1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Wasm.h"
33 #include "llvm/DebugInfo/BTF/BTFParser.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/LLVMDriver.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <set>
89 #include <system_error>
90 #include <unordered_map>
91 #include <utility>
92
93 using namespace llvm;
94 using namespace llvm::object;
95 using namespace llvm::objdump;
96 using namespace llvm::opt;
97
98 namespace {
99
100 class CommonOptTable : public opt::GenericOptTable {
101 public:
CommonOptTable(ArrayRef<Info> OptionInfos,const char * Usage,const char * Description)102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103 const char *Description)
104 : opt::GenericOptTable(OptionInfos), Usage(Usage),
105 Description(Description) {
106 setGroupedShortOptions(true);
107 }
108
printHelp(StringRef Argv0,bool ShowHidden=false) const109 void printHelp(StringRef Argv0, bool ShowHidden = false) const {
110 Argv0 = sys::path::filename(Argv0);
111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
112 Description, ShowHidden, ShowHidden);
113 // TODO Replace this with OptTable API once it adds extrahelp support.
114 outs() << "\nPass @FILE as argument to read options from FILE.\n";
115 }
116
117 private:
118 const char *Usage;
119 const char *Description;
120 };
121
122 // ObjdumpOptID is in ObjdumpOptID.h
123 namespace objdump_opt {
124 #define PREFIX(NAME, VALUE) \
125 static constexpr StringLiteral NAME##_init[] = VALUE; \
126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
127 std::size(NAME##_init) - 1);
128 #include "ObjdumpOpts.inc"
129 #undef PREFIX
130
131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
132 #define OPTION(...) \
133 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
134 #include "ObjdumpOpts.inc"
135 #undef OPTION
136 };
137 } // namespace objdump_opt
138
139 class ObjdumpOptTable : public CommonOptTable {
140 public:
ObjdumpOptTable()141 ObjdumpOptTable()
142 : CommonOptTable(objdump_opt::ObjdumpInfoTable,
143 " [options] <input object files>",
144 "llvm object file dumper") {}
145 };
146
147 enum OtoolOptID {
148 OTOOL_INVALID = 0, // This is not an option ID.
149 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
150 #include "OtoolOpts.inc"
151 #undef OPTION
152 };
153
154 namespace otool {
155 #define PREFIX(NAME, VALUE) \
156 static constexpr StringLiteral NAME##_init[] = VALUE; \
157 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
158 std::size(NAME##_init) - 1);
159 #include "OtoolOpts.inc"
160 #undef PREFIX
161
162 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
163 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
164 #include "OtoolOpts.inc"
165 #undef OPTION
166 };
167 } // namespace otool
168
169 class OtoolOptTable : public CommonOptTable {
170 public:
OtoolOptTable()171 OtoolOptTable()
172 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
173 "Mach-O object file displaying tool") {}
174 };
175
176 struct BBAddrMapLabel {
177 std::string BlockLabel;
178 std::string PGOAnalysis;
179 };
180
181 // This class represents the BBAddrMap and PGOMap associated with a single
182 // function.
183 class BBAddrMapFunctionEntry {
184 public:
BBAddrMapFunctionEntry(BBAddrMap AddrMap,PGOAnalysisMap PGOMap)185 BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap)
186 : AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {}
187
getAddrMap() const188 const BBAddrMap &getAddrMap() const { return AddrMap; }
189
190 // Returns the PGO string associated with the entry of index `PGOBBEntryIndex`
191 // in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency
192 // and BPI as percentage. Otherwise raw values are displayed.
constructPGOLabelString(size_t PGOBBEntryIndex,bool PrettyPGOAnalysis) const193 std::string constructPGOLabelString(size_t PGOBBEntryIndex,
194 bool PrettyPGOAnalysis) const {
195 if (!PGOMap.FeatEnable.hasPGOAnalysis())
196 return "";
197 std::string PGOString;
198 raw_string_ostream PGOSS(PGOString);
199
200 PGOSS << " (";
201 if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) {
202 PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
203 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
204 PGOSS << ", ";
205 }
206 }
207
208 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
209
210 assert(PGOBBEntryIndex < PGOMap.BBEntries.size() &&
211 "Expected PGOAnalysisMap and BBAddrMap to have the same entries");
212 const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
213 PGOMap.BBEntries[PGOBBEntryIndex];
214
215 if (PGOMap.FeatEnable.BBFreq) {
216 PGOSS << "Frequency: ";
217 if (PrettyPGOAnalysis)
218 printRelativeBlockFreq(PGOSS, PGOMap.BBEntries.front().BlockFreq,
219 PGOBBEntry.BlockFreq);
220 else
221 PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency());
222 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
223 PGOSS << ", ";
224 }
225 }
226 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
227 PGOSS << "Successors: ";
228 interleaveComma(
229 PGOBBEntry.Successors, PGOSS,
230 [&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
231 PGOSS << "BB" << SE.ID << ":";
232 if (PrettyPGOAnalysis)
233 PGOSS << "[" << SE.Prob << "]";
234 else
235 PGOSS.write_hex(SE.Prob.getNumerator());
236 });
237 }
238 }
239 PGOSS << ")";
240
241 return PGOString;
242 }
243
244 private:
245 const BBAddrMap AddrMap;
246 const PGOAnalysisMap PGOMap;
247 };
248
249 // This class represents the BBAddrMap and PGOMap of potentially multiple
250 // functions in a section.
251 class BBAddrMapInfo {
252 public:
clear()253 void clear() {
254 FunctionAddrToMap.clear();
255 RangeBaseAddrToFunctionAddr.clear();
256 }
257
empty() const258 bool empty() const { return FunctionAddrToMap.empty(); }
259
AddFunctionEntry(BBAddrMap AddrMap,PGOAnalysisMap PGOMap)260 void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) {
261 uint64_t FunctionAddr = AddrMap.getFunctionAddress();
262 for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I)
263 RangeBaseAddrToFunctionAddr.emplace(AddrMap.BBRanges[I].BaseAddress,
264 FunctionAddr);
265 [[maybe_unused]] auto R = FunctionAddrToMap.try_emplace(
266 FunctionAddr, std::move(AddrMap), std::move(PGOMap));
267 assert(R.second && "duplicate function address");
268 }
269
270 // Returns the BBAddrMap entry for the function associated with `BaseAddress`.
271 // `BaseAddress` could be the function address or the address of a range
272 // associated with that function. Returns `nullptr` if `BaseAddress` is not
273 // mapped to any entry.
getEntryForAddress(uint64_t BaseAddress) const274 const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const {
275 uint64_t FunctionAddr = BaseAddress;
276 auto S = RangeBaseAddrToFunctionAddr.find(BaseAddress);
277 if (S != RangeBaseAddrToFunctionAddr.end())
278 FunctionAddr = S->second;
279 auto R = FunctionAddrToMap.find(FunctionAddr);
280 if (R == FunctionAddrToMap.end())
281 return nullptr;
282 return &R->second;
283 }
284
285 private:
286 std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap;
287 std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr;
288 };
289
290 } // namespace
291
292 #define DEBUG_TYPE "objdump"
293
294 enum class ColorOutput {
295 Auto,
296 Enable,
297 Disable,
298 Invalid,
299 };
300
301 static uint64_t AdjustVMA;
302 static bool AllHeaders;
303 static std::string ArchName;
304 bool objdump::ArchiveHeaders;
305 bool objdump::Demangle;
306 bool objdump::Disassemble;
307 bool objdump::DisassembleAll;
308 bool objdump::SymbolDescription;
309 bool objdump::TracebackTable;
310 static std::vector<std::string> DisassembleSymbols;
311 static bool DisassembleZeroes;
312 static std::vector<std::string> DisassemblerOptions;
313 static ColorOutput DisassemblyColor;
314 DIDumpType objdump::DwarfDumpType;
315 static bool DynamicRelocations;
316 static bool FaultMapSection;
317 static bool FileHeaders;
318 bool objdump::SectionContents;
319 static std::vector<std::string> InputFilenames;
320 bool objdump::PrintLines;
321 static bool MachOOpt;
322 std::string objdump::MCPU;
323 std::vector<std::string> objdump::MAttrs;
324 bool objdump::ShowRawInsn;
325 bool objdump::LeadingAddr;
326 static bool Offloading;
327 static bool RawClangAST;
328 bool objdump::Relocations;
329 bool objdump::PrintImmHex;
330 bool objdump::PrivateHeaders;
331 std::vector<std::string> objdump::FilterSections;
332 bool objdump::SectionHeaders;
333 static bool ShowAllSymbols;
334 static bool ShowLMA;
335 bool objdump::PrintSource;
336
337 static uint64_t StartAddress;
338 static bool HasStartAddressFlag;
339 static uint64_t StopAddress = UINT64_MAX;
340 static bool HasStopAddressFlag;
341
342 bool objdump::SymbolTable;
343 static bool SymbolizeOperands;
344 static bool PrettyPGOAnalysisMap;
345 static bool DynamicSymbolTable;
346 std::string objdump::TripleName;
347 bool objdump::UnwindInfo;
348 static bool Wide;
349 std::string objdump::Prefix;
350 uint32_t objdump::PrefixStrip;
351
352 DebugVarsFormat objdump::DbgVariables = DVDisabled;
353
354 int objdump::DbgIndent = 52;
355
356 static StringSet<> DisasmSymbolSet;
357 StringSet<> objdump::FoundSectionSet;
358 static StringRef ToolName;
359
360 std::unique_ptr<BuildIDFetcher> BIDFetcher;
361
Dumper(const object::ObjectFile & O)362 Dumper::Dumper(const object::ObjectFile &O) : O(O) {
363 WarningHandler = [this](const Twine &Msg) {
364 if (Warnings.insert(Msg.str()).second)
365 reportWarning(Msg, this->O.getFileName());
366 return Error::success();
367 };
368 }
369
reportUniqueWarning(Error Err)370 void Dumper::reportUniqueWarning(Error Err) {
371 reportUniqueWarning(toString(std::move(Err)));
372 }
373
reportUniqueWarning(const Twine & Msg)374 void Dumper::reportUniqueWarning(const Twine &Msg) {
375 cantFail(WarningHandler(Msg));
376 }
377
createDumper(const ObjectFile & Obj)378 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
379 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
380 return createCOFFDumper(*O);
381 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
382 return createELFDumper(*O);
383 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
384 return createMachODumper(*O);
385 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
386 return createWasmDumper(*O);
387 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
388 return createXCOFFDumper(*O);
389
390 return createStringError(errc::invalid_argument,
391 "unsupported object file format");
392 }
393
394 namespace {
395 struct FilterResult {
396 // True if the section should not be skipped.
397 bool Keep;
398
399 // True if the index counter should be incremented, even if the section should
400 // be skipped. For example, sections may be skipped if they are not included
401 // in the --section flag, but we still want those to count toward the section
402 // count.
403 bool IncrementIndex;
404 };
405 } // namespace
406
checkSectionFilter(object::SectionRef S)407 static FilterResult checkSectionFilter(object::SectionRef S) {
408 if (FilterSections.empty())
409 return {/*Keep=*/true, /*IncrementIndex=*/true};
410
411 Expected<StringRef> SecNameOrErr = S.getName();
412 if (!SecNameOrErr) {
413 consumeError(SecNameOrErr.takeError());
414 return {/*Keep=*/false, /*IncrementIndex=*/false};
415 }
416 StringRef SecName = *SecNameOrErr;
417
418 // StringSet does not allow empty key so avoid adding sections with
419 // no name (such as the section with index 0) here.
420 if (!SecName.empty())
421 FoundSectionSet.insert(SecName);
422
423 // Only show the section if it's in the FilterSections list, but always
424 // increment so the indexing is stable.
425 return {/*Keep=*/is_contained(FilterSections, SecName),
426 /*IncrementIndex=*/true};
427 }
428
ToolSectionFilter(object::ObjectFile const & O,uint64_t * Idx)429 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
430 uint64_t *Idx) {
431 // Start at UINT64_MAX so that the first index returned after an increment is
432 // zero (after the unsigned wrap).
433 if (Idx)
434 *Idx = UINT64_MAX;
435 return SectionFilter(
436 [Idx](object::SectionRef S) {
437 FilterResult Result = checkSectionFilter(S);
438 if (Idx != nullptr && Result.IncrementIndex)
439 *Idx += 1;
440 return Result.Keep;
441 },
442 O);
443 }
444
getFileNameForError(const object::Archive::Child & C,unsigned Index)445 std::string objdump::getFileNameForError(const object::Archive::Child &C,
446 unsigned Index) {
447 Expected<StringRef> NameOrErr = C.getName();
448 if (NameOrErr)
449 return std::string(NameOrErr.get());
450 // If we have an error getting the name then we print the index of the archive
451 // member. Since we are already in an error state, we just ignore this error.
452 consumeError(NameOrErr.takeError());
453 return "<file index: " + std::to_string(Index) + ">";
454 }
455
reportWarning(const Twine & Message,StringRef File)456 void objdump::reportWarning(const Twine &Message, StringRef File) {
457 // Output order between errs() and outs() matters especially for archive
458 // files where the output is per member object.
459 outs().flush();
460 WithColor::warning(errs(), ToolName)
461 << "'" << File << "': " << Message << "\n";
462 }
463
reportError(StringRef File,const Twine & Message)464 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
465 outs().flush();
466 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
467 exit(1);
468 }
469
reportError(Error E,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName)470 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
471 StringRef ArchiveName,
472 StringRef ArchitectureName) {
473 assert(E);
474 outs().flush();
475 WithColor::error(errs(), ToolName);
476 if (ArchiveName != "")
477 errs() << ArchiveName << "(" << FileName << ")";
478 else
479 errs() << "'" << FileName << "'";
480 if (!ArchitectureName.empty())
481 errs() << " (for architecture " << ArchitectureName << ")";
482 errs() << ": ";
483 logAllUnhandledErrors(std::move(E), errs());
484 exit(1);
485 }
486
reportCmdLineWarning(const Twine & Message)487 static void reportCmdLineWarning(const Twine &Message) {
488 WithColor::warning(errs(), ToolName) << Message << "\n";
489 }
490
reportCmdLineError(const Twine & Message)491 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
492 WithColor::error(errs(), ToolName) << Message << "\n";
493 exit(1);
494 }
495
warnOnNoMatchForSections()496 static void warnOnNoMatchForSections() {
497 SetVector<StringRef> MissingSections;
498 for (StringRef S : FilterSections) {
499 if (FoundSectionSet.count(S))
500 return;
501 // User may specify a unnamed section. Don't warn for it.
502 if (!S.empty())
503 MissingSections.insert(S);
504 }
505
506 // Warn only if no section in FilterSections is matched.
507 for (StringRef S : MissingSections)
508 reportCmdLineWarning("section '" + S +
509 "' mentioned in a -j/--section option, but not "
510 "found in any input file");
511 }
512
getTarget(const ObjectFile * Obj)513 static const Target *getTarget(const ObjectFile *Obj) {
514 // Figure out the target triple.
515 Triple TheTriple("unknown-unknown-unknown");
516 if (TripleName.empty()) {
517 TheTriple = Obj->makeTriple();
518 } else {
519 TheTriple.setTriple(Triple::normalize(TripleName));
520 auto Arch = Obj->getArch();
521 if (Arch == Triple::arm || Arch == Triple::armeb)
522 Obj->setARMSubArch(TheTriple);
523 }
524
525 // Get the target specific parser.
526 std::string Error;
527 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
528 Error);
529 if (!TheTarget)
530 reportError(Obj->getFileName(), "can't find target: " + Error);
531
532 // Update the triple name and return the found target.
