xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  ///
9  /// \file
10  // Implementation for the IROutliner which is used by the IROutliner Pass.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Transforms/IPO/IROutliner.h"
15  #include "llvm/Analysis/IRSimilarityIdentifier.h"
16  #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17  #include "llvm/Analysis/TargetTransformInfo.h"
18  #include "llvm/IR/Attributes.h"
19  #include "llvm/IR/DIBuilder.h"
20  #include "llvm/IR/DebugInfo.h"
21  #include "llvm/IR/DebugInfoMetadata.h"
22  #include "llvm/IR/Dominators.h"
23  #include "llvm/IR/Mangler.h"
24  #include "llvm/IR/PassManager.h"
25  #include "llvm/Support/CommandLine.h"
26  #include "llvm/Transforms/IPO.h"
27  #include <optional>
28  #include <vector>
29  
30  #define DEBUG_TYPE "iroutliner"
31  
32  using namespace llvm;
33  using namespace IRSimilarity;
34  
35  // A command flag to be used for debugging to exclude branches from similarity
36  // matching and outlining.
37  namespace llvm {
38  extern cl::opt<bool> DisableBranches;
39  
40  // A command flag to be used for debugging to indirect calls from similarity
41  // matching and outlining.
42  extern cl::opt<bool> DisableIndirectCalls;
43  
44  // A command flag to be used for debugging to exclude intrinsics from similarity
45  // matching and outlining.
46  extern cl::opt<bool> DisableIntrinsics;
47  
48  } // namespace llvm
49  
50  // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51  // functions. This is false by default because the linker can dedupe linkonceodr
52  // functions. Since the outliner is confined to a single module (modulo LTO),
53  // this is off by default. It should, however, be the default behavior in
54  // LTO.
55  static cl::opt<bool> EnableLinkOnceODRIROutlining(
56      "enable-linkonceodr-ir-outlining", cl::Hidden,
57      cl::desc("Enable the IR outliner on linkonceodr functions"),
58      cl::init(false));
59  
60  // This is a debug option to test small pieces of code to ensure that outlining
61  // works correctly.
62  static cl::opt<bool> NoCostModel(
63      "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
64      cl::desc("Debug option to outline greedily, without restriction that "
65               "calculated benefit outweighs cost"));
66  
67  /// The OutlinableGroup holds all the overarching information for outlining
68  /// a set of regions that are structurally similar to one another, such as the
69  /// types of the overall function, the output blocks, the sets of stores needed
70  /// and a list of the different regions. This information is used in the
71  /// deduplication of extracted regions with the same structure.
72  struct OutlinableGroup {
73    /// The sections that could be outlined
74    std::vector<OutlinableRegion *> Regions;
75  
76    /// The argument types for the function created as the overall function to
77    /// replace the extracted function for each region.
78    std::vector<Type *> ArgumentTypes;
79    /// The FunctionType for the overall function.
80    FunctionType *OutlinedFunctionType = nullptr;
81    /// The Function for the collective overall function.
82    Function *OutlinedFunction = nullptr;
83  
84    /// Flag for whether we should not consider this group of OutlinableRegions
85    /// for extraction.
86    bool IgnoreGroup = false;
87  
88    /// The return blocks for the overall function.
89    DenseMap<Value *, BasicBlock *> EndBBs;
90  
91    /// The PHIBlocks with their corresponding return block based on the return
92    /// value as the key.
93    DenseMap<Value *, BasicBlock *> PHIBlocks;
94  
95    /// A set containing the different GVN store sets needed. Each array contains
96    /// a sorted list of the different values that need to be stored into output
97    /// registers.
98    DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
99  
100    /// Flag for whether the \ref ArgumentTypes have been defined after the
101    /// extraction of the first region.
102    bool InputTypesSet = false;
103  
104    /// The number of input values in \ref ArgumentTypes.  Anything after this
105    /// index in ArgumentTypes is an output argument.
106    unsigned NumAggregateInputs = 0;
107  
108    /// The mapping of the canonical numbering of the values in outlined sections
109    /// to specific arguments.
110    DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
111  
112    /// The number of branches in the region target a basic block that is outside
113    /// of the region.
114    unsigned BranchesToOutside = 0;
115  
116    /// Tracker counting backwards from the highest unsigned value possible to
117    /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
118    /// -2 and -1 are assigned by the DenseMap.
119    unsigned PHINodeGVNTracker = -3;
120  
121    DenseMap<unsigned,
122             std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
123        PHINodeGVNToGVNs;
124    DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
125  
126    /// The number of instructions that will be outlined by extracting \ref
127    /// Regions.
128    InstructionCost Benefit = 0;
129    /// The number of added instructions needed for the outlining of the \ref
130    /// Regions.
131    InstructionCost Cost = 0;
132  
133    /// The argument that needs to be marked with the swifterr attribute.  If not
134    /// needed, there is no value.
135    std::optional<unsigned> SwiftErrorArgument;
136  
137    /// For the \ref Regions, we look at every Value.  If it is a constant,
138    /// we check whether it is the same in Region.
139    ///
140    /// \param [in,out] NotSame contains the global value numbers where the
141    /// constant is not always the same, and must be passed in as an argument.
142    void findSameConstants(DenseSet<unsigned> &NotSame);
143  
144    /// For the regions, look at each set of GVN stores needed and account for
145    /// each combination.  Add an argument to the argument types if there is
146    /// more than one combination.
147    ///
148    /// \param [in] M - The module we are outlining from.
149    void collectGVNStoreSets(Module &M);
150  };
151  
152  /// Move the contents of \p SourceBB to before the last instruction of \p
153  /// TargetBB.
154  /// \param SourceBB - the BasicBlock to pull Instructions from.
155  /// \param TargetBB - the BasicBlock to put Instruction into.
moveBBContents(BasicBlock & SourceBB,BasicBlock & TargetBB)156  static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
157    TargetBB.splice(TargetBB.end(), &SourceBB);
158  }
159  
160  /// A function to sort the keys of \p Map, which must be a mapping of constant
161  /// values to basic blocks and return it in \p SortedKeys
162  ///
163  /// \param SortedKeys - The vector the keys will be return in and sorted.
164  /// \param Map - The DenseMap containing keys to sort.
getSortedConstantKeys(std::vector<Value * > & SortedKeys,DenseMap<Value *,BasicBlock * > & Map)165  static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
166                                    DenseMap<Value *, BasicBlock *> &Map) {
167    for (auto &VtoBB : Map)
168      SortedKeys.push_back(VtoBB.first);
169  
170    // Here we expect to have either 1 value that is void (nullptr) or multiple
171    // values that are all constant integers.
172    if (SortedKeys.size() == 1) {
173      assert(!SortedKeys[0] && "Expected a single void value.");
174      return;
175    }
176  
177    stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
178      assert(LHS && RHS && "Expected non void values.");
179      const ConstantInt *LHSC = cast<ConstantInt>(LHS);
180      const ConstantInt *RHSC = cast<ConstantInt>(RHS);
181  
182      return LHSC->getLimitedValue() < RHSC->getLimitedValue();
183    });
184  }
185  
findCorrespondingValueIn(const OutlinableRegion & Other,Value * V)186  Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
187                                                    Value *V) {
188    std::optional<unsigned> GVN = Candidate->getGVN(V);
189    assert(GVN && "No GVN for incoming value");
190    std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
191    std::optional<unsigned> FirstGVN =
192        Other.Candidate->fromCanonicalNum(*CanonNum);
193    std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
194    return FoundValueOpt.value_or(nullptr);
195  }
196  
197  BasicBlock *
findCorrespondingBlockIn(const OutlinableRegion & Other,BasicBlock * BB)198  OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
199                                             BasicBlock *BB) {
200    Instruction *FirstNonPHI = BB->getFirstNonPHIOrDbg();
201    assert(FirstNonPHI && "block is empty?");
202    Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
203    if (!CorrespondingVal)
204      return nullptr;
205    BasicBlock *CorrespondingBlock =
206        cast<Instruction>(CorrespondingVal)->getParent();
207    return CorrespondingBlock;
208  }
209  
210  /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
211  /// in \p Included to branch to BasicBlock \p Replace if they currently branch
212  /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
213  /// when PHINodes are included in outlined regions.
214  ///
215  /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
216  /// checked.
217  /// \param Find - The successor block to be replaced.
218  /// \param Replace - The new succesor block to branch to.
219  /// \param Included - The set of blocks about to be outlined.
replaceTargetsFromPHINode(BasicBlock * PHIBlock,BasicBlock * Find,BasicBlock * Replace,DenseSet<BasicBlock * > & Included)220  static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
221                                        BasicBlock *Replace,
222                                        DenseSet<BasicBlock *> &Included) {
223    for (PHINode &PN : PHIBlock->phis()) {
224      for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
225           ++Idx) {
226        // Check if the incoming block is included in the set of blocks being
227        // outlined.
228        BasicBlock *Incoming = PN.getIncomingBlock(Idx);
229        if (!Included.contains(Incoming))
230          continue;
231  
232        BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
233        assert(BI && "Not a branch instruction?");
234        // Look over the branching instructions into this block to see if we
235        // used to branch to Find in this outlined block.
236        for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
237             Succ++) {
238          // If we have found the block to replace, we do so here.
239          if (BI->getSuccessor(Succ) != Find)
240            continue;
241          BI->setSuccessor(Succ, Replace);
242        }
243      }
244    }
245  }
246  
247  
splitCandidate()248  void OutlinableRegion::splitCandidate() {
249    assert(!CandidateSplit && "Candidate already split!");
250  
251    Instruction *BackInst = Candidate->backInstruction();
252  
253    Instruction *EndInst = nullptr;
254    // Check whether the last instruction is a terminator, if it is, we do
255    // not split on the following instruction. We leave the block as it is.  We
256    // also check that this is not the last instruction in the Module, otherwise
257    // the check for whether the current following instruction matches the
258    // previously recorded instruction will be incorrect.
259    if (!BackInst->isTerminator() ||
260        BackInst->getParent() != &BackInst->getFunction()->back()) {
261      EndInst = Candidate->end()->Inst;
262      assert(EndInst && "Expected an end instruction?");
263    }
264  
265    // We check if the current instruction following the last instruction in the
266    // region is the same as the recorded instruction following the last
267    // instruction. If they do not match, there could be problems in rewriting
268    // the program after outlining, so we ignore it.
269    if (!BackInst->isTerminator() &&
270        EndInst != BackInst->getNextNonDebugInstruction())
271      return;
272  
273    Instruction *StartInst = (*Candidate->begin()).Inst;
274    assert(StartInst && "Expected a start instruction?");
275    StartBB = StartInst->getParent();
276    PrevBB = StartBB;
277  
278    DenseSet<BasicBlock *> BBSet;
279    Candidate->getBasicBlocks(BBSet);
280  
281    // We iterate over the instructions in the region, if we find a PHINode, we
282    // check if there are predecessors outside of the region, if there are,
283    // we ignore this region since we are unable to handle the severing of the
284    // phi node right now.
285  
286    // TODO: Handle extraneous inputs for PHINodes through variable number of
287    // inputs, similar to how outputs are handled.
288    BasicBlock::iterator It = StartInst->getIterator();
289    EndBB = BackInst->getParent();
290    BasicBlock *IBlock;
291    BasicBlock *PHIPredBlock = nullptr;
292    bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
293    while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
294      unsigned NumPredsOutsideRegion = 0;
295      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
296        if (!BBSet.contains(PN->getIncomingBlock(i))) {
297          PHIPredBlock = PN->getIncomingBlock(i);
298          ++NumPredsOutsideRegion;
299          continue;
300        }
301  
302        // We must consider the case there the incoming block to the PHINode is
303        // the same as the final block of the OutlinableRegion.  If this is the
304        // case, the branch from this block must also be outlined to be valid.
305        IBlock = PN->getIncomingBlock(i);
306        if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
307          PHIPredBlock = PN->getIncomingBlock(i);
308          ++NumPredsOutsideRegion;
309        }
310      }
311  
312      if (NumPredsOutsideRegion > 1)
313        return;
314  
315      It++;
316    }
317  
318    // If the region starts with a PHINode, but is not the initial instruction of
319    // the BasicBlock, we ignore this region for now.
320    if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
321      return;
322  
323    // If the region ends with a PHINode, but does not contain all of the phi node
324    // instructions of the region, we ignore it for now.
325    if (isa<PHINode>(BackInst) &&
326        BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
327      return;
328  
329    // The basic block gets split like so:
330    // block:                 block:
331    //   inst1                  inst1
332    //   inst2                  inst2
333    //   region1               br block_to_outline
334    //   region2              block_to_outline:
335    //   region3          ->    region1
336    //   region4                region2
337    //   inst3                  region3
338    //   inst4                  region4
339    //                          br block_after_outline
340    //                        block_after_outline:
341    //                          inst3
342    //                          inst4
343  
344    std::string OriginalName = PrevBB->getName().str();
345  
346    StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
347    PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
348    // If there was a PHINode with an incoming block outside the region,
349    // make sure is correctly updated in the newly split block.
350    if (PHIPredBlock)
351      PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
352  
353    CandidateSplit = true;
354    if (!BackInst->isTerminator()) {
355      EndBB = EndInst->getParent();
356      FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
357      EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
358      FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
359    } else {
360      EndBB = BackInst->getParent();
361      EndsInBranch = true;
362      FollowBB = nullptr;
363    }
364  
365    // Refind the basic block set.
366    BBSet.clear();
367    Candidate->getBasicBlocks(BBSet);
368    // For the phi nodes in the new starting basic block of the region, we
369    // reassign the targets of the basic blocks branching instructions.
370    replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
371    if (FollowBB)
372      replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
373  }
374  
reattachCandidate()375  void OutlinableRegion::reattachCandidate() {
376    assert(CandidateSplit && "Candidate is not split!");
377  
378    // The basic block gets reattached like so:
379    // block:                        block:
380    //   inst1                         inst1
381    //   inst2                         inst2
382    //   br block_to_outline           region1
383    // block_to_outline:        ->     region2
384    //   region1                       region3
385    //   region2                       region4
386    //   region3                       inst3
387    //   region4                       inst4
388    //   br block_after_outline
389    // block_after_outline:
390    //   inst3
391    //   inst4
392    assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
393  
394    assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
395    // Make sure PHINode references to the block we are merging into are
396    // updated to be incoming blocks from the predecessor to the current block.
397  
398    // NOTE: If this is updated such that the outlined block can have more than
399    // one incoming block to a PHINode, this logic will have to updated
400    // to handle multiple precessors instead.
401  
402    // We only need to update this if the outlined section contains a PHINode, if
403    // it does not, then the incoming block was never changed in the first place.
