1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 #include <optional>
13
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Support/ScopedPrinter.h"
16 #include "llvm/Support/Threading.h"
17
18 #include "lldb/Breakpoint/BreakpointLocation.h"
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Progress.h"
25 #include "lldb/Expression/DiagnosticManager.h"
26 #include "lldb/Expression/DynamicCheckerFunctions.h"
27 #include "lldb/Expression/UserExpression.h"
28 #include "lldb/Expression/UtilityFunction.h"
29 #include "lldb/Host/ConnectionFileDescriptor.h"
30 #include "lldb/Host/FileSystem.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostInfo.h"
33 #include "lldb/Host/OptionParser.h"
34 #include "lldb/Host/Pipe.h"
35 #include "lldb/Host/Terminal.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Interpreter/CommandInterpreter.h"
38 #include "lldb/Interpreter/OptionArgParser.h"
39 #include "lldb/Interpreter/OptionValueProperties.h"
40 #include "lldb/Symbol/Function.h"
41 #include "lldb/Symbol/Symbol.h"
42 #include "lldb/Target/ABI.h"
43 #include "lldb/Target/AssertFrameRecognizer.h"
44 #include "lldb/Target/DynamicLoader.h"
45 #include "lldb/Target/InstrumentationRuntime.h"
46 #include "lldb/Target/JITLoader.h"
47 #include "lldb/Target/JITLoaderList.h"
48 #include "lldb/Target/Language.h"
49 #include "lldb/Target/LanguageRuntime.h"
50 #include "lldb/Target/MemoryHistory.h"
51 #include "lldb/Target/MemoryRegionInfo.h"
52 #include "lldb/Target/OperatingSystem.h"
53 #include "lldb/Target/Platform.h"
54 #include "lldb/Target/Process.h"
55 #include "lldb/Target/RegisterContext.h"
56 #include "lldb/Target/StopInfo.h"
57 #include "lldb/Target/StructuredDataPlugin.h"
58 #include "lldb/Target/SystemRuntime.h"
59 #include "lldb/Target/Target.h"
60 #include "lldb/Target/TargetList.h"
61 #include "lldb/Target/Thread.h"
62 #include "lldb/Target/ThreadPlan.h"
63 #include "lldb/Target/ThreadPlanBase.h"
64 #include "lldb/Target/ThreadPlanCallFunction.h"
65 #include "lldb/Target/ThreadPlanStack.h"
66 #include "lldb/Target/UnixSignals.h"
67 #include "lldb/Target/VerboseTrapFrameRecognizer.h"
68 #include "lldb/Utility/AddressableBits.h"
69 #include "lldb/Utility/Event.h"
70 #include "lldb/Utility/LLDBLog.h"
71 #include "lldb/Utility/Log.h"
72 #include "lldb/Utility/NameMatches.h"
73 #include "lldb/Utility/ProcessInfo.h"
74 #include "lldb/Utility/SelectHelper.h"
75 #include "lldb/Utility/State.h"
76 #include "lldb/Utility/Timer.h"
77
78 using namespace lldb;
79 using namespace lldb_private;
80 using namespace std::chrono;
81
82 // Comment out line below to disable memory caching, overriding the process
83 // setting target.process.disable-memory-cache
84 #define ENABLE_MEMORY_CACHING
85
86 #ifdef ENABLE_MEMORY_CACHING
87 #define DISABLE_MEM_CACHE_DEFAULT false
88 #else
89 #define DISABLE_MEM_CACHE_DEFAULT true
90 #endif
91
92 class ProcessOptionValueProperties
93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
94 public:
ProcessOptionValueProperties(llvm::StringRef name)95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
96
97 const Property *
GetPropertyAtIndex(size_t idx,const ExecutionContext * exe_ctx) const98 GetPropertyAtIndex(size_t idx,
99 const ExecutionContext *exe_ctx) const override {
100 // When getting the value for a key from the process options, we will
101 // always try and grab the setting from the current process if there is
102 // one. Else we just use the one from this instance.
103 if (exe_ctx) {
104 Process *process = exe_ctx->GetProcessPtr();
105 if (process) {
106 ProcessOptionValueProperties *instance_properties =
107 static_cast<ProcessOptionValueProperties *>(
108 process->GetValueProperties().get());
109 if (this != instance_properties)
110 return instance_properties->ProtectedGetPropertyAtIndex(idx);
111 }
112 }
113 return ProtectedGetPropertyAtIndex(idx);
114 }
115 };
116
117 class ProcessMemoryIterator {
118 public:
ProcessMemoryIterator(Process & process,lldb::addr_t base)119 ProcessMemoryIterator(Process &process, lldb::addr_t base)
120 : m_process(process), m_base_addr(base) {}
121
IsValid()122 bool IsValid() { return m_is_valid; }
123
operator [](lldb::addr_t offset)124 uint8_t operator[](lldb::addr_t offset) {
125 if (!IsValid())
126 return 0;
127
128 uint8_t retval = 0;
129 Status error;
130 if (0 == m_process.ReadMemory(m_base_addr + offset, &retval, 1, error)) {
131 m_is_valid = false;
132 return 0;
133 }
134
135 return retval;
136 }
137
138 private:
139 Process &m_process;
140 const lldb::addr_t m_base_addr;
141 bool m_is_valid = true;
142 };
143
144 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
145 {
146 eFollowParent,
147 "parent",
148 "Continue tracing the parent process and detach the child.",
149 },
150 {
151 eFollowChild,
152 "child",
153 "Trace the child process and detach the parent.",
154 },
155 };
156
157 #define LLDB_PROPERTIES_process
158 #include "TargetProperties.inc"
159
160 enum {
161 #define LLDB_PROPERTIES_process
162 #include "TargetPropertiesEnum.inc"
163 ePropertyExperimental,
164 };
165
166 #define LLDB_PROPERTIES_process_experimental
167 #include "TargetProperties.inc"
168
169 enum {
170 #define LLDB_PROPERTIES_process_experimental
171 #include "TargetPropertiesEnum.inc"
172 };
173
174 class ProcessExperimentalOptionValueProperties
175 : public Cloneable<ProcessExperimentalOptionValueProperties,
176 OptionValueProperties> {
177 public:
ProcessExperimentalOptionValueProperties()178 ProcessExperimentalOptionValueProperties()
179 : Cloneable(Properties::GetExperimentalSettingsName()) {}
180 };
181
ProcessExperimentalProperties()182 ProcessExperimentalProperties::ProcessExperimentalProperties()
183 : Properties(OptionValuePropertiesSP(
184 new ProcessExperimentalOptionValueProperties())) {
185 m_collection_sp->Initialize(g_process_experimental_properties);
186 }
187
ProcessProperties(lldb_private::Process * process)188 ProcessProperties::ProcessProperties(lldb_private::Process *process)
189 : Properties(),
190 m_process(process) // Can be nullptr for global ProcessProperties
191 {
192 if (process == nullptr) {
193 // Global process properties, set them up one time
194 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
195 m_collection_sp->Initialize(g_process_properties);
196 m_collection_sp->AppendProperty(
197 "thread", "Settings specific to threads.", true,
198 Thread::GetGlobalProperties().GetValueProperties());
199 } else {
200 m_collection_sp =
201 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
202 m_collection_sp->SetValueChangedCallback(
203 ePropertyPythonOSPluginPath,
204 [this] { m_process->LoadOperatingSystemPlugin(true); });
205 }
206
207 m_experimental_properties_up =
208 std::make_unique<ProcessExperimentalProperties>();
209 m_collection_sp->AppendProperty(
210 Properties::GetExperimentalSettingsName(),
211 "Experimental settings - setting these won't produce "
212 "errors if the setting is not present.",
213 true, m_experimental_properties_up->GetValueProperties());
214 }
215
216 ProcessProperties::~ProcessProperties() = default;
217
GetDisableMemoryCache() const218 bool ProcessProperties::GetDisableMemoryCache() const {
219 const uint32_t idx = ePropertyDisableMemCache;
220 return GetPropertyAtIndexAs<bool>(
221 idx, g_process_properties[idx].default_uint_value != 0);
222 }
223
GetMemoryCacheLineSize() const224 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
225 const uint32_t idx = ePropertyMemCacheLineSize;
226 return GetPropertyAtIndexAs<uint64_t>(
227 idx, g_process_properties[idx].default_uint_value);
228 }
229
GetExtraStartupCommands() const230 Args ProcessProperties::GetExtraStartupCommands() const {
231 Args args;
232 const uint32_t idx = ePropertyExtraStartCommand;
233 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
234 return args;
235 }
236
SetExtraStartupCommands(const Args & args)237 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
238 const uint32_t idx = ePropertyExtraStartCommand;
239 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
240 }
241
GetPythonOSPluginPath() const242 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
243 const uint32_t idx = ePropertyPythonOSPluginPath;
244 return GetPropertyAtIndexAs<FileSpec>(idx, {});
245 }
246
GetVirtualAddressableBits() const247 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
248 const uint32_t idx = ePropertyVirtualAddressableBits;
249 return GetPropertyAtIndexAs<uint64_t>(
250 idx, g_process_properties[idx].default_uint_value);
251 }
252
SetVirtualAddressableBits(uint32_t bits)253 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
254 const uint32_t idx = ePropertyVirtualAddressableBits;
255 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
256 }
257
GetHighmemVirtualAddressableBits() const258 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
259 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
260 return GetPropertyAtIndexAs<uint64_t>(
261 idx, g_process_properties[idx].default_uint_value);
262 }
263
SetHighmemVirtualAddressableBits(uint32_t bits)264 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
265 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
266 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
267 }
268
SetPythonOSPluginPath(const FileSpec & file)269 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
270 const uint32_t idx = ePropertyPythonOSPluginPath;
271 SetPropertyAtIndex(idx, file);
272 }
273
GetIgnoreBreakpointsInExpressions() const274 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
275 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
276 return GetPropertyAtIndexAs<bool>(
277 idx, g_process_properties[idx].default_uint_value != 0);
278 }
279
SetIgnoreBreakpointsInExpressions(bool ignore)280 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
281 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
282 SetPropertyAtIndex(idx, ignore);
283 }
284
GetUnwindOnErrorInExpressions() const285 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
286 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
287 return GetPropertyAtIndexAs<bool>(
288 idx, g_process_properties[idx].default_uint_value != 0);
289 }
290
SetUnwindOnErrorInExpressions(bool ignore)291 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
292 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
293 SetPropertyAtIndex(idx, ignore);
294 }
295
GetStopOnSharedLibraryEvents() const296 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
297 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
298 return GetPropertyAtIndexAs<bool>(
299 idx, g_process_properties[idx].default_uint_value != 0);
300 }
301
SetStopOnSharedLibraryEvents(bool stop)302 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
303 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
304 SetPropertyAtIndex(idx, stop);
305 }
306
GetDisableLangRuntimeUnwindPlans() const307 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
308 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
309 return GetPropertyAtIndexAs<bool>(
310 idx, g_process_properties[idx].default_uint_value != 0);
311 }
312
SetDisableLangRuntimeUnwindPlans(bool disable)313 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
314 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
315 SetPropertyAtIndex(idx, disable);
316 m_process->Flush();
317 }
318
GetDetachKeepsStopped() const319 bool ProcessProperties::GetDetachKeepsStopped() const {
320 const uint32_t idx = ePropertyDetachKeepsStopped;
321 return GetPropertyAtIndexAs<bool>(
322 idx, g_process_properties[idx].default_uint_value != 0);
323 }
324
SetDetachKeepsStopped(bool stop)325 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
326 const uint32_t idx = ePropertyDetachKeepsStopped;
327 SetPropertyAtIndex(idx, stop);
328 }
329
GetWarningsOptimization() const330 bool ProcessProperties::GetWarningsOptimization() const {
331 const uint32_t idx = ePropertyWarningOptimization;
332 return GetPropertyAtIndexAs<bool>(
333 idx, g_process_properties[idx].default_uint_value != 0);
334 }
335
GetWarningsUnsupportedLanguage() const336 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
337 const uint32_t idx = ePropertyWarningUnsupportedLanguage;
338 return GetPropertyAtIndexAs<bool>(
339 idx, g_process_properties[idx].default_uint_value != 0);
340 }
341
GetStopOnExec() const342 bool ProcessProperties::GetStopOnExec() const {
343 const uint32_t idx = ePropertyStopOnExec;
344 return GetPropertyAtIndexAs<bool>(
345 idx, g_process_properties[idx].default_uint_value != 0);
346 }
347
GetUtilityExpressionTimeout() const348 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
349 const uint32_t idx = ePropertyUtilityExpressionTimeout;
350 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
351 idx, g_process_properties[idx].default_uint_value);
352 return std::chrono::seconds(value);
353 }
354
GetInterruptTimeout() const355 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
356 const uint32_t idx = ePropertyInterruptTimeout;
357 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
358 idx, g_process_properties[idx].default_uint_value);
359 return std::chrono::seconds(value);
360 }
361
GetSteppingRunsAllThreads() const362 bool ProcessProperties::GetSteppingRunsAllThreads() const {
363 const uint32_t idx = ePropertySteppingRunsAllThreads;
364 return GetPropertyAtIndexAs<bool>(
365 idx, g_process_properties[idx].default_uint_value != 0);
366 }
367
GetOSPluginReportsAllThreads() const368 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
369 const bool fail_value = true;
370 const Property *exp_property =
371 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
372 OptionValueProperties *exp_values =
373 exp_property->GetValue()->GetAsProperties();
374 if (!exp_values)
375 return fail_value;
376
377 return exp_values
378 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
379 .value_or(fail_value);
380 }
381
SetOSPluginReportsAllThreads(bool does_report)382 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
383 const Property *exp_property =
384 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
385 OptionValueProperties *exp_values =
386 exp_property->GetValue()->GetAsProperties();
387 if (exp_values)
388 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
389 does_report);
390 }
391
GetFollowForkMode() const392 FollowForkMode ProcessProperties::GetFollowForkMode() const {
393 const uint32_t idx = ePropertyFollowForkMode;
394 return GetPropertyAtIndexAs<FollowForkMode>(
395 idx, static_cast<FollowForkMode>(
396 g_process_properties[idx].default_uint_value));
397 }
398
FindPlugin(lldb::TargetSP target_sp,llvm::StringRef plugin_name,ListenerSP listener_sp,const FileSpec * crash_file_path,bool can_connect)399 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
400 llvm::StringRef plugin_name,
401 ListenerSP listener_sp,
402 const FileSpec *crash_file_path,
403 bool can_connect) {
404 static uint32_t g_process_unique_id = 0;
405
406 ProcessSP process_sp;
407 ProcessCreateInstance create_callback = nullptr;
408 if (!plugin_name.empty()) {
409 create_callback =
410 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
411 if (create_callback) {
412 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
413 can_connect);
414 if (process_sp) {
415 if (process_sp->CanDebug(target_sp, true)) {
416 process_sp->m_process_unique_id = ++g_process_unique_id;
417 } else
418 process_sp.reset();
419 }
420 }
421 } else {
422 for (uint32_t idx = 0;
423 (create_callback =
424 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
425 ++idx) {
426 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
427 can_connect);
428 if (process_sp) {
429 if (process_sp->CanDebug(target_sp, false)) {
430 process_sp->m_process_unique_id = ++g_process_unique_id;
431 break;
432 } else
433 process_sp.reset();
434 }
435 }
436 }
437 return process_sp;
438 }
439
GetStaticBroadcasterClass()440 llvm::StringRef Process::GetStaticBroadcasterClass() {
441 static constexpr llvm::StringLiteral class_name("lldb.process");
442 return class_name;
443 }
444
Process(lldb::TargetSP target_sp,ListenerSP listener_sp)445 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
446 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
447 // This constructor just delegates to the full Process constructor,
448 // defaulting to using the Host's UnixSignals.
449 }
450
Process(lldb::TargetSP target_sp,ListenerSP listener_sp,const UnixSignalsSP & unix_signals_sp)451 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
452 const UnixSignalsSP &unix_signals_sp)
453 : ProcessProperties(this),
454 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
455 Process::GetStaticBroadcasterClass().str()),
456 m_target_wp(target_sp), m_public_state(eStateUnloaded),
457 m_private_state(eStateUnloaded),
458 m_private_state_broadcaster(nullptr,
459 "lldb.process.internal_state_broadcaster"),
460 m_private_state_control_broadcaster(
461 nullptr, "lldb.process.internal_state_control_broadcaster"),
462 m_private_state_listener_sp(
463 Listener::MakeListener("lldb.process.internal_state_listener")),
464 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
465 m_thread_id_to_index_id_map(), m_exit_status(-1),
466 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
467 m_extended_thread_list(*this), m_extended_thread_stop_id(0),
468 m_queue_list(this), m_queue_list_stop_id(0),
469 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
470 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
471 m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
472 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
473 m_memory_cache(*this), m_allocated_memory_cache(*this),
474 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
475 m_private_run_lock(), m_currently_handling_do_on_removals(false),
476 m_resume_requested(false), m_finalizing(false), m_destructing(false),
477 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
478 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
479 m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
480 m_can_jit(eCanJITDontKnow) {
481 CheckInWithManager();
482
483 Log *log = GetLog(LLDBLog::Object);
484 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
485
486 if (!m_unix_signals_sp)
487 m_unix_signals_sp = std::make_shared<UnixSignals>();
488
489 SetEventName(eBroadcastBitStateChanged, "state-changed");
490 SetEventName(eBroadcastBitInterrupt, "interrupt");
491 SetEventName(eBroadcastBitSTDOUT, "stdout-available");
492 SetEventName(eBroadcastBitSTDERR, "stderr-available");
493 SetEventName(eBroadcastBitProfileData, "profile-data-available");
494 SetEventName(eBroadcastBitStructuredData, "structured-data-available");
495
496 m_private_state_control_broadcaster.SetEventName(
497 eBroadcastInternalStateControlStop, "control-stop");
498 m_private_state_control_broadcaster.SetEventName(
499 eBroadcastInternalStateControlPause, "control-pause");
500 m_private_state_control_broadcaster.SetEventName(
501 eBroadcastInternalStateControlResume, "control-resume");
502
503 // The listener passed into process creation is the primary listener:
504 // It always listens for all the event bits for Process:
505 SetPrimaryListener(listener_sp);
506
507 m_private_state_listener_sp->StartListeningForEvents(
508 &m_private_state_broadcaster,
509 eBroadcastBitStateChanged | eBroadcastBitInterrupt);
510
511 m_private_state_listener_sp->StartListeningForEvents(
512 &m_private_state_control_broadcaster,
513 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
514 eBroadcastInternalStateControlResume);
515 // We need something valid here, even if just the default UnixSignalsSP.
516 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
517
518 // Allow the platform to override the default cache line size
519 OptionValueSP value_sp =
520 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
521 ->GetValue();
522 uint64_t platform_cache_line_size =
523 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
524 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
525 value_sp->SetValueAs(platform_cache_line_size);
526
527 // FIXME: Frame recognizer registration should not be done in Target.
528 // We should have a plugin do the registration instead, for example, a
529 // common C LanguageRuntime plugin.
530 RegisterAssertFrameRecognizer(this);
531 RegisterVerboseTrapFrameRecognizer(*this);
532 }
533
~Process()534 Process::~Process() {
535 Log *log = GetLog(LLDBLog::Object);
536 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
537 StopPrivateStateThread();
538
539 // ThreadList::Clear() will try to acquire this process's mutex, so
540 // explicitly clear the thread list here to ensure that the mutex is not
541 // destroyed before the thread list.
542 m_thread_list.Clear();
543 }
544
GetGlobalProperties()545 ProcessProperties &Process::GetGlobalProperties() {
546 // NOTE: intentional leak so we don't crash if global destructor chain gets
547 // called as other threads still use the result of this function
548 static ProcessProperties *g_settings_ptr =
549 new ProcessProperties(nullptr);
550 return *g_settings_ptr;
551 }
552
Finalize(bool destructing)553 void Process::Finalize(bool destructing) {
554 if (m_finalizing.exchange(true))
555 return;
556 if (destructing)
557 m_destructing.exchange(true);
558
559 // Destroy the process. This will call the virtual function DoDestroy under
560 // the hood, giving our derived class a chance to do the ncessary tear down.
561 DestroyImpl(false);
562
563 // Clear our broadcaster before we proceed with destroying
564 Broadcaster::Clear();
565
566 // Do any cleanup needed prior to being destructed... Subclasses that
567 // override this method should call this superclass method as well.
568
569 // We need to destroy the loader before the derived Process class gets
570 // destroyed since it is very likely that undoing the loader will require
571 // access to the real process.
572 m_dynamic_checkers_up.reset();
573 m_abi_sp.reset();
574 m_os_up.reset();
575 m_system_runtime_up.reset();
576 m_dyld_up.reset();
577 m_jit_loaders_up.reset();
578 m_thread_plans.Clear();
579 m_thread_list_real.Destroy();
580 m_thread_list.Destroy();
581 m_extended_thread_list.Destroy();
582 m_queue_list.Clear();
583 m_queue_list_stop_id = 0;
584 m_watchpoint_resource_list.Clear();
585 std::vector<Notifications> empty_notifications;
586 m_notifications.swap(empty_notifications);
587 m_image_tokens.clear();
588 m_memory_cache.Clear();
589 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
590 {
591 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
592 m_language_runtimes.clear();
593 }
594 m_instrumentation_runtimes.clear();
595 m_next_event_action_up.reset();
596 // Clear the last natural stop ID since it has a strong reference to this
597 // process
598 m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
599 // We have to be very careful here as the m_private_state_listener might
600 // contain events that have ProcessSP values in them which can keep this
601 // process around forever. These events need to be cleared out.
602 m_private_state_listener_sp->Clear();
603 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
604 m_public_run_lock.SetStopped();
605 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
606 m_private_run_lock.SetStopped();
607 m_structured_data_plugin_map.clear();
608 }
609
RegisterNotificationCallbacks(const Notifications & callbacks)610 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
611 m_notifications.push_back(callbacks);
612 if (callbacks.initialize != nullptr)
613 callbacks.initialize(callbacks.baton, this);
614 }
615
UnregisterNotificationCallbacks(const Notifications & callbacks)616 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
617 std::vector<Notifications>::iterator pos, end = m_notifications.end();
618 for (pos = m_notifications.begin(); pos != end; ++pos) {
619 if (pos->baton == callbacks.baton &&
620 pos->initialize == callbacks.initialize &&
621 pos->process_state_changed == callbacks.process_state_changed) {
622 m_notifications.erase(pos);
623 return true;
624 }
625 }
626 return false;
627 }
628
SynchronouslyNotifyStateChanged(StateType state)629 void Process::SynchronouslyNotifyStateChanged(StateType state) {
630 std::vector<Notifications>::iterator notification_pos,
631 notification_end = m_notifications.end();
632 for (notification_pos = m_notifications.begin();
633 notification_pos != notification_end; ++notification_pos) {
634 if (notification_pos->process_state_changed)
635 notification_pos->process_state_changed(notification_pos->baton, this,
636 state);
637 }
638 }
639
640 // FIXME: We need to do some work on events before the general Listener sees
641 // them.
642 // For instance if we are continuing from a breakpoint, we need to ensure that
643 // we do the little "insert real insn, step & stop" trick. But we can't do
644 // that when the event is delivered by the broadcaster - since that is done on
645 // the thread that is waiting for new events, so if we needed more than one
646 // event for our handling, we would stall. So instead we do it when we fetch
647 // the event off of the queue.
648 //
649
GetNextEvent(EventSP & event_sp)650 StateType Process::GetNextEvent(EventSP &event_sp) {
651 StateType state = eStateInvalid;
652
653 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
654 std::chrono::seconds(0)) &&
655 event_sp)
656 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
657
658 return state;
659 }
660
SyncIOHandler(uint32_t iohandler_id,const Timeout<std::micro> & timeout)661 void Process::SyncIOHandler(uint32_t iohandler_id,
662 const Timeout<std::micro> &timeout) {
663 // don't sync (potentially context switch) in case where there is no process
664 // IO
665 if (!ProcessIOHandlerExists())
666 return;
667
668 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
669
670 Log *log = GetLog(LLDBLog::Process);
671 if (Result) {
672 LLDB_LOG(
673 log,
674 "waited from m_iohandler_sync to change from {0}. New value is {1}.",
675 iohandler_id, *Result);
676 } else {
677 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
678 iohandler_id);
679 }
680 }
681
WaitForProcessToStop(const Timeout<std::micro> & timeout,EventSP * event_sp_ptr,bool wait_always,ListenerSP hijack_listener_sp,Stream * stream,bool use_run_lock,SelectMostRelevant select_most_relevant)682 StateType Process::WaitForProcessToStop(
683 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
684 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
685 SelectMostRelevant select_most_relevant) {
686 // We can't just wait for a "stopped" event, because the stopped event may
687 // have restarted the target. We have to actually check each event, and in
688 // the case of a stopped event check the restarted flag on the event.
689 if (event_sp_ptr)
690 event_sp_ptr->reset();
691 StateType state = GetState();
692 // If we are exited or detached, we won't ever get back to any other valid
693 // state...
694 if (state == eStateDetached || state == eStateExited)
695 return state;
696
697 Log *log = GetLog(LLDBLog::Process);
698 LLDB_LOG(log, "timeout = {0}", timeout);
699
700 if (!wait_always && StateIsStoppedState(state, true) &&
701 StateIsStoppedState(GetPrivateState(), true)) {
702 LLDB_LOGF(log,
703 "Process::%s returning without waiting for events; process "
704 "private and public states are already 'stopped'.",
705 __FUNCTION__);
706 // We need to toggle the run lock as this won't get done in
707 // SetPublicState() if the process is hijacked.
708 if (hijack_listener_sp && use_run_lock)
709 m_public_run_lock.SetStopped();
710 return state;
711 }
712
713 while (state != eStateInvalid) {
714 EventSP event_sp;
715 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
716 if (event_sp_ptr && event_sp)
717 *event_sp_ptr = event_sp;
718
719 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
720 Process::HandleProcessStateChangedEvent(
721 event_sp, stream, select_most_relevant, pop_process_io_handler);
722
723 switch (state) {
724 case eStateCrashed:
725 case eStateDetached:
726 case eStateExited:
727 case eStateUnloaded:
728 // We need to toggle the run lock as this won't get done in
729 // SetPublicState() if the process is hijacked.
730 if (hijack_listener_sp && use_run_lock)
731 m_public_run_lock.SetStopped();
732 return state;
733 case eStateStopped:
734 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
735 continue;
736 else {
737 // We need to toggle the run lock as this won't get done in
738 // SetPublicState() if the process is hijacked.
739 if (hijack_listener_sp && use_run_lock)
740 m_public_run_lock.SetStopped();
741 return state;
742 }
743 default:
744 continue;
745 }
746 }
747 return state;
748 }
749
HandleProcessStateChangedEvent(const EventSP & event_sp,Stream * stream,SelectMostRelevant select_most_relevant,bool & pop_process_io_handler)750 bool Process::HandleProcessStateChangedEvent(
751 const EventSP &event_sp, Stream *stream,
752 SelectMostRelevant select_most_relevant,
753 bool &pop_process_io_handler) {
754 const bool handle_pop = pop_process_io_handler;
755
756 pop_process_io_handler = false;
757 ProcessSP process_sp =
758 Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
759
760 if (!process_sp)
761 return false;
762
763 StateType event_state =
764 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
765 if (event_state == eStateInvalid)
766 return false;
767
768 switch (event_state) {
769 case eStateInvalid:
770 case eStateUnloaded:
771 case eStateAttaching:
772 case eStateLaunching:
773 case eStateStepping:
774 case eStateDetached:
775 if (stream)
776 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
777 StateAsCString(event_state));
778 if (event_state == eStateDetached)
779 pop_process_io_handler = true;
780 break;
781
782 case eStateConnected:
783 case eStateRunning:
784 // Don't be chatty when we run...
785 break;
786
787 case eStateExited:
788 if (stream)
789 process_sp->GetStatus(*stream);
790 pop_process_io_handler = true;
791 break;
792
793 case eStateStopped:
794 case eStateCrashed:
795 case eStateSuspended:
796 // Make sure the program hasn't been auto-restarted:
797 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
798 if (stream) {
799 size_t num_reasons =
800 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
801 if (num_reasons > 0) {
802 // FIXME: Do we want to report this, or would that just be annoyingly
803 // chatty?
804 if (num_reasons == 1) {
805 const char *reason =
806 Process::ProcessEventData::GetRestartedReasonAtIndex(
807 event_sp.get(), 0);
808 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
809 process_sp->GetID(),
810 reason ? reason : "<UNKNOWN REASON>");
811 } else {
812 stream->Printf("Process %" PRIu64
813 " stopped and restarted, reasons:\n",
814 process_sp->GetID());
815
816 for (size_t i = 0; i < num_reasons; i++) {
817 const char *reason =
818 Process::ProcessEventData::GetRestartedReasonAtIndex(
819 event_sp.get(), i);
820 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
821 }
822 }
823 }
824 }
825 } else {
826 StopInfoSP curr_thread_stop_info_sp;
827 // Lock the thread list so it doesn't change on us, this is the scope for
828 // the locker:
829 {
830 ThreadList &thread_list = process_sp->GetThreadList();
831 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
832
833 ThreadSP curr_thread(thread_list.GetSelectedThread());
834 ThreadSP thread;
835 StopReason curr_thread_stop_reason = eStopReasonInvalid;
836 bool prefer_curr_thread = false;
837 if (curr_thread && curr_thread->IsValid()) {
838 curr_thread_stop_reason = curr_thread->GetStopReason();
839 switch (curr_thread_stop_reason) {
840 case eStopReasonNone:
841 case eStopReasonInvalid:
842 // Don't prefer the current thread if it didn't stop for a reason.
