1 /*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the elliptic curve math library.
16 *
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
24 *
25 * Alternatively, the contents of this file may be used under the terms of
26 * either the GNU General Public License Version 2 or later (the "GPL"), or
27 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28 * in which case the provisions of the GPL or the LGPL are applicable instead
29 * of those above. If you wish to allow use of your version of this file only
30 * under the terms of either the GPL or the LGPL, and not to allow others to
31 * use your version of this file under the terms of the MPL, indicate your
32 * decision by deleting the provisions above and replace them with the notice
33 * and other provisions required by the GPL or the LGPL. If you do not delete
34 * the provisions above, a recipient may use your version of this file under
35 * the terms of any one of the MPL, the GPL or the LGPL.
36 *
37 * ***** END LICENSE BLOCK ***** */
38 /*
39 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
40 * Use is subject to license terms.
41 *
42 * Sun elects to use this software under the MPL license.
43 */
44
45 #pragma ident "%Z%%M% %I% %E% SMI"
46
47 #include "mpi.h"
48 #include "mplogic.h"
49 #include "ecl.h"
50 #include "ecl-priv.h"
51 #include "ec2.h"
52 #include "ecp.h"
53 #ifndef _KERNEL
54 #include <stdlib.h>
55 #include <string.h>
56 #endif
57
58 /* Allocate memory for a new ECGroup object. */
59 ECGroup *
ECGroup_new(int kmflag)60 ECGroup_new(int kmflag)
61 {
62 mp_err res = MP_OKAY;
63 ECGroup *group;
64 #ifdef _KERNEL
65 group = (ECGroup *) kmem_alloc(sizeof(ECGroup), kmflag);
66 #else
67 group = (ECGroup *) malloc(sizeof(ECGroup));
68 #endif
69 if (group == NULL)
70 return NULL;
71 group->constructed = MP_YES;
72 group->meth = NULL;
73 group->text = NULL;
74 MP_DIGITS(&group->curvea) = 0;
75 MP_DIGITS(&group->curveb) = 0;
76 MP_DIGITS(&group->genx) = 0;
77 MP_DIGITS(&group->geny) = 0;
78 MP_DIGITS(&group->order) = 0;
79 group->base_point_mul = NULL;
80 group->points_mul = NULL;
81 group->validate_point = NULL;
82 group->extra1 = NULL;
83 group->extra2 = NULL;
84 group->extra_free = NULL;
85 MP_CHECKOK(mp_init(&group->curvea, kmflag));
86 MP_CHECKOK(mp_init(&group->curveb, kmflag));
87 MP_CHECKOK(mp_init(&group->genx, kmflag));
88 MP_CHECKOK(mp_init(&group->geny, kmflag));
89 MP_CHECKOK(mp_init(&group->order, kmflag));
90
91 CLEANUP:
92 if (res != MP_OKAY) {
93 ECGroup_free(group);
94 return NULL;
95 }
96 return group;
97 }
98
99 /* Construct a generic ECGroup for elliptic curves over prime fields. */
100 ECGroup *
ECGroup_consGFp(const mp_int * irr,const mp_int * curvea,const mp_int * curveb,const mp_int * genx,const mp_int * geny,const mp_int * order,int cofactor)101 ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
102 const mp_int *curveb, const mp_int *genx,
103 const mp_int *geny, const mp_int *order, int cofactor)
104 {
105 mp_err res = MP_OKAY;
106 ECGroup *group = NULL;
107
108 group = ECGroup_new(FLAG(irr));
109 if (group == NULL)
110 return NULL;
111
112 group->meth = GFMethod_consGFp(irr);
113 if (group->meth == NULL) {
114 res = MP_MEM;
115 goto CLEANUP;
116 }
117 MP_CHECKOK(mp_copy(curvea, &group->curvea));
118 MP_CHECKOK(mp_copy(curveb, &group->curveb));
119 MP_CHECKOK(mp_copy(genx, &group->genx));
120 MP_CHECKOK(mp_copy(geny, &group->geny));
121 MP_CHECKOK(mp_copy(order, &group->order));
122 group->cofactor = cofactor;
123 group->point_add = &ec_GFp_pt_add_aff;
124 group->point_sub = &ec_GFp_pt_sub_aff;
