1 /* SPDX-License-Identifier: MIT */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4
5 #include <asm/cacheflush.h>
6 #include <drm/drm_util.h>
7 #include <drm/drm_cache.h>
8
9 #include <linux/hashtable.h>
10 #include <linux/irq_work.h>
11 #include <linux/random.h>
12 #include <linux/seqlock.h>
13
14 #include "i915_pmu.h"
15 #include "i915_request.h"
16 #include "i915_selftest.h"
17 #include "intel_engine_types.h"
18 #include "intel_gt_types.h"
19 #include "intel_timeline.h"
20 #include "intel_workarounds.h"
21
22 struct drm_printer;
23 struct intel_context;
24 struct intel_gt;
25 struct lock_class_key;
26
27 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
28 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
29 * to give some inclination as to some of the magic values used in the various
30 * workarounds!
31 */
32 #define CACHELINE_BYTES 64
33 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
34
35 #define ENGINE_TRACE(e, fmt, ...) do { \
36 const struct intel_engine_cs *e__ __maybe_unused = (e); \
37 GEM_TRACE("%s %s: " fmt, \
38 dev_name(e__->i915->drm.dev), e__->name, \
39 ##__VA_ARGS__); \
40 } while (0)
41
42 /*
43 * The register defines to be used with the following macros need to accept a
44 * base param, e.g:
45 *
46 * REG_FOO(base) _MMIO((base) + <relative offset>)
47 * ENGINE_READ(engine, REG_FOO);
48 *
49 * register arrays are to be defined and accessed as follows:
50 *
51 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
52 * ENGINE_READ_IDX(engine, REG_BAR, i)
53 */
54
55 #define __ENGINE_REG_OP(op__, engine__, ...) \
56 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
57
58 #define __ENGINE_READ_OP(op__, engine__, reg__) \
59 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
60
61 #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__)
62 #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__)
63 #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__)
64 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
65 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
66
67 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
68 __ENGINE_REG_OP(read64_2x32, (engine__), \
69 lower_reg__((engine__)->mmio_base), \
70 upper_reg__((engine__)->mmio_base))
71
72 #define ENGINE_READ_IDX(engine__, reg__, idx__) \
73 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
74
75 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
76 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
77
78 #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__)
79 #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__)
80 #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
81
82 #define GEN6_RING_FAULT_REG_READ(engine__) \
83 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
84
85 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
86 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
87
88 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
89 ({ \
90 u32 __val; \
91 \
92 __val = intel_uncore_read((engine__)->uncore, \
93 RING_FAULT_REG(engine__)); \
94 __val &= ~(clear__); \
95 __val |= (set__); \
96 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
97 __val); \
98 })
99
100 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
101 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
102 */
103
104 static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)105 execlists_num_ports(const struct intel_engine_execlists * const execlists)
106 {
107 return execlists->port_mask + 1;
108 }
109
110 static inline struct i915_request *
execlists_active(const struct intel_engine_execlists * execlists)111 execlists_active(const struct intel_engine_execlists *execlists)
112 {
113 struct i915_request * const *cur, * const *old, *active;
114
115 cur = READ_ONCE(execlists->active);
116 smp_rmb(); /* pairs with overwrite protection in process_csb() */
117 do {
118 old = cur;
119
120 active = READ_ONCE(*cur);
121 cur = READ_ONCE(execlists->active);
122
123 smp_rmb(); /* and complete the seqlock retry */
124 } while (unlikely(cur != old));
125
126 return active;
127 }
128
129 static inline u32
intel_read_status_page(const struct intel_engine_cs * engine,int reg)130 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
131 {
132 /* Ensure that the compiler doesn't optimize away the load. */
133 return READ_ONCE(engine->status_page.addr[reg]);
134 }
135
136 static inline void
intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)137 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
138 {
139 /* Writing into the status page should be done sparingly. Since
140 * we do when we are uncertain of the device state, we take a bit
141 * of extra paranoia to try and ensure that the HWS takes the value
142 * we give and that it doesn't end up trapped inside the CPU!
143 */
144 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value));
145 WRITE_ONCE(engine->status_page.addr[reg], value);
146 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value));
147 }
148
149 /*
150 * Reads a dword out of the status page, which is written to from the command
151 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
152 * MI_STORE_DATA_IMM.
