1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 #include "llvm/Support/Signals.h"
51 #include "llvm/TargetParser/Host.h"
52
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Expression/IRExecutionUnit.h"
75 #include "lldb/Expression/IRInterpreter.h"
76 #include "lldb/Host/File.h"
77 #include "lldb/Host/HostInfo.h"
78 #include "lldb/Symbol/SymbolVendor.h"
79 #include "lldb/Target/ExecutionContext.h"
80 #include "lldb/Target/Language.h"
81 #include "lldb/Target/Process.h"
82 #include "lldb/Target/Target.h"
83 #include "lldb/Target/ThreadPlanCallFunction.h"
84 #include "lldb/Utility/DataBufferHeap.h"
85 #include "lldb/Utility/LLDBAssert.h"
86 #include "lldb/Utility/LLDBLog.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/Stream.h"
89 #include "lldb/Utility/StreamString.h"
90 #include "lldb/Utility/StringList.h"
91
92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
93
94 #include <cctype>
95 #include <memory>
96 #include <optional>
97
98 using namespace clang;
99 using namespace llvm;
100 using namespace lldb_private;
101
102 //===----------------------------------------------------------------------===//
103 // Utility Methods for Clang
104 //===----------------------------------------------------------------------===//
105
106 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
107 ClangModulesDeclVendor &m_decl_vendor;
108 ClangPersistentVariables &m_persistent_vars;
109 clang::SourceManager &m_source_mgr;
110 StreamString m_error_stream;
111 bool m_has_errors = false;
112
113 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars,clang::SourceManager & source_mgr)114 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
115 ClangPersistentVariables &persistent_vars,
116 clang::SourceManager &source_mgr)
117 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
118 m_source_mgr(source_mgr) {}
119
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
121 const clang::Module * /*null*/) override {
122 // Ignore modules that are imported in the wrapper code as these are not
123 // loaded by the user.
124 llvm::StringRef filename =
125 m_source_mgr.getPresumedLoc(import_location).getFilename();
126 if (filename == ClangExpressionSourceCode::g_prefix_file_name)
127 return;
128
129 SourceModule module;
130
131 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
132 module.path.push_back(ConstString(component.first->getName()));
133
134 StreamString error_stream;
135
136 ClangModulesDeclVendor::ModuleVector exported_modules;
137 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
138 m_has_errors = true;
139
140 for (ClangModulesDeclVendor::ModuleID module : exported_modules)
141 m_persistent_vars.AddHandLoadedClangModule(module);
142 }
143
hasErrors()144 bool hasErrors() { return m_has_errors; }
145
getErrorString()146 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
147 };
148
AddAllFixIts(ClangDiagnostic * diag,const clang::Diagnostic & Info)149 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
150 for (auto &fix_it : Info.getFixItHints()) {
151 if (fix_it.isNull())
152 continue;
153 diag->AddFixitHint(fix_it);
154 }
155 }
156
157 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
158 public:
ClangDiagnosticManagerAdapter(DiagnosticOptions & opts)159 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
160 DiagnosticOptions *options = new DiagnosticOptions(opts);
161 options->ShowPresumedLoc = true;
162 options->ShowLevel = false;
163 m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
164 m_passthrough =
165 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
166 }
167
ResetManager(DiagnosticManager * manager=nullptr)168 void ResetManager(DiagnosticManager *manager = nullptr) {
169 m_manager = manager;
170 }
171
172 /// Returns the last ClangDiagnostic message that the DiagnosticManager
173 /// received or a nullptr if the DiagnosticMangager hasn't seen any
174 /// Clang diagnostics yet.
MaybeGetLastClangDiag() const175 ClangDiagnostic *MaybeGetLastClangDiag() const {
176 if (m_manager->Diagnostics().empty())
177 return nullptr;
178 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
179 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
180 return clang_diag;
181 }
182
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)183 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
184 const clang::Diagnostic &Info) override {
185 if (!m_manager) {
186 // We have no DiagnosticManager before/after parsing but we still could
187 // receive diagnostics (e.g., by the ASTImporter failing to copy decls
188 // when we move the expression result ot the ScratchASTContext). Let's at
189 // least log these diagnostics until we find a way to properly render
190 // them and display them to the user.
191 Log *log = GetLog(LLDBLog::Expressions);
192 if (log) {
193 llvm::SmallVector<char, 32> diag_str;
194 Info.FormatDiagnostic(diag_str);
195 diag_str.push_back('\0');
196 const char *plain_diag = diag_str.data();
197 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
198 }
199 return;
200 }
201
202 // Update error/warning counters.
203 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
204
205 // Render diagnostic message to m_output.
206 m_output.clear();
207 m_passthrough->HandleDiagnostic(DiagLevel, Info);
208 m_os->flush();
209
210 lldb::Severity severity;
211 bool make_new_diagnostic = true;
212
213 switch (DiagLevel) {
214 case DiagnosticsEngine::Level::Fatal:
215 case DiagnosticsEngine::Level::Error:
216 severity = lldb::eSeverityError;
217 break;
218 case DiagnosticsEngine::Level::Warning:
219 severity = lldb::eSeverityWarning;
220 break;
221 case DiagnosticsEngine::Level::Remark:
222 case DiagnosticsEngine::Level::Ignored:
223 severity = lldb::eSeverityInfo;
224 break;
225 case DiagnosticsEngine::Level::Note:
226 m_manager->AppendMessageToDiagnostic(m_output);
227 make_new_diagnostic = false;
228
229 // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
230 // We add these Fix-Its to the last error diagnostic to make sure
231 // that we later have all Fix-Its related to an 'error' diagnostic when
232 // we apply them to the user expression.
233 auto *clang_diag = MaybeGetLastClangDiag();
234 // If we don't have a previous diagnostic there is nothing to do.
235 // If the previous diagnostic already has its own Fix-Its, assume that
236 // the 'note:' Fix-It is just an alternative way to solve the issue and
237 // ignore these Fix-Its.
238 if (!clang_diag || clang_diag->HasFixIts())
239 break;
240 // Ignore all Fix-Its that are not associated with an error.
241 if (clang_diag->GetSeverity() != lldb::eSeverityError)
242 break;
243 AddAllFixIts(clang_diag, Info);
244 break;
245 }
246 if (make_new_diagnostic) {
247 // ClangDiagnostic messages are expected to have no whitespace/newlines
248 // around them.
