xref: /linux/include/linux/mm_types.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * If your page will not be mapped to userspace, you can also use the four
50  * bytes in the mapcount union, but you must call page_mapcount_reset()
51  * before freeing it.
52  *
53  * If you want to use the refcount field, it must be used in such a way
54  * that other CPUs temporarily incrementing and then decrementing the
55  * refcount does not cause problems.  On receiving the page from
56  * alloc_pages(), the refcount will be positive.
57  *
58  * If you allocate pages of order > 0, you can use some of the fields
59  * in each subpage, but you may need to restore some of their values
60  * afterwards.
61  *
62  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63  * That requires that freelist & counters in struct slab be adjacent and
64  * double-word aligned. Because struct slab currently just reinterprets the
65  * bits of struct page, we align all struct pages to double-word boundaries,
66  * and ensure that 'freelist' is aligned within struct slab.
67  */
68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
70 #else
71 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
72 #endif
73 
74 struct page {
75 	unsigned long flags;		/* Atomic flags, some possibly
76 					 * updated asynchronously */
77 	/*
78 	 * Five words (20/40 bytes) are available in this union.
79 	 * WARNING: bit 0 of the first word is used for PageTail(). That
80 	 * means the other users of this union MUST NOT use the bit to
81 	 * avoid collision and false-positive PageTail().
82 	 */
83 	union {
84 		struct {	/* Page cache and anonymous pages */
85 			/**
86 			 * @lru: Pageout list, eg. active_list protected by
87 			 * lruvec->lru_lock.  Sometimes used as a generic list
88 			 * by the page owner.
89 			 */
90 			union {
91 				struct list_head lru;
92 
93 				/* Or, for the Unevictable "LRU list" slot */
94 				struct {
95 					/* Always even, to negate PageTail */
96 					void *__filler;
97 					/* Count page's or folio's mlocks */
98 					unsigned int mlock_count;
99 				};
100 
101 				/* Or, free page */
102 				struct list_head buddy_list;
103 				struct list_head pcp_list;
104 			};
105 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
106 			struct address_space *mapping;
107 			union {
108 				pgoff_t index;		/* Our offset within mapping. */
109 				unsigned long share;	/* share count for fsdax */
110 			};
111 			/**
112 			 * @private: Mapping-private opaque data.
113 			 * Usually used for buffer_heads if PagePrivate.
114 			 * Used for swp_entry_t if PageSwapCache.
115 			 * Indicates order in the buddy system if PageBuddy.
116 			 */
117 			unsigned long private;
118 		};
119 		struct {	/* page_pool used by netstack */
120 			/**
121 			 * @pp_magic: magic value to avoid recycling non
122 			 * page_pool allocated pages.
123 			 */
124 			unsigned long pp_magic;
125 			struct page_pool *pp;
126 			unsigned long _pp_mapping_pad;
127 			unsigned long dma_addr;
128 			atomic_long_t pp_ref_count;
129 		};
130 		struct {	/* Tail pages of compound page */
131 			unsigned long compound_head;	/* Bit zero is set */
132 		};
133 		struct {	/* ZONE_DEVICE pages */
134 			/** @pgmap: Points to the hosting device page map. */
135 			struct dev_pagemap *pgmap;
136 			void *zone_device_data;
137 			/*
138 			 * ZONE_DEVICE private pages are counted as being
139 			 * mapped so the next 3 words hold the mapping, index,
140 			 * and private fields from the source anonymous or
141 			 * page cache page while the page is migrated to device
142 			 * private memory.
143 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
144 			 * use the mapping, index, and private fields when
145 			 * pmem backed DAX files are mapped.
146 			 */
147 		};
148 
149 		/** @rcu_head: You can use this to free a page by RCU. */
150 		struct rcu_head rcu_head;
151 	};
152 
153 	union {		/* This union is 4 bytes in size. */
154 		/*
155 		 * If the page can be mapped to userspace, encodes the number
156 		 * of times this page is referenced by a page table.
157 		 */
158 		atomic_t _mapcount;
159 
160 		/*
161 		 * If the page is neither PageSlab nor mappable to userspace,
162 		 * the value stored here may help determine what this page
163 		 * is used for.  See page-flags.h for a list of page types
164 		 * which are currently stored here.
165 		 */
166 		unsigned int page_type;
167 	};
168 
169 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
170 	atomic_t _refcount;
171 
172 #ifdef CONFIG_SLAB_OBJ_EXT
173 	unsigned long memcg_data;
174 #endif
175 
176 	/*
177 	 * On machines where all RAM is mapped into kernel address space,
178 	 * we can simply calculate the virtual address. On machines with
179 	 * highmem some memory is mapped into kernel virtual memory
180 	 * dynamically, so we need a place to store that address.
181 	 * Note that this field could be 16 bits on x86 ... ;)
182 	 *
183 	 * Architectures with slow multiplication can define
184 	 * WANT_PAGE_VIRTUAL in asm/page.h
185 	 */
186 #if defined(WANT_PAGE_VIRTUAL)
187 	void *virtual;			/* Kernel virtual address (NULL if
188 					   not kmapped, ie. highmem) */
189 #endif /* WANT_PAGE_VIRTUAL */
190 
191 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
192 	int _last_cpupid;
193 #endif
194 
195 #ifdef CONFIG_KMSAN
196 	/*
197 	 * KMSAN metadata for this page:
198 	 *  - shadow page: every bit indicates whether the corresponding
199 	 *    bit of the original page is initialized (0) or not (1);
200 	 *  - origin page: every 4 bytes contain an id of the stack trace
201 	 *    where the uninitialized value was created.
202 	 */
203 	struct page *kmsan_shadow;
204 	struct page *kmsan_origin;
205 #endif
206 } _struct_page_alignment;
207 
208 /*
209  * struct encoded_page - a nonexistent type marking this pointer
210  *
211  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
212  * with the low bits of the pointer indicating extra context-dependent
213  * information. Only used in mmu_gather handling, and this acts as a type
214  * system check on that use.