843 break;
844 case eStopReasonSignal: {
845 // We need to do the same computation we do for other threads
846 // below in case the current thread happens to be the one that
847 // stopped for the no-stop signal.
848 uint64_t signo = curr_thread->GetStopInfo()->GetValue();
849 if (process_sp->GetUnixSignals()->GetShouldStop(signo))
850 prefer_curr_thread = true;
851 } break;
852 default:
853 prefer_curr_thread = true;
854 break;
855 }
856 curr_thread_stop_info_sp = curr_thread->GetStopInfo();
857 }
858
859 if (!prefer_curr_thread) {
860 // Prefer a thread that has just completed its plan over another
861 // thread as current thread.
862 ThreadSP plan_thread;
863 ThreadSP other_thread;
864
865 const size_t num_threads = thread_list.GetSize();
866 size_t i;
867 for (i = 0; i < num_threads; ++i) {
868 thread = thread_list.GetThreadAtIndex(i);
869 StopReason thread_stop_reason = thread->GetStopReason();
870 switch (thread_stop_reason) {
871 case eStopReasonInvalid:
872 case eStopReasonNone:
873 break;
874
875 case eStopReasonSignal: {
876 // Don't select a signal thread if we weren't going to stop at
877 // that signal. We have to have had another reason for stopping
878 // here, and the user doesn't want to see this thread.
879 uint64_t signo = thread->GetStopInfo()->GetValue();
880 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
881 if (!other_thread)
882 other_thread = thread;
883 }
884 break;
885 }
886 case eStopReasonTrace:
887 case eStopReasonBreakpoint:
888 case eStopReasonWatchpoint:
889 case eStopReasonException:
890 case eStopReasonExec:
891 case eStopReasonFork:
892 case eStopReasonVFork:
893 case eStopReasonVForkDone:
894 case eStopReasonThreadExiting:
895 case eStopReasonInstrumentation:
896 case eStopReasonProcessorTrace:
897 if (!other_thread)
898 other_thread = thread;
899 break;
900 case eStopReasonPlanComplete:
901 if (!plan_thread)
902 plan_thread = thread;
903 break;
904 }
905 }
906 if (plan_thread)
907 thread_list.SetSelectedThreadByID(plan_thread->GetID());
908 else if (other_thread)
909 thread_list.SetSelectedThreadByID(other_thread->GetID());
910 else {
911 if (curr_thread && curr_thread->IsValid())
912 thread = curr_thread;
913 else
914 thread = thread_list.GetThreadAtIndex(0);
915
916 if (thread)
917 thread_list.SetSelectedThreadByID(thread->GetID());
918 }
919 }
920 }
921 // Drop the ThreadList mutex by here, since GetThreadStatus below might
922 // have to run code, e.g. for Data formatters, and if we hold the
923 // ThreadList mutex, then the process is going to have a hard time
924 // restarting the process.
925 if (stream) {
926 Debugger &debugger = process_sp->GetTarget().GetDebugger();
927 if (debugger.GetTargetList().GetSelectedTarget().get() ==
928 &process_sp->GetTarget()) {
929 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
930
931 if (!thread_sp || !thread_sp->IsValid())
932 return false;
933
934 const bool only_threads_with_stop_reason = true;
935 const uint32_t start_frame =
936 thread_sp->GetSelectedFrameIndex(select_most_relevant);
937 const uint32_t num_frames = 1;
938 const uint32_t num_frames_with_source = 1;
939 const bool stop_format = true;
940
941 process_sp->GetStatus(*stream);
942 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
943 start_frame, num_frames,
944 num_frames_with_source,
945 stop_format);
946 if (curr_thread_stop_info_sp) {
947 lldb::addr_t crashing_address;
948 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
949 curr_thread_stop_info_sp, &crashing_address);
950 if (valobj_sp) {
951 const ValueObject::GetExpressionPathFormat format =
952 ValueObject::GetExpressionPathFormat::
953 eGetExpressionPathFormatHonorPointers;
954 stream->PutCString("Likely cause: ");
955 valobj_sp->GetExpressionPath(*stream, format);
956 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
957 }
958 }
959 } else {
960 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
961 process_sp->GetTarget().shared_from_this());
962 if (target_idx != UINT32_MAX)
963 stream->Printf("Target %d: (", target_idx);
964 else
965 stream->Printf("Target <unknown index>: (");
966 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
967 stream->Printf(") stopped.\n");
968 }
969 }
970
971 // Pop the process IO handler
972 pop_process_io_handler = true;
973 }
974 break;
975 }
976
977 if (handle_pop && pop_process_io_handler)
978 process_sp->PopProcessIOHandler();
979
980 return true;
981 }
982
HijackProcessEvents(ListenerSP listener_sp)983 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
984 if (listener_sp) {
985 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
986 eBroadcastBitInterrupt);
987 } else
988 return false;
989 }
990
RestoreProcessEvents()991 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
992
GetStateChangedEvents(EventSP & event_sp,const Timeout<std::micro> & timeout,ListenerSP hijack_listener_sp)993 StateType Process::GetStateChangedEvents(EventSP &event_sp,
994 const Timeout<std::micro> &timeout,
995 ListenerSP hijack_listener_sp) {
996 Log *log = GetLog(LLDBLog::Process);
997 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
998
999 ListenerSP listener_sp = hijack_listener_sp;
1000 if (!listener_sp)
1001 listener_sp = GetPrimaryListener();
1002
1003 StateType state = eStateInvalid;
1004 if (listener_sp->GetEventForBroadcasterWithType(
1005 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1006 timeout)) {
1007 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1008 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1009 else
1010 LLDB_LOG(log, "got no event or was interrupted.");
1011 }
1012
1013 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
1014 return state;
1015 }
1016
PeekAtStateChangedEvents()1017 Event *Process::PeekAtStateChangedEvents() {
1018 Log *log = GetLog(LLDBLog::Process);
1019
1020 LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
1021
1022 Event *event_ptr;
1023 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1024 this, eBroadcastBitStateChanged);
1025 if (log) {
1026 if (event_ptr) {
1027 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
1028 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
1029 } else {
1030 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
1031 }
1032 }
1033 return event_ptr;
1034 }
1035
1036 StateType
GetStateChangedEventsPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout)1037 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1038 const Timeout<std::micro> &timeout) {
1039 Log *log = GetLog(LLDBLog::Process);
1040 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1041
1042 StateType state = eStateInvalid;
1043 if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1044 &m_private_state_broadcaster,
1045 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1046 timeout))
1047 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1048 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1049
1050 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1051 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1052 return state;
1053 }
1054
GetEventsPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout,bool control_only)1055 bool Process::GetEventsPrivate(EventSP &event_sp,
1056 const Timeout<std::micro> &timeout,
1057 bool control_only) {
1058 Log *log = GetLog(LLDBLog::Process);
1059 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1060
1061 if (control_only)
1062 return m_private_state_listener_sp->GetEventForBroadcaster(
1063 &m_private_state_control_broadcaster, event_sp, timeout);
1064 else
1065 return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1066 }
1067
IsRunning() const1068 bool Process::IsRunning() const {
1069 return StateIsRunningState(m_public_state.GetValue());
1070 }
1071
GetExitStatus()1072 int Process::GetExitStatus() {
1073 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1074
1075 if (m_public_state.GetValue() == eStateExited)
1076 return m_exit_status;
1077 return -1;
1078 }
1079
GetExitDescription()1080 const char *Process::GetExitDescription() {
1081 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1082
1083 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1084 return m_exit_string.c_str();
1085 return nullptr;
1086 }
1087
SetExitStatus(int status,llvm::StringRef exit_string)1088 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1089 // Use a mutex to protect setting the exit status.
1090 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1091
1092 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1093 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1094 GetPluginName(), status, exit_string);
1095
1096 // We were already in the exited state
1097 if (m_private_state.GetValue() == eStateExited) {
1098 LLDB_LOG(
1099 log,
1100 "(plugin = {0}) ignoring exit status because state was already set "
1101 "to eStateExited",
1102 GetPluginName());
1103 return false;
1104 }
1105
1106 m_exit_status = status;
1107 if (!exit_string.empty())
1108 m_exit_string = exit_string.str();
1109 else
1110 m_exit_string.clear();
1111
1112 // Clear the last natural stop ID since it has a strong reference to this
1113 // process
1114 m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1115
1116 SetPrivateState(eStateExited);
1117
1118 // Allow subclasses to do some cleanup
1119 DidExit();
1120
1121 return true;
1122 }
1123
IsAlive()1124 bool Process::IsAlive() {
1125 switch (m_private_state.GetValue()) {
1126 case eStateConnected:
1127 case eStateAttaching:
1128 case eStateLaunching:
1129 case eStateStopped:
1130 case eStateRunning:
1131 case eStateStepping:
1132 case eStateCrashed:
1133 case eStateSuspended:
1134 return true;
1135 default:
1136 return false;
1137 }
1138 }
1139
1140 // This static callback can be used to watch for local child processes on the
1141 // current host. The child process exits, the process will be found in the
1142 // global target list (we want to be completely sure that the
1143 // lldb_private::Process doesn't go away before we can deliver the signal.
SetProcessExitStatus(lldb::pid_t pid,bool exited,int signo,int exit_status)1144 bool Process::SetProcessExitStatus(
1145 lldb::pid_t pid, bool exited,
1146 int signo, // Zero for no signal
1147 int exit_status // Exit value of process if signal is zero
1148 ) {
1149 Log *log = GetLog(LLDBLog::Process);
1150 LLDB_LOGF(log,
1151 "Process::SetProcessExitStatus (pid=%" PRIu64
1152 ", exited=%i, signal=%i, exit_status=%i)\n",
1153 pid, exited, signo, exit_status);
1154
1155 if (exited) {
1156 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1157 if (target_sp) {
1158 ProcessSP process_sp(target_sp->GetProcessSP());
1159 if (process_sp) {
1160 llvm::StringRef signal_str =
1161 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1162 process_sp->SetExitStatus(exit_status, signal_str);
1163 }
1164 }
1165 return true;
1166 }
1167 return false;
1168 }
1169
UpdateThreadList(ThreadList & old_thread_list,ThreadList & new_thread_list)1170 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1171 ThreadList &new_thread_list) {
1172 m_thread_plans.ClearThreadCache();
1173 return DoUpdateThreadList(old_thread_list, new_thread_list);
1174 }
1175
UpdateThreadListIfNeeded()1176 void Process::UpdateThreadListIfNeeded() {
1177 const uint32_t stop_id = GetStopID();
1178 if (m_thread_list.GetSize(false) == 0 ||
1179 stop_id != m_thread_list.GetStopID()) {
1180 bool clear_unused_threads = true;
1181 const StateType state = GetPrivateState();
1182 if (StateIsStoppedState(state, true)) {
1183 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1184 m_thread_list.SetStopID(stop_id);
1185
1186 // m_thread_list does have its own mutex, but we need to hold onto the
1187 // mutex between the call to UpdateThreadList(...) and the
1188 // os->UpdateThreadList(...) so it doesn't change on us
1189 ThreadList &old_thread_list = m_thread_list;
1190 ThreadList real_thread_list(*this);
1191 ThreadList new_thread_list(*this);
1192 // Always update the thread list with the protocol specific thread list,
1193 // but only update if "true" is returned
1194 if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1195 // Don't call into the OperatingSystem to update the thread list if we
1196 // are shutting down, since that may call back into the SBAPI's,
1197 // requiring the API lock which is already held by whoever is shutting
1198 // us down, causing a deadlock.
1199 OperatingSystem *os = GetOperatingSystem();
1200 if (os && !m_destroy_in_process) {
1201 // Clear any old backing threads where memory threads might have been
1202 // backed by actual threads from the lldb_private::Process subclass
1203 size_t num_old_threads = old_thread_list.GetSize(false);
1204 for (size_t i = 0; i < num_old_threads; ++i)
1205 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1206 // See if the OS plugin reports all threads. If it does, then
1207 // it is safe to clear unseen thread's plans here. Otherwise we
1208 // should preserve them in case they show up again:
1209 clear_unused_threads = GetOSPluginReportsAllThreads();
1210
1211 // Turn off dynamic types to ensure we don't run any expressions.
1212 // Objective-C can run an expression to determine if a SBValue is a
1213 // dynamic type or not and we need to avoid this. OperatingSystem
1214 // plug-ins can't run expressions that require running code...
1215
1216 Target &target = GetTarget();
1217 const lldb::DynamicValueType saved_prefer_dynamic =
1218 target.GetPreferDynamicValue();
1219 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1220 target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1221
1222 // Now let the OperatingSystem plug-in update the thread list
1223
1224 os->UpdateThreadList(
1225 old_thread_list, // Old list full of threads created by OS plug-in
1226 real_thread_list, // The actual thread list full of threads
1227 // created by each lldb_private::Process
1228 // subclass
1229 new_thread_list); // The new thread list that we will show to the
1230 // user that gets filled in
1231
1232 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1233 target.SetPreferDynamicValue(saved_prefer_dynamic);
1234 } else {
1235 // No OS plug-in, the new thread list is the same as the real thread
1236 // list.
1237 new_thread_list = real_thread_list;
1238 }
1239
1240 m_thread_list_real.Update(real_thread_list);
1241 m_thread_list.Update(new_thread_list);
1242 m_thread_list.SetStopID(stop_id);
1243
1244 if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1245 // Clear any extended threads that we may have accumulated previously
1246 m_extended_thread_list.Clear();
1247 m_extended_thread_stop_id = GetLastNaturalStopID();
1248
1249 m_queue_list.Clear();
1250 m_queue_list_stop_id = GetLastNaturalStopID();
1251 }
1252 }
1253 // Now update the plan stack map.
1254 // If we do have an OS plugin, any absent real threads in the
1255 // m_thread_list have already been removed from the ThreadPlanStackMap.
1256 // So any remaining threads are OS Plugin threads, and those we want to
1257 // preserve in case they show up again.
1258 m_thread_plans.Update(m_thread_list, clear_unused_threads);
1259 }
1260 }
1261 }
1262
FindThreadPlans(lldb::tid_t tid)1263 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1264 return m_thread_plans.Find(tid);
1265 }
1266
PruneThreadPlansForTID(lldb::tid_t tid)1267 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1268 return m_thread_plans.PrunePlansForTID(tid);
1269 }
1270
PruneThreadPlans()1271 void Process::PruneThreadPlans() {
1272 m_thread_plans.Update(GetThreadList(), true, false);
1273 }
1274
DumpThreadPlansForTID(Stream & strm,lldb::tid_t tid,lldb::DescriptionLevel desc_level,bool internal,bool condense_trivial,bool skip_unreported_plans)1275 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1276 lldb::DescriptionLevel desc_level,
1277 bool internal, bool condense_trivial,
1278 bool skip_unreported_plans) {
1279 return m_thread_plans.DumpPlansForTID(
1280 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1281 }
DumpThreadPlans(Stream & strm,lldb::DescriptionLevel desc_level,bool internal,bool condense_trivial,bool skip_unreported_plans)1282 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1283 bool internal, bool condense_trivial,
1284 bool skip_unreported_plans) {
1285 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1286 skip_unreported_plans);
1287 }
1288
UpdateQueueListIfNeeded()1289 void Process::UpdateQueueListIfNeeded() {
1290 if (m_system_runtime_up) {
1291 if (m_queue_list.GetSize() == 0 ||
1292 m_queue_list_stop_id != GetLastNaturalStopID()) {
1293 const StateType state = GetPrivateState();
1294 if (StateIsStoppedState(state, true)) {
1295 m_system_runtime_up->PopulateQueueList(m_queue_list);
1296 m_queue_list_stop_id = GetLastNaturalStopID();
1297 }
1298 }
1299 }
1300 }
1301
CreateOSPluginThread(lldb::tid_t tid,lldb::addr_t context)1302 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1303 OperatingSystem *os = GetOperatingSystem();
1304 if (os)
1305 return os->CreateThread(tid, context);
1306 return ThreadSP();
1307 }
1308
GetNextThreadIndexID(uint64_t thread_id)1309 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1310 return AssignIndexIDToThread(thread_id);
1311 }
1312
HasAssignedIndexIDToThread(uint64_t thread_id)1313 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1314 return (m_thread_id_to_index_id_map.find(thread_id) !=
1315 m_thread_id_to_index_id_map.end());
1316 }
1317
AssignIndexIDToThread(uint64_t thread_id)1318 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1319 uint32_t result = 0;
1320 std::map<uint64_t, uint32_t>::iterator iterator =
1321 m_thread_id_to_index_id_map.find(thread_id);
1322 if (iterator == m_thread_id_to_index_id_map.end()) {
1323 result = ++m_thread_index_id;
1324 m_thread_id_to_index_id_map[thread_id] = result;
1325 } else {
1326 result = iterator->second;
1327 }
1328
1329 return result;
1330 }
1331
GetState()1332 StateType Process::GetState() {
1333 if (CurrentThreadIsPrivateStateThread())
1334 return m_private_state.GetValue();
1335 else
1336 return m_public_state.GetValue();
1337 }
1338
SetPublicState(StateType new_state,bool restarted)1339 void Process::SetPublicState(StateType new_state, bool restarted) {
1340 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1341 if (new_state_is_stopped) {
1342 // This will only set the time if the public stop time has no value, so
1343 // it is ok to call this multiple times. With a public stop we can't look
1344 // at the stop ID because many private stops might have happened, so we
1345 // can't check for a stop ID of zero. This allows the "statistics" command
1346 // to dump the time it takes to reach somewhere in your code, like a
1347 // breakpoint you set.
1348 GetTarget().GetStatistics().SetFirstPublicStopTime();
1349 }
1350
1351 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1352 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1353 GetPluginName().data(), StateAsCString(new_state), restarted);
1354 const StateType old_state = m_public_state.GetValue();
1355 m_public_state.SetValue(new_state);
1356
1357 // On the transition from Run to Stopped, we unlock the writer end of the run
1358 // lock. The lock gets locked in Resume, which is the public API to tell the
1359 // program to run.
1360 if (!StateChangedIsExternallyHijacked()) {
1361 if (new_state == eStateDetached) {
1362 LLDB_LOGF(log,
1363 "(plugin = %s, state = %s) -- unlocking run lock for detach",
1364 GetPluginName().data(), StateAsCString(new_state));
1365 m_public_run_lock.SetStopped();
1366 } else {
1367 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1368 if ((old_state_is_stopped != new_state_is_stopped)) {
1369 if (new_state_is_stopped && !restarted) {
1370 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1371 GetPluginName().data(), StateAsCString(new_state));
1372 m_public_run_lock.SetStopped();
1373 }
1374 }
1375 }
1376 }
1377 }
1378
Resume()1379 Status Process::Resume() {
1380 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1381 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1382 if (!m_public_run_lock.TrySetRunning()) {
1383 Status error("Resume request failed - process still running.");
1384 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1385 GetPluginName().data());
1386 return error;
1387 }
1388 Status error = PrivateResume();
1389 if (!error.Success()) {
1390 // Undo running state change
1391 m_public_run_lock.SetStopped();
1392 }
1393 return error;
1394 }
1395
ResumeSynchronous(Stream * stream)1396 Status Process::ResumeSynchronous(Stream *stream) {
1397 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1398 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1399 if (!m_public_run_lock.TrySetRunning()) {
1400 Status error("Resume request failed - process still running.");
1401 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1402 return error;
1403 }
1404
1405 ListenerSP listener_sp(
1406 Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
1407 HijackProcessEvents(listener_sp);
1408
1409 Status error = PrivateResume();
1410 if (error.Success()) {
1411 StateType state =
1412 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1413 true /* use_run_lock */, SelectMostRelevantFrame);
1414 const bool must_be_alive =
1415 false; // eStateExited is ok, so this must be false
1416 if (!StateIsStoppedState(state, must_be_alive))
1417 error.SetErrorStringWithFormat(
1418 "process not in stopped state after synchronous resume: %s",
1419 StateAsCString(state));
1420 } else {
1421 // Undo running state change
1422 m_public_run_lock.SetStopped();
1423 }
1424
1425 // Undo the hijacking of process events...
1426 RestoreProcessEvents();
1427
1428 return error;
1429 }
1430
StateChangedIsExternallyHijacked()1431 bool Process::StateChangedIsExternallyHijacked() {
1432 if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1433 llvm::StringRef hijacking_name = GetHijackingListenerName();
1434 if (!hijacking_name.starts_with("lldb.internal"))
1435 return true;
1436 }
1437 return false;
1438 }
1439
StateChangedIsHijackedForSynchronousResume()1440 bool Process::StateChangedIsHijackedForSynchronousResume() {
1441 if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1442 llvm::StringRef hijacking_name = GetHijackingListenerName();
1443 if (hijacking_name == ResumeSynchronousHijackListenerName)
1444 return true;
1445 }
1446 return false;
1447 }
1448
GetPrivateState()1449 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1450
SetPrivateState(StateType new_state)1451 void Process::SetPrivateState(StateType new_state) {
1452 // Use m_destructing not m_finalizing here. If we are finalizing a process
1453 // that we haven't started tearing down, we'd like to be able to nicely
1454 // detach if asked, but that requires the event system be live. That will
1455 // not be true for an in-the-middle-of-being-destructed Process, since the
1456 // event system relies on Process::shared_from_this, which may have already
1457 // been destroyed.
1458 if (m_destructing)
1459 return;
1460
1461 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1462 bool state_changed = false;
1463
1464 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1465 StateAsCString(new_state));
1466
1467 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1468 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1469
1470 const StateType old_state = m_private_state.GetValueNoLock();
1471 state_changed = old_state != new_state;
1472
1473 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1474 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1475 if (old_state_is_stopped != new_state_is_stopped) {
1476 if (new_state_is_stopped)
1477 m_private_run_lock.SetStopped();
1478 else
1479 m_private_run_lock.SetRunning();
1480 }
1481
1482 if (state_changed) {
1483 m_private_state.SetValueNoLock(new_state);
1484 EventSP event_sp(
1485 new Event(eBroadcastBitStateChanged,
1486 new ProcessEventData(shared_from_this(), new_state)));
1487 if (StateIsStoppedState(new_state, false)) {
1488 // Note, this currently assumes that all threads in the list stop when
1489 // the process stops. In the future we will want to support a debugging
1490 // model where some threads continue to run while others are stopped.
1491 // When that happens we will either need a way for the thread list to
1492 // identify which threads are stopping or create a special thread list
1493 // containing only threads which actually stopped.
1494 //
1495 // The process plugin is responsible for managing the actual behavior of
1496 // the threads and should have stopped any threads that are going to stop
1497 // before we get here.
1498 m_thread_list.DidStop();
1499
1500 if (m_mod_id.BumpStopID() == 0)
1501 GetTarget().GetStatistics().SetFirstPrivateStopTime();
1502
1503 if (!m_mod_id.IsLastResumeForUserExpression())
1504 m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1505 m_memory_cache.Clear();
1506 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1507 GetPluginName().data(), StateAsCString(new_state),
1508 m_mod_id.GetStopID());
1509 }
1510
1511 m_private_state_broadcaster.BroadcastEvent(event_sp);
1512 } else {
1513 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1514 GetPluginName().data(), StateAsCString(new_state));
1515 }
1516 }
1517
SetRunningUserExpression(bool on)1518 void Process::SetRunningUserExpression(bool on) {
1519 m_mod_id.SetRunningUserExpression(on);
1520 }
1521
SetRunningUtilityFunction(bool on)1522 void Process::SetRunningUtilityFunction(bool on) {
1523 m_mod_id.SetRunningUtilityFunction(on);
1524 }
1525
GetImageInfoAddress()1526 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1527
GetABI()1528 const lldb::ABISP &Process::GetABI() {
1529 if (!m_abi_sp)
1530 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1531 return m_abi_sp;
1532 }
1533
GetLanguageRuntimes()1534 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1535 std::vector<LanguageRuntime *> language_runtimes;
1536
1537 if (m_finalizing)
1538 return language_runtimes;
1539
1540 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1541 // Before we pass off a copy of the language runtimes, we must make sure that
1542 // our collection is properly populated. It's possible that some of the
1543 // language runtimes were not loaded yet, either because nobody requested it
1544 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1545 // hadn't been loaded).
1546 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1547 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1548 language_runtimes.emplace_back(runtime);
1549 }
1550
1551 return language_runtimes;
1552 }
1553
GetLanguageRuntime(lldb::LanguageType language)1554 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1555 if (m_finalizing)
1556 return nullptr;
1557
1558 LanguageRuntime *runtime = nullptr;
1559
1560 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1561 LanguageRuntimeCollection::iterator pos;
1562 pos = m_language_runtimes.find(language);
1563 if (pos == m_language_runtimes.end() || !pos->second) {
1564 lldb::LanguageRuntimeSP runtime_sp(
1565 LanguageRuntime::FindPlugin(this, language));
1566
1567 m_language_runtimes[language] = runtime_sp;
1568 runtime = runtime_sp.get();
1569 } else
1570 runtime = pos->second.get();
1571
1572 if (runtime)
1573 // It's possible that a language runtime can support multiple LanguageTypes,
1574 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1575 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1576 // primary language type and make sure that our runtime supports it.
1577 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1578
1579 return runtime;
1580 }
1581
IsPossibleDynamicValue(ValueObject & in_value)1582 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1583 if (m_finalizing)
1584 return false;
1585
1586 if (in_value.IsDynamic())
1587 return false;
1588 LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1589
1590 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1591 LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1592 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1593 }
1594
1595 for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1596 if (runtime->CouldHaveDynamicValue(in_value))
1597 return true;
1598 }
1599
1600 return false;
1601 }
1602
SetDynamicCheckers(DynamicCheckerFunctions * dynamic_checkers)1603 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1604 m_dynamic_checkers_up.reset(dynamic_checkers);
1605 }
1606
GetBreakpointSiteList()1607 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
1608 return m_breakpoint_site_list;
1609 }
1610
1611 const StopPointSiteList<BreakpointSite> &
GetBreakpointSiteList() const1612 Process::GetBreakpointSiteList() const {
1613 return m_breakpoint_site_list;
1614 }
1615
DisableAllBreakpointSites()1616 void Process::DisableAllBreakpointSites() {
1617 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1618 // bp_site->SetEnabled(true);
1619 DisableBreakpointSite(bp_site);
1620 });
1621 }
1622
ClearBreakpointSiteByID(lldb::user_id_t break_id)1623 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1624 Status error(DisableBreakpointSiteByID(break_id));
1625
1626 if (error.Success())
1627 m_breakpoint_site_list.Remove(break_id);
1628
1629 return error;
1630 }
1631
DisableBreakpointSiteByID(lldb::user_id_t break_id)1632 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1633 Status error;
1634 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1635 if (bp_site_sp) {
1636 if (bp_site_sp->IsEnabled())
1637 error = DisableBreakpointSite(bp_site_sp.get());
1638 } else {
1639 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1640 break_id);
1641 }
1642
1643 return error;
1644 }
1645
EnableBreakpointSiteByID(lldb::user_id_t break_id)1646 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1647 Status error;
1648 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1649 if (bp_site_sp) {
1650 if (!bp_site_sp->IsEnabled())
1651 error = EnableBreakpointSite(bp_site_sp.get());
1652 } else {
1653 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1654 break_id);
1655 }
1656 return error;
1657 }
1658
1659 lldb::break_id_t
CreateBreakpointSite(const BreakpointLocationSP & constituent,bool use_hardware)1660 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
1661 bool use_hardware) {
1662 addr_t load_addr = LLDB_INVALID_ADDRESS;
1663
1664 bool show_error = true;
1665 switch (GetState()) {
1666 case eStateInvalid:
1667 case eStateUnloaded:
1668 case eStateConnected:
1669 case eStateAttaching:
1670 case eStateLaunching:
1671 case eStateDetached:
1672 case eStateExited:
1673 show_error = false;
1674 break;
1675
1676 case eStateStopped:
1677 case eStateRunning:
1678 case eStateStepping:
1679 case eStateCrashed:
1680 case eStateSuspended:
1681 show_error = IsAlive();
1682 break;
1683 }
1684
1685 // Reset the IsIndirect flag here, in case the location changes from pointing
1686 // to a indirect symbol to a regular symbol.
