking:
141 * [m] mem_segs_lock
142 * [r] rendezvous_mtx
143 * [v] reads require one frozen vcpu, writes require freezing all vcpus
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157 int suspend; /* (i) stop VM execution */
158 bool dying; /* (o) is dying */
159 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164 vm_rendezvous_func_t rendezvous_func;
165 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166 struct vmspace *vmspace; /* (o) guest's address space */
167 struct vm_mem mem; /* (i) [m+v] guest memory */
168 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
169 struct vcpu **vcpu; /* (o) guest vcpus */
170 /* The following describe the vm cpu topology */
171 uint16_t sockets; /* (o) num of sockets */
172 uint16_t cores; /* (o) num of cores/socket */
173 uint16_t threads; /* (o) num of threads/core */
174 uint16_t maxcpus; /* (o) max pluggable cpus */
175 struct sx vcpus_init_lock; /* (o) */
176 };
177
178 #define VMM_CTR0(vcpu, format) \
179 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
180
181 #define VMM_CTR1(vcpu, format, p1) \
182 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
183
184 #define VMM_CTR2(vcpu, format, p1, p2) \
185 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
186
187 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
188 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
189
190 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
191 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
192
193 static int vmm_initialized;
194
195 static void vmmops_panic(void);
196
197 static void
vmmops_panic(void)198 vmmops_panic(void)
199 {
200 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
201 }
202
203 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
204 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \
205 { \
206 if (vmm_is_intel()) \
207 return (vmm_ops_intel.opname); \
208 else if (vmm_is_svm()) \
209 return (vmm_ops_amd.opname); \
210 else \
211 return ((ret_type (*)args)vmmops_panic); \
212 }
213
214 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
215 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
216 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
217 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
218 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
219 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
220 struct vm_eventinfo *info))
221 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
222 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
223 int vcpu_id))
224 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
225 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
226 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
227 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
228 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
229 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
230 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
231 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
232 vm_offset_t max))
233 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
234 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
235 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
236 #ifdef BHYVE_SNAPSHOT
237 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
238 struct vm_snapshot_meta *meta))
239 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
240 #endif
241
242 SDT_PROVIDER_DEFINE(vmm);
243
244 static MALLOC_DEFINE(M_VM, "vm", "vm");
245
246 /* statistics */
247 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
248
249 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
250 NULL);
251
252 /*
253 * Halt the guest if all vcpus are executing a HLT instruction with
254 * interrupts disabled.
255 */
256 static int halt_detection_enabled = 1;
257 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
258 &halt_detection_enabled, 0,
259 "Halt VM if all vcpus execute HLT with interrupts disabled");
260
261 static int vmm_ipinum;
262 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
263 "IPI vector used for vcpu notifications");
264
265 static int trace_guest_exceptions;
266 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
267 &trace_guest_exceptions, 0,
268 "Trap into hypervisor on all guest exceptions and reflect them back");
269
270 static int trap_wbinvd;
271 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
272 "WBINVD triggers a VM-exit");
273
274 u_int vm_maxcpu;
275 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
276 &vm_maxcpu, 0, "Maximum number of vCPUs");
277
278 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
279
280 /* global statistics */
281 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
282 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
283 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
284 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
285 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
286 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
287 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
288 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
289 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
290 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
291 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
292 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
293 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
294 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
295 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
296 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
297 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
298 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
299 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
300 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
301 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
302
303 /*
304 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
305 * counts as well as range of vpid values for VT-x and by the capacity
306 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
307 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
308 */
309 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
310
311 #ifdef KTR
312 static const char *
vcpu_state2str(enum vcpu_state state)313 vcpu_state2str(enum vcpu_state state)
314 {
315
316 switch (state) {
317 case VCPU_IDLE:
318 return ("idle");
319 case VCPU_FROZEN:
320 return ("frozen");
321 case VCPU_RUNNING:
322 return ("running");
323 case VCPU_SLEEPING:
324 return ("sleeping");
325 default:
326 return ("unknown");
327 }
328 }
329 #endif
330
331 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)332 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
333 {
334 vmmops_vlapic_cleanup(vcpu->vlapic);
335 vmmops_vcpu_cleanup(vcpu->cookie);
336 vcpu->cookie = NULL;
337 if (destroy) {
338 vmm_stat_free(vcpu->stats);
339 fpu_save_area_free(vcpu->guestfpu);
340 vcpu_lock_destroy(vcpu);
341 free(vcpu, M_VM);
342 }
343 }
344
345 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)346 vcpu_alloc(struct vm *vm, int vcpu_id)
347 {
348 struct vcpu *vcpu;
349
350 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
351 ("vcpu_init: invalid vcpu %d", vcpu_id));
352
353 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
354 vcpu_lock_init(vcpu);
355 vcpu->state = VCPU_IDLE;
356 vcpu->hostcpu = NOCPU;
357 vcpu->vcpuid = vcpu_id;
358 vcpu->vm = vm;
359 vcpu->guestfpu = fpu_save_area_alloc();
360 vcpu->stats = vmm_stat_alloc();
361 vcpu->tsc_offset = 0;
362 return (vcpu);
363 }
364
365 static void
vcpu_init(struct vcpu * vcpu)366 vcpu_init(struct vcpu *vcpu)
367 {
368 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
369 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
370 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
371 vcpu->reqidle = 0;
372 vcpu->exitintinfo = 0;
373 vcpu->nmi_pending = 0;
374 vcpu->extint_pending = 0;
375 vcpu->exception_pending = 0;
376 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
377 fpu_save_area_reset(vcpu->guestfpu);
378 vmm_stat_init(vcpu->stats);
379 }
380
381 int
vcpu_trace_exceptions(struct vcpu * vcpu)382 vcpu_trace_exceptions(struct vcpu *vcpu)
383 {
384
385 return (trace_guest_exceptions);
386 }
387
388 int
vcpu_trap_wbinvd(struct vcpu * vcpu)389 vcpu_trap_wbinvd(struct vcpu *vcpu)
390 {
391 return (trap_wbinvd);
392 }
393
394 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)395 vm_exitinfo(struct vcpu *vcpu)
396 {
397 return (&vcpu->exitinfo);
398 }
399
400 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)401 vm_exitinfo_cpuset(struct vcpu *vcpu)
402 {
403 return (&vcpu->exitinfo_cpuset);
404 }
405
406 static int
vmm_init(void)407 vmm_init(void)
408 {
409 if (!vmm_is_hw_supported())
410 return (ENXIO);
411
412 vm_maxcpu = mp_ncpus;
413 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
414
415 if (vm_maxcpu > VM_MAXCPU) {
416 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
417 vm_maxcpu = VM_MAXCPU;
418 }
419 if (vm_maxcpu == 0)
420 vm_maxcpu = 1;
421
422 vmm_host_state_init();
423
424 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
425 &IDTVEC(justreturn));
426 if (vmm_ipinum < 0)
427 vmm_ipinum = IPI_AST;
428
429 vmm_suspend_p = vmmops_modsuspend;
430 vmm_resume_p = vmmops_modresume;
431
432 return (vmmops_modinit(vmm_ipinum));
433 }
434
435 static int
vmm_handler(module_t mod,int what,void * arg)436 vmm_handler(module_t mod, int what, void *arg)
437 {
438 int error;
439
440 switch (what) {
441 case MOD_LOAD:
442 if (vmm_is_hw_supported()) {
443 error = vmmdev_init();
444 if (error != 0)
445 break;
446 error = vmm_init();
447 if (error == 0)
448 vmm_initialized = 1;
449 else
450 (void)vmmdev_cleanup();
451 } else {
452 error = ENXIO;
453 }
454 break;
455 case MOD_UNLOAD:
456 if (vmm_is_hw_supported()) {
457 error = vmmdev_cleanup();
458 if (error == 0) {
459 vmm_suspend_p = NULL;
460 vmm_resume_p = NULL;
461 iommu_cleanup();
462 if (vmm_ipinum != IPI_AST)
463 lapic_ipi_free(vmm_ipinum);
464 error = vmmops_modcleanup();
465 /*
466 * Something bad happened - prevent new
467 * VMs from being created
468 */
469 if (error)
470 vmm_initialized = 0;
471 }
472 } else {
473 error = 0;
474 }
475 break;
476 default:
477 error = 0;
478 break;
479 }
480 return (error);
481 }
482
483 static moduledata_t vmm_kmod = {
484 "vmm",
485 vmm_handler,
486 NULL
487 };
488
489 /*
490 * vmm initialization has the following dependencies:
491 *
492 * - VT-x initialization requires smp_rendezvous() and therefore must happen
493 * after SMP is fully functional (after SI_SUB_SMP).