215  *
216  * We only really have two guaranteed bits in general, although you could
217  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
218  * for more.
219  *
220  * Use the supplied helper functions to endcode/decode the pointer and bits.
221  */
222 struct encoded_page;
223 
224 #define ENCODED_PAGE_BITS			3ul
225 
226 /* Perform rmap removal after we have flushed the TLB. */
227 #define ENCODED_PAGE_BIT_DELAY_RMAP		1ul
228 
229 /*
230  * The next item in an encoded_page array is the "nr_pages" argument, specifying
231  * the number of consecutive pages starting from this page, that all belong to
232  * the same folio. For example, "nr_pages" corresponds to the number of folio
233  * references that must be dropped. If this bit is not set, "nr_pages" is
234  * implicitly 1.
235  */
236 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul
237 
238 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
239 {
240 	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
241 	return (struct encoded_page *)(flags | (unsigned long)page);
242 }
243 
244 static inline unsigned long encoded_page_flags(struct encoded_page *page)
245 {
246 	return ENCODED_PAGE_BITS & (unsigned long)page;
247 }
248 
249 static inline struct page *encoded_page_ptr(struct encoded_page *page)
250 {
251 	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
252 }
253 
254 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
255 {
256 	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
257 	return (struct encoded_page *)(nr << 2);
258 }
259 
260 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
261 {
262 	return ((unsigned long)page) >> 2;
263 }
264 
265 /*
266  * A swap entry has to fit into a "unsigned long", as the entry is hidden
267  * in the "index" field of the swapper address space.
268  */
269 typedef struct {
270 	unsigned long val;
271 } swp_entry_t;
272 
273 /**
274  * struct folio - Represents a contiguous set of bytes.
275  * @flags: Identical to the page flags.
276  * @lru: Least Recently Used list; tracks how recently this folio was used.
277  * @mlock_count: Number of times this folio has been pinned by mlock().
278  * @mapping: The file this page belongs to, or refers to the anon_vma for
279  *    anonymous memory.
280  * @index: Offset within the file, in units of pages.  For anonymous memory,
281  *    this is the index from the beginning of the mmap.
282  * @private: Filesystem per-folio data (see folio_attach_private()).
283  * @swap: Used for swp_entry_t if folio_test_swapcache().
284  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
285  *    find out how many times this folio is mapped by userspace.
286  * @_refcount: Do not access this member directly.  Use folio_ref_count()
287  *    to find how many references there are to this folio.
288  * @memcg_data: Memory Control Group data.
289  * @virtual: Virtual address in the kernel direct map.
290  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
291  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
292  * @_large_mapcount: Do not use directly, call folio_mapcount().
293  * @_nr_pages_mapped: Do not use outside of rmap and debug code.
294  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
295  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
296  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
297  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
298  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
299  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
300  * @_deferred_list: Folios to be split under memory pressure.
301  *
302  * A folio is a physically, virtually and logically contiguous set
303  * of bytes.  It is a power-of-two in size, and it is aligned to that
304  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
305  * in the page cache, it is at a file offset which is a multiple of that
306  * power-of-two.  It may be mapped into userspace at an address which is
307  * at an arbitrary page offset, but its kernel virtual address is aligned
308  * to its size.
309  */
310 struct folio {
311 	/* private: don't document the anon union */
312 	union {
313 		struct {
314 	/* public: */
315 			unsigned long flags;
316 			union {
317 				struct list_head lru;
318 	/* private: avoid cluttering the output */
319 				struct {
320 					void *__filler;
321 	/* public: */
322 					unsigned int mlock_count;
323 	/* private: */
324 				};
325 	/* public: */
326 			};
327 			struct address_space *mapping;
328 			pgoff_t index;
329 			union {
330 				void *private;
331 				swp_entry_t swap;
332 			};
333 			atomic_t _mapcount;
334 			atomic_t _refcount;
335 #ifdef CONFIG_SLAB_OBJ_EXT
336 			unsigned long memcg_data;
337 #endif
338 #if defined(WANT_PAGE_VIRTUAL)
339 			void *virtual;
340 #endif
341 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
342 			int _last_cpupid;
343 #endif
344 	/* private: the union with struct page is transitional */
345 		};
346 		struct page page;
347 	};
348 	union {
349 		struct {
350 			unsigned long _flags_1;
351 			unsigned long _head_1;
352 	/* public: */
353 			atomic_t _large_mapcount;
354 			atomic_t _entire_mapcount;
355 			atomic_t _nr_pages_mapped;
356 			atomic_t _pincount;
357 #ifdef CONFIG_64BIT
358 			unsigned int _folio_nr_pages;
359 #endif
360 	/* private: the union with struct page is transitional */
361 		};
362 		struct page __page_1;
363 	};
364 	union {
365 		struct {
366 			unsigned long _flags_2;
367 			unsigned long _head_2;
368 	/* public: */
369 			void *_hugetlb_subpool;
370 			void *_hugetlb_cgroup;
371 			void *_hugetlb_cgroup_rsvd;
372 			void *_hugetlb_hwpoison;
373 	/* private: the union with struct page is transitional */
374 		};
375 		struct {
376 			unsigned long _flags_2a;
377 			unsigned long _head_2a;
378 	/* public: */
379 			struct list_head _deferred_list;
380 	/* private: the union with struct page is transitional */
381 		};
382 		struct page __page_2;
383 	};
384 };
385 
386 #define FOLIO_MATCH(pg, fl)						\
387 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
388 FOLIO_MATCH(flags, flags);
389 FOLIO_MATCH(lru, lru);
390 FOLIO_MATCH(mapping, mapping);
391 FOLIO_MATCH(compound_head, lru);
392 FOLIO_MATCH(index, index);
393 FOLIO_MATCH(private, private);
394 FOLIO_MATCH(_mapcount, _mapcount);
395 FOLIO_MATCH(_refcount, _refcount);
396 #ifdef CONFIG_MEMCG
397 FOLIO_MATCH(memcg_data, memcg_data);
398 #endif
399 #if defined(WANT_PAGE_VIRTUAL)
400 FOLIO_MATCH(virtual, virtual);
401 #endif
402 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
403 FOLIO_MATCH(_last_cpupid, _last_cpupid);
404 #endif
405 #undef FOLIO_MATCH
406 #define FOLIO_MATCH(pg, fl)						\
407 	static_assert(offsetof(struct folio, fl) ==			\
408 			offsetof(struct page, pg) + sizeof(struct page))
409 FOLIO_MATCH(flags, _flags_1);
410 FOLIO_MATCH(compound_head, _head_1);
411 #undef FOLIO_MATCH
412 #define FOLIO_MATCH(pg, fl)						\
413 	static_assert(offsetof(struct folio, fl) ==			\
414 			offsetof(struct page, pg) + 2 * sizeof(struct page))
415 FOLIO_MATCH(flags, _flags_2);
416 FOLIO_MATCH(compound_head, _head_2);
417 FOLIO_MATCH(flags, _flags_2a);
418 FOLIO_MATCH(compound_head, _head_2a);
419 #undef FOLIO_MATCH
420 
421 /**
422  * struct ptdesc -    Memory descriptor for page tables.