1687 constituent->SetIsIndirect(false);
1688
1689 if (constituent->ShouldResolveIndirectFunctions()) {
1690 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1691 if (symbol && symbol->IsIndirect()) {
1692 Status error;
1693 Address symbol_address = symbol->GetAddress();
1694 load_addr = ResolveIndirectFunction(&symbol_address, error);
1695 if (!error.Success() && show_error) {
1696 GetTarget().GetDebugger().GetErrorStream().Printf(
1697 "warning: failed to resolve indirect function at 0x%" PRIx64
1698 " for breakpoint %i.%i: %s\n",
1699 symbol->GetLoadAddress(&GetTarget()),
1700 constituent->GetBreakpoint().GetID(), constituent->GetID(),
1701 error.AsCString() ? error.AsCString() : "unknown error");
1702 return LLDB_INVALID_BREAK_ID;
1703 }
1704 Address resolved_address(load_addr);
1705 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1706 constituent->SetIsIndirect(true);
1707 } else
1708 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1709 } else
1710 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1711
1712 if (load_addr != LLDB_INVALID_ADDRESS) {
1713 BreakpointSiteSP bp_site_sp;
1714
1715 // Look up this breakpoint site. If it exists, then add this new
1716 // constituent, otherwise create a new breakpoint site and add it.
1717
1718 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1719
1720 if (bp_site_sp) {
1721 bp_site_sp->AddConstituent(constituent);
1722 constituent->SetBreakpointSite(bp_site_sp);
1723 return bp_site_sp->GetID();
1724 } else {
1725 bp_site_sp.reset(
1726 new BreakpointSite(constituent, load_addr, use_hardware));
1727 if (bp_site_sp) {
1728 Status error = EnableBreakpointSite(bp_site_sp.get());
1729 if (error.Success()) {
1730 constituent->SetBreakpointSite(bp_site_sp);
1731 return m_breakpoint_site_list.Add(bp_site_sp);
1732 } else {
1733 if (show_error || use_hardware) {
1734 // Report error for setting breakpoint...
1735 GetTarget().GetDebugger().GetErrorStream().Printf(
1736 "warning: failed to set breakpoint site at 0x%" PRIx64
1737 " for breakpoint %i.%i: %s\n",
1738 load_addr, constituent->GetBreakpoint().GetID(),
1739 constituent->GetID(),
1740 error.AsCString() ? error.AsCString() : "unknown error");
1741 }
1742 }
1743 }
1744 }
1745 }
1746 // We failed to enable the breakpoint
1747 return LLDB_INVALID_BREAK_ID;
1748 }
1749
RemoveConstituentFromBreakpointSite(lldb::user_id_t constituent_id,lldb::user_id_t constituent_loc_id,BreakpointSiteSP & bp_site_sp)1750 void Process::RemoveConstituentFromBreakpointSite(
1751 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1752 BreakpointSiteSP &bp_site_sp) {
1753 uint32_t num_constituents =
1754 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1755 if (num_constituents == 0) {
1756 // Don't try to disable the site if we don't have a live process anymore.
1757 if (IsAlive())
1758 DisableBreakpointSite(bp_site_sp.get());
1759 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1760 }
1761 }
1762
RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr,size_t size,uint8_t * buf) const1763 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1764 uint8_t *buf) const {
1765 size_t bytes_removed = 0;
1766 StopPointSiteList<BreakpointSite> bp_sites_in_range;
1767
1768 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1769 bp_sites_in_range)) {
1770 bp_sites_in_range.ForEach([bp_addr, size,
1771 buf](BreakpointSite *bp_site) -> void {
1772 if (bp_site->GetType() == BreakpointSite::eSoftware) {
1773 addr_t intersect_addr;
1774 size_t intersect_size;
1775 size_t opcode_offset;
1776 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1777 &intersect_size, &opcode_offset)) {
1778 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1779 assert(bp_addr < intersect_addr + intersect_size &&
1780 intersect_addr + intersect_size <= bp_addr + size);
1781 assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1782 size_t buf_offset = intersect_addr - bp_addr;
1783 ::memcpy(buf + buf_offset,
1784 bp_site->GetSavedOpcodeBytes() + opcode_offset,
1785 intersect_size);
1786 }
1787 }
1788 });
1789 }
1790 return bytes_removed;
1791 }
1792
GetSoftwareBreakpointTrapOpcode(BreakpointSite * bp_site)1793 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1794 PlatformSP platform_sp(GetTarget().GetPlatform());
1795 if (platform_sp)
1796 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1797 return 0;
1798 }
1799
EnableSoftwareBreakpoint(BreakpointSite * bp_site)1800 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1801 Status error;
1802 assert(bp_site != nullptr);
1803 Log *log = GetLog(LLDBLog::Breakpoints);
1804 const addr_t bp_addr = bp_site->GetLoadAddress();
1805 LLDB_LOGF(
1806 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1807 bp_site->GetID(), (uint64_t)bp_addr);
1808 if (bp_site->IsEnabled()) {
1809 LLDB_LOGF(
1810 log,
1811 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1812 " -- already enabled",
1813 bp_site->GetID(), (uint64_t)bp_addr);
1814 return error;
1815 }
1816
1817 if (bp_addr == LLDB_INVALID_ADDRESS) {
1818 error.SetErrorString("BreakpointSite contains an invalid load address.");
1819 return error;
1820 }
1821 // Ask the lldb::Process subclass to fill in the correct software breakpoint
1822 // trap for the breakpoint site
1823 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1824
1825 if (bp_opcode_size == 0) {
1826 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1827 "returned zero, unable to get breakpoint "
1828 "trap for address 0x%" PRIx64,
1829 bp_addr);
1830 } else {
1831 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1832
1833 if (bp_opcode_bytes == nullptr) {
1834 error.SetErrorString(
1835 "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1836 return error;
1837 }
1838
1839 // Save the original opcode by reading it
1840 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1841 error) == bp_opcode_size) {
1842 // Write a software breakpoint in place of the original opcode
1843 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1844 bp_opcode_size) {
1845 uint8_t verify_bp_opcode_bytes[64];
1846 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1847 error) == bp_opcode_size) {
1848 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1849 bp_opcode_size) == 0) {
1850 bp_site->SetEnabled(true);
1851 bp_site->SetType(BreakpointSite::eSoftware);
1852 LLDB_LOGF(log,
1853 "Process::EnableSoftwareBreakpoint (site_id = %d) "
1854 "addr = 0x%" PRIx64 " -- SUCCESS",
1855 bp_site->GetID(), (uint64_t)bp_addr);
1856 } else
1857 error.SetErrorString(
1858 "failed to verify the breakpoint trap in memory.");
1859 } else
1860 error.SetErrorString(
1861 "Unable to read memory to verify breakpoint trap.");
1862 } else
1863 error.SetErrorString("Unable to write breakpoint trap to memory.");
1864 } else
1865 error.SetErrorString("Unable to read memory at breakpoint address.");
1866 }
1867 if (log && error.Fail())
1868 LLDB_LOGF(
1869 log,
1870 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1871 " -- FAILED: %s",
1872 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1873 return error;
1874 }
1875
DisableSoftwareBreakpoint(BreakpointSite * bp_site)1876 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1877 Status error;
1878 assert(bp_site != nullptr);
1879 Log *log = GetLog(LLDBLog::Breakpoints);
1880 addr_t bp_addr = bp_site->GetLoadAddress();
1881 lldb::user_id_t breakID = bp_site->GetID();
1882 LLDB_LOGF(log,
1883 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1884 ") addr = 0x%" PRIx64,
1885 breakID, (uint64_t)bp_addr);
1886
1887 if (bp_site->IsHardware()) {
1888 error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1889 } else if (bp_site->IsEnabled()) {
1890 const size_t break_op_size = bp_site->GetByteSize();
1891 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1892 if (break_op_size > 0) {
1893 // Clear a software breakpoint instruction
1894 uint8_t curr_break_op[8];
1895 assert(break_op_size <= sizeof(curr_break_op));
1896 bool break_op_found = false;
1897
1898 // Read the breakpoint opcode
1899 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1900 break_op_size) {
1901 bool verify = false;
1902 // Make sure the breakpoint opcode exists at this address
1903 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1904 break_op_found = true;
1905 // We found a valid breakpoint opcode at this address, now restore
1906 // the saved opcode.
1907 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1908 break_op_size, error) == break_op_size) {
1909 verify = true;
1910 } else
1911 error.SetErrorString(
1912 "Memory write failed when restoring original opcode.");
1913 } else {
1914 error.SetErrorString(
1915 "Original breakpoint trap is no longer in memory.");
1916 // Set verify to true and so we can check if the original opcode has
1917 // already been restored
1918 verify = true;
1919 }
1920
1921 if (verify) {
1922 uint8_t verify_opcode[8];
1923 assert(break_op_size < sizeof(verify_opcode));
1924 // Verify that our original opcode made it back to the inferior
1925 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1926 break_op_size) {
1927 // compare the memory we just read with the original opcode
1928 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1929 break_op_size) == 0) {
1930 // SUCCESS
1931 bp_site->SetEnabled(false);
1932 LLDB_LOGF(log,
1933 "Process::DisableSoftwareBreakpoint (site_id = %d) "
1934 "addr = 0x%" PRIx64 " -- SUCCESS",
1935 bp_site->GetID(), (uint64_t)bp_addr);
1936 return error;
1937 } else {
1938 if (break_op_found)
1939 error.SetErrorString("Failed to restore original opcode.");
1940 }
1941 } else
1942 error.SetErrorString("Failed to read memory to verify that "
1943 "breakpoint trap was restored.");
1944 }
1945 } else
1946 error.SetErrorString(
1947 "Unable to read memory that should contain the breakpoint trap.");
1948 }
1949 } else {
1950 LLDB_LOGF(
1951 log,
1952 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1953 " -- already disabled",
1954 bp_site->GetID(), (uint64_t)bp_addr);
1955 return error;
1956 }
1957
1958 LLDB_LOGF(
1959 log,
1960 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1961 " -- FAILED: %s",
1962 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1963 return error;
1964 }
1965
1966 // Uncomment to verify memory caching works after making changes to caching
1967 // code
1968 //#define VERIFY_MEMORY_READS
1969
ReadMemory(addr_t addr,void * buf,size_t size,Status & error)1970 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1971 if (ABISP abi_sp = GetABI())
1972 addr = abi_sp->FixAnyAddress(addr);
1973
1974 error.Clear();
1975 if (!GetDisableMemoryCache()) {
1976 #if defined(VERIFY_MEMORY_READS)
1977 // Memory caching is enabled, with debug verification
1978
1979 if (buf && size) {
1980 // Uncomment the line below to make sure memory caching is working.
1981 // I ran this through the test suite and got no assertions, so I am
1982 // pretty confident this is working well. If any changes are made to
1983 // memory caching, uncomment the line below and test your changes!
1984
1985 // Verify all memory reads by using the cache first, then redundantly
1986 // reading the same memory from the inferior and comparing to make sure
1987 // everything is exactly the same.
1988 std::string verify_buf(size, '\0');
1989 assert(verify_buf.size() == size);
1990 const size_t cache_bytes_read =
1991 m_memory_cache.Read(this, addr, buf, size, error);
1992 Status verify_error;
1993 const size_t verify_bytes_read =
1994 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1995 verify_buf.size(), verify_error);
1996 assert(cache_bytes_read == verify_bytes_read);
1997 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1998 assert(verify_error.Success() == error.Success());
1999 return cache_bytes_read;
2000 }
2001 return 0;
2002 #else // !defined(VERIFY_MEMORY_READS)
2003 // Memory caching is enabled, without debug verification
2004
2005 return m_memory_cache.Read(addr, buf, size, error);
2006 #endif // defined (VERIFY_MEMORY_READS)
2007 } else {
2008 // Memory caching is disabled
2009
2010 return ReadMemoryFromInferior(addr, buf, size, error);
2011 }
2012 }
2013
DoFindInMemory(lldb::addr_t start_addr,lldb::addr_t end_addr,const uint8_t * buf,size_t size,AddressRanges & matches,size_t alignment,size_t max_matches)2014 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr,
2015 const uint8_t *buf, size_t size,
2016 AddressRanges &matches, size_t alignment,
2017 size_t max_matches) {
2018 // Inputs are already validated in FindInMemory() functions.
2019 assert(buf != nullptr);
2020 assert(size > 0);
2021 assert(alignment > 0);
2022 assert(max_matches > 0);
2023 assert(start_addr != LLDB_INVALID_ADDRESS);
2024 assert(end_addr != LLDB_INVALID_ADDRESS);
2025 assert(start_addr < end_addr);
2026
2027 lldb::addr_t start = llvm::alignTo(start_addr, alignment);
2028 while (matches.size() < max_matches && (start + size) < end_addr) {
2029 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
2030 if (found_addr == LLDB_INVALID_ADDRESS)
2031 break;
2032
2033 if (found_addr % alignment) {
2034 // We need to check the alignment because the FindInMemory uses a special
2035 // algorithm to efficiently search mememory but doesn't support alignment.
2036 start = llvm::alignTo(start + 1, alignment);
2037 continue;
2038 }
2039
2040 matches.emplace_back(found_addr, size);
2041 start = found_addr + alignment;
2042 }
2043 }
2044
FindRangesInMemory(const uint8_t * buf,uint64_t size,const AddressRanges & ranges,size_t alignment,size_t max_matches,Status & error)2045 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
2046 const AddressRanges &ranges,
2047 size_t alignment, size_t max_matches,
2048 Status &error) {
2049 AddressRanges matches;
2050 if (buf == nullptr) {
2051 error.SetErrorString("buffer is null");
2052 return matches;
2053 }
2054 if (size == 0) {
2055 error.SetErrorString("buffer size is zero");
2056 return matches;
2057 }
2058 if (ranges.empty()) {
2059 error.SetErrorString("empty ranges");
2060 return matches;
2061 }
2062 if (alignment == 0) {
2063 error.SetErrorString("alignment must be greater than zero");
2064 return matches;
2065 }
2066 if (max_matches == 0) {
2067 error.SetErrorString("max_matches must be greater than zero");
2068 return matches;
2069 }
2070
2071 int resolved_ranges = 0;
2072 Target &target = GetTarget();
2073 for (size_t i = 0; i < ranges.size(); ++i) {
2074 if (matches.size() >= max_matches)
2075 break;
2076 const AddressRange &range = ranges[i];
2077 if (range.IsValid() == false)
2078 continue;
2079
2080 const lldb::addr_t start_addr =
2081 range.GetBaseAddress().GetLoadAddress(&target);
2082 if (start_addr == LLDB_INVALID_ADDRESS)
2083 continue;
2084
2085 ++resolved_ranges;
2086 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2087 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
2088 max_matches);
2089 }
2090
2091 if (resolved_ranges > 0)
2092 error.Clear();
2093 else
2094 error.SetErrorString("unable to resolve any ranges");
2095
2096 return matches;
2097 }
2098
FindInMemory(const uint8_t * buf,uint64_t size,const AddressRange & range,size_t alignment,Status & error)2099 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
2100 const AddressRange &range, size_t alignment,
2101 Status &error) {
2102 if (buf == nullptr) {
2103 error.SetErrorString("buffer is null");
2104 return LLDB_INVALID_ADDRESS;
2105 }
2106 if (size == 0) {
2107 error.SetErrorString("buffer size is zero");
2108 return LLDB_INVALID_ADDRESS;
2109 }
2110 if (!range.IsValid()) {
2111 error.SetErrorString("range is invalid");
2112 return LLDB_INVALID_ADDRESS;
2113 }
2114 if (alignment == 0) {
2115 error.SetErrorString("alignment must be greater than zero");
2116 return LLDB_INVALID_ADDRESS;
2117 }
2118
2119 Target &target = GetTarget();
2120 const lldb::addr_t start_addr =
2121 range.GetBaseAddress().GetLoadAddress(&target);
2122 if (start_addr == LLDB_INVALID_ADDRESS) {
2123 error.SetErrorString("range load address is invalid");
2124 return LLDB_INVALID_ADDRESS;
2125 }
2126 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2127
2128 AddressRanges matches;
2129 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
2130 if (matches.empty())
2131 return LLDB_INVALID_ADDRESS;
2132
2133 error.Clear();
2134 return matches[0].GetBaseAddress().GetLoadAddress(&target);
2135 }
2136
ReadCStringFromMemory(addr_t addr,std::string & out_str,Status & error)2137 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2138 Status &error) {
2139 char buf[256];
2140 out_str.clear();
2141 addr_t curr_addr = addr;
2142 while (true) {
2143 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2144 if (length == 0)
2145 break;
2146 out_str.append(buf, length);
2147 // If we got "length - 1" bytes, we didn't get the whole C string, we need
2148 // to read some more characters
2149 if (length == sizeof(buf) - 1)
2150 curr_addr += length;
2151 else
2152 break;
2153 }
2154 return out_str.size();
2155 }
2156
2157 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2158 // correct code to find null terminators.
ReadCStringFromMemory(addr_t addr,char * dst,size_t dst_max_len,Status & result_error)2159 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2160 size_t dst_max_len,
2161 Status &result_error) {
2162 size_t total_cstr_len = 0;
2163 if (dst && dst_max_len) {
2164 result_error.Clear();
2165 // NULL out everything just to be safe
2166 memset(dst, 0, dst_max_len);
2167 Status error;
2168 addr_t curr_addr = addr;
2169 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2170 size_t bytes_left = dst_max_len - 1;
2171 char *curr_dst = dst;
2172
2173 while (bytes_left > 0) {
2174 addr_t cache_line_bytes_left =
2175 cache_line_size - (curr_addr % cache_line_size);
2176 addr_t bytes_to_read =
2177 std::min<addr_t>(bytes_left, cache_line_bytes_left);
2178 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2179
2180 if (bytes_read == 0) {
2181 result_error = error;
2182 dst[total_cstr_len] = '\0';
2183 break;
2184 }
2185 const size_t len = strlen(curr_dst);
2186
2187 total_cstr_len += len;
2188
2189 if (len < bytes_to_read)
2190 break;
2191
2192 curr_dst += bytes_read;
2193 curr_addr += bytes_read;
2194 bytes_left -= bytes_read;
2195 }
2196 } else {
2197 if (dst == nullptr)
2198 result_error.SetErrorString("invalid arguments");
2199 else
2200 result_error.Clear();
2201 }
2202 return total_cstr_len;
2203 }
2204
ReadMemoryFromInferior(addr_t addr,void * buf,size_t size,Status & error)2205 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2206 Status &error) {
2207 LLDB_SCOPED_TIMER();
2208
2209 if (ABISP abi_sp = GetABI())
2210 addr = abi_sp->FixAnyAddress(addr);
2211
2212 if (buf == nullptr || size == 0)
2213 return 0;
2214
2215 size_t bytes_read = 0;
2216 uint8_t *bytes = (uint8_t *)buf;
2217
2218 while (bytes_read < size) {
2219 const size_t curr_size = size - bytes_read;
2220 const size_t curr_bytes_read =
2221 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2222 bytes_read += curr_bytes_read;
2223 if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2224 break;
2225 }
2226
2227 // Replace any software breakpoint opcodes that fall into this range back
2228 // into "buf" before we return
2229 if (bytes_read > 0)
2230 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2231 return bytes_read;
2232 }
2233
ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,size_t integer_byte_size,uint64_t fail_value,Status & error)2234 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2235 size_t integer_byte_size,
2236 uint64_t fail_value,
2237 Status &error) {
2238 Scalar scalar;
2239 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2240 error))
2241 return scalar.ULongLong(fail_value);
2242 return fail_value;
2243 }
2244
ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,size_t integer_byte_size,int64_t fail_value,Status & error)2245 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2246 size_t integer_byte_size,
2247 int64_t fail_value,
2248 Status &error) {
2249 Scalar scalar;
2250 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2251 error))
2252 return scalar.SLongLong(fail_value);
2253 return fail_value;
2254 }
2255
ReadPointerFromMemory(lldb::addr_t vm_addr,Status & error)2256 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2257 Scalar scalar;
2258 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2259 error))
2260 return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2261 return LLDB_INVALID_ADDRESS;
2262 }
2263
WritePointerToMemory(lldb::addr_t vm_addr,lldb::addr_t ptr_value,Status & error)2264 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2265 Status &error) {
2266 Scalar scalar;
2267 const uint32_t addr_byte_size = GetAddressByteSize();
2268 if (addr_byte_size <= 4)
2269 scalar = (uint32_t)ptr_value;
2270 else
2271 scalar = ptr_value;
2272 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2273 addr_byte_size;
2274 }
2275
WriteMemoryPrivate(addr_t addr,const void * buf,size_t size,Status & error)2276 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2277 Status &error) {
2278 size_t bytes_written = 0;
2279 const uint8_t *bytes = (const uint8_t *)buf;
2280
2281 while (bytes_written < size) {
2282 const size_t curr_size = size - bytes_written;
2283 const size_t curr_bytes_written = DoWriteMemory(
2284 addr + bytes_written, bytes + bytes_written, curr_size, error);
2285 bytes_written += curr_bytes_written;
2286 if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2287 break;
2288 }
2289 return bytes_written;
2290 }
2291
WriteMemory(addr_t addr,const void * buf,size_t size,Status & error)2292 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2293 Status &error) {
2294 if (ABISP abi_sp = GetABI())
2295 addr = abi_sp->FixAnyAddress(addr);
2296
2297 #if defined(ENABLE_MEMORY_CACHING)
2298 m_memory_cache.Flush(addr, size);
2299 #endif
2300
2301 if (buf == nullptr || size == 0)
2302 return 0;
2303
2304 m_mod_id.BumpMemoryID();
2305
2306 // We need to write any data that would go where any current software traps
2307 // (enabled software breakpoints) any software traps (breakpoints) that we
2308 // may have placed in our tasks memory.
2309
2310 StopPointSiteList<BreakpointSite> bp_sites_in_range;
2311 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2312 return WriteMemoryPrivate(addr, buf, size, error);
2313
2314 // No breakpoint sites overlap
2315 if (bp_sites_in_range.IsEmpty())
2316 return WriteMemoryPrivate(addr, buf, size, error);
2317
2318 const uint8_t *ubuf = (const uint8_t *)buf;
2319 uint64_t bytes_written = 0;
2320
2321 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2322 &error](BreakpointSite *bp) -> void {
2323 if (error.Fail())
2324 return;
2325
2326 if (bp->GetType() != BreakpointSite::eSoftware)
2327 return;
2328
2329 addr_t intersect_addr;
2330 size_t intersect_size;
2331 size_t opcode_offset;
2332 const bool intersects = bp->IntersectsRange(
2333 addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2334 UNUSED_IF_ASSERT_DISABLED(intersects);
2335 assert(intersects);
2336 assert(addr <= intersect_addr && intersect_addr < addr + size);
2337 assert(addr < intersect_addr + intersect_size &&
2338 intersect_addr + intersect_size <= addr + size);
2339 assert(opcode_offset + intersect_size <= bp->GetByteSize());
2340
2341 // Check for bytes before this breakpoint
2342 const addr_t curr_addr = addr + bytes_written;
2343 if (intersect_addr > curr_addr) {
2344 // There are some bytes before this breakpoint that we need to just
2345 // write to memory
2346 size_t curr_size = intersect_addr - curr_addr;
2347 size_t curr_bytes_written =
2348 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2349 bytes_written += curr_bytes_written;
2350 if (curr_bytes_written != curr_size) {
2351 // We weren't able to write all of the requested bytes, we are
2352 // done looping and will return the number of bytes that we have
2353 // written so far.
2354 if (error.Success())
2355 error.SetErrorToGenericError();
2356 }
2357 }
2358 // Now write any bytes that would cover up any software breakpoints
2359 // directly into the breakpoint opcode buffer
2360 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2361 intersect_size);
2362 bytes_written += intersect_size;
2363 });
2364
2365 // Write any remaining bytes after the last breakpoint if we have any left
2366 if (bytes_written < size)
2367 bytes_written +=
2368 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2369 size - bytes_written, error);
2370
2371 return bytes_written;
2372 }
2373
WriteScalarToMemory(addr_t addr,const Scalar & scalar,size_t byte_size,Status & error)2374 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2375 size_t byte_size, Status &error) {
2376 if (byte_size == UINT32_MAX)
2377 byte_size = scalar.GetByteSize();
2378 if (byte_size > 0) {
2379 uint8_t buf[32];
2380 const size_t mem_size =
2381 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2382 if (mem_size > 0)
2383 return WriteMemory(addr, buf, mem_size, error);
2384 else
2385 error.SetErrorString("failed to get scalar as memory data");
2386 } else {
2387 error.SetErrorString("invalid scalar value");
2388 }
2389 return 0;
2390 }
2391
ReadScalarIntegerFromMemory(addr_t addr,uint32_t byte_size,bool is_signed,Scalar & scalar,Status & error)2392 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2393 bool is_signed, Scalar &scalar,
2394 Status &error) {
2395 uint64_t uval = 0;
2396 if (byte_size == 0) {
2397 error.SetErrorString("byte size is zero");
2398 } else if (byte_size & (byte_size - 1)) {
2399 error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2400 byte_size);
2401 } else if (byte_size <= sizeof(uval)) {
2402 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2403 if (bytes_read == byte_size) {
2404 DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2405 GetAddressByteSize());
2406 lldb::offset_t offset = 0;
2407 if (byte_size <= 4)
2408 scalar = data.GetMaxU32(&offset, byte_size);
2409 else
2410 scalar = data.GetMaxU64(&offset, byte_size);
2411 if (is_signed)
2412 scalar.SignExtend(byte_size * 8);
2413 return bytes_read;
2414 }
2415 } else {
2416 error.SetErrorStringWithFormat(
2417 "byte size of %u is too large for integer scalar type", byte_size);
2418 }
2419 return 0;
2420 }
2421
WriteObjectFile(std::vector<ObjectFile::LoadableData> entries)2422 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2423 Status error;
2424 for (const auto &Entry : entries) {
2425 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2426 error);
2427 if (!error.Success())
2428 break;
2429 }
2430 return error;
2431 }
2432
2433 #define USE_ALLOCATE_MEMORY_CACHE 1
AllocateMemory(size_t size,uint32_t permissions,Status & error)2434 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2435 Status &error) {
2436 if (GetPrivateState() != eStateStopped) {
2437 error.SetErrorToGenericError();
2438 return LLDB_INVALID_ADDRESS;
2439 }
2440
2441 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2442 return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2443 #else
2444 addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2445 Log *log = GetLog(LLDBLog::Process);
2446 LLDB_LOGF(log,
2447 "Process::AllocateMemory(size=%" PRIu64
2448 ", permissions=%s) => 0x%16.16" PRIx64
2449 " (m_stop_id = %u m_memory_id = %u)",
2450 (uint64_t)size, GetPermissionsAsCString(permissions),
2451 (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2452 m_mod_id.GetMemoryID());
2453 return allocated_addr;
2454 #endif
2455 }
2456
CallocateMemory(size_t size,uint32_t permissions,Status & error)2457 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2458 Status &error) {
2459 addr_t return_addr = AllocateMemory(size, permissions, error);
2460 if (error.Success()) {
2461 std::string buffer(size, 0);
2462 WriteMemory(return_addr, buffer.c_str(), size, error);
2463 }
2464 return return_addr;
2465 }
2466
CanJIT()2467 bool Process::CanJIT() {
2468 if (m_can_jit == eCanJITDontKnow) {
2469 Log *log = GetLog(LLDBLog::Process);
2470 Status err;
2471
2472 uint64_t allocated_memory = AllocateMemory(
2473 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2474 err);
2475
2476 if (err.Success()) {
2477 m_can_jit = eCanJITYes;
2478 LLDB_LOGF(log,
2479 "Process::%s pid %" PRIu64
2480 " allocation test passed, CanJIT () is true",
2481 __FUNCTION__, GetID());
2482 } else {
2483 m_can_jit = eCanJITNo;
2484 LLDB_LOGF(log,
2485 "Process::%s pid %" PRIu64
2486 " allocation test failed, CanJIT () is false: %s",
2487 __FUNCTION__, GetID(), err.AsCString());
2488 }
2489
2490 DeallocateMemory(allocated_memory);
2491 }
2492
2493 return m_can_jit == eCanJITYes;
2494 }
2495
SetCanJIT(bool can_jit)2496 void Process::SetCanJIT(bool can_jit) {
2497 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2498 }
2499
SetCanRunCode(bool can_run_code)2500 void Process::SetCanRunCode(bool can_run_code) {
2501 SetCanJIT(can_run_code);
2502 m_can_interpret_function_calls = can_run_code;
2503 }
2504
DeallocateMemory(addr_t ptr)2505 Status Process::DeallocateMemory(addr_t ptr) {
2506 Status error;
2507 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2508 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2509 error.SetErrorStringWithFormat(
2510 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2511 }
2512 #else
2513 error = DoDeallocateMemory(ptr);
2514
2515 Log *log = GetLog(LLDBLog::Process);
2516 LLDB_LOGF(log,
2517 "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2518 ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2519 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2520 m_mod_id.GetMemoryID());
2521 #endif
2522 return error;
2523 }
2524
GetWatchpointReportedAfter()2525 bool Process::GetWatchpointReportedAfter() {
2526 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2527 return *subclass_override;
2528
2529 bool reported_after = true;
2530 const ArchSpec &arch = GetTarget().GetArchitecture();
2531 if (!arch.IsValid())
2532 return reported_after;
2533 llvm::Triple triple = arch.GetTriple();
2534
2535 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2536 triple.isAArch64() || triple.isArmMClass() || triple.isARM())
2537 reported_after = false;
2538
2539 return reported_after;
2540 }
2541
ReadModuleFromMemory(const FileSpec & file_spec,lldb::addr_t header_addr,size_t size_to_read)2542 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2543 lldb::addr_t header_addr,
2544 size_t size_to_read) {
2545 Log *log = GetLog(LLDBLog::Host);
2546 if (log) {
2547 LLDB_LOGF(log,
2548 "Process::ReadModuleFromMemory reading %s binary from memory",
2549 file_spec.GetPath().c_str());
2550 }
2551 ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2552 if (module_sp) {
2553 Status error;
2554 std::unique_ptr<Progress> progress_up;
2555 // Reading an ObjectFile from a local corefile is very fast,
2556 // only print a progress update if we're reading from a
2557 // live session which might go over gdb remote serial protocol.