533 TripleName = TheTriple.getTriple();
534 return TheTarget;
535 }
536
isRelocAddressLess(RelocationRef A,RelocationRef B)537 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
538 return A.getOffset() < B.getOffset();
539 }
540
getRelocationValueString(const RelocationRef & Rel,bool SymbolDescription,SmallVectorImpl<char> & Result)541 static Error getRelocationValueString(const RelocationRef &Rel,
542 bool SymbolDescription,
543 SmallVectorImpl<char> &Result) {
544 const ObjectFile *Obj = Rel.getObject();
545 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
546 return getELFRelocationValueString(ELF, Rel, Result);
547 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
548 return getCOFFRelocationValueString(COFF, Rel, Result);
549 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
550 return getWasmRelocationValueString(Wasm, Rel, Result);
551 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
552 return getMachORelocationValueString(MachO, Rel, Result);
553 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
554 return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription,
555 Result);
556 llvm_unreachable("unknown object file format");
557 }
558
559 /// Indicates whether this relocation should hidden when listing
560 /// relocations, usually because it is the trailing part of a multipart
561 /// relocation that will be printed as part of the leading relocation.
getHidden(RelocationRef RelRef)562 static bool getHidden(RelocationRef RelRef) {
563 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
564 if (!MachO)
565 return false;
566
567 unsigned Arch = MachO->getArch();
568 DataRefImpl Rel = RelRef.getRawDataRefImpl();
569 uint64_t Type = MachO->getRelocationType(Rel);
570
571 // On arches that use the generic relocations, GENERIC_RELOC_PAIR
572 // is always hidden.
573 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
574 return Type == MachO::GENERIC_RELOC_PAIR;
575
576 if (Arch == Triple::x86_64) {
577 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
578 // an X86_64_RELOC_SUBTRACTOR.
579 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
580 DataRefImpl RelPrev = Rel;
581 RelPrev.d.a--;
582 uint64_t PrevType = MachO->getRelocationType(RelPrev);
583 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
584 return true;
585 }
586 }
587
588 return false;
589 }
590
591 /// Get the column at which we want to start printing the instruction
592 /// disassembly, taking into account anything which appears to the left of it.
getInstStartColumn(const MCSubtargetInfo & STI)593 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
594 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
595 }
596
AlignToInstStartColumn(size_t Start,const MCSubtargetInfo & STI,raw_ostream & OS)597 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
598 raw_ostream &OS) {
599 // The output of printInst starts with a tab. Print some spaces so that
600 // the tab has 1 column and advances to the target tab stop.
601 unsigned TabStop = getInstStartColumn(STI);
602 unsigned Column = OS.tell() - Start;
603 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
604 }
605
printRawData(ArrayRef<uint8_t> Bytes,uint64_t Address,formatted_raw_ostream & OS,MCSubtargetInfo const & STI)606 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
607 formatted_raw_ostream &OS,
608 MCSubtargetInfo const &STI) {
609 size_t Start = OS.tell();
610 if (LeadingAddr)
611 OS << format("%8" PRIx64 ":", Address);
612 if (ShowRawInsn) {
613 OS << ' ';
614 dumpBytes(Bytes, OS);
615 }
616 AlignToInstStartColumn(Start, STI, OS);
617 }
618
619 namespace {
620
isAArch64Elf(const ObjectFile & Obj)621 static bool isAArch64Elf(const ObjectFile &Obj) {
622 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
623 return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
624 }
625
isArmElf(const ObjectFile & Obj)626 static bool isArmElf(const ObjectFile &Obj) {
627 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
628 return Elf && Elf->getEMachine() == ELF::EM_ARM;
629 }
630
isCSKYElf(const ObjectFile & Obj)631 static bool isCSKYElf(const ObjectFile &Obj) {
632 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
633 return Elf && Elf->getEMachine() == ELF::EM_CSKY;
634 }
635
hasMappingSymbols(const ObjectFile & Obj)636 static bool hasMappingSymbols(const ObjectFile &Obj) {
637 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
638 }
639
printRelocation(formatted_raw_ostream & OS,StringRef FileName,const RelocationRef & Rel,uint64_t Address,bool Is64Bits)640 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
641 const RelocationRef &Rel, uint64_t Address,
642 bool Is64Bits) {
643 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": ";
644 SmallString<16> Name;
645 SmallString<32> Val;
646 Rel.getTypeName(Name);
647 if (Error E = getRelocationValueString(Rel, SymbolDescription, Val))
648 reportError(std::move(E), FileName);
649 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
650 if (LeadingAddr)
651 OS << format(Fmt.data(), Address);
652 OS << Name << "\t" << Val;
653 }
654
printBTFRelocation(formatted_raw_ostream & FOS,llvm::BTFParser & BTF,object::SectionedAddress Address,LiveVariablePrinter & LVP)655 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
656 object::SectionedAddress Address,
657 LiveVariablePrinter &LVP) {
658 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
659 if (!Reloc)
660 return;
661
662 SmallString<64> Val;
663 BTF.symbolize(Reloc, Val);
664 FOS << "\t\t";
665 if (LeadingAddr)
666 FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA);
667 FOS << "CO-RE " << Val;
668 LVP.printAfterOtherLine(FOS, true);
669 }
670
671 class PrettyPrinter {
672 public:
673 virtual ~PrettyPrinter() = default;
674 virtual void
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)675 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
676 object::SectionedAddress Address, formatted_raw_ostream &OS,
677 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
678 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
679 LiveVariablePrinter &LVP) {
680 if (SP && (PrintSource || PrintLines))
681 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
682 LVP.printBetweenInsts(OS, false);
683
684 printRawData(Bytes, Address.Address, OS, STI);
685
686 if (MI) {
687 // See MCInstPrinter::printInst. On targets where a PC relative immediate
688 // is relative to the next instruction and the length of a MCInst is
689 // difficult to measure (x86), this is the address of the next
690 // instruction.
691 uint64_t Addr =
692 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
693 IP.printInst(MI, Addr, "", STI, OS);
694 } else
695 OS << "\t<unknown>";
696 }
697 };
698 PrettyPrinter PrettyPrinterInst;
699
700 class HexagonPrettyPrinter : public PrettyPrinter {
701 public:
printLead(ArrayRef<uint8_t> Bytes,uint64_t Address,formatted_raw_ostream & OS)702 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
703 formatted_raw_ostream &OS) {
704 uint32_t opcode =
705 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
706 if (LeadingAddr)
707 OS << format("%8" PRIx64 ":", Address);
708 if (ShowRawInsn) {
709 OS << "\t";
710 dumpBytes(Bytes.slice(0, 4), OS);
711 OS << format("\t%08" PRIx32, opcode);
712 }
713 }
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)714 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
715 object::SectionedAddress Address, formatted_raw_ostream &OS,
716 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
717 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
718 LiveVariablePrinter &LVP) override {
719 if (SP && (PrintSource || PrintLines))
720 SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
721 if (!MI) {
722 printLead(Bytes, Address.Address, OS);
723 OS << " <unknown>";
724 return;
725 }
726 std::string Buffer;
727 {
728 raw_string_ostream TempStream(Buffer);
729 IP.printInst(MI, Address.Address, "", STI, TempStream);
730 }
731 StringRef Contents(Buffer);
732 // Split off bundle attributes
733 auto PacketBundle = Contents.rsplit('\n');
734 // Split off first instruction from the rest
735 auto HeadTail = PacketBundle.first.split('\n');
736 auto Preamble = " { ";
737 auto Separator = "";
738
739 // Hexagon's packets require relocations to be inline rather than
740 // clustered at the end of the packet.
741 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
742 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
743 auto PrintReloc = [&]() -> void {
744 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
745 if (RelCur->getOffset() == Address.Address) {
746 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
747 return;
748 }
749 ++RelCur;
750 }
751 };
752
753 while (!HeadTail.first.empty()) {
754 OS << Separator;
755 Separator = "\n";
756 if (SP && (PrintSource || PrintLines))
757 SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
758 printLead(Bytes, Address.Address, OS);
759 OS << Preamble;
760 Preamble = " ";
761 StringRef Inst;
762 auto Duplex = HeadTail.first.split('\v');
763 if (!Duplex.second.empty()) {
764 OS << Duplex.first;
765 OS << "; ";
766 Inst = Duplex.second;
767 }
768 else
769 Inst = HeadTail.first;
770 OS << Inst;
771 HeadTail = HeadTail.second.split('\n');
772 if (HeadTail.first.empty())
773 OS << " } " << PacketBundle.second;
774 PrintReloc();
775 Bytes = Bytes.slice(4);
776 Address.Address += 4;
777 }
778 }
779 };
780 HexagonPrettyPrinter HexagonPrettyPrinterInst;
781
782 class AMDGCNPrettyPrinter : public PrettyPrinter {
783 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)784 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
785 object::SectionedAddress Address, formatted_raw_ostream &OS,
786 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
787 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
788 LiveVariablePrinter &LVP) override {
789 if (SP && (PrintSource || PrintLines))
790 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
791
792 if (MI) {
793 SmallString<40> InstStr;
794 raw_svector_ostream IS(InstStr);
795
796 IP.printInst(MI, Address.Address, "", STI, IS);
797
798 OS << left_justify(IS.str(), 60);
799 } else {
800 // an unrecognized encoding - this is probably data so represent it
801 // using the .long directive, or .byte directive if fewer than 4 bytes
802 // remaining
803 if (Bytes.size() >= 4) {
804 OS << format(
805 "\t.long 0x%08" PRIx32 " ",
806 support::endian::read32<llvm::endianness::little>(Bytes.data()));
807 OS.indent(42);
808 } else {
809 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
810 for (unsigned int i = 1; i < Bytes.size(); i++)
811 OS << format(", 0x%02" PRIx8, Bytes[i]);
812 OS.indent(55 - (6 * Bytes.size()));
813 }
814 }
815
816 OS << format("// %012" PRIX64 ":", Address.Address);
817 if (Bytes.size() >= 4) {
818 // D should be casted to uint32_t here as it is passed by format to
819 // snprintf as vararg.
820 for (uint32_t D :
821 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
822 Bytes.size() / 4))
823 OS << format(" %08" PRIX32, D);
824 } else {
825 for (unsigned char B : Bytes)
826 OS << format(" %02" PRIX8, B);
827 }
828
829 if (!Annot.empty())
830 OS << " // " << Annot;
831 }
832 };
833 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
834
835 class BPFPrettyPrinter : public PrettyPrinter {
836 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)837 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
838 object::SectionedAddress Address, formatted_raw_ostream &OS,
839 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
840 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
841 LiveVariablePrinter &LVP) override {
842 if (SP && (PrintSource || PrintLines))
843 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
844 if (LeadingAddr)
845 OS << format("%8" PRId64 ":", Address.Address / 8);
846 if (ShowRawInsn) {
847 OS << "\t";
848 dumpBytes(Bytes, OS);
849 }
850 if (MI)
851 IP.printInst(MI, Address.Address, "", STI, OS);
852 else
853 OS << "\t<unknown>";
854 }
855 };
856 BPFPrettyPrinter BPFPrettyPrinterInst;
857
858 class ARMPrettyPrinter : public PrettyPrinter {
859 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)860 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
861 object::SectionedAddress Address, formatted_raw_ostream &OS,
862 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
863 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
864 LiveVariablePrinter &LVP) override {
865 if (SP && (PrintSource || PrintLines))
866 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
867 LVP.printBetweenInsts(OS, false);
868
869 size_t Start = OS.tell();
870 if (LeadingAddr)
871 OS << format("%8" PRIx64 ":", Address.Address);
872 if (ShowRawInsn) {
873 size_t Pos = 0, End = Bytes.size();
874 if (STI.checkFeatures("+thumb-mode")) {
875 for (; Pos + 2 <= End; Pos += 2)
876 OS << ' '
877 << format_hex_no_prefix(
878 llvm::support::endian::read<uint16_t>(
879 Bytes.data() + Pos, InstructionEndianness),
880 4);
881 } else {
882 for (; Pos + 4 <= End; Pos += 4)
883 OS << ' '
884 << format_hex_no_prefix(
885 llvm::support::endian::read<uint32_t>(
886 Bytes.data() + Pos, InstructionEndianness),
887 8);
888 }
889 if (Pos < End) {
890 OS << ' ';
891 dumpBytes(Bytes.slice(Pos), OS);
892 }
893 }
894
895 AlignToInstStartColumn(Start, STI, OS);
896
897 if (MI) {
898 IP.printInst(MI, Address.Address, "", STI, OS);
899 } else
900 OS << "\t<unknown>";
901 }
902
setInstructionEndianness(llvm::endianness Endianness)903 void setInstructionEndianness(llvm::endianness Endianness) {
904 InstructionEndianness = Endianness;
905 }
906
907 private:
908 llvm::endianness InstructionEndianness = llvm::endianness::little;
909 };
910 ARMPrettyPrinter ARMPrettyPrinterInst;
911
912 class AArch64PrettyPrinter : public PrettyPrinter {
913 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)914 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
915 object::SectionedAddress Address, formatted_raw_ostream &OS,
916 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
917 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
918 LiveVariablePrinter &LVP) override {
919 if (SP && (PrintSource || PrintLines))
920 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
921 LVP.printBetweenInsts(OS, false);
922
923 size_t Start = OS.tell();
924 if (LeadingAddr)
925 OS << format("%8" PRIx64 ":", Address.Address);
926 if (ShowRawInsn) {
927 size_t Pos = 0, End = Bytes.size();
928 for (; Pos + 4 <= End; Pos += 4)
929 OS << ' '
930 << format_hex_no_prefix(
931 llvm::support::endian::read<uint32_t>(
932 Bytes.data() + Pos, llvm::endianness::little),
933 8);
934 if (Pos < End) {
935 OS << ' ';
936 dumpBytes(Bytes.slice(Pos), OS);
937 }
938 }
939
940 AlignToInstStartColumn(Start, STI, OS);
941
942 if (MI) {
943 IP.printInst(MI, Address.Address, "", STI, OS);
944 } else
945 OS << "\t<unknown>";
946 }
947 };
948 AArch64PrettyPrinter AArch64PrettyPrinterInst;
949
950 class RISCVPrettyPrinter : public PrettyPrinter {
951 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)952 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
953 object::SectionedAddress Address, formatted_raw_ostream &OS,
954 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
955 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
956 LiveVariablePrinter &LVP) override {
957 if (SP && (PrintSource || PrintLines))
958 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
959 LVP.printBetweenInsts(OS, false);
960
961 size_t Start = OS.tell();
962 if (LeadingAddr)
963 OS << format("%8" PRIx64 ":", Address.Address);
964 if (ShowRawInsn) {
965 size_t Pos = 0, End = Bytes.size();
966 if (End % 4 == 0) {
967 // 32-bit and 64-bit instructions.
968 for (; Pos + 4 <= End; Pos += 4)
969 OS << ' '
970 << format_hex_no_prefix(
971 llvm::support::endian::read<uint32_t>(
972 Bytes.data() + Pos, llvm::endianness::little),
973 8);
974 } else if (End % 2 == 0) {
975 // 16-bit and 48-bits instructions.