494 * - vmm device initialization requires an initialized devfs.
495 */
496 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
497 MODULE_VERSION(vmm, 1);
498
499 static void
vm_init(struct vm * vm,bool create)500 vm_init(struct vm *vm, bool create)
501 {
502 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
503 vm->iommu = NULL;
504 vm->vioapic = vioapic_init(vm);
505 vm->vhpet = vhpet_init(vm);
506 vm->vatpic = vatpic_init(vm);
507 vm->vatpit = vatpit_init(vm);
508 vm->vpmtmr = vpmtmr_init(vm);
509 if (create)
510 vm->vrtc = vrtc_init(vm);
511
512 CPU_ZERO(&vm->active_cpus);
513 CPU_ZERO(&vm->debug_cpus);
514 CPU_ZERO(&vm->startup_cpus);
515
516 vm->suspend = 0;
517 CPU_ZERO(&vm->suspended_cpus);
518
519 if (!create) {
520 for (int i = 0; i < vm->maxcpus; i++) {
521 if (vm->vcpu[i] != NULL)
522 vcpu_init(vm->vcpu[i]);
523 }
524 }
525 }
526
527 void
vm_disable_vcpu_creation(struct vm * vm)528 vm_disable_vcpu_creation(struct vm *vm)
529 {
530 sx_xlock(&vm->vcpus_init_lock);
531 vm->dying = true;
532 sx_xunlock(&vm->vcpus_init_lock);
533 }
534
535 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)536 vm_alloc_vcpu(struct vm *vm, int vcpuid)
537 {
538 struct vcpu *vcpu;
539
540 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
541 return (NULL);
542
543 vcpu = (struct vcpu *)
544 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
545 if (__predict_true(vcpu != NULL))
546 return (vcpu);
547
548 sx_xlock(&vm->vcpus_init_lock);
549 vcpu = vm->vcpu[vcpuid];
550 if (vcpu == NULL && !vm->dying) {
551 vcpu = vcpu_alloc(vm, vcpuid);
552 vcpu_init(vcpu);
553
554 /*
555 * Ensure vCPU is fully created before updating pointer
556 * to permit unlocked reads above.
557 */
558 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
559 (uintptr_t)vcpu);
560 }
561 sx_xunlock(&vm->vcpus_init_lock);
562 return (vcpu);
563 }
564
565 void
vm_slock_vcpus(struct vm * vm)566 vm_slock_vcpus(struct vm *vm)
567 {
568 sx_slock(&vm->vcpus_init_lock);
569 }
570
571 void
vm_unlock_vcpus(struct vm * vm)572 vm_unlock_vcpus(struct vm *vm)
573 {
574 sx_unlock(&vm->vcpus_init_lock);
575 }
576
577 /*
578 * The default CPU topology is a single thread per package.
579 */
580 u_int cores_per_package = 1;
581 u_int threads_per_core = 1;
582
583 int
vm_create(const char * name,struct vm ** retvm)584 vm_create(const char *name, struct vm **retvm)
585 {
586 struct vm *vm;
587 struct vmspace *vmspace;
588
589 /*
590 * If vmm.ko could not be successfully initialized then don't attempt
591 * to create the virtual machine.
592 */
593 if (!vmm_initialized)
594 return (ENXIO);
595
596 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
597 VM_MAX_NAMELEN + 1)
598 return (EINVAL);
599
600 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
601 if (vmspace == NULL)
602 return (ENOMEM);
603
604 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
605 strcpy(vm->name, name);
606 vm->vmspace = vmspace;
607 vm_mem_init(&vm->mem);
608 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
609 sx_init(&vm->vcpus_init_lock, "vm vcpus");
610 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
611 M_ZERO);
612
613 vm->sockets = 1;
614 vm->cores = cores_per_package; /* XXX backwards compatibility */
615 vm->threads = threads_per_core; /* XXX backwards compatibility */
616 vm->maxcpus = vm_maxcpu;
617
618 vm_init(vm, true);
619
620 *retvm = vm;
621 return (0);
622 }
623
624 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)625 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
626 uint16_t *threads, uint16_t *maxcpus)
627 {
628 *sockets = vm->sockets;
629 *cores = vm->cores;
630 *threads = vm->threads;
631 *maxcpus = vm->maxcpus;
632 }
633
634 uint16_t
vm_get_maxcpus(struct vm * vm)635 vm_get_maxcpus(struct vm *vm)
636 {
637 return (vm->maxcpus);
638 }
639
640 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)641 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
642 uint16_t threads, uint16_t maxcpus __unused)
643 {
644 /* Ignore maxcpus. */
645 if ((sockets * cores * threads) > vm->maxcpus)
646 return (EINVAL);
647 vm->sockets = sockets;
648 vm->cores = cores;
649 vm->threads = threads;
650 return(0);
651 }
652
653 static void
vm_cleanup(struct vm * vm,bool destroy)654 vm_cleanup(struct vm *vm, bool destroy)
655 {
656 if (destroy)
657 vm_xlock_memsegs(vm);
658 else
659 vm_assert_memseg_xlocked(vm);
660
661 ppt_unassign_all(vm);
662
663 if (vm->iommu != NULL)
664 iommu_destroy_domain(vm->iommu);
665
666 if (destroy)
667 vrtc_cleanup(vm->vrtc);
668 else
669 vrtc_reset(vm->vrtc);
670 vpmtmr_cleanup(vm->vpmtmr);
671 vatpit_cleanup(vm->vatpit);
672 vhpet_cleanup(vm->vhpet);
673 vatpic_cleanup(vm->vatpic);
674 vioapic_cleanup(vm->vioapic);
675
676 for (int i = 0; i < vm->maxcpus; i++) {
677 if (vm->vcpu[i] != NULL)
678 vcpu_cleanup(vm->vcpu[i], destroy);
679 }
680
681 vmmops_cleanup(vm->cookie);
682
683 vm_mem_cleanup(vm);
684
685 if (destroy) {
686 vm_mem_destroy(vm);
687
688 vmmops_vmspace_free(vm->vmspace);
689 vm->vmspace = NULL;
690
691 free(vm->vcpu, M_VM);
692 sx_destroy(&vm->vcpus_init_lock);
693 mtx_destroy(&vm->rendezvous_mtx);
694 }
695 }
696
697 void
vm_destroy(struct vm * vm)698 vm_destroy(struct vm *vm)
699 {
700 vm_cleanup(vm, true);
701 free(vm, M_VM);
702 }
703
704 int
vm_reinit(struct vm * vm)705 vm_reinit(struct vm *vm)
706 {
707 int error;
708
709 /*
710 * A virtual machine can be reset only if all vcpus are suspended.
711 */
712 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
713 vm_cleanup(vm, false);
714 vm_init(vm, false);
715 error = 0;
716 } else {
717 error = EBUSY;
718 }
719
720 return (error);
721 }
722
723 const char *
vm_name(struct vm * vm)724 vm_name(struct vm *vm)
725 {
726 return (vm->name);
727 }
728
729 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)730 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
731 {
732 vm_object_t obj;
733
734 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
735 return (ENOMEM);
736 else
737 return (0);
738 }
739
740 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)741 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
742 {
743
744 vmm_mmio_free(vm->vmspace, gpa, len);
745 return (0);
746 }
747
748 static void
vm_iommu_map(struct vm * vm)749 vm_iommu_map(struct vm *vm)
750 {
751 vm_paddr_t gpa, hpa;
752 struct vm_mem_map *mm;
753 int i;
754
755 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
756
757 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
758 if (!vm_memseg_sysmem(vm, i))
759 continue;
760
761 mm = &vm->mem.mem_maps[i];
762 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
763 ("iommu map found invalid memmap %#lx/%#lx/%#x",
764 mm->gpa, mm->len, mm->flags));
765 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
766 continue;
767 mm->flags |= VM_MEMMAP_F_IOMMU;
768
769 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
770 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa);
771
772 /*
773 * All mappings in the vmm vmspace must be
774 * present since they are managed by vmm in this way.
775 * Because we are in pass-through mode, the
776 * mappings must also be wired. This implies
777 * that all pages must be mapped and wired,
778 * allowing to use pmap_extract() and avoiding the
779 * need to use vm_gpa_hold_global().
780 *
781 * This could change if/when we start
782 * supporting page faults on IOMMU maps.
