xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFastISel.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file defines the ARM-specific support for the FastISel class. Some
10  // of the target-specific code is generated by tablegen in the file
11  // ARMGenFastISel.inc, which is #included here.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "ARM.h"
16  #include "ARMBaseInstrInfo.h"
17  #include "ARMBaseRegisterInfo.h"
18  #include "ARMCallingConv.h"
19  #include "ARMConstantPoolValue.h"
20  #include "ARMISelLowering.h"
21  #include "ARMMachineFunctionInfo.h"
22  #include "ARMSubtarget.h"
23  #include "MCTargetDesc/ARMAddressingModes.h"
24  #include "MCTargetDesc/ARMBaseInfo.h"
25  #include "Utils/ARMBaseInfo.h"
26  #include "llvm/ADT/APFloat.h"
27  #include "llvm/ADT/APInt.h"
28  #include "llvm/ADT/DenseMap.h"
29  #include "llvm/ADT/SmallVector.h"
30  #include "llvm/CodeGen/CallingConvLower.h"
31  #include "llvm/CodeGen/FastISel.h"
32  #include "llvm/CodeGen/FunctionLoweringInfo.h"
33  #include "llvm/CodeGen/ISDOpcodes.h"
34  #include "llvm/CodeGen/MachineBasicBlock.h"
35  #include "llvm/CodeGen/MachineConstantPool.h"
36  #include "llvm/CodeGen/MachineFrameInfo.h"
37  #include "llvm/CodeGen/MachineFunction.h"
38  #include "llvm/CodeGen/MachineInstr.h"
39  #include "llvm/CodeGen/MachineInstrBuilder.h"
40  #include "llvm/CodeGen/MachineMemOperand.h"
41  #include "llvm/CodeGen/MachineOperand.h"
42  #include "llvm/CodeGen/MachineRegisterInfo.h"
43  #include "llvm/CodeGen/RuntimeLibcallUtil.h"
44  #include "llvm/CodeGen/TargetInstrInfo.h"
45  #include "llvm/CodeGen/TargetLowering.h"
46  #include "llvm/CodeGen/TargetOpcodes.h"
47  #include "llvm/CodeGen/TargetRegisterInfo.h"
48  #include "llvm/CodeGen/ValueTypes.h"
49  #include "llvm/CodeGenTypes/MachineValueType.h"
50  #include "llvm/IR/Argument.h"
51  #include "llvm/IR/Attributes.h"
52  #include "llvm/IR/CallingConv.h"
53  #include "llvm/IR/Constant.h"
54  #include "llvm/IR/Constants.h"
55  #include "llvm/IR/DataLayout.h"
56  #include "llvm/IR/DerivedTypes.h"
57  #include "llvm/IR/Function.h"
58  #include "llvm/IR/GetElementPtrTypeIterator.h"
59  #include "llvm/IR/GlobalValue.h"
60  #include "llvm/IR/GlobalVariable.h"
61  #include "llvm/IR/InstrTypes.h"
62  #include "llvm/IR/Instruction.h"
63  #include "llvm/IR/Instructions.h"
64  #include "llvm/IR/IntrinsicInst.h"
65  #include "llvm/IR/Intrinsics.h"
66  #include "llvm/IR/Module.h"
67  #include "llvm/IR/Operator.h"
68  #include "llvm/IR/Type.h"
69  #include "llvm/IR/User.h"
70  #include "llvm/IR/Value.h"
71  #include "llvm/MC/MCInstrDesc.h"
72  #include "llvm/MC/MCRegisterInfo.h"
73  #include "llvm/Support/Casting.h"
74  #include "llvm/Support/Compiler.h"
75  #include "llvm/Support/ErrorHandling.h"
76  #include "llvm/Support/MathExtras.h"
77  #include "llvm/Target/TargetMachine.h"
78  #include "llvm/Target/TargetOptions.h"
79  #include <cassert>
80  #include <cstdint>
81  #include <utility>
82  
83  using namespace llvm;
84  
85  namespace {
86  
87    // All possible address modes, plus some.
88    struct Address {
89      enum {
90        RegBase,
91        FrameIndexBase
92      } BaseType = RegBase;
93  
94      union {
95        unsigned Reg;
96        int FI;
97      } Base;
98  
99      int Offset = 0;
100  
101      // Innocuous defaults for our address.
Address__anone34823300111::Address102      Address() {
103        Base.Reg = 0;
104      }
105    };
106  
107  class ARMFastISel final : public FastISel {
108    /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109    /// make the right decision when generating code for different targets.
110    const ARMSubtarget *Subtarget;
111    Module &M;
112    const TargetMachine &TM;
113    const TargetInstrInfo &TII;
114    const TargetLowering &TLI;
115    ARMFunctionInfo *AFI;
116  
117    // Convenience variables to avoid some queries.
118    bool isThumb2;
119    LLVMContext *Context;
120  
121    public:
ARMFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)122      explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123                           const TargetLibraryInfo *libInfo)
124          : FastISel(funcInfo, libInfo),
125            Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()),
126            M(const_cast<Module &>(*funcInfo.Fn->getParent())),
127            TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
128            TLI(*Subtarget->getTargetLowering()) {
129        AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
130        isThumb2 = AFI->isThumbFunction();
131        Context = &funcInfo.Fn->getContext();
132      }
133  
134    private:
135      // Code from FastISel.cpp.
136  
137      unsigned fastEmitInst_r(unsigned MachineInstOpcode,
138                              const TargetRegisterClass *RC, unsigned Op0);
139      unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
140                               const TargetRegisterClass *RC,
141                               unsigned Op0, unsigned Op1);
142      unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
143                               const TargetRegisterClass *RC,
144                               unsigned Op0, uint64_t Imm);
145      unsigned fastEmitInst_i(unsigned MachineInstOpcode,
146                              const TargetRegisterClass *RC,
147                              uint64_t Imm);
148  
149      // Backend specific FastISel code.
150  
151      bool fastSelectInstruction(const Instruction *I) override;
152      unsigned fastMaterializeConstant(const Constant *C) override;
153      unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
154      bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
155                               const LoadInst *LI) override;
156      bool fastLowerArguments() override;
157  
158  #include "ARMGenFastISel.inc"
159  
160      // Instruction selection routines.