2558 if (IsLiveDebugSession())
2559 progress_up = std::make_unique<Progress>(
2560 "Reading binary from memory", file_spec.GetFilename().GetString());
2561
2562 ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2563 shared_from_this(), header_addr, error, size_to_read);
2564 if (objfile)
2565 return module_sp;
2566 }
2567 return ModuleSP();
2568 }
2569
GetLoadAddressPermissions(lldb::addr_t load_addr,uint32_t & permissions)2570 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2571 uint32_t &permissions) {
2572 MemoryRegionInfo range_info;
2573 permissions = 0;
2574 Status error(GetMemoryRegionInfo(load_addr, range_info));
2575 if (!error.Success())
2576 return false;
2577 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2578 range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2579 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2580 return false;
2581 }
2582 permissions = range_info.GetLLDBPermissions();
2583 return true;
2584 }
2585
EnableWatchpoint(WatchpointSP wp_sp,bool notify)2586 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
2587 Status error;
2588 error.SetErrorString("watchpoints are not supported");
2589 return error;
2590 }
2591
DisableWatchpoint(WatchpointSP wp_sp,bool notify)2592 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
2593 Status error;
2594 error.SetErrorString("watchpoints are not supported");
2595 return error;
2596 }
2597
2598 StateType
WaitForProcessStopPrivate(EventSP & event_sp,const Timeout<std::micro> & timeout)2599 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2600 const Timeout<std::micro> &timeout) {
2601 StateType state;
2602
2603 while (true) {
2604 event_sp.reset();
2605 state = GetStateChangedEventsPrivate(event_sp, timeout);
2606
2607 if (StateIsStoppedState(state, false))
2608 break;
2609
2610 // If state is invalid, then we timed out
2611 if (state == eStateInvalid)
2612 break;
2613
2614 if (event_sp)
2615 HandlePrivateEvent(event_sp);
2616 }
2617 return state;
2618 }
2619
LoadOperatingSystemPlugin(bool flush)2620 void Process::LoadOperatingSystemPlugin(bool flush) {
2621 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2622 if (flush)
2623 m_thread_list.Clear();
2624 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2625 if (flush)
2626 Flush();
2627 }
2628
Launch(ProcessLaunchInfo & launch_info)2629 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2630 StateType state_after_launch = eStateInvalid;
2631 EventSP first_stop_event_sp;
2632 Status status =
2633 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2634 if (status.Fail())
2635 return status;
2636
2637 if (state_after_launch != eStateStopped &&
2638 state_after_launch != eStateCrashed)
2639 return Status();
2640
2641 // Note, the stop event was consumed above, but not handled. This
2642 // was done to give DidLaunch a chance to run. The target is either
2643 // stopped or crashed. Directly set the state. This is done to
2644 // prevent a stop message with a bunch of spurious output on thread
2645 // status, as well as not pop a ProcessIOHandler.
2646 SetPublicState(state_after_launch, false);
2647
2648 if (PrivateStateThreadIsValid())
2649 ResumePrivateStateThread();
2650 else
2651 StartPrivateStateThread();
2652
2653 // Target was stopped at entry as was intended. Need to notify the
2654 // listeners about it.
2655 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2656 HandlePrivateEvent(first_stop_event_sp);
2657
2658 return Status();
2659 }
2660
LaunchPrivate(ProcessLaunchInfo & launch_info,StateType & state,EventSP & event_sp)2661 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2662 EventSP &event_sp) {
2663 Status error;
2664 m_abi_sp.reset();
2665 m_dyld_up.reset();
2666 m_jit_loaders_up.reset();
2667 m_system_runtime_up.reset();
2668 m_os_up.reset();
2669
2670 {
2671 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2672 m_process_input_reader.reset();
2673 }
2674
2675 Module *exe_module = GetTarget().GetExecutableModulePointer();
2676
2677 // The "remote executable path" is hooked up to the local Executable
2678 // module. But we should be able to debug a remote process even if the
2679 // executable module only exists on the remote. However, there needs to
2680 // be a way to express this path, without actually having a module.
2681 // The way to do that is to set the ExecutableFile in the LaunchInfo.
2682 // Figure that out here:
2683
2684 FileSpec exe_spec_to_use;
2685 if (!exe_module) {
2686 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2687 error.SetErrorString("executable module does not exist");
2688 return error;
2689 }
2690 exe_spec_to_use = launch_info.GetExecutableFile();
2691 } else
2692 exe_spec_to_use = exe_module->GetFileSpec();
2693
2694 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2695 // Install anything that might need to be installed prior to launching.
2696 // For host systems, this will do nothing, but if we are connected to a
2697 // remote platform it will install any needed binaries
2698 error = GetTarget().Install(&launch_info);
2699 if (error.Fail())
2700 return error;
2701 }
2702
2703 // Listen and queue events that are broadcasted during the process launch.
2704 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2705 HijackProcessEvents(listener_sp);
2706 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2707
2708 if (PrivateStateThreadIsValid())
2709 PausePrivateStateThread();
2710
2711 error = WillLaunch(exe_module);
2712 if (error.Fail()) {
2713 std::string local_exec_file_path = exe_spec_to_use.GetPath();
2714 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2715 }
2716
2717 const bool restarted = false;
2718 SetPublicState(eStateLaunching, restarted);
2719 m_should_detach = false;
2720
2721 if (m_public_run_lock.TrySetRunning()) {
2722 // Now launch using these arguments.
2723 error = DoLaunch(exe_module, launch_info);
2724 } else {
2725 // This shouldn't happen
2726 error.SetErrorString("failed to acquire process run lock");
2727 }
2728
2729 if (error.Fail()) {
2730 if (GetID() != LLDB_INVALID_PROCESS_ID) {
2731 SetID(LLDB_INVALID_PROCESS_ID);
2732 const char *error_string = error.AsCString();
2733 if (error_string == nullptr)
2734 error_string = "launch failed";
2735 SetExitStatus(-1, error_string);
2736 }
2737 return error;
2738 }
2739
2740 // Now wait for the process to launch and return control to us, and then
2741 // call DidLaunch:
2742 state = WaitForProcessStopPrivate(event_sp, seconds(10));
2743
2744 if (state == eStateInvalid || !event_sp) {
2745 // We were able to launch the process, but we failed to catch the
2746 // initial stop.
2747 error.SetErrorString("failed to catch stop after launch");
2748 SetExitStatus(0, error.AsCString());
2749 Destroy(false);
2750 return error;
2751 }
2752
2753 if (state == eStateExited) {
2754 // We exited while trying to launch somehow. Don't call DidLaunch
2755 // as that's not likely to work, and return an invalid pid.
2756 HandlePrivateEvent(event_sp);
2757 return Status();
2758 }
2759
2760 if (state == eStateStopped || state == eStateCrashed) {
2761 DidLaunch();
2762
2763 // Now that we know the process type, update its signal responses from the
2764 // ones stored in the Target:
2765 if (m_unix_signals_sp) {
2766 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2767 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2768 }
2769
2770 DynamicLoader *dyld = GetDynamicLoader();
2771 if (dyld)
2772 dyld->DidLaunch();
2773
2774 GetJITLoaders().DidLaunch();
2775
2776 SystemRuntime *system_runtime = GetSystemRuntime();
2777 if (system_runtime)
2778 system_runtime->DidLaunch();
2779
2780 if (!m_os_up)
2781 LoadOperatingSystemPlugin(false);
2782
2783 // We successfully launched the process and stopped, now it the
2784 // right time to set up signal filters before resuming.
2785 UpdateAutomaticSignalFiltering();
2786 return Status();
2787 }
2788
2789 return Status("Unexpected process state after the launch: %s, expected %s, "
2790 "%s, %s or %s",
2791 StateAsCString(state), StateAsCString(eStateInvalid),
2792 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2793 StateAsCString(eStateCrashed));
2794 }
2795
LoadCore()2796 Status Process::LoadCore() {
2797 Status error = DoLoadCore();
2798 if (error.Success()) {
2799 ListenerSP listener_sp(
2800 Listener::MakeListener("lldb.process.load_core_listener"));
2801 HijackProcessEvents(listener_sp);
2802
2803 if (PrivateStateThreadIsValid())
2804 ResumePrivateStateThread();
2805 else
2806 StartPrivateStateThread();
2807
2808 DynamicLoader *dyld = GetDynamicLoader();
2809 if (dyld)
2810 dyld->DidAttach();
2811
2812 GetJITLoaders().DidAttach();
2813
2814 SystemRuntime *system_runtime = GetSystemRuntime();
2815 if (system_runtime)
2816 system_runtime->DidAttach();
2817
2818 if (!m_os_up)
2819 LoadOperatingSystemPlugin(false);
2820
2821 // We successfully loaded a core file, now pretend we stopped so we can
2822 // show all of the threads in the core file and explore the crashed state.
2823 SetPrivateState(eStateStopped);
2824
2825 // Wait for a stopped event since we just posted one above...
2826 lldb::EventSP event_sp;
2827 StateType state =
2828 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2829 nullptr, true, SelectMostRelevantFrame);
2830
2831 if (!StateIsStoppedState(state, false)) {
2832 Log *log = GetLog(LLDBLog::Process);
2833 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2834 StateAsCString(state));
2835 error.SetErrorString(
2836 "Did not get stopped event after loading the core file.");
2837 }
2838 RestoreProcessEvents();
2839 }
2840 return error;
2841 }
2842
GetDynamicLoader()2843 DynamicLoader *Process::GetDynamicLoader() {
2844 if (!m_dyld_up)
2845 m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2846 return m_dyld_up.get();
2847 }
2848
SetDynamicLoader(DynamicLoaderUP dyld_up)2849 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
2850 m_dyld_up = std::move(dyld_up);
2851 }
2852
GetAuxvData()2853 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2854
SaveCore(llvm::StringRef outfile)2855 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2856 return false;
2857 }
2858
GetJITLoaders()2859 JITLoaderList &Process::GetJITLoaders() {
2860 if (!m_jit_loaders_up) {
2861 m_jit_loaders_up = std::make_unique<JITLoaderList>();
2862 JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2863 }
2864 return *m_jit_loaders_up;
2865 }
2866
GetSystemRuntime()2867 SystemRuntime *Process::GetSystemRuntime() {
2868 if (!m_system_runtime_up)
2869 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2870 return m_system_runtime_up.get();
2871 }
2872
AttachCompletionHandler(Process * process,uint32_t exec_count)2873 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2874 uint32_t exec_count)
2875 : NextEventAction(process), m_exec_count(exec_count) {
2876 Log *log = GetLog(LLDBLog::Process);
2877 LLDB_LOGF(
2878 log,
2879 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2880 __FUNCTION__, static_cast<void *>(process), exec_count);
2881 }
2882
2883 Process::NextEventAction::EventActionResult
PerformAction(lldb::EventSP & event_sp)2884 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2885 Log *log = GetLog(LLDBLog::Process);
2886
2887 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2888 LLDB_LOGF(log,
2889 "Process::AttachCompletionHandler::%s called with state %s (%d)",
2890 __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2891
2892 switch (state) {
2893 case eStateAttaching:
2894 return eEventActionSuccess;
2895
2896 case eStateRunning:
2897 case eStateConnected:
2898 return eEventActionRetry;
2899
2900 case eStateStopped:
2901 case eStateCrashed:
2902 // During attach, prior to sending the eStateStopped event,
2903 // lldb_private::Process subclasses must set the new process ID.
2904 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2905 // We don't want these events to be reported, so go set the
2906 // ShouldReportStop here:
2907 m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2908
2909 if (m_exec_count > 0) {
2910 --m_exec_count;
2911
2912 LLDB_LOGF(log,
2913 "Process::AttachCompletionHandler::%s state %s: reduced "
2914 "remaining exec count to %" PRIu32 ", requesting resume",
2915 __FUNCTION__, StateAsCString(state), m_exec_count);
2916
2917 RequestResume();
2918 return eEventActionRetry;
2919 } else {
2920 LLDB_LOGF(log,
2921 "Process::AttachCompletionHandler::%s state %s: no more "
2922 "execs expected to start, continuing with attach",
2923 __FUNCTION__, StateAsCString(state));
2924
2925 m_process->CompleteAttach();
2926 return eEventActionSuccess;
2927 }
2928 break;
2929
2930 default:
2931 case eStateExited:
2932 case eStateInvalid:
2933 break;
2934 }
2935
2936 m_exit_string.assign("No valid Process");
2937 return eEventActionExit;
2938 }
2939
2940 Process::NextEventAction::EventActionResult
HandleBeingInterrupted()2941 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2942 return eEventActionSuccess;
2943 }
2944
GetExitString()2945 const char *Process::AttachCompletionHandler::GetExitString() {
2946 return m_exit_string.c_str();
2947 }
2948
GetListenerForProcess(Debugger & debugger)2949 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2950 if (m_listener_sp)
2951 return m_listener_sp;
2952 else
2953 return debugger.GetListener();
2954 }
2955
WillLaunch(Module * module)2956 Status Process::WillLaunch(Module *module) {
2957 return DoWillLaunch(module);
2958 }
2959
WillAttachToProcessWithID(lldb::pid_t pid)2960 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
2961 return DoWillAttachToProcessWithID(pid);
2962 }
2963
WillAttachToProcessWithName(const char * process_name,bool wait_for_launch)2964 Status Process::WillAttachToProcessWithName(const char *process_name,
2965 bool wait_for_launch) {
2966 return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2967 }
2968
Attach(ProcessAttachInfo & attach_info)2969 Status Process::Attach(ProcessAttachInfo &attach_info) {
2970 m_abi_sp.reset();
2971 {
2972 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2973 m_process_input_reader.reset();
2974 }
2975 m_dyld_up.reset();
2976 m_jit_loaders_up.reset();
2977 m_system_runtime_up.reset();
2978 m_os_up.reset();
2979
2980 lldb::pid_t attach_pid = attach_info.GetProcessID();
2981 Status error;
2982 if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2983 char process_name[PATH_MAX];
2984
2985 if (attach_info.GetExecutableFile().GetPath(process_name,
2986 sizeof(process_name))) {
2987 const bool wait_for_launch = attach_info.GetWaitForLaunch();
2988
2989 if (wait_for_launch) {
2990 error = WillAttachToProcessWithName(process_name, wait_for_launch);
2991 if (error.Success()) {
2992 if (m_public_run_lock.TrySetRunning()) {
2993 m_should_detach = true;
2994 const bool restarted = false;
2995 SetPublicState(eStateAttaching, restarted);
2996 // Now attach using these arguments.
2997 error = DoAttachToProcessWithName(process_name, attach_info);
2998 } else {
2999 // This shouldn't happen
3000 error.SetErrorString("failed to acquire process run lock");
3001 }
3002
3003 if (error.Fail()) {
3004 if (GetID() != LLDB_INVALID_PROCESS_ID) {
3005 SetID(LLDB_INVALID_PROCESS_ID);
3006 if (error.AsCString() == nullptr)
3007 error.SetErrorString("attach failed");
3008
3009 SetExitStatus(-1, error.AsCString());
3010 }
3011 } else {
3012 SetNextEventAction(new Process::AttachCompletionHandler(
3013 this, attach_info.GetResumeCount()));
3014 StartPrivateStateThread();
3015 }
3016 return error;
3017 }
3018 } else {
3019 ProcessInstanceInfoList process_infos;
3020 PlatformSP platform_sp(GetTarget().GetPlatform());
3021
3022 if (platform_sp) {
3023 ProcessInstanceInfoMatch match_info;
3024 match_info.GetProcessInfo() = attach_info;
3025 match_info.SetNameMatchType(NameMatch::Equals);
3026 platform_sp->FindProcesses(match_info, process_infos);
3027 const uint32_t num_matches = process_infos.size();
3028 if (num_matches == 1) {
3029 attach_pid = process_infos[0].GetProcessID();
3030 // Fall through and attach using the above process ID
3031 } else {
3032 match_info.GetProcessInfo().GetExecutableFile().GetPath(
3033 process_name, sizeof(process_name));
3034 if (num_matches > 1) {
3035 StreamString s;
3036 ProcessInstanceInfo::DumpTableHeader(s, true, false);
3037 for (size_t i = 0; i < num_matches; i++) {
3038 process_infos[i].DumpAsTableRow(
3039 s, platform_sp->GetUserIDResolver(), true, false);
3040 }
3041 error.SetErrorStringWithFormat(
3042 "more than one process named %s:\n%s", process_name,
3043 s.GetData());
3044 } else
3045 error.SetErrorStringWithFormat(
3046 "could not find a process named %s", process_name);
3047 }
3048 } else {
3049 error.SetErrorString(
3050 "invalid platform, can't find processes by name");
3051 return error;
3052 }
3053 }
3054 } else {
3055 error.SetErrorString("invalid process name");
3056 }
3057 }
3058
3059 if (attach_pid != LLDB_INVALID_PROCESS_ID) {
3060 error = WillAttachToProcessWithID(attach_pid);
3061 if (error.Success()) {
3062
3063 if (m_public_run_lock.TrySetRunning()) {
3064 // Now attach using these arguments.
3065 m_should_detach = true;
3066 const bool restarted = false;
3067 SetPublicState(eStateAttaching, restarted);
3068 error = DoAttachToProcessWithID(attach_pid, attach_info);
3069 } else {
3070 // This shouldn't happen
3071 error.SetErrorString("failed to acquire process run lock");
3072 }
3073
3074 if (error.Success()) {
3075 SetNextEventAction(new Process::AttachCompletionHandler(
3076 this, attach_info.GetResumeCount()));
3077 StartPrivateStateThread();
3078 } else {
3079 if (GetID() != LLDB_INVALID_PROCESS_ID)
3080 SetID(LLDB_INVALID_PROCESS_ID);
3081
3082 const char *error_string = error.AsCString();
3083 if (error_string == nullptr)
3084 error_string = "attach failed";
3085
3086 SetExitStatus(-1, error_string);
3087 }
3088 }
3089 }
3090 return error;
3091 }
3092
CompleteAttach()3093 void Process::CompleteAttach() {
3094 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
3095 LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
3096
3097 // Let the process subclass figure out at much as it can about the process
3098 // before we go looking for a dynamic loader plug-in.
3099 ArchSpec process_arch;
3100 DidAttach(process_arch);
3101
3102 if (process_arch.IsValid()) {
3103 LLDB_LOG(log,
3104 "Process::{0} replacing process architecture with DidAttach() "
3105 "architecture: \"{1}\"",
3106 __FUNCTION__, process_arch.GetTriple().getTriple());
3107 GetTarget().SetArchitecture(process_arch);
3108 }
3109
3110 // We just attached. If we have a platform, ask it for the process
3111 // architecture, and if it isn't the same as the one we've already set,
3112 // switch architectures.
3113 PlatformSP platform_sp(GetTarget().GetPlatform());
3114 assert(platform_sp);
3115 ArchSpec process_host_arch = GetSystemArchitecture();
3116 if (platform_sp) {
3117 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3118 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
3119 target_arch, process_host_arch,
3120 ArchSpec::CompatibleMatch, nullptr)) {
3121 ArchSpec platform_arch;
3122 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
3123 target_arch, process_host_arch, &platform_arch);
3124 if (platform_sp) {
3125 GetTarget().SetPlatform(platform_sp);
3126 GetTarget().SetArchitecture(platform_arch);
3127 LLDB_LOG(log,
3128 "switching platform to {0} and architecture to {1} based on "
3129 "info from attach",
3130 platform_sp->GetName(), platform_arch.GetTriple().getTriple());
3131 }
3132 } else if (!process_arch.IsValid()) {
3133 ProcessInstanceInfo process_info;
3134 GetProcessInfo(process_info);
3135 const ArchSpec &process_arch = process_info.GetArchitecture();
3136 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3137 if (process_arch.IsValid() &&
3138 target_arch.IsCompatibleMatch(process_arch) &&
3139 !target_arch.IsExactMatch(process_arch)) {
3140 GetTarget().SetArchitecture(process_arch);
3141 LLDB_LOGF(log,
3142 "Process::%s switching architecture to %s based on info "
3143 "the platform retrieved for pid %" PRIu64,
3144 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
3145 GetID());
3146 }
3147 }
3148 }
3149 // Now that we know the process type, update its signal responses from the
3150 // ones stored in the Target:
3151 if (m_unix_signals_sp) {
3152 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
3153 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
3154 }
3155
3156 // We have completed the attach, now it is time to find the dynamic loader
3157 // plug-in
3158 DynamicLoader *dyld = GetDynamicLoader();
3159 if (dyld) {
3160 dyld->DidAttach();
3161 if (log) {
3162 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3163 LLDB_LOG(log,
3164 "after DynamicLoader::DidAttach(), target "
3165 "executable is {0} (using {1} plugin)",
3166 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3167 dyld->GetPluginName());
3168 }
3169 }
3170
3171 GetJITLoaders().DidAttach();
3172
3173 SystemRuntime *system_runtime = GetSystemRuntime();
3174 if (system_runtime) {
3175 system_runtime->DidAttach();
3176 if (log) {
3177 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3178 LLDB_LOG(log,
3179 "after SystemRuntime::DidAttach(), target "
3180 "executable is {0} (using {1} plugin)",
3181 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3182 system_runtime->GetPluginName());
3183 }
3184 }
3185
3186 if (!m_os_up) {
3187 LoadOperatingSystemPlugin(false);
3188 if (m_os_up) {
3189 // Somebody might have gotten threads before now, but we need to force the
3190 // update after we've loaded the OperatingSystem plugin or it won't get a
3191 // chance to process the threads.
3192 m_thread_list.Clear();
3193 UpdateThreadListIfNeeded();
3194 }
3195 }
3196 // Figure out which one is the executable, and set that in our target:
3197 ModuleSP new_executable_module_sp;
3198 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3199 if (module_sp && module_sp->IsExecutable()) {
3200 if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3201 new_executable_module_sp = module_sp;
3202 break;
3203 }
3204 }
3205 if (new_executable_module_sp) {
3206 GetTarget().SetExecutableModule(new_executable_module_sp,
3207 eLoadDependentsNo);
3208 if (log) {
3209 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3210 LLDB_LOGF(
3211 log,
3212 "Process::%s after looping through modules, target executable is %s",
3213 __FUNCTION__,
3214 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3215 : "<none>");
3216 }
3217 }
3218 }
3219
ConnectRemote(llvm::StringRef remote_url)3220 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3221 m_abi_sp.reset();
3222 {
3223 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3224 m_process_input_reader.reset();
3225 }
3226
3227 // Find the process and its architecture. Make sure it matches the
3228 // architecture of the current Target, and if not adjust it.
3229
3230 Status error(DoConnectRemote(remote_url));
3231 if (error.Success()) {
3232 if (GetID() != LLDB_INVALID_PROCESS_ID) {
3233 EventSP event_sp;
3234 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3235
3236 if (state == eStateStopped || state == eStateCrashed) {
3237 // If we attached and actually have a process on the other end, then
3238 // this ended up being the equivalent of an attach.
3239 CompleteAttach();
3240
3241 // This delays passing the stopped event to listeners till
3242 // CompleteAttach gets a chance to complete...
3243 HandlePrivateEvent(event_sp);
3244 }
3245 }
3246
3247 if (PrivateStateThreadIsValid())
3248 ResumePrivateStateThread();
3249 else
3250 StartPrivateStateThread();
3251 }
3252 return error;
3253 }
3254
PrivateResume()3255 Status Process::PrivateResume() {
3256 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3257 LLDB_LOGF(log,
3258 "Process::PrivateResume() m_stop_id = %u, public state: %s "
3259 "private state: %s",
3260 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3261 StateAsCString(m_private_state.GetValue()));
3262
3263 // If signals handing status changed we might want to update our signal
3264 // filters before resuming.
3265 UpdateAutomaticSignalFiltering();
3266
3267 Status error(WillResume());
3268 // Tell the process it is about to resume before the thread list
3269 if (error.Success()) {
3270 // Now let the thread list know we are about to resume so it can let all of
3271 // our threads know that they are about to be resumed. Threads will each be
3272 // called with Thread::WillResume(StateType) where StateType contains the
3273 // state that they are supposed to have when the process is resumed
3274 // (suspended/running/stepping). Threads should also check their resume
3275 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3276 // start back up with a signal.
3277 if (m_thread_list.WillResume()) {
3278 // Last thing, do the PreResumeActions.
3279 if (!RunPreResumeActions()) {
3280 error.SetErrorString(
3281 "Process::PrivateResume PreResumeActions failed, not resuming.");
3282 } else {
3283 m_mod_id.BumpResumeID();
3284 error = DoResume();
3285 if (error.Success()) {
3286 DidResume();
3287 m_thread_list.DidResume();
3288 LLDB_LOGF(log, "Process thinks the process has resumed.");
3289 } else {
3290 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3291 return error;
3292 }
3293 }
3294 } else {
3295 // Somebody wanted to run without running (e.g. we were faking a step
3296 // from one frame of a set of inlined frames that share the same PC to
3297 // another.) So generate a continue & a stopped event, and let the world
3298 // handle them.
3299 LLDB_LOGF(log,
3300 "Process::PrivateResume() asked to simulate a start & stop.");
3301
3302 SetPrivateState(eStateRunning);
3303 SetPrivateState(eStateStopped);
3304 }
3305 } else
3306 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3307 error.AsCString("<unknown error>"));
3308 return error;
3309 }
3310
Halt(bool clear_thread_plans,bool use_run_lock)3311 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3312 if (!StateIsRunningState(m_public_state.GetValue()))
3313 return Status("Process is not running.");
3314
3315 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3316 // case it was already set and some thread plan logic calls halt on its own.
3317 m_clear_thread_plans_on_stop |= clear_thread_plans;
3318
3319 ListenerSP halt_listener_sp(
3320 Listener::MakeListener("lldb.process.halt_listener"));
3321 HijackProcessEvents(halt_listener_sp);
3322
3323 EventSP event_sp;
3324
3325 SendAsyncInterrupt();
3326
3327 if (m_public_state.GetValue() == eStateAttaching) {
3328 // Don't hijack and eat the eStateExited as the code that was doing the
3329 // attach will be waiting for this event...
3330 RestoreProcessEvents();
3331 Destroy(false);
3332 SetExitStatus(SIGKILL, "Cancelled async attach.");
3333 return Status();
3334 }
3335
3336 // Wait for the process halt timeout seconds for the process to stop.
3337 // If we are going to use the run lock, that means we're stopping out to the
3338 // user, so we should also select the most relevant frame.
3339 SelectMostRelevant select_most_relevant =
3340 use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
3341 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3342 halt_listener_sp, nullptr,
3343 use_run_lock, select_most_relevant);
3344 RestoreProcessEvents();
3345
3346 if (state == eStateInvalid || !event_sp) {
3347 // We timed out and didn't get a stop event...
3348 return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3349 }
3350
3351 BroadcastEvent(event_sp);
3352
3353 return Status();
3354 }
3355
FindInMemory(lldb::addr_t low,lldb::addr_t high,const uint8_t * buf,size_t size)3356 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high,
3357 const uint8_t *buf, size_t size) {
3358 const size_t region_size = high - low;
3359
3360 if (region_size < size)
3361 return LLDB_INVALID_ADDRESS;
3362
3363 std::vector<size_t> bad_char_heuristic(256, size);
3364 ProcessMemoryIterator iterator(*this, low);
3365
3366 for (size_t idx = 0; idx < size - 1; idx++) {
3367 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
3368 bad_char_heuristic[bcu_idx] = size - idx - 1;
3369 }
3370 for (size_t s = 0; s <= (region_size - size);) {
3371 int64_t j = size - 1;
3372 while (j >= 0 && buf[j] == iterator[s + j])
3373 j--;
3374 if (j < 0)
3375 return low + s;
3376 else
3377 s += bad_char_heuristic[iterator[s + size - 1]];
3378 }
3379
3380 return LLDB_INVALID_ADDRESS;
3381 }
3382
StopForDestroyOrDetach(lldb::EventSP & exit_event_sp)3383 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3384 Status error;
3385
3386 // Check both the public & private states here. If we're hung evaluating an
3387 // expression, for instance, then the public state will be stopped, but we
3388 // still need to interrupt.