249 std::string stripped_output =
250 std::string(llvm::StringRef(m_output).trim());
251
252 auto new_diagnostic = std::make_unique<ClangDiagnostic>(
253 stripped_output, severity, Info.getID());
254
255 // Don't store away warning fixits, since the compiler doesn't have
256 // enough context in an expression for the warning to be useful.
257 // FIXME: Should we try to filter out FixIts that apply to our generated
258 // code, and not the user's expression?
259 if (severity == lldb::eSeverityError)
260 AddAllFixIts(new_diagnostic.get(), Info);
261
262 m_manager->AddDiagnostic(std::move(new_diagnostic));
263 }
264 }
265
BeginSourceFile(const LangOptions & LO,const Preprocessor * PP)266 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
267 m_passthrough->BeginSourceFile(LO, PP);
268 }
269
EndSourceFile()270 void EndSourceFile() override { m_passthrough->EndSourceFile(); }
271
272 private:
273 DiagnosticManager *m_manager = nullptr;
274 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
275 /// Output stream of m_passthrough.
276 std::shared_ptr<llvm::raw_string_ostream> m_os;
277 /// Output string filled by m_os.
278 std::string m_output;
279 };
280
SetupModuleHeaderPaths(CompilerInstance * compiler,std::vector<std::string> include_directories,lldb::TargetSP target_sp)281 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
282 std::vector<std::string> include_directories,
283 lldb::TargetSP target_sp) {
284 Log *log = GetLog(LLDBLog::Expressions);
285
286 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
287
288 for (const std::string &dir : include_directories) {
289 search_opts.AddPath(dir, frontend::System, false, true);
290 LLDB_LOG(log, "Added user include dir: {0}", dir);
291 }
292
293 llvm::SmallString<128> module_cache;
294 const auto &props = ModuleList::GetGlobalModuleListProperties();
295 props.GetClangModulesCachePath().GetPath(module_cache);
296 search_opts.ModuleCachePath = std::string(module_cache.str());
297 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
298
299 search_opts.ResourceDir = GetClangResourceDir().GetPath();
300
301 search_opts.ImplicitModuleMaps = true;
302 }
303
304 /// Iff the given identifier is a C++ keyword, remove it from the
305 /// identifier table (i.e., make the token a normal identifier).
RemoveCppKeyword(IdentifierTable & idents,llvm::StringRef token)306 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
307 // FIXME: 'using' is used by LLDB for local variables, so we can't remove
308 // this keyword without breaking this functionality.
309 if (token == "using")
310 return;
311 // GCC's '__null' is used by LLDB to define NULL/Nil/nil.
312 if (token == "__null")
313 return;
314
315 LangOptions cpp_lang_opts;
316 cpp_lang_opts.CPlusPlus = true;
317 cpp_lang_opts.CPlusPlus11 = true;
318 cpp_lang_opts.CPlusPlus20 = true;
319
320 clang::IdentifierInfo &ii = idents.get(token);
321 // The identifier has to be a C++-exclusive keyword. if not, then there is
322 // nothing to do.
323 if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
324 return;
325 // If the token is already an identifier, then there is nothing to do.
326 if (ii.getTokenID() == clang::tok::identifier)
327 return;
328 // Otherwise the token is a C++ keyword, so turn it back into a normal
329 // identifier.
330 ii.revertTokenIDToIdentifier();
331 }
332
333 /// Remove all C++ keywords from the given identifier table.
RemoveAllCppKeywords(IdentifierTable & idents)334 static void RemoveAllCppKeywords(IdentifierTable &idents) {
335 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
336 #include "clang/Basic/TokenKinds.def"
337 }
338
339 /// Configures Clang diagnostics for the expression parser.
SetupDefaultClangDiagnostics(CompilerInstance & compiler)340 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
341 // List of Clang warning groups that are not useful when parsing expressions.
342 const std::vector<const char *> groupsToIgnore = {
343 "unused-value",
344 "odr",
345 "unused-getter-return-value",
346 };
347 for (const char *group : groupsToIgnore) {
348 compiler.getDiagnostics().setSeverityForGroup(
349 clang::diag::Flavor::WarningOrError, group,
350 clang::diag::Severity::Ignored, SourceLocation());
351 }
352 }
353
354 //===----------------------------------------------------------------------===//
355 // Implementation of ClangExpressionParser
356 //===----------------------------------------------------------------------===//
357
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info,std::vector<std::string> include_directories,std::string filename)358 ClangExpressionParser::ClangExpressionParser(
359 ExecutionContextScope *exe_scope, Expression &expr,
360 bool generate_debug_info, std::vector<std::string> include_directories,
361 std::string filename)
362 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
363 m_pp_callbacks(nullptr),
364 m_include_directories(std::move(include_directories)),
365 m_filename(std::move(filename)) {
366 Log *log = GetLog(LLDBLog::Expressions);
367
368 // We can't compile expressions without a target. So if the exe_scope is
369 // null or doesn't have a target, then we just need to get out of here. I'll
370 // lldbassert and not make any of the compiler objects since
371 // I can't return errors directly from the constructor. Further calls will
372 // check if the compiler was made and
373 // bag out if it wasn't.
374
375 if (!exe_scope) {
376 lldbassert(exe_scope &&
377 "Can't make an expression parser with a null scope.");
378 return;
379 }
380
381 lldb::TargetSP target_sp;
382 target_sp = exe_scope->CalculateTarget();
383 if (!target_sp) {
384 lldbassert(target_sp.get() &&
385 "Can't make an expression parser with a null target.");
386 return;
387 }
388
389 // 1. Create a new compiler instance.
390 m_compiler = std::make_unique<CompilerInstance>();
391
392 // Make sure clang uses the same VFS as LLDB.
393 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
394
395 // Defaults to lldb::eLanguageTypeUnknown.
396 lldb::LanguageType frame_lang = expr.Language().AsLanguageType();
397
398 std::string abi;
399 ArchSpec target_arch;
400 target_arch = target_sp->GetArchitecture();
401
402 const auto target_machine = target_arch.GetMachine();
403
404 // If the expression is being evaluated in the context of an existing stack
405 // frame, we introspect to see if the language runtime is available.