783 */
784 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
785 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
786 vm, (uintmax_t)gpa, (uintmax_t)hpa));
787
788 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
789 }
790 }
791
792 iommu_invalidate_tlb(iommu_host_domain());
793 }
794
795 static void
vm_iommu_unmap(struct vm * vm)796 vm_iommu_unmap(struct vm *vm)
797 {
798 vm_paddr_t gpa;
799 struct vm_mem_map *mm;
800 int i;
801
802 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
803
804 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
805 if (!vm_memseg_sysmem(vm, i))
806 continue;
807
808 mm = &vm->mem.mem_maps[i];
809 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
810 continue;
811 mm->flags &= ~VM_MEMMAP_F_IOMMU;
812 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
813 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
814 mm->gpa, mm->len, mm->flags));
815
816 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
817 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
818 vmspace_pmap(vm->vmspace), gpa))),
819 ("vm_iommu_unmap: vm %p gpa %jx not wired",
820 vm, (uintmax_t)gpa));
821 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
822 }
823 }
824
825 /*
826 * Invalidate the cached translations associated with the domain
827 * from which pages were removed.
828 */
829 iommu_invalidate_tlb(vm->iommu);
830 }
831
832 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)833 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
834 {
835 int error;
836
837 error = ppt_unassign_device(vm, bus, slot, func);
838 if (error)
839 return (error);
840
841 if (ppt_assigned_devices(vm) == 0)
842 vm_iommu_unmap(vm);
843
844 return (0);
845 }
846
847 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)848 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
849 {
850 int error;
851 vm_paddr_t maxaddr;
852
853 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
854 if (ppt_assigned_devices(vm) == 0) {
855 KASSERT(vm->iommu == NULL,
856 ("vm_assign_pptdev: iommu must be NULL"));
857 maxaddr = vmm_sysmem_maxaddr(vm);
858 vm->iommu = iommu_create_domain(maxaddr);
859 if (vm->iommu == NULL)
860 return (ENXIO);
861 vm_iommu_map(vm);
862 }
863
864 error = ppt_assign_device(vm, bus, slot, func);
865 return (error);
866 }
867
868 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)869 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
870 {
871
872 if (reg >= VM_REG_LAST)
873 return (EINVAL);
874
875 return (vmmops_getreg(vcpu->cookie, reg, retval));
876 }
877
878 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)879 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
880 {
881 int error;
882
883 if (reg >= VM_REG_LAST)
884 return (EINVAL);
885
886 error = vmmops_setreg(vcpu->cookie, reg, val);
887 if (error || reg != VM_REG_GUEST_RIP)
888 return (error);
889
890 /* Set 'nextrip' to match the value of %rip */
891 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
892 vcpu->nextrip = val;
893 return (0);
894 }
895
896 static bool
is_descriptor_table(int reg)897 is_descriptor_table(int reg)
898 {
899
900 switch (reg) {
901 case VM_REG_GUEST_IDTR:
902 case VM_REG_GUEST_GDTR:
903 return (true);
904 default:
905 return (false);
906 }
907 }
908
909 static bool
is_segment_register(int reg)910 is_segment_register(int reg)
911 {
912
913 switch (reg) {
914 case VM_REG_GUEST_ES:
915 case VM_REG_GUEST_CS:
916 case VM_REG_GUEST_SS:
917 case VM_REG_GUEST_DS:
918 case VM_REG_GUEST_FS:
919 case VM_REG_GUEST_GS:
920 case VM_REG_GUEST_TR:
921 case VM_REG_GUEST_LDTR:
922 return (true);
923 default:
924 return (false);
925 }
926 }
927
928 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)929 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
930 {
931
932 if (!is_segment_register(reg) && !is_descriptor_table(reg))
933 return (EINVAL);
934
935 return (vmmops_getdesc(vcpu->cookie, reg, desc));
936 }
937
938 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)939 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
940 {
941
942 if (!is_segment_register(reg) && !is_descriptor_table(reg))
943 return (EINVAL);
944
945 return (vmmops_setdesc(vcpu->cookie, reg, desc));
946 }
947
948 static void
restore_guest_fpustate(struct vcpu * vcpu)949 restore_guest_fpustate(struct vcpu *vcpu)
950 {
951
952 /* flush host state to the pcb */
953 fpuexit(curthread);
954
955 /* restore guest FPU state */
956 fpu_enable();
957 fpurestore(vcpu->guestfpu);
958
959 /* restore guest XCR0 if XSAVE is enabled in the host */
960 if (rcr4() & CR4_XSAVE)
961 load_xcr(0, vcpu->guest_xcr0);
962
963 /*
964 * The FPU is now "dirty" with the guest's state so disable
965 * the FPU to trap any access by the host.
966 */
967 fpu_disable();
968 }
969
970 static void
save_guest_fpustate(struct vcpu * vcpu)971 save_guest_fpustate(struct vcpu *vcpu)
972 {
973
974 if ((rcr0() & CR0_TS) == 0)
975 panic("fpu emulation not enabled in host!");
976
977 /* save guest XCR0 and restore host XCR0 */
978 if (rcr4() & CR4_XSAVE) {
979 vcpu->guest_xcr0 = rxcr(0);
980 load_xcr(0, vmm_get_host_xcr0());
981 }
982
983 /* save guest FPU state */
984 fpu_enable();
985 fpusave(vcpu->guestfpu);
986 fpu_disable();
987 }
988
989 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
990
991 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)992 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
993 bool from_idle)
994 {
995 int error;
996
997 vcpu_assert_locked(vcpu);
998
999 /*
1000 * State transitions from the vmmdev_ioctl() must always begin from
1001 * the VCPU_IDLE state. This guarantees that there is only a single
1002 * ioctl() operating on a vcpu at any point.
1003 */
1004 if (from_idle) {
1005 while (vcpu->state != VCPU_IDLE) {
1006 vcpu->reqidle = 1;
1007 vcpu_notify_event_locked(vcpu, false);
1008 VMM_CTR1(vcpu, "vcpu state change from %s to "
1009 "idle requested", vcpu_state2str(vcpu->state));
1010 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1011 }
1012 } else {
1013 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1014 "vcpu idle state"));
1015 }
1016
1017 if (vcpu->state == VCPU_RUNNING) {
1018 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1019 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1020 } else {
1021 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1022 "vcpu that is not running", vcpu->hostcpu));
1023 }
1024
1025 /*
1026 * The following state transitions are allowed:
1027 * IDLE -> FROZEN -> IDLE
1028 * FROZEN -> RUNNING -> FROZEN
1029 * FROZEN -> SLEEPING -> FROZEN
1030 */
1031 switch (vcpu->state) {
1032 case VCPU_IDLE:
1033 case VCPU_RUNNING:
1034 case VCPU_SLEEPING:
1035 error = (newstate != VCPU_FROZEN);
1036 break;
1037 case VCPU_FROZEN:
1038 error = (newstate == VCPU_FROZEN);
1039 break;
1040 default:
1041 error = 1;
1042 break;
1043 }
1044
1045 if (error)
1046 return (EBUSY);
1047
1048 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1049 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1050
1051 vcpu->state = newstate;
1052 if (newstate == VCPU_RUNNING)
1053 vcpu->hostcpu = curcpu;
1054 else
1055 vcpu->hostcpu = NOCPU;
1056
1057 if (newstate == VCPU_IDLE)
1058 wakeup(&vcpu->state);
1059
1060 return (0);
1061 }
1062
1063 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1064 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1065 {
1066 int error;
1067
1068 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1069 panic("Error %d setting state to %d\n", error, newstate);
1070 }
1071
1072 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1073 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1074 {
1075 int error;
1076
1077 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1078 panic("Error %d setting state to %d", error, newstate);
1079 }
1080
1081 static int
vm_handle_rendezvous(struct vcpu * vcpu)1082 vm_handle_rendezvous(struct vcpu *vcpu)
1083 {
1084 struct vm *vm = vcpu->vm;
1085 struct thread *td;
1086 int error, vcpuid;
1087
1088 error = 0;
1089 vcpuid = vcpu->vcpuid;
1090 td = curthread;
1091 mtx_lock(&vm->rendezvous_mtx);
1092 while (vm->rendezvous_func != NULL) {
1093 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1094 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1095
1096 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1097 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1098 VMM_CTR0(vcpu, "Calling rendezvous func");
1099 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1100 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1101 }
1102 if (CPU_CMP(&vm->rendezvous_req_cpus,
1103 &vm->rendezvous_done_cpus) == 0) {
1104 VMM_CTR0(vcpu, "Rendezvous completed");
1105 CPU_ZERO(&vm->rendezvous_req_cpus);
1106 vm->rendezvous_func = NULL;
1107 wakeup(&vm->rendezvous_func);
1108 break;
1109 }
1110 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1111 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1112 "vmrndv", hz);
1113 if (td_ast_pending(td, TDA_SUSPEND)) {
1114 mtx_unlock(&vm->rendezvous_mtx);
1115 error = thread_check_susp(td, true);
1116 if (error != 0)
1117 return (error);
1118 mtx_lock(&vm->rendezvous_mtx);
1119 }
1120 }
1121 mtx_unlock(&vm->rendezvous_mtx);
1122 return (0);
1123 }
1124
1125 /*
1126 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1127 */
1128 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1129 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1130 {
1131 struct vm *vm = vcpu->vm;
1132 const char *wmesg;
1133 struct thread *td;
1134 int error, t, vcpuid, vcpu_halted, vm_halted;
1135
1136 vcpuid = vcpu->vcpuid;
1137 vcpu_halted = 0;
1138 vm_halted = 0;
1139 error = 0;
1140 td = curthread;
1141
1142 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1143
1144 vcpu_lock(vcpu);
1145 while (1) {
1146 /*
1147 * Do a final check for pending NMI or interrupts before
1148 * really putting this thread to sleep. Also check for
1149 * software events that would cause this vcpu to wakeup.