404    // On the other hand, if PrevBB has no predecessors, it means that all
405    // incoming blocks to the first block are contained in the region, and there
406    // will be nothing to update.
407    Instruction *StartInst = (*Candidate->begin()).Inst;
408    if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
409      assert(!PrevBB->hasNPredecessorsOrMore(2) &&
410           "PrevBB has more than one predecessor. Should be 0 or 1.");
411      BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
412      PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
413    }
414    PrevBB->getTerminator()->eraseFromParent();
415  
416    // If we reattaching after outlining, we iterate over the phi nodes to
417    // the initial block, and reassign the branch instructions of the incoming
418    // blocks to the block we are remerging into.
419    if (!ExtractedFunction) {
420      DenseSet<BasicBlock *> BBSet;
421      Candidate->getBasicBlocks(BBSet);
422  
423      replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
424      if (!EndsInBranch)
425        replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
426    }
427  
428    moveBBContents(*StartBB, *PrevBB);
429  
430    BasicBlock *PlacementBB = PrevBB;
431    if (StartBB != EndBB)
432      PlacementBB = EndBB;
433    if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
434      assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
435      assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
436      PlacementBB->getTerminator()->eraseFromParent();
437      moveBBContents(*FollowBB, *PlacementBB);
438      PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
439      FollowBB->eraseFromParent();
440    }
441  
442    PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
443    StartBB->eraseFromParent();
444  
445    // Make sure to save changes back to the StartBB.
446    StartBB = PrevBB;
447    EndBB = nullptr;
448    PrevBB = nullptr;
449    FollowBB = nullptr;
450  
451    CandidateSplit = false;
452  }
453  
454  /// Find whether \p V matches the Constants previously found for the \p GVN.
455  ///
456  /// \param V - The value to check for consistency.
457  /// \param GVN - The global value number assigned to \p V.
458  /// \param GVNToConstant - The mapping of global value number to Constants.
459  /// \returns true if the Value matches the Constant mapped to by V and false if
460  /// it \p V is a Constant but does not match.
461  /// \returns std::nullopt if \p V is not a Constant.
462  static std::optional<bool>
constantMatches(Value * V,unsigned GVN,DenseMap<unsigned,Constant * > & GVNToConstant)463  constantMatches(Value *V, unsigned GVN,
464                  DenseMap<unsigned, Constant *> &GVNToConstant) {
465    // See if we have a constants
466    Constant *CST = dyn_cast<Constant>(V);
467    if (!CST)
468      return std::nullopt;
469  
470    // Holds a mapping from a global value number to a Constant.
471    DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
472    bool Inserted;
473  
474  
475    // If we have a constant, try to make a new entry in the GVNToConstant.
476    std::tie(GVNToConstantIt, Inserted) =
477        GVNToConstant.insert(std::make_pair(GVN, CST));
478    // If it was found and is not equal, it is not the same. We do not
479    // handle this case yet, and exit early.
480    if (Inserted || (GVNToConstantIt->second == CST))
481      return true;
482  
483    return false;
484  }
485  
getBenefit(TargetTransformInfo & TTI)486  InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
487    InstructionCost Benefit = 0;
488  
489    // Estimate the benefit of outlining a specific sections of the program.  We
490    // delegate mostly this task to the TargetTransformInfo so that if the target
491    // has specific changes, we can have a more accurate estimate.
492  
493    // However, getInstructionCost delegates the code size calculation for
494    // arithmetic instructions to getArithmeticInstrCost in
495    // include/Analysis/TargetTransformImpl.h, where it always estimates that the
496    // code size for a division and remainder instruction to be equal to 4, and
497    // everything else to 1.  This is not an accurate representation of the
498    // division instruction for targets that have a native division instruction.
499    // To be overly conservative, we only add 1 to the number of instructions for
500    // each division instruction.
501    for (IRInstructionData &ID : *Candidate) {
502      Instruction *I = ID.Inst;
503      switch (I->getOpcode()) {
504      case Instruction::FDiv:
505      case Instruction::FRem:
506      case Instruction::SDiv:
507      case Instruction::SRem:
508      case Instruction::UDiv:
509      case Instruction::URem:
510        Benefit += 1;
511        break;
512      default:
513        Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
514        break;
515      }
516    }
517  
518    return Benefit;
519  }
520  
521  /// Check the \p OutputMappings structure for value \p Input, if it exists
522  /// it has been used as an output for outlining, and has been renamed, and we
523  /// return the new value, otherwise, we return the same value.
524  ///
525  /// \param OutputMappings [in] - The mapping of values to their renamed value
526  /// after being used as an output for an outlined region.
527  /// \param Input [in] - The value to find the remapped value of, if it exists.
528  /// \return The remapped value if it has been renamed, and the same value if has
529  /// not.
findOutputMapping(const DenseMap<Value *,Value * > OutputMappings,Value * Input)530  static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
531                                  Value *Input) {
532    DenseMap<Value *, Value *>::const_iterator OutputMapping =
533        OutputMappings.find(Input);
534    if (OutputMapping != OutputMappings.end())
535      return OutputMapping->second;
536    return Input;
537  }
538  
539  /// Find whether \p Region matches the global value numbering to Constant
540  /// mapping found so far.
541  ///
542  /// \param Region - The OutlinableRegion we are checking for constants
543  /// \param GVNToConstant - The mapping of global value number to Constants.
544  /// \param NotSame - The set of global value numbers that do not have the same
545  /// constant in each region.
546  /// \returns true if all Constants are the same in every use of a Constant in \p
547  /// Region and false if not
548  static bool
collectRegionsConstants(OutlinableRegion & Region,DenseMap<unsigned,Constant * > & GVNToConstant,DenseSet<unsigned> & NotSame)549  collectRegionsConstants(OutlinableRegion &Region,
550                          DenseMap<unsigned, Constant *> &GVNToConstant,
551                          DenseSet<unsigned> &NotSame) {
552    bool ConstantsTheSame = true;
553  
554    IRSimilarityCandidate &C = *Region.Candidate;
555    for (IRInstructionData &ID : C) {
556  
557      // Iterate over the operands in an instruction. If the global value number,
558      // assigned by the IRSimilarityCandidate, has been seen before, we check if
559      // the number has been found to be not the same value in each instance.
560      for (Value *V : ID.OperVals) {
561        std::optional<unsigned> GVNOpt = C.getGVN(V);
562        assert(GVNOpt && "Expected a GVN for operand?");
563        unsigned GVN = *GVNOpt;
564  
565        // Check if this global value has been found to not be the same already.
566        if (NotSame.contains(GVN)) {
567          if (isa<Constant>(V))
568            ConstantsTheSame = false;
569          continue;
570        }
571  
572        // If it has been the same so far, we check the value for if the
573        // associated Constant value match the previous instances of the same
574        // global value number.  If the global value does not map to a Constant,
575        // it is considered to not be the same value.
576        std::optional<bool> ConstantMatches =
577            constantMatches(V, GVN, GVNToConstant);
578        if (ConstantMatches) {
579          if (*ConstantMatches)
580            continue;
581          else
582            ConstantsTheSame = false;
583        }
584  
585        // While this value is a register, it might not have been previously,
586        // make sure we don't already have a constant mapped to this global value
587        // number.
588        if (GVNToConstant.contains(GVN))
589          ConstantsTheSame = false;
590  
591        NotSame.insert(GVN);
592      }
593    }
594  
595    return ConstantsTheSame;
596  }
597  
findSameConstants(DenseSet<unsigned> & NotSame)598  void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
599    DenseMap<unsigned, Constant *> GVNToConstant;
600  
601    for (OutlinableRegion *Region : Regions)
602      collectRegionsConstants(*Region, GVNToConstant, NotSame);
603  }
604  
collectGVNStoreSets(Module & M)605  void OutlinableGroup::collectGVNStoreSets(Module &M) {
606    for (OutlinableRegion *OS : Regions)
607      OutputGVNCombinations.insert(OS->GVNStores);
608  
609    // We are adding an extracted argument to decide between which output path
610    // to use in the basic block.  It is used in a switch statement and only
611    // needs to be an integer.
612    if (OutputGVNCombinations.size() > 1)
613      ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
614  }
615  
616  /// Get the subprogram if it exists for one of the outlined regions.
617  ///
618  /// \param [in] Group - The set of regions to find a subprogram for.
619  /// \returns the subprogram if it exists, or nullptr.
getSubprogramOrNull(OutlinableGroup & Group)620  static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
621    for (OutlinableRegion *OS : Group.Regions)
622      if (Function *F = OS->Call->getFunction())
623        if (DISubprogram *SP = F->getSubprogram())
624          return SP;
625  
626    return nullptr;
627  }
628  
createFunction(Module & M,OutlinableGroup & Group,unsigned FunctionNameSuffix)629  Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
630                                       unsigned FunctionNameSuffix) {
631    assert(!Group.OutlinedFunction && "Function is already defined!");
632  
633    Type *RetTy = Type::getVoidTy(M.getContext());
634    // All extracted functions _should_ have the same return type at this point
635    // since the similarity identifier ensures that all branches outside of the
636    // region occur in the same place.
637  
638    // NOTE: Should we ever move to the model that uses a switch at every point
639    // needed, meaning that we could branch within the region or out, it is
640    // possible that we will need to switch to using the most general case all of
641    // the time.
642    for (OutlinableRegion *R : Group.Regions) {
643      Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
644      if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
645          (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
646        RetTy = ExtractedFuncType;
647    }
648  
649    Group.OutlinedFunctionType = FunctionType::get(
650        RetTy, Group.ArgumentTypes, false);
651  
652    // These functions will only be called from within the same module, so
653    // we can set an internal linkage.
654    Group.OutlinedFunction = Function::Create(
655        Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
656        "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
657  
658    // Transfer the swifterr attribute to the correct function parameter.
659    if (Group.SwiftErrorArgument)
660      Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
661                                           Attribute::SwiftError);
662  
663    Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
664    Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
665  
666    // If there's a DISubprogram associated with this outlined function, then
667    // emit debug info for the outlined function.
668    if (DISubprogram *SP = getSubprogramOrNull(Group)) {
669      Function *F = Group.OutlinedFunction;
670      // We have a DISubprogram. Get its DICompileUnit.
671      DICompileUnit *CU = SP->getUnit();
672      DIBuilder DB(M, true, CU);
673      DIFile *Unit = SP->getFile();
674      Mangler Mg;
675      // Get the mangled name of the function for the linkage name.
676      std::string Dummy;
677      llvm::raw_string_ostream MangledNameStream(Dummy);
678      Mg.getNameWithPrefix(MangledNameStream, F, false);
679  
680      DISubprogram *OutlinedSP = DB.createFunction(
681          Unit /* Context */, F->getName(), Dummy,
682          Unit /* File */,
683          0 /* Line 0 is reserved for compiler-generated code. */,
684          DB.createSubroutineType(
685              DB.getOrCreateTypeArray(std::nullopt)), /* void type */
686          0, /* Line 0 is reserved for compiler-generated code. */
687          DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
688          /* Outlined code is optimized code by definition. */
689          DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
690  
691      // Don't add any new variables to the subprogram.
692      DB.finalizeSubprogram(OutlinedSP);
693  
694      // Attach subprogram to the function.
695      F->setSubprogram(OutlinedSP);
696      // We're done with the DIBuilder.
697      DB.finalize();
698    }
699  
700    return Group.OutlinedFunction;
701  }
702  
703  /// Move each BasicBlock in \p Old to \p New.
704  ///
705  /// \param [in] Old - The function to move the basic blocks from.
706  /// \param [in] New - The function to move the basic blocks to.
707  /// \param [out] NewEnds - The return blocks of the new overall function.
moveFunctionData(Function & Old,Function & New,DenseMap<Value *,BasicBlock * > & NewEnds)708  static void moveFunctionData(Function &Old, Function &New,
709                               DenseMap<Value *, BasicBlock *> &NewEnds) {
710    for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
711      CurrBB.removeFromParent();
712      CurrBB.insertInto(&New);
713      Instruction *I = CurrBB.getTerminator();
714  
715      // For each block we find a return instruction is, it is a potential exit
716      // path for the function.  We keep track of each block based on the return
717      // value here.
718      if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
719        NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
720  
721      std::vector<Instruction *> DebugInsts;
722  
723      for (Instruction &Val : CurrBB) {
724        // Since debug-info originates from many different locations in the
725        // program, it will cause incorrect reporting from a debugger if we keep
726        // the same debug instructions. Drop non-intrinsic DbgVariableRecords
727        // here, collect intrinsics for removal later.
728        Val.dropDbgRecords();
729  
730        // We must handle the scoping of called functions differently than
731        // other outlined instructions.
732        if (!isa<CallInst>(&Val)) {
733          // Remove the debug information for outlined functions.
734          Val.setDebugLoc(DebugLoc());
735  
736          // Loop info metadata may contain line locations. Update them to have no
737          // value in the new subprogram since the outlined code could be from
738          // several locations.
739          auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
740            if (DISubprogram *SP = New.getSubprogram())
741              if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
742                return DILocation::get(New.getContext(), Loc->getLine(),
743                                       Loc->getColumn(), SP, nullptr);
744            return MD;
745          };
746          updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
747          continue;
748        }
749  
750        // From this point we are only handling call instructions.
751        CallInst *CI = cast<CallInst>(&Val);
752  
753        // Collect debug intrinsics for later removal.
754        if (isa<DbgInfoIntrinsic>(CI)) {
755          DebugInsts.push_back(&Val);
756          continue;
757        }
758  
759        // Edit the scope of called functions inside of outlined functions.
760        if (DISubprogram *SP = New.getSubprogram()) {
761          DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
762          Val.setDebugLoc(DI);
763        }
764      }
765  
766      for (Instruction *I : DebugInsts)
767        I->eraseFromParent();
768    }
769  }
770  
771  /// Find the constants that will need to be lifted into arguments
772  /// as they are not the same in each instance of the region.
773  ///
774  /// \param [in] C - The IRSimilarityCandidate containing the region we are
775  /// analyzing.
776  /// \param [in] NotSame - The set of global value numbers that do not have a
777  /// single Constant across all OutlinableRegions similar to \p C.
778  /// \param [out] Inputs - The list containing the global value numbers of the
779  /// arguments needed for the region of code.
findConstants(IRSimilarityCandidate & C,DenseSet<unsigned> & NotSame,std::vector<unsigned> & Inputs)780  static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
781                            std::vector<unsigned> &Inputs) {
782    DenseSet<unsigned> Seen;
783    // Iterate over the instructions, and find what constants will need to be
784    // extracted into arguments.
785    for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
786         IDIt != EndIDIt; IDIt++) {
787      for (Value *V : (*IDIt).OperVals) {
788        // Since these are stored before any outlining, they will be in the
789        // global value numbering.