161  
162      bool SelectLoad(const Instruction *I);
163      bool SelectStore(const Instruction *I);
164      bool SelectBranch(const Instruction *I);
165      bool SelectIndirectBr(const Instruction *I);
166      bool SelectCmp(const Instruction *I);
167      bool SelectFPExt(const Instruction *I);
168      bool SelectFPTrunc(const Instruction *I);
169      bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
170      bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
171      bool SelectIToFP(const Instruction *I, bool isSigned);
172      bool SelectFPToI(const Instruction *I, bool isSigned);
173      bool SelectDiv(const Instruction *I, bool isSigned);
174      bool SelectRem(const Instruction *I, bool isSigned);
175      bool SelectCall(const Instruction *I, const char *IntrMemName);
176      bool SelectIntrinsicCall(const IntrinsicInst &I);
177      bool SelectSelect(const Instruction *I);
178      bool SelectRet(const Instruction *I);
179      bool SelectTrunc(const Instruction *I);
180      bool SelectIntExt(const Instruction *I);
181      bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
182  
183      // Utility routines.
184  
185      bool isPositionIndependent() const;
186      bool isTypeLegal(Type *Ty, MVT &VT);
187      bool isLoadTypeLegal(Type *Ty, MVT &VT);
188      bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
189                      bool isZExt);
190      bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
191                       MaybeAlign Alignment = std::nullopt, bool isZExt = true,
192                       bool allocReg = true);
193      bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
194                        MaybeAlign Alignment = std::nullopt);
195      bool ARMComputeAddress(const Value *Obj, Address &Addr);
196      void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
197      bool ARMIsMemCpySmall(uint64_t Len);
198      bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
199                                 MaybeAlign Alignment);
200      unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
201      unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
202      unsigned ARMMaterializeInt(const Constant *C, MVT VT);
203      unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
204      unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
205      unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
206      unsigned ARMSelectCallOp(bool UseReg);
207      unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
208  
getTargetLowering()209      const TargetLowering *getTargetLowering() { return &TLI; }
210  
211      // Call handling routines.
212  
213      CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
214                                    bool Return,
215                                    bool isVarArg);
216      bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
217                           SmallVectorImpl<Register> &ArgRegs,
218                           SmallVectorImpl<MVT> &ArgVTs,
219                           SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
220                           SmallVectorImpl<Register> &RegArgs,
221                           CallingConv::ID CC,
222                           unsigned &NumBytes,
223                           bool isVarArg);
224      unsigned getLibcallReg(const Twine &Name);
225      bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
226                      const Instruction *I, CallingConv::ID CC,
227                      unsigned &NumBytes, bool isVarArg);
228      bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
229  
230      // OptionalDef handling routines.
231  
232      bool isARMNEONPred(const MachineInstr *MI);
233      bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
234      const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
235      void AddLoadStoreOperands(MVT VT, Address &Addr,
236                                const MachineInstrBuilder &MIB,
237                                MachineMemOperand::Flags Flags, bool useAM3);
238  };
239  
240  } // end anonymous namespace
241  
242  // DefinesOptionalPredicate - This is different from DefinesPredicate in that
243  // we don't care about implicit defs here, just places we'll need to add a
244  // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)245  bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
246    if (!MI->hasOptionalDef())
247      return false;
248  
249    // Look to see if our OptionalDef is defining CPSR or CCR.
250    for (const MachineOperand &MO : MI->operands()) {
251      if (!MO.isReg() || !MO.isDef()) continue;
252      if (MO.getReg() == ARM::CPSR)
253        *CPSR = true;
254    }
255    return true;
256  }
257  
isARMNEONPred(const MachineInstr * MI)258  bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
259    const MCInstrDesc &MCID = MI->getDesc();
260  
261    // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
262    if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
263         AFI->isThumb2Function())
264      return MI->isPredicable();
265  
266    for (const MCOperandInfo &opInfo : MCID.operands())
267      if (opInfo.isPredicate())
268        return true;
269  
270    return false;
271  }
272  
273  // If the machine is predicable go ahead and add the predicate operands, if
274  // it needs default CC operands add those.
275  // TODO: If we want to support thumb1 then we'll need to deal with optional
276  // CPSR defs that need to be added before the remaining operands. See s_cc_out
277  // for descriptions why.
278  const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)279  ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
280    MachineInstr *MI = &*MIB;
281  
282    // Do we use a predicate? or...
283    // Are we NEON in ARM mode and have a predicate operand? If so, I know
284    // we're not predicable but add it anyways.
285    if (isARMNEONPred(MI))
286      MIB.add(predOps(ARMCC::AL));
287  
288    // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
289    // defines CPSR. All other OptionalDefines in ARM are the CCR register.
290    bool CPSR = false;
291    if (DefinesOptionalPredicate(MI, &CPSR))
292      MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
293    return MIB;
294  }
295  
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0)296  unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
297                                       const TargetRegisterClass *RC,
298                                       unsigned Op0) {
299    Register ResultReg = createResultReg(RC);
300    const MCInstrDesc &II = TII.get(MachineInstOpcode);
301  
302    // Make sure the input operand is sufficiently constrained to be legal
303    // for this instruction.
304    Op0 = constrainOperandRegClass(II, Op0, 1);
305    if (II.getNumDefs() >= 1) {
306      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
307                              ResultReg).addReg(Op0));
308    } else {
309      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
310                     .addReg(Op0));
311      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
312                              TII.get(TargetOpcode::COPY), ResultReg)
313                          .addReg(II.implicit_defs()[0]));
314    }
315    return ResultReg;
316  }
317  
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)318  unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
319                                        const TargetRegisterClass *RC,
320                                        unsigned Op0, unsigned Op1) {
321    Register ResultReg = createResultReg(RC);
322    const MCInstrDesc &II = TII.get(MachineInstOpcode);
323  
324    // Make sure the input operands are sufficiently constrained to be legal
325    // for this instruction.
326    Op0 = constrainOperandRegClass(II, Op0, 1);
327    Op1 = constrainOperandRegClass(II, Op1, 2);
328  
329    if (II.getNumDefs() >= 1) {
330      AddOptionalDefs(
331          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
332              .addReg(Op0)
333              .addReg(Op1));
334    } else {
335      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
336                     .addReg(Op0)
337                     .addReg(Op1));
338      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
339                              TII.get(TargetOpcode::COPY), ResultReg)
340                          .addReg(II.implicit_defs()[0]));
341    }
342    return ResultReg;
343  }
344  
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm)345  unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
346                                        const TargetRegisterClass *RC,
347                                        unsigned Op0, uint64_t Imm) {
348    Register ResultReg = createResultReg(RC);
349    const MCInstrDesc &II = TII.get(MachineInstOpcode);
350  
351    // Make sure the input operand is sufficiently constrained to be legal
352    // for this instruction.