1150 *
1151 * These interrupts/events could have happened after the
1152 * vcpu returned from vmmops_run() and before it acquired the
1153 * vcpu lock above.
1154 */
1155 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1156 break;
1157 if (vm_nmi_pending(vcpu))
1158 break;
1159 if (!intr_disabled) {
1160 if (vm_extint_pending(vcpu) ||
1161 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1162 break;
1163 }
1164 }
1165
1166 /* Don't go to sleep if the vcpu thread needs to yield */
1167 if (vcpu_should_yield(vcpu))
1168 break;
1169
1170 if (vcpu_debugged(vcpu))
1171 break;
1172
1173 /*
1174 * Some Linux guests implement "halt" by having all vcpus
1175 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1176 * track of the vcpus that have entered this state. When all
1177 * vcpus enter the halted state the virtual machine is halted.
1178 */
1179 if (intr_disabled) {
1180 wmesg = "vmhalt";
1181 VMM_CTR0(vcpu, "Halted");
1182 if (!vcpu_halted && halt_detection_enabled) {
1183 vcpu_halted = 1;
1184 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1185 }
1186 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1187 vm_halted = 1;
1188 break;
1189 }
1190 } else {
1191 wmesg = "vmidle";
1192 }
1193
1194 t = ticks;
1195 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1196 /*
1197 * XXX msleep_spin() cannot be interrupted by signals so
1198 * wake up periodically to check pending signals.
1199 */
1200 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1201 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1202 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1203 if (td_ast_pending(td, TDA_SUSPEND)) {
1204 vcpu_unlock(vcpu);
1205 error = thread_check_susp(td, false);
1206 if (error != 0) {
1207 if (vcpu_halted) {
1208 CPU_CLR_ATOMIC(vcpuid,
1209 &vm->halted_cpus);
1210 }
1211 return (error);
1212 }
1213 vcpu_lock(vcpu);
1214 }
1215 }
1216
1217 if (vcpu_halted)
1218 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1219
1220 vcpu_unlock(vcpu);
1221
1222 if (vm_halted)
1223 vm_suspend(vm, VM_SUSPEND_HALT);
1224
1225 return (0);
1226 }
1227
1228 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1229 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1230 {
1231 struct vm *vm = vcpu->vm;
1232 int rv, ftype;
1233 struct vm_map *map;
1234 struct vm_exit *vme;
1235
1236 vme = &vcpu->exitinfo;
1237
1238 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1239 __func__, vme->inst_length));
1240
1241 ftype = vme->u.paging.fault_type;
1242 KASSERT(ftype == VM_PROT_READ ||
1243 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1244 ("vm_handle_paging: invalid fault_type %d", ftype));
1245
1246 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1247 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1248 vme->u.paging.gpa, ftype);
1249 if (rv == 0) {
1250 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1251 ftype == VM_PROT_READ ? "accessed" : "dirty",
1252 vme->u.paging.gpa);
1253 goto done;
1254 }
1255 }
1256
1257 map = &vm->vmspace->vm_map;
1258 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1259
1260 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1261 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1262
1263 if (rv != KERN_SUCCESS)
1264 return (EFAULT);
1265 done:
1266 return (0);
1267 }
1268
1269 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1270 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1271 {
1272 struct vie *vie;
1273 struct vm_exit *vme;
1274 uint64_t gla, gpa, cs_base;
1275 struct vm_guest_paging *paging;
1276 mem_region_read_t mread;
1277 mem_region_write_t mwrite;
1278 enum vm_cpu_mode cpu_mode;
1279 int cs_d, error, fault;
1280
1281 vme = &vcpu->exitinfo;
1282
1283 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1284 __func__, vme->inst_length));
1285
1286 gla = vme->u.inst_emul.gla;
1287 gpa = vme->u.inst_emul.gpa;
1288 cs_base = vme->u.inst_emul.cs_base;
1289 cs_d = vme->u.inst_emul.cs_d;
1290 vie = &vme->u.inst_emul.vie;
1291 paging = &vme->u.inst_emul.paging;
1292 cpu_mode = paging->cpu_mode;
1293
1294 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1295
1296 /* Fetch, decode and emulate the faulting instruction */
1297 if (vie->num_valid == 0) {
1298 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1299 VIE_INST_SIZE, vie, &fault);
1300 } else {
1301 /*
1302 * The instruction bytes have already been copied into 'vie'
1303 */
1304 error = fault = 0;
1305 }
1306 if (error || fault)
1307 return (error);
1308
1309 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1310 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1311 vme->rip + cs_base);
1312 *retu = true; /* dump instruction bytes in userspace */
1313 return (0);
1314 }
1315
1316 /*
1317 * Update 'nextrip' based on the length of the emulated instruction.
1318 */
1319 vme->inst_length = vie->num_processed;
1320 vcpu->nextrip += vie->num_processed;
1321 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1322 vcpu->nextrip);
1323
1324 /* return to userland unless this is an in-kernel emulated device */
1325 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1326 mread = lapic_mmio_read;
1327 mwrite = lapic_mmio_write;
1328 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1329 mread = vioapic_mmio_read;
1330 mwrite = vioapic_mmio_write;
1331 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1332 mread = vhpet_mmio_read;
1333 mwrite = vhpet_mmio_write;
1334 } else {
1335 *retu = true;
1336 return (0);
1337 }
1338
1339 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1340 retu);
1341
1342 return (error);
1343 }
1344
1345 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1346 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1347 {
1348 struct vm *vm = vcpu->vm;
1349 int error, i;
1350 struct thread *td;
1351
1352 error = 0;
1353 td = curthread;
1354
1355 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1356
1357 /*
1358 * Wait until all 'active_cpus' have suspended themselves.
1359 *
1360 * Since a VM may be suspended at any time including when one or
1361 * more vcpus are doing a rendezvous we need to call the rendezvous
1362 * handler while we are waiting to prevent a deadlock.
1363 */
1364 vcpu_lock(vcpu);
1365 while (error == 0) {
1366 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1367 VMM_CTR0(vcpu, "All vcpus suspended");
1368 break;
1369 }
1370
1371 if (vm->rendezvous_func == NULL) {
1372 VMM_CTR0(vcpu, "Sleeping during suspend");
1373 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1374 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1375 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1376 if (td_ast_pending(td, TDA_SUSPEND)) {
1377 vcpu_unlock(vcpu);
1378 error = thread_check_susp(td, false);
1379 vcpu_lock(vcpu);
1380 }
1381 } else {
1382 VMM_CTR0(vcpu, "Rendezvous during suspend");
1383 vcpu_unlock(vcpu);
1384 error = vm_handle_rendezvous(vcpu);
1385 vcpu_lock(vcpu);
1386 }
1387 }
1388 vcpu_unlock(vcpu);
1389
1390 /*
1391 * Wakeup the other sleeping vcpus and return to userspace.
1392 */
1393 for (i = 0; i < vm->maxcpus; i++) {
1394 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1395 vcpu_notify_event(vm_vcpu(vm, i), false);
1396 }
1397 }
1398
1399 *retu = true;
1400 return (error);
1401 }
1402
1403 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1404 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1405 {
1406 vcpu_lock(vcpu);
1407 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1408 vcpu->reqidle = 0;
1409 vcpu_unlock(vcpu);
1410 *retu = true;
1411 return (0);
1412 }
1413
1414 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1415 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1416 {
1417 int error, fault;
1418 uint64_t rsp;
1419 uint64_t rflags;
1420 struct vm_copyinfo copyinfo[2];
1421
1422 *retu = true;
1423 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1424 return (0);
1425 }
1426
1427 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1428 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1429 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1430 if (error != 0 || fault != 0) {
1431 *retu = false;
1432 return (EINVAL);
1433 }
1434
1435 /* Read pushed rflags value from top of stack. */
1436 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1437
1438 /* Clear TF bit. */
1439 rflags &= ~(PSL_T);
1440
1441 /* Write updated value back to memory. */
1442 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1443 vm_copy_teardown(copyinfo, nitems(copyinfo));
1444
1445 return (0);
1446 }
1447
1448 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1449 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1450 {
1451 int i;
1452
1453 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1454 return (EINVAL);
1455
1456 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1457 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1458 vm->suspend, how);
1459 return (EALREADY);
1460 }
1461
1462 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1463
1464 /*
1465 * Notify all active vcpus that they are now suspended.