406
407 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
408 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
409
410 // Make sure the user hasn't provided a preferred execution language with
411 // `expression --language X -- ...`
412 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
413 frame_lang = frame_sp->GetLanguage().AsLanguageType();
414
415 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
416 LLDB_LOGF(log, "Frame has language of type %s",
417 Language::GetNameForLanguageType(frame_lang));
418 }
419
420 // 2. Configure the compiler with a set of default options that are
421 // appropriate for most situations.
422 if (target_arch.IsValid()) {
423 std::string triple = target_arch.GetTriple().str();
424 m_compiler->getTargetOpts().Triple = triple;
425 LLDB_LOGF(log, "Using %s as the target triple",
426 m_compiler->getTargetOpts().Triple.c_str());
427 } else {
428 // If we get here we don't have a valid target and just have to guess.
429 // Sometimes this will be ok to just use the host target triple (when we
430 // evaluate say "2+3", but other expressions like breakpoint conditions and
431 // other things that _are_ target specific really shouldn't just be using
432 // the host triple. In such a case the language runtime should expose an
433 // overridden options set (3), below.
434 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
435 LLDB_LOGF(log, "Using default target triple of %s",
436 m_compiler->getTargetOpts().Triple.c_str());
437 }
438 // Now add some special fixes for known architectures: Any arm32 iOS
439 // environment, but not on arm64
440 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
441 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
442 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
443 m_compiler->getTargetOpts().ABI = "apcs-gnu";
444 }
445 // Supported subsets of x86
446 if (target_machine == llvm::Triple::x86 ||
447 target_machine == llvm::Triple::x86_64) {
448 m_compiler->getTargetOpts().FeaturesAsWritten.push_back("+sse");
449 m_compiler->getTargetOpts().FeaturesAsWritten.push_back("+sse2");
450 }
451
452 // Set the target CPU to generate code for. This will be empty for any CPU
453 // that doesn't really need to make a special
454 // CPU string.
455 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
456
457 // Set the target ABI
458 abi = GetClangTargetABI(target_arch);
459 if (!abi.empty())
460 m_compiler->getTargetOpts().ABI = abi;
461
462 // 3. Create and install the target on the compiler.
463 m_compiler->createDiagnostics();
464 // Limit the number of error diagnostics we emit.
465 // A value of 0 means no limit for both LLDB and Clang.
466 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
467
468 auto target_info = TargetInfo::CreateTargetInfo(
469 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
470 if (log) {
471 LLDB_LOGF(log, "Target datalayout string: '%s'",
472 target_info->getDataLayoutString());
473 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
474 LLDB_LOGF(log, "Target vector alignment: %d",
475 target_info->getMaxVectorAlign());
476 }
477 m_compiler->setTarget(target_info);
478
479 assert(m_compiler->hasTarget());
480
481 // 4. Set language options.
482 lldb::LanguageType language = expr.Language().AsLanguageType();
483 LangOptions &lang_opts = m_compiler->getLangOpts();
484
485 switch (language) {
486 case lldb::eLanguageTypeC:
487 case lldb::eLanguageTypeC89:
488 case lldb::eLanguageTypeC99:
489 case lldb::eLanguageTypeC11:
490 // FIXME: the following language option is a temporary workaround,
491 // to "ask for C, get C++."
492 // For now, the expression parser must use C++ anytime the language is a C
493 // family language, because the expression parser uses features of C++ to
494 // capture values.
495 lang_opts.CPlusPlus = true;
496 break;
497 case lldb::eLanguageTypeObjC:
498 lang_opts.ObjC = true;
499 // FIXME: the following language option is a temporary workaround,
500 // to "ask for ObjC, get ObjC++" (see comment above).
501 lang_opts.CPlusPlus = true;
502
503 // Clang now sets as default C++14 as the default standard (with
504 // GNU extensions), so we do the same here to avoid mismatches that
505 // cause compiler error when evaluating expressions (e.g. nullptr not found
506 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
507 // two lines below) so we decide to be consistent with that, but this could
508 // be re-evaluated in the future.
509 lang_opts.CPlusPlus11 = true;
510 break;
511 case lldb::eLanguageTypeC_plus_plus_20:
512 lang_opts.CPlusPlus20 = true;
513 [[fallthrough]];
514 case lldb::eLanguageTypeC_plus_plus_17:
515 // FIXME: add a separate case for CPlusPlus14. Currently folded into C++17
516 // because C++14 is the default standard for Clang but enabling CPlusPlus14
517 // expression evaluatino doesn't pass the test-suite cleanly.
518 lang_opts.CPlusPlus14 = true;
519 lang_opts.CPlusPlus17 = true;
520 [[fallthrough]];
521 case lldb::eLanguageTypeC_plus_plus:
522 case lldb::eLanguageTypeC_plus_plus_11:
523 case lldb::eLanguageTypeC_plus_plus_14:
524 lang_opts.CPlusPlus11 = true;
525 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
526 [[fallthrough]];
527 case lldb::eLanguageTypeC_plus_plus_03:
528 lang_opts.CPlusPlus = true;
529 if (process_sp
530 // We're stopped in a frame without debug-info. The user probably
531 // intends to make global queries (which should include Objective-C).
532 && !(frame_sp && frame_sp->HasDebugInformation()))
533 lang_opts.ObjC =
534 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
535 break;
536 case lldb::eLanguageTypeObjC_plus_plus:
537 case lldb::eLanguageTypeUnknown:
538 default:
539 lang_opts.ObjC = true;
540 lang_opts.CPlusPlus = true;
541 lang_opts.CPlusPlus11 = true;
542 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
543 break;
544 }
545
546 lang_opts.Bool = true;
547 lang_opts.WChar = true;
548 lang_opts.Blocks = true;
549 lang_opts.DebuggerSupport =
550 true; // Features specifically for debugger clients
551 if (expr.DesiredResultType() == Expression::eResultTypeId)
552 lang_opts.DebuggerCastResultToId = true;
553
554 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
555 .CharIsSignedByDefault();
556
557 // Spell checking is a nice feature, but it ends up completing a lot of types
558 // that we didn't strictly speaking need to complete. As a result, we spend a
559 // long time parsing and importing debug information.
560 lang_opts.SpellChecking = false;
561
562 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
563 if (clang_expr && clang_expr->DidImportCxxModules()) {
564 LLDB_LOG(log, "Adding lang options for importing C++ modules");
565
566 lang_opts.Modules = true;
567 // We want to implicitly build modules.