353    Op0 = constrainOperandRegClass(II, Op0, 1);
354    if (II.getNumDefs() >= 1) {
355      AddOptionalDefs(
356          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
357              .addReg(Op0)
358              .addImm(Imm));
359    } else {
360      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
361                     .addReg(Op0)
362                     .addImm(Imm));
363      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
364                              TII.get(TargetOpcode::COPY), ResultReg)
365                          .addReg(II.implicit_defs()[0]));
366    }
367    return ResultReg;
368  }
369  
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)370  unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
371                                       const TargetRegisterClass *RC,
372                                       uint64_t Imm) {
373    Register ResultReg = createResultReg(RC);
374    const MCInstrDesc &II = TII.get(MachineInstOpcode);
375  
376    if (II.getNumDefs() >= 1) {
377      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
378                              ResultReg).addImm(Imm));
379    } else {
380      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
381                     .addImm(Imm));
382      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
383                              TII.get(TargetOpcode::COPY), ResultReg)
384                          .addReg(II.implicit_defs()[0]));
385    }
386    return ResultReg;
387  }
388  
389  // TODO: Don't worry about 64-bit now, but when this is fixed remove the
390  // checks from the various callers.
ARMMoveToFPReg(MVT VT,unsigned SrcReg)391  unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
392    if (VT == MVT::f64) return 0;
393  
394    Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
396                            TII.get(ARM::VMOVSR), MoveReg)
397                    .addReg(SrcReg));
398    return MoveReg;
399  }
400  
ARMMoveToIntReg(MVT VT,unsigned SrcReg)401  unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
402    if (VT == MVT::i64) return 0;
403  
404    Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
405    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
406                            TII.get(ARM::VMOVRS), MoveReg)
407                    .addReg(SrcReg));
408    return MoveReg;
409  }
410  
411  // For double width floating point we need to materialize two constants
412  // (the high and the low) into integer registers then use a move to get
413  // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,MVT VT)414  unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
415    const APFloat Val = CFP->getValueAPF();
416    bool is64bit = VT == MVT::f64;
417  
418    // This checks to see if we can use VFP3 instructions to materialize
419    // a constant, otherwise we have to go through the constant pool.
420    if (TLI.isFPImmLegal(Val, VT)) {
421      int Imm;
422      unsigned Opc;
423      if (is64bit) {
424        Imm = ARM_AM::getFP64Imm(Val);
425        Opc = ARM::FCONSTD;
426      } else {
427        Imm = ARM_AM::getFP32Imm(Val);
428        Opc = ARM::FCONSTS;
429      }
430      Register DestReg = createResultReg(TLI.getRegClassFor(VT));
431      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
432                              TII.get(Opc), DestReg).addImm(Imm));
433      return DestReg;
434    }
435  
436    // Require VFP2 for loading fp constants.
437    if (!Subtarget->hasVFP2Base()) return false;
438  
439    // MachineConstantPool wants an explicit alignment.
440    Align Alignment = DL.getPrefTypeAlign(CFP->getType());
441    unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
442    Register DestReg = createResultReg(TLI.getRegClassFor(VT));
443    unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
444  
445    // The extra reg is for addrmode5.
446    AddOptionalDefs(
447        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
448            .addConstantPoolIndex(Idx)
449            .addReg(0));
450    return DestReg;
451  }
452  
ARMMaterializeInt(const Constant * C,MVT VT)453  unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
454    if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
455      return 0;
456  
457    // If we can do this in a single instruction without a constant pool entry
458    // do so now.
459    const ConstantInt *CI = cast<ConstantInt>(C);
460    if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
461      unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
462      const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
463        &ARM::GPRRegClass;
464      Register ImmReg = createResultReg(RC);
465      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
466                              TII.get(Opc), ImmReg)
467                      .addImm(CI->getZExtValue()));
468      return ImmReg;
469    }
470  
471    // Use MVN to emit negative constants.
472    if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
473      unsigned Imm = (unsigned)~(CI->getSExtValue());
474      bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
475        (ARM_AM::getSOImmVal(Imm) != -1);
476      if (UseImm) {
477        unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
478        const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
479                                                   &ARM::GPRRegClass;
480        Register ImmReg = createResultReg(RC);
481        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
482                                TII.get(Opc), ImmReg)
483                        .addImm(Imm));
484        return ImmReg;
485      }
486    }
487  
488    unsigned ResultReg = 0;
489    if (Subtarget->useMovt())
490      ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
491  
492    if (ResultReg)
493      return ResultReg;
494  
495    // Load from constant pool.  For now 32-bit only.
496    if (VT != MVT::i32)
497      return 0;
498  
499    // MachineConstantPool wants an explicit alignment.
500    Align Alignment = DL.getPrefTypeAlign(C->getType());
501    unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
502    ResultReg = createResultReg(TLI.getRegClassFor(VT));
503    if (isThumb2)
504      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
505                              TII.get(ARM::t2LDRpci), ResultReg)
506                        .addConstantPoolIndex(Idx));
507    else {
508      // The extra immediate is for addrmode2.
509      ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
510      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
511                              TII.get(ARM::LDRcp), ResultReg)
512                        .addConstantPoolIndex(Idx)
513                        .addImm(0));
514    }
515    return ResultReg;
516  }
517  
isPositionIndependent() const518  bool ARMFastISel::isPositionIndependent() const {
519    return TLI.isPositionIndependent();
520  }
521  
ARMMaterializeGV(const GlobalValue * GV,MVT VT)522  unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
523    // For now 32-bit only.
524    if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
525  
526    // ROPI/RWPI not currently supported.
527    if (Subtarget->isROPI() || Subtarget->isRWPI())
528      return 0;
529  
530    bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
531    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
532                                             : &ARM::GPRRegClass;
533    Register DestReg = createResultReg(RC);
534  
535    // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
536    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
537    bool IsThreadLocal = GVar && GVar->isThreadLocal();
538    if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
539  
540    bool IsPositionIndependent = isPositionIndependent();
541    // Use movw+movt when possible, it avoids constant pool entries.
542    // Non-darwin targets only support static movt relocations in FastISel.