1466 */
1467 for (i = 0; i < vm->maxcpus; i++) {
1468 if (CPU_ISSET(i, &vm->active_cpus))
1469 vcpu_notify_event(vm_vcpu(vm, i), false);
1470 }
1471
1472 return (0);
1473 }
1474
1475 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1476 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1477 {
1478 struct vm *vm = vcpu->vm;
1479 struct vm_exit *vmexit;
1480
1481 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1482 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1483
1484 vmexit = vm_exitinfo(vcpu);
1485 vmexit->rip = rip;
1486 vmexit->inst_length = 0;
1487 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1488 vmexit->u.suspended.how = vm->suspend;
1489 }
1490
1491 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1492 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1493 {
1494 struct vm_exit *vmexit;
1495
1496 vmexit = vm_exitinfo(vcpu);
1497 vmexit->rip = rip;
1498 vmexit->inst_length = 0;
1499 vmexit->exitcode = VM_EXITCODE_DEBUG;
1500 }
1501
1502 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1503 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1504 {
1505 struct vm_exit *vmexit;
1506
1507 vmexit = vm_exitinfo(vcpu);
1508 vmexit->rip = rip;
1509 vmexit->inst_length = 0;
1510 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1511 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1512 }
1513
1514 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1515 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1516 {
1517 struct vm_exit *vmexit;
1518
1519 vmexit = vm_exitinfo(vcpu);
1520 vmexit->rip = rip;
1521 vmexit->inst_length = 0;
1522 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1523 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1524 }
1525
1526 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1527 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1528 {
1529 struct vm_exit *vmexit;
1530
1531 vmexit = vm_exitinfo(vcpu);
1532 vmexit->rip = rip;
1533 vmexit->inst_length = 0;
1534 vmexit->exitcode = VM_EXITCODE_BOGUS;
1535 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1536 }
1537
1538 int
vm_run(struct vcpu * vcpu)1539 vm_run(struct vcpu *vcpu)
1540 {
1541 struct vm *vm = vcpu->vm;
1542 struct vm_eventinfo evinfo;
1543 int error, vcpuid;
1544 struct pcb *pcb;
1545 uint64_t tscval;
1546 struct vm_exit *vme;
1547 bool retu, intr_disabled;
1548 pmap_t pmap;
1549
1550 vcpuid = vcpu->vcpuid;
1551
1552 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1553 return (EINVAL);
1554
1555 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1556 return (EINVAL);
1557
1558 pmap = vmspace_pmap(vm->vmspace);
1559 vme = &vcpu->exitinfo;
1560 evinfo.rptr = &vm->rendezvous_req_cpus;
1561 evinfo.sptr = &vm->suspend;
1562 evinfo.iptr = &vcpu->reqidle;
1563 restart:
1564 critical_enter();
1565
1566 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1567 ("vm_run: absurd pm_active"));
1568
1569 tscval = rdtsc();
1570
1571 pcb = PCPU_GET(curpcb);
1572 set_pcb_flags(pcb, PCB_FULL_IRET);
1573
1574 restore_guest_fpustate(vcpu);
1575
1576 vcpu_require_state(vcpu, VCPU_RUNNING);
1577 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1578 vcpu_require_state(vcpu, VCPU_FROZEN);
1579
1580 save_guest_fpustate(vcpu);
1581
1582 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1583
1584 critical_exit();
1585
1586 if (error == 0) {
1587 retu = false;
1588 vcpu->nextrip = vme->rip + vme->inst_length;
1589 switch (vme->exitcode) {
1590 case VM_EXITCODE_REQIDLE:
1591 error = vm_handle_reqidle(vcpu, &retu);
1592 break;
1593 case VM_EXITCODE_SUSPENDED:
1594 error = vm_handle_suspend(vcpu, &retu);
1595 break;
1596 case VM_EXITCODE_IOAPIC_EOI:
1597 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1598 break;
1599 case VM_EXITCODE_RENDEZVOUS:
1600 error = vm_handle_rendezvous(vcpu);
1601 break;
1602 case VM_EXITCODE_HLT:
1603 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1604 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1605 break;
1606 case VM_EXITCODE_PAGING:
1607 error = vm_handle_paging(vcpu, &retu);
1608 break;
1609 case VM_EXITCODE_INST_EMUL:
1610 error = vm_handle_inst_emul(vcpu, &retu);
1611 break;
1612 case VM_EXITCODE_INOUT:
1613 case VM_EXITCODE_INOUT_STR:
1614 error = vm_handle_inout(vcpu, vme, &retu);
1615 break;
1616 case VM_EXITCODE_DB:
1617 error = vm_handle_db(vcpu, vme, &retu);
1618 break;
1619 case VM_EXITCODE_MONITOR:
1620 case VM_EXITCODE_MWAIT:
1621 case VM_EXITCODE_VMINSN:
1622 vm_inject_ud(vcpu);
1623 break;
1624 default:
1625 retu = true; /* handled in userland */
1626 break;
1627 }
1628 }
1629
1630 /*
1631 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1632 * exit code into VM_EXITCODE_IPI.
1633 */
1634 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1635 error = vm_handle_ipi(vcpu, vme, &retu);
1636
1637 if (error == 0 && retu == false)
1638 goto restart;
1639
1640 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1641 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1642
1643 return (error);
1644 }
1645
1646 int
vm_restart_instruction(struct vcpu * vcpu)1647 vm_restart_instruction(struct vcpu *vcpu)
1648 {
1649 enum vcpu_state state;
1650 uint64_t rip;
1651 int error __diagused;
1652
1653 state = vcpu_get_state(vcpu, NULL);
1654 if (state == VCPU_RUNNING) {
1655 /*
1656 * When a vcpu is "running" the next instruction is determined
1657 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1658 * Thus setting 'inst_length' to zero will cause the current
1659 * instruction to be restarted.
1660 */
1661 vcpu->exitinfo.inst_length = 0;
1662 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1663 "setting inst_length to zero", vcpu->exitinfo.rip);
1664 } else if (state == VCPU_FROZEN) {
1665 /*
1666 * When a vcpu is "frozen" it is outside the critical section
1667 * around vmmops_run() and 'nextrip' points to the next
1668 * instruction. Thus instruction restart is achieved by setting
1669 * 'nextrip' to the vcpu's %rip.
1670 */
1671 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1672 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1673 VMM_CTR2(vcpu, "restarting instruction by updating "
1674 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1675 vcpu->nextrip = rip;
1676 } else {
1677 panic("%s: invalid state %d", __func__, state);
1678 }
1679 return (0);
1680 }
1681
1682 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1683 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1684 {
1685 int type, vector;
1686
1687 if (info & VM_INTINFO_VALID) {
1688 type = info & VM_INTINFO_TYPE;
1689 vector = info & 0xff;
1690 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1691 return (EINVAL);
1692 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1693 return (EINVAL);
1694 if (info & VM_INTINFO_RSVD)
1695 return (EINVAL);
1696 } else {
1697 info = 0;
1698 }
1699 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1700 vcpu->exitintinfo = info;
1701 return (0);
1702 }
1703
1704 enum exc_class {
1705 EXC_BENIGN,
1706 EXC_CONTRIBUTORY,
1707 EXC_PAGEFAULT
1708 };
1709
1710 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1711
1712 static enum exc_class
exception_class(uint64_t info)1713 exception_class(uint64_t info)
1714 {
1715 int type, vector;
1716
1717 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1718 type = info & VM_INTINFO_TYPE;
1719 vector = info & 0xff;
1720
1721 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1722 switch (type) {
1723 case VM_INTINFO_HWINTR:
1724 case VM_INTINFO_SWINTR:
1725 case VM_INTINFO_NMI:
1726 return (EXC_BENIGN);
1727 default:
1728 /*
1729 * Hardware exception.
1730 *
1731 * SVM and VT-x use identical type values to represent NMI,
1732 * hardware interrupt and software interrupt.