423  * @__page_flags:     Same as page flags. Powerpc only.
424  * @pt_rcu_head:      For freeing page table pages.
425  * @pt_list:          List of used page tables. Used for s390 and x86.
426  * @_pt_pad_1:        Padding that aliases with page's compound head.
427  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
428  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
429  * @pt_index:         Used for s390 gmap.
430  * @pt_mm:            Used for x86 pgds.
431  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
432  * @_pt_pad_2:        Padding to ensure proper alignment.
433  * @ptl:              Lock for the page table.
434  * @__page_type:      Same as page->page_type. Unused for page tables.
435  * @__page_refcount:  Same as page refcount.
436  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
437  *
438  * This struct overlays struct page for now. Do not modify without a good
439  * understanding of the issues.
440  */
441 struct ptdesc {
442 	unsigned long __page_flags;
443 
444 	union {
445 		struct rcu_head pt_rcu_head;
446 		struct list_head pt_list;
447 		struct {
448 			unsigned long _pt_pad_1;
449 			pgtable_t pmd_huge_pte;
450 		};
451 	};
452 	unsigned long __page_mapping;
453 
454 	union {
455 		pgoff_t pt_index;
456 		struct mm_struct *pt_mm;
457 		atomic_t pt_frag_refcount;
458 	};
459 
460 	union {
461 		unsigned long _pt_pad_2;
462 #if ALLOC_SPLIT_PTLOCKS
463 		spinlock_t *ptl;
464 #else
465 		spinlock_t ptl;
466 #endif
467 	};
468 	unsigned int __page_type;
469 	atomic_t __page_refcount;
470 #ifdef CONFIG_MEMCG
471 	unsigned long pt_memcg_data;
472 #endif
473 };
474 
475 #define TABLE_MATCH(pg, pt)						\
476 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
477 TABLE_MATCH(flags, __page_flags);
478 TABLE_MATCH(compound_head, pt_list);
479 TABLE_MATCH(compound_head, _pt_pad_1);
480 TABLE_MATCH(mapping, __page_mapping);
481 TABLE_MATCH(index, pt_index);
482 TABLE_MATCH(rcu_head, pt_rcu_head);
483 TABLE_MATCH(page_type, __page_type);
484 TABLE_MATCH(_refcount, __page_refcount);
485 #ifdef CONFIG_MEMCG
486 TABLE_MATCH(memcg_data, pt_memcg_data);
487 #endif
488 #undef TABLE_MATCH
489 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
490 
491 #define ptdesc_page(pt)			(_Generic((pt),			\
492 	const struct ptdesc *:		(const struct page *)(pt),	\
493 	struct ptdesc *:		(struct page *)(pt)))
494 
495 #define ptdesc_folio(pt)		(_Generic((pt),			\
496 	const struct ptdesc *:		(const struct folio *)(pt),	\
497 	struct ptdesc *:		(struct folio *)(pt)))
498 
499 #define page_ptdesc(p)			(_Generic((p),			\
500 	const struct page *:		(const struct ptdesc *)(p),	\
501 	struct page *:			(struct ptdesc *)(p)))
502 
503 /*
504  * Used for sizing the vmemmap region on some architectures
505  */
506 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
507 
508 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
509 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
510 
511 /*
512  * page_private can be used on tail pages.  However, PagePrivate is only
513  * checked by the VM on the head page.  So page_private on the tail pages
514  * should be used for data that's ancillary to the head page (eg attaching
515  * buffer heads to tail pages after attaching buffer heads to the head page)
516  */
517 #define page_private(page)		((page)->private)
518 
519 static inline void set_page_private(struct page *page, unsigned long private)
520 {
521 	page->private = private;
522 }
523 
524 static inline void *folio_get_private(struct folio *folio)
525 {
526 	return folio->private;
527 }
528 
529 struct page_frag_cache {
530 	void * va;
531 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
532 	__u16 offset;
533 	__u16 size;
534 #else
535 	__u32 offset;
536 #endif
537 	/* we maintain a pagecount bias, so that we dont dirty cache line
538 	 * containing page->_refcount every time we allocate a fragment.
539 	 */
540 	unsigned int		pagecnt_bias;
541 	bool pfmemalloc;
542 };
543 
544 typedef unsigned long vm_flags_t;
545 
546 /*
547  * A region containing a mapping of a non-memory backed file under NOMMU
548  * conditions.  These are held in a global tree and are pinned by the VMAs that
549  * map parts of them.