543    if (Subtarget->useMovt() &&
544        (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
545      unsigned Opc;
546      unsigned char TF = 0;
547      if (Subtarget->isTargetMachO())
548        TF = ARMII::MO_NONLAZY;
549  
550      if (IsPositionIndependent)
551        Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
552      else
553        Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
554      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
555                              TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
556    } else {
557      // MachineConstantPool wants an explicit alignment.
558      Align Alignment = DL.getPrefTypeAlign(GV->getType());
559  
560      if (Subtarget->isTargetELF() && IsPositionIndependent)
561        return ARMLowerPICELF(GV, VT);
562  
563      // Grab index.
564      unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
565      unsigned Id = AFI->createPICLabelUId();
566      ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
567                                                                  ARMCP::CPValue,
568                                                                  PCAdj);
569      unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
570  
571      // Load value.
572      MachineInstrBuilder MIB;
573      if (isThumb2) {
574        unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
575        MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
576                      DestReg).addConstantPoolIndex(Idx);
577        if (IsPositionIndependent)
578          MIB.addImm(Id);
579        AddOptionalDefs(MIB);
580      } else {
581        // The extra immediate is for addrmode2.
582        DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
583        MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
584                      TII.get(ARM::LDRcp), DestReg)
585                  .addConstantPoolIndex(Idx)
586                  .addImm(0);
587        AddOptionalDefs(MIB);
588  
589        if (IsPositionIndependent) {
590          unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
591          Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
592  
593          MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
594                                            MIMD, TII.get(Opc), NewDestReg)
595                                    .addReg(DestReg)
596                                    .addImm(Id);
597          AddOptionalDefs(MIB);
598          return NewDestReg;
599        }
600      }
601    }
602  
603    if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
604        (Subtarget->isTargetMachO() && IsIndirect)) {
605      MachineInstrBuilder MIB;
606      Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
607      if (isThumb2)
608        MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
609                      TII.get(ARM::t2LDRi12), NewDestReg)
610              .addReg(DestReg)
611              .addImm(0);
612      else
613        MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
614                      TII.get(ARM::LDRi12), NewDestReg)
615                  .addReg(DestReg)
616                  .addImm(0);
617      DestReg = NewDestReg;
618      AddOptionalDefs(MIB);
619    }
620  
621    return DestReg;
622  }
623  
fastMaterializeConstant(const Constant * C)624  unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
625    EVT CEVT = TLI.getValueType(DL, C->getType(), true);
626  
627    // Only handle simple types.
628    if (!CEVT.isSimple()) return 0;
629    MVT VT = CEVT.getSimpleVT();
630  
631    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
632      return ARMMaterializeFP(CFP, VT);
633    else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
634      return ARMMaterializeGV(GV, VT);
635    else if (isa<ConstantInt>(C))
636      return ARMMaterializeInt(C, VT);
637  
638    return 0;
639  }
640  
641  // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
642  
fastMaterializeAlloca(const AllocaInst * AI)643  unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
644    // Don't handle dynamic allocas.
645    if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
646  
647    MVT VT;
648    if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
649  
650    DenseMap<const AllocaInst*, int>::iterator SI =
651      FuncInfo.StaticAllocaMap.find(AI);
652  
653    // This will get lowered later into the correct offsets and registers
654    // via rewriteXFrameIndex.
655    if (SI != FuncInfo.StaticAllocaMap.end()) {
656      unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
657      const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
658      Register ResultReg = createResultReg(RC);
659      ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
660  
661      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
662                              TII.get(Opc), ResultReg)
663                              .addFrameIndex(SI->second)
664                              .addImm(0));
665      return ResultReg;
666    }
667  
668    return 0;
669  }
670  
isTypeLegal(Type * Ty,MVT & VT)671  bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
672    EVT evt = TLI.getValueType(DL, Ty, true);
673  
674    // Only handle simple types.
675    if (evt == MVT::Other || !evt.isSimple()) return false;
676    VT = evt.getSimpleVT();
677  
678    // Handle all legal types, i.e. a register that will directly hold this
679    // value.
680    return TLI.isTypeLegal(VT);
681  }
682  
isLoadTypeLegal(Type * Ty,MVT & VT)683  bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
684    if (isTypeLegal(Ty, VT)) return true;
685  
686    // If this is a type than can be sign or zero-extended to a basic operation
687    // go ahead and accept it now.
688    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
689      return true;
690  
691    return false;
692  }
693  
694  // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)695  bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
696    // Some boilerplate from the X86 FastISel.
697    const User *U = nullptr;
698    unsigned Opcode = Instruction::UserOp1;
699    if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
700      // Don't walk into other basic blocks unless the object is an alloca from
701      // another block, otherwise it may not have a virtual register assigned.
702      if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
703          FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
704        Opcode = I->getOpcode();
705        U = I;
706      }
707    } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
708      Opcode = C->getOpcode();
709      U = C;
710    }
711  
712    if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
713      if (Ty->getAddressSpace() > 255)
714        // Fast instruction selection doesn't support the special
715        // address spaces.
716        return false;
717  
718    switch (Opcode) {
719      default:
720      break;
721      case Instruction::BitCast:
722        // Look through bitcasts.
723        return ARMComputeAddress(U->getOperand(0), Addr);
724      case Instruction::IntToPtr:
725        // Look past no-op inttoptrs.
726        if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
727            TLI.getPointerTy(DL))
728          return ARMComputeAddress(U->getOperand(0), Addr);
729        break;
730      case Instruction::PtrToInt:
731        // Look past no-op ptrtoints.
732        if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
733          return ARMComputeAddress(U->getOperand(0), Addr);
734        break;
735      case Instruction::GetElementPtr: {
736        Address SavedAddr = Addr;
737        int TmpOffset = Addr.Offset;
738  
739        // Iterate through the GEP folding the constants into offsets where
740        // we can.
741        gep_type_iterator GTI = gep_type_begin(U);
742        for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
743             i != e; ++i, ++GTI) {
744          const Value *Op = *i;
745          if (StructType *STy = GTI.getStructTypeOrNull()) {
746            const StructLayout *SL = DL.getStructLayout(STy);
747            unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
748            TmpOffset += SL->getElementOffset(Idx);
749          } else {
750            uint64_t S = GTI.getSequentialElementStride(DL);
751            while (true) {
752              if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
753                // Constant-offset addressing.