568 lang_opts.ImplicitModules = true;
569 // To automatically import all submodules when we import 'std'.
570 lang_opts.ModulesLocalVisibility = false;
571
572 // We use the @import statements, so we need this:
573 // FIXME: We could use the modules-ts, but that currently doesn't work.
574 lang_opts.ObjC = true;
575
576 // Options we need to parse libc++ code successfully.
577 // FIXME: We should ask the driver for the appropriate default flags.
578 lang_opts.GNUMode = true;
579 lang_opts.GNUKeywords = true;
580 lang_opts.CPlusPlus11 = true;
581 lang_opts.BuiltinHeadersInSystemModules = true;
582
583 // The Darwin libc expects this macro to be set.
584 lang_opts.GNUCVersion = 40201;
585
586 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
587 target_sp);
588 }
589
590 if (process_sp && lang_opts.ObjC) {
591 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
592 switch (runtime->GetRuntimeVersion()) {
593 case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2:
594 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
595 break;
596 case ObjCLanguageRuntime::ObjCRuntimeVersions::eObjC_VersionUnknown:
597 case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V1:
598 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
599 VersionTuple(10, 7));
600 break;
601 case ObjCLanguageRuntime::ObjCRuntimeVersions::eGNUstep_libobjc2:
602 lang_opts.ObjCRuntime.set(ObjCRuntime::GNUstep, VersionTuple(2, 0));
603 break;
604 }
605
606 if (runtime->HasNewLiteralsAndIndexing())
607 lang_opts.DebuggerObjCLiteral = true;
608 }
609 }
610
611 lang_opts.ThreadsafeStatics = false;
612 lang_opts.AccessControl = false; // Debuggers get universal access
613 lang_opts.DollarIdents = true; // $ indicates a persistent variable name
614 // We enable all builtin functions beside the builtins from libc/libm (e.g.
615 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
616 // additionally enabling them as expandable builtins is breaking Clang.
617 lang_opts.NoBuiltin = true;
618
619 // Set CodeGen options
620 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
621 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
622 m_compiler->getCodeGenOpts().setFramePointer(
623 CodeGenOptions::FramePointerKind::All);
624 if (generate_debug_info)
625 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
626 else
627 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
628
629 // Disable some warnings.
630 SetupDefaultClangDiagnostics(*m_compiler);
631
632 // Inform the target of the language options
633 //
634 // FIXME: We shouldn't need to do this, the target should be immutable once
635 // created. This complexity should be lifted elsewhere.
636 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
637 m_compiler->getLangOpts());
638
639 // 5. Set up the diagnostic buffer for reporting errors
640
641 auto diag_mgr = new ClangDiagnosticManagerAdapter(
642 m_compiler->getDiagnostics().getDiagnosticOptions());
643 m_compiler->getDiagnostics().setClient(diag_mgr);
644
645 // 6. Set up the source management objects inside the compiler
646 m_compiler->createFileManager();
647 if (!m_compiler->hasSourceManager())
648 m_compiler->createSourceManager(m_compiler->getFileManager());
649 m_compiler->createPreprocessor(TU_Complete);
650
651 switch (language) {
652 case lldb::eLanguageTypeC:
653 case lldb::eLanguageTypeC89:
654 case lldb::eLanguageTypeC99:
655 case lldb::eLanguageTypeC11:
656 case lldb::eLanguageTypeObjC:
657 // This is not a C++ expression but we enabled C++ as explained above.
658 // Remove all C++ keywords from the PP so that the user can still use
659 // variables that have C++ keywords as names (e.g. 'int template;').
660 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
661 break;
662 default:
663 break;
664 }
665
666 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
667 target_sp->GetPersistentExpressionStateForLanguage(
668 lldb::eLanguageTypeC))) {
669 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
670 clang_persistent_vars->GetClangModulesDeclVendor()) {
671 std::unique_ptr<PPCallbacks> pp_callbacks(
672 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
673 m_compiler->getSourceManager()));
674 m_pp_callbacks =
675 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
676 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
677 }
678 }
679
680 // 7. Most of this we get from the CompilerInstance, but we also want to give
681 // the context an ExternalASTSource.
682
683 auto &PP = m_compiler->getPreprocessor();
684 auto &builtin_context = PP.getBuiltinInfo();
685 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
686 m_compiler->getLangOpts());
687
688 m_compiler->createASTContext();
689 clang::ASTContext &ast_context = m_compiler->getASTContext();
690
691 m_ast_context = std::make_shared<TypeSystemClang>(
692 "Expression ASTContext for '" + m_filename + "'", ast_context);
693
694 std::string module_name("$__lldb_module");
695
696 m_llvm_context = std::make_unique<LLVMContext>();
697 m_code_generator.reset(CreateLLVMCodeGen(
698 m_compiler->getDiagnostics(), module_name,
699 &m_compiler->getVirtualFileSystem(), m_compiler->getHeaderSearchOpts(),
700 m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(),
701 *m_llvm_context));
702 }
703
704 ClangExpressionParser::~ClangExpressionParser() = default;
705
706 namespace {
707
708 /// \class CodeComplete
709 ///
710 /// A code completion consumer for the clang Sema that is responsible for
711 /// creating the completion suggestions when a user requests completion
712 /// of an incomplete `expr` invocation.
713 class CodeComplete : public CodeCompleteConsumer {
714 CodeCompletionTUInfo m_info;
715
716 std::string m_expr;
717 unsigned m_position = 0;
718 /// The printing policy we use when printing declarations for our completion
719 /// descriptions.
720 clang::PrintingPolicy m_desc_policy;
721
722 struct CompletionWithPriority {
723 CompletionResult::Completion completion;
724 /// See CodeCompletionResult::Priority;
725 unsigned Priority;
726
727 /// Establishes a deterministic order in a list of CompletionWithPriority.
728 /// The order returned here is the order in which the completions are
729 /// displayed to the user.
operator <__anon6439b5e00111::CodeComplete::CompletionWithPriority730 bool operator<(const CompletionWithPriority &o) const {
731 // High priority results should come first.
732 if (Priority != o.Priority)
733 return Priority > o.Priority;
734
735 // Identical priority, so just make sure it's a deterministic order.