790        unsigned GVN = *C.getGVN(V);
791        if (isa<Constant>(V))
792          if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
793            Inputs.push_back(GVN);
794            Seen.insert(GVN);
795          }
796      }
797    }
798  }
799  
800  /// Find the GVN for the inputs that have been found by the CodeExtractor.
801  ///
802  /// \param [in] C - The IRSimilarityCandidate containing the region we are
803  /// analyzing.
804  /// \param [in] CurrentInputs - The set of inputs found by the
805  /// CodeExtractor.
806  /// \param [in] OutputMappings - The mapping of values that have been replaced
807  /// by a new output value.
808  /// \param [out] EndInputNumbers - The global value numbers for the extracted
809  /// arguments.
mapInputsToGVNs(IRSimilarityCandidate & C,SetVector<Value * > & CurrentInputs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<unsigned> & EndInputNumbers)810  static void mapInputsToGVNs(IRSimilarityCandidate &C,
811                              SetVector<Value *> &CurrentInputs,
812                              const DenseMap<Value *, Value *> &OutputMappings,
813                              std::vector<unsigned> &EndInputNumbers) {
814    // Get the Global Value Number for each input.  We check if the Value has been
815    // replaced by a different value at output, and use the original value before
816    // replacement.
817    for (Value *Input : CurrentInputs) {
818      assert(Input && "Have a nullptr as an input");
819      if (OutputMappings.contains(Input))
820        Input = OutputMappings.find(Input)->second;
821      assert(C.getGVN(Input) && "Could not find a numbering for the given input");
822      EndInputNumbers.push_back(*C.getGVN(Input));
823    }
824  }
825  
826  /// Find the original value for the \p ArgInput values if any one of them was
827  /// replaced during a previous extraction.
828  ///
829  /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
830  /// \param [in] OutputMappings - The mapping of values that have been replaced
831  /// by a new output value.
832  /// \param [out] RemappedArgInputs - The remapped values according to
833  /// \p OutputMappings that will be extracted.
834  static void
remapExtractedInputs(const ArrayRef<Value * > ArgInputs,const DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & RemappedArgInputs)835  remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
836                       const DenseMap<Value *, Value *> &OutputMappings,
837                       SetVector<Value *> &RemappedArgInputs) {
838    // Get the global value number for each input that will be extracted as an
839    // argument by the code extractor, remapping if needed for reloaded values.
840    for (Value *Input : ArgInputs) {
841      if (OutputMappings.contains(Input))
842        Input = OutputMappings.find(Input)->second;
843      RemappedArgInputs.insert(Input);
844    }
845  }
846  
847  /// Find the input GVNs and the output values for a region of Instructions.
848  /// Using the code extractor, we collect the inputs to the extracted function.
849  ///
850  /// The \p Region can be identified as needing to be ignored in this function.
851  /// It should be checked whether it should be ignored after a call to this
852  /// function.
853  ///
854  /// \param [in,out] Region - The region of code to be analyzed.
855  /// \param [out] InputGVNs - The global value numbers for the extracted
856  /// arguments.
857  /// \param [in] NotSame - The global value numbers in the region that do not
858  /// have the same constant value in the regions structurally similar to
859  /// \p Region.
860  /// \param [in] OutputMappings - The mapping of values that have been replaced
861  /// by a new output value after extraction.
862  /// \param [out] ArgInputs - The values of the inputs to the extracted function.
863  /// \param [out] Outputs - The set of values extracted by the CodeExtractor
864  /// as outputs.
getCodeExtractorArguments(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,DenseSet<unsigned> & NotSame,DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & ArgInputs,SetVector<Value * > & Outputs)865  static void getCodeExtractorArguments(
866      OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
867      DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
868      SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
869    IRSimilarityCandidate &C = *Region.Candidate;
870  
871    // OverallInputs are the inputs to the region found by the CodeExtractor,
872    // SinkCands and HoistCands are used by the CodeExtractor to find sunken
873    // allocas of values whose lifetimes are contained completely within the
874    // outlined region. PremappedInputs are the arguments found by the
875    // CodeExtractor, removing conditions such as sunken allocas, but that
876    // may need to be remapped due to the extracted output values replacing
877    // the original values. We use DummyOutputs for this first run of finding
878    // inputs and outputs since the outputs could change during findAllocas,
879    // the correct set of extracted outputs will be in the final Outputs ValueSet.
880    SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
881        DummyOutputs;
882  
883    // Use the code extractor to get the inputs and outputs, without sunken
884    // allocas or removing llvm.assumes.
885    CodeExtractor *CE = Region.CE;
886    CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
887    assert(Region.StartBB && "Region must have a start BasicBlock!");
888    Function *OrigF = Region.StartBB->getParent();
889    CodeExtractorAnalysisCache CEAC(*OrigF);
890    BasicBlock *Dummy = nullptr;
891  
892    // The region may be ineligible due to VarArgs in the parent function. In this
893    // case we ignore the region.
894    if (!CE->isEligible()) {
895      Region.IgnoreRegion = true;
896      return;
897    }
898  
899    // Find if any values are going to be sunk into the function when extracted
900    CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
901    CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
902  
903    // TODO: Support regions with sunken allocas: values whose lifetimes are
904    // contained completely within the outlined region.  These are not guaranteed
905    // to be the same in every region, so we must elevate them all to arguments
906    // when they appear.  If these values are not equal, it means there is some
907    // Input in OverallInputs that was removed for ArgInputs.
908    if (OverallInputs.size() != PremappedInputs.size()) {
909      Region.IgnoreRegion = true;
910      return;
911    }
912  
913    findConstants(C, NotSame, InputGVNs);
914  
915    mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
916  
917    remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
918                         ArgInputs);
919  
920    // Sort the GVNs, since we now have constants included in the \ref InputGVNs
921    // we need to make sure they are in a deterministic order.
922    stable_sort(InputGVNs);
923  }
924  
925  /// Look over the inputs and map each input argument to an argument in the
926  /// overall function for the OutlinableRegions.  This creates a way to replace
927  /// the arguments of the extracted function with the arguments of the new
928  /// overall function.
929  ///
930  /// \param [in,out] Region - The region of code to be analyzed.
931  /// \param [in] InputGVNs - The global value numbering of the input values
932  /// collected.
933  /// \param [in] ArgInputs - The values of the arguments to the extracted
934  /// function.
935  static void
findExtractedInputToOverallInputMapping(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,SetVector<Value * > & ArgInputs)936  findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
937                                          std::vector<unsigned> &InputGVNs,
938                                          SetVector<Value *> &ArgInputs) {
939  
940    IRSimilarityCandidate &C = *Region.Candidate;
941    OutlinableGroup &Group = *Region.Parent;
942  
943    // This counts the argument number in the overall function.
944    unsigned TypeIndex = 0;
945  
946    // This counts the argument number in the extracted function.
947    unsigned OriginalIndex = 0;
948  
949    // Find the mapping of the extracted arguments to the arguments for the
950    // overall function. Since there may be extra arguments in the overall
951    // function to account for the extracted constants, we have two different
952    // counters as we find extracted arguments, and as we come across overall
953    // arguments.
954  
955    // Additionally, in our first pass, for the first extracted function,
956    // we find argument locations for the canonical value numbering.  This
957    // numbering overrides any discovered location for the extracted code.
958    for (unsigned InputVal : InputGVNs) {
959      std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
960      assert(CanonicalNumberOpt && "Canonical number not found?");
961      unsigned CanonicalNumber = *CanonicalNumberOpt;
962  
963      std::optional<Value *> InputOpt = C.fromGVN(InputVal);
964      assert(InputOpt && "Global value number not found?");
965      Value *Input = *InputOpt;
966  
967      DenseMap<unsigned, unsigned>::iterator AggArgIt =
968          Group.CanonicalNumberToAggArg.find(CanonicalNumber);
969  
970      if (!Group.InputTypesSet) {
971        Group.ArgumentTypes.push_back(Input->getType());
972        // If the input value has a swifterr attribute, make sure to mark the
973        // argument in the overall function.
974        if (Input->isSwiftError()) {
975          assert(
976              !Group.SwiftErrorArgument &&
977              "Argument already marked with swifterr for this OutlinableGroup!");
978          Group.SwiftErrorArgument = TypeIndex;
979        }
980      }
981  
982      // Check if we have a constant. If we do add it to the overall argument
983      // number to Constant map for the region, and continue to the next input.
984      if (Constant *CST = dyn_cast<Constant>(Input)) {
985        if (AggArgIt != Group.CanonicalNumberToAggArg.end())
986          Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
987        else {
988          Group.CanonicalNumberToAggArg.insert(
989              std::make_pair(CanonicalNumber, TypeIndex));
990          Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
991        }
992        TypeIndex++;
993        continue;
994      }
995  
996      // It is not a constant, we create the mapping from extracted argument list
997      // to the overall argument list, using the canonical location, if it exists.
998      assert(ArgInputs.count(Input) && "Input cannot be found!");
999  
1000      if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
1001        if (OriginalIndex != AggArgIt->second)
1002          Region.ChangedArgOrder = true;
1003        Region.ExtractedArgToAgg.insert(
1004            std::make_pair(OriginalIndex, AggArgIt->second));
1005        Region.AggArgToExtracted.insert(
1006            std::make_pair(AggArgIt->second, OriginalIndex));
1007      } else {
1008        Group.CanonicalNumberToAggArg.insert(
1009            std::make_pair(CanonicalNumber, TypeIndex));
1010        Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1011        Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1012      }
1013      OriginalIndex++;
1014      TypeIndex++;
1015    }
1016  
1017    // If the function type definitions for the OutlinableGroup holding the region
1018    // have not been set, set the length of the inputs here.  We should have the
1019    // same inputs for all of the different regions contained in the
1020    // OutlinableGroup since they are all structurally similar to one another.
1021    if (!Group.InputTypesSet) {
1022      Group.NumAggregateInputs = TypeIndex;
1023      Group.InputTypesSet = true;
1024    }
1025  
1026    Region.NumExtractedInputs = OriginalIndex;
1027  }
1028  
1029  /// Check if the \p V has any uses outside of the region other than \p PN.
1030  ///
1031  /// \param V [in] - The value to check.
1032  /// \param PHILoc [in] - The location in the PHINode of \p V.
1033  /// \param PN [in] - The PHINode using \p V.
1034  /// \param Exits [in] - The potential blocks we exit to from the outlined
1035  /// region.
1036  /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1037  /// \returns true if \p V has any use soutside its region other than \p PN.
outputHasNonPHI(Value * V,unsigned PHILoc,PHINode & PN,SmallPtrSet<BasicBlock *,1> & Exits,DenseSet<BasicBlock * > & BlocksInRegion)1038  static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1039                              SmallPtrSet<BasicBlock *, 1> &Exits,
1040                              DenseSet<BasicBlock *> &BlocksInRegion) {
1041    // We check to see if the value is used by the PHINode from some other
1042    // predecessor not included in the region.  If it is, we make sure
1043    // to keep it as an output.
1044    if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1045               [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1046                 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1047                         !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1048               }))
1049      return true;
1050  
1051    // Check if the value is used by any other instructions outside the region.
1052    return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1053      Instruction *I = dyn_cast<Instruction>(U);
1054      if (!I)
1055        return false;
1056  
1057      // If the use of the item is inside the region, we skip it.  Uses
1058      // inside the region give us useful information about how the item could be
1059      // used as an output.
1060      BasicBlock *Parent = I->getParent();
1061      if (BlocksInRegion.contains(Parent))
1062        return false;
1063  
1064      // If it's not a PHINode then we definitely know the use matters.  This
1065      // output value will not completely combined with another item in a PHINode
1066      // as it is directly reference by another non-phi instruction
1067      if (!isa<PHINode>(I))
1068        return true;
1069  
1070      // If we have a PHINode outside one of the exit locations, then it
1071      // can be considered an outside use as well.  If there is a PHINode
1072      // contained in the Exit where this values use matters, it will be
1073      // caught when we analyze that PHINode.
1074      if (!Exits.contains(Parent))
1075        return true;
1076  
1077      return false;
1078    });
1079  }
1080  
1081  /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1082  /// considered outputs. A PHINodes is an output when more than one incoming
1083  /// value has been marked by the CodeExtractor as an output.
1084  ///
1085  /// \param CurrentExitFromRegion [in] - The block to analyze.
1086  /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1087  /// region.
1088  /// \param RegionBlocks [in] - The basic blocks in the region.
1089  /// \param Outputs [in, out] - The existing outputs for the region, we may add
1090  /// PHINodes to this as we find that they replace output values.
1091  /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1092  /// totally replaced  by a PHINode.
1093  /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1094  /// in PHINodes, but have other uses, and should still be considered outputs.
analyzeExitPHIsForOutputUses(BasicBlock * CurrentExitFromRegion,SmallPtrSet<BasicBlock *,1> & PotentialExitsFromRegion,DenseSet<BasicBlock * > & RegionBlocks,SetVector<Value * > & Outputs,DenseSet<Value * > & OutputsReplacedByPHINode,DenseSet<Value * > & OutputsWithNonPhiUses)1095  static void analyzeExitPHIsForOutputUses(
1096      BasicBlock *CurrentExitFromRegion,
1097      SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1098      DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1099      DenseSet<Value *> &OutputsReplacedByPHINode,
1100      DenseSet<Value *> &OutputsWithNonPhiUses) {
1101    for (PHINode &PN : CurrentExitFromRegion->phis()) {
1102      // Find all incoming values from the outlining region.
1103      SmallVector<unsigned, 2> IncomingVals;
1104      for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1105        if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1106          IncomingVals.push_back(I);
1107  
1108      // Do not process PHI if there are no predecessors from region.
1109      unsigned NumIncomingVals = IncomingVals.size();
1110      if (NumIncomingVals == 0)
1111        continue;
1112  
1113      // If there is one predecessor, we mark it as a value that needs to be kept
1114      // as an output.
1115      if (NumIncomingVals == 1) {
1116        Value *V = PN.getIncomingValue(*IncomingVals.begin());
1117        OutputsWithNonPhiUses.insert(V);
1118        OutputsReplacedByPHINode.erase(V);
1119        continue;
1120      }
1121  
1122      // This PHINode will be used as an output value, so we add it to our list.
1123      Outputs.insert(&PN);
1124  
1125      // Not all of the incoming values should be ignored as other inputs and
1126      // outputs may have uses in outlined region.  If they have other uses
1127      // outside of the single PHINode we should not skip over it.