754                TmpOffset += CI->getSExtValue() * S;
755                break;
756              }
757              if (canFoldAddIntoGEP(U, Op)) {
758                // A compatible add with a constant operand. Fold the constant.
759                ConstantInt *CI =
760                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
761                TmpOffset += CI->getSExtValue() * S;
762                // Iterate on the other operand.
763                Op = cast<AddOperator>(Op)->getOperand(0);
764                continue;
765              }
766              // Unsupported
767              goto unsupported_gep;
768            }
769          }
770        }
771  
772        // Try to grab the base operand now.
773        Addr.Offset = TmpOffset;
774        if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
775  
776        // We failed, restore everything and try the other options.
777        Addr = SavedAddr;
778  
779        unsupported_gep:
780        break;
781      }
782      case Instruction::Alloca: {
783        const AllocaInst *AI = cast<AllocaInst>(Obj);
784        DenseMap<const AllocaInst*, int>::iterator SI =
785          FuncInfo.StaticAllocaMap.find(AI);
786        if (SI != FuncInfo.StaticAllocaMap.end()) {
787          Addr.BaseType = Address::FrameIndexBase;
788          Addr.Base.FI = SI->second;
789          return true;
790        }
791        break;
792      }
793    }
794  
795    // Try to get this in a register if nothing else has worked.
796    if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
797    return Addr.Base.Reg != 0;
798  }
799  
ARMSimplifyAddress(Address & Addr,MVT VT,bool useAM3)800  void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
801    bool needsLowering = false;
802    switch (VT.SimpleTy) {
803      default: llvm_unreachable("Unhandled load/store type!");
804      case MVT::i1:
805      case MVT::i8:
806      case MVT::i16:
807      case MVT::i32:
808        if (!useAM3) {
809          // Integer loads/stores handle 12-bit offsets.
810          needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
811          // Handle negative offsets.
812          if (needsLowering && isThumb2)
813            needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
814                              Addr.Offset > -256);
815        } else {
816          // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
817          needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
818        }
819        break;
820      case MVT::f32:
821      case MVT::f64:
822        // Floating point operands handle 8-bit offsets.
823        needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
824        break;
825    }
826  
827    // If this is a stack pointer and the offset needs to be simplified then
828    // put the alloca address into a register, set the base type back to
829    // register and continue. This should almost never happen.
830    if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
831      const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
832                                               : &ARM::GPRRegClass;
833      Register ResultReg = createResultReg(RC);
834      unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
835      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
836                              TII.get(Opc), ResultReg)
837                              .addFrameIndex(Addr.Base.FI)
838                              .addImm(0));
839      Addr.Base.Reg = ResultReg;
840      Addr.BaseType = Address::RegBase;
841    }
842  
843    // Since the offset is too large for the load/store instruction
844    // get the reg+offset into a register.
845    if (needsLowering) {
846      Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
847                                   Addr.Offset, MVT::i32);
848      Addr.Offset = 0;
849    }
850  }
851  
AddLoadStoreOperands(MVT VT,Address & Addr,const MachineInstrBuilder & MIB,MachineMemOperand::Flags Flags,bool useAM3)852  void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
853                                         const MachineInstrBuilder &MIB,
854                                         MachineMemOperand::Flags Flags,
855                                         bool useAM3) {
856    // addrmode5 output depends on the selection dag addressing dividing the
857    // offset by 4 that it then later multiplies. Do this here as well.
858    if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
859      Addr.Offset /= 4;
860  
861    // Frame base works a bit differently. Handle it separately.
862    if (Addr.BaseType == Address::FrameIndexBase) {
863      int FI = Addr.Base.FI;
864      int Offset = Addr.Offset;
865      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
866          MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
867          MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
868      // Now add the rest of the operands.
869      MIB.addFrameIndex(FI);
870  
871      // ARM halfword load/stores and signed byte loads need an additional
872      // operand.
873      if (useAM3) {
874        int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
875        MIB.addReg(0);
876        MIB.addImm(Imm);
877      } else {
878        MIB.addImm(Addr.Offset);
879      }
880      MIB.addMemOperand(MMO);
881    } else {
882      // Now add the rest of the operands.
883      MIB.addReg(Addr.Base.Reg);
884  
885      // ARM halfword load/stores and signed byte loads need an additional
886      // operand.
887      if (useAM3) {
888        int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
889        MIB.addReg(0);
890        MIB.addImm(Imm);
891      } else {
892        MIB.addImm(Addr.Offset);
893      }
894    }
895    AddOptionalDefs(MIB);
896  }
897  
ARMEmitLoad(MVT VT,Register & ResultReg,Address & Addr,MaybeAlign Alignment,bool isZExt,bool allocReg)898  bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
899                                MaybeAlign Alignment, bool isZExt,
900                                bool allocReg) {
901    unsigned Opc;
902    bool useAM3 = false;
903    bool needVMOV = false;
904    const TargetRegisterClass *RC;
905    switch (VT.SimpleTy) {
906      // This is mostly going to be Neon/vector support.
907      default: return false;
908      case MVT::i1:
909      case MVT::i8:
910        if (isThumb2) {
911          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
912            Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
913          else
914            Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
915        } else {
916          if (isZExt) {
917            Opc = ARM::LDRBi12;
918          } else {
919            Opc = ARM::LDRSB;
920            useAM3 = true;
921          }
922        }
923        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
924        break;
925      case MVT::i16:
926        if (Alignment && *Alignment < Align(2) &&
927            !Subtarget->allowsUnalignedMem())
928          return false;
929  
930        if (isThumb2) {
931          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932            Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
933          else
934            Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
935        } else {
936          Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
937          useAM3 = true;
938        }
939        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
940        break;
941      case MVT::i32:
942        if (Alignment && *Alignment < Align(4) &&
943            !Subtarget->allowsUnalignedMem())
944          return false;
945  
946        if (isThumb2) {
947          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948            Opc = ARM::t2LDRi8;
949          else
950            Opc = ARM::t2LDRi12;
951        } else {
952          Opc = ARM::LDRi12;
953        }
954        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
955        break;
956      case MVT::f32:
957        if (!Subtarget->hasVFP2Base()) return false;
958        // Unaligned loads need special handling. Floats require word-alignment.
959        if (Alignment && *Alignment < Align(4)) {
960          needVMOV = true;
961          VT = MVT::i32;
962          Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
963          RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
964        } else {
965          Opc = ARM::VLDRS;
966          RC = TLI.getRegClassFor(VT);
967        }
968        break;
969      case MVT::f64:
970        // Can load and store double precision even without FeatureFP64
971        if (!Subtarget->hasVFP2Base()) return false;
972        // FIXME: Unaligned loads need special handling.  Doublewords require
973        // word-alignment.