976 for (; Pos + 2 <= End; Pos += 2)
977 OS << ' '
978 << format_hex_no_prefix(
979 llvm::support::endian::read<uint16_t>(
980 Bytes.data() + Pos, llvm::endianness::little),
981 4);
982 }
983 if (Pos < End) {
984 OS << ' ';
985 dumpBytes(Bytes.slice(Pos), OS);
986 }
987 }
988
989 AlignToInstStartColumn(Start, STI, OS);
990
991 if (MI) {
992 IP.printInst(MI, Address.Address, "", STI, OS);
993 } else
994 OS << "\t<unknown>";
995 }
996 };
997 RISCVPrettyPrinter RISCVPrettyPrinterInst;
998
selectPrettyPrinter(Triple const & Triple)999 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1000 switch(Triple.getArch()) {
1001 default:
1002 return PrettyPrinterInst;
1003 case Triple::hexagon:
1004 return HexagonPrettyPrinterInst;
1005 case Triple::amdgcn:
1006 return AMDGCNPrettyPrinterInst;
1007 case Triple::bpfel:
1008 case Triple::bpfeb:
1009 return BPFPrettyPrinterInst;
1010 case Triple::arm:
1011 case Triple::armeb:
1012 case Triple::thumb:
1013 case Triple::thumbeb:
1014 return ARMPrettyPrinterInst;
1015 case Triple::aarch64:
1016 case Triple::aarch64_be:
1017 case Triple::aarch64_32:
1018 return AArch64PrettyPrinterInst;
1019 case Triple::riscv32:
1020 case Triple::riscv64:
1021 return RISCVPrettyPrinterInst;
1022 }
1023 }
1024
1025 class DisassemblerTarget {
1026 public:
1027 const Target *TheTarget;
1028 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
1029 std::shared_ptr<MCContext> Context;
1030 std::unique_ptr<MCDisassembler> DisAsm;
1031 std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
1032 std::shared_ptr<MCInstPrinter> InstPrinter;
1033 PrettyPrinter *Printer;
1034
1035 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
1036 StringRef TripleName, StringRef MCPU,
1037 SubtargetFeatures &Features);
1038 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
1039
1040 private:
1041 MCTargetOptions Options;
1042 std::shared_ptr<const MCRegisterInfo> RegisterInfo;
1043 std::shared_ptr<const MCAsmInfo> AsmInfo;
1044 std::shared_ptr<const MCInstrInfo> InstrInfo;
1045 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
1046 };
1047
DisassemblerTarget(const Target * TheTarget,ObjectFile & Obj,StringRef TripleName,StringRef MCPU,SubtargetFeatures & Features)1048 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
1049 StringRef TripleName, StringRef MCPU,
1050 SubtargetFeatures &Features)
1051 : TheTarget(TheTarget),
1052 Printer(&selectPrettyPrinter(Triple(TripleName))),
1053 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
1054 if (!RegisterInfo)
1055 reportError(Obj.getFileName(), "no register info for target " + TripleName);
1056
1057 // Set up disassembler.
1058 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
1059 if (!AsmInfo)
1060 reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
1061
1062 SubtargetInfo.reset(
1063 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1064 if (!SubtargetInfo)
1065 reportError(Obj.getFileName(),
1066 "no subtarget info for target " + TripleName);
1067 InstrInfo.reset(TheTarget->createMCInstrInfo());
1068 if (!InstrInfo)
1069 reportError(Obj.getFileName(),
1070 "no instruction info for target " + TripleName);
1071 Context =
1072 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
1073 RegisterInfo.get(), SubtargetInfo.get());
1074
1075 // FIXME: for now initialize MCObjectFileInfo with default values
1076 ObjectFileInfo.reset(
1077 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
1078 Context->setObjectFileInfo(ObjectFileInfo.get());
1079
1080 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
1081 if (!DisAsm)
1082 reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
1083
1084 if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(&Obj))
1085 DisAsm->setABIVersion(ELFObj->getEIdentABIVersion());
1086
1087 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
1088
1089 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1090 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
1091 AsmPrinterVariant, *AsmInfo,
1092 *InstrInfo, *RegisterInfo));
1093 if (!InstPrinter)
1094 reportError(Obj.getFileName(),
1095 "no instruction printer for target " + TripleName);
1096 InstPrinter->setPrintImmHex(PrintImmHex);
1097 InstPrinter->setPrintBranchImmAsAddress(true);
1098 InstPrinter->setSymbolizeOperands(SymbolizeOperands);
1099 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
1100
1101 switch (DisassemblyColor) {
1102 case ColorOutput::Enable:
1103 InstPrinter->setUseColor(true);
1104 break;
1105 case ColorOutput::Auto:
1106 InstPrinter->setUseColor(outs().has_colors());
1107 break;
1108 case ColorOutput::Disable:
1109 case ColorOutput::Invalid:
1110 InstPrinter->setUseColor(false);
1111 break;
1112 };
1113 }
1114
DisassemblerTarget(DisassemblerTarget & Other,SubtargetFeatures & Features)1115 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
1116 SubtargetFeatures &Features)
1117 : TheTarget(Other.TheTarget),
1118 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1119 Features.getString())),
1120 Context(Other.Context),
1121 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
1122 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
1123 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
1124 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
1125 ObjectFileInfo(Other.ObjectFileInfo) {}
1126 } // namespace
1127
getElfSymbolType(const ObjectFile & Obj,const SymbolRef & Sym)1128 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
1129 assert(Obj.isELF());
1130 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1131 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
1132 Obj.getFileName())
1133 ->getType();
1134 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1135 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
1136 Obj.getFileName())
1137 ->getType();
1138 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1139 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
1140 Obj.getFileName())
1141 ->getType();
1142 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1143 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
1144 Obj.getFileName())
1145 ->getType();
1146 llvm_unreachable("Unsupported binary format");
1147 }
1148
1149 template <class ELFT>
1150 static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1151 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
1152 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1153 for (auto Symbol : Obj.getDynamicSymbolIterators()) {
1154 uint8_t SymbolType = Symbol.getELFType();
1155 if (SymbolType == ELF::STT_SECTION)
1156 continue;
1157
1158 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
1159 // ELFSymbolRef::getAddress() returns size instead of value for common
1160 // symbols which is not desirable for disassembly output. Overriding.
1161 if (SymbolType == ELF::STT_COMMON)
1162 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
1163 Obj.getFileName())
1164 ->st_value;
1165
1166 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
1167 if (Name.empty())
1168 continue;
1169
1170 section_iterator SecI =
1171 unwrapOrError(Symbol.getSection(), Obj.getFileName());
1172 if (SecI == Obj.section_end())
1173 continue;
1174
1175 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1176 }
1177 }
1178
1179 static void
addDynamicElfSymbols(const ELFObjectFileBase & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1180 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
1181 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1182 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1183 addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
1184 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1185 addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
1186 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1187 addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
1188 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1189 addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
1190 else
1191 llvm_unreachable("Unsupported binary format");
1192 }
1193
getWasmCodeSection(const WasmObjectFile & Obj)1194 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
1195 for (auto SecI : Obj.sections()) {
1196 const WasmSection &Section = Obj.getWasmSection(SecI);
1197 if (Section.Type == wasm::WASM_SEC_CODE)
1198 return SecI;
1199 }
1200 return std::nullopt;
1201 }
1202
1203 static void
addMissingWasmCodeSymbols(const WasmObjectFile & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1204 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1205 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1206 std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1207 if (!Section)
1208 return;
1209 SectionSymbolsTy &Symbols = AllSymbols[*Section];
1210
1211 std::set<uint64_t> SymbolAddresses;
1212 for (const auto &Sym : Symbols)
1213 SymbolAddresses.insert(Sym.Addr);
1214
1215 for (const wasm::WasmFunction &Function : Obj.functions()) {
1216 // This adjustment mirrors the one in WasmObjectFile::getSymbolAddress.
1217 uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject()
1218 ? 0
1219 : Section->getAddress();
1220 uint64_t Address = Function.CodeSectionOffset + Adjustment;
1221 // Only add fallback symbols for functions not already present in the symbol
1222 // table.
1223 if (SymbolAddresses.count(Address))
1224 continue;
1225 // This function has no symbol, so it should have no SymbolName.
1226 assert(Function.SymbolName.empty());
1227 // We use DebugName for the name, though it may be empty if there is no
1228 // "name" custom section, or that section is missing a name for this
1229 // function.
1230 StringRef Name = Function.DebugName;
1231 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1232 }
1233 }
1234
addPltEntries(const ObjectFile & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols,StringSaver & Saver)1235 static void addPltEntries(const ObjectFile &Obj,
1236 std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1237 StringSaver &Saver) {
1238 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1239 if (!ElfObj)
1240 return;
1241 DenseMap<StringRef, SectionRef> Sections;
1242 for (SectionRef Section : Obj.sections()) {
1243 Expected<StringRef> SecNameOrErr = Section.getName();
1244 if (!SecNameOrErr) {
1245 consumeError(SecNameOrErr.takeError());
1246 continue;
1247 }
1248 Sections[*SecNameOrErr] = Section;
1249 }
1250 for (auto Plt : ElfObj->getPltEntries()) {
1251 if (Plt.Symbol) {
1252 SymbolRef Symbol(*Plt.Symbol, ElfObj);
1253 uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1254 if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1255 if (!NameOrErr->empty())
1256 AllSymbols[Sections[Plt.Section]].emplace_back(
1257 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1258 continue;
1259 } else {
1260 // The warning has been reported in disassembleObject().
1261 consumeError(NameOrErr.takeError());
1262 }
1263 }
1264 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1265 " references an invalid symbol",
1266 Obj.getFileName());
1267 }
1268 }
1269
1270 // Normally the disassembly output will skip blocks of zeroes. This function
1271 // returns the number of zero bytes that can be skipped when dumping the
1272 // disassembly of the instructions in Buf.
countSkippableZeroBytes(ArrayRef<uint8_t> Buf)1273 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1274 // Find the number of leading zeroes.
1275 size_t N = 0;
1276 while (N < Buf.size() && !Buf[N])
1277 ++N;
1278
1279 // We may want to skip blocks of zero bytes, but unless we see
1280 // at least 8 of them in a row.
1281 if (N < 8)
1282 return 0;
1283
1284 // We skip zeroes in multiples of 4 because do not want to truncate an
1285 // instruction if it starts with a zero byte.
1286 return N & ~0x3;
1287 }
1288
1289 // Returns a map from sections to their relocations.
1290 static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const & Obj)1291 getRelocsMap(object::ObjectFile const &Obj) {
1292 std::map<SectionRef, std::vector<RelocationRef>> Ret;
1293 uint64_t I = (uint64_t)-1;
1294 for (SectionRef Sec : Obj.sections()) {
1295 ++I;
1296 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1297 if (!RelocatedOrErr)
1298 reportError(Obj.getFileName(),
1299 "section (" + Twine(I) +
1300 "): failed to get a relocated section: " +
1301 toString(RelocatedOrErr.takeError()));
1302
1303 section_iterator Relocated = *RelocatedOrErr;
1304 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1305 continue;
1306 std::vector<RelocationRef> &V = Ret[*Relocated];
1307 append_range(V, Sec.relocations());
1308 // Sort relocations by address.
1309 llvm::stable_sort(V, isRelocAddressLess);
1310 }
1311 return Ret;
1312 }
1313
1314 // Used for --adjust-vma to check if address should be adjusted by the
1315 // specified value for a given section.
1316 // For ELF we do not adjust non-allocatable sections like debug ones,
1317 // because they are not loadable.
1318 // TODO: implement for other file formats.
shouldAdjustVA(const SectionRef & Section)1319 static bool shouldAdjustVA(const SectionRef &Section) {
1320 const ObjectFile *Obj = Section.getObject();
1321 if (Obj->isELF())
1322 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1323 return false;
1324 }
1325
1326
1327 typedef std::pair<uint64_t, char> MappingSymbolPair;
getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,uint64_t Address)1328 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1329 uint64_t Address) {
1330 auto It =
1331 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1332 return Val.first <= Address;
1333 });
1334 // Return zero for any address before the first mapping symbol; this means
1335 // we should use the default disassembly mode, depending on the target.
1336 if (It == MappingSymbols.begin())
1337 return '\x00';
1338 return (It - 1)->second;
1339 }
1340
dumpARMELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,const ObjectFile & Obj,ArrayRef<uint8_t> Bytes,ArrayRef<MappingSymbolPair> MappingSymbols,const MCSubtargetInfo & STI,raw_ostream & OS)1341 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1342 uint64_t End, const ObjectFile &Obj,
1343 ArrayRef<uint8_t> Bytes,
1344 ArrayRef<MappingSymbolPair> MappingSymbols,
1345 const MCSubtargetInfo &STI, raw_ostream &OS) {
1346 llvm::endianness Endian =
1347 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1348 size_t Start = OS.tell();
1349 OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1350 if (Index + 4 <= End) {
1351 dumpBytes(Bytes.slice(Index, 4), OS);
1352 AlignToInstStartColumn(Start, STI, OS);
1353 OS << "\t.word\t"
1354 << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1355 10);
1356 return 4;
1357 }
1358 if (Index + 2 <= End) {
1359 dumpBytes(Bytes.slice(Index, 2), OS);
1360 AlignToInstStartColumn(Start, STI, OS);
1361 OS << "\t.short\t"
1362 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1363 return 2;
1364 }
1365 dumpBytes(Bytes.slice(Index, 1), OS);
1366 AlignToInstStartColumn(Start, STI, OS);
1367 OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1368 return 1;
1369 }
1370
dumpELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,ArrayRef<uint8_t> Bytes)1371 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1372 ArrayRef<uint8_t> Bytes) {
1373 // print out data up to 8 bytes at a time in hex and ascii
1374 uint8_t AsciiData[9] = {'\0'};
1375 uint8_t Byte;
1376 int NumBytes = 0;
1377
1378 for (; Index < End; ++Index) {
1379 if (NumBytes == 0)
1380 outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1381 Byte = Bytes.slice(Index)[0];
1382 outs() << format(" %02x", Byte);
1383 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1384
1385 uint8_t IndentOffset = 0;
1386 NumBytes++;
1387 if (Index == End - 1 || NumBytes > 8) {
1388 // Indent the space for less than 8 bytes data.
1389 // 2 spaces for byte and one for space between bytes
1390 IndentOffset = 3 * (8 - NumBytes);
1391 for (int Excess = NumBytes; Excess < 8; Excess++)
1392 AsciiData[Excess] = '\0';
1393 NumBytes = 8;
1394 }
1395 if (NumBytes == 8) {
1396 AsciiData[8] = '\0';
1397 outs() << std::string(IndentOffset, ' ') << " ";
1398 outs() << reinterpret_cast<char *>(AsciiData);
1399 outs() << '\n';
1400 NumBytes = 0;
1401 }
1402 }
1403 }
1404
createSymbolInfo(const ObjectFile & Obj,const SymbolRef & Symbol,bool IsMappingSymbol)1405 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1406 const SymbolRef &Symbol,
1407 bool IsMappingSymbol) {
1408 const StringRef FileName = Obj.getFileName();
1409 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1410 const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1411
1412 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1413 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1414 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1415
1416 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1417 std::optional<XCOFF::StorageMappingClass> Smc =
1418 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1419 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1420 isLabel(XCOFFObj, Symbol));
1421 } else if (Obj.isXCOFF()) {
1422 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1423 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1424 /*IsXCOFF=*/true);
1425 } else if (Obj.isWasm()) {
1426 uint8_t SymType =
1427 cast<WasmObjectFile>(&Obj)->getWasmSymbol(Symbol).Info.Kind;
1428 return SymbolInfoTy(Addr, Name, SymType, false);
1429 } else {
1430 uint8_t Type =
1431 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1432 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1433 }
1434 }
1435
createDummySymbolInfo(const ObjectFile & Obj,const uint64_t Addr,StringRef & Name,uint8_t Type)1436 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1437 const uint64_t Addr, StringRef &Name,
1438 uint8_t Type) {
1439 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1440 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1441 if (Obj.isWasm())
1442 return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION);
1443 return SymbolInfoTy(Addr, Name, Type);
1444 }
1445
collectBBAddrMapLabels(const BBAddrMapInfo & FullAddrMap,uint64_t SectionAddr,uint64_t Start,uint64_t End,std::unordered_map<uint64_t,std::vector<BBAddrMapLabel>> & Labels)1446 static void collectBBAddrMapLabels(
1447 const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start,
1448 uint64_t End,
1449 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) {
1450 if (FullAddrMap.empty())
1451 return;
1452 Labels.clear();
1453 uint64_t StartAddress = SectionAddr + Start;
1454 uint64_t EndAddress = SectionAddr + End;
1455 const BBAddrMapFunctionEntry *FunctionMap =
1456 FullAddrMap.getEntryForAddress(StartAddress);
1457 if (!FunctionMap)
1458 return;
1459 std::optional<size_t> BBRangeIndex =
1460 FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(StartAddress);
1461 if (!BBRangeIndex)
1462 return;
1463 size_t NumBBEntriesBeforeRange = 0;
1464 for (size_t I = 0; I < *BBRangeIndex; ++I)
1465 NumBBEntriesBeforeRange +=
1466 FunctionMap->getAddrMap().BBRanges[I].BBEntries.size();
1467 const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex];
1468 for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) {
1469 const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I];
1470 uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress;
1471 if (BBAddress >= EndAddress)
1472 continue;
1473
1474 std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
1475 Labels[BBAddress].push_back(
1476 {LabelString, FunctionMap->constructPGOLabelString(
1477 NumBBEntriesBeforeRange + I, PrettyPGOAnalysisMap)});
1478 }
1479 }
1480
1481 static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes,MCInstrAnalysis * MIA,MCDisassembler * DisAsm,MCInstPrinter * IP,const MCSubtargetInfo * STI,uint64_t SectionAddr,uint64_t Start,uint64_t End,std::unordered_map<uint64_t,std::string> & Labels)1482 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
1483 MCDisassembler *DisAsm, MCInstPrinter *IP,
1484 const MCSubtargetInfo *STI, uint64_t SectionAddr,
1485 uint64_t Start, uint64_t End,
1486 std::unordered_map<uint64_t, std::string> &Labels) {
1487 // So far only supports PowerPC and X86.