1128      for (unsigned Idx : IncomingVals) {
1129        Value *V = PN.getIncomingValue(Idx);
1130        if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1131          OutputsWithNonPhiUses.insert(V);
1132          OutputsReplacedByPHINode.erase(V);
1133          continue;
1134        }
1135        if (!OutputsWithNonPhiUses.contains(V))
1136          OutputsReplacedByPHINode.insert(V);
1137      }
1138    }
1139  }
1140  
1141  // Represents the type for the unsigned number denoting the output number for
1142  // phi node, along with the canonical number for the exit block.
1143  using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1144  // The list of canonical numbers for the incoming values to a PHINode.
1145  using CanonList = SmallVector<unsigned, 2>;
1146  // The pair type representing the set of canonical values being combined in the
1147  // PHINode, along with the location data for the PHINode.
1148  using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1149  
1150  /// Encode \p PND as an integer for easy lookup based on the argument location,
1151  /// the parent BasicBlock canonical numbering, and the canonical numbering of
1152  /// the values stored in the PHINode.
1153  ///
1154  /// \param PND - The data to hash.
1155  /// \returns The hash code of \p PND.
encodePHINodeData(PHINodeData & PND)1156  static hash_code encodePHINodeData(PHINodeData &PND) {
1157    return llvm::hash_combine(
1158        llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1159        llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1160  }
1161  
1162  /// Create a special GVN for PHINodes that will be used outside of
1163  /// the region.  We create a hash code based on the Canonical number of the
1164  /// parent BasicBlock, the canonical numbering of the values stored in the
1165  /// PHINode and the aggregate argument location.  This is used to find whether
1166  /// this PHINode type has been given a canonical numbering already.  If not, we
1167  /// assign it a value and store it for later use.  The value is returned to
1168  /// identify different output schemes for the set of regions.
1169  ///
1170  /// \param Region - The region that \p PN is an output for.
1171  /// \param PN - The PHINode we are analyzing.
1172  /// \param Blocks - The blocks for the region we are analyzing.
1173  /// \param AggArgIdx - The argument \p PN will be stored into.
1174  /// \returns An optional holding the assigned canonical number, or std::nullopt
1175  /// if there is some attribute of the PHINode blocking it from being used.
getGVNForPHINode(OutlinableRegion & Region,PHINode * PN,DenseSet<BasicBlock * > & Blocks,unsigned AggArgIdx)1176  static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1177                                                  PHINode *PN,
1178                                                  DenseSet<BasicBlock *> &Blocks,
1179                                                  unsigned AggArgIdx) {
1180    OutlinableGroup &Group = *Region.Parent;
1181    IRSimilarityCandidate &Cand = *Region.Candidate;
1182    BasicBlock *PHIBB = PN->getParent();
1183    CanonList PHIGVNs;
1184    Value *Incoming;
1185    BasicBlock *IncomingBlock;
1186    for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1187      Incoming = PN->getIncomingValue(Idx);
1188      IncomingBlock = PN->getIncomingBlock(Idx);
1189      // If we cannot find a GVN, and the incoming block is included in the region
1190      // this means that the input to the PHINode is not included in the region we
1191      // are trying to analyze, meaning, that if it was outlined, we would be
1192      // adding an extra input.  We ignore this case for now, and so ignore the
1193      // region.
1194      std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1195      if (!OGVN && Blocks.contains(IncomingBlock)) {
1196        Region.IgnoreRegion = true;
1197        return std::nullopt;
1198      }
1199  
1200      // If the incoming block isn't in the region, we don't have to worry about
1201      // this incoming value.
1202      if (!Blocks.contains(IncomingBlock))
1203        continue;
1204  
1205      // Collect the canonical numbers of the values in the PHINode.
1206      unsigned GVN = *OGVN;
1207      OGVN = Cand.getCanonicalNum(GVN);
1208      assert(OGVN && "No GVN found for incoming value?");
1209      PHIGVNs.push_back(*OGVN);
1210  
1211      // Find the incoming block and use the canonical numbering as well to define
1212      // the hash for the PHINode.
1213      OGVN = Cand.getGVN(IncomingBlock);
1214  
1215      // If there is no number for the incoming block, it is because we have
1216      // split the candidate basic blocks.  So we use the previous block that it
1217      // was split from to find the valid global value numbering for the PHINode.
1218      if (!OGVN) {
1219        assert(Cand.getStartBB() == IncomingBlock &&
1220               "Unknown basic block used in exit path PHINode.");
1221  
1222        BasicBlock *PrevBlock = nullptr;
1223        // Iterate over the predecessors to the incoming block of the
1224        // PHINode, when we find a block that is not contained in the region
1225        // we know that this is the first block that we split from, and should
1226        // have a valid global value numbering.
1227        for (BasicBlock *Pred : predecessors(IncomingBlock))
1228          if (!Blocks.contains(Pred)) {
1229            PrevBlock = Pred;
1230            break;
1231          }
1232        assert(PrevBlock && "Expected a predecessor not in the reigon!");
1233        OGVN = Cand.getGVN(PrevBlock);
1234      }
1235      GVN = *OGVN;
1236      OGVN = Cand.getCanonicalNum(GVN);
1237      assert(OGVN && "No GVN found for incoming block?");
1238      PHIGVNs.push_back(*OGVN);
1239    }
1240  
1241    // Now that we have the GVNs for the incoming values, we are going to combine
1242    // them with the GVN of the incoming bock, and the output location of the
1243    // PHINode to generate a hash value representing this instance of the PHINode.
1244    DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1245    DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1246    std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1247    assert(BBGVN && "Could not find GVN for the incoming block!");
1248  
1249    BBGVN = Cand.getCanonicalNum(*BBGVN);
1250    assert(BBGVN && "Could not find canonical number for the incoming block!");
1251    // Create a pair of the exit block canonical value, and the aggregate
1252    // argument location, connected to the canonical numbers stored in the
1253    // PHINode.
1254    PHINodeData TemporaryPair =
1255        std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1256    hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1257  
1258    // Look for and create a new entry in our connection between canonical
1259    // numbers for PHINodes, and the set of objects we just created.
1260    GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1261    if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1262      bool Inserted = false;
1263      std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1264          std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1265      std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1266          std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1267    }
1268  
1269    return GVNToPHIIt->second;
1270  }
1271  
1272  /// Create a mapping of the output arguments for the \p Region to the output
1273  /// arguments of the overall outlined function.
1274  ///
1275  /// \param [in,out] Region - The region of code to be analyzed.
1276  /// \param [in] Outputs - The values found by the code extractor.
1277  static void
findExtractedOutputToOverallOutputMapping(Module & M,OutlinableRegion & Region,SetVector<Value * > & Outputs)1278  findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1279                                            SetVector<Value *> &Outputs) {
1280    OutlinableGroup &Group = *Region.Parent;
1281    IRSimilarityCandidate &C = *Region.Candidate;
1282  
1283    SmallVector<BasicBlock *> BE;
1284    DenseSet<BasicBlock *> BlocksInRegion;
1285    C.getBasicBlocks(BlocksInRegion, BE);
1286  
1287    // Find the exits to the region.
1288    SmallPtrSet<BasicBlock *, 1> Exits;
1289    for (BasicBlock *Block : BE)
1290      for (BasicBlock *Succ : successors(Block))
1291        if (!BlocksInRegion.contains(Succ))
1292          Exits.insert(Succ);
1293  
1294    // After determining which blocks exit to PHINodes, we add these PHINodes to
1295    // the set of outputs to be processed.  We also check the incoming values of
1296    // the PHINodes for whether they should no longer be considered outputs.
1297    DenseSet<Value *> OutputsReplacedByPHINode;
1298    DenseSet<Value *> OutputsWithNonPhiUses;
1299    for (BasicBlock *ExitBB : Exits)
1300      analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1301                                   OutputsReplacedByPHINode,
1302                                   OutputsWithNonPhiUses);
1303  
1304    // This counts the argument number in the extracted function.
1305    unsigned OriginalIndex = Region.NumExtractedInputs;
1306  
1307    // This counts the argument number in the overall function.
1308    unsigned TypeIndex = Group.NumAggregateInputs;
1309    bool TypeFound;
1310    DenseSet<unsigned> AggArgsUsed;
1311  
1312    // Iterate over the output types and identify if there is an aggregate pointer
1313    // type whose base type matches the current output type. If there is, we mark
1314    // that we will use this output register for this value. If not we add another
1315    // type to the overall argument type list. We also store the GVNs used for
1316    // stores to identify which values will need to be moved into an special
1317    // block that holds the stores to the output registers.
1318    for (Value *Output : Outputs) {
1319      TypeFound = false;
1320      // We can do this since it is a result value, and will have a number
1321      // that is necessarily the same. BUT if in the future, the instructions
1322      // do not have to be in same order, but are functionally the same, we will
1323      // have to use a different scheme, as one-to-one correspondence is not
1324      // guaranteed.
1325      unsigned ArgumentSize = Group.ArgumentTypes.size();
1326  
1327      // If the output is combined in a PHINode, we make sure to skip over it.
1328      if (OutputsReplacedByPHINode.contains(Output))
1329        continue;
1330  
1331      unsigned AggArgIdx = 0;
1332      for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1333        if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
1334          continue;
1335  
1336        if (AggArgsUsed.contains(Jdx))
1337          continue;
1338  
1339        TypeFound = true;
1340        AggArgsUsed.insert(Jdx);
1341        Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1342        Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1343        AggArgIdx = Jdx;
1344        break;
1345      }
1346  
1347      // We were unable to find an unused type in the output type set that matches
1348      // the output, so we add a pointer type to the argument types of the overall
1349      // function to handle this output and create a mapping to it.
1350      if (!TypeFound) {
1351        Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(),
1352            M.getDataLayout().getAllocaAddrSpace()));
1353        // Mark the new pointer type as the last value in the aggregate argument
1354        // list.
1355        unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1356        AggArgsUsed.insert(ArgTypeIdx);
1357        Region.ExtractedArgToAgg.insert(
1358            std::make_pair(OriginalIndex, ArgTypeIdx));
1359        Region.AggArgToExtracted.insert(
1360            std::make_pair(ArgTypeIdx, OriginalIndex));
1361        AggArgIdx = ArgTypeIdx;
1362      }
1363  
1364      // TODO: Adapt to the extra input from the PHINode.
1365      PHINode *PN = dyn_cast<PHINode>(Output);
1366  
1367      std::optional<unsigned> GVN;
1368      if (PN && !BlocksInRegion.contains(PN->getParent())) {
1369        // Values outside the region can be combined into PHINode when we
1370        // have multiple exits. We collect both of these into a list to identify
1371        // which values are being used in the PHINode. Each list identifies a
1372        // different PHINode, and a different output. We store the PHINode as it's
1373        // own canonical value.  These canonical values are also dependent on the
1374        // output argument it is saved to.
1375  
1376        // If two PHINodes have the same canonical values, but different aggregate
1377        // argument locations, then they will have distinct Canonical Values.
1378        GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1379        if (!GVN)
1380          return;
1381      } else {
1382        // If we do not have a PHINode we use the global value numbering for the
1383        // output value, to find the canonical number to add to the set of stored
1384        // values.
1385        GVN = C.getGVN(Output);
1386        GVN = C.getCanonicalNum(*GVN);
1387      }
1388  
1389      // Each region has a potentially unique set of outputs.  We save which
1390      // values are output in a list of canonical values so we can differentiate
1391      // among the different store schemes.
1392      Region.GVNStores.push_back(*GVN);
1393  
1394      OriginalIndex++;
1395      TypeIndex++;
1396    }
1397  
1398    // We sort the stored values to make sure that we are not affected by analysis
1399    // order when determining what combination of items were stored.
1400    stable_sort(Region.GVNStores);
1401  }
1402  
findAddInputsOutputs(Module & M,OutlinableRegion & Region,DenseSet<unsigned> & NotSame)1403  void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1404                                        DenseSet<unsigned> &NotSame) {
1405    std::vector<unsigned> Inputs;
1406    SetVector<Value *> ArgInputs, Outputs;
1407  
1408    getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1409                              Outputs);
1410  
1411    if (Region.IgnoreRegion)
1412      return;
1413  
1414    // Map the inputs found by the CodeExtractor to the arguments found for
1415    // the overall function.
1416    findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1417  
1418    // Map the outputs found by the CodeExtractor to the arguments found for
1419    // the overall function.
1420    findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1421  }
1422  
1423  /// Replace the extracted function in the Region with a call to the overall
1424  /// function constructed from the deduplicated similar regions, replacing and
1425  /// remapping the values passed to the extracted function as arguments to the
1426  /// new arguments of the overall function.
1427  ///
1428  /// \param [in] M - The module to outline from.
1429  /// \param [in] Region - The regions of extracted code to be replaced with a new
1430  /// function.
1431  /// \returns a call instruction with the replaced function.
replaceCalledFunction(Module & M,OutlinableRegion & Region)1432  CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1433    std::vector<Value *> NewCallArgs;
1434    DenseMap<unsigned, unsigned>::iterator ArgPair;
1435  
1436    OutlinableGroup &Group = *Region.Parent;
1437    CallInst *Call = Region.Call;
1438    assert(Call && "Call to replace is nullptr?");
1439    Function *AggFunc = Group.OutlinedFunction;
1440    assert(AggFunc && "Function to replace with is nullptr?");
1441  
1442    // If the arguments are the same size, there are not values that need to be
1443    // made into an argument, the argument ordering has not been change, or
1444    // different output registers to handle.  We can simply replace the called
1445    // function in this case.
1446    if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1447      LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1448                        << *AggFunc << " with same number of arguments\n");
1449      Call->setCalledFunction(AggFunc);
1450      return Call;
1451    }
1452  
1453    // We have a different number of arguments than the new function, so
1454    // we need to use our previously mappings off extracted argument to overall
1455    // function argument, and constants to overall function argument to create the
1456    // new argument list.
1457    for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1458  
1459      if (AggArgIdx == AggFunc->arg_size() - 1 &&
1460          Group.OutputGVNCombinations.size() > 1) {
1461        // If we are on the last argument, and we need to differentiate between
1462        // output blocks, add an integer to the argument list to determine
1463        // what block to take
1464        LLVM_DEBUG(dbgs() << "Set switch block argument to "
1465                          << Region.OutputBlockNum << "\n");
1466        NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1467                                               Region.OutputBlockNum));
1468        continue;
1469      }
1470  
1471      ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1472      if (ArgPair != Region.AggArgToExtracted.end()) {
1473        Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1474        // If we found the mapping from the extracted function to the overall
1475        // function, we simply add it to the argument list.  We use the same
1476        // value, it just needs to honor the new order of arguments.
1477        LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1478                          << *ArgumentValue << "\n");
1479        NewCallArgs.push_back(ArgumentValue);
1480        continue;
1481      }
1482  
1483      // If it is a constant, we simply add it to the argument list as a value.