550  */
551 struct vm_region {
552 	struct rb_node	vm_rb;		/* link in global region tree */
553 	vm_flags_t	vm_flags;	/* VMA vm_flags */
554 	unsigned long	vm_start;	/* start address of region */
555 	unsigned long	vm_end;		/* region initialised to here */
556 	unsigned long	vm_top;		/* region allocated to here */
557 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
558 	struct file	*vm_file;	/* the backing file or NULL */
559 
560 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
561 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
562 						* this region */
563 };
564 
565 #ifdef CONFIG_USERFAULTFD
566 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
567 struct vm_userfaultfd_ctx {
568 	struct userfaultfd_ctx *ctx;
569 };
570 #else /* CONFIG_USERFAULTFD */
571 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
572 struct vm_userfaultfd_ctx {};
573 #endif /* CONFIG_USERFAULTFD */
574 
575 struct anon_vma_name {
576 	struct kref kref;
577 	/* The name needs to be at the end because it is dynamically sized. */
578 	char name[];
579 };
580 
581 #ifdef CONFIG_ANON_VMA_NAME
582 /*
583  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
584  * either keep holding the lock while using the returned pointer or it should
585  * raise anon_vma_name refcount before releasing the lock.
586  */
587 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
588 struct anon_vma_name *anon_vma_name_alloc(const char *name);
589 void anon_vma_name_free(struct kref *kref);
590 #else /* CONFIG_ANON_VMA_NAME */
591 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
592 {
593 	return NULL;
594 }
595 
596 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
597 {
598 	return NULL;
599 }
600 #endif
601 
602 struct vma_lock {
603 	struct rw_semaphore lock;
604 };
605 
606 struct vma_numab_state {
607 	/*
608 	 * Initialised as time in 'jiffies' after which VMA
609 	 * should be scanned.  Delays first scan of new VMA by at
610 	 * least sysctl_numa_balancing_scan_delay:
611 	 */
612 	unsigned long next_scan;
613 
614 	/*
615 	 * Time in jiffies when pids_active[] is reset to
616 	 * detect phase change behaviour:
617 	 */
618 	unsigned long pids_active_reset;
619 
620 	/*
621 	 * Approximate tracking of PIDs that trapped a NUMA hinting
622 	 * fault. May produce false positives due to hash collisions.
623 	 *
624 	 *   [0] Previous PID tracking
625 	 *   [1] Current PID tracking
626 	 *
627 	 * Window moves after next_pid_reset has expired approximately
628 	 * every VMA_PID_RESET_PERIOD jiffies:
629 	 */
630 	unsigned long pids_active[2];
631 
632 	/* MM scan sequence ID when scan first started after VMA creation */
633 	int start_scan_seq;
634 
635 	/*
636 	 * MM scan sequence ID when the VMA was last completely scanned.
637 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
638 	 */
639 	int prev_scan_seq;
640 };
641 
642 /*
643  * This struct describes a virtual memory area. There is one of these
644  * per VM-area/task. A VM area is any part of the process virtual memory
645  * space that has a special rule for the page-fault handlers (ie a shared
646  * library, the executable area etc).
647  */
648 struct vm_area_struct {
649 	/* The first cache line has the info for VMA tree walking. */
650 
651 	union {
652 		struct {
653 			/* VMA covers [vm_start; vm_end) addresses within mm */
654 			unsigned long vm_start;
655 			unsigned long vm_end;
656 		};
657 #ifdef CONFIG_PER_VMA_LOCK
658 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
659 #endif
660 	};
661 
662 	struct mm_struct *vm_mm;	/* The address space we belong to. */
663 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
664 
665 	/*
666 	 * Flags, see mm.h.
667 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
668 	 */
669 	union {
670 		const vm_flags_t vm_flags;
671 		vm_flags_t __private __vm_flags;
672 	};
673 
674 #ifdef CONFIG_PER_VMA_LOCK
675 	/* Flag to indicate areas detached from the mm->mm_mt tree */
676 	bool detached;
677 
678 	/*
679 	 * Can only be written (using WRITE_ONCE()) while holding both:
680 	 *  - mmap_lock (in write mode)
681 	 *  - vm_lock->lock (in write mode)
682 	 * Can be read reliably while holding one of:
683 	 *  - mmap_lock (in read or write mode)
684 	 *  - vm_lock->lock (in read or write mode)
685 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
686 	 * while holding nothing (except RCU to keep the VMA struct allocated).
687 	 *
688 	 * This sequence counter is explicitly allowed to overflow; sequence
689 	 * counter reuse can only lead to occasional unnecessary use of the
690 	 * slowpath.
691 	 */
692 	int vm_lock_seq;
693 	struct vma_lock *vm_lock;
694 #endif
695 
696 	/*
697 	 * For areas with an address space and backing store,
698 	 * linkage into the address_space->i_mmap interval tree.
699 	 *
700 	 */
701 	struct {
702 		struct rb_node rb;
703 		unsigned long rb_subtree_last;
704 	} shared;
705 
706 	/*
707 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
708 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
709 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
710 	 * or brk vma (with NULL file) can only be in an anon_vma list.
711 	 */
712 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
713 					  * page_table_lock */
714 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
715 
716 	/* Function pointers to deal with this struct. */
717 	const struct vm_operations_struct *vm_ops;
718 
719 	/* Information about our backing store: */
720 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
721 					   units */
722 	struct file * vm_file;		/* File we map to (can be NULL). */
723 	void * vm_private_data;		/* was vm_pte (shared mem) */
724 
725 #ifdef CONFIG_ANON_VMA_NAME
726 	/*
727 	 * For private and shared anonymous mappings, a pointer to a null
728 	 * terminated string containing the name given to the vma, or NULL if
729 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
730 	 */
731 	struct anon_vma_name *anon_name;
732 #endif
733 #ifdef CONFIG_SWAP
734 	atomic_long_t swap_readahead_info;
735 #endif
736 #ifndef CONFIG_MMU
737 	struct vm_region *vm_region;	/* NOMMU mapping region */
738 #endif
739 #ifdef CONFIG_NUMA
740 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
741 #endif
742 #ifdef CONFIG_NUMA_BALANCING
743 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
744 #endif
745 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
746 } __randomize_layout;
747 
748 #ifdef CONFIG_NUMA
749 #define vma_policy(vma) ((vma)->vm_policy)
750 #else
751 #define vma_policy(vma) NULL
752 #endif
753 
754 #ifdef CONFIG_SCHED_MM_CID
755 struct mm_cid {
756 	u64 time;
757 	int cid;
758 };
759 #endif
760 
761 struct kioctx_table;
762 struct iommu_mm_data;
763 struct mm_struct {
764 	struct {
765 		/*
766 		 * Fields which are often written to are placed in a separate
767 		 * cache line.