1733 *
1734 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1735 * for exceptions except #BP and #OF. #BP and #OF use a type
1736 * value of '5' or '6'. Therefore we don't check for explicit
1737 * values of 'type' to classify 'intinfo' into a hardware
1738 * exception.
1739 */
1740 break;
1741 }
1742
1743 switch (vector) {
1744 case IDT_PF:
1745 case IDT_VE:
1746 return (EXC_PAGEFAULT);
1747 case IDT_DE:
1748 case IDT_TS:
1749 case IDT_NP:
1750 case IDT_SS:
1751 case IDT_GP:
1752 return (EXC_CONTRIBUTORY);
1753 default:
1754 return (EXC_BENIGN);
1755 }
1756 }
1757
1758 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1759 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1760 uint64_t *retinfo)
1761 {
1762 enum exc_class exc1, exc2;
1763 int type1, vector1;
1764
1765 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1766 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1767
1768 /*
1769 * If an exception occurs while attempting to call the double-fault
1770 * handler the processor enters shutdown mode (aka triple fault).
1771 */
1772 type1 = info1 & VM_INTINFO_TYPE;
1773 vector1 = info1 & 0xff;
1774 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1775 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1776 info1, info2);
1777 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1778 *retinfo = 0;
1779 return (0);
1780 }
1781
1782 /*
1783 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1784 */
1785 exc1 = exception_class(info1);
1786 exc2 = exception_class(info2);
1787 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1788 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1789 /* Convert nested fault into a double fault. */
1790 *retinfo = IDT_DF;
1791 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1792 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1793 } else {
1794 /* Handle exceptions serially */
1795 *retinfo = info2;
1796 }
1797 return (1);
1798 }
1799
1800 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1801 vcpu_exception_intinfo(struct vcpu *vcpu)
1802 {
1803 uint64_t info = 0;
1804
1805 if (vcpu->exception_pending) {
1806 info = vcpu->exc_vector & 0xff;
1807 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1808 if (vcpu->exc_errcode_valid) {
1809 info |= VM_INTINFO_DEL_ERRCODE;
1810 info |= (uint64_t)vcpu->exc_errcode << 32;
1811 }
1812 }
1813 return (info);
1814 }
1815
1816 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1817 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1818 {
1819 uint64_t info1, info2;
1820 int valid;
1821
1822 info1 = vcpu->exitintinfo;
1823 vcpu->exitintinfo = 0;
1824
1825 info2 = 0;
1826 if (vcpu->exception_pending) {
1827 info2 = vcpu_exception_intinfo(vcpu);
1828 vcpu->exception_pending = 0;
1829 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1830 vcpu->exc_vector, info2);
1831 }
1832
1833 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1834 valid = nested_fault(vcpu, info1, info2, retinfo);
1835 } else if (info1 & VM_INTINFO_VALID) {
1836 *retinfo = info1;
1837 valid = 1;
1838 } else if (info2 & VM_INTINFO_VALID) {
1839 *retinfo = info2;
1840 valid = 1;
1841 } else {
1842 valid = 0;
1843 }
1844
1845 if (valid) {
1846 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1847 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1848 }
1849
1850 return (valid);
1851 }
1852
1853 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1854 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1855 {
1856 *info1 = vcpu->exitintinfo;
1857 *info2 = vcpu_exception_intinfo(vcpu);
1858 return (0);
1859 }
1860
1861 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1862 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1863 uint32_t errcode, int restart_instruction)
1864 {
1865 uint64_t regval;
1866 int error __diagused;
1867
1868 if (vector < 0 || vector >= 32)
1869 return (EINVAL);
1870
1871 /*
1872 * A double fault exception should never be injected directly into
1873 * the guest. It is a derived exception that results from specific
1874 * combinations of nested faults.
1875 */
1876 if (vector == IDT_DF)
1877 return (EINVAL);
1878
1879 if (vcpu->exception_pending) {
1880 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
1881 "pending exception %d", vector, vcpu->exc_vector);
1882 return (EBUSY);
1883 }
1884
1885 if (errcode_valid) {
1886 /*
1887 * Exceptions don't deliver an error code in real mode.
1888 */
1889 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
1890 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1891 if (!(regval & CR0_PE))
1892 errcode_valid = 0;
1893 }
1894
1895 /*
1896 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1897 *
1898 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1899 * one instruction or incurs an exception.
1900 */
1901 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
1902 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1903 __func__, error));
1904
1905 if (restart_instruction)
1906 vm_restart_instruction(vcpu);
1907
1908 vcpu->exception_pending = 1;
1909 vcpu->exc_vector = vector;
1910 vcpu->exc_errcode = errcode;
1911 vcpu->exc_errcode_valid = errcode_valid;
1912 VMM_CTR1(vcpu, "Exception %d pending", vector);
1913 return (0);
1914 }
1915
1916 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)1917 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
1918 {
1919 int error __diagused, restart_instruction;
1920
1921 restart_instruction = 1;
1922
1923 error = vm_inject_exception(vcpu, vector, errcode_valid,
1924 errcode, restart_instruction);
1925 KASSERT(error == 0, ("vm_inject_exception error %d", error));
1926 }
1927
1928 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)1929 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
1930 {
1931 int error __diagused;
1932
1933 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
1934 error_code, cr2);
1935
1936 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
1937 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
1938
1939 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
1940 }
1941
1942 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1943
1944 int
vm_inject_nmi(struct vcpu * vcpu)1945 vm_inject_nmi(struct vcpu *vcpu)
1946 {
1947
1948 vcpu->nmi_pending = 1;
1949 vcpu_notify_event(vcpu, false);
1950 return (0);
1951 }
1952
1953 int
vm_nmi_pending(struct vcpu * vcpu)1954 vm_nmi_pending(struct vcpu *vcpu)
1955 {
1956 return (vcpu->nmi_pending);
1957 }
1958
1959 void
vm_nmi_clear(struct vcpu * vcpu)1960 vm_nmi_clear(struct vcpu *vcpu)
1961 {
1962 if (vcpu->nmi_pending == 0)
1963 panic("vm_nmi_clear: inconsistent nmi_pending state");
1964
1965 vcpu->nmi_pending = 0;
1966 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
1967 }
1968
1969 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1970
1971 int
vm_inject_extint(struct vcpu * vcpu)1972 vm_inject_extint(struct vcpu *vcpu)
1973 {
1974
1975 vcpu->extint_pending = 1;
1976 vcpu_notify_event(vcpu, false);
1977 return (0);
1978 }
1979
1980 int
vm_extint_pending(struct vcpu * vcpu)1981 vm_extint_pending(struct vcpu *vcpu)
1982 {
1983 return (vcpu->extint_pending);
1984 }
1985
1986 void
vm_extint_clear(struct vcpu * vcpu)1987 vm_extint_clear(struct vcpu *vcpu)
1988 {
1989 if (vcpu->extint_pending == 0)
1990 panic("vm_extint_clear: inconsistent extint_pending state");
1991
1992 vcpu->extint_pending = 0;
1993 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
1994 }
1995
1996 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1997 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1998 {
1999 if (type < 0 || type >= VM_CAP_MAX)
2000 return (EINVAL);
2001
2002 return (vmmops_getcap(vcpu->cookie, type, retval));
2003 }
2004
2005 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2006 vm_set_capability(struct vcpu *vcpu, int type, int val)
2007 {
2008 if (type < 0 || type >= VM_CAP_MAX)
2009 return (EINVAL);
2010
2011 return (vmmops_setcap(vcpu->cookie, type, val));
2012 }
2013
2014 struct vm *
vcpu_vm(struct vcpu * vcpu)2015 vcpu_vm(struct vcpu *vcpu)
2016 {
2017 return (vcpu->vm);
2018 }
2019
2020 int
vcpu_vcpuid(struct vcpu * vcpu)2021 vcpu_vcpuid(struct vcpu *vcpu)
2022 {
2023 return (vcpu->vcpuid);
2024 }
2025
2026 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2027 vm_vcpu(struct vm *vm, int vcpuid)
2028 {
2029 return (vm->vcpu[vcpuid]);
2030 }
2031
2032 struct vlapic *
vm_lapic(struct vcpu * vcpu)2033 vm_lapic(struct vcpu *vcpu)
2034 {
2035 return (vcpu->vlapic);
2036 }
2037
2038 struct vioapic *
vm_ioapic(struct vm * vm)2039 vm_ioapic(struct vm *vm)
2040 {
2041
2042 return (vm->vioapic);
2043 }
2044
2045 struct vhpet *
vm_hpet(struct vm * vm)2046 vm_hpet(struct vm *vm)
2047 {
2048
2049 return (vm->vhpet);
2050 }
2051
2052 bool
vmm_is_pptdev(int bus,int slot,int func)2053 vmm_is_pptdev(int bus, int slot, int func)
2054 {
2055 int b, f, i, n, s;
2056 char *val, *cp, *cp2;
2057 bool found;
2058
2059 /*
2060 * XXX
2061 * The length of an environment variable is limited to 128 bytes which
2062 * puts an upper limit on the number of passthru devices that may be
2063 * specified using a single environment variable.