1488 const bool isPPC = STI->getTargetTriple().isPPC();
1489 if (!isPPC && !STI->getTargetTriple().isX86())
1490 return;
1491
1492 if (MIA)
1493 MIA->resetState();
1494
1495 Labels.clear();
1496 unsigned LabelCount = 0;
1497 Start += SectionAddr;
1498 End += SectionAddr;
1499 const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
1500 for (uint64_t Index = Start; Index < End;) {
1501 // Disassemble a real instruction and record function-local branch labels.
1502 MCInst Inst;
1503 uint64_t Size;
1504 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1505 bool Disassembled =
1506 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1507 if (Size == 0)
1508 Size = std::min<uint64_t>(ThisBytes.size(),
1509 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1510
1511 if (MIA) {
1512 if (Disassembled) {
1513 uint64_t Target;
1514 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1515 if (TargetKnown && (Target >= Start && Target < End) &&
1516 !Labels.count(Target)) {
1517 // On PowerPC and AIX, a function call is encoded as a branch to 0.
1518 // On other PowerPC platforms (ELF), a function call is encoded as
1519 // a branch to self. Do not add a label for these cases.
1520 if (!(isPPC &&
1521 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
1522 Labels[Target] = ("L" + Twine(LabelCount++)).str();
1523 }
1524 MIA->updateState(Inst, Index);
1525 } else
1526 MIA->resetState();
1527 }
1528 Index += Size;
1529 }
1530 }
1531
1532 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1533 // This is currently only used on AMDGPU, and assumes the format of the
1534 // void * argument passed to AMDGPU's createMCSymbolizer.
addSymbolizer(MCContext & Ctx,const Target * Target,StringRef TripleName,MCDisassembler * DisAsm,uint64_t SectionAddr,ArrayRef<uint8_t> Bytes,SectionSymbolsTy & Symbols,std::vector<std::unique_ptr<std::string>> & SynthesizedLabelNames)1535 static void addSymbolizer(
1536 MCContext &Ctx, const Target *Target, StringRef TripleName,
1537 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1538 SectionSymbolsTy &Symbols,
1539 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1540
1541 std::unique_ptr<MCRelocationInfo> RelInfo(
1542 Target->createMCRelocationInfo(TripleName, Ctx));
1543 if (!RelInfo)
1544 return;
1545 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1546 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1547 MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1548 DisAsm->setSymbolizer(std::move(Symbolizer));
1549
1550 if (!SymbolizeOperands)
1551 return;
1552
1553 // Synthesize labels referenced by branch instructions by
1554 // disassembling, discarding the output, and collecting the referenced
1555 // addresses from the symbolizer.
1556 for (size_t Index = 0; Index != Bytes.size();) {
1557 MCInst Inst;
1558 uint64_t Size;
1559 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1560 const uint64_t ThisAddr = SectionAddr + Index;
1561 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1562 if (Size == 0)
1563 Size = std::min<uint64_t>(ThisBytes.size(),
1564 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1565 Index += Size;
1566 }
1567 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1568 // Copy and sort to remove duplicates.
1569 std::vector<uint64_t> LabelAddrs;
1570 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1571 LabelAddrsRef.end());
1572 llvm::sort(LabelAddrs);
1573 LabelAddrs.resize(llvm::unique(LabelAddrs) - LabelAddrs.begin());
1574 // Add the labels.
1575 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1576 auto Name = std::make_unique<std::string>();
1577 *Name = (Twine("L") + Twine(LabelNum)).str();
1578 SynthesizedLabelNames.push_back(std::move(Name));
1579 Symbols.push_back(SymbolInfoTy(
1580 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1581 }
1582 llvm::stable_sort(Symbols);
1583 // Recreate the symbolizer with the new symbols list.
1584 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1585 Symbolizer.reset(Target->createMCSymbolizer(
1586 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1587 DisAsm->setSymbolizer(std::move(Symbolizer));
1588 }
1589
getSegmentName(const MachOObjectFile * MachO,const SectionRef & Section)1590 static StringRef getSegmentName(const MachOObjectFile *MachO,
1591 const SectionRef &Section) {
1592 if (MachO) {
1593 DataRefImpl DR = Section.getRawDataRefImpl();
1594 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1595 return SegmentName;
1596 }
1597 return "";
1598 }
1599
emitPostInstructionInfo(formatted_raw_ostream & FOS,const MCAsmInfo & MAI,const MCSubtargetInfo & STI,StringRef Comments,LiveVariablePrinter & LVP)1600 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1601 const MCAsmInfo &MAI,
1602 const MCSubtargetInfo &STI,
1603 StringRef Comments,
1604 LiveVariablePrinter &LVP) {
1605 do {
1606 if (!Comments.empty()) {
1607 // Emit a line of comments.
1608 StringRef Comment;
1609 std::tie(Comment, Comments) = Comments.split('\n');
1610 // MAI.getCommentColumn() assumes that instructions are printed at the
1611 // position of 8, while getInstStartColumn() returns the actual position.
1612 unsigned CommentColumn =
1613 MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1614 FOS.PadToColumn(CommentColumn);
1615 FOS << MAI.getCommentString() << ' ' << Comment;
1616 }
1617 LVP.printAfterInst(FOS);
1618 FOS << '\n';
1619 } while (!Comments.empty());
1620 FOS.flush();
1621 }
1622
createFakeELFSections(ObjectFile & Obj)1623 static void createFakeELFSections(ObjectFile &Obj) {
1624 assert(Obj.isELF());
1625 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1626 Elf32LEObj->createFakeSections();
1627 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1628 Elf64LEObj->createFakeSections();
1629 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1630 Elf32BEObj->createFakeSections();
1631 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1632 Elf64BEObj->createFakeSections();
1633 else
1634 llvm_unreachable("Unsupported binary format");
1635 }
1636
1637 // Tries to fetch a more complete version of the given object file using its
1638 // Build ID. Returns std::nullopt if nothing was found.
1639 static std::optional<OwningBinary<Binary>>
fetchBinaryByBuildID(const ObjectFile & Obj)1640 fetchBinaryByBuildID(const ObjectFile &Obj) {
1641 object::BuildIDRef BuildID = getBuildID(&Obj);
1642 if (BuildID.empty())
1643 return std::nullopt;
1644 std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1645 if (!Path)
1646 return std::nullopt;
1647 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1648 if (!DebugBinary) {
1649 reportWarning(toString(DebugBinary.takeError()), *Path);
1650 return std::nullopt;
1651 }
1652 return std::move(*DebugBinary);
1653 }
1654
1655 static void
disassembleObject(ObjectFile & Obj,const ObjectFile & DbgObj,DisassemblerTarget & PrimaryTarget,std::optional<DisassemblerTarget> & SecondaryTarget,SourcePrinter & SP,bool InlineRelocs)1656 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1657 DisassemblerTarget &PrimaryTarget,
1658 std::optional<DisassemblerTarget> &SecondaryTarget,
1659 SourcePrinter &SP, bool InlineRelocs) {
1660 DisassemblerTarget *DT = &PrimaryTarget;
1661 bool PrimaryIsThumb = false;
1662 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
1663
1664 if (SecondaryTarget) {
1665 if (isArmElf(Obj)) {
1666 PrimaryIsThumb =
1667 PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
1668 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1669 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
1670 if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
1671 uintptr_t CodeMapInt;
1672 cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt));
1673 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
1674
1675 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
1676 if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
1677 CodeMap[i].Length) {
1678 // Store x86_64 CHPE code ranges.
1679 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
1680 CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length);
1681 }
1682 }
1683 llvm::sort(CHPECodeMap);
1684 }
1685 }
1686 }
1687
1688 std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1689 if (InlineRelocs || Obj.isXCOFF())
1690 RelocMap = getRelocsMap(Obj);
1691 bool Is64Bits = Obj.getBytesInAddress() > 4;
1692
1693 // Create a mapping from virtual address to symbol name. This is used to
1694 // pretty print the symbols while disassembling.
1695 std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1696 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1697 SectionSymbolsTy AbsoluteSymbols;
1698 const StringRef FileName = Obj.getFileName();
1699 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1700 for (const SymbolRef &Symbol : Obj.symbols()) {
1701 Expected<StringRef> NameOrErr = Symbol.getName();
1702 if (!NameOrErr) {
1703 reportWarning(toString(NameOrErr.takeError()), FileName);
1704 continue;
1705 }
1706 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1707 continue;
1708
1709 if (Obj.isELF() &&
1710 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1711 // Symbol is intended not to be displayed by default (STT_FILE,
1712 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1713 // synthesize a section symbol if no symbol is defined at offset 0.
1714 //
1715 // For a mapping symbol, store it within both AllSymbols and
1716 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1717 // not be printed in disassembly listing.
1718 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1719 hasMappingSymbols(Obj)) {
1720 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1721 if (SecI != Obj.section_end()) {
1722 uint64_t SectionAddr = SecI->getAddress();
1723 uint64_t Address = cantFail(Symbol.getAddress());
1724 StringRef Name = *NameOrErr;
1725 if (Name.consume_front("$") && Name.size() &&
1726 strchr("adtx", Name[0])) {
1727 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1728 Name[0]);
1729 AllSymbols[*SecI].push_back(
1730 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1731 }
1732 }
1733 }
1734 continue;
1735 }
1736
1737 if (MachO) {
1738 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1739 // symbols that support MachO header introspection. They do not bind to
1740 // code locations and are irrelevant for disassembly.
1741 if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header"))
1742 continue;
1743 // Don't ask a Mach-O STAB symbol for its section unless you know that
1744 // STAB symbol's section field refers to a valid section index. Otherwise
1745 // the symbol may error trying to load a section that does not exist.
1746 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1747 uint8_t NType = (MachO->is64Bit() ?
1748 MachO->getSymbol64TableEntry(SymDRI).n_type:
1749 MachO->getSymbolTableEntry(SymDRI).n_type);
1750 if (NType & MachO::N_STAB)
1751 continue;
1752 }
1753
1754 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1755 if (SecI != Obj.section_end())
1756 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1757 else
1758 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1759 }
1760
1761 if (AllSymbols.empty() && Obj.isELF())
1762 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1763
1764 if (Obj.isWasm())
1765 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1766
1767 if (Obj.isELF() && Obj.sections().empty())
1768 createFakeELFSections(Obj);
1769
1770 BumpPtrAllocator A;
1771 StringSaver Saver(A);
1772 addPltEntries(Obj, AllSymbols, Saver);
1773
1774 // Create a mapping from virtual address to section. An empty section can
1775 // cause more than one section at the same address. Sort such sections to be
1776 // before same-addressed non-empty sections so that symbol lookups prefer the
1777 // non-empty section.
1778 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1779 for (SectionRef Sec : Obj.sections())
1780 SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1781 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1782 if (LHS.first != RHS.first)
1783 return LHS.first < RHS.first;
1784 return LHS.second.getSize() < RHS.second.getSize();
1785 });
1786
1787 // Linked executables (.exe and .dll files) typically don't include a real
1788 // symbol table but they might contain an export table.
1789 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1790 for (const auto &ExportEntry : COFFObj->export_directories()) {
1791 StringRef Name;
1792 if (Error E = ExportEntry.getSymbolName(Name))
1793 reportError(std::move(E), Obj.getFileName());
1794 if (Name.empty())
1795 continue;
1796
1797 uint32_t RVA;
1798 if (Error E = ExportEntry.getExportRVA(RVA))
1799 reportError(std::move(E), Obj.getFileName());
1800
1801 uint64_t VA = COFFObj->getImageBase() + RVA;
1802 auto Sec = partition_point(
1803 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1804 return O.first <= VA;
1805 });
1806 if (Sec != SectionAddresses.begin()) {
1807 --Sec;
1808 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1809 } else
1810 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1811 }
1812 }
1813
1814 // Sort all the symbols, this allows us to use a simple binary search to find
1815 // Multiple symbols can have the same address. Use a stable sort to stabilize
1816 // the output.
1817 StringSet<> FoundDisasmSymbolSet;
1818 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1819 llvm::stable_sort(SecSyms.second);
1820 llvm::stable_sort(AbsoluteSymbols);
1821
1822 std::unique_ptr<DWARFContext> DICtx;
1823 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1824
1825 if (DbgVariables != DVDisabled) {
1826 DICtx = DWARFContext::create(DbgObj);
1827 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1828 LVP.addCompileUnit(CU->getUnitDIE(false));
1829 }
1830
1831 LLVM_DEBUG(LVP.dump());
1832
1833 BBAddrMapInfo FullAddrMap;
1834 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1835 std::nullopt) {
1836 FullAddrMap.clear();
1837 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1838 std::vector<PGOAnalysisMap> PGOAnalyses;
1839 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses);
1840 if (!BBAddrMapsOrErr) {
1841 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1842 return;
1843 }
1844 for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] :
1845 zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) {
1846 FullAddrMap.AddFunctionEntry(std::move(FunctionBBAddrMap),
1847 std::move(FunctionPGOAnalysis));
1848 }
1849 }
1850 };
1851
1852 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1853 // single mapping, since they don't have any conflicts.
1854 if (SymbolizeOperands && !Obj.isRelocatableObject())
1855 ReadBBAddrMap();
1856
1857 std::optional<llvm::BTFParser> BTF;
1858 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
1859 BTF.emplace();
1860 BTFParser::ParseOptions Opts = {};
1861 Opts.LoadTypes = true;
1862 Opts.LoadRelocs = true;
1863 if (Error E = BTF->parse(Obj, Opts))
1864 WithColor::defaultErrorHandler(std::move(E));
1865 }
1866
1867 for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1868 if (FilterSections.empty() && !DisassembleAll &&
1869 (!Section.isText() || Section.isVirtual()))
1870 continue;
1871
1872 uint64_t SectionAddr = Section.getAddress();
1873 uint64_t SectSize = Section.getSize();
1874 if (!SectSize)
1875 continue;
1876
1877 // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1878 // corresponding to this section, if present.
1879 if (SymbolizeOperands && Obj.isRelocatableObject())
1880 ReadBBAddrMap(Section.getIndex());
1881
1882 // Get the list of all the symbols in this section.
1883 SectionSymbolsTy &Symbols = AllSymbols[Section];
1884 auto &MappingSymbols = AllMappingSymbols[Section];
1885 llvm::sort(MappingSymbols);
1886
1887 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1888 unwrapOrError(Section.getContents(), Obj.getFileName()));
1889
1890 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1891 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1892 // AMDGPU disassembler uses symbolizer for printing labels
1893 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
1894 SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1895 }
1896
1897 StringRef SegmentName = getSegmentName(MachO, Section);
1898 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1899 // If the section has no symbol at the start, just insert a dummy one.