768 		 */
769 		struct {
770 			/**
771 			 * @mm_count: The number of references to &struct
772 			 * mm_struct (@mm_users count as 1).
773 			 *
774 			 * Use mmgrab()/mmdrop() to modify. When this drops to
775 			 * 0, the &struct mm_struct is freed.
776 			 */
777 			atomic_t mm_count;
778 		} ____cacheline_aligned_in_smp;
779 
780 		struct maple_tree mm_mt;
781 
782 		unsigned long mmap_base;	/* base of mmap area */
783 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
784 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
785 		/* Base addresses for compatible mmap() */
786 		unsigned long mmap_compat_base;
787 		unsigned long mmap_compat_legacy_base;
788 #endif
789 		unsigned long task_size;	/* size of task vm space */
790 		pgd_t * pgd;
791 
792 #ifdef CONFIG_MEMBARRIER
793 		/**
794 		 * @membarrier_state: Flags controlling membarrier behavior.
795 		 *
796 		 * This field is close to @pgd to hopefully fit in the same
797 		 * cache-line, which needs to be touched by switch_mm().
798 		 */
799 		atomic_t membarrier_state;
800 #endif
801 
802 		/**
803 		 * @mm_users: The number of users including userspace.
804 		 *
805 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
806 		 * drops to 0 (i.e. when the task exits and there are no other
807 		 * temporary reference holders), we also release a reference on
808 		 * @mm_count (which may then free the &struct mm_struct if
809 		 * @mm_count also drops to 0).
810 		 */
811 		atomic_t mm_users;
812 
813 #ifdef CONFIG_SCHED_MM_CID
814 		/**
815 		 * @pcpu_cid: Per-cpu current cid.
816 		 *
817 		 * Keep track of the currently allocated mm_cid for each cpu.
818 		 * The per-cpu mm_cid values are serialized by their respective
819 		 * runqueue locks.
820 		 */
821 		struct mm_cid __percpu *pcpu_cid;
822 		/*
823 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
824 		 *
825 		 * When the next mm_cid scan is due (in jiffies).
826 		 */
827 		unsigned long mm_cid_next_scan;
828 #endif
829 #ifdef CONFIG_MMU
830 		atomic_long_t pgtables_bytes;	/* size of all page tables */
831 #endif
832 		int map_count;			/* number of VMAs */
833 
834 		spinlock_t page_table_lock; /* Protects page tables and some
835 					     * counters
836 					     */
837 		/*
838 		 * With some kernel config, the current mmap_lock's offset
839 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
840 		 * its two hot fields 'count' and 'owner' sit in 2 different
841 		 * cachelines,  and when mmap_lock is highly contended, both
842 		 * of the 2 fields will be accessed frequently, current layout
843 		 * will help to reduce cache bouncing.
844 		 *
845 		 * So please be careful with adding new fields before
846 		 * mmap_lock, which can easily push the 2 fields into one
847 		 * cacheline.
848 		 */
849 		struct rw_semaphore mmap_lock;
850 
851 		struct list_head mmlist; /* List of maybe swapped mm's.	These
852 					  * are globally strung together off
853 					  * init_mm.mmlist, and are protected
854 					  * by mmlist_lock
855 					  */
856 #ifdef CONFIG_PER_VMA_LOCK
857 		/*
858 		 * This field has lock-like semantics, meaning it is sometimes
859 		 * accessed with ACQUIRE/RELEASE semantics.
860 		 * Roughly speaking, incrementing the sequence number is
861 		 * equivalent to releasing locks on VMAs; reading the sequence
862 		 * number can be part of taking a read lock on a VMA.
863 		 *
864 		 * Can be modified under write mmap_lock using RELEASE
865 		 * semantics.
866 		 * Can be read with no other protection when holding write
867 		 * mmap_lock.
868 		 * Can be read with ACQUIRE semantics if not holding write
869 		 * mmap_lock.
870 		 */
871 		int mm_lock_seq;
872 #endif
873 
874 
875 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
876 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
877 
878 		unsigned long total_vm;	   /* Total pages mapped */
879 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
880 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
881 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
882 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
883 		unsigned long stack_vm;	   /* VM_STACK */
884 		unsigned long def_flags;
885 
886 		/**
887 		 * @write_protect_seq: Locked when any thread is write
888 		 * protecting pages mapped by this mm to enforce a later COW,
889 		 * for instance during page table copying for fork().
890 		 */
891 		seqcount_t write_protect_seq;
892 
893 		spinlock_t arg_lock; /* protect the below fields */
894 
895 		unsigned long start_code, end_code, start_data, end_data;
896 		unsigned long start_brk, brk, start_stack;
897 		unsigned long arg_start, arg_end, env_start, env_end;
898 
899 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
900 
901 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
902 
903 		struct linux_binfmt *binfmt;
904 
905 		/* Architecture-specific MM context */
906 		mm_context_t context;
907 
908 		unsigned long flags; /* Must use atomic bitops to access */
909 
910 #ifdef CONFIG_AIO
911 		spinlock_t			ioctx_lock;
912 		struct kioctx_table __rcu	*ioctx_table;
913 #endif
914 #ifdef CONFIG_MEMCG
915 		/*
916 		 * "owner" points to a task that is regarded as the canonical
917 		 * user/owner of this mm. All of the following must be true in
918 		 * order for it to be changed:
919 		 *
920 		 * current == mm->owner
921 		 * current->mm != mm
922 		 * new_owner->mm == mm
923 		 * new_owner->alloc_lock is held
924 		 */
925 		struct task_struct __rcu *owner;
926 #endif
927 		struct user_namespace *user_ns;
928 
929 		/* store ref to file /proc/<pid>/exe symlink points to */
930 		struct file __rcu *exe_file;
931 #ifdef CONFIG_MMU_NOTIFIER
932 		struct mmu_notifier_subscriptions *notifier_subscriptions;
933 #endif
934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
935 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
936 #endif
937 #ifdef CONFIG_NUMA_BALANCING
938 		/*
939 		 * numa_next_scan is the next time that PTEs will be remapped
940 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
941 		 * statistics and migrate pages to new nodes if necessary.