2064 *
2065 * Work around this by scanning multiple environment variable
2066 * names instead of a single one - yuck!
2067 */
2068 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2069
2070 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2071 found = false;
2072 for (i = 0; names[i] != NULL && !found; i++) {
2073 cp = val = kern_getenv(names[i]);
2074 while (cp != NULL && *cp != '\0') {
2075 if ((cp2 = strchr(cp, ' ')) != NULL)
2076 *cp2 = '\0';
2077
2078 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2079 if (n == 3 && bus == b && slot == s && func == f) {
2080 found = true;
2081 break;
2082 }
2083
2084 if (cp2 != NULL)
2085 *cp2++ = ' ';
2086
2087 cp = cp2;
2088 }
2089 freeenv(val);
2090 }
2091 return (found);
2092 }
2093
2094 void *
vm_iommu_domain(struct vm * vm)2095 vm_iommu_domain(struct vm *vm)
2096 {
2097
2098 return (vm->iommu);
2099 }
2100
2101 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2102 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2103 {
2104 int error;
2105
2106 vcpu_lock(vcpu);
2107 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2108 vcpu_unlock(vcpu);
2109
2110 return (error);
2111 }
2112
2113 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2114 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2115 {
2116 enum vcpu_state state;
2117
2118 vcpu_lock(vcpu);
2119 state = vcpu->state;
2120 if (hostcpu != NULL)
2121 *hostcpu = vcpu->hostcpu;
2122 vcpu_unlock(vcpu);
2123
2124 return (state);
2125 }
2126
2127 int
vm_activate_cpu(struct vcpu * vcpu)2128 vm_activate_cpu(struct vcpu *vcpu)
2129 {
2130 struct vm *vm = vcpu->vm;
2131
2132 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2133 return (EBUSY);
2134
2135 VMM_CTR0(vcpu, "activated");
2136 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2137 return (0);
2138 }
2139
2140 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2141 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2142 {
2143 if (vcpu == NULL) {
2144 vm->debug_cpus = vm->active_cpus;
2145 for (int i = 0; i < vm->maxcpus; i++) {
2146 if (CPU_ISSET(i, &vm->active_cpus))
2147 vcpu_notify_event(vm_vcpu(vm, i), false);
2148 }
2149 } else {
2150 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2151 return (EINVAL);
2152
2153 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2154 vcpu_notify_event(vcpu, false);
2155 }
2156 return (0);
2157 }
2158
2159 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2160 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2161 {
2162
2163 if (vcpu == NULL) {
2164 CPU_ZERO(&vm->debug_cpus);
2165 } else {
2166 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2167 return (EINVAL);
2168
2169 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2170 }
2171 return (0);
2172 }
2173
2174 int
vcpu_debugged(struct vcpu * vcpu)2175 vcpu_debugged(struct vcpu *vcpu)
2176 {
2177
2178 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2179 }
2180
2181 cpuset_t
vm_active_cpus(struct vm * vm)2182 vm_active_cpus(struct vm *vm)
2183 {
2184
2185 return (vm->active_cpus);
2186 }
2187
2188 cpuset_t
vm_debug_cpus(struct vm * vm)2189 vm_debug_cpus(struct vm *vm)
2190 {
2191
2192 return (vm->debug_cpus);
2193 }
2194
2195 cpuset_t
vm_suspended_cpus(struct vm * vm)2196 vm_suspended_cpus(struct vm *vm)
2197 {
2198
2199 return (vm->suspended_cpus);
2200 }
2201
2202 /*
2203 * Returns the subset of vCPUs in tostart that are awaiting startup.
2204 * These vCPUs are also marked as no longer awaiting startup.
2205 */
2206 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2207 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2208 {
2209 cpuset_t set;
2210
2211 mtx_lock(&vm->rendezvous_mtx);
2212 CPU_AND(&set, &vm->startup_cpus, tostart);
2213 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2214 mtx_unlock(&vm->rendezvous_mtx);
2215 return (set);
2216 }
2217
2218 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2219 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2220 {
2221 mtx_lock(&vm->rendezvous_mtx);
2222 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2223 mtx_unlock(&vm->rendezvous_mtx);
2224 }
2225
2226 void *
vcpu_stats(struct vcpu * vcpu)2227 vcpu_stats(struct vcpu *vcpu)
2228 {
2229
2230 return (vcpu->stats);
2231 }
2232
2233 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2234 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2235 {
2236 *state = vcpu->x2apic_state;
2237
2238 return (0);
2239 }
2240
2241 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2242 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2243 {
2244 if (state >= X2APIC_STATE_LAST)
2245 return (EINVAL);
2246
2247 vcpu->x2apic_state = state;
2248
2249 vlapic_set_x2apic_state(vcpu, state);
2250
2251 return (0);
2252 }
2253
2254 /*
2255 * This function is called to ensure that a vcpu "sees" a pending event
2256 * as soon as possible:
2257 * - If the vcpu thread is sleeping then it is woken up.
2258 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2259 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2260 */
2261 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2262 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2263 {
2264 int hostcpu;
2265
2266 hostcpu = vcpu->hostcpu;
2267 if (vcpu->state == VCPU_RUNNING) {
2268 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2269 if (hostcpu != curcpu) {
2270 if (lapic_intr) {
2271 vlapic_post_intr(vcpu->vlapic, hostcpu,
2272 vmm_ipinum);
2273 } else {
2274 ipi_cpu(hostcpu, vmm_ipinum);
2275 }
2276 } else {
2277 /*
2278 * If the 'vcpu' is running on 'curcpu' then it must
2279 * be sending a notification to itself (e.g. SELF_IPI).
2280 * The pending event will be picked up when the vcpu
2281 * transitions back to guest context.
2282 */
2283 }
2284 } else {
2285 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2286 "with hostcpu %d", vcpu->state, hostcpu));
2287 if (vcpu->state == VCPU_SLEEPING)
2288 wakeup_one(vcpu);
2289 }
2290 }
2291
2292 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2293 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2294 {
2295 vcpu_lock(vcpu);
2296 vcpu_notify_event_locked(vcpu, lapic_intr);
2297 vcpu_unlock(vcpu);
2298 }
2299
2300 struct vmspace *
vm_vmspace(struct vm * vm)2301 vm_vmspace(struct vm *vm)
2302 {
2303 return (vm->vmspace);
2304 }
2305
2306 struct vm_mem *
vm_mem(struct vm * vm)2307 vm_mem(struct vm *vm)
2308 {
2309 return (&vm->mem);
2310 }
2311
2312 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2313 vm_apicid2vcpuid(struct vm *vm, int apicid)
2314 {
2315 /*
2316 * XXX apic id is assumed to be numerically identical to vcpu id
2317 */
2318 return (apicid);
2319 }
2320
2321 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2322 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2323 vm_rendezvous_func_t func, void *arg)
2324 {
2325 struct vm *vm = vcpu->vm;
2326 int error, i;
2327
2328 /*
2329 * Enforce that this function is called without any locks
2330 */
2331 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2332
2333 restart:
2334 mtx_lock(&vm->rendezvous_mtx);
2335 if (vm->rendezvous_func != NULL) {
2336 /*
2337 * If a rendezvous is already in progress then we need to
2338 * call the rendezvous handler in case this 'vcpu' is one
2339 * of the targets of the rendezvous.
2340 */
2341 VMM_CTR0(vcpu, "Rendezvous already in progress");
2342 mtx_unlock(&vm->rendezvous_mtx);
2343 error = vm_handle_rendezvous(vcpu);
2344 if (error != 0)
2345 return (error);
2346 goto restart;
2347 }
2348 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2349 "rendezvous is still in progress"));
2350
2351 VMM_CTR0(vcpu, "Initiating rendezvous");
2352 vm->rendezvous_req_cpus = dest;
2353 CPU_ZERO(&vm->rendezvous_done_cpus);
2354 vm->rendezvous_arg = arg;
2355 vm->rendezvous_func = func;
2356 mtx_unlock(&vm->rendezvous_mtx);
2357
2358 /*
2359 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2360 * vcpus so they handle the rendezvous as soon as possible.