736 return completion.GetUniqueKey() < o.completion.GetUniqueKey();
737 }
738 };
739
740 /// The stored completions.
741 /// Warning: These are in a non-deterministic order until they are sorted
742 /// and returned back to the caller.
743 std::vector<CompletionWithPriority> m_completions;
744
745 /// Returns true if the given character can be used in an identifier.
746 /// This also returns true for numbers because for completion we usually
747 /// just iterate backwards over iterators.
748 ///
749 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)750 static bool IsIdChar(char c) {
751 return c == '_' || std::isalnum(c) || c == '$';
752 }
753
754 /// Returns true if the given character is used to separate arguments
755 /// in the command line of lldb.
IsTokenSeparator(char c)756 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
757
758 /// Drops all tokens in front of the expression that are unrelated for
759 /// the completion of the cmd line. 'unrelated' means here that the token
760 /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd) const761 StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
762 if (cmd.empty())
763 return cmd;
764
765 // If we are at the start of a word, then all tokens are unrelated to
766 // the current completion logic.
767 if (IsTokenSeparator(cmd.back()))
768 return StringRef();
769
770 // Remove all previous tokens from the string as they are unrelated
771 // to completing the current token.
772 StringRef to_remove = cmd;
773 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
774 to_remove = to_remove.drop_back();
775 }
776 cmd = cmd.drop_front(to_remove.size());
777
778 return cmd;
779 }
780
781 /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd) const782 StringRef removeLastToken(StringRef cmd) const {
783 while (!cmd.empty() && IsIdChar(cmd.back())) {
784 cmd = cmd.drop_back();
785 }
786 return cmd;
787 }
788
789 /// Attempts to merge the given completion from the given position into the
790 /// existing command. Returns the completion string that can be returned to
791 /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion) const792 std::string mergeCompletion(StringRef existing, unsigned pos,
793 StringRef completion) const {
794 StringRef existing_command = existing.substr(0, pos);
795 // We rewrite the last token with the completion, so let's drop that
796 // token from the command.
797 existing_command = removeLastToken(existing_command);
798 // We also should remove all previous tokens from the command as they
799 // would otherwise be added to the completion that already has the
800 // completion.
801 existing_command = dropUnrelatedFrontTokens(existing_command);
802 return existing_command.str() + completion.str();
803 }
804
805 public:
806 /// Constructs a CodeComplete consumer that can be attached to a Sema.
807 ///
808 /// \param[out] expr
809 /// The whole expression string that we are currently parsing. This
810 /// string needs to be equal to the input the user typed, and NOT the
811 /// final code that Clang is parsing.
812 /// \param[out] position
813 /// The character position of the user cursor in the `expr` parameter.
814 ///
CodeComplete(clang::LangOptions ops,std::string expr,unsigned position)815 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
816 : CodeCompleteConsumer(CodeCompleteOptions()),
817 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
818 m_position(position), m_desc_policy(ops) {
819
820 // Ensure that the printing policy is producing a description that is as
821 // short as possible.
822 m_desc_policy.SuppressScope = true;
823 m_desc_policy.SuppressTagKeyword = true;
824 m_desc_policy.FullyQualifiedName = false;
825 m_desc_policy.TerseOutput = true;
826 m_desc_policy.IncludeNewlines = false;
827 m_desc_policy.UseVoidForZeroParams = false;
828 m_desc_policy.Bool = true;
829 }
830
831 /// \name Code-completion filtering
832 /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)833 bool isResultFilteredOut(StringRef Filter,
834 CodeCompletionResult Result) override {
835 // This code is mostly copied from CodeCompleteConsumer.
836 switch (Result.Kind) {
837 case CodeCompletionResult::RK_Declaration:
838 return !(
839 Result.Declaration->getIdentifier() &&
840 Result.Declaration->getIdentifier()->getName().starts_with(Filter));
841 case CodeCompletionResult::RK_Keyword:
842 return !StringRef(Result.Keyword).starts_with(Filter);
843 case CodeCompletionResult::RK_Macro:
844 return !Result.Macro->getName().starts_with(Filter);
845 case CodeCompletionResult::RK_Pattern:
846 return !StringRef(Result.Pattern->getAsString()).starts_with(Filter);
847 }
848 // If we trigger this assert or the above switch yields a warning, then
849 // CodeCompletionResult has been enhanced with more kinds of completion
850 // results. Expand the switch above in this case.
851 assert(false && "Unknown completion result type?");
852 // If we reach this, then we should just ignore whatever kind of unknown
853 // result we got back. We probably can't turn it into any kind of useful
854 // completion suggestion with the existing code.
855 return true;
856 }
857
858 private:
859 /// Generate the completion strings for the given CodeCompletionResult.
860 /// Note that this function has to process results that could come in
861 /// non-deterministic order, so this function should have no side effects.
862 /// To make this easier to enforce, this function and all its parameters
863 /// should always be const-qualified.
864 /// \return Returns std::nullopt if no completion should be provided for the
865 /// given CodeCompletionResult.
866 std::optional<CompletionWithPriority>
getCompletionForResult(const CodeCompletionResult & R) const867 getCompletionForResult(const CodeCompletionResult &R) const {
868 std::string ToInsert;
869 std::string Description;
870 // Handle the different completion kinds that come from the Sema.
871 switch (R.Kind) {
872 case CodeCompletionResult::RK_Declaration: {
873 const NamedDecl *D = R.Declaration;
874 ToInsert = R.Declaration->getNameAsString();
875 // If we have a function decl that has no arguments we want to
876 // complete the empty parantheses for the user. If the function has
877 // arguments, we at least complete the opening bracket.
878 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
879 if (F->getNumParams() == 0)
880 ToInsert += "()";
881 else
882 ToInsert += "(";
883 raw_string_ostream OS(Description);
884 F->print(OS, m_desc_policy, false);
885 OS.flush();
886 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
887 Description = V->getType().getAsString(m_desc_policy);
888 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
889 Description = F->getType().getAsString(m_desc_policy);
890 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
891 // If we try to complete a namespace, then we can directly append
892 // the '::'.