942 		 */
943 		unsigned long numa_next_scan;
944 
945 		/* Restart point for scanning and remapping PTEs. */
946 		unsigned long numa_scan_offset;
947 
948 		/* numa_scan_seq prevents two threads remapping PTEs. */
949 		int numa_scan_seq;
950 #endif
951 		/*
952 		 * An operation with batched TLB flushing is going on. Anything
953 		 * that can move process memory needs to flush the TLB when
954 		 * moving a PROT_NONE mapped page.
955 		 */
956 		atomic_t tlb_flush_pending;
957 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
958 		/* See flush_tlb_batched_pending() */
959 		atomic_t tlb_flush_batched;
960 #endif
961 		struct uprobes_state uprobes_state;
962 #ifdef CONFIG_PREEMPT_RT
963 		struct rcu_head delayed_drop;
964 #endif
965 #ifdef CONFIG_HUGETLB_PAGE
966 		atomic_long_t hugetlb_usage;
967 #endif
968 		struct work_struct async_put_work;
969 
970 #ifdef CONFIG_IOMMU_MM_DATA
971 		struct iommu_mm_data *iommu_mm;
972 #endif
973 #ifdef CONFIG_KSM
974 		/*
975 		 * Represent how many pages of this process are involved in KSM
976 		 * merging (not including ksm_zero_pages).
977 		 */
978 		unsigned long ksm_merging_pages;
979 		/*
980 		 * Represent how many pages are checked for ksm merging
981 		 * including merged and not merged.
982 		 */
983 		unsigned long ksm_rmap_items;
984 		/*
985 		 * Represent how many empty pages are merged with kernel zero
986 		 * pages when enabling KSM use_zero_pages.
987 		 */
988 		unsigned long ksm_zero_pages;
989 #endif /* CONFIG_KSM */
990 #ifdef CONFIG_LRU_GEN_WALKS_MMU
991 		struct {
992 			/* this mm_struct is on lru_gen_mm_list */
993 			struct list_head list;
994 			/*
995 			 * Set when switching to this mm_struct, as a hint of
996 			 * whether it has been used since the last time per-node
997 			 * page table walkers cleared the corresponding bits.
998 			 */
999 			unsigned long bitmap;
1000 #ifdef CONFIG_MEMCG
1001 			/* points to the memcg of "owner" above */
1002 			struct mem_cgroup *memcg;
1003 #endif
1004 		} lru_gen;
1005 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1006 	} __randomize_layout;
1007 
1008 	/*
1009 	 * The mm_cpumask needs to be at the end of mm_struct, because it
1010 	 * is dynamically sized based on nr_cpu_ids.
1011 	 */
1012 	unsigned long cpu_bitmap[];
1013 };
1014 
1015 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1016 			 MT_FLAGS_USE_RCU)
1017 extern struct mm_struct init_mm;
1018 
1019 /* Pointer magic because the dynamic array size confuses some compilers. */
1020 static inline void mm_init_cpumask(struct mm_struct *mm)
1021 {
1022 	unsigned long cpu_bitmap = (unsigned long)mm;
1023 
1024 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1025 	cpumask_clear((struct cpumask *)cpu_bitmap);
1026 }
1027 
1028 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
1029 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1030 {
1031 	return (struct cpumask *)&mm->cpu_bitmap;
1032 }
1033 
1034 #ifdef CONFIG_LRU_GEN
1035 
1036 struct lru_gen_mm_list {
1037 	/* mm_struct list for page table walkers */
1038 	struct list_head fifo;
1039 	/* protects the list above */
1040 	spinlock_t lock;
1041 };
1042 
1043 #endif /* CONFIG_LRU_GEN */
1044 
1045 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1046 
1047 void lru_gen_add_mm(struct mm_struct *mm);
1048 void lru_gen_del_mm(struct mm_struct *mm);
1049 void lru_gen_migrate_mm(struct mm_struct *mm);
1050 
1051 static inline void lru_gen_init_mm(struct mm_struct *mm)
1052 {
1053 	INIT_LIST_HEAD(&mm->lru_gen.list);
1054 	mm->lru_gen.bitmap = 0;
1055 #ifdef CONFIG_MEMCG
1056 	mm->lru_gen.memcg = NULL;
1057 #endif
1058 }
1059 
1060 static inline void lru_gen_use_mm(struct mm_struct *mm)
1061 {
1062 	/*
1063 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1064 	 * used since the last time it cleared the bitmap. So it might be worth
1065 	 * walking the page tables of this mm_struct to clear the accessed bit.