1484      if (Region.AggArgToConstant.contains(AggArgIdx)) {
1485        Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1486        LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1487                          << *CST << "\n");
1488        NewCallArgs.push_back(CST);
1489        continue;
1490      }
1491  
1492      // Add a nullptr value if the argument is not found in the extracted
1493      // function.  If we cannot find a value, it means it is not in use
1494      // for the region, so we should not pass anything to it.
1495      LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1496      NewCallArgs.push_back(ConstantPointerNull::get(
1497          static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1498    }
1499  
1500    LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1501                      << *AggFunc << " with new set of arguments\n");
1502    // Create the new call instruction and erase the old one.
1503    Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1504                            Call->getIterator());
1505  
1506    // It is possible that the call to the outlined function is either the first
1507    // instruction is in the new block, the last instruction, or both.  If either
1508    // of these is the case, we need to make sure that we replace the instruction
1509    // in the IRInstructionData struct with the new call.
1510    CallInst *OldCall = Region.Call;
1511    if (Region.NewFront->Inst == OldCall)
1512      Region.NewFront->Inst = Call;
1513    if (Region.NewBack->Inst == OldCall)
1514      Region.NewBack->Inst = Call;
1515  
1516    // Transfer any debug information.
1517    Call->setDebugLoc(Region.Call->getDebugLoc());
1518    // Since our output may determine which branch we go to, we make sure to
1519    // propogate this new call value through the module.
1520    OldCall->replaceAllUsesWith(Call);
1521  
1522    // Remove the old instruction.
1523    OldCall->eraseFromParent();
1524    Region.Call = Call;
1525  
1526    // Make sure that the argument in the new function has the SwiftError
1527    // argument.
1528    if (Group.SwiftErrorArgument)
1529      Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1530  
1531    return Call;
1532  }
1533  
1534  /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1535  /// for \p RetVal.
1536  ///
1537  /// \param Group - The OutlinableGroup containing the information about the
1538  /// overall outlined function.
1539  /// \param RetVal - The return value or exit option that we are currently
1540  /// evaluating.
1541  /// \returns The found or newly created BasicBlock to contain the needed
1542  /// PHINodes to be used as outputs.
findOrCreatePHIBlock(OutlinableGroup & Group,Value * RetVal)1543  static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1544    DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1545        ReturnBlockForRetVal;
1546    PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1547    ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1548    assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1549           "Could not find output value!");
1550    BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1551  
1552    // Find if a PHIBlock exists for this return value already.  If it is
1553    // the first time we are analyzing this, we will not, so we record it.
1554    PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1555    if (PhiBlockForRetVal != Group.PHIBlocks.end())
1556      return PhiBlockForRetVal->second;
1557  
1558    // If we did not find a block, we create one, and insert it into the
1559    // overall function and record it.
1560    bool Inserted = false;
1561    BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1562                                              ReturnBB->getParent());
1563    std::tie(PhiBlockForRetVal, Inserted) =
1564        Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1565  
1566    // We find the predecessors of the return block in the newly created outlined
1567    // function in order to point them to the new PHIBlock rather than the already
1568    // existing return block.
1569    SmallVector<BranchInst *, 2> BranchesToChange;
1570    for (BasicBlock *Pred : predecessors(ReturnBB))
1571      BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1572  
1573    // Now we mark the branch instructions found, and change the references of the
1574    // return block to the newly created PHIBlock.
1575    for (BranchInst *BI : BranchesToChange)
1576      for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1577        if (BI->getSuccessor(Succ) != ReturnBB)
1578          continue;
1579        BI->setSuccessor(Succ, PHIBlock);
1580      }
1581  
1582    BranchInst::Create(ReturnBB, PHIBlock);
1583  
1584    return PhiBlockForRetVal->second;
1585  }
1586  
1587  /// For the function call now representing the \p Region, find the passed value
1588  /// to that call that represents Argument \p A at the call location if the
1589  /// call has already been replaced with a call to the  overall, aggregate
1590  /// function.
1591  ///
1592  /// \param A - The Argument to get the passed value for.
1593  /// \param Region - The extracted Region corresponding to the outlined function.
1594  /// \returns The Value representing \p A at the call site.
1595  static Value *
getPassedArgumentInAlreadyOutlinedFunction(const Argument * A,const OutlinableRegion & Region)1596  getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1597                                             const OutlinableRegion &Region) {
1598    // If we don't need to adjust the argument number at all (since the call
1599    // has already been replaced by a call to the overall outlined function)
1600    // we can just get the specified argument.
1601    return Region.Call->getArgOperand(A->getArgNo());
1602  }
1603  
1604  /// For the function call now representing the \p Region, find the passed value
1605  /// to that call that represents Argument \p A at the call location if the
1606  /// call has only been replaced by the call to the aggregate function.
1607  ///
1608  /// \param A - The Argument to get the passed value for.
1609  /// \param Region - The extracted Region corresponding to the outlined function.
1610  /// \returns The Value representing \p A at the call site.
1611  static Value *
getPassedArgumentAndAdjustArgumentLocation(const Argument * A,const OutlinableRegion & Region)1612  getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1613                                             const OutlinableRegion &Region) {
1614    unsigned ArgNum = A->getArgNo();
1615  
1616    // If it is a constant, we can look at our mapping from when we created
1617    // the outputs to figure out what the constant value is.
1618    if (Region.AggArgToConstant.count(ArgNum))
1619      return Region.AggArgToConstant.find(ArgNum)->second;
1620  
1621    // If it is not a constant, and we are not looking at the overall function, we
1622    // need to adjust which argument we are looking at.
1623    ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1624    return Region.Call->getArgOperand(ArgNum);
1625  }
1626  
1627  /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1628  ///
1629  /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1630  /// \param Region [in] - The OutlinableRegion containing \p PN.
1631  /// \param OutputMappings [in] - The mapping of output values from outlined
1632  /// region to their original values.
1633  /// \param CanonNums [out] - The canonical numbering for the incoming values to
1634  /// \p PN paired with their incoming block.
1635  /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1636  /// of \p Region rather than the overall function's call.
findCanonNumsForPHI(PHINode * PN,OutlinableRegion & Region,const DenseMap<Value *,Value * > & OutputMappings,SmallVector<std::pair<unsigned,BasicBlock * >> & CanonNums,bool ReplacedWithOutlinedCall=true)1637  static void findCanonNumsForPHI(
1638      PHINode *PN, OutlinableRegion &Region,
1639      const DenseMap<Value *, Value *> &OutputMappings,
1640      SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1641      bool ReplacedWithOutlinedCall = true) {
1642    // Iterate over the incoming values.
1643    for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1644      Value *IVal = PN->getIncomingValue(Idx);
1645      BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1646      // If we have an argument as incoming value, we need to grab the passed
1647      // value from the call itself.
1648      if (Argument *A = dyn_cast<Argument>(IVal)) {
1649        if (ReplacedWithOutlinedCall)
1650          IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1651        else
1652          IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1653      }
1654  
1655      // Get the original value if it has been replaced by an output value.
1656      IVal = findOutputMapping(OutputMappings, IVal);
1657  
1658      // Find and add the canonical number for the incoming value.
1659      std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1660      assert(GVN && "No GVN for incoming value");
1661      std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1662      assert(CanonNum && "No Canonical Number for GVN");
1663      CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1664    }
1665  }
1666  
1667  /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1668  /// in order to condense the number of instructions added to the outlined
1669  /// function.
1670  ///
1671  /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1672  /// \param Region [in] - The OutlinableRegion containing \p PN.
1673  /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1674  /// \p PN in.
1675  /// \param OutputMappings [in] - The mapping of output values from outlined
1676  /// region to their original values.
1677  /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1678  /// matched.
1679  /// \return the newly found or created PHINode in \p OverallPhiBlock.
1680  static PHINode*
findOrCreatePHIInBlock(PHINode & PN,OutlinableRegion & Region,BasicBlock * OverallPhiBlock,const DenseMap<Value *,Value * > & OutputMappings,DenseSet<PHINode * > & UsedPHIs)1681  findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1682                         BasicBlock *OverallPhiBlock,
1683                         const DenseMap<Value *, Value *> &OutputMappings,
1684                         DenseSet<PHINode *> &UsedPHIs) {
1685    OutlinableGroup &Group = *Region.Parent;
1686  
1687  
1688    // A list of the canonical numbering assigned to each incoming value, paired
1689    // with the incoming block for the PHINode passed into this function.
1690    SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1691  
1692    // We have to use the extracted function since we have merged this region into
1693    // the overall function yet.  We make sure to reassign the argument numbering
1694    // since it is possible that the argument ordering is different between the
1695    // functions.
1696    findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1697                        /* ReplacedWithOutlinedCall = */ false);
1698  
1699    OutlinableRegion *FirstRegion = Group.Regions[0];
1700  
1701    // A list of the canonical numbering assigned to each incoming value, paired
1702    // with the incoming block for the PHINode that we are currently comparing
1703    // the passed PHINode to.
1704    SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1705  
1706    // Find the Canonical Numbering for each PHINode, if it matches, we replace
1707    // the uses of the PHINode we are searching for, with the found PHINode.
1708    for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1709      // If this PHINode has already been matched to another PHINode to be merged,
1710      // we skip it.
1711      if (UsedPHIs.contains(&CurrPN))
1712        continue;
1713  
1714      CurrentCanonNums.clear();
1715      findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1716                          /* ReplacedWithOutlinedCall = */ true);
1717  
1718      // If the list of incoming values is not the same length, then they cannot
1719      // match since there is not an analogue for each incoming value.
1720      if (PNCanonNums.size() != CurrentCanonNums.size())
1721        continue;
1722  
1723      bool FoundMatch = true;
1724  
1725      // We compare the canonical value for each incoming value in the passed
1726      // in PHINode to one already present in the outlined region.  If the
1727      // incoming values do not match, then the PHINodes do not match.
1728  
1729      // We also check to make sure that the incoming block matches as well by
1730      // finding the corresponding incoming block in the combined outlined region
1731      // for the current outlined region.
1732      for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1733        std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1734        std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1735        if (ToCompareTo.first != ToAdd.first) {
1736          FoundMatch = false;
1737          break;
1738        }
1739  
1740        BasicBlock *CorrespondingBlock =
1741            Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1742        assert(CorrespondingBlock && "Found block is nullptr");
1743        if (CorrespondingBlock != ToCompareTo.second) {
1744          FoundMatch = false;
1745          break;
1746        }
1747      }
1748  
1749      // If all incoming values and branches matched, then we can merge
1750      // into the found PHINode.
1751      if (FoundMatch) {
1752        UsedPHIs.insert(&CurrPN);
1753        return &CurrPN;
1754      }
1755    }
1756  
1757    // If we've made it here, it means we weren't able to replace the PHINode, so
1758    // we must insert it ourselves.
1759    PHINode *NewPN = cast<PHINode>(PN.clone());
1760    NewPN->insertBefore(&*OverallPhiBlock->begin());
1761    for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1762         Idx++) {
1763      Value *IncomingVal = NewPN->getIncomingValue(Idx);
1764      BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1765  
1766      // Find corresponding basic block in the overall function for the incoming
1767      // block.
1768      BasicBlock *BlockToUse =
1769          Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1770      NewPN->setIncomingBlock(Idx, BlockToUse);
1771  
1772      // If we have an argument we make sure we replace using the argument from
1773      // the correct function.
1774      if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1775        Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1776        NewPN->setIncomingValue(Idx, Val);
1777        continue;
1778      }
1779  
1780      // Find the corresponding value in the overall function.
1781      IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1782      Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1783      assert(Val && "Value is nullptr?");
1784      DenseMap<Value *, Value *>::iterator RemappedIt =
1785          FirstRegion->RemappedArguments.find(Val);
1786      if (RemappedIt != FirstRegion->RemappedArguments.end())
1787        Val = RemappedIt->second;
1788      NewPN->setIncomingValue(Idx, Val);
1789    }
1790    return NewPN;
1791  }
1792  
1793  // Within an extracted function, replace the argument uses of the extracted
1794  // region with the arguments of the function for an OutlinableGroup.
1795  //
1796  /// \param [in] Region - The region of extracted code to be changed.
1797  /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1798  /// region.
1799  /// \param [in] FirstFunction - A flag to indicate whether we are using this
1800  /// function to define the overall outlined function for all the regions, or
1801  /// if we are operating on one of the following regions.
1802  static void
replaceArgumentUses(OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,const DenseMap<Value *,Value * > & OutputMappings,bool FirstFunction=false)1803  replaceArgumentUses(OutlinableRegion &Region,
1804                      DenseMap<Value *, BasicBlock *> &OutputBBs,
1805                      const DenseMap<Value *, Value *> &OutputMappings,
1806                      bool FirstFunction = false) {
1807    OutlinableGroup &Group = *Region.Parent;
1808    assert(Region.ExtractedFunction && "Region has no extracted function?");
1809  
1810    Function *DominatingFunction = Region.ExtractedFunction;
1811    if (FirstFunction)
1812      DominatingFunction = Group.OutlinedFunction;
1813    DominatorTree DT(*DominatingFunction);
1814    DenseSet<PHINode *> UsedPHIs;
1815  
1816    for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1817         ArgIdx++) {
1818      assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
1819             "No mapping from extracted to outlined?");
1820      unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1821      Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1822      Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1823      // The argument is an input, so we can simply replace it with the overall
1824      // argument value
1825      if (ArgIdx < Region.NumExtractedInputs) {
1826        LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1827                          << *Region.ExtractedFunction << " with " << *AggArg
1828                          << " in function " << *Group.OutlinedFunction << "\n");
1829        Arg->replaceAllUsesWith(AggArg);
1830        Value *V = Region.Call->getArgOperand(ArgIdx);
1831        Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1832        continue;
1833      }
1834  
1835      // If we are replacing an output, we place the store value in its own
1836      // block inside the overall function before replacing the use of the output
1837      // in the function.
1838      assert(Arg->hasOneUse() && "Output argument can only have one use");
1839      User *InstAsUser = Arg->user_back();
1840      assert(InstAsUser && "User is nullptr!");
1841  
1842      Instruction *I = cast<Instruction>(InstAsUser);
1843      BasicBlock *BB = I->getParent();
1844      SmallVector<BasicBlock *, 4> Descendants;
1845      DT.getDescendants(BB, Descendants);
1846      bool EdgeAdded = false;
1847      if (Descendants.size() == 0) {
1848        EdgeAdded = true;
1849        DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1850        DT.getDescendants(BB, Descendants);
1851      }
1852  
1853      // Iterate over the following blocks, looking for return instructions,
1854      // if we find one, find the corresponding output block for the return value
1855      // and move our store instruction there.
1856      for (BasicBlock *DescendBB : Descendants) {
1857        ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1858        if (!RI)
1859          continue;
1860        Value *RetVal = RI->getReturnValue();
1861        auto VBBIt = OutputBBs.find(RetVal);
1862        assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1863  
1864        // If this is storing a PHINode, we must make sure it is included in the
1865        // overall function.