153 *
154 * The following dwords have a reserved meaning:
155 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
156 * 0x04: ring 0 head pointer
157 * 0x05: ring 1 head pointer (915-class)
158 * 0x06: ring 2 head pointer (915-class)
159 * 0x10-0x1b: Context status DWords (GM45)
160 * 0x1f: Last written status offset. (GM45)
161 * 0x20-0x2f: Reserved (Gen6+)
162 *
163 * The area from dword 0x30 to 0x3ff is available for driver usage.
164 */
165 #define I915_GEM_HWS_PREEMPT 0x32
166 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
167 #define I915_GEM_HWS_SEQNO 0x40
168 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
169 #define I915_GEM_HWS_MIGRATE (0x42 * sizeof(u32))
170 #define I915_GEM_HWS_GGTT_BIND 0x46
171 #define I915_GEM_HWS_GGTT_BIND_ADDR (I915_GEM_HWS_GGTT_BIND * sizeof(u32))
172 #define I915_GEM_HWS_PXP 0x60
173 #define I915_GEM_HWS_PXP_ADDR (I915_GEM_HWS_PXP * sizeof(u32))
174 #define I915_GEM_HWS_GSC 0x62
175 #define I915_GEM_HWS_GSC_ADDR (I915_GEM_HWS_GSC * sizeof(u32))
176 #define I915_GEM_HWS_SCRATCH 0x80
177
178 #define I915_HWS_CSB_BUF0_INDEX 0x10
179 #define I915_HWS_CSB_WRITE_INDEX 0x1f
180 #define ICL_HWS_CSB_WRITE_INDEX 0x2f
181 #define INTEL_HWS_CSB_WRITE_INDEX(__i915) \
182 (GRAPHICS_VER(__i915) >= 11 ? ICL_HWS_CSB_WRITE_INDEX : I915_HWS_CSB_WRITE_INDEX)
183
184 void intel_engine_stop(struct intel_engine_cs *engine);
185 void intel_engine_cleanup(struct intel_engine_cs *engine);
186
187 int intel_engines_init_mmio(struct intel_gt *gt);
188 int intel_engines_init(struct intel_gt *gt);
189
190 void intel_engine_free_request_pool(struct intel_engine_cs *engine);
191
192 void intel_engines_release(struct intel_gt *gt);
193 void intel_engines_free(struct intel_gt *gt);
194
195 int intel_engine_init_common(struct intel_engine_cs *engine);
196 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
197
198 int intel_engine_resume(struct intel_engine_cs *engine);
199
200 int intel_ring_submission_setup(struct intel_engine_cs *engine);
201
202 int intel_engine_stop_cs(struct intel_engine_cs *engine);
203 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
204
205 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine);
206
207 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
208
209 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
210 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
211
212 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
213 struct intel_instdone *instdone);
214
215 void intel_engine_init_execlists(struct intel_engine_cs *engine);
216
217 bool intel_engine_irq_enable(struct intel_engine_cs *engine);
218 void intel_engine_irq_disable(struct intel_engine_cs *engine);
219
__intel_engine_reset(struct intel_engine_cs * engine,bool stalled)220 static inline void __intel_engine_reset(struct intel_engine_cs *engine,
221 bool stalled)
222 {
223 if (engine->reset.rewind)
224 engine->reset.rewind(engine, stalled);
225 engine->serial++; /* contexts lost */
226 }
227
228 bool intel_engines_are_idle(struct intel_gt *gt);
229 bool intel_engine_is_idle(struct intel_engine_cs *engine);
230
231 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync);
intel_engine_flush_submission(struct intel_engine_cs * engine)232 static inline void intel_engine_flush_submission(struct intel_engine_cs *engine)
233 {
234 __intel_engine_flush_submission(engine, true);
235 }
236
237 void intel_engines_reset_default_submission(struct intel_gt *gt);
238
239 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
240
241 __printf(3, 4)
242 void intel_engine_dump(struct intel_engine_cs *engine,
243 struct drm_printer *m,
244 const char *header, ...);
245 void intel_engine_dump_active_requests(struct list_head *requests,
246 struct i915_request *hung_rq,
247 struct drm_printer *m);
248
249 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine,
250 ktime_t *now);
251
252 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
253 struct intel_context **ce, struct i915_request **rq);