1066 	 */
1067 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1068 }
1069 
1070 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1071 
1072 static inline void lru_gen_add_mm(struct mm_struct *mm)
1073 {
1074 }
1075 
1076 static inline void lru_gen_del_mm(struct mm_struct *mm)
1077 {
1078 }
1079 
1080 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1081 {
1082 }
1083 
1084 static inline void lru_gen_init_mm(struct mm_struct *mm)
1085 {
1086 }
1087 
1088 static inline void lru_gen_use_mm(struct mm_struct *mm)
1089 {
1090 }
1091 
1092 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1093 
1094 struct vma_iterator {
1095 	struct ma_state mas;
1096 };
1097 
1098 #define VMA_ITERATOR(name, __mm, __addr)				\
1099 	struct vma_iterator name = {					\
1100 		.mas = {						\
1101 			.tree = &(__mm)->mm_mt,				\
1102 			.index = __addr,				\
1103 			.node = NULL,					\
1104 			.status = ma_start,				\
1105 		},							\
1106 	}
1107 
1108 static inline void vma_iter_init(struct vma_iterator *vmi,
1109 		struct mm_struct *mm, unsigned long addr)
1110 {
1111 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1112 }
1113 
1114 #ifdef CONFIG_SCHED_MM_CID
1115 
1116 enum mm_cid_state {
1117 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1118 	MM_CID_LAZY_PUT = (1U << 31),
1119 };
1120 
1121 static inline bool mm_cid_is_unset(int cid)
1122 {
1123 	return cid == MM_CID_UNSET;
1124 }
1125 
1126 static inline bool mm_cid_is_lazy_put(int cid)
1127 {
1128 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1129 }
1130 
1131 static inline bool mm_cid_is_valid(int cid)
1132 {
1133 	return !(cid & MM_CID_LAZY_PUT);
1134 }
1135 
1136 static inline int mm_cid_set_lazy_put(int cid)
1137 {
1138 	return cid | MM_CID_LAZY_PUT;
1139 }
1140 
1141 static inline int mm_cid_clear_lazy_put(int cid)
1142 {
1143 	return cid & ~MM_CID_LAZY_PUT;
1144 }
1145 
1146 /* Accessor for struct mm_struct's cidmask. */
1147 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1148 {
1149 	unsigned long cid_bitmap = (unsigned long)mm;
1150 
1151 	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1152 	/* Skip cpu_bitmap */
1153 	cid_bitmap += cpumask_size();
1154 	return (struct cpumask *)cid_bitmap;
1155 }
1156 
1157 static inline void mm_init_cid(struct mm_struct *mm)
1158 {
1159 	int i;
1160 
1161 	for_each_possible_cpu(i) {
1162 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1163 
1164 		pcpu_cid->cid = MM_CID_UNSET;
1165 		pcpu_cid->time = 0;
1166 	}
1167 	cpumask_clear(mm_cidmask(mm));
1168 }
1169 
1170 static inline int mm_alloc_cid_noprof(struct mm_struct *mm)
1171 {
1172 	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1173 	if (!mm->pcpu_cid)
1174 		return -ENOMEM;
1175 	mm_init_cid(mm);
1176 	return 0;
1177 }
1178 #define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1179 
1180 static inline void mm_destroy_cid(struct mm_struct *mm)
1181 {
1182 	free_percpu(mm->pcpu_cid);
1183 	mm->pcpu_cid = NULL;
1184 }
1185 
1186 static inline unsigned int mm_cid_size(void)
1187 {
1188 	return cpumask_size();
1189 }
1190 #else /* CONFIG_SCHED_MM_CID */
1191 static inline void mm_init_cid(struct mm_struct *mm) { }
1192 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
1193 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1194 static inline unsigned int mm_cid_size(void)
1195 {
1196 	return 0;
1197 }
1198 #endif /* CONFIG_SCHED_MM_CID */
1199 
1200 struct mmu_gather;
1201 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1202 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1203 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1204 
1205 struct vm_fault;
1206 
1207 /**
1208  * typedef vm_fault_t - Return type for page fault handlers.
1209  *
1210  * Page fault handlers return a bitmask of %VM_FAULT values.
1211  */
1212 typedef __bitwise unsigned int vm_fault_t;
1213 
1214 /**
1215  * enum vm_fault_reason - Page fault handlers return a bitmask of
1216  * these values to tell the core VM what happened when handling the
1217  * fault. Used to decide whether a process gets delivered SIGBUS or
1218  * just gets major/minor fault counters bumped up.
1219  *
1220  * @VM_FAULT_OOM:		Out Of Memory
1221  * @VM_FAULT_SIGBUS:		Bad access
1222  * @VM_FAULT_MAJOR:		Page read from storage
1223  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1224  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1225  *				in upper bits
1226  * @VM_FAULT_SIGSEGV:		segmentation fault
1227  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1228  * @VM_FAULT_LOCKED:		->fault locked the returned page
1229  * @VM_FAULT_RETRY:		->fault blocked, must retry
1230  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1231  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1232  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1233  *				fsync() to complete (for synchronous page faults
1234  *				in DAX)
1235  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1236  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1237  *
1238  */
1239 enum vm_fault_reason {
1240 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1241 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1242 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1243 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1244 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1245 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1246 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1247 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1248 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1249 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1250 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1251 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1252 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1253 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1254 };
1255 
1256 /* Encode hstate index for a hwpoisoned large page */
1257 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1258 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1259 
1260 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1261 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1262 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1263 
1264 #define VM_FAULT_RESULT_TRACE \
1265 	{ VM_FAULT_OOM,                 "OOM" },	\
1266 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1267 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1268 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1269 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1270 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1271 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1272 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1273 	{ VM_FAULT_RETRY,               "RETRY" },	\
1274 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1275 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1276 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1277 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1278 
1279 struct vm_special_mapping {
1280 	const char *name;	/* The name, e.g. "[vdso]". */
1281 
1282 	/*
1283 	 * If .fault is not provided, this points to a
1284 	 * NULL-terminated array of pages that back the special mapping.
1285 	 *
1286 	 * This must not be NULL unless .fault is provided.
1287 	 */
1288 	struct page **pages;
1289 
1290 	/*
1291 	 * If non-NULL, then this is called to resolve page faults
1292 	 * on the special mapping.  If used, .pages is not checked.