125 group->point_dbl = &ec_GFp_pt_dbl_aff;
126 group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
127 group->base_point_mul = NULL;
128 group->points_mul = &ec_GFp_pts_mul_jac;
129 group->validate_point = &ec_GFp_validate_point;
130
131 CLEANUP:
132 if (res != MP_OKAY) {
133 ECGroup_free(group);
134 return NULL;
135 }
136 return group;
137 }
138
139 /* Construct a generic ECGroup for elliptic curves over prime fields with
140 * field arithmetic implemented in Montgomery coordinates. */
141 ECGroup *
ECGroup_consGFp_mont(const mp_int * irr,const mp_int * curvea,const mp_int * curveb,const mp_int * genx,const mp_int * geny,const mp_int * order,int cofactor)142 ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
143 const mp_int *curveb, const mp_int *genx,
144 const mp_int *geny, const mp_int *order, int cofactor)
145 {
146 mp_err res = MP_OKAY;
147 ECGroup *group = NULL;
148
149 group = ECGroup_new(FLAG(irr));
150 if (group == NULL)
151 return NULL;
152
153 group->meth = GFMethod_consGFp_mont(irr);
154 if (group->meth == NULL) {
155 res = MP_MEM;
156 goto CLEANUP;
157 }
158 MP_CHECKOK(group->meth->
159 field_enc(curvea, &group->curvea, group->meth));
160 MP_CHECKOK(group->meth->
161 field_enc(curveb, &group->curveb, group->meth));
162 MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
163 MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
164 MP_CHECKOK(mp_copy(order, &group->order));
165 group->cofactor = cofactor;
166 group->point_add = &ec_GFp_pt_add_aff;
167 group->point_sub = &ec_GFp_pt_sub_aff;
168 group->point_dbl = &ec_GFp_pt_dbl_aff;
169 group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
170 group->base_point_mul = NULL;
171 group->points_mul = &ec_GFp_pts_mul_jac;
172 group->validate_point = &ec_GFp_validate_point;
173
174 CLEANUP:
175 if (res != MP_OKAY) {
176 ECGroup_free(group);
177 return NULL;
178 }
179 return group;
180 }
181
182 #ifdef NSS_ECC_MORE_THAN_SUITE_B
183 /* Construct a generic ECGroup for elliptic curves over binary polynomial
184 * fields. */
185 ECGroup *
ECGroup_consGF2m(const mp_int * irr,const unsigned int irr_arr[5],const mp_int * curvea,const mp_int * curveb,const mp_int * genx,const mp_int * geny,const mp_int * order,int cofactor)186 ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5],
187 const mp_int *curvea, const mp_int *curveb,
188 const mp_int *genx, const mp_int *geny,
189 const mp_int *order, int cofactor)
190 {
191 mp_err res = MP_OKAY;
192 ECGroup *group = NULL;
193
194 group = ECGroup_new(FLAG(irr));
195 if (group == NULL)
196 return NULL;
197
198 group->meth = GFMethod_consGF2m(irr, irr_arr);
199 if (group->meth == NULL) {
200 res = MP_MEM;
201 goto CLEANUP;
202 }
203 MP_CHECKOK(mp_copy(curvea, &group->curvea));
204 MP_CHECKOK(mp_copy(curveb, &group->curveb));
205 MP_CHECKOK(mp_copy(genx, &group->genx));
206 MP_CHECKOK(mp_copy(geny, &group->geny));
207 MP_CHECKOK(mp_copy(order, &group->order));
208 group->cofactor = cofactor;
209 group->point_add = &ec_GF2m_pt_add_aff;
210 group->point_sub = &ec_GF2m_pt_sub_aff;
211 group->point_dbl = &ec_GF2m_pt_dbl_aff;
212 group->point_mul = &ec_GF2m_pt_mul_mont;
213 group->base_point_mul = NULL;
214 group->points_mul = &ec_pts_mul_basic;
215 group->validate_point = &ec_GF2m_validate_point;
216
217 CLEANUP:
218 if (res != MP_OKAY) {
219 ECGroup_free(group);
220 return NULL;
221 }
222 return group;
223 }
224 #endif
225
226 /* Construct ECGroup from hex parameters and name, if any. Called by
227 * ECGroup_fromHex and ECGroup_fromName. */
228 ECGroup *