1866        StoreInst *SI = cast<StoreInst>(I);
1867  
1868        Value *ValueOperand = SI->getValueOperand();
1869  
1870        StoreInst *NewI = cast<StoreInst>(I->clone());
1871        NewI->setDebugLoc(DebugLoc());
1872        BasicBlock *OutputBB = VBBIt->second;
1873        NewI->insertInto(OutputBB, OutputBB->end());
1874        LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1875                          << *OutputBB << "\n");
1876  
1877        // If this is storing a PHINode, we must make sure it is included in the
1878        // overall function.
1879        if (!isa<PHINode>(ValueOperand) ||
1880            Region.Candidate->getGVN(ValueOperand).has_value()) {
1881          if (FirstFunction)
1882            continue;
1883          Value *CorrVal =
1884              Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1885          assert(CorrVal && "Value is nullptr?");
1886          NewI->setOperand(0, CorrVal);
1887          continue;
1888        }
1889        PHINode *PN = cast<PHINode>(SI->getValueOperand());
1890        // If it has a value, it was not split by the code extractor, which
1891        // is what we are looking for.
1892        if (Region.Candidate->getGVN(PN))
1893          continue;
1894  
1895        // We record the parent block for the PHINode in the Region so that
1896        // we can exclude it from checks later on.
1897        Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1898  
1899        // If this is the first function, we do not need to worry about mergiing
1900        // this with any other block in the overall outlined function, so we can
1901        // just continue.
1902        if (FirstFunction) {
1903          BasicBlock *PHIBlock = PN->getParent();
1904          Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1905          continue;
1906        }
1907  
1908        // We look for the aggregate block that contains the PHINodes leading into
1909        // this exit path. If we can't find one, we create one.
1910        BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1911  
1912        // For our PHINode, we find the combined canonical numbering, and
1913        // attempt to find a matching PHINode in the overall PHIBlock.  If we
1914        // cannot, we copy the PHINode and move it into this new block.
1915        PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1916                                                OutputMappings, UsedPHIs);
1917        NewI->setOperand(0, NewPN);
1918      }
1919  
1920      // If we added an edge for basic blocks without a predecessor, we remove it
1921      // here.
1922      if (EdgeAdded)
1923        DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1924      I->eraseFromParent();
1925  
1926      LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1927                        << *Region.ExtractedFunction << " with " << *AggArg
1928                        << " in function " << *Group.OutlinedFunction << "\n");
1929      Arg->replaceAllUsesWith(AggArg);
1930    }
1931  }
1932  
1933  /// Within an extracted function, replace the constants that need to be lifted
1934  /// into arguments with the actual argument.
1935  ///
1936  /// \param Region [in] - The region of extracted code to be changed.
replaceConstants(OutlinableRegion & Region)1937  void replaceConstants(OutlinableRegion &Region) {
1938    OutlinableGroup &Group = *Region.Parent;
1939    // Iterate over the constants that need to be elevated into arguments
1940    for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1941      unsigned AggArgIdx = Const.first;
1942      Function *OutlinedFunction = Group.OutlinedFunction;
1943      assert(OutlinedFunction && "Overall Function is not defined?");
1944      Constant *CST = Const.second;
1945      Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1946      // Identify the argument it will be elevated to, and replace instances of
1947      // that constant in the function.
1948  
1949      // TODO: If in the future constants do not have one global value number,
1950      // i.e. a constant 1 could be mapped to several values, this check will
1951      // have to be more strict.  It cannot be using only replaceUsesWithIf.
1952  
1953      LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1954                        << " in function " << *OutlinedFunction << " with "
1955                        << *Arg << "\n");
1956      CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1957        if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1958          return I->getFunction() == OutlinedFunction;
1959        return false;
1960      });
1961    }
1962  }
1963  
1964  /// It is possible that there is a basic block that already performs the same
1965  /// stores. This returns a duplicate block, if it exists
1966  ///
1967  /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1968  /// \param OutputStoreBBs [in] The existing output blocks.
1969  /// \returns an optional value with the number output block if there is a match.
findDuplicateOutputBlock(DenseMap<Value *,BasicBlock * > & OutputBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)1970  std::optional<unsigned> findDuplicateOutputBlock(
1971      DenseMap<Value *, BasicBlock *> &OutputBBs,
1972      std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1973  
1974    bool Mismatch = false;
1975    unsigned MatchingNum = 0;
1976    // We compare the new set output blocks to the other sets of output blocks.
1977    // If they are the same number, and have identical instructions, they are
1978    // considered to be the same.
1979    for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1980      Mismatch = false;
1981      for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1982        DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1983            OutputBBs.find(VToB.first);
1984        if (OutputBBIt == OutputBBs.end()) {
1985          Mismatch = true;
1986          break;
1987        }
1988  
1989        BasicBlock *CompBB = VToB.second;
1990        BasicBlock *OutputBB = OutputBBIt->second;
1991        if (CompBB->size() - 1 != OutputBB->size()) {
1992          Mismatch = true;
1993          break;
1994        }
1995  
1996        BasicBlock::iterator NIt = OutputBB->begin();
1997        for (Instruction &I : *CompBB) {
1998          if (isa<BranchInst>(&I))
1999            continue;
2000  
2001          if (!I.isIdenticalTo(&(*NIt))) {
2002            Mismatch = true;
2003            break;
2004          }
2005  
2006          NIt++;
2007        }
2008      }
2009  
2010      if (!Mismatch)
2011        return MatchingNum;
2012  
2013      MatchingNum++;
2014    }
2015  
2016    return std::nullopt;
2017  }
2018  
2019  /// Remove empty output blocks from the outlined region.
2020  ///
2021  /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2022  /// Region.
2023  /// \param Region - The OutlinableRegion we are analyzing.
2024  static bool
analyzeAndPruneOutputBlocks(DenseMap<Value *,BasicBlock * > & BlocksToPrune,OutlinableRegion & Region)2025  analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2026                              OutlinableRegion &Region) {
2027    bool AllRemoved = true;
2028    Value *RetValueForBB;
2029    BasicBlock *NewBB;
2030    SmallVector<Value *, 4> ToRemove;
2031    // Iterate over the output blocks created in the outlined section.
2032    for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2033      RetValueForBB = VtoBB.first;
2034      NewBB = VtoBB.second;
2035  
2036      // If there are no instructions, we remove it from the module, and also
2037      // mark the value for removal from the return value to output block mapping.
2038      if (NewBB->size() == 0) {
2039        NewBB->eraseFromParent();
2040        ToRemove.push_back(RetValueForBB);
2041        continue;
2042      }
2043  
2044      // Mark that we could not remove all the blocks since they were not all
2045      // empty.
2046      AllRemoved = false;
2047    }
2048  
2049    // Remove the return value from the mapping.
2050    for (Value *V : ToRemove)
2051      BlocksToPrune.erase(V);
2052  
2053    // Mark the region as having the no output scheme.
2054    if (AllRemoved)
2055      Region.OutputBlockNum = -1;
2056  
2057    return AllRemoved;
2058  }
2059  
2060  /// For the outlined section, move needed the StoreInsts for the output
2061  /// registers into their own block. Then, determine if there is a duplicate
2062  /// output block already created.
2063  ///
2064  /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2065  /// \param [in] Region - The OutlinableRegion that is being analyzed.
2066  /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2067  /// placed in.
2068  /// \param [in] EndBBs - the final blocks of the extracted function.
2069  /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2070  /// been replaced by a new output value.
2071  /// \param [in,out] OutputStoreBBs - The existing output blocks.
alignOutputBlockWithAggFunc(OutlinableGroup & OG,OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,DenseMap<Value *,BasicBlock * > & EndBBs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2072  static void alignOutputBlockWithAggFunc(
2073      OutlinableGroup &OG, OutlinableRegion &Region,
2074      DenseMap<Value *, BasicBlock *> &OutputBBs,
2075      DenseMap<Value *, BasicBlock *> &EndBBs,
2076      const DenseMap<Value *, Value *> &OutputMappings,
2077      std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2078    // If none of the output blocks have any instructions, this means that we do
2079    // not have to determine if it matches any of the other output schemes, and we
2080    // don't have to do anything else.
2081    if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2082      return;
2083  
2084    // Determine is there is a duplicate set of blocks.
2085    std::optional<unsigned> MatchingBB =
2086        findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2087  
2088    // If there is, we remove the new output blocks.  If it does not,
2089    // we add it to our list of sets of output blocks.
2090    if (MatchingBB) {
2091      LLVM_DEBUG(dbgs() << "Set output block for region in function"
2092                        << Region.ExtractedFunction << " to " << *MatchingBB);
2093  
2094      Region.OutputBlockNum = *MatchingBB;
2095      for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2096        VtoBB.second->eraseFromParent();
2097      return;
2098    }
2099  
2100    Region.OutputBlockNum = OutputStoreBBs.size();
2101  
2102    Value *RetValueForBB;
2103    BasicBlock *NewBB;
2104    OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2105    for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2106      RetValueForBB = VtoBB.first;
2107      NewBB = VtoBB.second;
2108      DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2109          EndBBs.find(RetValueForBB);
2110      LLVM_DEBUG(dbgs() << "Create output block for region in"
2111                        << Region.ExtractedFunction << " to "
2112                        << *NewBB);
2113      BranchInst::Create(VBBIt->second, NewBB);
2114      OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2115    }
2116  }
2117  
2118  /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2119  /// before creating a basic block for each \p NewMap, and inserting into the new
2120  /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2121  ///
2122  /// \param OldMap [in] - The mapping to base the new mapping off of.
2123  /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2124  /// \param ParentFunc [in] - The function to put the new basic block in.
2125  /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2126  /// by an index value.
createAndInsertBasicBlocks(DenseMap<Value *,BasicBlock * > & OldMap,DenseMap<Value *,BasicBlock * > & NewMap,Function * ParentFunc,Twine BaseName)2127  static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2128                                         DenseMap<Value *, BasicBlock *> &NewMap,
2129                                         Function *ParentFunc, Twine BaseName) {
2130    unsigned Idx = 0;
2131    std::vector<Value *> SortedKeys;
2132  
2133    getSortedConstantKeys(SortedKeys, OldMap);
2134  
2135    for (Value *RetVal : SortedKeys) {
2136      BasicBlock *NewBB = BasicBlock::Create(
2137          ParentFunc->getContext(),
2138          Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2139          ParentFunc);
2140      NewMap.insert(std::make_pair(RetVal, NewBB));
2141    }
2142  }
2143  
2144  /// Create the switch statement for outlined function to differentiate between
2145  /// all the output blocks.
2146  ///
2147  /// For the outlined section, determine if an outlined block already exists that
2148  /// matches the needed stores for the extracted section.
2149  /// \param [in] M - The module we are outlining from.
2150  /// \param [in] OG - The group of regions to be outlined.
2151  /// \param [in] EndBBs - The final blocks of the extracted function.
2152  /// \param [in,out] OutputStoreBBs - The existing output blocks.
createSwitchStatement(Module & M,OutlinableGroup & OG,DenseMap<Value *,BasicBlock * > & EndBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2153  void createSwitchStatement(
2154      Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2155      std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2156    // We only need the switch statement if there is more than one store
2157    // combination, or there is more than one set of output blocks.  The first
2158    // will occur when we store different sets of values for two different
2159    // regions.  The second will occur when we have two outputs that are combined
2160    // in a PHINode outside of the region in one outlined instance, and are used
2161    // seaparately in another. This will create the same set of OutputGVNs, but
2162    // will generate two different output schemes.
2163    if (OG.OutputGVNCombinations.size() > 1) {
2164      Function *AggFunc = OG.OutlinedFunction;
2165      // Create a final block for each different return block.
2166      DenseMap<Value *, BasicBlock *> ReturnBBs;
2167      createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2168  
2169      for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2170        std::pair<Value *, BasicBlock *> &OutputBlock =
2171            *OG.EndBBs.find(RetBlockPair.first);
2172        BasicBlock *ReturnBlock = RetBlockPair.second;
2173        BasicBlock *EndBB = OutputBlock.second;
2174        Instruction *Term = EndBB->getTerminator();
2175        // Move the return value to the final block instead of the original exit
2176        // stub.
2177        Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2178        // Put the switch statement in the old end basic block for the function
2179        // with a fall through to the new return block.
2180        LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2181                          << OutputStoreBBs.size() << "\n");
2182        SwitchInst *SwitchI =
2183            SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2184                               ReturnBlock, OutputStoreBBs.size(), EndBB);
2185  
2186        unsigned Idx = 0;
2187        for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2188          DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2189              OutputStoreBB.find(OutputBlock.first);
2190  
2191          if (OSBBIt == OutputStoreBB.end())
2192            continue;
2193  
2194          BasicBlock *BB = OSBBIt->second;
2195          SwitchI->addCase(
2196              ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2197          Term = BB->getTerminator();
2198          Term->setSuccessor(0, ReturnBlock);
2199          Idx++;
2200        }
2201      }
2202      return;
2203    }
2204  
2205    assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2206  
2207    // If there needs to be stores, move them from the output blocks to their
2208    // corresponding ending block.  We do not check that the OutputGVNCombinations
2209    // is equal to 1 here since that could just been the case where there are 0
2210    // outputs. Instead, we check whether there is more than one set of output
2211    // blocks since this is the only case where we would have to move the
2212    // stores, and erase the extraneous blocks.
2213    if (OutputStoreBBs.size() == 1) {
2214      LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2215                        << *OG.OutlinedFunction << "\n");
2216      DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2217      for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2218        DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2219            EndBBs.find(VBPair.first);
2220        assert(EndBBIt != EndBBs.end() && "Could not find end block");
2221        BasicBlock *EndBB = EndBBIt->second;
2222        BasicBlock *OutputBB = VBPair.second;
2223        Instruction *Term = OutputBB->getTerminator();
2224        Term->eraseFromParent();
2225        Term = EndBB->getTerminator();
2226        moveBBContents(*OutputBB, *EndBB);
2227        Term->moveBefore(*EndBB, EndBB->end());
2228        OutputBB->eraseFromParent();
2229      }
2230    }
2231  }
2232  
2233  /// Fill the new function that will serve as the replacement function for all of
2234  /// the extracted regions of a certain structure from the first region in the
2235  /// list of regions.  Replace this first region's extracted function with the
2236  /// new overall function.
2237  ///
2238  /// \param [in] M - The module we are outlining from.
2239  /// \param [in] CurrentGroup - The group of regions to be outlined.
2240  /// \param [in,out] OutputStoreBBs - The output blocks for each different
2241  /// set of stores needed for the different functions.