3389 if (m_public_state.GetValue() == eStateRunning ||
3390 m_private_state.GetValue() == eStateRunning) {
3391 Log *log = GetLog(LLDBLog::Process);
3392 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3393
3394 ListenerSP listener_sp(
3395 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3396 HijackProcessEvents(listener_sp);
3397
3398 SendAsyncInterrupt();
3399
3400 // Consume the interrupt event.
3401 StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3402 &exit_event_sp, true, listener_sp);
3403
3404 RestoreProcessEvents();
3405
3406 // If the process exited while we were waiting for it to stop, put the
3407 // exited event into the shared pointer passed in and return. Our caller
3408 // doesn't need to do anything else, since they don't have a process
3409 // anymore...
3410
3411 if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3412 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3413 __FUNCTION__);
3414 return error;
3415 } else
3416 exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3417
3418 if (state != eStateStopped) {
3419 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3420 StateAsCString(state));
3421 // If we really couldn't stop the process then we should just error out
3422 // here, but if the lower levels just bobbled sending the event and we
3423 // really are stopped, then continue on.
3424 StateType private_state = m_private_state.GetValue();
3425 if (private_state != eStateStopped) {
3426 return Status(
3427 "Attempt to stop the target in order to detach timed out. "
3428 "State = %s",
3429 StateAsCString(GetState()));
3430 }
3431 }
3432 }
3433 return error;
3434 }
3435
Detach(bool keep_stopped)3436 Status Process::Detach(bool keep_stopped) {
3437 EventSP exit_event_sp;
3438 Status error;
3439 m_destroy_in_process = true;
3440
3441 error = WillDetach();
3442
3443 if (error.Success()) {
3444 if (DetachRequiresHalt()) {
3445 error = StopForDestroyOrDetach(exit_event_sp);
3446 if (!error.Success()) {
3447 m_destroy_in_process = false;
3448 return error;
3449 } else if (exit_event_sp) {
3450 // We shouldn't need to do anything else here. There's no process left
3451 // to detach from...
3452 StopPrivateStateThread();
3453 m_destroy_in_process = false;
3454 return error;
3455 }
3456 }
3457
3458 m_thread_list.DiscardThreadPlans();
3459 DisableAllBreakpointSites();
3460
3461 error = DoDetach(keep_stopped);
3462 if (error.Success()) {
3463 DidDetach();
3464 StopPrivateStateThread();
3465 } else {
3466 return error;
3467 }
3468 }
3469 m_destroy_in_process = false;
3470
3471 // If we exited when we were waiting for a process to stop, then forward the
3472 // event here so we don't lose the event
3473 if (exit_event_sp) {
3474 // Directly broadcast our exited event because we shut down our private
3475 // state thread above
3476 BroadcastEvent(exit_event_sp);
3477 }
3478
3479 // If we have been interrupted (to kill us) in the middle of running, we may
3480 // not end up propagating the last events through the event system, in which
3481 // case we might strand the write lock. Unlock it here so when we do to tear
3482 // down the process we don't get an error destroying the lock.
3483
3484 m_public_run_lock.SetStopped();
3485 return error;
3486 }
3487
Destroy(bool force_kill)3488 Status Process::Destroy(bool force_kill) {
3489 // If we've already called Process::Finalize then there's nothing useful to
3490 // be done here. Finalize has actually called Destroy already.
3491 if (m_finalizing)
3492 return {};
3493 return DestroyImpl(force_kill);
3494 }
3495
DestroyImpl(bool force_kill)3496 Status Process::DestroyImpl(bool force_kill) {
3497 // Tell ourselves we are in the process of destroying the process, so that we
3498 // don't do any unnecessary work that might hinder the destruction. Remember
3499 // to set this back to false when we are done. That way if the attempt
3500 // failed and the process stays around for some reason it won't be in a
3501 // confused state.
3502
3503 if (force_kill)
3504 m_should_detach = false;
3505
3506 if (GetShouldDetach()) {
3507 // FIXME: This will have to be a process setting:
3508 bool keep_stopped = false;
3509 Detach(keep_stopped);
3510 }
3511
3512 m_destroy_in_process = true;
3513
3514 Status error(WillDestroy());
3515 if (error.Success()) {
3516 EventSP exit_event_sp;
3517 if (DestroyRequiresHalt()) {
3518 error = StopForDestroyOrDetach(exit_event_sp);
3519 }
3520
3521 if (m_public_state.GetValue() == eStateStopped) {
3522 // Ditch all thread plans, and remove all our breakpoints: in case we
3523 // have to restart the target to kill it, we don't want it hitting a
3524 // breakpoint... Only do this if we've stopped, however, since if we
3525 // didn't manage to halt it above, then we're not going to have much luck
3526 // doing this now.
3527 m_thread_list.DiscardThreadPlans();
3528 DisableAllBreakpointSites();
3529 }
3530
3531 error = DoDestroy();
3532 if (error.Success()) {
3533 DidDestroy();
3534 StopPrivateStateThread();
3535 }
3536 m_stdio_communication.StopReadThread();
3537 m_stdio_communication.Disconnect();
3538 m_stdin_forward = false;
3539
3540 {
3541 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3542 if (m_process_input_reader) {
3543 m_process_input_reader->SetIsDone(true);
3544 m_process_input_reader->Cancel();
3545 m_process_input_reader.reset();
3546 }
3547 }
3548
3549 // If we exited when we were waiting for a process to stop, then forward
3550 // the event here so we don't lose the event
3551 if (exit_event_sp) {
3552 // Directly broadcast our exited event because we shut down our private
3553 // state thread above
3554 BroadcastEvent(exit_event_sp);
3555 }
3556
3557 // If we have been interrupted (to kill us) in the middle of running, we
3558 // may not end up propagating the last events through the event system, in
3559 // which case we might strand the write lock. Unlock it here so when we do
3560 // to tear down the process we don't get an error destroying the lock.
3561 m_public_run_lock.SetStopped();
3562 }
3563
3564 m_destroy_in_process = false;
3565
3566 return error;
3567 }
3568
Signal(int signal)3569 Status Process::Signal(int signal) {
3570 Status error(WillSignal());
3571 if (error.Success()) {
3572 error = DoSignal(signal);
3573 if (error.Success())
3574 DidSignal();
3575 }
3576 return error;
3577 }
3578
SetUnixSignals(UnixSignalsSP && signals_sp)3579 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3580 assert(signals_sp && "null signals_sp");
3581 m_unix_signals_sp = std::move(signals_sp);
3582 }
3583
GetUnixSignals()3584 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3585 assert(m_unix_signals_sp && "null m_unix_signals_sp");
3586 return m_unix_signals_sp;
3587 }
3588
GetByteOrder() const3589 lldb::ByteOrder Process::GetByteOrder() const {
3590 return GetTarget().GetArchitecture().GetByteOrder();
3591 }
3592
GetAddressByteSize() const3593 uint32_t Process::GetAddressByteSize() const {
3594 return GetTarget().GetArchitecture().GetAddressByteSize();
3595 }
3596
ShouldBroadcastEvent(Event * event_ptr)3597 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3598 const StateType state =
3599 Process::ProcessEventData::GetStateFromEvent(event_ptr);
3600 bool return_value = true;
3601 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3602
3603 switch (state) {
3604 case eStateDetached:
3605 case eStateExited:
3606 case eStateUnloaded:
3607 m_stdio_communication.SynchronizeWithReadThread();
3608 m_stdio_communication.StopReadThread();
3609 m_stdio_communication.Disconnect();
3610 m_stdin_forward = false;
3611
3612 [[fallthrough]];
3613 case eStateConnected:
3614 case eStateAttaching:
3615 case eStateLaunching:
3616 // These events indicate changes in the state of the debugging session,
3617 // always report them.
3618 return_value = true;
3619 break;
3620 case eStateInvalid:
3621 // We stopped for no apparent reason, don't report it.
3622 return_value = false;
3623 break;
3624 case eStateRunning:
3625 case eStateStepping:
3626 // If we've started the target running, we handle the cases where we are
3627 // already running and where there is a transition from stopped to running
3628 // differently. running -> running: Automatically suppress extra running
3629 // events stopped -> running: Report except when there is one or more no
3630 // votes
3631 // and no yes votes.
3632 SynchronouslyNotifyStateChanged(state);
3633 if (m_force_next_event_delivery)
3634 return_value = true;
3635 else {
3636 switch (m_last_broadcast_state) {
3637 case eStateRunning:
3638 case eStateStepping:
3639 // We always suppress multiple runnings with no PUBLIC stop in between.
3640 return_value = false;
3641 break;
3642 default:
3643 // TODO: make this work correctly. For now always report
3644 // run if we aren't running so we don't miss any running events. If I
3645 // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3646 // and hit the breakpoints on multiple threads, then somehow during the
3647 // stepping over of all breakpoints no run gets reported.
3648
3649 // This is a transition from stop to run.
3650 switch (m_thread_list.ShouldReportRun(event_ptr)) {
3651 case eVoteYes:
3652 case eVoteNoOpinion:
3653 return_value = true;
3654 break;
3655 case eVoteNo:
3656 return_value = false;
3657 break;
3658 }
3659 break;
3660 }
3661 }
3662 break;
3663 case eStateStopped:
3664 case eStateCrashed:
3665 case eStateSuspended:
3666 // We've stopped. First see if we're going to restart the target. If we
3667 // are going to stop, then we always broadcast the event. If we aren't
3668 // going to stop, let the thread plans decide if we're going to report this
3669 // event. If no thread has an opinion, we don't report it.
3670
3671 m_stdio_communication.SynchronizeWithReadThread();
3672 RefreshStateAfterStop();
3673 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3674 LLDB_LOGF(log,
3675 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3676 "interrupt, state: %s",
3677 static_cast<void *>(event_ptr), StateAsCString(state));
3678 // Even though we know we are going to stop, we should let the threads
3679 // have a look at the stop, so they can properly set their state.
3680 m_thread_list.ShouldStop(event_ptr);
3681 return_value = true;
3682 } else {
3683 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3684 bool should_resume = false;
3685
3686 // It makes no sense to ask "ShouldStop" if we've already been
3687 // restarted... Asking the thread list is also not likely to go well,
3688 // since we are running again. So in that case just report the event.
3689
3690 if (!was_restarted)
3691 should_resume = !m_thread_list.ShouldStop(event_ptr);
3692
3693 if (was_restarted || should_resume || m_resume_requested) {
3694 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3695 LLDB_LOGF(log,
3696 "Process::ShouldBroadcastEvent: should_resume: %i state: "
3697 "%s was_restarted: %i report_stop_vote: %d.",
3698 should_resume, StateAsCString(state), was_restarted,
3699 report_stop_vote);
3700
3701 switch (report_stop_vote) {
3702 case eVoteYes:
3703 return_value = true;
3704 break;
3705 case eVoteNoOpinion:
3706 case eVoteNo:
3707 return_value = false;
3708 break;
3709 }
3710
3711 if (!was_restarted) {
3712 LLDB_LOGF(log,
3713 "Process::ShouldBroadcastEvent (%p) Restarting process "
3714 "from state: %s",
3715 static_cast<void *>(event_ptr), StateAsCString(state));
3716 ProcessEventData::SetRestartedInEvent(event_ptr, true);
3717 PrivateResume();
3718 }
3719 } else {
3720 return_value = true;
3721 SynchronouslyNotifyStateChanged(state);
3722 }
3723 }
3724 break;
3725 }
3726
3727 // Forcing the next event delivery is a one shot deal. So reset it here.
3728 m_force_next_event_delivery = false;
3729
3730 // We do some coalescing of events (for instance two consecutive running
3731 // events get coalesced.) But we only coalesce against events we actually
3732 // broadcast. So we use m_last_broadcast_state to track that. NB - you
3733 // can't use "m_public_state.GetValue()" for that purpose, as was originally
3734 // done, because the PublicState reflects the last event pulled off the
3735 // queue, and there may be several events stacked up on the queue unserviced.
3736 // So the PublicState may not reflect the last broadcasted event yet.
3737 // m_last_broadcast_state gets updated here.
3738
3739 if (return_value)
3740 m_last_broadcast_state = state;
3741
3742 LLDB_LOGF(log,
3743 "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3744 "broadcast state: %s - %s",
3745 static_cast<void *>(event_ptr), StateAsCString(state),
3746 StateAsCString(m_last_broadcast_state),
3747 return_value ? "YES" : "NO");
3748 return return_value;
3749 }
3750
StartPrivateStateThread(bool is_secondary_thread)3751 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3752 Log *log = GetLog(LLDBLog::Events);
3753
3754 bool already_running = PrivateStateThreadIsValid();
3755 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3756 already_running ? " already running"
3757 : " starting private state thread");
3758
3759 if (!is_secondary_thread && already_running)
3760 return true;
3761
3762 // Create a thread that watches our internal state and controls which events
3763 // make it to clients (into the DCProcess event queue).
3764 char thread_name[1024];
3765 uint32_t max_len = llvm::get_max_thread_name_length();
3766 if (max_len > 0 && max_len <= 30) {
3767 // On platforms with abbreviated thread name lengths, choose thread names
3768 // that fit within the limit.
3769 if (already_running)
3770 snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3771 else
3772 snprintf(thread_name, sizeof(thread_name), "intern-state");
3773 } else {
3774 if (already_running)
3775 snprintf(thread_name, sizeof(thread_name),
3776 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3777 GetID());
3778 else
3779 snprintf(thread_name, sizeof(thread_name),
3780 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3781 }
3782
3783 llvm::Expected<HostThread> private_state_thread =
3784 ThreadLauncher::LaunchThread(
3785 thread_name,
3786 [this, is_secondary_thread] {
3787 return RunPrivateStateThread(is_secondary_thread);
3788 },
3789 8 * 1024 * 1024);
3790 if (!private_state_thread) {
3791 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3792 "failed to launch host thread: {0}");
3793 return false;
3794 }
3795
3796 assert(private_state_thread->IsJoinable());
3797 m_private_state_thread = *private_state_thread;
3798 ResumePrivateStateThread();
3799 return true;
3800 }
3801
PausePrivateStateThread()3802 void Process::PausePrivateStateThread() {
3803 ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3804 }
3805
ResumePrivateStateThread()3806 void Process::ResumePrivateStateThread() {
3807 ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3808 }
3809
StopPrivateStateThread()3810 void Process::StopPrivateStateThread() {
3811 if (m_private_state_thread.IsJoinable())
3812 ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3813 else {
3814 Log *log = GetLog(LLDBLog::Process);
3815 LLDB_LOGF(
3816 log,
3817 "Went to stop the private state thread, but it was already invalid.");
3818 }
3819 }
3820
ControlPrivateStateThread(uint32_t signal)3821 void Process::ControlPrivateStateThread(uint32_t signal) {
3822 Log *log = GetLog(LLDBLog::Process);
3823
3824 assert(signal == eBroadcastInternalStateControlStop ||
3825 signal == eBroadcastInternalStateControlPause ||
3826 signal == eBroadcastInternalStateControlResume);
3827
3828 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3829
3830 // Signal the private state thread
3831 if (m_private_state_thread.IsJoinable()) {
3832 // Broadcast the event.
3833 // It is important to do this outside of the if below, because it's
3834 // possible that the thread state is invalid but that the thread is waiting
3835 // on a control event instead of simply being on its way out (this should
3836 // not happen, but it apparently can).
3837 LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3838 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3839 m_private_state_control_broadcaster.BroadcastEvent(signal,
3840 event_receipt_sp);
3841
3842 // Wait for the event receipt or for the private state thread to exit
3843 bool receipt_received = false;
3844 if (PrivateStateThreadIsValid()) {
3845 while (!receipt_received) {
3846 // Check for a receipt for n seconds and then check if the private
3847 // state thread is still around.
3848 receipt_received =
3849 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3850 if (!receipt_received) {
3851 // Check if the private state thread is still around. If it isn't
3852 // then we are done waiting
3853 if (!PrivateStateThreadIsValid())
3854 break; // Private state thread exited or is exiting, we are done
3855 }
3856 }
3857 }
3858
3859 if (signal == eBroadcastInternalStateControlStop) {
3860 thread_result_t result = {};
3861 m_private_state_thread.Join(&result);
3862 m_private_state_thread.Reset();
3863 }
3864 } else {
3865 LLDB_LOGF(
3866 log,
3867 "Private state thread already dead, no need to signal it to stop.");
3868 }
3869 }
3870
SendAsyncInterrupt()3871 void Process::SendAsyncInterrupt() {
3872 if (PrivateStateThreadIsValid())
3873 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3874 nullptr);
3875 else
3876 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3877 }
3878
HandlePrivateEvent(EventSP & event_sp)3879 void Process::HandlePrivateEvent(EventSP &event_sp) {
3880 Log *log = GetLog(LLDBLog::Process);
3881 m_resume_requested = false;
3882
3883 const StateType new_state =
3884 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3885
3886 // First check to see if anybody wants a shot at this event:
3887 if (m_next_event_action_up) {
3888 NextEventAction::EventActionResult action_result =
3889 m_next_event_action_up->PerformAction(event_sp);
3890 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3891
3892 switch (action_result) {
3893 case NextEventAction::eEventActionSuccess:
3894 SetNextEventAction(nullptr);
3895 break;
3896
3897 case NextEventAction::eEventActionRetry:
3898 break;
3899
3900 case NextEventAction::eEventActionExit:
3901 // Handle Exiting Here. If we already got an exited event, we should
3902 // just propagate it. Otherwise, swallow this event, and set our state
3903 // to exit so the next event will kill us.
3904 if (new_state != eStateExited) {
3905 // FIXME: should cons up an exited event, and discard this one.
3906 SetExitStatus(0, m_next_event_action_up->GetExitString());
3907 SetNextEventAction(nullptr);
3908 return;
3909 }
3910 SetNextEventAction(nullptr);
3911 break;
3912 }
3913 }
3914
3915 // See if we should broadcast this state to external clients?
3916 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3917
3918 if (should_broadcast) {
3919 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3920 if (log) {
3921 LLDB_LOGF(log,
3922 "Process::%s (pid = %" PRIu64
3923 ") broadcasting new state %s (old state %s) to %s",
3924 __FUNCTION__, GetID(), StateAsCString(new_state),
3925 StateAsCString(GetState()),
3926 is_hijacked ? "hijacked" : "public");
3927 }
3928 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3929 if (StateIsRunningState(new_state)) {
3930 // Only push the input handler if we aren't fowarding events, as this
3931 // means the curses GUI is in use... Or don't push it if we are launching
3932 // since it will come up stopped.
3933 if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3934 new_state != eStateLaunching && new_state != eStateAttaching) {
3935 PushProcessIOHandler();
3936 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3937 eBroadcastAlways);
3938 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3939 __FUNCTION__, m_iohandler_sync.GetValue());
3940 }
3941 } else if (StateIsStoppedState(new_state, false)) {
3942 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3943 // If the lldb_private::Debugger is handling the events, we don't want
3944 // to pop the process IOHandler here, we want to do it when we receive
3945 // the stopped event so we can carefully control when the process
3946 // IOHandler is popped because when we stop we want to display some
3947 // text stating how and why we stopped, then maybe some
3948 // process/thread/frame info, and then we want the "(lldb) " prompt to
3949 // show up. If we pop the process IOHandler here, then we will cause
3950 // the command interpreter to become the top IOHandler after the
3951 // process pops off and it will update its prompt right away... See the
3952 // Debugger.cpp file where it calls the function as
3953 // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3954 // Otherwise we end up getting overlapping "(lldb) " prompts and
3955 // garbled output.
3956 //
3957 // If we aren't handling the events in the debugger (which is indicated
3958 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3959 // we are hijacked, then we always pop the process IO handler manually.
3960 // Hijacking happens when the internal process state thread is running
3961 // thread plans, or when commands want to run in synchronous mode and
3962 // they call "process->WaitForProcessToStop()". An example of something
3963 // that will hijack the events is a simple expression:
3964 //
3965 // (lldb) expr (int)puts("hello")
3966 //
3967 // This will cause the internal process state thread to resume and halt
3968 // the process (and _it_ will hijack the eBroadcastBitStateChanged
3969 // events) and we do need the IO handler to be pushed and popped
3970 // correctly.
3971
3972 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3973 PopProcessIOHandler();
3974 }
3975 }
3976
3977 BroadcastEvent(event_sp);
3978 } else {
3979 if (log) {
3980 LLDB_LOGF(
3981 log,
3982 "Process::%s (pid = %" PRIu64
3983 ") suppressing state %s (old state %s): should_broadcast == false",
3984 __FUNCTION__, GetID(), StateAsCString(new_state),
3985 StateAsCString(GetState()));
3986 }
3987 }
3988 }
3989
HaltPrivate()3990 Status Process::HaltPrivate() {
3991 EventSP event_sp;
3992 Status error(WillHalt());
3993 if (error.Fail())
3994 return error;
3995
3996 // Ask the process subclass to actually halt our process
3997 bool caused_stop;
3998 error = DoHalt(caused_stop);
3999
4000 DidHalt();
4001 return error;
4002 }
4003
RunPrivateStateThread(bool is_secondary_thread)4004 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
4005 bool control_only = true;
4006
4007 Log *log = GetLog(LLDBLog::Process);
4008 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
4009 __FUNCTION__, static_cast<void *>(this), GetID());
4010
4011 bool exit_now = false;
4012 bool interrupt_requested = false;
4013 while (!exit_now) {
4014 EventSP event_sp;
4015 GetEventsPrivate(event_sp, std::nullopt, control_only);
4016 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
4017 LLDB_LOGF(log,
4018 "Process::%s (arg = %p, pid = %" PRIu64
4019 ") got a control event: %d",
4020 __FUNCTION__, static_cast<void *>(this), GetID(),
4021 event_sp->GetType());
4022
4023 switch (event_sp->GetType()) {
4024 case eBroadcastInternalStateControlStop:
4025 exit_now = true;
4026 break; // doing any internal state management below
4027
4028 case eBroadcastInternalStateControlPause:
4029 control_only = true;
4030 break;
4031
4032 case eBroadcastInternalStateControlResume:
4033 control_only = false;
4034 break;
4035 }
4036
4037 continue;
4038 } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
4039 if (m_public_state.GetValue() == eStateAttaching) {
4040 LLDB_LOGF(log,
4041 "Process::%s (arg = %p, pid = %" PRIu64
4042 ") woke up with an interrupt while attaching - "
4043 "forwarding interrupt.",
4044 __FUNCTION__, static_cast<void *>(this), GetID());
4045 // The server may be spinning waiting for a process to appear, in which
4046 // case we should tell it to stop doing that. Normally, we don't NEED
4047 // to do that because we will next close the communication to the stub
4048 // and that will get it to shut down. But there are remote debugging
4049 // cases where relying on that side-effect causes the shutdown to be
4050 // flakey, so we should send a positive signal to interrupt the wait.
4051 Status error = HaltPrivate();
4052 BroadcastEvent(eBroadcastBitInterrupt, nullptr);
4053 } else if (StateIsRunningState(m_last_broadcast_state)) {
4054 LLDB_LOGF(log,
4055 "Process::%s (arg = %p, pid = %" PRIu64
4056 ") woke up with an interrupt - Halting.",
4057 __FUNCTION__, static_cast<void *>(this), GetID());
4058 Status error = HaltPrivate();
4059 if (error.Fail() && log)
4060 LLDB_LOGF(log,
4061 "Process::%s (arg = %p, pid = %" PRIu64
4062 ") failed to halt the process: %s",
4063 __FUNCTION__, static_cast<void *>(this), GetID(),
4064 error.AsCString());
4065 // Halt should generate a stopped event. Make a note of the fact that
4066 // we were doing the interrupt, so we can set the interrupted flag
4067 // after we receive the event. We deliberately set this to true even if
4068 // HaltPrivate failed, so that we can interrupt on the next natural
4069 // stop.
4070 interrupt_requested = true;
4071 } else {
4072 // This can happen when someone (e.g. Process::Halt) sees that we are
4073 // running and sends an interrupt request, but the process actually
4074 // stops before we receive it. In that case, we can just ignore the
4075 // request. We use m_last_broadcast_state, because the Stopped event
4076 // may not have been popped of the event queue yet, which is when the
4077 // public state gets updated.
4078 LLDB_LOGF(log,
4079 "Process::%s ignoring interrupt as we have already stopped.",
4080 __FUNCTION__);
4081 }
4082 continue;
4083 }
4084
4085 const StateType internal_state =
4086 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4087
4088 if (internal_state != eStateInvalid) {
4089 if (m_clear_thread_plans_on_stop &&
4090 StateIsStoppedState(internal_state, true)) {
4091 m_clear_thread_plans_on_stop = false;
4092 m_thread_list.DiscardThreadPlans();
4093 }
4094
4095 if (interrupt_requested) {
4096 if (StateIsStoppedState(internal_state, true)) {
4097 // We requested the interrupt, so mark this as such in the stop event
4098 // so clients can tell an interrupted process from a natural stop
4099 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
4100 interrupt_requested = false;
4101 } else if (log) {
4102 LLDB_LOGF(log,
4103 "Process::%s interrupt_requested, but a non-stopped "
4104 "state '%s' received.",
4105 __FUNCTION__, StateAsCString(internal_state));
4106 }
4107 }
4108
4109 HandlePrivateEvent(event_sp);
4110 }
4111
4112 if (internal_state == eStateInvalid || internal_state == eStateExited ||
4113 internal_state == eStateDetached) {
4114 LLDB_LOGF(log,
4115 "Process::%s (arg = %p, pid = %" PRIu64
4116 ") about to exit with internal state %s...",
4117 __FUNCTION__, static_cast<void *>(this), GetID(),
4118 StateAsCString(internal_state));
4119
4120 break;
4121 }
4122 }
4123
4124 // Verify log is still enabled before attempting to write to it...
4125 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
4126 __FUNCTION__, static_cast<void *>(this), GetID());
4127
4128 // If we are a secondary thread, then the primary thread we are working for
4129 // will have already acquired the public_run_lock, and isn't done with what
4130 // it was doing yet, so don't try to change it on the way out.
4131 if (!is_secondary_thread)
4132 m_public_run_lock.SetStopped();
4133 return {};
4134 }
4135
4136 // Process Event Data
4137
ProcessEventData()4138 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
4139
ProcessEventData(const ProcessSP & process_sp,StateType state)4140 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
4141 StateType state)
4142 : EventData(), m_process_wp(), m_state(state) {
4143 if (process_sp)
4144 m_process_wp = process_sp;
4145 }
4146
4147 Process::ProcessEventData::~ProcessEventData() = default;
4148
GetFlavorString()4149 llvm::StringRef Process::ProcessEventData::GetFlavorString() {
4150 return "Process::ProcessEventData";
4151 }
4152
GetFlavor() const4153 llvm::StringRef Process::ProcessEventData::GetFlavor() const {
4154 return ProcessEventData::GetFlavorString();
4155 }
4156
ShouldStop(Event * event_ptr,bool & found_valid_stopinfo)4157 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
4158 bool &found_valid_stopinfo) {
4159 found_valid_stopinfo = false;
4160
4161 ProcessSP process_sp(m_process_wp.lock());
4162 if (!process_sp)
4163 return false;
4164
4165 ThreadList &curr_thread_list = process_sp->GetThreadList();
4166 uint32_t num_threads = curr_thread_list.GetSize();
4167
4168 // The actions might change one of the thread's stop_info's opinions about
4169 // whether we should stop the process, so we need to query that as we go.
4170
4171 // One other complication here, is that we try to catch any case where the
4172 // target has run (except for expressions) and immediately exit, but if we
4173 // get that wrong (which is possible) then the thread list might have
4174 // changed, and that would cause our iteration here to crash. We could
4175 // make a copy of the thread list, but we'd really like to also know if it
4176 // has changed at all, so we store the original thread ID's of all threads and
4177 // check what we get back against this list & bag out if anything differs.
4178 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
4179 for (uint32_t idx = 0; idx < num_threads; ++idx) {
4180 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4181
4182 /*
4183 Filter out all suspended threads, they could not be the reason
4184 of stop and no need to perform any actions on them.
4185 */
4186 if (thread_sp->GetResumeState() != eStateSuspended)
4187 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
4188 }
4189
4190 // Use this to track whether we should continue from here. We will only
4191 // continue the target running if no thread says we should stop. Of course
4192 // if some thread's PerformAction actually sets the target running, then it
4193 // doesn't matter what the other threads say...
4194
4195 bool still_should_stop = false;
4196
4197 // Sometimes - for instance if we have a bug in the stub we are talking to,
4198 // we stop but no thread has a valid stop reason. In that case we should
4199 // just stop, because we have no way of telling what the right thing to do
4200 // is, and it's better to let the user decide than continue behind their
4201 // backs.