1900 // Without --show-all-symbols, also insert one if all symbols at the start
1901 // are mapping symbols.
1902 bool CreateDummy = Symbols.empty();
1903 if (!CreateDummy) {
1904 CreateDummy = true;
1905 for (auto &Sym : Symbols) {
1906 if (Sym.Addr != SectionAddr)
1907 break;
1908 if (!Sym.IsMappingSymbol || ShowAllSymbols)
1909 CreateDummy = false;
1910 }
1911 }
1912 if (CreateDummy) {
1913 SymbolInfoTy Sym = createDummySymbolInfo(
1914 Obj, SectionAddr, SectionName,
1915 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1916 if (Obj.isXCOFF())
1917 Symbols.insert(Symbols.begin(), Sym);
1918 else
1919 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1920 }
1921
1922 SmallString<40> Comments;
1923 raw_svector_ostream CommentStream(Comments);
1924
1925 uint64_t VMAAdjustment = 0;
1926 if (shouldAdjustVA(Section))
1927 VMAAdjustment = AdjustVMA;
1928
1929 // In executable and shared objects, r_offset holds a virtual address.
1930 // Subtract SectionAddr from the r_offset field of a relocation to get
1931 // the section offset.
1932 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1933 uint64_t Size;
1934 uint64_t Index;
1935 bool PrintedSection = false;
1936 std::vector<RelocationRef> Rels = RelocMap[Section];
1937 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1938 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1939
1940 // Loop over each chunk of code between two points where at least
1941 // one symbol is defined.
1942 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1943 // Advance SI past all the symbols starting at the same address,
1944 // and make an ArrayRef of them.
1945 unsigned FirstSI = SI;
1946 uint64_t Start = Symbols[SI].Addr;
1947 ArrayRef<SymbolInfoTy> SymbolsHere;
1948 while (SI != SE && Symbols[SI].Addr == Start)
1949 ++SI;
1950 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1951
1952 // Get the demangled names of all those symbols. We end up with a vector
1953 // of StringRef that holds the names we're going to use, and a vector of
1954 // std::string that stores the new strings returned by demangle(), if
1955 // any. If we don't call demangle() then that vector can stay empty.
1956 std::vector<StringRef> SymNamesHere;
1957 std::vector<std::string> DemangledSymNamesHere;
1958 if (Demangle) {
1959 // Fetch the demangled names and store them locally.
1960 for (const SymbolInfoTy &Symbol : SymbolsHere)
1961 DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1962 // Now we've finished modifying that vector, it's safe to make
1963 // a vector of StringRefs pointing into it.
1964 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1965 DemangledSymNamesHere.end());
1966 } else {
1967 for (const SymbolInfoTy &Symbol : SymbolsHere)
1968 SymNamesHere.push_back(Symbol.Name);
1969 }
1970
1971 // Distinguish ELF data from code symbols, which will be used later on to
1972 // decide whether to 'disassemble' this chunk as a data declaration via
1973 // dumpELFData(), or whether to treat it as code.
1974 //
1975 // If data _and_ code symbols are defined at the same address, the code
1976 // takes priority, on the grounds that disassembling code is our main
1977 // purpose here, and it would be a worse failure to _not_ interpret
1978 // something that _was_ meaningful as code than vice versa.
1979 //
1980 // Any ELF symbol type that is not clearly data will be regarded as code.
1981 // In particular, one of the uses of STT_NOTYPE is for branch targets
1982 // inside functions, for which STT_FUNC would be inaccurate.
1983 //
1984 // So here, we spot whether there's any non-data symbol present at all,
1985 // and only set the DisassembleAsELFData flag if there isn't. Also, we use
1986 // this distinction to inform the decision of which symbol to print at
1987 // the head of the section, so that if we're printing code, we print a
1988 // code-related symbol name to go with it.
1989 bool DisassembleAsELFData = false;
1990 size_t DisplaySymIndex = SymbolsHere.size() - 1;
1991 if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1992 DisassembleAsELFData = true; // unless we find a code symbol below
1993
1994 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1995 uint8_t SymTy = SymbolsHere[i].Type;
1996 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1997 DisassembleAsELFData = false;
1998 DisplaySymIndex = i;
1999 }
2000 }
2001 }
2002
2003 // Decide which symbol(s) from this collection we're going to print.
2004 std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
2005 // If the user has given the --disassemble-symbols option, then we must
2006 // display every symbol in that set, and no others.
2007 if (!DisasmSymbolSet.empty()) {
2008 bool FoundAny = false;
2009 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
2010 if (DisasmSymbolSet.count(SymNamesHere[i])) {
2011 SymsToPrint[i] = true;
2012 FoundAny = true;
2013 }
2014 }
2015
2016 // And if none of the symbols here is one that the user asked for, skip
2017 // disassembling this entire chunk of code.
2018 if (!FoundAny)
2019 continue;
2020 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
2021 // Otherwise, print whichever symbol at this location is last in the
2022 // Symbols array, because that array is pre-sorted in a way intended to
2023 // correlate with priority of which symbol to display.
2024 SymsToPrint[DisplaySymIndex] = true;
2025 }
2026
2027 // Now that we know we're disassembling this section, override the choice
2028 // of which symbols to display by printing _all_ of them at this address
2029 // if the user asked for all symbols.
2030 //
2031 // That way, '--show-all-symbols --disassemble-symbol=foo' will print
2032 // only the chunk of code headed by 'foo', but also show any other
2033 // symbols defined at that address, such as aliases for 'foo', or the ARM
2034 // mapping symbol preceding its code.
2035 if (ShowAllSymbols) {
2036 for (size_t i = 0; i < SymbolsHere.size(); ++i)
2037 SymsToPrint[i] = true;
2038 }
2039
2040 if (Start < SectionAddr || StopAddress <= Start)
2041 continue;
2042
2043 for (size_t i = 0; i < SymbolsHere.size(); ++i)
2044 FoundDisasmSymbolSet.insert(SymNamesHere[i]);
2045
2046 // The end is the section end, the beginning of the next symbol, or
2047 // --stop-address.
2048 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
2049 if (SI < SE)
2050 End = std::min(End, Symbols[SI].Addr);
2051 if (Start >= End || End <= StartAddress)
2052 continue;
2053 Start -= SectionAddr;
2054 End -= SectionAddr;
2055
2056 if (!PrintedSection) {
2057 PrintedSection = true;
2058 outs() << "\nDisassembly of section ";
2059 if (!SegmentName.empty())
2060 outs() << SegmentName << ",";
2061 outs() << SectionName << ":\n";
2062 }
2063
2064 bool PrintedLabel = false;
2065 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
2066 if (!SymsToPrint[i])
2067 continue;
2068
2069 const SymbolInfoTy &Symbol = SymbolsHere[i];
2070 const StringRef SymbolName = SymNamesHere[i];
2071
2072 if (!PrintedLabel) {
2073 outs() << '\n';
2074 PrintedLabel = true;
2075 }
2076 if (LeadingAddr)
2077 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
2078 SectionAddr + Start + VMAAdjustment);
2079 if (Obj.isXCOFF() && SymbolDescription) {
2080 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
2081 } else
2082 outs() << '<' << SymbolName << ">:\n";
2083 }
2084
2085 // Don't print raw contents of a virtual section. A virtual section
2086 // doesn't have any contents in the file.
2087 if (Section.isVirtual()) {
2088 outs() << "...\n";
2089 continue;
2090 }
2091
2092 // See if any of the symbols defined at this location triggers target-
2093 // specific disassembly behavior, e.g. of special descriptors or function
2094 // prelude information.
2095 //
2096 // We stop this loop at the first symbol that triggers some kind of
2097 // interesting behavior (if any), on the assumption that if two symbols
2098 // defined at the same address trigger two conflicting symbol handlers,
2099 // the object file is probably confused anyway, and it would make even
2100 // less sense to present the output of _both_ handlers, because that
2101 // would describe the same data twice.
2102 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
2103 SymbolInfoTy Symbol = SymbolsHere[SHI];
2104
2105 Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart(
2106 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start);
2107
2108 if (RespondedOrErr && !*RespondedOrErr) {
2109 // This symbol didn't trigger any interesting handling. Try the other
2110 // symbols defined at this address.
2111 continue;
2112 }
2113
2114 // If onSymbolStart returned an Error, that means it identified some
2115 // kind of special data at this address, but wasn't able to disassemble
2116 // it meaningfully. So we fall back to printing the error out and
2117 // disassembling the failed region as bytes, assuming that the target
2118 // detected the failure before printing anything.
2119 if (!RespondedOrErr) {
2120 std::string ErrMsgStr = toString(RespondedOrErr.takeError());
2121 StringRef ErrMsg = ErrMsgStr;
2122 do {
2123 StringRef Line;
2124 std::tie(Line, ErrMsg) = ErrMsg.split('\n');
2125 outs() << DT->Context->getAsmInfo()->getCommentString()
2126 << " error decoding " << SymNamesHere[SHI] << ": " << Line
2127 << '\n';
2128 } while (!ErrMsg.empty());
2129
2130 if (Size) {
2131 outs() << DT->Context->getAsmInfo()->getCommentString()
2132 << " decoding failed region as bytes\n";
2133 for (uint64_t I = 0; I < Size; ++I)
2134 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
2135 << '\n';
2136 }
2137 }
2138
2139 // Regardless of whether onSymbolStart returned an Error or true, 'Size'
2140 // will have been set to the amount of data covered by whatever prologue
2141 // the target identified. So we advance our own position to beyond that.
2142 // Sometimes that will be the entire distance to the next symbol, and
2143 // sometimes it will be just a prologue and we should start
2144 // disassembling instructions from where it left off.
2145 Start += Size;
2146 break;
2147 }
2148
2149 Index = Start;
2150 if (SectionAddr < StartAddress)
2151 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
2152
2153 if (DisassembleAsELFData) {
2154 dumpELFData(SectionAddr, Index, End, Bytes);
2155 Index = End;
2156 continue;
2157 }
2158
2159 // Skip relocations from symbols that are not dumped.
2160 for (; RelCur != RelEnd; ++RelCur) {
2161 uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2162 if (Index <= Offset)
2163 break;
2164 }
2165
2166 bool DumpARMELFData = false;
2167 bool DumpTracebackTableForXCOFFFunction =
2168 Obj.isXCOFF() && Section.isText() && TracebackTable &&
2169 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
2170 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
2171
2172 formatted_raw_ostream FOS(outs());
2173
2174 std::unordered_map<uint64_t, std::string> AllLabels;
2175 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
2176 if (SymbolizeOperands) {
2177 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
2178 DT->DisAsm.get(), DT->InstPrinter.get(),
2179 PrimaryTarget.SubtargetInfo.get(),
2180 SectionAddr, Index, End, AllLabels);
2181 collectBBAddrMapLabels(FullAddrMap, SectionAddr, Index, End,
2182 BBAddrMapLabels);
2183 }
2184
2185 if (DT->InstrAnalysis)
2186 DT->InstrAnalysis->resetState();
2187
2188 while (Index < End) {
2189 uint64_t RelOffset;
2190
2191 // ARM and AArch64 ELF binaries can interleave data and text in the
2192 // same section. We rely on the markers introduced to understand what
2193 // we need to dump. If the data marker is within a function, it is
2194 // denoted as a word/short etc.
2195 if (!MappingSymbols.empty()) {
2196 char Kind = getMappingSymbolKind(MappingSymbols, Index);
2197 DumpARMELFData = Kind == 'd';
2198 if (SecondaryTarget) {
2199 if (Kind == 'a') {
2200 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
2201 } else if (Kind == 't') {
2202 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
2203 }
2204 }
2205 } else if (!CHPECodeMap.empty()) {
2206 uint64_t Address = SectionAddr + Index;
2207 auto It = partition_point(
2208 CHPECodeMap,
2209 [Address](const std::pair<uint64_t, uint64_t> &Entry) {
2210 return Entry.first <= Address;
2211 });
2212 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
2213 DT = &*SecondaryTarget;
2214 } else {
2215 DT = &PrimaryTarget;
2216 // X64 disassembler range may have left Index unaligned, so
2217 // make sure that it's aligned when we switch back to ARM64
2218 // code.
2219 Index = llvm::alignTo(Index, 4);
2220 if (Index >= End)
2221 break;
2222 }
2223 }
2224
2225 auto findRel = [&]() {
2226 while (RelCur != RelEnd) {
2227 RelOffset = RelCur->getOffset() - RelAdjustment;
2228 // If this relocation is hidden, skip it.
2229 if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) {
2230 ++RelCur;
2231 continue;
2232 }
2233
2234 // Stop when RelCur's offset is past the disassembled
2235 // instruction/data.
2236 if (RelOffset >= Index + Size)
2237 return false;
2238 if (RelOffset >= Index)
2239 return true;
2240 ++RelCur;
2241 }
2242 return false;
2243 };
2244
2245 if (DumpARMELFData) {
2246 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
2247 MappingSymbols, *DT->SubtargetInfo, FOS);
2248 } else {
2249 // When -z or --disassemble-zeroes are given we always dissasemble
2250 // them. Otherwise we might want to skip zero bytes we see.
2251 if (!DisassembleZeroes) {
2252 uint64_t MaxOffset = End - Index;
2253 // For --reloc: print zero blocks patched by relocations, so that
2254 // relocations can be shown in the dump.
2255 if (InlineRelocs && RelCur != RelEnd)
2256 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
2257 MaxOffset);
2258
2259 if (size_t N =
2260 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
2261 FOS << "\t\t..." << '\n';
2262 Index += N;
2263 continue;
2264 }
2265 }
2266
2267 if (DumpTracebackTableForXCOFFFunction &&
2268 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
2269 dumpTracebackTable(Bytes.slice(Index),
2270 SectionAddr + Index + VMAAdjustment, FOS,
2271 SectionAddr + End + VMAAdjustment,
2272 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
2273 Index = End;
2274 continue;
2275 }
2276
2277 // Print local label if there's any.
2278 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
2279 if (Iter1 != BBAddrMapLabels.end()) {
2280 for (const auto &BBLabel : Iter1->second)
2281 FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
2282 << ":\n";
2283 } else {
2284 auto Iter2 = AllLabels.find(SectionAddr + Index);
2285 if (Iter2 != AllLabels.end())
2286 FOS << "<" << Iter2->second << ">:\n";
2287 }
2288
2289 // Disassemble a real instruction or a data when disassemble all is
2290 // provided
2291 MCInst Inst;
2292 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
2293 uint64_t ThisAddr = SectionAddr + Index;
2294 bool Disassembled = DT->DisAsm->getInstruction(
2295 Inst, Size, ThisBytes, ThisAddr, CommentStream);
2296 if (Size == 0)
2297 Size = std::min<uint64_t>(
2298 ThisBytes.size(),
2299 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
2300
2301 LVP.update({Index, Section.getIndex()},
2302 {Index + Size, Section.getIndex()}, Index + Size != End);
2303
2304 DT->InstPrinter->setCommentStream(CommentStream);
2305
2306 DT->Printer->printInst(
2307 *DT->InstPrinter, Disassembled ? &Inst : nullptr,
2308 Bytes.slice(Index, Size),
2309 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2310 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
2311
2312 DT->InstPrinter->setCommentStream(llvm::nulls());
2313
2314 // If disassembly succeeds, we try to resolve the target address
2315 // (jump target or memory operand address) and print it to the
2316 // right of the instruction.
2317 //
2318 // Otherwise, we don't print anything else so that we avoid
2319 // analyzing invalid or incomplete instruction information.
2320 if (Disassembled && DT->InstrAnalysis) {
2321 llvm::raw_ostream *TargetOS = &FOS;
2322 uint64_t Target;
2323 bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
2324 Inst, SectionAddr + Index, Size, Target);
2325
2326 if (!PrintTarget) {
2327 if (std::optional<uint64_t> MaybeTarget =
2328 DT->InstrAnalysis->evaluateMemoryOperandAddress(
2329 Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
2330 Size)) {
2331 Target = *MaybeTarget;
2332 PrintTarget = true;
2333 // Do not print real address when symbolizing.