974        if (Alignment && *Alignment < Align(4))
975          return false;
976  
977        Opc = ARM::VLDRD;
978        RC = TLI.getRegClassFor(VT);
979        break;
980    }
981    // Simplify this down to something we can handle.
982    ARMSimplifyAddress(Addr, VT, useAM3);
983  
984    // Create the base instruction, then add the operands.
985    if (allocReg)
986      ResultReg = createResultReg(RC);
987    assert(ResultReg > 255 && "Expected an allocated virtual register.");
988    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
989                                      TII.get(Opc), ResultReg);
990    AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
991  
992    // If we had an unaligned load of a float we've converted it to an regular
993    // load.  Now we must move from the GRP to the FP register.
994    if (needVMOV) {
995      Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
996      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
997                              TII.get(ARM::VMOVSR), MoveReg)
998                      .addReg(ResultReg));
999      ResultReg = MoveReg;
1000    }
1001    return true;
1002  }
1003  
SelectLoad(const Instruction * I)1004  bool ARMFastISel::SelectLoad(const Instruction *I) {
1005    // Atomic loads need special handling.
1006    if (cast<LoadInst>(I)->isAtomic())
1007      return false;
1008  
1009    const Value *SV = I->getOperand(0);
1010    if (TLI.supportSwiftError()) {
1011      // Swifterror values can come from either a function parameter with
1012      // swifterror attribute or an alloca with swifterror attribute.
1013      if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1014        if (Arg->hasSwiftErrorAttr())
1015          return false;
1016      }
1017  
1018      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1019        if (Alloca->isSwiftError())
1020          return false;
1021      }
1022    }
1023  
1024    // Verify we have a legal type before going any further.
1025    MVT VT;
1026    if (!isLoadTypeLegal(I->getType(), VT))
1027      return false;
1028  
1029    // See if we can handle this address.
1030    Address Addr;
1031    if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1032  
1033    Register ResultReg;
1034    if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign()))
1035      return false;
1036    updateValueMap(I, ResultReg);
1037    return true;
1038  }
1039  
ARMEmitStore(MVT VT,unsigned SrcReg,Address & Addr,MaybeAlign Alignment)1040  bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1041                                 MaybeAlign Alignment) {
1042    unsigned StrOpc;
1043    bool useAM3 = false;
1044    switch (VT.SimpleTy) {
1045      // This is mostly going to be Neon/vector support.
1046      default: return false;
1047      case MVT::i1: {
1048        Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1049                                                : &ARM::GPRRegClass);
1050        unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1051        SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1052        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1053                                TII.get(Opc), Res)
1054                        .addReg(SrcReg).addImm(1));
1055        SrcReg = Res;
1056        [[fallthrough]];
1057      }
1058      case MVT::i8:
1059        if (isThumb2) {
1060          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1061            StrOpc = ARM::t2STRBi8;
1062          else
1063            StrOpc = ARM::t2STRBi12;
1064        } else {
1065          StrOpc = ARM::STRBi12;
1066        }
1067        break;
1068      case MVT::i16:
1069        if (Alignment && *Alignment < Align(2) &&
1070            !Subtarget->allowsUnalignedMem())
1071          return false;
1072  
1073        if (isThumb2) {
1074          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1075            StrOpc = ARM::t2STRHi8;
1076          else
1077            StrOpc = ARM::t2STRHi12;
1078        } else {
1079          StrOpc = ARM::STRH;
1080          useAM3 = true;
1081        }
1082        break;
1083      case MVT::i32:
1084        if (Alignment && *Alignment < Align(4) &&
1085            !Subtarget->allowsUnalignedMem())
1086          return false;
1087  
1088        if (isThumb2) {
1089          if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1090            StrOpc = ARM::t2STRi8;
1091          else
1092            StrOpc = ARM::t2STRi12;
1093        } else {
1094          StrOpc = ARM::STRi12;
1095        }
1096        break;
1097      case MVT::f32:
1098        if (!Subtarget->hasVFP2Base()) return false;
1099        // Unaligned stores need special handling. Floats require word-alignment.
1100        if (Alignment && *Alignment < Align(4)) {
1101          Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1102          AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1103                                  TII.get(ARM::VMOVRS), MoveReg)
1104                          .addReg(SrcReg));
1105          SrcReg = MoveReg;
1106          VT = MVT::i32;
1107          StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1108        } else {
1109          StrOpc = ARM::VSTRS;
1110        }
1111        break;
1112      case MVT::f64:
1113        // Can load and store double precision even without FeatureFP64
1114        if (!Subtarget->hasVFP2Base()) return false;
1115        // FIXME: Unaligned stores need special handling.  Doublewords require
1116        // word-alignment.
1117        if (Alignment && *Alignment < Align(4))
1118          return false;
1119  
1120        StrOpc = ARM::VSTRD;
1121        break;
1122    }
1123    // Simplify this down to something we can handle.
1124    ARMSimplifyAddress(Addr, VT, useAM3);
1125  
1126    // Create the base instruction, then add the operands.
1127    SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1128    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1129                                      TII.get(StrOpc))
1130                              .addReg(SrcReg);
1131    AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1132    return true;
1133  }
1134  
SelectStore(const Instruction * I)1135  bool ARMFastISel::SelectStore(const Instruction *I) {
1136    Value *Op0 = I->getOperand(0);
1137    unsigned SrcReg = 0;
1138  
1139    // Atomic stores need special handling.
1140    if (cast<StoreInst>(I)->isAtomic())
1141      return false;
1142  
1143    const Value *PtrV = I->getOperand(1);
1144    if (TLI.supportSwiftError()) {
1145      // Swifterror values can come from either a function parameter with
1146      // swifterror attribute or an alloca with swifterror attribute.
1147      if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1148        if (Arg->hasSwiftErrorAttr())
1149          return false;
1150      }
1151  
1152      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1153        if (Alloca->isSwiftError())
1154          return false;
1155      }
1156    }
1157  
1158    // Verify we have a legal type before going any further.
1159    MVT VT;
1160    if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1161      return false;
1162  
1163    // Get the value to be stored into a register.
1164    SrcReg = getRegForValue(Op0);
1165    if (SrcReg == 0) return false;
1166  
1167    // See if we can handle this address.