4202
4203 for (auto [thread_sp, thread_index] : not_suspended_threads) {
4204 if (curr_thread_list.GetSize() != num_threads) {
4205 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4206 LLDB_LOGF(
4207 log,
4208 "Number of threads changed from %u to %u while processing event.",
4209 num_threads, curr_thread_list.GetSize());
4210 break;
4211 }
4212
4213 if (thread_sp->GetIndexID() != thread_index) {
4214 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4215 LLDB_LOG(log,
4216 "The thread {0} changed from {1} to {2} while processing event.",
4217 thread_sp.get(), thread_index, thread_sp->GetIndexID());
4218 break;
4219 }
4220
4221 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4222 if (stop_info_sp && stop_info_sp->IsValid()) {
4223 found_valid_stopinfo = true;
4224 bool this_thread_wants_to_stop;
4225 if (stop_info_sp->GetOverrideShouldStop()) {
4226 this_thread_wants_to_stop =
4227 stop_info_sp->GetOverriddenShouldStopValue();
4228 } else {
4229 stop_info_sp->PerformAction(event_ptr);
4230 // The stop action might restart the target. If it does, then we
4231 // want to mark that in the event so that whoever is receiving it
4232 // will know to wait for the running event and reflect that state
4233 // appropriately. We also need to stop processing actions, since they
4234 // aren't expecting the target to be running.
4235
4236 // FIXME: we might have run.
4237 if (stop_info_sp->HasTargetRunSinceMe()) {
4238 SetRestarted(true);
4239 break;
4240 }
4241
4242 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4243 }
4244
4245 if (!still_should_stop)
4246 still_should_stop = this_thread_wants_to_stop;
4247 }
4248 }
4249
4250 return still_should_stop;
4251 }
4252
ForwardEventToPendingListeners(Event * event_ptr)4253 bool Process::ProcessEventData::ForwardEventToPendingListeners(
4254 Event *event_ptr) {
4255 // STDIO and the other async event notifications should always be forwarded.
4256 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4257 return true;
4258
4259 // For state changed events, if the update state is zero, we are handling
4260 // this on the private state thread. We should wait for the public event.
4261 return m_update_state == 1;
4262 }
4263
DoOnRemoval(Event * event_ptr)4264 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4265 // We only have work to do for state changed events:
4266 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4267 return;
4268
4269 ProcessSP process_sp(m_process_wp.lock());
4270
4271 if (!process_sp)
4272 return;
4273
4274 // This function gets called twice for each event, once when the event gets
4275 // pulled off of the private process event queue, and then any number of
4276 // times, first when it gets pulled off of the public event queue, then other
4277 // times when we're pretending that this is where we stopped at the end of
4278 // expression evaluation. m_update_state is used to distinguish these three
4279 // cases; it is 0 when we're just pulling it off for private handling, and >
4280 // 1 for expression evaluation, and we don't want to do the breakpoint
4281 // command handling then.
4282 if (m_update_state != 1)
4283 return;
4284
4285 process_sp->SetPublicState(
4286 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4287
4288 if (m_state == eStateStopped && !m_restarted) {
4289 // Let process subclasses know we are about to do a public stop and do
4290 // anything they might need to in order to speed up register and memory
4291 // accesses.
4292 process_sp->WillPublicStop();
4293 }
4294
4295 // If this is a halt event, even if the halt stopped with some reason other
4296 // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4297 // the halt request came through) don't do the StopInfo actions, as they may
4298 // end up restarting the process.
4299 if (m_interrupted)
4300 return;
4301
4302 // If we're not stopped or have restarted, then skip the StopInfo actions:
4303 if (m_state != eStateStopped || m_restarted) {
4304 return;
4305 }
4306
4307 bool does_anybody_have_an_opinion = false;
4308 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4309
4310 if (GetRestarted()) {
4311 return;
4312 }
4313
4314 if (!still_should_stop && does_anybody_have_an_opinion) {
4315 // We've been asked to continue, so do that here.
4316 SetRestarted(true);
4317 // Use the private resume method here, since we aren't changing the run
4318 // lock state.
4319 process_sp->PrivateResume();
4320 } else {
4321 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4322 !process_sp->StateChangedIsHijackedForSynchronousResume();
4323
4324 if (!hijacked) {
4325 // If we didn't restart, run the Stop Hooks here.
4326 // Don't do that if state changed events aren't hooked up to the
4327 // public (or SyncResume) broadcasters. StopHooks are just for
4328 // real public stops. They might also restart the target,
4329 // so watch for that.
4330 if (process_sp->GetTarget().RunStopHooks())
4331 SetRestarted(true);
4332 }
4333 }
4334 }
4335
Dump(Stream * s) const4336 void Process::ProcessEventData::Dump(Stream *s) const {
4337 ProcessSP process_sp(m_process_wp.lock());
4338
4339 if (process_sp)
4340 s->Printf(" process = %p (pid = %" PRIu64 "), ",
4341 static_cast<void *>(process_sp.get()), process_sp->GetID());
4342 else
4343 s->PutCString(" process = NULL, ");
4344
4345 s->Printf("state = %s", StateAsCString(GetState()));
4346 }
4347
4348 const Process::ProcessEventData *
GetEventDataFromEvent(const Event * event_ptr)4349 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4350 if (event_ptr) {
4351 const EventData *event_data = event_ptr->GetData();
4352 if (event_data &&
4353 event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4354 return static_cast<const ProcessEventData *>(event_ptr->GetData());
4355 }
4356 return nullptr;
4357 }
4358
4359 ProcessSP
GetProcessFromEvent(const Event * event_ptr)4360 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4361 ProcessSP process_sp;
4362 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4363 if (data)
4364 process_sp = data->GetProcessSP();
4365 return process_sp;
4366 }
4367
GetStateFromEvent(const Event * event_ptr)4368 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4369 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4370 if (data == nullptr)
4371 return eStateInvalid;
4372 else
4373 return data->GetState();
4374 }
4375
GetRestartedFromEvent(const Event * event_ptr)4376 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4377 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4378 if (data == nullptr)
4379 return false;
4380 else
4381 return data->GetRestarted();
4382 }
4383
SetRestartedInEvent(Event * event_ptr,bool new_value)4384 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4385 bool new_value) {
4386 ProcessEventData *data =
4387 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4388 if (data != nullptr)
4389 data->SetRestarted(new_value);
4390 }
4391
4392 size_t
GetNumRestartedReasons(const Event * event_ptr)4393 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4394 ProcessEventData *data =
4395 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4396 if (data != nullptr)
4397 return data->GetNumRestartedReasons();
4398 else
4399 return 0;
4400 }
4401
4402 const char *
GetRestartedReasonAtIndex(const Event * event_ptr,size_t idx)4403 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4404 size_t idx) {
4405 ProcessEventData *data =
4406 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4407 if (data != nullptr)
4408 return data->GetRestartedReasonAtIndex(idx);
4409 else
4410 return nullptr;
4411 }
4412
AddRestartedReason(Event * event_ptr,const char * reason)4413 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4414 const char *reason) {
4415 ProcessEventData *data =
4416 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4417 if (data != nullptr)
4418 data->AddRestartedReason(reason);
4419 }
4420
GetInterruptedFromEvent(const Event * event_ptr)4421 bool Process::ProcessEventData::GetInterruptedFromEvent(
4422 const Event *event_ptr) {
4423 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4424 if (data == nullptr)
4425 return false;
4426 else
4427 return data->GetInterrupted();
4428 }
4429
SetInterruptedInEvent(Event * event_ptr,bool new_value)4430 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4431 bool new_value) {
4432 ProcessEventData *data =
4433 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4434 if (data != nullptr)
4435 data->SetInterrupted(new_value);
4436 }
4437
SetUpdateStateOnRemoval(Event * event_ptr)4438 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4439 ProcessEventData *data =
4440 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4441 if (data) {
4442 data->SetUpdateStateOnRemoval();
4443 return true;
4444 }
4445 return false;
4446 }
4447
CalculateTarget()4448 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4449
CalculateExecutionContext(ExecutionContext & exe_ctx)4450 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4451 exe_ctx.SetTargetPtr(&GetTarget());
4452 exe_ctx.SetProcessPtr(this);
4453 exe_ctx.SetThreadPtr(nullptr);
4454 exe_ctx.SetFramePtr(nullptr);
4455 }
4456
4457 // uint32_t
4458 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4459 // std::vector<lldb::pid_t> &pids)
4460 //{
4461 // return 0;
4462 //}
4463 //
4464 // ArchSpec
4465 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4466 //{
4467 // return Host::GetArchSpecForExistingProcess (pid);
4468 //}
4469 //
4470 // ArchSpec
4471 // Process::GetArchSpecForExistingProcess (const char *process_name)
4472 //{
4473 // return Host::GetArchSpecForExistingProcess (process_name);
4474 //}
4475
CreateEventFromProcessState(uint32_t event_type)4476 EventSP Process::CreateEventFromProcessState(uint32_t event_type) {
4477 auto event_data_sp =
4478 std::make_shared<ProcessEventData>(shared_from_this(), GetState());
4479 return std::make_shared<Event>(event_type, event_data_sp);
4480 }
4481
AppendSTDOUT(const char * s,size_t len)4482 void Process::AppendSTDOUT(const char *s, size_t len) {
4483 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4484 m_stdout_data.append(s, len);
4485 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT);
4486 BroadcastEventIfUnique(event_sp);
4487 }
4488
AppendSTDERR(const char * s,size_t len)4489 void Process::AppendSTDERR(const char *s, size_t len) {
4490 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4491 m_stderr_data.append(s, len);
4492 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR);
4493 BroadcastEventIfUnique(event_sp);
4494 }
4495
BroadcastAsyncProfileData(const std::string & one_profile_data)4496 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4497 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4498 m_profile_data.push_back(one_profile_data);
4499 auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData);
4500 BroadcastEventIfUnique(event_sp);
4501 }
4502
BroadcastStructuredData(const StructuredData::ObjectSP & object_sp,const StructuredDataPluginSP & plugin_sp)4503 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4504 const StructuredDataPluginSP &plugin_sp) {
4505 auto data_sp = std::make_shared<EventDataStructuredData>(
4506 shared_from_this(), object_sp, plugin_sp);
4507 BroadcastEvent(eBroadcastBitStructuredData, data_sp);
4508 }
4509
4510 StructuredDataPluginSP
GetStructuredDataPlugin(llvm::StringRef type_name) const4511 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4512 auto find_it = m_structured_data_plugin_map.find(type_name);
4513 if (find_it != m_structured_data_plugin_map.end())
4514 return find_it->second;
4515 else
4516 return StructuredDataPluginSP();
4517 }
4518
GetAsyncProfileData(char * buf,size_t buf_size,Status & error)4519 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4520 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4521 if (m_profile_data.empty())
4522 return 0;
4523
4524 std::string &one_profile_data = m_profile_data.front();
4525 size_t bytes_available = one_profile_data.size();
4526 if (bytes_available > 0) {
4527 Log *log = GetLog(LLDBLog::Process);
4528 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4529 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4530 if (bytes_available > buf_size) {
4531 memcpy(buf, one_profile_data.c_str(), buf_size);
4532 one_profile_data.erase(0, buf_size);
4533 bytes_available = buf_size;
4534 } else {
4535 memcpy(buf, one_profile_data.c_str(), bytes_available);
4536 m_profile_data.erase(m_profile_data.begin());
4537 }
4538 }
4539 return bytes_available;
4540 }
4541
4542 // Process STDIO
4543
GetSTDOUT(char * buf,size_t buf_size,Status & error)4544 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4545 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4546 size_t bytes_available = m_stdout_data.size();
4547 if (bytes_available > 0) {
4548 Log *log = GetLog(LLDBLog::Process);
4549 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4550 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4551 if (bytes_available > buf_size) {
4552 memcpy(buf, m_stdout_data.c_str(), buf_size);
4553 m_stdout_data.erase(0, buf_size);
4554 bytes_available = buf_size;
4555 } else {
4556 memcpy(buf, m_stdout_data.c_str(), bytes_available);
4557 m_stdout_data.clear();
4558 }
4559 }
4560 return bytes_available;
4561 }
4562
GetSTDERR(char * buf,size_t buf_size,Status & error)4563 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4564 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4565 size_t bytes_available = m_stderr_data.size();
4566 if (bytes_available > 0) {
4567 Log *log = GetLog(LLDBLog::Process);
4568 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4569 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4570 if (bytes_available > buf_size) {
4571 memcpy(buf, m_stderr_data.c_str(), buf_size);
4572 m_stderr_data.erase(0, buf_size);
4573 bytes_available = buf_size;
4574 } else {
4575 memcpy(buf, m_stderr_data.c_str(), bytes_available);
4576 m_stderr_data.clear();
4577 }
4578 }
4579 return bytes_available;
4580 }
4581
STDIOReadThreadBytesReceived(void * baton,const void * src,size_t src_len)4582 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4583 size_t src_len) {
4584 Process *process = (Process *)baton;
4585 process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4586 }
4587
4588 class IOHandlerProcessSTDIO : public IOHandler {
4589 public:
IOHandlerProcessSTDIO(Process * process,int write_fd)4590 IOHandlerProcessSTDIO(Process *process, int write_fd)
4591 : IOHandler(process->GetTarget().GetDebugger(),
4592 IOHandler::Type::ProcessIO),
4593 m_process(process),
4594 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4595 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4596 m_pipe.CreateNew(false);
4597 }
4598
4599 ~IOHandlerProcessSTDIO() override = default;
4600
SetIsRunning(bool running)4601 void SetIsRunning(bool running) {
4602 std::lock_guard<std::mutex> guard(m_mutex);
4603 SetIsDone(!running);
4604 m_is_running = running;
4605 }
4606
4607 // Each IOHandler gets to run until it is done. It should read data from the
4608 // "in" and place output into "out" and "err and return when done.
Run()4609 void Run() override {
4610 if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4611 !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4612 SetIsDone(true);
4613 return;
4614 }
4615
4616 SetIsDone(false);
4617 const int read_fd = m_read_file.GetDescriptor();
4618 Terminal terminal(read_fd);
4619 TerminalState terminal_state(terminal, false);
4620 // FIXME: error handling?
4621 llvm::consumeError(terminal.SetCanonical(false));
4622 llvm::consumeError(terminal.SetEcho(false));
4623 // FD_ZERO, FD_SET are not supported on windows
4624 #ifndef _WIN32
4625 const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4626 SetIsRunning(true);
4627 while (true) {
4628 {
4629 std::lock_guard<std::mutex> guard(m_mutex);
4630 if (GetIsDone())
4631 break;
4632 }
4633
4634 SelectHelper select_helper;
4635 select_helper.FDSetRead(read_fd);
4636 select_helper.FDSetRead(pipe_read_fd);
4637 Status error = select_helper.Select();
4638
4639 if (error.Fail())
4640 break;
4641
4642 char ch = 0;
4643 size_t n;
4644 if (select_helper.FDIsSetRead(read_fd)) {
4645 n = 1;
4646 if (m_read_file.Read(&ch, n).Success() && n == 1) {
4647 if (m_write_file.Write(&ch, n).Fail() || n != 1)
4648 break;
4649 } else
4650 break;
4651 }
4652
4653 if (select_helper.FDIsSetRead(pipe_read_fd)) {
4654 size_t bytes_read;
4655 // Consume the interrupt byte
4656 Status error = m_pipe.Read(&ch, 1, bytes_read);
4657 if (error.Success()) {
4658 if (ch == 'q')
4659 break;
4660 if (ch == 'i')
4661 if (StateIsRunningState(m_process->GetState()))
4662 m_process->SendAsyncInterrupt();
4663 }
4664 }
4665 }
4666 SetIsRunning(false);
4667 #endif
4668 }
4669
Cancel()4670 void Cancel() override {
4671 std::lock_guard<std::mutex> guard(m_mutex);
4672 SetIsDone(true);
4673 // Only write to our pipe to cancel if we are in
4674 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4675 // is being run from the command interpreter:
4676 //
4677 // (lldb) step_process_thousands_of_times
4678 //
4679 // In this case the command interpreter will be in the middle of handling
4680 // the command and if the process pushes and pops the IOHandler thousands
4681 // of times, we can end up writing to m_pipe without ever consuming the
4682 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4683 // deadlocking when the pipe gets fed up and blocks until data is consumed.
4684 if (m_is_running) {
4685 char ch = 'q'; // Send 'q' for quit
4686 size_t bytes_written = 0;
4687 m_pipe.Write(&ch, 1, bytes_written);
4688 }
4689 }
4690
Interrupt()4691 bool Interrupt() override {
4692 // Do only things that are safe to do in an interrupt context (like in a
4693 // SIGINT handler), like write 1 byte to a file descriptor. This will
4694 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4695 // that was written to the pipe and then call
4696 // m_process->SendAsyncInterrupt() from a much safer location in code.
4697 if (m_active) {
4698 char ch = 'i'; // Send 'i' for interrupt
4699 size_t bytes_written = 0;
4700 Status result = m_pipe.Write(&ch, 1, bytes_written);
4701 return result.Success();
4702 } else {
4703 // This IOHandler might be pushed on the stack, but not being run
4704 // currently so do the right thing if we aren't actively watching for
4705 // STDIN by sending the interrupt to the process. Otherwise the write to
4706 // the pipe above would do nothing. This can happen when the command
4707 // interpreter is running and gets a "expression ...". It will be on the
4708 // IOHandler thread and sending the input is complete to the delegate
4709 // which will cause the expression to run, which will push the process IO
4710 // handler, but not run it.
4711
4712 if (StateIsRunningState(m_process->GetState())) {
4713 m_process->SendAsyncInterrupt();
4714 return true;
4715 }
4716 }
4717 return false;
4718 }
4719
GotEOF()4720 void GotEOF() override {}
4721
4722 protected:
4723 Process *m_process;
4724 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
4725 NativeFile m_write_file; // Write to this file (usually the primary pty for
4726 // getting io to debuggee)
4727 Pipe m_pipe;
4728 std::mutex m_mutex;
4729 bool m_is_running = false;
4730 };
4731
SetSTDIOFileDescriptor(int fd)4732 void Process::SetSTDIOFileDescriptor(int fd) {
4733 // First set up the Read Thread for reading/handling process I/O
4734 m_stdio_communication.SetConnection(
4735 std::make_unique<ConnectionFileDescriptor>(fd, true));
4736 if (m_stdio_communication.IsConnected()) {
4737 m_stdio_communication.SetReadThreadBytesReceivedCallback(
4738 STDIOReadThreadBytesReceived, this);
4739 m_stdio_communication.StartReadThread();
4740
4741 // Now read thread is set up, set up input reader.
4742 {
4743 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4744 if (!m_process_input_reader)
4745 m_process_input_reader =
4746 std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4747 }
4748 }
4749 }
4750
ProcessIOHandlerIsActive()4751 bool Process::ProcessIOHandlerIsActive() {
4752 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4753 IOHandlerSP io_handler_sp(m_process_input_reader);
4754 if (io_handler_sp)
4755 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4756 return false;
4757 }
4758
PushProcessIOHandler()4759 bool Process::PushProcessIOHandler() {
4760 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4761 IOHandlerSP io_handler_sp(m_process_input_reader);
4762 if (io_handler_sp) {
4763 Log *log = GetLog(LLDBLog::Process);
4764 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4765
4766 io_handler_sp->SetIsDone(false);
4767 // If we evaluate an utility function, then we don't cancel the current
4768 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4769 // existing IOHandler that potentially provides the user interface (e.g.
4770 // the IOHandler for Editline).
4771 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4772 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4773 cancel_top_handler);
4774 return true;
4775 }
4776 return false;
4777 }
4778
PopProcessIOHandler()4779 bool Process::PopProcessIOHandler() {
4780 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4781 IOHandlerSP io_handler_sp(m_process_input_reader);
4782 if (io_handler_sp)
4783 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4784 return false;
4785 }
4786
4787 // The process needs to know about installed plug-ins
SettingsInitialize()4788 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4789
SettingsTerminate()4790 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4791
4792 namespace {
4793 // RestorePlanState is used to record the "is private", "is controlling" and
4794 // "okay
4795 // to discard" fields of the plan we are running, and reset it on Clean or on
4796 // destruction. It will only reset the state once, so you can call Clean and
4797 // then monkey with the state and it won't get reset on you again.
4798
4799 class RestorePlanState {
4800 public:
RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)4801 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4802 : m_thread_plan_sp(thread_plan_sp) {
4803 if (m_thread_plan_sp) {
4804 m_private = m_thread_plan_sp->GetPrivate();
4805 m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4806 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4807 }
4808 }
4809
~RestorePlanState()4810 ~RestorePlanState() { Clean(); }
4811
Clean()4812 void Clean() {
4813 if (!m_already_reset && m_thread_plan_sp) {
4814 m_already_reset = true;
4815 m_thread_plan_sp->SetPrivate(m_private);
4816 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4817 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4818 }
4819 }
4820
4821 private:
4822 lldb::ThreadPlanSP m_thread_plan_sp;
4823 bool m_already_reset = false;
4824 bool m_private = false;
4825 bool m_is_controlling = false;
4826 bool m_okay_to_discard = false;
4827 };
4828 } // anonymous namespace
4829
4830 static microseconds
GetOneThreadExpressionTimeout(const EvaluateExpressionOptions & options)4831 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4832 const milliseconds default_one_thread_timeout(250);
4833
4834 // If the overall wait is forever, then we don't need to worry about it.
4835 if (!options.GetTimeout()) {
4836 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4837 : default_one_thread_timeout;
4838 }
4839
4840 // If the one thread timeout is set, use it.
4841 if (options.GetOneThreadTimeout())
4842 return *options.GetOneThreadTimeout();
4843
4844 // Otherwise use half the total timeout, bounded by the
4845 // default_one_thread_timeout.
4846 return std::min<microseconds>(default_one_thread_timeout,
4847 *options.GetTimeout() / 2);
4848 }
4849
4850 static Timeout<std::micro>
GetExpressionTimeout(const EvaluateExpressionOptions & options,bool before_first_timeout)4851 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4852 bool before_first_timeout) {
4853 // If we are going to run all threads the whole time, or if we are only going
4854 // to run one thread, we can just return the overall timeout.
4855 if (!options.GetStopOthers() || !options.GetTryAllThreads())
4856 return options.GetTimeout();
4857
4858 if (before_first_timeout)
4859 return GetOneThreadExpressionTimeout(options);
4860
4861 if (!options.GetTimeout())
4862 return std::nullopt;
4863 else
4864 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4865 }
4866
4867 static std::optional<ExpressionResults>
HandleStoppedEvent(lldb::tid_t thread_id,const ThreadPlanSP & thread_plan_sp,RestorePlanState & restorer,const EventSP & event_sp,EventSP & event_to_broadcast_sp,const EvaluateExpressionOptions & options,bool handle_interrupts)4868 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4869 RestorePlanState &restorer, const EventSP &event_sp,
4870 EventSP &event_to_broadcast_sp,
4871 const EvaluateExpressionOptions &options,
4872 bool handle_interrupts) {
4873 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4874
4875 ThreadSP thread_sp = thread_plan_sp->GetTarget()
4876 .GetProcessSP()
4877 ->GetThreadList()
4878 .FindThreadByID(thread_id);
4879 if (!thread_sp) {
4880 LLDB_LOG(log,
4881 "The thread on which we were running the "
4882 "expression: tid = {0}, exited while "
4883 "the expression was running.",
4884 thread_id);
4885 return eExpressionThreadVanished;
4886 }
4887
4888 ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4889 if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4890 LLDB_LOG(log, "execution completed successfully");
4891
4892 // Restore the plan state so it will get reported as intended when we are
4893 // done.
4894 restorer.Clean();
4895 return eExpressionCompleted;
4896 }
4897
4898 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4899 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4900 stop_info_sp->ShouldNotify(event_sp.get())) {
4901 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4902 if (!options.DoesIgnoreBreakpoints()) {
4903 // Restore the plan state and then force Private to false. We are going
4904 // to stop because of this plan so we need it to become a public plan or
4905 // it won't report correctly when we continue to its termination later
4906 // on.
4907 restorer.Clean();
4908 thread_plan_sp->SetPrivate(false);
4909 event_to_broadcast_sp = event_sp;
4910 }
4911 return eExpressionHitBreakpoint;
4912 }
4913
4914 if (!handle_interrupts &&
4915 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4916 return std::nullopt;
4917
4918 LLDB_LOG(log, "thread plan did not successfully complete");
4919 if (!options.DoesUnwindOnError())
4920 event_to_broadcast_sp = event_sp;
4921 return eExpressionInterrupted;
4922 }
4923
4924 ExpressionResults
RunThreadPlan(ExecutionContext & exe_ctx,lldb::ThreadPlanSP & thread_plan_sp,const EvaluateExpressionOptions & options,DiagnosticManager & diagnostic_manager)4925 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4926 lldb::ThreadPlanSP &thread_plan_sp,
4927 const EvaluateExpressionOptions &options,
4928 DiagnosticManager &diagnostic_manager) {
4929 ExpressionResults return_value = eExpressionSetupError;
4930
4931 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4932
4933 if (!thread_plan_sp) {
4934 diagnostic_manager.PutString(
4935 lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");
4936 return eExpressionSetupError;
4937 }
4938
4939 if (!thread_plan_sp->ValidatePlan(nullptr)) {
4940 diagnostic_manager.PutString(
4941 lldb::eSeverityError,
4942 "RunThreadPlan called with an invalid thread plan.");
4943 return eExpressionSetupError;
4944 }
4945
4946 if (exe_ctx.GetProcessPtr() != this) {
4947 diagnostic_manager.PutString(lldb::eSeverityError,
4948 "RunThreadPlan called on wrong process.");
4949 return eExpressionSetupError;
4950 }
4951
4952 Thread *thread = exe_ctx.GetThreadPtr();
4953 if (thread == nullptr) {
4954 diagnostic_manager.PutString(lldb::eSeverityError,
4955 "RunThreadPlan called with invalid thread.");
4956 return eExpressionSetupError;
4957 }
4958
4959 // Record the thread's id so we can tell when a thread we were using
4960 // to run the expression exits during the expression evaluation.
4961 lldb::tid_t expr_thread_id = thread->GetID();
4962
4963 // We need to change some of the thread plan attributes for the thread plan
4964 // runner. This will restore them when we are done:
4965
4966 RestorePlanState thread_plan_restorer(thread_plan_sp);
4967
4968 // We rely on the thread plan we are running returning "PlanCompleted" if
4969 // when it successfully completes. For that to be true the plan can't be
4970 // private - since private plans suppress themselves in the GetCompletedPlan
4971 // call.
4972
4973 thread_plan_sp->SetPrivate(false);
4974
4975 // The plans run with RunThreadPlan also need to be terminal controlling plans
4976 // or when they are done we will end up asking the plan above us whether we
4977 // should stop, which may give the wrong answer.
4978
4979 thread_plan_sp->SetIsControllingPlan(true);
4980 thread_plan_sp->SetOkayToDiscard(false);
4981
4982 // If we are running some utility expression for LLDB, we now have to mark
4983 // this in the ProcesModID of this process. This RAII takes care of marking
4984 // and reverting the mark it once we are done running the expression.
4985 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4986
4987 if (m_private_state.GetValue() != eStateStopped) {
4988 diagnostic_manager.PutString(
4989 lldb::eSeverityError,
4990 "RunThreadPlan called while the private state was not stopped.");
4991 return eExpressionSetupError;
4992 }
4993
4994 // Save the thread & frame from the exe_ctx for restoration after we run
4995 const uint32_t thread_idx_id = thread->GetIndexID();
4996 StackFrameSP selected_frame_sp =
4997 thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
4998 if (!selected_frame_sp) {
4999 thread->SetSelectedFrame(nullptr);
5000 selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
5001 if (!selected_frame_sp) {
5002 diagnostic_manager.Printf(
5003 lldb::eSeverityError,
5004 "RunThreadPlan called without a selected frame on thread %d",
5005 thread_idx_id);
5006 return eExpressionSetupError;
5007 }
5008 }
5009
5010 // Make sure the timeout values make sense. The one thread timeout needs to
5011 // be smaller than the overall timeout.
5012 if (options.GetOneThreadTimeout() && options.GetTimeout() &&
5013 *options.GetTimeout() < *options.GetOneThreadTimeout()) {
5014 diagnostic_manager.PutString(lldb::eSeverityError,
5015 "RunThreadPlan called with one thread "
5016 "timeout greater than total timeout");
5017 return eExpressionSetupError;
5018 }
5019
5020 StackID ctx_frame_id = selected_frame_sp->GetStackID();
5021
5022 // N.B. Running the target may unset the currently selected thread and frame.
5023 // We don't want to do that either, so we should arrange to reset them as
5024 // well.
5025
5026 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
5027
5028 uint32_t selected_tid;
5029 StackID selected_stack_id;
5030 if (selected_thread_sp) {
5031 selected_tid = selected_thread_sp->GetIndexID();
5032 selected_stack_id =
5033 selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
5034 ->GetStackID();
5035 } else {
5036 selected_tid = LLDB_INVALID_THREAD_ID;
5037 }
5038
5039 HostThread backup_private_state_thread;
5040 lldb::StateType old_state = eStateInvalid;
5041 lldb::ThreadPlanSP stopper_base_plan_sp;
5042
5043 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
5044 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
5045 // Yikes, we are running on the private state thread! So we can't wait for
5046 // public events on this thread, since we are the thread that is generating
5047 // public events. The simplest thing to do is to spin up a temporary thread
5048 // to handle private state thread events while we are fielding public
5049 // events here.