2334 if (!SymbolizeOperands) {
2335 // Memory operand addresses are printed as comments.
2336 TargetOS = &CommentStream;
2337 *TargetOS << "0x" << Twine::utohexstr(Target);
2338 }
2339 }
2340 }
2341
2342 if (PrintTarget) {
2343 // In a relocatable object, the target's section must reside in
2344 // the same section as the call instruction or it is accessed
2345 // through a relocation.
2346 //
2347 // In a non-relocatable object, the target may be in any section.
2348 // In that case, locate the section(s) containing the target
2349 // address and find the symbol in one of those, if possible.
2350 //
2351 // N.B. Except for XCOFF, we don't walk the relocations in the
2352 // relocatable case yet.
2353 std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2354 if (!Obj.isRelocatableObject()) {
2355 auto It = llvm::partition_point(
2356 SectionAddresses,
2357 [=](const std::pair<uint64_t, SectionRef> &O) {
2358 return O.first <= Target;
2359 });
2360 uint64_t TargetSecAddr = 0;
2361 while (It != SectionAddresses.begin()) {
2362 --It;
2363 if (TargetSecAddr == 0)
2364 TargetSecAddr = It->first;
2365 if (It->first != TargetSecAddr)
2366 break;
2367 TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2368 }
2369 } else {
2370 TargetSectionSymbols.push_back(&Symbols);
2371 }
2372 TargetSectionSymbols.push_back(&AbsoluteSymbols);
2373
2374 // Find the last symbol in the first candidate section whose
2375 // offset is less than or equal to the target. If there are no
2376 // such symbols, try in the next section and so on, before finally
2377 // using the nearest preceding absolute symbol (if any), if there
2378 // are no other valid symbols.
2379 const SymbolInfoTy *TargetSym = nullptr;
2380 for (const SectionSymbolsTy *TargetSymbols :
2381 TargetSectionSymbols) {
2382 auto It = llvm::partition_point(
2383 *TargetSymbols,
2384 [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2385 while (It != TargetSymbols->begin()) {
2386 --It;
2387 // Skip mapping symbols to avoid possible ambiguity as they
2388 // do not allow uniquely identifying the target address.
2389 if (!It->IsMappingSymbol) {
2390 TargetSym = &*It;
2391 break;
2392 }
2393 }
2394 if (TargetSym)
2395 break;
2396 }
2397
2398 // Branch targets are printed just after the instructions.
2399 // Print the labels corresponding to the target if there's any.
2400 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2401 bool LabelAvailable = AllLabels.count(Target);
2402
2403 if (TargetSym != nullptr) {
2404 uint64_t TargetAddress = TargetSym->Addr;
2405 uint64_t Disp = Target - TargetAddress;
2406 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2407 : TargetSym->Name.str();
2408 bool RelFixedUp = false;
2409 SmallString<32> Val;
2410
2411 *TargetOS << " <";
2412 // On XCOFF, we use relocations, even without -r, so we
2413 // can print the correct name for an extern function call.
2414 if (Obj.isXCOFF() && findRel()) {
2415 // Check for possible branch relocations and
2416 // branches to fixup code.
2417 bool BranchRelocationType = true;
2418 XCOFF::RelocationType RelocType;
2419 if (Obj.is64Bit()) {
2420 const XCOFFRelocation64 *Reloc =
2421 reinterpret_cast<XCOFFRelocation64 *>(
2422 RelCur->getRawDataRefImpl().p);
2423 RelFixedUp = Reloc->isFixupIndicated();
2424 RelocType = Reloc->Type;
2425 } else {
2426 const XCOFFRelocation32 *Reloc =
2427 reinterpret_cast<XCOFFRelocation32 *>(
2428 RelCur->getRawDataRefImpl().p);
2429 RelFixedUp = Reloc->isFixupIndicated();
2430 RelocType = Reloc->Type;
2431 }
2432 BranchRelocationType =
2433 RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
2434 RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
2435
2436 // If we have a valid relocation, try to print its
2437 // corresponding symbol name. Multiple relocations on the
2438 // same instruction are not handled.
2439 // Branches to fixup code will have the RelFixedUp flag set in
2440 // the RLD. For these instructions, we print the correct
2441 // branch target, but print the referenced symbol as a
2442 // comment.
2443 if (Error E = getRelocationValueString(*RelCur, false, Val)) {
2444 // If -r was used, this error will be printed later.
2445 // Otherwise, we ignore the error and print what
2446 // would have been printed without using relocations.
2447 consumeError(std::move(E));
2448 *TargetOS << TargetName;
2449 RelFixedUp = false; // Suppress comment for RLD sym name
2450 } else if (BranchRelocationType && !RelFixedUp)
2451 *TargetOS << Val;
2452 else
2453 *TargetOS << TargetName;
2454 if (Disp)
2455 *TargetOS << "+0x" << Twine::utohexstr(Disp);
2456 } else if (!Disp) {
2457 *TargetOS << TargetName;
2458 } else if (BBAddrMapLabelAvailable) {
2459 *TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
2460 } else if (LabelAvailable) {
2461 *TargetOS << AllLabels[Target];
2462 } else {
2463 // Always Print the binary symbol plus an offset if there's no
2464 // local label corresponding to the target address.
2465 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2466 }
2467 *TargetOS << ">";
2468 if (RelFixedUp && !InlineRelocs) {
2469 // We have fixup code for a relocation. We print the
2470 // referenced symbol as a comment.
2471 *TargetOS << "\t# " << Val;
2472 }
2473
2474 } else if (BBAddrMapLabelAvailable) {
2475 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
2476 << ">";
2477 } else if (LabelAvailable) {
2478 *TargetOS << " <" << AllLabels[Target] << ">";
2479 }
2480 // By convention, each record in the comment stream should be
2481 // terminated.
2482 if (TargetOS == &CommentStream)
2483 *TargetOS << "\n";
2484 }
2485
2486 DT->InstrAnalysis->updateState(Inst, SectionAddr + Index);
2487 } else if (!Disassembled && DT->InstrAnalysis) {
2488 DT->InstrAnalysis->resetState();
2489 }
2490 }
2491
2492 assert(DT->Context->getAsmInfo());
2493 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
2494 *DT->SubtargetInfo, CommentStream.str(), LVP);
2495 Comments.clear();
2496
2497 if (BTF)
2498 printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP);
2499
2500 // Hexagon handles relocs in pretty printer
2501 if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
2502 while (findRel()) {
2503 // When --adjust-vma is used, update the address printed.
2504 if (RelCur->getSymbol() != Obj.symbol_end()) {
2505 Expected<section_iterator> SymSI =
2506 RelCur->getSymbol()->getSection();
2507 if (SymSI && *SymSI != Obj.section_end() &&
2508 shouldAdjustVA(**SymSI))
2509 RelOffset += AdjustVMA;
2510 }
2511
2512 printRelocation(FOS, Obj.getFileName(), *RelCur,
2513 SectionAddr + RelOffset, Is64Bits);
2514 LVP.printAfterOtherLine(FOS, true);
2515 ++RelCur;
2516 }
2517 }
2518
2519 Index += Size;
2520 }
2521 }
2522 }
2523 StringSet<> MissingDisasmSymbolSet =
2524 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2525 for (StringRef Sym : MissingDisasmSymbolSet.keys())
2526 reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2527 }
2528
disassembleObject(ObjectFile * Obj,bool InlineRelocs)2529 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2530 // If information useful for showing the disassembly is missing, try to find a
2531 // more complete binary and disassemble that instead.
2532 OwningBinary<Binary> FetchedBinary;
2533 if (Obj->symbols().empty()) {
2534 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2535 fetchBinaryByBuildID(*Obj)) {
2536 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2537 if (!O->symbols().empty() ||
2538 (!O->sections().empty() && Obj->sections().empty())) {
2539 FetchedBinary = std::move(*FetchedBinaryOpt);
2540 Obj = O;
2541 }
2542 }
2543 }
2544 }
2545
2546 const Target *TheTarget = getTarget(Obj);
2547
2548 // Package up features to be passed to target/subtarget
2549 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2550 if (!FeaturesValue)
2551 reportError(FeaturesValue.takeError(), Obj->getFileName());
2552 SubtargetFeatures Features = *FeaturesValue;
2553 if (!MAttrs.empty()) {
2554 for (unsigned I = 0; I != MAttrs.size(); ++I)
2555 Features.AddFeature(MAttrs[I]);
2556 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2557 Features.AddFeature("+all");
2558 }
2559
2560 if (MCPU.empty())
2561 MCPU = Obj->tryGetCPUName().value_or("").str();
2562
2563 if (isArmElf(*Obj)) {
2564 // When disassembling big-endian Arm ELF, the instruction endianness is
2565 // determined in a complex way. In relocatable objects, AAELF32 mandates
2566 // that instruction endianness matches the ELF file endianness; in
2567 // executable images, that's true unless the file header has the EF_ARM_BE8
2568 // flag, in which case instructions are little-endian regardless of data
2569 // endianness.
2570 //
2571 // We must set the big-endian-instructions SubtargetFeature to make the
2572 // disassembler read the instructions the right way round, and also tell
2573 // our own prettyprinter to retrieve the encodings the same way to print in
2574 // hex.
2575 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2576
2577 if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2578 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2579 Features.AddFeature("+big-endian-instructions");
2580 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
2581 } else {
2582 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
2583 }
2584 }
2585
2586 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2587
2588 // If we have an ARM object file, we need a second disassembler, because
2589 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2590 // We use mapping symbols to switch between the two assemblers, where
2591 // appropriate.
2592 std::optional<DisassemblerTarget> SecondaryTarget;
2593
2594 if (isArmElf(*Obj)) {
2595 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2596 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2597 Features.AddFeature("-thumb-mode");
2598 else
2599 Features.AddFeature("+thumb-mode");
2600 SecondaryTarget.emplace(PrimaryTarget, Features);
2601 }
2602 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
2603 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
2604 if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
2605 // Set up x86_64 disassembler for ARM64EC binaries.
2606 Triple X64Triple(TripleName);
2607 X64Triple.setArch(Triple::ArchType::x86_64);
2608
2609 std::string Error;
2610 const Target *X64Target =
2611 TargetRegistry::lookupTarget("", X64Triple, Error);
2612 if (X64Target) {
2613 SubtargetFeatures X64Features;
2614 SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "",
2615 X64Features);
2616 } else {
2617 reportWarning(Error, Obj->getFileName());
2618 }
2619 }
2620 }
2621
2622 const ObjectFile *DbgObj = Obj;
2623 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2624 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2625 fetchBinaryByBuildID(*Obj)) {
2626 if (auto *FetchedObj =
2627 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2628 if (FetchedObj->hasDebugInfo()) {
2629 FetchedBinary = std::move(*DebugBinaryOpt);
2630 DbgObj = FetchedObj;
2631 }
2632 }
2633 }
2634 }
2635
2636 std::unique_ptr<object::Binary> DSYMBinary;
2637 std::unique_ptr<MemoryBuffer> DSYMBuf;
2638 if (!DbgObj->hasDebugInfo()) {
2639 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2640 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2641 DSYMBinary, DSYMBuf);
2642 if (!DbgObj)
2643 return;
2644 }
2645 }
2646
2647 SourcePrinter SP(DbgObj, TheTarget->getName());
2648
2649 for (StringRef Opt : DisassemblerOptions)
2650 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2651 reportError(Obj->getFileName(),
2652 "Unrecognized disassembler option: " + Opt);
2653
2654 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2655 InlineRelocs);
2656 }
2657
printRelocations()2658 void Dumper::printRelocations() {
2659 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2660
2661 // Build a mapping from relocation target to a vector of relocation
2662 // sections. Usually, there is an only one relocation section for
2663 // each relocated section.
2664 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2665 uint64_t Ndx;
2666 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2667 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2668 continue;
2669 if (Section.relocation_begin() == Section.relocation_end())
2670 continue;
2671 Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2672 if (!SecOrErr)
2673 reportError(O.getFileName(),
2674 "section (" + Twine(Ndx) +
2675 "): unable to get a relocation target: " +
2676 toString(SecOrErr.takeError()));
2677 SecToRelSec[**SecOrErr].push_back(Section);
2678 }
2679
2680 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2681 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2682 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2683 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2684 uint32_t TypePadding = 24;
2685 outs() << left_justify("OFFSET", OffsetPadding) << " "
2686 << left_justify("TYPE", TypePadding) << " "
2687 << "VALUE\n";
2688
2689 for (SectionRef Section : P.second) {
2690 // CREL sections require decoding, each section may have its own specific
2691 // decode problems.
2692 if (O.isELF() && ELFSectionRef(Section).getType() == ELF::SHT_CREL) {
2693 StringRef Err =
2694 cast<const ELFObjectFileBase>(O).getCrelDecodeProblem(Section);
2695 if (!Err.empty()) {
2696 reportUniqueWarning(Err);
2697 continue;
2698 }
2699 }
2700 for (const RelocationRef &Reloc : Section.relocations()) {
2701 uint64_t Address = Reloc.getOffset();
2702 SmallString<32> RelocName;
2703 SmallString<32> ValueStr;
2704 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2705 continue;
2706 Reloc.getTypeName(RelocName);
2707 if (Error E =
2708 getRelocationValueString(Reloc, SymbolDescription, ValueStr))
2709 reportUniqueWarning(std::move(E));
2710
2711 outs() << format(Fmt.data(), Address) << " "
2712 << left_justify(RelocName, TypePadding) << " " << ValueStr
2713 << "\n";
2714 }
2715 }
2716 }
2717 }
2718
2719 // Returns true if we need to show LMA column when dumping section headers. We
2720 // show it only when the platform is ELF and either we have at least one section
2721 // whose VMA and LMA are different and/or when --show-lma flag is used.
shouldDisplayLMA(const ObjectFile & Obj)2722 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2723 if (!Obj.isELF())
2724 return false;
2725 for (const SectionRef &S : ToolSectionFilter(Obj))
2726 if (S.getAddress() != getELFSectionLMA(S))
2727 return true;
2728 return ShowLMA;
2729 }
2730
getMaxSectionNameWidth(const ObjectFile & Obj)2731 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2732 // Default column width for names is 13 even if no names are that long.
2733 size_t MaxWidth = 13;
2734 for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2735 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2736 MaxWidth = std::max(MaxWidth, Name.size());
2737 }
2738 return MaxWidth;
2739 }
2740
printSectionHeaders(ObjectFile & Obj)2741 void objdump::printSectionHeaders(ObjectFile &Obj) {
2742 if (Obj.isELF() && Obj.sections().empty())
2743 createFakeELFSections(Obj);
2744
2745 size_t NameWidth = getMaxSectionNameWidth(Obj);
2746 size_t AddressWidth = 2 * Obj.getBytesInAddress();
2747 bool HasLMAColumn = shouldDisplayLMA(Obj);
2748 outs() << "\nSections:\n";
2749 if (HasLMAColumn)
2750 outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
2751 << left_justify("VMA", AddressWidth) << " "
2752 << left_justify("LMA", AddressWidth) << " Type\n";
2753 else
2754 outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
2755 << left_justify("VMA", AddressWidth) << " Type\n";
2756
2757 uint64_t Idx;
2758 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2759 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2760 uint64_t VMA = Section.getAddress();
2761 if (shouldAdjustVA(Section))
2762 VMA += AdjustVMA;
2763
2764 uint64_t Size = Section.getSize();
2765
2766 std::string Type = Section.isText() ? "TEXT" : "";
2767 if (Section.isData())
2768 Type += Type.empty() ? "DATA" : ", DATA";
2769 if (Section.isBSS())
2770 Type += Type.empty() ? "BSS" : ", BSS";
2771 if (Section.isDebugSection())
2772 Type += Type.empty() ? "DEBUG" : ", DEBUG";
2773
2774 if (HasLMAColumn)
2775 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2776 Name.str().c_str(), Size)
2777 << format_hex_no_prefix(VMA, AddressWidth) << " "
2778 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2779 << " " << Type << "\n";
2780 else
2781 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2782 Name.str().c_str(), Size)
2783 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2784 }
2785 }
2786
printSectionContents(const ObjectFile * Obj)2787 void objdump::printSectionContents(const ObjectFile *Obj) {
2788 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2789
2790 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2791 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2792 uint64_t BaseAddr = Section.getAddress();
2793 uint64_t Size = Section.getSize();
2794 if (!Size)
2795 continue;
2796
2797 outs() << "Contents of section ";
2798 StringRef SegmentName = getSegmentName(MachO, Section);
2799 if (!SegmentName.empty())
2800 outs() << SegmentName << ",";
2801 outs() << Name << ":\n";
2802 if (Section.isBSS()) {
2803 outs() << format("<skipping contents of bss section at [%04" PRIx64
2804 ", %04" PRIx64 ")>\n",
2805 BaseAddr, BaseAddr + Size);
2806 continue;
2807 }
2808
2809 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2810
2811 // Dump out the content as hex and printable ascii characters.