ecgroup_fromNameAndHex(const ECCurveName name,const ECCurveParams * params,int kmflag)229 ecgroup_fromNameAndHex(const ECCurveName name,
230 const ECCurveParams * params, int kmflag)
231 {
232 mp_int irr, curvea, curveb, genx, geny, order;
233 int bits;
234 ECGroup *group = NULL;
235 mp_err res = MP_OKAY;
236
237 /* initialize values */
238 MP_DIGITS(&irr) = 0;
239 MP_DIGITS(&curvea) = 0;
240 MP_DIGITS(&curveb) = 0;
241 MP_DIGITS(&genx) = 0;
242 MP_DIGITS(&geny) = 0;
243 MP_DIGITS(&order) = 0;
244 MP_CHECKOK(mp_init(&irr, kmflag));
245 MP_CHECKOK(mp_init(&curvea, kmflag));
246 MP_CHECKOK(mp_init(&curveb, kmflag));
247 MP_CHECKOK(mp_init(&genx, kmflag));
248 MP_CHECKOK(mp_init(&geny, kmflag));
249 MP_CHECKOK(mp_init(&order, kmflag));
250 MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
251 MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
252 MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
253 MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
254 MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
255 MP_CHECKOK(mp_read_radix(&order, params->order, 16));
256
257 /* determine number of bits */
258 bits = mpl_significant_bits(&irr) - 1;
259 if (bits < MP_OKAY) {
260 res = bits;
261 goto CLEANUP;
262 }
263
264 /* determine which optimizations (if any) to use */
265 if (params->field == ECField_GFp) {
266 #ifdef NSS_ECC_MORE_THAN_SUITE_B
267 switch (name) {
268 #ifdef ECL_USE_FP
269 case ECCurve_SECG_PRIME_160R1:
270 group =
271 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
272 &order, params->cofactor);
273 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
274 MP_CHECKOK(ec_group_set_secp160r1_fp(group));
275 break;
276 #endif
277 case ECCurve_SECG_PRIME_192R1:
278 #ifdef ECL_USE_FP
279 group =
280 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
281 &order, params->cofactor);
282 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
283 MP_CHECKOK(ec_group_set_nistp192_fp(group));
284 #else
285 group =
286 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
287 &order, params->cofactor);
288 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
289 MP_CHECKOK(ec_group_set_gfp192(group, name));
290 #endif
291 break;
292 case ECCurve_SECG_PRIME_224R1:
293 #ifdef ECL_USE_FP
294 group =
295 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
296 &order, params->cofactor);
297 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
298 MP_CHECKOK(ec_group_set_nistp224_fp(group));
299 #else
300 group =
301 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
302 &order, params->cofactor);
303 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
304 MP_CHECKOK(ec_group_set_gfp224(group, name));
305 #endif
306 break;
307 case ECCurve_SECG_PRIME_256R1:
308 group =
309 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
310 &order, params->cofactor);
311 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
312 MP_CHECKOK(ec_group_set_gfp256(group, name));
313 break;
314 case ECCurve_SECG_PRIME_521R1:
315 group =
316 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
317 &order, params->cofactor);
318 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
319 MP_CHECKOK(ec_group_set_gfp521(group, name));
320 break;
321 default:
322 /* use generic arithmetic */
323 #endif
324 group =
325 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
326 &order, params->cofactor);
327 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
328 #ifdef NSS_ECC_MORE_THAN_SUITE_B
329 }
330 } else if (params->field == ECField_GF2m) {
331 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor);