5050 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
5051 "another state thread to handle the events.");
5052
5053 backup_private_state_thread = m_private_state_thread;
5054
5055 // One other bit of business: we want to run just this thread plan and
5056 // anything it pushes, and then stop, returning control here. But in the
5057 // normal course of things, the plan above us on the stack would be given a
5058 // shot at the stop event before deciding to stop, and we don't want that.
5059 // So we insert a "stopper" base plan on the stack before the plan we want
5060 // to run. Since base plans always stop and return control to the user,
5061 // that will do just what we want.
5062 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
5063 thread->QueueThreadPlan(stopper_base_plan_sp, false);
5064 // Have to make sure our public state is stopped, since otherwise the
5065 // reporting logic below doesn't work correctly.
5066 old_state = m_public_state.GetValue();
5067 m_public_state.SetValueNoLock(eStateStopped);
5068
5069 // Now spin up the private state thread:
5070 StartPrivateStateThread(true);
5071 }
5072
5073 thread->QueueThreadPlan(
5074 thread_plan_sp, false); // This used to pass "true" does that make sense?
5075
5076 if (options.GetDebug()) {
5077 // In this case, we aren't actually going to run, we just want to stop
5078 // right away. Flush this thread so we will refetch the stacks and show the
5079 // correct backtrace.
5080 // FIXME: To make this prettier we should invent some stop reason for this,
5081 // but that
5082 // is only cosmetic, and this functionality is only of use to lldb
5083 // developers who can live with not pretty...
5084 thread->Flush();
5085 return eExpressionStoppedForDebug;
5086 }
5087
5088 ListenerSP listener_sp(
5089 Listener::MakeListener("lldb.process.listener.run-thread-plan"));
5090
5091 lldb::EventSP event_to_broadcast_sp;
5092
5093 {
5094 // This process event hijacker Hijacks the Public events and its destructor
5095 // makes sure that the process events get restored on exit to the function.
5096 //
5097 // If the event needs to propagate beyond the hijacker (e.g., the process
5098 // exits during execution), then the event is put into
5099 // event_to_broadcast_sp for rebroadcasting.
5100
5101 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
5102
5103 if (log) {
5104 StreamString s;
5105 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
5106 LLDB_LOGF(log,
5107 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
5108 " to run thread plan \"%s\".",
5109 thread_idx_id, expr_thread_id, s.GetData());
5110 }
5111
5112 bool got_event;
5113 lldb::EventSP event_sp;
5114 lldb::StateType stop_state = lldb::eStateInvalid;
5115
5116 bool before_first_timeout = true; // This is set to false the first time
5117 // that we have to halt the target.
5118 bool do_resume = true;
5119 bool handle_running_event = true;
5120
5121 // This is just for accounting:
5122 uint32_t num_resumes = 0;
5123
5124 // If we are going to run all threads the whole time, or if we are only
5125 // going to run one thread, then we don't need the first timeout. So we
5126 // pretend we are after the first timeout already.
5127 if (!options.GetStopOthers() || !options.GetTryAllThreads())
5128 before_first_timeout = false;
5129
5130 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
5131 options.GetStopOthers(), options.GetTryAllThreads(),
5132 before_first_timeout);
5133
5134 // This isn't going to work if there are unfetched events on the queue. Are
5135 // there cases where we might want to run the remaining events here, and
5136 // then try to call the function? That's probably being too tricky for our
5137 // own good.
5138
5139 Event *other_events = listener_sp->PeekAtNextEvent();
5140 if (other_events != nullptr) {
5141 diagnostic_manager.PutString(
5142 lldb::eSeverityError,
5143 "RunThreadPlan called with pending events on the queue.");
5144 return eExpressionSetupError;
5145 }
5146
5147 // We also need to make sure that the next event is delivered. We might be
5148 // calling a function as part of a thread plan, in which case the last
5149 // delivered event could be the running event, and we don't want event
5150 // coalescing to cause us to lose OUR running event...
5151 ForceNextEventDelivery();
5152
5153 // This while loop must exit out the bottom, there's cleanup that we need to do
5154 // when we are done. So don't call return anywhere within it.
5155
5156 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5157 // It's pretty much impossible to write test cases for things like: One
5158 // thread timeout expires, I go to halt, but the process already stopped on
5159 // the function call stop breakpoint. Turning on this define will make us
5160 // not fetch the first event till after the halt. So if you run a quick
5161 // function, it will have completed, and the completion event will be
5162 // waiting, when you interrupt for halt. The expression evaluation should
5163 // still succeed.
5164 bool miss_first_event = true;
5165 #endif
5166 while (true) {
5167 // We usually want to resume the process if we get to the top of the
5168 // loop. The only exception is if we get two running events with no
5169 // intervening stop, which can happen, we will just wait for then next
5170 // stop event.
5171 LLDB_LOGF(log,
5172 "Top of while loop: do_resume: %i handle_running_event: %i "
5173 "before_first_timeout: %i.",
5174 do_resume, handle_running_event, before_first_timeout);
5175
5176 if (do_resume || handle_running_event) {
5177 // Do the initial resume and wait for the running event before going
5178 // further.
5179
5180 if (do_resume) {
5181 num_resumes++;
5182 Status resume_error = PrivateResume();
5183 if (!resume_error.Success()) {
5184 diagnostic_manager.Printf(
5185 lldb::eSeverityError,
5186 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
5187 resume_error.AsCString());
5188 return_value = eExpressionSetupError;
5189 break;
5190 }
5191 }
5192
5193 got_event =
5194 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5195 if (!got_event) {
5196 LLDB_LOGF(log,
5197 "Process::RunThreadPlan(): didn't get any event after "
5198 "resume %" PRIu32 ", exiting.",
5199 num_resumes);
5200
5201 diagnostic_manager.Printf(lldb::eSeverityError,
5202 "didn't get any event after resume %" PRIu32
5203 ", exiting.",
5204 num_resumes);
5205 return_value = eExpressionSetupError;
5206 break;
5207 }
5208
5209 stop_state =
5210 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5211
5212 if (stop_state != eStateRunning) {
5213 bool restarted = false;
5214
5215 if (stop_state == eStateStopped) {
5216 restarted = Process::ProcessEventData::GetRestartedFromEvent(
5217 event_sp.get());
5218 LLDB_LOGF(
5219 log,
5220 "Process::RunThreadPlan(): didn't get running event after "
5221 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
5222 "handle_running_event: %i).",
5223 num_resumes, StateAsCString(stop_state), restarted, do_resume,
5224 handle_running_event);
5225 }
5226
5227 if (restarted) {
5228 // This is probably an overabundance of caution, I don't think I
5229 // should ever get a stopped & restarted event here. But if I do,
5230 // the best thing is to Halt and then get out of here.
5231 const bool clear_thread_plans = false;
5232 const bool use_run_lock = false;
5233 Halt(clear_thread_plans, use_run_lock);
5234 }
5235
5236 diagnostic_manager.Printf(
5237 lldb::eSeverityError,
5238 "didn't get running event after initial resume, got %s instead.",
5239 StateAsCString(stop_state));
5240 return_value = eExpressionSetupError;
5241 break;
5242 }
5243
5244 if (log)
5245 log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5246 // We need to call the function synchronously, so spin waiting for it
5247 // to return. If we get interrupted while executing, we're going to
5248 // lose our context, and won't be able to gather the result at this
5249 // point. We set the timeout AFTER the resume, since the resume takes
5250 // some time and we don't want to charge that to the timeout.
5251 } else {
5252 if (log)
5253 log->PutCString("Process::RunThreadPlan(): waiting for next event.");
5254 }
5255
5256 do_resume = true;
5257 handle_running_event = true;
5258
5259 // Now wait for the process to stop again:
5260 event_sp.reset();
5261
5262 Timeout<std::micro> timeout =
5263 GetExpressionTimeout(options, before_first_timeout);
5264 if (log) {
5265 if (timeout) {
5266 auto now = system_clock::now();
5267 LLDB_LOGF(log,
5268 "Process::RunThreadPlan(): about to wait - now is %s - "
5269 "endpoint is %s",
5270 llvm::to_string(now).c_str(),
5271 llvm::to_string(now + *timeout).c_str());
5272 } else {
5273 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5274 }
5275 }
5276
5277 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5278 // See comment above...
5279 if (miss_first_event) {
5280 std::this_thread::sleep_for(std::chrono::milliseconds(1));
5281 miss_first_event = false;
5282 got_event = false;
5283 } else
5284 #endif
5285 got_event = listener_sp->GetEvent(event_sp, timeout);
5286
5287 if (got_event) {
5288 if (event_sp) {
5289 bool keep_going = false;
5290 if (event_sp->GetType() == eBroadcastBitInterrupt) {
5291 const bool clear_thread_plans = false;
5292 const bool use_run_lock = false;
5293 Halt(clear_thread_plans, use_run_lock);
5294 return_value = eExpressionInterrupted;
5295 diagnostic_manager.PutString(lldb::eSeverityInfo,
5296 "execution halted by user interrupt.");
5297 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by "
5298 "eBroadcastBitInterrupted, exiting.");
5299 break;
5300 } else {
5301 stop_state =
5302 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5303 LLDB_LOGF(log,
5304 "Process::RunThreadPlan(): in while loop, got event: %s.",
5305 StateAsCString(stop_state));
5306
5307 switch (stop_state) {
5308 case lldb::eStateStopped: {
5309 if (Process::ProcessEventData::GetRestartedFromEvent(
5310 event_sp.get())) {
5311 // If we were restarted, we just need to go back up to fetch
5312 // another event.
5313 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5314 "restart, so we'll continue waiting.");
5315 keep_going = true;
5316 do_resume = false;
5317 handle_running_event = true;
5318 } else {
5319 const bool handle_interrupts = true;
5320 return_value = *HandleStoppedEvent(
5321 expr_thread_id, thread_plan_sp, thread_plan_restorer,
5322 event_sp, event_to_broadcast_sp, options,
5323 handle_interrupts);
5324 if (return_value == eExpressionThreadVanished)
5325 keep_going = false;
5326 }
5327 } break;
5328
5329 case lldb::eStateRunning:
5330 // This shouldn't really happen, but sometimes we do get two
5331 // running events without an intervening stop, and in that case
5332 // we should just go back to waiting for the stop.
5333 do_resume = false;
5334 keep_going = true;
5335 handle_running_event = false;
5336 break;
5337
5338 default:
5339 LLDB_LOGF(log,
5340 "Process::RunThreadPlan(): execution stopped with "
5341 "unexpected state: %s.",
5342 StateAsCString(stop_state));
5343
5344 if (stop_state == eStateExited)
5345 event_to_broadcast_sp = event_sp;
5346
5347 diagnostic_manager.PutString(
5348 lldb::eSeverityError,
5349 "execution stopped with unexpected state.");
5350 return_value = eExpressionInterrupted;
5351 break;
5352 }
5353 }
5354
5355 if (keep_going)
5356 continue;
5357 else
5358 break;
5359 } else {
5360 if (log)
5361 log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5362 "the event pointer was null. How odd...");
5363 return_value = eExpressionInterrupted;
5364 break;
5365 }
5366 } else {
5367 // If we didn't get an event that means we've timed out... We will
5368 // interrupt the process here. Depending on what we were asked to do
5369 // we will either exit, or try with all threads running for the same
5370 // timeout.
5371
5372 if (log) {
5373 if (options.GetTryAllThreads()) {
5374 if (before_first_timeout) {
5375 LLDB_LOG(log,
5376 "Running function with one thread timeout timed out.");
5377 } else
5378 LLDB_LOG(log, "Restarting function with all threads enabled and "
5379 "timeout: {0} timed out, abandoning execution.",
5380 timeout);
5381 } else
5382 LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5383 "abandoning execution.",
5384 timeout);
5385 }
5386
5387 // It is possible that between the time we issued the Halt, and we get
5388 // around to calling Halt the target could have stopped. That's fine,
5389 // Halt will figure that out and send the appropriate Stopped event.
5390 // BUT it is also possible that we stopped & restarted (e.g. hit a
5391 // signal with "stop" set to false.) In
5392 // that case, we'll get the stopped & restarted event, and we should go
5393 // back to waiting for the Halt's stopped event. That's what this
5394 // while loop does.
5395
5396 bool back_to_top = true;
5397 uint32_t try_halt_again = 0;
5398 bool do_halt = true;
5399 const uint32_t num_retries = 5;
5400 while (try_halt_again < num_retries) {
5401 Status halt_error;
5402 if (do_halt) {
5403 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5404 const bool clear_thread_plans = false;
5405 const bool use_run_lock = false;
5406 Halt(clear_thread_plans, use_run_lock);
5407 }
5408 if (halt_error.Success()) {
5409 if (log)
5410 log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5411
5412 got_event =
5413 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5414
5415 if (got_event) {
5416 stop_state =
5417 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5418 if (log) {
5419 LLDB_LOGF(log,
5420 "Process::RunThreadPlan(): Stopped with event: %s",
5421 StateAsCString(stop_state));
5422 if (stop_state == lldb::eStateStopped &&
5423 Process::ProcessEventData::GetInterruptedFromEvent(
5424 event_sp.get()))
5425 log->PutCString(" Event was the Halt interruption event.");
5426 }
5427
5428 if (stop_state == lldb::eStateStopped) {
5429 if (Process::ProcessEventData::GetRestartedFromEvent(
5430 event_sp.get())) {
5431 if (log)
5432 log->PutCString("Process::RunThreadPlan(): Went to halt "
5433 "but got a restarted event, there must be "
5434 "an un-restarted stopped event so try "
5435 "again... "
5436 "Exiting wait loop.");
5437 try_halt_again++;
5438 do_halt = false;
5439 continue;
5440 }
5441
5442 // Between the time we initiated the Halt and the time we
5443 // delivered it, the process could have already finished its
5444 // job. Check that here:
5445 const bool handle_interrupts = false;
5446 if (auto result = HandleStoppedEvent(
5447 expr_thread_id, thread_plan_sp, thread_plan_restorer,
5448 event_sp, event_to_broadcast_sp, options,
5449 handle_interrupts)) {
5450 return_value = *result;
5451 back_to_top = false;
5452 break;
5453 }
5454
5455 if (!options.GetTryAllThreads()) {
5456 if (log)
5457 log->PutCString("Process::RunThreadPlan(): try_all_threads "
5458 "was false, we stopped so now we're "
5459 "quitting.");
5460 return_value = eExpressionInterrupted;
5461 back_to_top = false;
5462 break;
5463 }
5464
5465 if (before_first_timeout) {
5466 // Set all the other threads to run, and return to the top of
5467 // the loop, which will continue;
5468 before_first_timeout = false;
5469 thread_plan_sp->SetStopOthers(false);
5470 if (log)
5471 log->PutCString(
5472 "Process::RunThreadPlan(): about to resume.");
5473
5474 back_to_top = true;
5475 break;
5476 } else {
5477 // Running all threads failed, so return Interrupted.
5478 if (log)
5479 log->PutCString("Process::RunThreadPlan(): running all "
5480 "threads timed out.");
5481 return_value = eExpressionInterrupted;
5482 back_to_top = false;
5483 break;
5484 }
5485 }
5486 } else {
5487 if (log)
5488 log->PutCString("Process::RunThreadPlan(): halt said it "
5489 "succeeded, but I got no event. "
5490 "I'm getting out of here passing Interrupted.");
5491 return_value = eExpressionInterrupted;
5492 back_to_top = false;
5493 break;
5494 }
5495 } else {
5496 try_halt_again++;
5497 continue;
5498 }
5499 }
5500
5501 if (!back_to_top || try_halt_again > num_retries)
5502 break;
5503 else
5504 continue;
5505 }
5506 } // END WAIT LOOP
5507
5508 // If we had to start up a temporary private state thread to run this
5509 // thread plan, shut it down now.
5510 if (backup_private_state_thread.IsJoinable()) {
5511 StopPrivateStateThread();
5512 Status error;
5513 m_private_state_thread = backup_private_state_thread;
5514 if (stopper_base_plan_sp) {
5515 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5516 }
5517 if (old_state != eStateInvalid)
5518 m_public_state.SetValueNoLock(old_state);
5519 }
5520
5521 // If our thread went away on us, we need to get out of here without
5522 // doing any more work. We don't have to clean up the thread plan, that
5523 // will have happened when the Thread was destroyed.
5524 if (return_value == eExpressionThreadVanished) {
5525 return return_value;
5526 }
5527
5528 if (return_value != eExpressionCompleted && log) {
5529 // Print a backtrace into the log so we can figure out where we are:
5530 StreamString s;
5531 s.PutCString("Thread state after unsuccessful completion: \n");
5532 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5533 log->PutString(s.GetString());
5534 }
5535 // Restore the thread state if we are going to discard the plan execution.
5536 // There are three cases where this could happen: 1) The execution
5537 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5538 // was true 3) We got some other error, and discard_on_error was true
5539 bool should_unwind = (return_value == eExpressionInterrupted &&
5540 options.DoesUnwindOnError()) ||
5541 (return_value == eExpressionHitBreakpoint &&
5542 options.DoesIgnoreBreakpoints());
5543
5544 if (return_value == eExpressionCompleted || should_unwind) {
5545 thread_plan_sp->RestoreThreadState();
5546 }
5547
5548 // Now do some processing on the results of the run:
5549 if (return_value == eExpressionInterrupted ||
5550 return_value == eExpressionHitBreakpoint) {
5551 if (log) {
5552 StreamString s;
5553 if (event_sp)
5554 event_sp->Dump(&s);
5555 else {
5556 log->PutCString("Process::RunThreadPlan(): Stop event that "
5557 "interrupted us is NULL.");
5558 }
5559
5560 StreamString ts;
5561
5562 const char *event_explanation = nullptr;
5563
5564 do {
5565 if (!event_sp) {
5566 event_explanation = "<no event>";
5567 break;
5568 } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5569 event_explanation = "<user interrupt>";
5570 break;
5571 } else {
5572 const Process::ProcessEventData *event_data =
5573 Process::ProcessEventData::GetEventDataFromEvent(
5574 event_sp.get());
5575
5576 if (!event_data) {
5577 event_explanation = "<no event data>";
5578 break;
5579 }
5580
5581 Process *process = event_data->GetProcessSP().get();
5582
5583 if (!process) {
5584 event_explanation = "<no process>";
5585 break;
5586 }
5587
5588 ThreadList &thread_list = process->GetThreadList();
5589
5590 uint32_t num_threads = thread_list.GetSize();
5591 uint32_t thread_index;
5592
5593 ts.Printf("<%u threads> ", num_threads);
5594
5595 for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5596 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5597
5598 if (!thread) {
5599 ts.Printf("<?> ");
5600 continue;
5601 }
5602
5603 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5604 RegisterContext *register_context =
5605 thread->GetRegisterContext().get();
5606
5607 if (register_context)
5608 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5609 else
5610 ts.Printf("[ip unknown] ");
5611
5612 // Show the private stop info here, the public stop info will be
5613 // from the last natural stop.
5614 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5615 if (stop_info_sp) {
5616 const char *stop_desc = stop_info_sp->GetDescription();
5617 if (stop_desc)
5618 ts.PutCString(stop_desc);
5619 }
5620 ts.Printf(">");
5621 }
5622
5623 event_explanation = ts.GetData();
5624 }
5625 } while (false);
5626
5627 if (event_explanation)
5628 LLDB_LOGF(log,
5629 "Process::RunThreadPlan(): execution interrupted: %s %s",
5630 s.GetData(), event_explanation);
5631 else
5632 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5633 s.GetData());
5634 }
5635
5636 if (should_unwind) {
5637 LLDB_LOGF(log,
5638 "Process::RunThreadPlan: ExecutionInterrupted - "
5639 "discarding thread plans up to %p.",
5640 static_cast<void *>(thread_plan_sp.get()));
5641 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5642 } else {
5643 LLDB_LOGF(log,
5644 "Process::RunThreadPlan: ExecutionInterrupted - for "
5645 "plan: %p not discarding.",
5646 static_cast<void *>(thread_plan_sp.get()));
5647 }
5648 } else if (return_value == eExpressionSetupError) {
5649 if (log)
5650 log->PutCString("Process::RunThreadPlan(): execution set up error.");
5651
5652 if (options.DoesUnwindOnError()) {
5653 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5654 }
5655 } else {
5656 if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5657 if (log)
5658 log->PutCString("Process::RunThreadPlan(): thread plan is done");
5659 return_value = eExpressionCompleted;
5660 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5661 if (log)
5662 log->PutCString(
5663 "Process::RunThreadPlan(): thread plan was discarded");
5664 return_value = eExpressionDiscarded;
5665 } else {
5666 if (log)
5667 log->PutCString(
5668 "Process::RunThreadPlan(): thread plan stopped in mid course");
5669 if (options.DoesUnwindOnError() && thread_plan_sp) {
5670 if (log)
5671 log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5672 "'cause unwind_on_error is set.");
5673 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5674 }
5675 }
5676 }
5677
5678 // Thread we ran the function in may have gone away because we ran the
5679 // target Check that it's still there, and if it is put it back in the
5680 // context. Also restore the frame in the context if it is still present.
5681 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5682 if (thread) {
5683 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5684 }
5685
5686 // Also restore the current process'es selected frame & thread, since this
5687 // function calling may be done behind the user's back.
5688
5689 if (selected_tid != LLDB_INVALID_THREAD_ID) {
5690 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5691 selected_stack_id.IsValid()) {
5692 // We were able to restore the selected thread, now restore the frame:
5693 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5694 StackFrameSP old_frame_sp =
5695 GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5696 selected_stack_id);
5697 if (old_frame_sp)
5698 GetThreadList().GetSelectedThread()->SetSelectedFrame(
5699 old_frame_sp.get());
5700 }
5701 }
5702 }
5703
5704 // If the process exited during the run of the thread plan, notify everyone.
5705
5706 if (event_to_broadcast_sp) {
5707 if (log)
5708 log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5709 BroadcastEvent(event_to_broadcast_sp);
5710 }
5711
5712 return return_value;
5713 }
5714
ExecutionResultAsCString(ExpressionResults result)5715 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5716 const char *result_name = "<unknown>";
5717
5718 switch (result) {
5719 case eExpressionCompleted:
5720 result_name = "eExpressionCompleted";
5721 break;
5722 case eExpressionDiscarded:
5723 result_name = "eExpressionDiscarded";
5724 break;
5725 case eExpressionInterrupted:
5726 result_name = "eExpressionInterrupted";
5727 break;
5728 case eExpressionHitBreakpoint:
5729 result_name = "eExpressionHitBreakpoint";
5730 break;
5731 case eExpressionSetupError:
5732 result_name = "eExpressionSetupError";
5733 break;
5734 case eExpressionParseError:
5735 result_name = "eExpressionParseError";
5736 break;
5737 case eExpressionResultUnavailable:
5738 result_name = "eExpressionResultUnavailable";
5739 break;
5740 case eExpressionTimedOut:
5741 result_name = "eExpressionTimedOut";
5742 break;
5743 case eExpressionStoppedForDebug:
5744 result_name = "eExpressionStoppedForDebug";
5745 break;
5746 case eExpressionThreadVanished:
5747 result_name = "eExpressionThreadVanished";
5748 }
5749 return result_name;
5750 }
5751
GetStatus(Stream & strm)5752 void Process::GetStatus(Stream &strm) {
5753 const StateType state = GetState();
5754 if (StateIsStoppedState(state, false)) {
5755 if (state == eStateExited) {
5756 int exit_status = GetExitStatus();
5757 const char *exit_description = GetExitDescription();
5758 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5759 GetID(), exit_status, exit_status,
5760 exit_description ? exit_description : "");
5761 } else {
5762 if (state == eStateConnected)
5763 strm.Printf("Connected to remote target.\n");
5764 else
5765 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5766 }
5767 } else {
5768 strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5769 }
5770 }
5771
GetThreadStatus(Stream & strm,bool only_threads_with_stop_reason,uint32_t start_frame,uint32_t num_frames,uint32_t num_frames_with_source,bool stop_format)5772 size_t Process::GetThreadStatus(Stream &strm,
5773 bool only_threads_with_stop_reason,
5774 uint32_t start_frame, uint32_t num_frames,
5775 uint32_t num_frames_with_source,
5776 bool stop_format) {
5777 size_t num_thread_infos_dumped = 0;
5778
5779 // You can't hold the thread list lock while calling Thread::GetStatus. That
5780 // very well might run code (e.g. if we need it to get return values or
5781 // arguments.) For that to work the process has to be able to acquire it.
5782 // So instead copy the thread ID's, and look them up one by one:
5783
5784 uint32_t num_threads;
5785 std::vector<lldb::tid_t> thread_id_array;
5786 // Scope for thread list locker;
5787 {
5788 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5789 ThreadList &curr_thread_list = GetThreadList();
5790 num_threads = curr_thread_list.GetSize();
5791 uint32_t idx;
5792 thread_id_array.resize(num_threads);
5793 for (idx = 0; idx < num_threads; ++idx)
5794 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5795 }
5796
5797 for (uint32_t i = 0; i < num_threads; i++) {
5798 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5799 if (thread_sp) {
5800 if (only_threads_with_stop_reason) {
5801 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5802 if (!stop_info_sp || !stop_info_sp->IsValid())
5803 continue;
5804 }
5805 thread_sp->GetStatus(strm, start_frame, num_frames,
5806 num_frames_with_source,
5807 stop_format);
5808 ++num_thread_infos_dumped;
5809 } else {
5810 Log *log = GetLog(LLDBLog::Process);
5811 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5812 " vanished while running Thread::GetStatus.");
5813 }
5814 }
5815 return num_thread_infos_dumped;
5816 }
5817
AddInvalidMemoryRegion(const LoadRange & region)5818 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) {
5819 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5820 }
5821
RemoveInvalidMemoryRange(const LoadRange & region)5822 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) {
5823 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5824 region.GetByteSize());
5825 }
5826
AddPreResumeAction(PreResumeActionCallback callback,void * baton)5827 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5828 void *baton) {
5829 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5830 }
5831
RunPreResumeActions()5832 bool Process::RunPreResumeActions() {
5833 bool result = true;
5834 while (!m_pre_resume_actions.empty()) {
5835 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5836 m_pre_resume_actions.pop_back();
5837 bool this_result = action.callback(action.baton);
5838 if (result)
5839 result = this_result;
5840 }
5841 return result;
5842 }
5843
ClearPreResumeActions()5844 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5845
ClearPreResumeAction(PreResumeActionCallback callback,void * baton)5846 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5847 {
5848 PreResumeCallbackAndBaton element(callback, baton);
5849 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5850 if (found_iter != m_pre_resume_actions.end())
5851 {
5852 m_pre_resume_actions.erase(found_iter);
5853 }
5854 }
5855
GetRunLock()5856 ProcessRunLock &Process::GetRunLock() {
5857 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5858 return m_private_run_lock;
5859 else
5860 return m_public_run_lock;
5861 }
5862
CurrentThreadIsPrivateStateThread()5863 bool Process::CurrentThreadIsPrivateStateThread()
5864 {
5865 return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5866 }
5867
5868
Flush()5869 void Process::Flush() {
5870 m_thread_list.Flush();
5871 m_extended_thread_list.Flush();
5872 m_extended_thread_stop_id = 0;
5873 m_queue_list.Clear();
5874 m_queue_list_stop_id = 0;
5875 }
5876
GetCodeAddressMask()5877 lldb::addr_t Process::GetCodeAddressMask() {
5878 if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5879 return AddressableBits::AddressableBitToMask(num_bits_setting);
5880
5881 return m_code_address_mask;
5882 }
5883
GetDataAddressMask()5884 lldb::addr_t Process::GetDataAddressMask() {
5885 if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5886 return AddressableBits::AddressableBitToMask(num_bits_setting);
5887
5888 return m_data_address_mask;
5889 }
5890
GetHighmemCodeAddressMask()5891 lldb::addr_t Process::GetHighmemCodeAddressMask() {
5892 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5893 return AddressableBits::AddressableBitToMask(num_bits_setting);
5894
5895 if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK)
5896 return m_highmem_code_address_mask;
5897 return GetCodeAddressMask();
5898 }
5899
GetHighmemDataAddressMask()5900 lldb::addr_t Process::GetHighmemDataAddressMask() {
5901 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5902 return AddressableBits::AddressableBitToMask(num_bits_setting);
5903
5904 if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK)
5905 return m_highmem_data_address_mask;
5906 return GetDataAddressMask();
5907 }
5908
SetCodeAddressMask(lldb::addr_t code_address_mask)5909 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
5910 LLDB_LOG(GetLog(LLDBLog::Process),
5911 "Setting Process code address mask to {0:x}", code_address_mask);
5912 m_code_address_mask = code_address_mask;
5913 }
5914
SetDataAddressMask(lldb::addr_t data_address_mask)5915 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
5916 LLDB_LOG(GetLog(LLDBLog::Process),
5917 "Setting Process data address mask to {0:x}", data_address_mask);
5918 m_data_address_mask = data_address_mask;
5919 }
5920
SetHighmemCodeAddressMask(lldb::addr_t code_address_mask)5921 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
5922 LLDB_LOG(GetLog(LLDBLog::Process),
5923 "Setting Process highmem code address mask to {0:x}",
5924 code_address_mask);
5925 m_highmem_code_address_mask = code_address_mask;
5926 }
5927
SetHighmemDataAddressMask(lldb::addr_t data_address_mask)5928 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
5929 LLDB_LOG(GetLog(LLDBLog::Process),
5930 "Setting Process highmem data address mask to {0:x}",
5931 data_address_mask);
5932 m_highmem_data_address_mask = data_address_mask;
5933 }
5934
FixCodeAddress(addr_t addr)5935 addr_t Process::FixCodeAddress(addr_t addr) {
5936 if (ABISP abi_sp = GetABI())
5937 addr = abi_sp->FixCodeAddress(addr);
5938 return addr;
5939 }
5940
FixDataAddress(addr_t addr)5941 addr_t Process::FixDataAddress(addr_t addr) {
5942 if (ABISP abi_sp = GetABI())
5943 addr = abi_sp->FixDataAddress(addr);
5944 return addr;
5945 }
5946
FixAnyAddress(addr_t addr)5947 addr_t Process::FixAnyAddress(addr_t addr) {
5948 if (ABISP abi_sp = GetABI())
5949 addr = abi_sp->FixAnyAddress(addr);
5950 return addr;
5951 }
5952
DidExec()5953 void Process::DidExec() {
5954 Log *log = GetLog(LLDBLog::Process);
5955 LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5956
5957 Target &target = GetTarget();
5958 target.CleanupProcess();
5959 target.ClearModules(false);
5960 m_dynamic_checkers_up.reset();
5961 m_abi_sp.reset();
5962 m_system_runtime_up.reset();
5963 m_os_up.reset();
5964 m_dyld_up.reset();
5965 m_jit_loaders_up.reset();
5966 m_image_tokens.clear();
5967 // After an exec, the inferior is a new process and these memory regions are
5968 // no longer allocated.