2812 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2813 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2814 // Dump line of hex.
2815 for (std::size_t I = 0; I < 16; ++I) {
2816 if (I != 0 && I % 4 == 0)
2817 outs() << ' ';
2818 if (Addr + I < End)
2819 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2820 << hexdigit(Contents[Addr + I] & 0xF, true);
2821 else
2822 outs() << " ";
2823 }
2824 // Print ascii.
2825 outs() << " ";
2826 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2827 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2828 outs() << Contents[Addr + I];
2829 else
2830 outs() << ".";
2831 }
2832 outs() << "\n";
2833 }
2834 }
2835 }
2836
printSymbolTable(StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2837 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2838 bool DumpDynamic) {
2839 if (O.isCOFF() && !DumpDynamic) {
2840 outs() << "\nSYMBOL TABLE:\n";
2841 printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2842 return;
2843 }
2844
2845 const StringRef FileName = O.getFileName();
2846
2847 if (!DumpDynamic) {
2848 outs() << "\nSYMBOL TABLE:\n";
2849 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2850 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2851 return;
2852 }
2853
2854 outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2855 if (!O.isELF()) {
2856 reportWarning(
2857 "this operation is not currently supported for this file format",
2858 FileName);
2859 return;
2860 }
2861
2862 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2863 auto Symbols = ELF->getDynamicSymbolIterators();
2864 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2865 ELF->readDynsymVersions();
2866 if (!SymbolVersionsOrErr) {
2867 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2868 SymbolVersionsOrErr = std::vector<VersionEntry>();
2869 (void)!SymbolVersionsOrErr;
2870 }
2871 for (auto &Sym : Symbols)
2872 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2873 ArchitectureName, DumpDynamic);
2874 }
2875
printSymbol(const SymbolRef & Symbol,ArrayRef<VersionEntry> SymbolVersions,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2876 void Dumper::printSymbol(const SymbolRef &Symbol,
2877 ArrayRef<VersionEntry> SymbolVersions,
2878 StringRef FileName, StringRef ArchiveName,
2879 StringRef ArchitectureName, bool DumpDynamic) {
2880 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2881 Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2882 if (!AddrOrErr) {
2883 reportUniqueWarning(AddrOrErr.takeError());
2884 return;
2885 }
2886 uint64_t Address = *AddrOrErr;
2887 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
2888 if (SecI != O.section_end() && shouldAdjustVA(*SecI))
2889 Address += AdjustVMA;
2890 if ((Address < StartAddress) || (Address > StopAddress))
2891 return;
2892 SymbolRef::Type Type =
2893 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2894 uint32_t Flags =
2895 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2896
2897 // Don't ask a Mach-O STAB symbol for its section unless you know that
2898 // STAB symbol's section field refers to a valid section index. Otherwise
2899 // the symbol may error trying to load a section that does not exist.
2900 bool IsSTAB = false;
2901 if (MachO) {
2902 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2903 uint8_t NType =
2904 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2905 : MachO->getSymbolTableEntry(SymDRI).n_type);
2906 if (NType & MachO::N_STAB)
2907 IsSTAB = true;
2908 }
2909 section_iterator Section = IsSTAB
2910 ? O.section_end()
2911 : unwrapOrError(Symbol.getSection(), FileName,
2912 ArchiveName, ArchitectureName);
2913
2914 StringRef Name;
2915 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2916 if (Expected<StringRef> NameOrErr = Section->getName())
2917 Name = *NameOrErr;
2918 else
2919 consumeError(NameOrErr.takeError());
2920
2921 } else {
2922 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2923 ArchitectureName);
2924 }
2925
2926 bool Global = Flags & SymbolRef::SF_Global;
2927 bool Weak = Flags & SymbolRef::SF_Weak;
2928 bool Absolute = Flags & SymbolRef::SF_Absolute;
2929 bool Common = Flags & SymbolRef::SF_Common;
2930 bool Hidden = Flags & SymbolRef::SF_Hidden;
2931
2932 char GlobLoc = ' ';
2933 if ((Section != O.section_end() || Absolute) && !Weak)
2934 GlobLoc = Global ? 'g' : 'l';
2935 char IFunc = ' ';
2936 if (O.isELF()) {
2937 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2938 IFunc = 'i';
2939 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2940 GlobLoc = 'u';
2941 }
2942
2943 char Debug = ' ';
2944 if (DumpDynamic)
2945 Debug = 'D';
2946 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2947 Debug = 'd';
2948
2949 char FileFunc = ' ';
2950 if (Type == SymbolRef::ST_File)
2951 FileFunc = 'f';
2952 else if (Type == SymbolRef::ST_Function)
2953 FileFunc = 'F';
2954 else if (Type == SymbolRef::ST_Data)
2955 FileFunc = 'O';
2956
2957 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2958
2959 outs() << format(Fmt, Address) << " "
2960 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2961 << (Weak ? 'w' : ' ') // Weak?
2962 << ' ' // Constructor. Not supported yet.
2963 << ' ' // Warning. Not supported yet.
2964 << IFunc // Indirect reference to another symbol.
2965 << Debug // Debugging (d) or dynamic (D) symbol.
2966 << FileFunc // Name of function (F), file (f) or object (O).
2967 << ' ';
2968 if (Absolute) {
2969 outs() << "*ABS*";
2970 } else if (Common) {
2971 outs() << "*COM*";
2972 } else if (Section == O.section_end()) {
2973 if (O.isXCOFF()) {
2974 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2975 Symbol.getRawDataRefImpl());
2976 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2977 outs() << "*DEBUG*";
2978 else
2979 outs() << "*UND*";
2980 } else
2981 outs() << "*UND*";
2982 } else {
2983 StringRef SegmentName = getSegmentName(MachO, *Section);
2984 if (!SegmentName.empty())
2985 outs() << SegmentName << ",";
2986 StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2987 outs() << SectionName;
2988 if (O.isXCOFF()) {
2989 std::optional<SymbolRef> SymRef =
2990 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2991 if (SymRef) {
2992
2993 Expected<StringRef> NameOrErr = SymRef->getName();
2994
2995 if (NameOrErr) {
2996 outs() << " (csect:";
2997 std::string SymName =
2998 Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2999
3000 if (SymbolDescription)
3001 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
3002 SymName);
3003
3004 outs() << ' ' << SymName;
3005 outs() << ") ";
3006 } else
3007 reportWarning(toString(NameOrErr.takeError()), FileName);
3008 }
3009 }
3010 }
3011
3012 if (Common)
3013 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
3014 else if (O.isXCOFF())
3015 outs() << '\t'
3016 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
3017 Symbol.getRawDataRefImpl()));
3018 else if (O.isELF())
3019 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
3020 else if (O.isWasm())
3021 outs() << '\t'
3022 << format(Fmt, static_cast<uint64_t>(
3023 cast<WasmObjectFile>(O).getSymbolSize(Symbol)));
3024
3025 if (O.isELF()) {
3026 if (!SymbolVersions.empty()) {
3027 const VersionEntry &Ver =
3028 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
3029 std::string Str;
3030 if (!Ver.Name.empty())
3031 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
3032 outs() << ' ' << left_justify(Str, 12);
3033 }
3034
3035 uint8_t Other = ELFSymbolRef(Symbol).getOther();
3036 switch (Other) {
3037 case ELF::STV_DEFAULT:
3038 break;
3039 case ELF::STV_INTERNAL:
3040 outs() << " .internal";
3041 break;
3042 case ELF::STV_HIDDEN:
3043 outs() << " .hidden";
3044 break;
3045 case ELF::STV_PROTECTED:
3046 outs() << " .protected";
3047 break;
3048 default:
3049 outs() << format(" 0x%02x", Other);
3050 break;
3051 }
3052 } else if (Hidden) {
3053 outs() << " .hidden";
3054 }
3055
3056 std::string SymName = Demangle ? demangle(Name) : Name.str();
3057 if (O.isXCOFF() && SymbolDescription)
3058 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
3059
3060 outs() << ' ' << SymName << '\n';
3061 }
3062
printUnwindInfo(const ObjectFile * O)3063 static void printUnwindInfo(const ObjectFile *O) {
3064 outs() << "Unwind info:\n\n";
3065
3066 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
3067 printCOFFUnwindInfo(Coff);
3068 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
3069 printMachOUnwindInfo(MachO);
3070 else
3071 // TODO: Extract DWARF dump tool to objdump.
3072 WithColor::error(errs(), ToolName)
3073 << "This operation is only currently supported "
3074 "for COFF and MachO object files.\n";
3075 }
3076
3077 /// Dump the raw contents of the __clangast section so the output can be piped
3078 /// into llvm-bcanalyzer.
printRawClangAST(const ObjectFile * Obj)3079 static void printRawClangAST(const ObjectFile *Obj) {
3080 if (outs().is_displayed()) {
3081 WithColor::error(errs(), ToolName)
3082 << "The -raw-clang-ast option will dump the raw binary contents of "
3083 "the clang ast section.\n"
3084 "Please redirect the output to a file or another program such as "
3085 "llvm-bcanalyzer.\n";
3086 return;
3087 }
3088
3089 StringRef ClangASTSectionName("__clangast");
3090 if (Obj->isCOFF()) {
3091 ClangASTSectionName = "clangast";
3092 }
3093
3094 std::optional<object::SectionRef> ClangASTSection;
3095 for (auto Sec : ToolSectionFilter(*Obj)) {
3096 StringRef Name;
3097 if (Expected<StringRef> NameOrErr = Sec.getName())
3098 Name = *NameOrErr;
3099 else
3100 consumeError(NameOrErr.takeError());
3101
3102 if (Name == ClangASTSectionName) {
3103 ClangASTSection = Sec;
3104 break;
3105 }
3106 }
3107 if (!ClangASTSection)
3108 return;
3109
3110 StringRef ClangASTContents =
3111 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
3112 outs().write(ClangASTContents.data(), ClangASTContents.size());
3113 }
3114
printFaultMaps(const ObjectFile * Obj)3115 static void printFaultMaps(const ObjectFile *Obj) {
3116 StringRef FaultMapSectionName;
3117
3118 if (Obj->isELF()) {
3119 FaultMapSectionName = ".llvm_faultmaps";
3120 } else if (Obj->isMachO()) {
3121 FaultMapSectionName = "__llvm_faultmaps";
3122 } else {
3123 WithColor::error(errs(), ToolName)
3124 << "This operation is only currently supported "
3125 "for ELF and Mach-O executable files.\n";
3126 return;
3127 }
3128
3129 std::optional<object::SectionRef> FaultMapSection;
3130
3131 for (auto Sec : ToolSectionFilter(*Obj)) {
3132 StringRef Name;
3133 if (Expected<StringRef> NameOrErr = Sec.getName())
3134 Name = *NameOrErr;
3135 else
3136 consumeError(NameOrErr.takeError());
3137
3138 if (Name == FaultMapSectionName) {
3139 FaultMapSection = Sec;
3140 break;
3141 }
3142 }
3143
3144 outs() << "FaultMap table:\n";
3145
3146 if (!FaultMapSection) {
3147 outs() << "<not found>\n";
3148 return;
3149 }
3150
3151 StringRef FaultMapContents =
3152 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
3153 FaultMapParser FMP(FaultMapContents.bytes_begin(),
3154 FaultMapContents.bytes_end());
3155
3156 outs() << FMP;
3157 }
3158
printPrivateHeaders()3159 void Dumper::printPrivateHeaders() {
3160 reportError(O.getFileName(), "Invalid/Unsupported object file format");
3161 }
3162
printFileHeaders(const ObjectFile * O)3163 static void printFileHeaders(const ObjectFile *O) {
3164 if (!O->isELF() && !O->isCOFF() && !O->isXCOFF())
3165 reportError(O->getFileName(), "Invalid/Unsupported object file format");
3166
3167 Triple::ArchType AT = O->getArch();
3168 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
3169 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
3170
3171 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
3172 outs() << "start address: "
3173 << "0x" << format(Fmt.data(), Address) << "\n";
3174 }
3175
printArchiveChild(StringRef Filename,const Archive::Child & C)3176 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
3177 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
3178 if (!ModeOrErr) {
3179 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
3180 consumeError(ModeOrErr.takeError());
3181 return;
3182 }
3183 sys::fs::perms Mode = ModeOrErr.get();
3184 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
3185 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
3186 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
3187 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
3188 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
3189 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
3190 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
3191 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
3192 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
3193
3194 outs() << " ";
3195
3196 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
3197 unwrapOrError(C.getGID(), Filename),
3198 unwrapOrError(C.getRawSize(), Filename));
3199
3200 StringRef RawLastModified = C.getRawLastModified();
3201 unsigned Seconds;
3202 if (RawLastModified.getAsInteger(10, Seconds))
3203 outs() << "(date: \"" << RawLastModified
3204 << "\" contains non-decimal chars) ";
3205 else {
3206 // Since ctime(3) returns a 26 character string of the form:
3207 // "Sun Sep 16 01:03:52 1973\n\0"
3208 // just print 24 characters.
3209 time_t t = Seconds;
3210 outs() << format("%.24s ", ctime(&t));
3211 }
3212
3213 StringRef Name = "";
3214 Expected<StringRef> NameOrErr = C.getName();
3215 if (!NameOrErr) {
3216 consumeError(NameOrErr.takeError());
3217 Name = unwrapOrError(C.getRawName(), Filename);
3218 } else {
3219 Name = NameOrErr.get();
3220 }
3221 outs() << Name << "\n";
3222 }
3223
3224 // For ELF only now.
shouldWarnForInvalidStartStopAddress(ObjectFile * Obj)3225 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
3226 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
3227 if (Elf->getEType() != ELF::ET_REL)
3228 return true;
3229 }
3230 return false;
3231 }
3232
checkForInvalidStartStopAddress(ObjectFile * Obj,uint64_t Start,uint64_t Stop)3233 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
3234 uint64_t Start, uint64_t Stop) {
3235 if (!shouldWarnForInvalidStartStopAddress(Obj))
3236 return;
3237
3238 for (const SectionRef &Section : Obj->sections())
3239 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
3240 uint64_t BaseAddr = Section.getAddress();
3241 uint64_t Size = Section.getSize();
3242 if ((Start < BaseAddr + Size) && Stop > BaseAddr)
3243 return;
3244 }
3245
3246 if (!HasStartAddressFlag)
3247 reportWarning("no section has address less than 0x" +
3248 Twine::utohexstr(Stop) + " specified by --stop-address",
3249 Obj->getFileName());
3250 else if (!HasStopAddressFlag)
3251 reportWarning("no section has address greater than or equal to 0x" +
3252 Twine::utohexstr(Start) + " specified by --start-address",
3253 Obj->getFileName());
3254 else
3255 reportWarning("no section overlaps the range [0x" +
3256 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
3257 ") specified by --start-address/--stop-address",
3258 Obj->getFileName());
3259 }
3260
dumpObject(ObjectFile * O,const Archive * A=nullptr,const Archive::Child * C=nullptr)3261 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
3262 const Archive::Child *C = nullptr) {
3263 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
3264 if (!DumperOrErr) {
3265 reportError(DumperOrErr.takeError(), O->getFileName(),
3266 A ? A->getFileName() : "");
3267 return;
3268 }
3269 Dumper &D = **DumperOrErr;
3270
3271 // Avoid other output when using a raw option.