254
255 u32 intel_engine_context_size(struct intel_gt *gt, u8 class);
256 struct intel_context *
257 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
258 struct i915_address_space *vm,
259 unsigned int ring_size,
260 unsigned int hwsp,
261 struct lock_class_key *key,
262 const char *name);
263
264 void intel_engine_destroy_pinned_context(struct intel_context *ce);
265
266 void xehp_enable_ccs_engines(struct intel_engine_cs *engine);
267
268 #define ENGINE_PHYSICAL 0
269 #define ENGINE_MOCK 1
270 #define ENGINE_VIRTUAL 2
271
intel_engine_uses_guc(const struct intel_engine_cs * engine)272 static inline bool intel_engine_uses_guc(const struct intel_engine_cs *engine)
273 {
274 return engine->gt->submission_method >= INTEL_SUBMISSION_GUC;
275 }
276
277 static inline bool
intel_engine_has_preempt_reset(const struct intel_engine_cs * engine)278 intel_engine_has_preempt_reset(const struct intel_engine_cs *engine)
279 {
280 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
281 return false;
282
283 return intel_engine_has_preemption(engine);
284 }
285
286 #define FORCE_VIRTUAL BIT(0)
287 struct intel_context *
288 intel_engine_create_virtual(struct intel_engine_cs **siblings,
289 unsigned int count, unsigned long flags);
290
291 static inline struct intel_context *
intel_engine_create_parallel(struct intel_engine_cs ** engines,unsigned int num_engines,unsigned int width)292 intel_engine_create_parallel(struct intel_engine_cs **engines,
293 unsigned int num_engines,
294 unsigned int width)
295 {
296 GEM_BUG_ON(!engines[0]->cops->create_parallel);
297 return engines[0]->cops->create_parallel(engines, num_engines, width);
298 }
299
300 static inline bool
intel_virtual_engine_has_heartbeat(const struct intel_engine_cs * engine)301 intel_virtual_engine_has_heartbeat(const struct intel_engine_cs *engine)
302 {
303 /*
304 * For non-GuC submission we expect the back-end to look at the
305 * heartbeat status of the actual physical engine that the work
306 * has been (or is being) scheduled on, so we should only reach
307 * here with GuC submission enabled.
308 */
309 GEM_BUG_ON(!intel_engine_uses_guc(engine));
310
311 return intel_guc_virtual_engine_has_heartbeat(engine);
312 }
313
314 static inline bool
intel_engine_has_heartbeat(const struct intel_engine_cs * engine)315 intel_engine_has_heartbeat(const struct intel_engine_cs *engine)
316 {
317 if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL)
318 return false;
319
320 if (intel_engine_is_virtual(engine))
321 return intel_virtual_engine_has_heartbeat(engine);
322 else
323 return READ_ONCE(engine->props.heartbeat_interval_ms);
324 }
325
326 static inline struct intel_engine_cs *
intel_engine_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)327 intel_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
328 {
329 GEM_BUG_ON(!intel_engine_is_virtual(engine));
330 return engine->cops->get_sibling(engine, sibling);
331 }
332
333 static inline void
intel_engine_set_hung_context(struct intel_engine_cs * engine,struct intel_context * ce)334 intel_engine_set_hung_context(struct intel_engine_cs *engine,
335 struct intel_context *ce)
336 {
337 engine->hung_ce = ce;
338 }
339
340 static inline void
intel_engine_clear_hung_context(struct intel_engine_cs * engine)341 intel_engine_clear_hung_context(struct intel_engine_cs *engine)
342 {
343 intel_engine_set_hung_context(engine, NULL);
344 }
345
346 static inline struct intel_context *
intel_engine_get_hung_context(struct intel_engine_cs * engine)347 intel_engine_get_hung_context(struct intel_engine_cs *engine)
348 {
349 return engine->hung_ce;
350 }
351
352 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value);
353 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value);
354 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value);
355 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value);
356 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value);
357
358 #endif /* _INTEL_RINGBUFFER_H_ */
359