893 if (!N->isAnonymousNamespace())
894 ToInsert += "::";
895 }
896 break;
897 }
898 case CodeCompletionResult::RK_Keyword:
899 ToInsert = R.Keyword;
900 break;
901 case CodeCompletionResult::RK_Macro:
902 ToInsert = R.Macro->getName().str();
903 break;
904 case CodeCompletionResult::RK_Pattern:
905 ToInsert = R.Pattern->getTypedText();
906 break;
907 }
908 // We also filter some internal lldb identifiers here. The user
909 // shouldn't see these.
910 if (llvm::StringRef(ToInsert).starts_with("$__lldb_"))
911 return std::nullopt;
912 if (ToInsert.empty())
913 return std::nullopt;
914 // Merge the suggested Token into the existing command line to comply
915 // with the kind of result the lldb API expects.
916 std::string CompletionSuggestion =
917 mergeCompletion(m_expr, m_position, ToInsert);
918
919 CompletionResult::Completion completion(CompletionSuggestion, Description,
920 CompletionMode::Normal);
921 return {{completion, R.Priority}};
922 }
923
924 public:
925 /// Adds the completions to the given CompletionRequest.
GetCompletions(CompletionRequest & request)926 void GetCompletions(CompletionRequest &request) {
927 // Bring m_completions into a deterministic order and pass it on to the
928 // CompletionRequest.
929 llvm::sort(m_completions);
930
931 for (const CompletionWithPriority &C : m_completions)
932 request.AddCompletion(C.completion.GetCompletion(),
933 C.completion.GetDescription(),
934 C.completion.GetMode());
935 }
936
937 /// \name Code-completion callbacks
938 /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)939 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
940 CodeCompletionResult *Results,
941 unsigned NumResults) override {
942
943 // The Sema put the incomplete token we try to complete in here during
944 // lexing, so we need to retrieve it here to know what we are completing.
945 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
946
947 // Iterate over all the results. Filter out results we don't want and
948 // process the rest.
949 for (unsigned I = 0; I != NumResults; ++I) {
950 // Filter the results with the information from the Sema.
951 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
952 continue;
953
954 CodeCompletionResult &R = Results[I];
955 std::optional<CompletionWithPriority> CompletionAndPriority =
956 getCompletionForResult(R);
957 if (!CompletionAndPriority)
958 continue;
959 m_completions.push_back(*CompletionAndPriority);
960 }
961 }
962
963 /// \param S the semantic-analyzer object for which code-completion is being
964 /// done.
965 ///
966 /// \param CurrentArg the index of the current argument.
967 ///
968 /// \param Candidates an array of overload candidates.
969 ///
970 /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc,bool Braced)971 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
972 OverloadCandidate *Candidates,
973 unsigned NumCandidates,
974 SourceLocation OpenParLoc,
975 bool Braced) override {
976 // At the moment we don't filter out any overloaded candidates.
977 }
978
getAllocator()979 CodeCompletionAllocator &getAllocator() override {
980 return m_info.getAllocator();
981 }
982
getCodeCompletionTUInfo()983 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
984 };
985 } // namespace
986
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)987 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
988 unsigned pos, unsigned typed_pos) {
989 DiagnosticManager mgr;
990 // We need the raw user expression here because that's what the CodeComplete
991 // class uses to provide completion suggestions.
992 // However, the `Text` method only gives us the transformed expression here.
993 // To actually get the raw user input here, we have to cast our expression to
994 // the LLVMUserExpression which exposes the right API. This should never fail
995 // as we always have a ClangUserExpression whenever we call this.
996 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
997 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
998 typed_pos);
999 // We don't need a code generator for parsing.
1000 m_code_generator.reset();
1001 // Start parsing the expression with our custom code completion consumer.
1002 ParseInternal(mgr, &CC, line, pos);
1003 CC.GetCompletions(request);
1004 return true;
1005 }
1006
Parse(DiagnosticManager & diagnostic_manager)1007 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1008 return ParseInternal(diagnostic_manager);
1009 }
1010
1011 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)1012 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1013 CodeCompleteConsumer *completion_consumer,
1014 unsigned completion_line,
1015 unsigned completion_column) {
1016 ClangDiagnosticManagerAdapter *adapter =
1017 static_cast<ClangDiagnosticManagerAdapter *>(
1018 m_compiler->getDiagnostics().getClient());
1019
1020 adapter->ResetManager(&diagnostic_manager);
1021
1022 const char *expr_text = m_expr.Text();
1023
1024 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1025 bool created_main_file = false;
1026
1027 // Clang wants to do completion on a real file known by Clang's file manager,
1028 // so we have to create one to make this work.
1029 // TODO: We probably could also simulate to Clang's file manager that there
1030 // is a real file that contains our code.
1031 bool should_create_file = completion_consumer != nullptr;
1032
1033 // We also want a real file on disk if we generate full debug info.
1034 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1035 codegenoptions::FullDebugInfo;
1036
1037 if (should_create_file) {
1038 int temp_fd = -1;
1039 llvm::SmallString<128> result_path;
1040 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1041 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1042 std::string temp_source_path = tmpdir_file_spec.GetPath();
1043 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1044 } else {
1045 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1046 }
1047
1048 if (temp_fd != -1) {
1049 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true);
1050 const size_t expr_text_len = strlen(expr_text);
1051 size_t bytes_written = expr_text_len;
1052 if (file.Write(expr_text, bytes_written).Success()) {
1053 if (bytes_written == expr_text_len) {
1054 file.Close();
1055 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1056 result_path)) {
1057 source_mgr.setMainFileID(source_mgr.createFileID(
1058 *fileEntry,
1059 SourceLocation(), SrcMgr::C_User));
1060 created_main_file = true;
1061 }
1062 }
1063 }
1064 }
1065 }
1066
1067 if (!created_main_file) {
1068 std::unique_ptr<MemoryBuffer> memory_buffer =
1069 MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1070 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1071 }
1072
1073 adapter->BeginSourceFile(m_compiler->getLangOpts(),
1074 &m_compiler->getPreprocessor());
1075
1076 ClangExpressionHelper *type_system_helper =
1077 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1078
1079 // If we want to parse for code completion, we need to attach our code
1080 // completion consumer to the Sema and specify a completion position.
1081 // While parsing the Sema will call this consumer with the provided
1082 // completion suggestions.
1083 if (completion_consumer) {
1084 auto main_file =
1085 source_mgr.getFileEntryRefForID(source_mgr.getMainFileID());
1086 auto &PP = m_compiler->getPreprocessor();
1087 // Lines and columns start at 1 in Clang, but code completion positions are
1088 // indexed from 0, so we need to add 1 to the line and column here.