5969 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
5970 {
5971 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5972 m_language_runtimes.clear();
5973 }
5974 m_instrumentation_runtimes.clear();
5975 m_thread_list.DiscardThreadPlans();
5976 m_memory_cache.Clear(true);
5977 DoDidExec();
5978 CompleteAttach();
5979 // Flush the process (threads and all stack frames) after running
5980 // CompleteAttach() in case the dynamic loader loaded things in new
5981 // locations.
5982 Flush();
5983
5984 // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5985 // let the target know so it can do any cleanup it needs to.
5986 target.DidExec();
5987 }
5988
ResolveIndirectFunction(const Address * address,Status & error)5989 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5990 if (address == nullptr) {
5991 error.SetErrorString("Invalid address argument");
5992 return LLDB_INVALID_ADDRESS;
5993 }
5994
5995 addr_t function_addr = LLDB_INVALID_ADDRESS;
5996
5997 addr_t addr = address->GetLoadAddress(&GetTarget());
5998 std::map<addr_t, addr_t>::const_iterator iter =
5999 m_resolved_indirect_addresses.find(addr);
6000 if (iter != m_resolved_indirect_addresses.end()) {
6001 function_addr = (*iter).second;
6002 } else {
6003 if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
6004 Symbol *symbol = address->CalculateSymbolContextSymbol();
6005 error.SetErrorStringWithFormat(
6006 "Unable to call resolver for indirect function %s",
6007 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
6008 function_addr = LLDB_INVALID_ADDRESS;
6009 } else {
6010 if (ABISP abi_sp = GetABI())
6011 function_addr = abi_sp->FixCodeAddress(function_addr);
6012 m_resolved_indirect_addresses.insert(
6013 std::pair<addr_t, addr_t>(addr, function_addr));
6014 }
6015 }
6016 return function_addr;
6017 }
6018
ModulesDidLoad(ModuleList & module_list)6019 void Process::ModulesDidLoad(ModuleList &module_list) {
6020 // Inform the system runtime of the modified modules.
6021 SystemRuntime *sys_runtime = GetSystemRuntime();
6022 if (sys_runtime)
6023 sys_runtime->ModulesDidLoad(module_list);
6024
6025 GetJITLoaders().ModulesDidLoad(module_list);
6026
6027 // Give the instrumentation runtimes a chance to be created before informing
6028 // them of the modified modules.
6029 InstrumentationRuntime::ModulesDidLoad(module_list, this,
6030 m_instrumentation_runtimes);
6031 for (auto &runtime : m_instrumentation_runtimes)
6032 runtime.second->ModulesDidLoad(module_list);
6033
6034 // Give the language runtimes a chance to be created before informing them of
6035 // the modified modules.
6036 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
6037 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
6038 runtime->ModulesDidLoad(module_list);
6039 }
6040
6041 // If we don't have an operating system plug-in, try to load one since
6042 // loading shared libraries might cause a new one to try and load
6043 if (!m_os_up)
6044 LoadOperatingSystemPlugin(false);
6045
6046 // Inform the structured-data plugins of the modified modules.
6047 for (auto &pair : m_structured_data_plugin_map) {
6048 if (pair.second)
6049 pair.second->ModulesDidLoad(*this, module_list);
6050 }
6051 }
6052
PrintWarningOptimization(const SymbolContext & sc)6053 void Process::PrintWarningOptimization(const SymbolContext &sc) {
6054 if (!GetWarningsOptimization())
6055 return;
6056 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
6057 return;
6058 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
6059 }
6060
PrintWarningUnsupportedLanguage(const SymbolContext & sc)6061 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
6062 if (!GetWarningsUnsupportedLanguage())
6063 return;
6064 if (!sc.module_sp)
6065 return;
6066 LanguageType language = sc.GetLanguage();
6067 if (language == eLanguageTypeUnknown ||
6068 language == lldb::eLanguageTypeAssembly ||
6069 language == lldb::eLanguageTypeMipsAssembler)
6070 return;
6071 LanguageSet plugins =
6072 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
6073 if (plugins[language])
6074 return;
6075 sc.module_sp->ReportWarningUnsupportedLanguage(
6076 language, GetTarget().GetDebugger().GetID());
6077 }
6078
GetProcessInfo(ProcessInstanceInfo & info)6079 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
6080 info.Clear();
6081
6082 PlatformSP platform_sp = GetTarget().GetPlatform();
6083 if (!platform_sp)
6084 return false;
6085
6086 return platform_sp->GetProcessInfo(GetID(), info);
6087 }
6088
GetHistoryThreads(lldb::addr_t addr)6089 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
6090 ThreadCollectionSP threads;
6091
6092 const MemoryHistorySP &memory_history =
6093 MemoryHistory::FindPlugin(shared_from_this());
6094
6095 if (!memory_history) {
6096 return threads;
6097 }
6098
6099 threads = std::make_shared<ThreadCollection>(
6100 memory_history->GetHistoryThreads(addr));
6101
6102 return threads;
6103 }
6104
6105 InstrumentationRuntimeSP
GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type)6106 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
6107 InstrumentationRuntimeCollection::iterator pos;
6108 pos = m_instrumentation_runtimes.find(type);
6109 if (pos == m_instrumentation_runtimes.end()) {
6110 return InstrumentationRuntimeSP();
6111 } else
6112 return (*pos).second;
6113 }
6114
GetModuleSpec(const FileSpec & module_file_spec,const ArchSpec & arch,ModuleSpec & module_spec)6115 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
6116 const ArchSpec &arch, ModuleSpec &module_spec) {
6117 module_spec.Clear();
6118 return false;
6119 }
6120
AddImageToken(lldb::addr_t image_ptr)6121 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
6122 m_image_tokens.push_back(image_ptr);
6123 return m_image_tokens.size() - 1;
6124 }
6125
GetImagePtrFromToken(size_t token) const6126 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
6127 if (token < m_image_tokens.size())
6128 return m_image_tokens[token];
6129 return LLDB_INVALID_IMAGE_TOKEN;
6130 }
6131
ResetImageToken(size_t token)6132 void Process::ResetImageToken(size_t token) {
6133 if (token < m_image_tokens.size())
6134 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
6135 }
6136
6137 Address
AdvanceAddressToNextBranchInstruction(Address default_stop_addr,AddressRange range_bounds)6138 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
6139 AddressRange range_bounds) {
6140 Target &target = GetTarget();
6141 DisassemblerSP disassembler_sp;
6142 InstructionList *insn_list = nullptr;
6143
6144 Address retval = default_stop_addr;
6145
6146 if (!target.GetUseFastStepping())
6147 return retval;
6148 if (!default_stop_addr.IsValid())
6149 return retval;
6150
6151 const char *plugin_name = nullptr;
6152 const char *flavor = nullptr;
6153 disassembler_sp = Disassembler::DisassembleRange(
6154 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
6155 if (disassembler_sp)
6156 insn_list = &disassembler_sp->GetInstructionList();
6157
6158 if (insn_list == nullptr) {
6159 return retval;
6160 }
6161
6162 size_t insn_offset =
6163 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
6164 if (insn_offset == UINT32_MAX) {
6165 return retval;
6166 }
6167
6168 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
6169 insn_offset, false /* ignore_calls*/, nullptr);
6170 if (branch_index == UINT32_MAX) {
6171 return retval;
6172 }
6173
6174 if (branch_index > insn_offset) {
6175 Address next_branch_insn_address =
6176 insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
6177 if (next_branch_insn_address.IsValid() &&
6178 range_bounds.ContainsFileAddress(next_branch_insn_address)) {
6179 retval = next_branch_insn_address;
6180 }
6181 }
6182
6183 return retval;
6184 }
6185
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)6186 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
6187 MemoryRegionInfo &range_info) {
6188 if (const lldb::ABISP &abi = GetABI())
6189 load_addr = abi->FixAnyAddress(load_addr);
6190 return DoGetMemoryRegionInfo(load_addr, range_info);
6191 }
6192
GetMemoryRegions(lldb_private::MemoryRegionInfos & region_list)6193 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) {
6194 Status error;
6195
6196 lldb::addr_t range_end = 0;
6197 const lldb::ABISP &abi = GetABI();
6198
6199 region_list.clear();
6200 do {
6201 lldb_private::MemoryRegionInfo region_info;
6202 error = GetMemoryRegionInfo(range_end, region_info);
6203 // GetMemoryRegionInfo should only return an error if it is unimplemented.
6204 if (error.Fail()) {
6205 region_list.clear();
6206 break;
6207 }
6208
6209 // We only check the end address, not start and end, because we assume that
6210 // the start will not have non-address bits until the first unmappable
6211 // region. We will have exited the loop by that point because the previous
6212 // region, the last mappable region, will have non-address bits in its end
6213 // address.
6214 range_end = region_info.GetRange().GetRangeEnd();
6215 if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
6216 region_list.push_back(std::move(region_info));
6217 }
6218 } while (
6219 // For a process with no non-address bits, all address bits
6220 // set means the end of memory.
6221 range_end != LLDB_INVALID_ADDRESS &&
6222 // If we have non-address bits and some are set then the end
6223 // is at or beyond the end of mappable memory.
6224 !(abi && (abi->FixAnyAddress(range_end) != range_end)));
6225
6226 return error;
6227 }
6228
6229 Status
ConfigureStructuredData(llvm::StringRef type_name,const StructuredData::ObjectSP & config_sp)6230 Process::ConfigureStructuredData(llvm::StringRef type_name,
6231 const StructuredData::ObjectSP &config_sp) {
6232 // If you get this, the Process-derived class needs to implement a method to
6233 // enable an already-reported asynchronous structured data feature. See
6234 // ProcessGDBRemote for an example implementation over gdb-remote.
6235 return Status("unimplemented");
6236 }
6237
MapSupportedStructuredDataPlugins(const StructuredData::Array & supported_type_names)6238 void Process::MapSupportedStructuredDataPlugins(
6239 const StructuredData::Array &supported_type_names) {
6240 Log *log = GetLog(LLDBLog::Process);
6241
6242 // Bail out early if there are no type names to map.
6243 if (supported_type_names.GetSize() == 0) {
6244 LLDB_LOG(log, "no structured data types supported");
6245 return;
6246 }
6247
6248 // These StringRefs are backed by the input parameter.
6249 std::set<llvm::StringRef> type_names;
6250
6251 LLDB_LOG(log,
6252 "the process supports the following async structured data types:");
6253
6254 supported_type_names.ForEach(
6255 [&type_names, &log](StructuredData::Object *object) {
6256 // There shouldn't be null objects in the array.
6257 if (!object)
6258 return false;
6259
6260 // All type names should be strings.
6261 const llvm::StringRef type_name = object->GetStringValue();
6262 if (type_name.empty())
6263 return false;
6264
6265 type_names.insert(type_name);
6266 LLDB_LOG(log, "- {0}", type_name);
6267 return true;
6268 });
6269
6270 // For each StructuredDataPlugin, if the plugin handles any of the types in
6271 // the supported_type_names, map that type name to that plugin. Stop when
6272 // we've consumed all the type names.
6273 // FIXME: should we return an error if there are type names nobody
6274 // supports?
6275 for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
6276 auto create_instance =
6277 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6278 plugin_index);
6279 if (!create_instance)
6280 break;
6281
6282 // Create the plugin.
6283 StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6284 if (!plugin_sp) {
6285 // This plugin doesn't think it can work with the process. Move on to the
6286 // next.
6287 continue;
6288 }
6289
6290 // For any of the remaining type names, map any that this plugin supports.
6291 std::vector<llvm::StringRef> names_to_remove;
6292 for (llvm::StringRef type_name : type_names) {
6293 if (plugin_sp->SupportsStructuredDataType(type_name)) {
6294 m_structured_data_plugin_map.insert(
6295 std::make_pair(type_name, plugin_sp));
6296 names_to_remove.push_back(type_name);
6297 LLDB_LOG(log, "using plugin {0} for type name {1}",
6298 plugin_sp->GetPluginName(), type_name);
6299 }
6300 }
6301
6302 // Remove the type names that were consumed by this plugin.
6303 for (llvm::StringRef type_name : names_to_remove)
6304 type_names.erase(type_name);
6305 }
6306 }
6307
RouteAsyncStructuredData(const StructuredData::ObjectSP object_sp)6308 bool Process::RouteAsyncStructuredData(
6309 const StructuredData::ObjectSP object_sp) {
6310 // Nothing to do if there's no data.
6311 if (!object_sp)
6312 return false;
6313
6314 // The contract is this must be a dictionary, so we can look up the routing
6315 // key via the top-level 'type' string value within the dictionary.
6316 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6317 if (!dictionary)
6318 return false;
6319
6320 // Grab the async structured type name (i.e. the feature/plugin name).
6321 llvm::StringRef type_name;
6322 if (!dictionary->GetValueForKeyAsString("type", type_name))
6323 return false;
6324
6325 // Check if there's a plugin registered for this type name.
6326 auto find_it = m_structured_data_plugin_map.find(type_name);
6327 if (find_it == m_structured_data_plugin_map.end()) {
6328 // We don't have a mapping for this structured data type.
6329 return false;
6330 }
6331
6332 // Route the structured data to the plugin.
6333 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6334 return true;
6335 }
6336
UpdateAutomaticSignalFiltering()6337 Status Process::UpdateAutomaticSignalFiltering() {
6338 // Default implementation does nothign.
6339 // No automatic signal filtering to speak of.
6340 return Status();
6341 }
6342
GetLoadImageUtilityFunction(Platform * platform,llvm::function_ref<std::unique_ptr<UtilityFunction> ()> factory)6343 UtilityFunction *Process::GetLoadImageUtilityFunction(
6344 Platform *platform,
6345 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6346 if (platform != GetTarget().GetPlatform().get())
6347 return nullptr;
6348 llvm::call_once(m_dlopen_utility_func_flag_once,
6349 [&] { m_dlopen_utility_func_up = factory(); });
6350 return m_dlopen_utility_func_up.get();
6351 }
6352
TraceSupported()6353 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6354 if (!IsLiveDebugSession())
6355 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6356 "Can't trace a non-live process.");
6357 return llvm::make_error<UnimplementedError>();
6358 }
6359
CallVoidArgVoidPtrReturn(const Address * address,addr_t & returned_func,bool trap_exceptions)6360 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6361 addr_t &returned_func,
6362 bool trap_exceptions) {
6363 Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6364 if (thread == nullptr || address == nullptr)
6365 return false;
6366
6367 EvaluateExpressionOptions options;
6368 options.SetStopOthers(true);
6369 options.SetUnwindOnError(true);
6370 options.SetIgnoreBreakpoints(true);
6371 options.SetTryAllThreads(true);
6372 options.SetDebug(false);
6373 options.SetTimeout(GetUtilityExpressionTimeout());
6374 options.SetTrapExceptions(trap_exceptions);
6375
6376 auto type_system_or_err =
6377 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6378 if (!type_system_or_err) {
6379 llvm::consumeError(type_system_or_err.takeError());
6380 return false;
6381 }
6382 auto ts = *type_system_or_err;
6383 if (!ts)
6384 return false;
6385 CompilerType void_ptr_type =
6386 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6387 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6388 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6389 if (call_plan_sp) {
6390 DiagnosticManager diagnostics;
6391
6392 StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6393 if (frame) {
6394 ExecutionContext exe_ctx;
6395 frame->CalculateExecutionContext(exe_ctx);
6396 ExpressionResults result =
6397 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6398 if (result == eExpressionCompleted) {
6399 returned_func =
6400 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6401 LLDB_INVALID_ADDRESS);
6402
6403 if (GetAddressByteSize() == 4) {
6404 if (returned_func == UINT32_MAX)
6405 return false;
6406 } else if (GetAddressByteSize() == 8) {
6407 if (returned_func == UINT64_MAX)
6408 return false;
6409 }
6410 return true;
6411 }
6412 }
6413 }
6414
6415 return false;
6416 }
6417
GetMemoryTagManager()6418 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6419 Architecture *arch = GetTarget().GetArchitecturePlugin();
6420 const MemoryTagManager *tag_manager =
6421 arch ? arch->GetMemoryTagManager() : nullptr;
6422 if (!arch || !tag_manager) {
6423 return llvm::createStringError(
6424 llvm::inconvertibleErrorCode(),
6425 "This architecture does not support memory tagging");
6426 }
6427
6428 if (!SupportsMemoryTagging()) {
6429 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6430 "Process does not support memory tagging");
6431 }
6432
6433 return tag_manager;
6434 }
6435
6436 llvm::Expected<std::vector<lldb::addr_t>>
ReadMemoryTags(lldb::addr_t addr,size_t len)6437 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6438 llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6439 GetMemoryTagManager();
6440 if (!tag_manager_or_err)
6441 return tag_manager_or_err.takeError();
6442
6443 const MemoryTagManager *tag_manager = *tag_manager_or_err;
6444 llvm::Expected<std::vector<uint8_t>> tag_data =
6445 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6446 if (!tag_data)
6447 return tag_data.takeError();
6448
6449 return tag_manager->UnpackTagsData(*tag_data,
6450 len / tag_manager->GetGranuleSize());
6451 }
6452
WriteMemoryTags(lldb::addr_t addr,size_t len,const std::vector<lldb::addr_t> & tags)6453 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6454 const std::vector<lldb::addr_t> &tags) {
6455 llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6456 GetMemoryTagManager();
6457 if (!tag_manager_or_err)
6458 return Status(tag_manager_or_err.takeError());
6459
6460 const MemoryTagManager *tag_manager = *tag_manager_or_err;
6461 llvm::Expected<std::vector<uint8_t>> packed_tags =
6462 tag_manager->PackTags(tags);
6463 if (!packed_tags) {
6464 return Status(packed_tags.takeError());
6465 }
6466
6467 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6468 *packed_tags);
6469 }
6470
6471 // Create a CoreFileMemoryRange from a MemoryRegionInfo
6472 static Process::CoreFileMemoryRange
CreateCoreFileMemoryRange(const MemoryRegionInfo & region)6473 CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) {
6474 const addr_t addr = region.GetRange().GetRangeBase();
6475 llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
6476 return {range, region.GetLLDBPermissions()};
6477 }
6478
6479 // Add dirty pages to the core file ranges and return true if dirty pages
6480 // were added. Return false if the dirty page information is not valid or in
6481 // the region.
AddDirtyPages(const MemoryRegionInfo & region,Process::CoreFileMemoryRanges & ranges)6482 static bool AddDirtyPages(const MemoryRegionInfo ®ion,
6483 Process::CoreFileMemoryRanges &ranges) {
6484 const auto &dirty_page_list = region.GetDirtyPageList();
6485 if (!dirty_page_list)
6486 return false;
6487 const uint32_t lldb_permissions = region.GetLLDBPermissions();
6488 const addr_t page_size = region.GetPageSize();
6489 if (page_size == 0)
6490 return false;
6491 llvm::AddressRange range(0, 0);
6492 for (addr_t page_addr : *dirty_page_list) {
6493 if (range.empty()) {
6494 // No range yet, initialize the range with the current dirty page.
6495 range = llvm::AddressRange(page_addr, page_addr + page_size);
6496 } else {
6497 if (range.end() == page_addr) {
6498 // Combine consective ranges.
6499 range = llvm::AddressRange(range.start(), page_addr + page_size);
6500 } else {
6501 // Add previous contiguous range and init the new range with the
6502 // current dirty page.
6503 ranges.push_back({range, lldb_permissions});
6504 range = llvm::AddressRange(page_addr, page_addr + page_size);
6505 }
6506 }
6507 }
6508 // The last range
6509 if (!range.empty())
6510 ranges.push_back({range, lldb_permissions});
6511 return true;
6512 }
6513
6514 // Given a region, add the region to \a ranges.
6515 //
6516 // Only add the region if it isn't empty and if it has some permissions.
6517 // If \a try_dirty_pages is true, then try to add only the dirty pages for a
6518 // given region. If the region has dirty page information, only dirty pages
6519 // will be added to \a ranges, else the entire range will be added to \a
6520 // ranges.
AddRegion(const MemoryRegionInfo & region,bool try_dirty_pages,Process::CoreFileMemoryRanges & ranges)6521 static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages,
6522 Process::CoreFileMemoryRanges &ranges) {
6523 // Don't add empty ranges.
6524 if (region.GetRange().GetByteSize() == 0)
6525 return;
6526 // Don't add ranges with no read permissions.
6527 if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0)
6528 return;
6529 if (try_dirty_pages && AddDirtyPages(region, ranges))
6530 return;
6531 ranges.push_back(CreateCoreFileMemoryRange(region));
6532 }
6533
SaveOffRegionsWithStackPointers(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6534 static void SaveOffRegionsWithStackPointers(
6535 Process &process, const MemoryRegionInfos ®ions,
6536 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6537 const bool try_dirty_pages = true;
6538
6539 // Before we take any dump, we want to save off the used portions of the
6540 // stacks and mark those memory regions as saved. This prevents us from saving
6541 // the unused portion of the stack below the stack pointer. Saving space on
6542 // the dump.
6543 for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
6544 if (!thread_sp)
6545 continue;
6546 StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
6547 if (!frame_sp)
6548 continue;
6549 RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
6550 if (!reg_ctx_sp)
6551 continue;
6552 const addr_t sp = reg_ctx_sp->GetSP();
6553 const size_t red_zone = process.GetABI()->GetRedZoneSize();
6554 lldb_private::MemoryRegionInfo sp_region;
6555 if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
6556 const size_t stack_head = (sp - red_zone);
6557 const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head;
6558 sp_region.GetRange().SetRangeBase(stack_head);
6559 sp_region.GetRange().SetByteSize(stack_size);
6560 stack_ends.insert(sp_region.GetRange().GetRangeEnd());
6561 AddRegion(sp_region, try_dirty_pages, ranges);
6562 }
6563 }
6564 }
6565
6566 // Save all memory regions that are not empty or have at least some permissions
6567 // for a full core file style.
GetCoreFileSaveRangesFull(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6568 static void GetCoreFileSaveRangesFull(Process &process,
6569 const MemoryRegionInfos ®ions,
6570 Process::CoreFileMemoryRanges &ranges,
6571 std::set<addr_t> &stack_ends) {
6572
6573 // Don't add only dirty pages, add full regions.
6574 const bool try_dirty_pages = false;
6575 for (const auto ®ion : regions)
6576 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
6577 AddRegion(region, try_dirty_pages, ranges);
6578 }
6579
6580 // Save only the dirty pages to the core file. Make sure the process has at
6581 // least some dirty pages, as some OS versions don't support reporting what
6582 // pages are dirty within an memory region. If no memory regions have dirty
6583 // page information fall back to saving out all ranges with write permissions.
GetCoreFileSaveRangesDirtyOnly(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6584 static void GetCoreFileSaveRangesDirtyOnly(
6585 Process &process, const MemoryRegionInfos ®ions,
6586 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6587
6588 // Iterate over the regions and find all dirty pages.
6589 bool have_dirty_page_info = false;
6590 for (const auto ®ion : regions) {
6591 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6592 AddDirtyPages(region, ranges))
6593 have_dirty_page_info = true;
6594 }
6595
6596 if (!have_dirty_page_info) {
6597 // We didn't find support for reporting dirty pages from the process
6598 // plug-in so fall back to any region with write access permissions.
6599 const bool try_dirty_pages = false;
6600 for (const auto ®ion : regions)
6601 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6602 region.GetWritable() == MemoryRegionInfo::eYes)
6603 AddRegion(region, try_dirty_pages, ranges);
6604 }
6605 }
6606
6607 // Save all thread stacks to the core file. Some OS versions support reporting
6608 // when a memory region is stack related. We check on this information, but we
6609 // also use the stack pointers of each thread and add those in case the OS
6610 // doesn't support reporting stack memory. This function also attempts to only
6611 // emit dirty pages from the stack if the memory regions support reporting
6612 // dirty regions as this will make the core file smaller. If the process
6613 // doesn't support dirty regions, then it will fall back to adding the full
6614 // stack region.
GetCoreFileSaveRangesStackOnly(Process & process,const MemoryRegionInfos & regions,Process::CoreFileMemoryRanges & ranges,std::set<addr_t> & stack_ends)6615 static void GetCoreFileSaveRangesStackOnly(
6616 Process &process, const MemoryRegionInfos ®ions,
6617 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6618 const bool try_dirty_pages = true;
6619 // Some platforms support annotating the region information that tell us that
6620 // it comes from a thread stack. So look for those regions first.
6621
6622 for (const auto ®ion : regions) {
6623 // Save all the stack memory ranges not associated with a stack pointer.
6624 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6625 region.IsStackMemory() == MemoryRegionInfo::eYes)
6626 AddRegion(region, try_dirty_pages, ranges);
6627 }
6628 }
6629
CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,CoreFileMemoryRanges & ranges)6630 Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,
6631 CoreFileMemoryRanges &ranges) {
6632 lldb_private::MemoryRegionInfos regions;
6633 Status err = GetMemoryRegions(regions);
6634 if (err.Fail())
6635 return err;
6636 if (regions.empty())
6637 return Status("failed to get any valid memory regions from the process");
6638 if (core_style == eSaveCoreUnspecified)
6639 return Status("callers must set the core_style to something other than "
6640 "eSaveCoreUnspecified");
6641
6642 std::set<addr_t> stack_ends;
6643 SaveOffRegionsWithStackPointers(*this, regions, ranges, stack_ends);
6644
6645 switch (core_style) {
6646 case eSaveCoreUnspecified:
6647 break;
6648
6649 case eSaveCoreFull:
6650 GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends);
6651 break;
6652
6653 case eSaveCoreDirtyOnly:
6654 GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends);
6655 break;
6656
6657 case eSaveCoreStackOnly:
6658 GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends);
6659 break;
6660 }
6661
6662 if (err.Fail())
6663 return err;
6664
6665 if (ranges.empty())
6666 return Status("no valid address ranges found for core style");
6667
6668 return Status(); // Success!
6669 }
6670
SetAddressableBitMasks(AddressableBits bit_masks)6671 void Process::SetAddressableBitMasks(AddressableBits bit_masks) {
6672 uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits();
6673 uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits();
6674
6675 if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0)
6676 return;
6677
6678 if (low_memory_addr_bits != 0) {
6679 addr_t low_addr_mask =
6680 AddressableBits::AddressableBitToMask(low_memory_addr_bits);
6681 SetCodeAddressMask(low_addr_mask);
6682 SetDataAddressMask(low_addr_mask);
6683 }
6684
6685 if (high_memory_addr_bits != 0) {
6686 addr_t high_addr_mask =
6687 AddressableBits::AddressableBitToMask(high_memory_addr_bits);
6688 SetHighmemCodeAddressMask(high_addr_mask);
6689 SetHighmemDataAddressMask(high_addr_mask);
6690 }
6691 }
6692