2242  /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2243  /// once outlining is complete.
2244  /// \param [in] OutputMappings - Extracted functions to erase from module
2245  /// once outlining is complete.
fillOverallFunction(Module & M,OutlinableGroup & CurrentGroup,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs,std::vector<Function * > & FuncsToRemove,const DenseMap<Value *,Value * > & OutputMappings)2246  static void fillOverallFunction(
2247      Module &M, OutlinableGroup &CurrentGroup,
2248      std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2249      std::vector<Function *> &FuncsToRemove,
2250      const DenseMap<Value *, Value *> &OutputMappings) {
2251    OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2252  
2253    // Move first extracted function's instructions into new function.
2254    LLVM_DEBUG(dbgs() << "Move instructions from "
2255                      << *CurrentOS->ExtractedFunction << " to instruction "
2256                      << *CurrentGroup.OutlinedFunction << "\n");
2257    moveFunctionData(*CurrentOS->ExtractedFunction,
2258                     *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2259  
2260    // Transfer the attributes from the function to the new function.
2261    for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2262      CurrentGroup.OutlinedFunction->addFnAttr(A);
2263  
2264    // Create a new set of output blocks for the first extracted function.
2265    DenseMap<Value *, BasicBlock *> NewBBs;
2266    createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2267                               CurrentGroup.OutlinedFunction, "output_block_0");
2268    CurrentOS->OutputBlockNum = 0;
2269  
2270    replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2271    replaceConstants(*CurrentOS);
2272  
2273    // We first identify if any output blocks are empty, if they are we remove
2274    // them. We then create a branch instruction to the basic block to the return
2275    // block for the function for each non empty output block.
2276    if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2277      OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2278      for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2279        DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2280            CurrentGroup.EndBBs.find(VToBB.first);
2281        BasicBlock *EndBB = VBBIt->second;
2282        BranchInst::Create(EndBB, VToBB.second);
2283        OutputStoreBBs.back().insert(VToBB);
2284      }
2285    }
2286  
2287    // Replace the call to the extracted function with the outlined function.
2288    CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2289  
2290    // We only delete the extracted functions at the end since we may need to
2291    // reference instructions contained in them for mapping purposes.
2292    FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2293  }
2294  
deduplicateExtractedSections(Module & M,OutlinableGroup & CurrentGroup,std::vector<Function * > & FuncsToRemove,unsigned & OutlinedFunctionNum)2295  void IROutliner::deduplicateExtractedSections(
2296      Module &M, OutlinableGroup &CurrentGroup,
2297      std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2298    createFunction(M, CurrentGroup, OutlinedFunctionNum);
2299  
2300    std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2301  
2302    OutlinableRegion *CurrentOS;
2303  
2304    fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2305                        OutputMappings);
2306  
2307    std::vector<Value *> SortedKeys;
2308    for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2309      CurrentOS = CurrentGroup.Regions[Idx];
2310      AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2311                                                 *CurrentOS->ExtractedFunction);
2312  
2313      // Create a set of BasicBlocks, one for each return block, to hold the
2314      // needed store instructions.
2315      DenseMap<Value *, BasicBlock *> NewBBs;
2316      createAndInsertBasicBlocks(
2317          CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2318          "output_block_" + Twine(static_cast<unsigned>(Idx)));
2319      replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2320      alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2321                                  CurrentGroup.EndBBs, OutputMappings,
2322                                  OutputStoreBBs);
2323  
2324      CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2325      FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2326    }
2327  
2328    // Create a switch statement to handle the different output schemes.
2329    createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2330  
2331    OutlinedFunctionNum++;
2332  }
2333  
2334  /// Checks that the next instruction in the InstructionDataList matches the
2335  /// next instruction in the module.  If they do not, there could be the
2336  /// possibility that extra code has been inserted, and we must ignore it.
2337  ///
2338  /// \param ID - The IRInstructionData to check the next instruction of.
2339  /// \returns true if the InstructionDataList and actual instruction match.
nextIRInstructionDataMatchesNextInst(IRInstructionData & ID)2340  static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2341    // We check if there is a discrepancy between the InstructionDataList
2342    // and the actual next instruction in the module.  If there is, it means
2343    // that an extra instruction was added, likely by the CodeExtractor.
2344  
2345    // Since we do not have any similarity data about this particular
2346    // instruction, we cannot confidently outline it, and must discard this
2347    // candidate.
2348    IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2349    Instruction *NextIDLInst = NextIDIt->Inst;
2350    Instruction *NextModuleInst = nullptr;
2351    if (!ID.Inst->isTerminator())
2352      NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2353    else if (NextIDLInst != nullptr)
2354      NextModuleInst =
2355          &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2356  
2357    if (NextIDLInst && NextIDLInst != NextModuleInst)
2358      return false;
2359  
2360    return true;
2361  }
2362  
isCompatibleWithAlreadyOutlinedCode(const OutlinableRegion & Region)2363  bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2364      const OutlinableRegion &Region) {
2365    IRSimilarityCandidate *IRSC = Region.Candidate;
2366    unsigned StartIdx = IRSC->getStartIdx();
2367    unsigned EndIdx = IRSC->getEndIdx();
2368  
2369    // A check to make sure that we are not about to attempt to outline something
2370    // that has already been outlined.
2371    for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2372      if (Outlined.contains(Idx))
2373        return false;
2374  
2375    // We check if the recorded instruction matches the actual next instruction,
2376    // if it does not, we fix it in the InstructionDataList.
2377    if (!Region.Candidate->backInstruction()->isTerminator()) {
2378      Instruction *NewEndInst =
2379          Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2380      assert(NewEndInst && "Next instruction is a nullptr?");
2381      if (Region.Candidate->end()->Inst != NewEndInst) {
2382        IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2383        IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2384            IRInstructionData(*NewEndInst,
2385                              InstructionClassifier.visit(*NewEndInst), *IDL);
2386  
2387        // Insert the first IRInstructionData of the new region after the
2388        // last IRInstructionData of the IRSimilarityCandidate.
2389        IDL->insert(Region.Candidate->end(), *NewEndIRID);
2390      }
2391    }
2392  
2393    return none_of(*IRSC, [this](IRInstructionData &ID) {
2394      if (!nextIRInstructionDataMatchesNextInst(ID))
2395        return true;
2396  
2397      return !this->InstructionClassifier.visit(ID.Inst);
2398    });
2399  }
2400  
pruneIncompatibleRegions(std::vector<IRSimilarityCandidate> & CandidateVec,OutlinableGroup & CurrentGroup)2401  void IROutliner::pruneIncompatibleRegions(
2402      std::vector<IRSimilarityCandidate> &CandidateVec,
2403      OutlinableGroup &CurrentGroup) {
2404    bool PreviouslyOutlined;
2405  
2406    // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2407    stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2408                                 const IRSimilarityCandidate &RHS) {
2409      return LHS.getStartIdx() < RHS.getStartIdx();
2410    });
2411  
2412    IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2413    // Since outlining a call and a branch instruction will be the same as only
2414    // outlinining a call instruction, we ignore it as a space saving.
2415    if (FirstCandidate.getLength() == 2) {
2416      if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2417          isa<BranchInst>(FirstCandidate.back()->Inst))
2418        return;
2419    }
2420  
2421    unsigned CurrentEndIdx = 0;
2422    for (IRSimilarityCandidate &IRSC : CandidateVec) {
2423      PreviouslyOutlined = false;
2424      unsigned StartIdx = IRSC.getStartIdx();
2425      unsigned EndIdx = IRSC.getEndIdx();
2426      const Function &FnForCurrCand = *IRSC.getFunction();
2427  
2428      for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2429        if (Outlined.contains(Idx)) {
2430          PreviouslyOutlined = true;
2431          break;
2432        }
2433  
2434      if (PreviouslyOutlined)
2435        continue;
2436  
2437      // Check over the instructions, and if the basic block has its address
2438      // taken for use somewhere else, we do not outline that block.
2439      bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2440        return ID.Inst->getParent()->hasAddressTaken();
2441      });
2442  
2443      if (BBHasAddressTaken)
2444        continue;
2445  
2446      if (FnForCurrCand.hasOptNone())
2447        continue;
2448  
2449      if (FnForCurrCand.hasFnAttribute("nooutline")) {
2450        LLVM_DEBUG({
2451          dbgs() << "... Skipping function with nooutline attribute: "
2452                 << FnForCurrCand.getName() << "\n";
2453        });
2454        continue;
2455      }
2456  
2457      if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2458          !OutlineFromLinkODRs)
2459        continue;
2460  
2461      // Greedily prune out any regions that will overlap with already chosen
2462      // regions.
2463      if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2464        continue;
2465  
2466      bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2467        if (!nextIRInstructionDataMatchesNextInst(ID))
2468          return true;
2469  
2470        return !this->InstructionClassifier.visit(ID.Inst);
2471      });
2472  
2473      if (BadInst)
2474        continue;
2475  
2476      OutlinableRegion *OS = new (RegionAllocator.Allocate())
2477          OutlinableRegion(IRSC, CurrentGroup);
2478      CurrentGroup.Regions.push_back(OS);
2479  
2480      CurrentEndIdx = EndIdx;
2481    }
2482  }
2483  
2484  InstructionCost
findBenefitFromAllRegions(OutlinableGroup & CurrentGroup)2485  IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2486    InstructionCost RegionBenefit = 0;
2487    for (OutlinableRegion *Region : CurrentGroup.Regions) {
2488      TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2489      // We add the number of instructions in the region to the benefit as an
2490      // estimate as to how much will be removed.
2491      RegionBenefit += Region->getBenefit(TTI);
2492      LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2493                        << " saved instructions to overfall benefit.\n");
2494    }
2495  
2496    return RegionBenefit;
2497  }
2498  
2499  /// For the \p OutputCanon number passed in find the value represented by this
2500  /// canonical number. If it is from a PHINode, we pick the first incoming
2501  /// value and return that Value instead.
2502  ///
2503  /// \param Region - The OutlinableRegion to get the Value from.
2504  /// \param OutputCanon - The canonical number to find the Value from.
2505  /// \returns The Value represented by a canonical number \p OutputCanon in \p
2506  /// Region.
findOutputValueInRegion(OutlinableRegion & Region,unsigned OutputCanon)2507  static Value *findOutputValueInRegion(OutlinableRegion &Region,
2508                                        unsigned OutputCanon) {
2509    OutlinableGroup &CurrentGroup = *Region.Parent;
2510    // If the value is greater than the value in the tracker, we have a
2511    // PHINode and will instead use one of the incoming values to find the
2512    // type.
2513    if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2514      auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2515      assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2516             "Could not find GVN set for PHINode number!");
2517      assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2518      OutputCanon = *It->second.second.begin();
2519    }
2520    std::optional<unsigned> OGVN =
2521        Region.Candidate->fromCanonicalNum(OutputCanon);
2522    assert(OGVN && "Could not find GVN for Canonical Number?");
2523    std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2524    assert(OV && "Could not find value for GVN?");
2525    return *OV;
2526  }
2527  
2528  InstructionCost
findCostOutputReloads(OutlinableGroup & CurrentGroup)2529  IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2530    InstructionCost OverallCost = 0;
2531    for (OutlinableRegion *Region : CurrentGroup.Regions) {
2532      TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2533  
2534      // Each output incurs a load after the call, so we add that to the cost.
2535      for (unsigned OutputCanon : Region->GVNStores) {
2536        Value *V = findOutputValueInRegion(*Region, OutputCanon);
2537        InstructionCost LoadCost =
2538            TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2539                                TargetTransformInfo::TCK_CodeSize);
2540  
2541        LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2542                          << " instructions to cost for output of type "
2543                          << *V->getType() << "\n");
2544        OverallCost += LoadCost;
2545      }
2546    }
2547  
2548    return OverallCost;
2549  }
2550  
2551  /// Find the extra instructions needed to handle any output values for the
2552  /// region.
2553  ///
2554  /// \param [in] M - The Module to outline from.
2555  /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2556  /// \param [in] TTI - The TargetTransformInfo used to collect information for
2557  /// new instruction costs.
2558  /// \returns the additional cost to handle the outputs.
findCostForOutputBlocks(Module & M,OutlinableGroup & CurrentGroup,TargetTransformInfo & TTI)2559  static InstructionCost findCostForOutputBlocks(Module &M,
2560                                                 OutlinableGroup &CurrentGroup,
2561                                                 TargetTransformInfo &TTI) {
2562    InstructionCost OutputCost = 0;
2563    unsigned NumOutputBranches = 0;
2564  
2565    OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2566    IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2567    DenseSet<BasicBlock *> CandidateBlocks;
2568    Candidate.getBasicBlocks(CandidateBlocks);
2569  
2570    // Count the number of different output branches that point to blocks outside
2571    // of the region.
2572    DenseSet<BasicBlock *> FoundBlocks;
2573    for (IRInstructionData &ID : Candidate) {
2574      if (!isa<BranchInst>(ID.Inst))
2575        continue;
2576  
2577      for (Value *V : ID.OperVals) {
2578        BasicBlock *BB = static_cast<BasicBlock *>(V);
2579        if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2580          NumOutputBranches++;
2581      }
2582    }
2583  
2584    CurrentGroup.BranchesToOutside = NumOutputBranches;
2585  
2586    for (const ArrayRef<unsigned> &OutputUse :
2587         CurrentGroup.OutputGVNCombinations) {
2588      for (unsigned OutputCanon : OutputUse) {
2589        Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2590        InstructionCost StoreCost =
2591            TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2592                                TargetTransformInfo::TCK_CodeSize);
2593  
2594        // An instruction cost is added for each store set that needs to occur for
2595        // various output combinations inside the function, plus a branch to
2596        // return to the exit block.
2597        LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2598                          << " instructions to cost for output of type "
2599                          << *V->getType() << "\n");
2600        OutputCost += StoreCost * NumOutputBranches;
2601      }
2602  
2603      InstructionCost BranchCost =
2604          TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2605      LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2606                        << " a branch instruction\n");
2607      OutputCost += BranchCost * NumOutputBranches;
2608    }
2609  
2610    // If there is more than one output scheme, we must have a comparison and
2611    // branch for each different item in the switch statement.
2612    if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2613      InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2614          Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2615          Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2616          TargetTransformInfo::TCK_CodeSize);
2617      InstructionCost BranchCost =
2618          TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2619  
2620      unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2621      InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2622  
2623      LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2624                        << " instructions for each switch case for each different"
2625                        << " output path in a function\n");
2626      OutputCost += TotalCost * NumOutputBranches;
2627    }
2628  
2629    return OutputCost;
2630  }
2631  
findCostBenefit(Module & M,OutlinableGroup & CurrentGroup)2632  void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2633    InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2634    CurrentGroup.Benefit += RegionBenefit;
2635    LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2636  
2637    InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2638    CurrentGroup.Cost += OutputReloadCost;
2639    LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2640  
2641    InstructionCost AverageRegionBenefit =
2642        RegionBenefit / CurrentGroup.Regions.size();
2643    unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2644    unsigned NumRegions = CurrentGroup.Regions.size();
2645    TargetTransformInfo &TTI =
2646        getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2647  
2648    // We add one region to the cost once, to account for the instructions added
2649    // inside of the newly created function.