1168    Address Addr;
1169    if (!ARMComputeAddress(I->getOperand(1), Addr))
1170      return false;
1171  
1172    if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign()))
1173      return false;
1174    return true;
1175  }
1176  
getComparePred(CmpInst::Predicate Pred)1177  static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1178    switch (Pred) {
1179      // Needs two compares...
1180      case CmpInst::FCMP_ONE:
1181      case CmpInst::FCMP_UEQ:
1182      default:
1183        // AL is our "false" for now. The other two need more compares.
1184        return ARMCC::AL;
1185      case CmpInst::ICMP_EQ:
1186      case CmpInst::FCMP_OEQ:
1187        return ARMCC::EQ;
1188      case CmpInst::ICMP_SGT:
1189      case CmpInst::FCMP_OGT:
1190        return ARMCC::GT;
1191      case CmpInst::ICMP_SGE:
1192      case CmpInst::FCMP_OGE:
1193        return ARMCC::GE;
1194      case CmpInst::ICMP_UGT:
1195      case CmpInst::FCMP_UGT:
1196        return ARMCC::HI;
1197      case CmpInst::FCMP_OLT:
1198        return ARMCC::MI;
1199      case CmpInst::ICMP_ULE:
1200      case CmpInst::FCMP_OLE:
1201        return ARMCC::LS;
1202      case CmpInst::FCMP_ORD:
1203        return ARMCC::VC;
1204      case CmpInst::FCMP_UNO:
1205        return ARMCC::VS;
1206      case CmpInst::FCMP_UGE:
1207        return ARMCC::PL;
1208      case CmpInst::ICMP_SLT:
1209      case CmpInst::FCMP_ULT:
1210        return ARMCC::LT;
1211      case CmpInst::ICMP_SLE:
1212      case CmpInst::FCMP_ULE:
1213        return ARMCC::LE;
1214      case CmpInst::FCMP_UNE:
1215      case CmpInst::ICMP_NE:
1216        return ARMCC::NE;
1217      case CmpInst::ICMP_UGE:
1218        return ARMCC::HS;
1219      case CmpInst::ICMP_ULT:
1220        return ARMCC::LO;
1221    }
1222  }
1223  
SelectBranch(const Instruction * I)1224  bool ARMFastISel::SelectBranch(const Instruction *I) {
1225    const BranchInst *BI = cast<BranchInst>(I);
1226    MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1227    MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1228  
1229    // Simple branch support.
1230  
1231    // If we can, avoid recomputing the compare - redoing it could lead to wonky
1232    // behavior.
1233    if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1234      if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1235        // Get the compare predicate.
1236        // Try to take advantage of fallthrough opportunities.
1237        CmpInst::Predicate Predicate = CI->getPredicate();
1238        if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1239          std::swap(TBB, FBB);
1240          Predicate = CmpInst::getInversePredicate(Predicate);
1241        }
1242  
1243        ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1244  
1245        // We may not handle every CC for now.
1246        if (ARMPred == ARMCC::AL) return false;
1247  
1248        // Emit the compare.
1249        if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1250          return false;
1251  
1252        unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1253        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1254        .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1255        finishCondBranch(BI->getParent(), TBB, FBB);
1256        return true;
1257      }
1258    } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1259      MVT SourceVT;
1260      if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1261          (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1262        unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1263        Register OpReg = getRegForValue(TI->getOperand(0));
1264        OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1265        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1266                                TII.get(TstOpc))
1267                        .addReg(OpReg).addImm(1));
1268  
1269        unsigned CCMode = ARMCC::NE;
1270        if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1271          std::swap(TBB, FBB);
1272          CCMode = ARMCC::EQ;
1273        }
1274  
1275        unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1276        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1277        .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1278  
1279        finishCondBranch(BI->getParent(), TBB, FBB);
1280        return true;
1281      }
1282    } else if (const ConstantInt *CI =
1283               dyn_cast<ConstantInt>(BI->getCondition())) {
1284      uint64_t Imm = CI->getZExtValue();
1285      MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1286      fastEmitBranch(Target, MIMD.getDL());
1287      return true;
1288    }
1289  
1290    Register CmpReg = getRegForValue(BI->getCondition());
1291    if (CmpReg == 0) return false;
1292  
1293    // We've been divorced from our compare!  Our block was split, and
1294    // now our compare lives in a predecessor block.  We musn't
1295    // re-compare here, as the children of the compare aren't guaranteed
1296    // live across the block boundary (we *could* check for this).
1297    // Regardless, the compare has been done in the predecessor block,
1298    // and it left a value for us in a virtual register.  Ergo, we test
1299    // the one-bit value left in the virtual register.
1300    unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1301    CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1302    AddOptionalDefs(
1303        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1304            .addReg(CmpReg)
1305            .addImm(1));
1306  
1307    unsigned CCMode = ARMCC::NE;
1308    if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1309      std::swap(TBB, FBB);
1310      CCMode = ARMCC::EQ;
1311    }
1312  
1313    unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1314    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1315                    .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1316    finishCondBranch(BI->getParent(), TBB, FBB);
1317    return true;
1318  }
1319  
SelectIndirectBr(const Instruction * I)1320  bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1321    Register AddrReg = getRegForValue(I->getOperand(0));
1322    if (AddrReg == 0) return false;
1323  
1324    unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1325    assert(isThumb2 || Subtarget->hasV4TOps());
1326  
1327    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1328                            TII.get(Opc)).addReg(AddrReg));
1329  
1330    const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1331    for (const BasicBlock *SuccBB : IB->successors())
1332      FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1333  
1334    return true;
1335  }
1336  
ARMEmitCmp(const Value * Src1Value,const Value * Src2Value,bool isZExt)1337  bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1338                               bool isZExt) {
1339    Type *Ty = Src1Value->getType();
1340    EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1341    if (!SrcEVT.isSimple()) return false;
1342    MVT SrcVT = SrcEVT.getSimpleVT();
1343  
1344    if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1345      return false;
1346  
1347    if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1348      return false;
1349  
1350    // Check to see if the 2nd operand is a constant that we can encode directly
1351    // in the compare.
1352    int Imm = 0;
1353    bool UseImm = false;
1354    bool isNegativeImm = false;
1355    // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1356    // Thus, Src1Value may be a ConstantInt, but we're missing it.