1089 ++completion_line;
1090 ++completion_column;
1091 PP.SetCodeCompletionPoint(*main_file, completion_line, completion_column);
1092 }
1093
1094 ASTConsumer *ast_transformer =
1095 type_system_helper->ASTTransformer(m_code_generator.get());
1096
1097 std::unique_ptr<clang::ASTConsumer> Consumer;
1098 if (ast_transformer) {
1099 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1100 } else if (m_code_generator) {
1101 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1102 } else {
1103 Consumer = std::make_unique<ASTConsumer>();
1104 }
1105
1106 clang::ASTContext &ast_context = m_compiler->getASTContext();
1107
1108 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1109 *Consumer, TU_Complete, completion_consumer));
1110 m_compiler->setASTConsumer(std::move(Consumer));
1111
1112 if (ast_context.getLangOpts().Modules) {
1113 m_compiler->createASTReader();
1114 m_ast_context->setSema(&m_compiler->getSema());
1115 }
1116
1117 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1118 if (decl_map) {
1119 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1120 decl_map->InstallDiagnosticManager(diagnostic_manager);
1121
1122 clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1123
1124 if (ast_context.getExternalSource()) {
1125 auto module_wrapper =
1126 new ExternalASTSourceWrapper(ast_context.getExternalSource());
1127
1128 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1129
1130 auto multiplexer =
1131 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1132 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1133 ast_context.setExternalSource(Source);
1134 } else {
1135 ast_context.setExternalSource(ast_source);
1136 }
1137 decl_map->InstallASTContext(*m_ast_context);
1138 }
1139
1140 // Check that the ASTReader is properly attached to ASTContext and Sema.
1141 if (ast_context.getLangOpts().Modules) {
1142 assert(m_compiler->getASTContext().getExternalSource() &&
1143 "ASTContext doesn't know about the ASTReader?");
1144 assert(m_compiler->getSema().getExternalSource() &&
1145 "Sema doesn't know about the ASTReader?");
1146 }
1147
1148 {
1149 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1150 &m_compiler->getSema());
1151 ParseAST(m_compiler->getSema(), false, false);
1152 }
1153
1154 // Make sure we have no pointer to the Sema we are about to destroy.
1155 if (ast_context.getLangOpts().Modules)
1156 m_ast_context->setSema(nullptr);
1157 // Destroy the Sema. This is necessary because we want to emulate the
1158 // original behavior of ParseAST (which also destroys the Sema after parsing).
1159 m_compiler->setSema(nullptr);
1160
1161 adapter->EndSourceFile();
1162
1163 unsigned num_errors = adapter->getNumErrors();
1164
1165 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1166 num_errors++;
1167 diagnostic_manager.PutString(lldb::eSeverityError,
1168 "while importing modules:");
1169 diagnostic_manager.AppendMessageToDiagnostic(
1170 m_pp_callbacks->getErrorString());
1171 }
1172
1173 if (!num_errors) {
1174 type_system_helper->CommitPersistentDecls();
1175 }
1176
1177 adapter->ResetManager();
1178
1179 return num_errors;
1180 }
1181
1182 std::string
GetClangTargetABI(const ArchSpec & target_arch)1183 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1184 std::string abi;
1185
1186 if (target_arch.IsMIPS()) {
1187 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1188 case ArchSpec::eMIPSABI_N64:
1189 abi = "n64";
1190 break;
1191 case ArchSpec::eMIPSABI_N32:
1192 abi = "n32";
1193 break;
1194 case ArchSpec::eMIPSABI_O32:
1195 abi = "o32";
1196 break;
1197 default:
1198 break;
1199 }
1200 }
1201 return abi;
1202 }
1203
1204 /// Applies the given Fix-It hint to the given commit.
ApplyFixIt(const FixItHint & fixit,clang::edit::Commit & commit)1205 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1206 // This is cobbed from clang::Rewrite::FixItRewriter.
1207 if (fixit.CodeToInsert.empty()) {
1208 if (fixit.InsertFromRange.isValid()) {
1209 commit.insertFromRange(fixit.RemoveRange.getBegin(),
1210 fixit.InsertFromRange, /*afterToken=*/false,
1211 fixit.BeforePreviousInsertions);
1212 return;
1213 }
1214 commit.remove(fixit.RemoveRange);
1215 return;
1216 }
1217 if (fixit.RemoveRange.isTokenRange() ||
1218 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1219 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1220 return;
1221 }
1222 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1223 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1224 }
1225
RewriteExpression(DiagnosticManager & diagnostic_manager)1226 bool ClangExpressionParser::RewriteExpression(
1227 DiagnosticManager &diagnostic_manager) {
1228 clang::SourceManager &source_manager = m_compiler->getSourceManager();
1229 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1230 nullptr);
1231 clang::edit::Commit commit(editor);
1232 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1233
1234 class RewritesReceiver : public edit::EditsReceiver {
1235 Rewriter &rewrite;
1236
1237 public:
1238 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1239
1240 void insert(SourceLocation loc, StringRef text) override {
1241 rewrite.InsertText(loc, text);
1242 }
1243 void replace(CharSourceRange range, StringRef text) override {
1244 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1245 }
1246 };
1247
1248 RewritesReceiver rewrites_receiver(rewriter);
1249
1250 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1251 size_t num_diags = diagnostics.size();
1252 if (num_diags == 0)
1253 return false;
1254
1255 for (const auto &diag : diagnostic_manager.Diagnostics()) {
1256 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1257 if (!diagnostic)
1258 continue;
1259 if (!diagnostic->HasFixIts())
1260 continue;
1261 for (const FixItHint &fixit : diagnostic->FixIts())
1262 ApplyFixIt(fixit, commit);
1263 }
1264
1265 // FIXME - do we want to try to propagate specific errors here?
1266 if (!commit.isCommitable())
1267 return false;
1268 else if (!editor.commit(commit))
1269 return false;
1270
1271 // Now play all the edits, and stash the result in the diagnostic manager.