2650    LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2651                      << " instructions to cost for body of new function.\n");
2652    CurrentGroup.Cost += AverageRegionBenefit;
2653    LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2654  
2655    // For each argument, we must add an instruction for loading the argument
2656    // out of the register and into a value inside of the newly outlined function.
2657    LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2658                      << " instructions to cost for each argument in the new"
2659                      << " function.\n");
2660    CurrentGroup.Cost +=
2661        OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2662    LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2663  
2664    // Each argument needs to either be loaded into a register or onto the stack.
2665    // Some arguments will only be loaded into the stack once the argument
2666    // registers are filled.
2667    LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2668                      << " instructions to cost for each argument in the new"
2669                      << " function " << NumRegions << " times for the "
2670                      << "needed argument handling at the call site.\n");
2671    CurrentGroup.Cost +=
2672        2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2673    LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2674  
2675    CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2676    LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2677  }
2678  
updateOutputMapping(OutlinableRegion & Region,ArrayRef<Value * > Outputs,LoadInst * LI)2679  void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2680                                       ArrayRef<Value *> Outputs,
2681                                       LoadInst *LI) {
2682    // For and load instructions following the call
2683    Value *Operand = LI->getPointerOperand();
2684    std::optional<unsigned> OutputIdx;
2685    // Find if the operand it is an output register.
2686    for (unsigned ArgIdx = Region.NumExtractedInputs;
2687         ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2688      if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2689        OutputIdx = ArgIdx - Region.NumExtractedInputs;
2690        break;
2691      }
2692    }
2693  
2694    // If we found an output register, place a mapping of the new value
2695    // to the original in the mapping.
2696    if (!OutputIdx)
2697      return;
2698  
2699    if (!OutputMappings.contains(Outputs[*OutputIdx])) {
2700      LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2701                        << *Outputs[*OutputIdx] << "\n");
2702      OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2703    } else {
2704      Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2705      LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2706                        << *Outputs[*OutputIdx] << "\n");
2707      OutputMappings.insert(std::make_pair(LI, Orig));
2708    }
2709  }
2710  
extractSection(OutlinableRegion & Region)2711  bool IROutliner::extractSection(OutlinableRegion &Region) {
2712    SetVector<Value *> ArgInputs, Outputs, SinkCands;
2713    assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2714    BasicBlock *InitialStart = Region.StartBB;
2715    Function *OrigF = Region.StartBB->getParent();
2716    CodeExtractorAnalysisCache CEAC(*OrigF);
2717    Region.ExtractedFunction =
2718        Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2719  
2720    // If the extraction was successful, find the BasicBlock, and reassign the
2721    // OutlinableRegion blocks
2722    if (!Region.ExtractedFunction) {
2723      LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2724                        << "\n");
2725      Region.reattachCandidate();
2726      return false;
2727    }
2728  
2729    // Get the block containing the called branch, and reassign the blocks as
2730    // necessary.  If the original block still exists, it is because we ended on
2731    // a branch instruction, and so we move the contents into the block before
2732    // and assign the previous block correctly.
2733    User *InstAsUser = Region.ExtractedFunction->user_back();
2734    BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2735    Region.PrevBB = RewrittenBB->getSinglePredecessor();
2736    assert(Region.PrevBB && "PrevBB is nullptr?");
2737    if (Region.PrevBB == InitialStart) {
2738      BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2739      Instruction *BI = NewPrev->getTerminator();
2740      BI->eraseFromParent();
2741      moveBBContents(*InitialStart, *NewPrev);
2742      Region.PrevBB = NewPrev;
2743      InitialStart->eraseFromParent();
2744    }
2745  
2746    Region.StartBB = RewrittenBB;
2747    Region.EndBB = RewrittenBB;
2748  
2749    // The sequences of outlinable regions has now changed.  We must fix the
2750    // IRInstructionDataList for consistency.  Although they may not be illegal
2751    // instructions, they should not be compared with anything else as they
2752    // should not be outlined in this round.  So marking these as illegal is
2753    // allowed.
2754    IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2755    Instruction *BeginRewritten = &*RewrittenBB->begin();
2756    Instruction *EndRewritten = &*RewrittenBB->begin();
2757    Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2758        *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2759    Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2760        *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2761  
2762    // Insert the first IRInstructionData of the new region in front of the
2763    // first IRInstructionData of the IRSimilarityCandidate.
2764    IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2765    // Insert the first IRInstructionData of the new region after the
2766    // last IRInstructionData of the IRSimilarityCandidate.
2767    IDL->insert(Region.Candidate->end(), *Region.NewBack);
2768    // Remove the IRInstructionData from the IRSimilarityCandidate.
2769    IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2770  
2771    assert(RewrittenBB != nullptr &&
2772           "Could not find a predecessor after extraction!");
2773  
2774    // Iterate over the new set of instructions to find the new call
2775    // instruction.
2776    for (Instruction &I : *RewrittenBB)
2777      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2778        if (Region.ExtractedFunction == CI->getCalledFunction())
2779          Region.Call = CI;
2780      } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2781        updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2782    Region.reattachCandidate();
2783    return true;
2784  }
2785  
doOutline(Module & M)2786  unsigned IROutliner::doOutline(Module &M) {
2787    // Find the possible similarity sections.
2788    InstructionClassifier.EnableBranches = !DisableBranches;
2789    InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2790    InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2791  
2792    IRSimilarityIdentifier &Identifier = getIRSI(M);
2793    SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2794  
2795    // Sort them by size of extracted sections
2796    unsigned OutlinedFunctionNum = 0;
2797    // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2798    // to sort them by the potential number of instructions to be outlined
2799    if (SimilarityCandidates.size() > 1)
2800      llvm::stable_sort(SimilarityCandidates,
2801                        [](const std::vector<IRSimilarityCandidate> &LHS,
2802                           const std::vector<IRSimilarityCandidate> &RHS) {
2803                          return LHS[0].getLength() * LHS.size() >
2804                                 RHS[0].getLength() * RHS.size();
2805                        });
2806    // Creating OutlinableGroups for each SimilarityCandidate to be used in
2807    // each of the following for loops to avoid making an allocator.
2808    std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2809  
2810    DenseSet<unsigned> NotSame;
2811    std::vector<OutlinableGroup *> NegativeCostGroups;
2812    std::vector<OutlinableRegion *> OutlinedRegions;
2813    // Iterate over the possible sets of similarity.
2814    unsigned PotentialGroupIdx = 0;
2815    for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2816      OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2817  
2818      // Remove entries that were previously outlined
2819      pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2820  
2821      // We pruned the number of regions to 0 to 1, meaning that it's not worth
2822      // trying to outlined since there is no compatible similar instance of this
2823      // code.
2824      if (CurrentGroup.Regions.size() < 2)
2825        continue;
2826  
2827      // Determine if there are any values that are the same constant throughout
2828      // each section in the set.
2829      NotSame.clear();
2830      CurrentGroup.findSameConstants(NotSame);
2831  
2832      if (CurrentGroup.IgnoreGroup)
2833        continue;
2834  
2835      // Create a CodeExtractor for each outlinable region. Identify inputs and
2836      // outputs for each section using the code extractor and create the argument
2837      // types for the Aggregate Outlining Function.
2838      OutlinedRegions.clear();
2839      for (OutlinableRegion *OS : CurrentGroup.Regions) {
2840        // Break the outlinable region out of its parent BasicBlock into its own
2841        // BasicBlocks (see function implementation).
2842        OS->splitCandidate();
2843  
2844        // There's a chance that when the region is split, extra instructions are
2845        // added to the region. This makes the region no longer viable
2846        // to be split, so we ignore it for outlining.
2847        if (!OS->CandidateSplit)
2848          continue;
2849  
2850        SmallVector<BasicBlock *> BE;
2851        DenseSet<BasicBlock *> BlocksInRegion;
2852        OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2853        OS->CE = new (ExtractorAllocator.Allocate())
2854            CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2855                          false, nullptr, "outlined");
2856        findAddInputsOutputs(M, *OS, NotSame);
2857        if (!OS->IgnoreRegion)
2858          OutlinedRegions.push_back(OS);
2859  
2860        // We recombine the blocks together now that we have gathered all the
2861        // needed information.
2862        OS->reattachCandidate();
2863      }
2864  
2865      CurrentGroup.Regions = std::move(OutlinedRegions);
2866  
2867      if (CurrentGroup.Regions.empty())
2868        continue;
2869  
2870      CurrentGroup.collectGVNStoreSets(M);
2871  
2872      if (CostModel)
2873        findCostBenefit(M, CurrentGroup);
2874  
2875      // If we are adhering to the cost model, skip those groups where the cost
2876      // outweighs the benefits.
2877      if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2878        OptimizationRemarkEmitter &ORE =
2879            getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2880        ORE.emit([&]() {
2881          IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2882          OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2883                                     C->frontInstruction());
2884          R << "did not outline "
2885            << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2886            << " regions due to estimated increase of "
2887            << ore::NV("InstructionIncrease",
2888                       CurrentGroup.Cost - CurrentGroup.Benefit)
2889            << " instructions at locations ";
2890          interleave(
2891              CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2892              [&R](OutlinableRegion *Region) {
2893                R << ore::NV(
2894                    "DebugLoc",
2895                    Region->Candidate->frontInstruction()->getDebugLoc());
2896              },
2897              [&R]() { R << " "; });
2898          return R;
2899        });
2900        continue;
2901      }
2902  
2903      NegativeCostGroups.push_back(&CurrentGroup);
2904    }
2905  
2906    ExtractorAllocator.DestroyAll();
2907  
2908    if (NegativeCostGroups.size() > 1)
2909      stable_sort(NegativeCostGroups,
2910                  [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2911                    return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2912                  });
2913  
2914    std::vector<Function *> FuncsToRemove;
2915    for (OutlinableGroup *CG : NegativeCostGroups) {
2916      OutlinableGroup &CurrentGroup = *CG;
2917  
2918      OutlinedRegions.clear();
2919      for (OutlinableRegion *Region : CurrentGroup.Regions) {
2920        // We check whether our region is compatible with what has already been
2921        // outlined, and whether we need to ignore this item.
2922        if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2923          continue;
2924        OutlinedRegions.push_back(Region);
2925      }
2926  
2927      if (OutlinedRegions.size() < 2)
2928        continue;
2929  
2930      // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2931      // we are still outlining enough regions to make up for the added cost.
2932      CurrentGroup.Regions = std::move(OutlinedRegions);
2933      if (CostModel) {
2934        CurrentGroup.Benefit = 0;
2935        CurrentGroup.Cost = 0;
2936        findCostBenefit(M, CurrentGroup);
2937        if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2938          continue;
2939      }
2940      OutlinedRegions.clear();
2941      for (OutlinableRegion *Region : CurrentGroup.Regions) {
2942        Region->splitCandidate();
2943        if (!Region->CandidateSplit)
2944          continue;
2945        OutlinedRegions.push_back(Region);
2946      }
2947  
2948      CurrentGroup.Regions = std::move(OutlinedRegions);
2949      if (CurrentGroup.Regions.size() < 2) {
2950        for (OutlinableRegion *R : CurrentGroup.Regions)
2951          R->reattachCandidate();
2952        continue;
2953      }
2954  
2955      LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2956                        << " and benefit " << CurrentGroup.Benefit << "\n");
2957  
2958      // Create functions out of all the sections, and mark them as outlined.
2959      OutlinedRegions.clear();
2960      for (OutlinableRegion *OS : CurrentGroup.Regions) {
2961        SmallVector<BasicBlock *> BE;
2962        DenseSet<BasicBlock *> BlocksInRegion;
2963        OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2964        OS->CE = new (ExtractorAllocator.Allocate())
2965            CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2966                          false, nullptr, "outlined");
2967        bool FunctionOutlined = extractSection(*OS);
2968        if (FunctionOutlined) {
2969          unsigned StartIdx = OS->Candidate->getStartIdx();
2970          unsigned EndIdx = OS->Candidate->getEndIdx();
2971          for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2972            Outlined.insert(Idx);
2973  
2974          OutlinedRegions.push_back(OS);
2975        }
2976      }
2977  
2978      LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2979                        << " with benefit " << CurrentGroup.Benefit
2980                        << " and cost " << CurrentGroup.Cost << "\n");
2981  
2982      CurrentGroup.Regions = std::move(OutlinedRegions);
2983  
2984      if (CurrentGroup.Regions.empty())
2985        continue;
2986  
2987      OptimizationRemarkEmitter &ORE =
2988          getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2989      ORE.emit([&]() {
2990        IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2991        OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2992        R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2993          << " regions with decrease of "
2994          << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2995          << " instructions at locations ";
2996        interleave(
2997            CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2998            [&R](OutlinableRegion *Region) {
2999              R << ore::NV("DebugLoc",
3000                           Region->Candidate->frontInstruction()->getDebugLoc());
3001            },
3002            [&R]() { R << " "; });
3003        return R;
3004      });
3005  
3006      deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3007                                   OutlinedFunctionNum);
3008    }
3009  
3010    for (Function *F : FuncsToRemove)
3011      F->eraseFromParent();
3012  
3013    return OutlinedFunctionNum;
3014  }
3015  
run(Module & M)3016  bool IROutliner::run(Module &M) {
3017    CostModel = !NoCostModel;
3018    OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3019  
3020    return doOutline(M) > 0;
3021  }
3022  
run(Module & M,ModuleAnalysisManager & AM)3023  PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3024    auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3025  
3026    std::function<TargetTransformInfo &(Function &)> GTTI =
3027        [&FAM](Function &F) -> TargetTransformInfo & {
3028      return FAM.getResult<TargetIRAnalysis>(F);
3029    };
3030  
3031    std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3032        [&AM](Module &M) -> IRSimilarityIdentifier & {
3033      return AM.getResult<IRSimilarityAnalysis>(M);
3034    };
3035  
3036    std::unique_ptr<OptimizationRemarkEmitter> ORE;
3037    std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3038        [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3039      ORE.reset(new OptimizationRemarkEmitter(&F));
3040      return *ORE;
3041    };
3042  
3043    if (IROutliner(GTTI, GIRSI, GORE).run(M))
3044      return PreservedAnalyses::none();
3045    return PreservedAnalyses::all();
3046  }
3047