3272 if (!RawClangAST) {
3273 outs() << '\n';
3274 if (A)
3275 outs() << A->getFileName() << "(" << O->getFileName() << ")";
3276 else
3277 outs() << O->getFileName();
3278 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
3279 }
3280
3281 if (HasStartAddressFlag || HasStopAddressFlag)
3282 checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
3283
3284 // TODO: Change print* free functions to Dumper member functions to utilitize
3285 // stateful functions like reportUniqueWarning.
3286
3287 // Note: the order here matches GNU objdump for compatability.
3288 StringRef ArchiveName = A ? A->getFileName() : "";
3289 if (ArchiveHeaders && !MachOOpt && C)
3290 printArchiveChild(ArchiveName, *C);
3291 if (FileHeaders)
3292 printFileHeaders(O);
3293 if (PrivateHeaders || FirstPrivateHeader)
3294 D.printPrivateHeaders();
3295 if (SectionHeaders)
3296 printSectionHeaders(*O);
3297 if (SymbolTable)
3298 D.printSymbolTable(ArchiveName);
3299 if (DynamicSymbolTable)
3300 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
3301 /*DumpDynamic=*/true);
3302 if (DwarfDumpType != DIDT_Null) {
3303 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
3304 // Dump the complete DWARF structure.
3305 DIDumpOptions DumpOpts;
3306 DumpOpts.DumpType = DwarfDumpType;
3307 DICtx->dump(outs(), DumpOpts);
3308 }
3309 if (Relocations && !Disassemble)
3310 D.printRelocations();
3311 if (DynamicRelocations)
3312 D.printDynamicRelocations();
3313 if (SectionContents)
3314 printSectionContents(O);
3315 if (Disassemble)
3316 disassembleObject(O, Relocations);
3317 if (UnwindInfo)
3318 printUnwindInfo(O);
3319
3320 // Mach-O specific options:
3321 if (ExportsTrie)
3322 printExportsTrie(O);
3323 if (Rebase)
3324 printRebaseTable(O);
3325 if (Bind)
3326 printBindTable(O);
3327 if (LazyBind)
3328 printLazyBindTable(O);
3329 if (WeakBind)
3330 printWeakBindTable(O);
3331
3332 // Other special sections:
3333 if (RawClangAST)
3334 printRawClangAST(O);
3335 if (FaultMapSection)
3336 printFaultMaps(O);
3337 if (Offloading)
3338 dumpOffloadBinary(*O);
3339 }
3340
dumpObject(const COFFImportFile * I,const Archive * A,const Archive::Child * C=nullptr)3341 static void dumpObject(const COFFImportFile *I, const Archive *A,
3342 const Archive::Child *C = nullptr) {
3343 StringRef ArchiveName = A ? A->getFileName() : "";
3344
3345 // Avoid other output when using a raw option.
3346 if (!RawClangAST)
3347 outs() << '\n'
3348 << ArchiveName << "(" << I->getFileName() << ")"
3349 << ":\tfile format COFF-import-file"
3350 << "\n\n";
3351
3352 if (ArchiveHeaders && !MachOOpt && C)
3353 printArchiveChild(ArchiveName, *C);
3354 if (SymbolTable)
3355 printCOFFSymbolTable(*I);
3356 }
3357
3358 /// Dump each object file in \a a;
dumpArchive(const Archive * A)3359 static void dumpArchive(const Archive *A) {
3360 Error Err = Error::success();
3361 unsigned I = -1;
3362 for (auto &C : A->children(Err)) {
3363 ++I;
3364 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
3365 if (!ChildOrErr) {
3366 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
3367 reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
3368 continue;
3369 }
3370 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
3371 dumpObject(O, A, &C);
3372 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
3373 dumpObject(I, A, &C);
3374 else
3375 reportError(errorCodeToError(object_error::invalid_file_type),
3376 A->getFileName());
3377 }
3378 if (Err)
3379 reportError(std::move(Err), A->getFileName());
3380 }
3381
3382 /// Open file and figure out how to dump it.
dumpInput(StringRef file)3383 static void dumpInput(StringRef file) {
3384 // If we are using the Mach-O specific object file parser, then let it parse
3385 // the file and process the command line options. So the -arch flags can
3386 // be used to select specific slices, etc.
3387 if (MachOOpt) {
3388 parseInputMachO(file);
3389 return;
3390 }
3391
3392 // Attempt to open the binary.
3393 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
3394 Binary &Binary = *OBinary.getBinary();
3395
3396 if (Archive *A = dyn_cast<Archive>(&Binary))
3397 dumpArchive(A);
3398 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
3399 dumpObject(O);
3400 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
3401 parseInputMachO(UB);
3402 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
3403 dumpOffloadSections(*OB);
3404 else
3405 reportError(errorCodeToError(object_error::invalid_file_type), file);
3406 }
3407
3408 template <typename T>
parseIntArg(const llvm::opt::InputArgList & InputArgs,int ID,T & Value)3409 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3410 T &Value) {
3411 if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
3412 StringRef V(A->getValue());
3413 if (!llvm::to_integer(V, Value, 0)) {
3414 reportCmdLineError(A->getSpelling() +
3415 ": expected a non-negative integer, but got '" + V +
3416 "'");
3417 }
3418 }
3419 }
3420
parseBuildIDArg(const opt::Arg * A)3421 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3422 StringRef V(A->getValue());
3423 object::BuildID BID = parseBuildID(V);
3424 if (BID.empty())
3425 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
3426 V + "'");
3427 return BID;
3428 }
3429
invalidArgValue(const opt::Arg * A)3430 void objdump::invalidArgValue(const opt::Arg *A) {
3431 reportCmdLineError("'" + StringRef(A->getValue()) +
3432 "' is not a valid value for '" + A->getSpelling() + "'");
3433 }
3434
3435 static std::vector<std::string>
commaSeparatedValues(const llvm::opt::InputArgList & InputArgs,int ID)3436 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3437 std::vector<std::string> Values;
3438 for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3439 llvm::SmallVector<StringRef, 2> SplitValues;
3440 llvm::SplitString(Value, SplitValues, ",");
3441 for (StringRef SplitValue : SplitValues)
3442 Values.push_back(SplitValue.str());
3443 }
3444 return Values;
3445 }
3446
parseOtoolOptions(const llvm::opt::InputArgList & InputArgs)3447 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3448 MachOOpt = true;
3449 FullLeadingAddr = true;
3450 PrintImmHex = true;
3451
3452 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3453 LinkOptHints = InputArgs.hasArg(OTOOL_C);
3454 if (InputArgs.hasArg(OTOOL_d))
3455 FilterSections.push_back("__DATA,__data");
3456 DylibId = InputArgs.hasArg(OTOOL_D);
3457 UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3458 DataInCode = InputArgs.hasArg(OTOOL_G);
3459 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3460 IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3461 ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3462 PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3463 DylibsUsed = InputArgs.hasArg(OTOOL_L);
3464 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3465 ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3466 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3467 InfoPlist = InputArgs.hasArg(OTOOL_P);
3468 Relocations = InputArgs.hasArg(OTOOL_r);
3469 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3470 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3471 FilterSections.push_back(Filter);
3472 }
3473 if (InputArgs.hasArg(OTOOL_t))
3474 FilterSections.push_back("__TEXT,__text");
3475 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3476 InputArgs.hasArg(OTOOL_o);
3477 SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3478 if (InputArgs.hasArg(OTOOL_x))
3479 FilterSections.push_back(",__text");
3480 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3481
3482 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3483 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3484
3485 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3486 if (InputFilenames.empty())
3487 reportCmdLineError("no input file");
3488
3489 for (const Arg *A : InputArgs) {
3490 const Option &O = A->getOption();
3491 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3492 reportCmdLineWarning(O.getPrefixedName() +
3493 " is obsolete and not implemented");
3494 }
3495 }
3496 }
3497
parseObjdumpOptions(const llvm::opt::InputArgList & InputArgs)3498 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3499 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3500 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3501 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3502 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3503 Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3504 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3505 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3506 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3507 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3508 DisassembleSymbols =
3509 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3510 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3511 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3512 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3513 .Case("frames", DIDT_DebugFrame)
3514 .Default(DIDT_Null);
3515 if (DwarfDumpType == DIDT_Null)
3516 invalidArgValue(A);
3517 }
3518 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3519 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3520 Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3521 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3522 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3523 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3524 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3525 MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3526 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3527 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3528 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3529 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3530 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3531 Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3532 PrintImmHex =
3533 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3534 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3535 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3536 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3537 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3538 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3539 PrintSource = InputArgs.hasArg(OBJDUMP_source);
3540 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3541 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3542 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3543 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3544 SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3545 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3546 PrettyPGOAnalysisMap = InputArgs.hasArg(OBJDUMP_pretty_pgo_analysis_map);
3547 if (PrettyPGOAnalysisMap && !SymbolizeOperands)
3548 reportCmdLineWarning("--symbolize-operands must be enabled for "
3549 "--pretty-pgo-analysis-map to have an effect");
3550 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3551 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3552 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3553 Wide = InputArgs.hasArg(OBJDUMP_wide);
3554 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3555 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3556 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3557 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3558 .Case("ascii", DVASCII)
3559 .Case("unicode", DVUnicode)
3560 .Default(DVInvalid);
3561 if (DbgVariables == DVInvalid)
3562 invalidArgValue(A);
3563 }
3564 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
3565 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
3566 .Case("on", ColorOutput::Enable)
3567 .Case("off", ColorOutput::Disable)
3568 .Case("terminal", ColorOutput::Auto)
3569 .Default(ColorOutput::Invalid);
3570 if (DisassemblyColor == ColorOutput::Invalid)
3571 invalidArgValue(A);
3572 }
3573
3574 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3575
3576 parseMachOOptions(InputArgs);
3577
3578 // Parse -M (--disassembler-options) and deprecated
3579 // --x86-asm-syntax={att,intel}.
3580 //
3581 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3582 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3583 // called too late. For now we have to use the internal cl::opt option.
3584 const char *AsmSyntax = nullptr;
3585 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3586 OBJDUMP_x86_asm_syntax_att,
3587 OBJDUMP_x86_asm_syntax_intel)) {
3588 switch (A->getOption().getID()) {
3589 case OBJDUMP_x86_asm_syntax_att:
3590 AsmSyntax = "--x86-asm-syntax=att";
3591 continue;
3592 case OBJDUMP_x86_asm_syntax_intel:
3593 AsmSyntax = "--x86-asm-syntax=intel";
3594 continue;
3595 }
3596
3597 SmallVector<StringRef, 2> Values;
3598 llvm::SplitString(A->getValue(), Values, ",");
3599 for (StringRef V : Values) {
3600 if (V == "att")
3601 AsmSyntax = "--x86-asm-syntax=att";
3602 else if (V == "intel")
3603 AsmSyntax = "--x86-asm-syntax=intel";
3604 else
3605 DisassemblerOptions.push_back(V.str());
3606 }
3607 }
3608 SmallVector<const char *> Args = {"llvm-objdump"};
3609 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
3610 Args.push_back(A->getValue());
3611 if (AsmSyntax)
3612 Args.push_back(AsmSyntax);
3613 if (Args.size() > 1)
3614 llvm::cl::ParseCommandLineOptions(Args.size(), Args.data());
3615
3616 // Look up any provided build IDs, then append them to the input filenames.
3617 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3618 object::BuildID BuildID = parseBuildIDArg(A);
3619 std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3620 if (!Path) {
3621 reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3622 A->getValue() + "'");
3623 }
3624 InputFilenames.push_back(std::move(*Path));
3625 }
3626
3627 // objdump defaults to a.out if no filenames specified.
3628 if (InputFilenames.empty())
3629 InputFilenames.push_back("a.out");
3630 }
3631
llvm_objdump_main(int argc,char ** argv,const llvm::ToolContext &)3632 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
3633 using namespace llvm;
3634
3635 ToolName = argv[0];
3636 std::unique_ptr<CommonOptTable> T;
3637 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3638
3639 StringRef Stem = sys::path::stem(ToolName);
3640 auto Is = [=](StringRef Tool) {
3641 // We need to recognize the following filenames:
3642 //
3643 // llvm-objdump -> objdump
3644 // llvm-otool-10.exe -> otool
3645 // powerpc64-unknown-freebsd13-objdump -> objdump
3646 auto I = Stem.rfind_insensitive(Tool);
3647 return I != StringRef::npos &&
3648 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3649 };
3650 if (Is("otool")) {
3651 T = std::make_unique<OtoolOptTable>();
3652 Unknown = OTOOL_UNKNOWN;
3653 HelpFlag = OTOOL_help;
3654 HelpHiddenFlag = OTOOL_help_hidden;
3655 VersionFlag = OTOOL_version;
3656 } else {
3657 T = std::make_unique<ObjdumpOptTable>();
3658 Unknown = OBJDUMP_UNKNOWN;
3659 HelpFlag = OBJDUMP_help;
3660 HelpHiddenFlag = OBJDUMP_help_hidden;
3661 VersionFlag = OBJDUMP_version;
3662 }
3663
3664 BumpPtrAllocator A;
3665 StringSaver Saver(A);
3666 opt::InputArgList InputArgs =
3667 T->parseArgs(argc, argv, Unknown, Saver,
3668 [&](StringRef Msg) { reportCmdLineError(Msg); });
3669
3670 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3671 T->printHelp(ToolName);
3672 return 0;
3673 }
3674 if (InputArgs.hasArg(HelpHiddenFlag)) {
3675 T->printHelp(ToolName, /*ShowHidden=*/true);
3676 return 0;
3677 }
3678
3679 // Initialize targets and assembly printers/parsers.
3680 InitializeAllTargetInfos();
3681 InitializeAllTargetMCs();
3682 InitializeAllDisassemblers();
3683
3684 if (InputArgs.hasArg(VersionFlag)) {
3685 cl::PrintVersionMessage();
3686 if (!Is("otool")) {
3687 outs() << '\n';
3688 TargetRegistry::printRegisteredTargetsForVersion(outs());
3689 }
3690 return 0;
3691 }
3692
3693 // Initialize debuginfod.
3694 const bool ShouldUseDebuginfodByDefault =
3695 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3696 std::vector<std::string> DebugFileDirectories =
3697 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3698 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3699 ShouldUseDebuginfodByDefault)) {
3700 HTTPClient::initialize();
3701 BIDFetcher =
3702 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3703 } else {
3704 BIDFetcher =
3705 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3706 }
3707
3708 if (Is("otool"))
3709 parseOtoolOptions(InputArgs);
3710 else
3711 parseObjdumpOptions(InputArgs);
3712
3713 if (StartAddress >= StopAddress)
3714 reportCmdLineError("start address should be less than stop address");
3715
3716 // Removes trailing separators from prefix.
3717 while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3718 Prefix.pop_back();
3719
3720 if (AllHeaders)
3721 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3722 SectionHeaders = SymbolTable = true;
3723
3724 if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3725 !DisassembleSymbols.empty())
3726 Disassemble = true;
3727
3728 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3729 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3730 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3731 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3732 !(MachOOpt &&
3733 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3734 DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3735 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3736 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3737 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3738 T->printHelp(ToolName);
3739 return 2;
3740 }
3741
3742 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3743
3744 llvm::for_each(InputFilenames, dumpInput);
3745
3746 warnOnNoMatchForSections();
3747
3748 return EXIT_SUCCESS;
3749 }
3750