1272 editor.applyRewrites(rewrites_receiver);
1273 RewriteBuffer &main_file_buffer =
1274 rewriter.getEditBuffer(source_manager.getMainFileID());
1275
1276 std::string fixed_expression;
1277 llvm::raw_string_ostream out_stream(fixed_expression);
1278
1279 main_file_buffer.write(out_stream);
1280 out_stream.flush();
1281 diagnostic_manager.SetFixedExpression(fixed_expression);
1282
1283 return true;
1284 }
1285
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1286 static bool FindFunctionInModule(ConstString &mangled_name,
1287 llvm::Module *module, const char *orig_name) {
1288 for (const auto &func : module->getFunctionList()) {
1289 const StringRef &name = func.getName();
1290 if (name.contains(orig_name)) {
1291 mangled_name.SetString(name);
1292 return true;
1293 }
1294 }
1295
1296 return false;
1297 }
1298
DoPrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1299 lldb_private::Status ClangExpressionParser::DoPrepareForExecution(
1300 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1301 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1302 bool &can_interpret, ExecutionPolicy execution_policy) {
1303 func_addr = LLDB_INVALID_ADDRESS;
1304 func_end = LLDB_INVALID_ADDRESS;
1305 Log *log = GetLog(LLDBLog::Expressions);
1306
1307 lldb_private::Status err;
1308
1309 std::unique_ptr<llvm::Module> llvm_module_up(
1310 m_code_generator->ReleaseModule());
1311
1312 if (!llvm_module_up) {
1313 err.SetErrorToGenericError();
1314 err.SetErrorString("IR doesn't contain a module");
1315 return err;
1316 }
1317
1318 ConstString function_name;
1319
1320 if (execution_policy != eExecutionPolicyTopLevel) {
1321 // Find the actual name of the function (it's often mangled somehow)
1322
1323 if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1324 m_expr.FunctionName())) {
1325 err.SetErrorToGenericError();
1326 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1327 m_expr.FunctionName());
1328 return err;
1329 } else {
1330 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1331 m_expr.FunctionName());
1332 }
1333 }
1334
1335 SymbolContext sc;
1336
1337 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1338 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1339 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1340 sc.target_sp = target_sp;
1341 }
1342
1343 LLVMUserExpression::IRPasses custom_passes;
1344 {
1345 auto lang = m_expr.Language();
1346 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1347 lang.GetDescription().data());
1348 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1349 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1350 auto runtime = process_sp->GetLanguageRuntime(lang.AsLanguageType());
1351 if (runtime)
1352 runtime->GetIRPasses(custom_passes);
1353 }
1354 }
1355
1356 if (custom_passes.EarlyPasses) {
1357 LLDB_LOGF(log,
1358 "%s - Running Early IR Passes from LanguageRuntime on "
1359 "expression module '%s'",
1360 __FUNCTION__, m_expr.FunctionName());
1361
1362 custom_passes.EarlyPasses->run(*llvm_module_up);
1363 }
1364
1365 execution_unit_sp = std::make_shared<IRExecutionUnit>(
1366 m_llvm_context, // handed off here
1367 llvm_module_up, // handed off here
1368 function_name, exe_ctx.GetTargetSP(), sc,
1369 m_compiler->getTargetOpts().Features);
1370
1371 ClangExpressionHelper *type_system_helper =
1372 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1373 ClangExpressionDeclMap *decl_map =
1374 type_system_helper->DeclMap(); // result can be NULL
1375
1376 if (decl_map) {
1377 StreamString error_stream;
1378 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1379 *execution_unit_sp, error_stream,
1380 function_name.AsCString());
1381
1382 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1383 err.SetErrorString(error_stream.GetString());
1384 return err;
1385 }
1386
1387 Process *process = exe_ctx.GetProcessPtr();
1388
1389 if (execution_policy != eExecutionPolicyAlways &&
1390 execution_policy != eExecutionPolicyTopLevel) {
1391 lldb_private::Status interpret_error;
1392
1393 bool interpret_function_calls =
1394 !process ? false : process->CanInterpretFunctionCalls();
1395 can_interpret = IRInterpreter::CanInterpret(
1396 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1397 interpret_error, interpret_function_calls);
1398
1399 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1400 err.SetErrorStringWithFormat(
1401 "Can't evaluate the expression without a running target due to: %s",
1402 interpret_error.AsCString());
1403 return err;
1404 }
1405 }
1406
1407 if (!process && execution_policy == eExecutionPolicyAlways) {
1408 err.SetErrorString("Expression needed to run in the target, but the "
1409 "target can't be run");
1410 return err;
1411 }
1412
1413 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1414 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1415 "target, but the target can't be run");
1416 return err;
1417 }
1418
1419 if (execution_policy == eExecutionPolicyAlways ||
1420 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1421 if (m_expr.NeedsValidation() && process) {
1422 if (!process->GetDynamicCheckers()) {
1423 ClangDynamicCheckerFunctions *dynamic_checkers =
1424 new ClangDynamicCheckerFunctions();
1425
1426 DiagnosticManager install_diags;
1427 if (Error Err = dynamic_checkers->Install(install_diags, exe_ctx)) {
1428 std::string ErrMsg = "couldn't install checkers: " + toString(std::move(Err));
1429 if (install_diags.Diagnostics().size())
1430 ErrMsg = ErrMsg + "\n" + install_diags.GetString().c_str();
1431 err.SetErrorString(ErrMsg);
1432 return err;
1433 }
1434
1435 process->SetDynamicCheckers(dynamic_checkers);
1436
1437 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1438 "Finished installing dynamic checkers ==");
1439 }
1440
1441 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1442 process->GetDynamicCheckers())) {
1443 IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1444 function_name.AsCString());
1445
1446 llvm::Module *module = execution_unit_sp->GetModule();
1447 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1448 err.SetErrorToGenericError();
1449 err.SetErrorString("Couldn't add dynamic checks to the expression");
1450 return err;
1451 }
1452
1453 if (custom_passes.LatePasses) {
1454 LLDB_LOGF(log,
1455 "%s - Running Late IR Passes from LanguageRuntime on "
1456 "expression module '%s'",
1457 __FUNCTION__, m_expr.FunctionName());
1458
1459 custom_passes.LatePasses->run(*module);
1460 }
1461 }
1462 }
1463 }
1464
1465 if (execution_policy == eExecutionPolicyAlways ||
1466 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1467 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1468 }
1469 } else {
1470 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1471 }
1472
1473 return err;
1474 }
1475