1293 	 */
1294 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1295 				struct vm_area_struct *vma,
1296 				struct vm_fault *vmf);
1297 
1298 	int (*mremap)(const struct vm_special_mapping *sm,
1299 		     struct vm_area_struct *new_vma);
1300 };
1301 
1302 enum tlb_flush_reason {
1303 	TLB_FLUSH_ON_TASK_SWITCH,
1304 	TLB_REMOTE_SHOOTDOWN,
1305 	TLB_LOCAL_SHOOTDOWN,
1306 	TLB_LOCAL_MM_SHOOTDOWN,
1307 	TLB_REMOTE_SEND_IPI,
1308 	NR_TLB_FLUSH_REASONS,
1309 };
1310 
1311 /**
1312  * enum fault_flag - Fault flag definitions.
1313  * @FAULT_FLAG_WRITE: Fault was a write fault.
1314  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1315  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1316  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1317  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1318  * @FAULT_FLAG_TRIED: The fault has been tried once.
1319  * @FAULT_FLAG_USER: The fault originated in userspace.
1320  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1321  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1322  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1323  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1324  *                      COW mapping, making sure that an exclusive anon page is
1325  *                      mapped after the fault.
1326  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1327  *                        We should only access orig_pte if this flag set.
1328  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1329  *
1330  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1331  * whether we would allow page faults to retry by specifying these two
1332  * fault flags correctly.  Currently there can be three legal combinations:
1333  *
1334  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1335  *                              this is the first try
1336  *
1337  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1338  *                              we've already tried at least once
1339  *
1340  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1341  *
1342  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1343  * be used.  Note that page faults can be allowed to retry for multiple times,
1344  * in which case we'll have an initial fault with flags (a) then later on
1345  * continuous faults with flags (b).  We should always try to detect pending
1346  * signals before a retry to make sure the continuous page faults can still be
1347  * interrupted if necessary.
1348  *
1349  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1350  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1351  * applied to mappings that are not COW mappings.
1352  */
1353 enum fault_flag {
1354 	FAULT_FLAG_WRITE =		1 << 0,
1355 	FAULT_FLAG_MKWRITE =		1 << 1,
1356 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1357 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1358 	FAULT_FLAG_KILLABLE =		1 << 4,
1359 	FAULT_FLAG_TRIED = 		1 << 5,
1360 	FAULT_FLAG_USER =		1 << 6,
1361 	FAULT_FLAG_REMOTE =		1 << 7,
1362 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1363 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1364 	FAULT_FLAG_UNSHARE =		1 << 10,
1365 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1366 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1367 };
1368 
1369 typedef unsigned int __bitwise zap_flags_t;
1370 
1371 /* Flags for clear_young_dirty_ptes(). */
1372 typedef int __bitwise cydp_t;
1373 
1374 /* Clear the access bit */
1375 #define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))
1376 
1377 /* Clear the dirty bit */
1378 #define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))
1379 
1380 /*
1381  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1382  * other. Here is what they mean, and how to use them:
1383  *
1384  *
1385  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1386  * lifetime enforced by the filesystem and we need guarantees that longterm
1387  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1388  * the filesystem.  Ideas for this coordination include revoking the longterm
1389  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1390  * added after the problem with filesystems was found FS DAX VMAs are
1391  * specifically failed.  Filesystem pages are still subject to bugs and use of
1392  * FOLL_LONGTERM should be avoided on those pages.
1393  *
1394  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1395  * that region.  And so, CMA attempts to migrate the page before pinning, when
1396  * FOLL_LONGTERM is specified.
1397  *
1398  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1399  * but an additional pin counting system) will be invoked. This is intended for
1400  * anything that gets a page reference and then touches page data (for example,
1401  * Direct IO). This lets the filesystem know that some non-file-system entity is
1402  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1403  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1404  * a call to unpin_user_page().
1405  *
1406  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1407  * and separate refcounting mechanisms, however, and that means that each has
1408  * its own acquire and release mechanisms:
1409  *
1410  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1411  *
1412  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1413  *
1414  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1415  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1416  * calls applied to them, and that's perfectly OK. This is a constraint on the
1417  * callers, not on the pages.)
1418  *
1419  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1420  * directly by the caller. That's in order to help avoid mismatches when
1421  * releasing pages: get_user_pages*() pages must be released via put_page(),
1422  * while pin_user_pages*() pages must be released via unpin_user_page().
1423  *
1424  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1425  */
1426 
1427 enum {
1428 	/* check pte is writable */
1429 	FOLL_WRITE = 1 << 0,
1430 	/* do get_page on page */
1431 	FOLL_GET = 1 << 1,
1432 	/* give error on hole if it would be zero */
1433 	FOLL_DUMP = 1 << 2,
1434 	/* get_user_pages read/write w/o permission */
1435 	FOLL_FORCE = 1 << 3,
1436 	/*
1437 	 * if a disk transfer is needed, start the IO and return without waiting
1438 	 * upon it
1439 	 */
1440 	FOLL_NOWAIT = 1 << 4,
1441 	/* do not fault in pages */
1442 	FOLL_NOFAULT = 1 << 5,
1443 	/* check page is hwpoisoned */
1444 	FOLL_HWPOISON = 1 << 6,
1445 	/* don't do file mappings */
1446 	FOLL_ANON = 1 << 7,
1447 	/*
1448 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1449 	 * time period _often_ under userspace control.  This is in contrast to
1450 	 * iov_iter_get_pages(), whose usages are transient.
1451 	 */
1452 	FOLL_LONGTERM = 1 << 8,
1453 	/* split huge pmd before returning */
1454 	FOLL_SPLIT_PMD = 1 << 9,
1455 	/* allow returning PCI P2PDMA pages */
1456 	FOLL_PCI_P2PDMA = 1 << 10,
1457 	/* allow interrupts from generic signals */
1458 	FOLL_INTERRUPTIBLE = 1 << 11,
1459 	/*
1460 	 * Always honor (trigger) NUMA hinting faults.
1461 	 *
1462 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1463 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1464 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1465 	 * hinting faults.
1466 	 */
1467 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1468 
1469 	/* See also internal only FOLL flags in mm/internal.h */
1470 };
1471 
1472 #endif /* _LINUX_MM_TYPES_H */
1473