2361 */
2362 for (i = 0; i < vm->maxcpus; i++) {
2363 if (CPU_ISSET(i, &dest))
2364 vcpu_notify_event(vm_vcpu(vm, i), false);
2365 }
2366
2367 return (vm_handle_rendezvous(vcpu));
2368 }
2369
2370 struct vatpic *
vm_atpic(struct vm * vm)2371 vm_atpic(struct vm *vm)
2372 {
2373 return (vm->vatpic);
2374 }
2375
2376 struct vatpit *
vm_atpit(struct vm * vm)2377 vm_atpit(struct vm *vm)
2378 {
2379 return (vm->vatpit);
2380 }
2381
2382 struct vpmtmr *
vm_pmtmr(struct vm * vm)2383 vm_pmtmr(struct vm *vm)
2384 {
2385
2386 return (vm->vpmtmr);
2387 }
2388
2389 struct vrtc *
vm_rtc(struct vm * vm)2390 vm_rtc(struct vm *vm)
2391 {
2392
2393 return (vm->vrtc);
2394 }
2395
2396 enum vm_reg_name
vm_segment_name(int seg)2397 vm_segment_name(int seg)
2398 {
2399 static enum vm_reg_name seg_names[] = {
2400 VM_REG_GUEST_ES,
2401 VM_REG_GUEST_CS,
2402 VM_REG_GUEST_SS,
2403 VM_REG_GUEST_DS,
2404 VM_REG_GUEST_FS,
2405 VM_REG_GUEST_GS
2406 };
2407
2408 KASSERT(seg >= 0 && seg < nitems(seg_names),
2409 ("%s: invalid segment encoding %d", __func__, seg));
2410 return (seg_names[seg]);
2411 }
2412
2413 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2414 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2415 {
2416 int idx;
2417
2418 for (idx = 0; idx < num_copyinfo; idx++) {
2419 if (copyinfo[idx].cookie != NULL)
2420 vm_gpa_release(copyinfo[idx].cookie);
2421 }
2422 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2423 }
2424
2425 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2426 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2427 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2428 int num_copyinfo, int *fault)
2429 {
2430 int error, idx, nused;
2431 size_t n, off, remaining;
2432 void *hva, *cookie;
2433 uint64_t gpa;
2434
2435 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2436
2437 nused = 0;
2438 remaining = len;
2439 while (remaining > 0) {
2440 if (nused >= num_copyinfo)
2441 return (EFAULT);
2442 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2443 if (error || *fault)
2444 return (error);
2445 off = gpa & PAGE_MASK;
2446 n = min(remaining, PAGE_SIZE - off);
2447 copyinfo[nused].gpa = gpa;
2448 copyinfo[nused].len = n;
2449 remaining -= n;
2450 gla += n;
2451 nused++;
2452 }
2453
2454 for (idx = 0; idx < nused; idx++) {
2455 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2456 copyinfo[idx].len, prot, &cookie);
2457 if (hva == NULL)
2458 break;
2459 copyinfo[idx].hva = hva;
2460 copyinfo[idx].cookie = cookie;
2461 }
2462
2463 if (idx != nused) {
2464 vm_copy_teardown(copyinfo, num_copyinfo);
2465 return (EFAULT);
2466 } else {
2467 *fault = 0;
2468 return (0);
2469 }
2470 }
2471
2472 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2473 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2474 {
2475 char *dst;
2476 int idx;
2477
2478 dst = kaddr;
2479 idx = 0;
2480 while (len > 0) {
2481 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2482 len -= copyinfo[idx].len;
2483 dst += copyinfo[idx].len;
2484 idx++;
2485 }
2486 }
2487
2488 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2489 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2490 {
2491 const char *src;
2492 int idx;
2493
2494 src = kaddr;
2495 idx = 0;
2496 while (len > 0) {
2497 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2498 len -= copyinfo[idx].len;
2499 src += copyinfo[idx].len;
2500 idx++;
2501 }
2502 }
2503
2504 /*
2505 * Return the amount of in-use and wired memory for the VM. Since
2506 * these are global stats, only return the values with for vCPU 0
2507 */
2508 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2509 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2510
2511 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2512 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2513 {
2514
2515 if (vcpu->vcpuid == 0) {
2516 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2517 vmspace_resident_count(vcpu->vm->vmspace));
2518 }
2519 }
2520
2521 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2522 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2523 {
2524
2525 if (vcpu->vcpuid == 0) {
2526 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2527 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
2528 }
2529 }
2530
2531 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2532 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2533
2534 #ifdef BHYVE_SNAPSHOT
2535 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2536 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2537 {
2538 uint64_t tsc, now;
2539 int ret;
2540 struct vcpu *vcpu;
2541 uint16_t i, maxcpus;
2542
2543 now = rdtsc();
2544 maxcpus = vm_get_maxcpus(vm);
2545 for (i = 0; i < maxcpus; i++) {
2546 vcpu = vm->vcpu[i];
2547 if (vcpu == NULL)
2548 continue;
2549
2550 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2551 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2552 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2553 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2554 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2555 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2556 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2557 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2558
2559 /*
2560 * Save the absolute TSC value by adding now to tsc_offset.
2561 *
2562 * It will be turned turned back into an actual offset when the
2563 * TSC restore function is called
2564 */
2565 tsc = now + vcpu->tsc_offset;
2566 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2567 if (meta->op == VM_SNAPSHOT_RESTORE)
2568 vcpu->tsc_offset = tsc;
2569 }
2570
2571 done:
2572 return (ret);
2573 }
2574
2575 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2576 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2577 {
2578 int ret;
2579
2580 ret = vm_snapshot_vcpus(vm, meta);
2581 if (ret != 0)
2582 goto done;
2583
2584 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2585 done:
2586 return (ret);
2587 }
2588
2589 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2590 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2591 {
2592 int error;
2593 struct vcpu *vcpu;
2594 uint16_t i, maxcpus;
2595
2596 error = 0;
2597
2598 maxcpus = vm_get_maxcpus(vm);
2599 for (i = 0; i < maxcpus; i++) {
2600 vcpu = vm->vcpu[i];
2601 if (vcpu == NULL)
2602 continue;
2603
2604 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2605 if (error != 0) {
2606 printf("%s: failed to snapshot vmcs/vmcb data for "
2607 "vCPU: %d; error: %d\n", __func__, i, error);
2608 goto done;
2609 }
2610 }
2611
2612 done:
2613 return (error);
2614 }
2615
2616 /*
2617 * Save kernel-side structures to user-space for snapshotting.
2618 */
2619 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2620 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2621 {
2622 int ret = 0;
2623
2624 switch (meta->dev_req) {
2625 case STRUCT_VMCX:
2626 ret = vm_snapshot_vcpu(vm, meta);
2627 break;
2628 case STRUCT_VM:
2629 ret = vm_snapshot_vm(vm, meta);
2630 break;
2631 case STRUCT_VIOAPIC:
2632 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2633 break;
2634 case STRUCT_VLAPIC:
2635 ret = vlapic_snapshot(vm, meta);
2636 break;
2637 case STRUCT_VHPET:
2638 ret = vhpet_snapshot(vm_hpet(vm), meta);
2639 break;
2640 case STRUCT_VATPIC:
2641 ret = vatpic_snapshot(vm_atpic(vm), meta);
2642 break;
2643 case STRUCT_VATPIT:
2644 ret = vatpit_snapshot(vm_atpit(vm), meta);
2645 break;
2646 case STRUCT_VPMTMR:
2647 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2648 break;
2649 case STRUCT_VRTC:
2650 ret = vrtc_snapshot(vm_rtc(vm), meta);
2651 break;
2652 default:
2653 printf("%s: failed to find the requested type %#x\n",
2654 __func__, meta->dev_req);
2655 ret = (EINVAL);
2656 }
2657 return (ret);
2658 }
2659
2660 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2661 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2662 {
2663 vcpu->tsc_offset = offset;
2664 }
2665
2666 int
vm_restore_time(struct vm * vm)2667 vm_restore_time(struct vm *vm)
2668 {
2669 int error;
2670 uint64_t now;
2671 struct vcpu *vcpu;
2672 uint16_t i, maxcpus;
2673
2674 now = rdtsc();
2675
2676 error = vhpet_restore_time(vm_hpet(vm));
2677 if (error)
2678 return (error);
2679
2680 maxcpus = vm_get_maxcpus(vm);
2681 for (i = 0; i < maxcpus; i++) {
2682 vcpu = vm->vcpu[i];
2683 if (vcpu == NULL)
2684 continue;
2685
2686 error = vmmops_restore_tsc(vcpu->cookie,
2687 vcpu->tsc_offset - now);
2688 if (error)
2689 return (error);
2690 }
2691
2692 return (0);
2693 }
2694 #endif
2695