332 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
333 if ((name == ECCurve_NIST_K163) ||
334 (name == ECCurve_NIST_B163) ||
335 (name == ECCurve_SECG_CHAR2_163R1)) {
336 MP_CHECKOK(ec_group_set_gf2m163(group, name));
337 } else if ((name == ECCurve_SECG_CHAR2_193R1) ||
338 (name == ECCurve_SECG_CHAR2_193R2)) {
339 MP_CHECKOK(ec_group_set_gf2m193(group, name));
340 } else if ((name == ECCurve_NIST_K233) ||
341 (name == ECCurve_NIST_B233)) {
342 MP_CHECKOK(ec_group_set_gf2m233(group, name));
343 }
344 #endif
345 } else {
346 res = MP_UNDEF;
347 goto CLEANUP;
348 }
349
350 /* set name, if any */
351 if ((group != NULL) && (params->text != NULL)) {
352 #ifdef _KERNEL
353 int n = strlen(params->text) + 1;
354
355 group->text = kmem_alloc(n, kmflag);
356 if (group->text == NULL) {
357 res = MP_MEM;
358 goto CLEANUP;
359 }
360 bcopy(params->text, group->text, n);
361 group->text_len = n;
362 #else
363 group->text = strdup(params->text);
364 if (group->text == NULL) {
365 res = MP_MEM;
366 }
367 #endif
368 }
369
370 CLEANUP:
371 mp_clear(&irr);
372 mp_clear(&curvea);
373 mp_clear(&curveb);
374 mp_clear(&genx);
375 mp_clear(&geny);
376 mp_clear(&order);
377 if (res != MP_OKAY) {
378 ECGroup_free(group);
379 return NULL;
380 }
381 return group;
382 }
383
384 /* Construct ECGroup from hexadecimal representations of parameters. */
385 ECGroup *
ECGroup_fromHex(const ECCurveParams * params,int kmflag)386 ECGroup_fromHex(const ECCurveParams * params, int kmflag)
387 {
388 return ecgroup_fromNameAndHex(ECCurve_noName, params, kmflag);
389 }
390
391 /* Construct ECGroup from named parameters. */
392 ECGroup *
ECGroup_fromName(const ECCurveName name,int kmflag)393 ECGroup_fromName(const ECCurveName name, int kmflag)
394 {
395 ECGroup *group = NULL;
396 ECCurveParams *params = NULL;
397 mp_err res = MP_OKAY;
398
399 params = EC_GetNamedCurveParams(name, kmflag);
400 if (params == NULL) {
401 res = MP_UNDEF;
402 goto CLEANUP;
403 }
404
405 /* construct actual group */
406 group = ecgroup_fromNameAndHex(name, params, kmflag);
407 if (group == NULL) {
408 res = MP_UNDEF;
409 goto CLEANUP;
410 }
411
412 CLEANUP:
413 EC_FreeCurveParams(params);
414 if (res != MP_OKAY) {
415 ECGroup_free(group);
416 return NULL;
417 }
418 return group;
419 }
420
421 /* Validates an EC public key as described in Section 5.2.2 of X9.62. */
ECPoint_validate(const ECGroup * group,const mp_int * px,const mp_int * py)422 mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
423 mp_int *py)
424 {
425 /* 1: Verify that publicValue is not the point at infinity */
426 /* 2: Verify that the coordinates of publicValue are elements
427 * of the field.
428 */
429 /* 3: Verify that publicValue is on the curve. */
430 /* 4: Verify that the order of the curve times the publicValue
431 * is the point at infinity.
432 */
433 return group->validate_point(px, py, group);
434 }
435
436 /* Free the memory allocated (if any) to an ECGroup object. */
437 void
ECGroup_free(ECGroup * group)438 ECGroup_free(ECGroup *group)
439 {
440 if (group == NULL)
441 return;
442 GFMethod_free(group->meth);
443 if (group->constructed == MP_NO)
444 return;
445 mp_clear(&group->curvea);
446 mp_clear(&group->curveb);
447 mp_clear(&group->genx);
448 mp_clear(&group->geny);
449 mp_clear(&group->order);
450 if (group->text != NULL)
451 #ifdef _KERNEL
452 kmem_free(group->text, group->text_len);
453 #else
454 free(group->text);
455 #endif
456 if (group->extra_free != NULL)
457 group->extra_free(group);
458 #ifdef _KERNEL
459 kmem_free(group, sizeof (ECGroup));
460 #else
461 free(group);
462 #endif
463 }
464