1357    if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1358      if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1359          SrcVT == MVT::i1) {
1360        const APInt &CIVal = ConstInt->getValue();
1361        Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1362        // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1363        // then a cmn, because there is no way to represent 2147483648 as a
1364        // signed 32-bit int.
1365        if (Imm < 0 && Imm != (int)0x80000000) {
1366          isNegativeImm = true;
1367          Imm = -Imm;
1368        }
1369        UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1370          (ARM_AM::getSOImmVal(Imm) != -1);
1371      }
1372    } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1373      if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1374        if (ConstFP->isZero() && !ConstFP->isNegative())
1375          UseImm = true;
1376    }
1377  
1378    unsigned CmpOpc;
1379    bool isICmp = true;
1380    bool needsExt = false;
1381    switch (SrcVT.SimpleTy) {
1382      default: return false;
1383      // TODO: Verify compares.
1384      case MVT::f32:
1385        isICmp = false;
1386        CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1387        break;
1388      case MVT::f64:
1389        isICmp = false;
1390        CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1391        break;
1392      case MVT::i1:
1393      case MVT::i8:
1394      case MVT::i16:
1395        needsExt = true;
1396        [[fallthrough]];
1397      case MVT::i32:
1398        if (isThumb2) {
1399          if (!UseImm)
1400            CmpOpc = ARM::t2CMPrr;
1401          else
1402            CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1403        } else {
1404          if (!UseImm)
1405            CmpOpc = ARM::CMPrr;
1406          else
1407            CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1408        }
1409        break;
1410    }
1411  
1412    Register SrcReg1 = getRegForValue(Src1Value);
1413    if (SrcReg1 == 0) return false;
1414  
1415    unsigned SrcReg2 = 0;
1416    if (!UseImm) {
1417      SrcReg2 = getRegForValue(Src2Value);
1418      if (SrcReg2 == 0) return false;
1419    }
1420  
1421    // We have i1, i8, or i16, we need to either zero extend or sign extend.
1422    if (needsExt) {
1423      SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1424      if (SrcReg1 == 0) return false;
1425      if (!UseImm) {
1426        SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1427        if (SrcReg2 == 0) return false;
1428      }
1429    }
1430  
1431    const MCInstrDesc &II = TII.get(CmpOpc);
1432    SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1433    if (!UseImm) {
1434      SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1435      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1436                      .addReg(SrcReg1).addReg(SrcReg2));
1437    } else {
1438      MachineInstrBuilder MIB;
1439      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1440        .addReg(SrcReg1);
1441  
1442      // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1443      if (isICmp)
1444        MIB.addImm(Imm);
1445      AddOptionalDefs(MIB);
1446    }
1447  
1448    // For floating point we need to move the result to a comparison register
1449    // that we can then use for branches.
1450    if (Ty->isFloatTy() || Ty->isDoubleTy())
1451      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1452                              TII.get(ARM::FMSTAT)));
1453    return true;
1454  }
1455  
SelectCmp(const Instruction * I)1456  bool ARMFastISel::SelectCmp(const Instruction *I) {
1457    const CmpInst *CI = cast<CmpInst>(I);
1458  
1459    // Get the compare predicate.
1460    ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1461  
1462    // We may not handle every CC for now.
1463    if (ARMPred == ARMCC::AL) return false;
1464  
1465    // Emit the compare.
1466    if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1467      return false;
1468  
1469    // Now set a register based on the comparison. Explicitly set the predicates
1470    // here.
1471    unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1472    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1473                                             : &ARM::GPRRegClass;
1474    Register DestReg = createResultReg(RC);
1475    Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1476    unsigned ZeroReg = fastMaterializeConstant(Zero);
1477    // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1478    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg)
1479            .addReg(ZeroReg).addImm(1)
1480            .addImm(ARMPred).addReg(ARM::CPSR);
1481  
1482    updateValueMap(I, DestReg);
1483    return true;
1484  }
1485  
SelectFPExt(const Instruction * I)1486  bool ARMFastISel::SelectFPExt(const Instruction *I) {
1487    // Make sure we have VFP and that we're extending float to double.
1488    if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1489  
1490    Value *V = I->getOperand(0);
1491    if (!I->getType()->isDoubleTy() ||
1492        !V->getType()->isFloatTy()) return false;
1493  
1494    Register Op = getRegForValue(V);
1495    if (Op == 0) return false;
1496  
1497    Register Result = createResultReg(&ARM::DPRRegClass);
1498    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1499                            TII.get(ARM::VCVTDS), Result)
1500                    .addReg(Op));
1501    updateValueMap(I, Result);
1502    return true;
1503  }
1504  
SelectFPTrunc(const Instruction * I)1505  bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1506    // Make sure we have VFP and that we're truncating double to float.
1507    if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1508  
1509    Value *V = I->getOperand(0);
1510    if (!(I->getType()->isFloatTy() &&
1511          V->getType()->isDoubleTy())) return false;
1512  
1513    Register Op = getRegForValue(V);
1514    if (Op == 0) return false;
1515  
1516    Register Result = createResultReg(&ARM::SPRRegClass);
1517    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1518                            TII.get(ARM::VCVTSD), Result)
1519                    .addReg(Op));
1520    updateValueMap(I, Result);
1521    return true;
1522  }
1523  
SelectIToFP(const Instruction * I,bool isSigned)1524  bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1525    // Make sure we have VFP.
1526    if (!Subtarget->hasVFP2Base()) return false;
1527  
1528    MVT DstVT;
1529    Type *Ty = I->getType();
1530    if (!isTypeLegal(Ty, DstVT))
1531      return false;
1532  
1533    Value *Src = I->getOperand(0);
1534    EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1535    if (!SrcEVT.isSimple())
1536      return false;
1537    MVT SrcVT = SrcEVT.getSimpleVT();
1538    if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1539      return false;
1540  
1541    Register SrcReg = getRegForValue(Src);
1542    if (SrcReg == 0) return false;
1543  
1544    // Handle sign-extension.
1545    if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1546      SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1547                                         /*isZExt*/!isSigned);
1548      if (SrcReg == 0) return false;
1549    }
1550  
1551    // The conversion routine works on fp-reg to fp-reg and the operand above
1552    // was an integer, move it to the fp registers if possible.
1553    unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1554    if (FP == 0) return false;
1555  
1556    unsigned Opc;
1557    if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1558    else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1559      Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1560    else return false;
1561  
1562    Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1563    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1564                            TII.get(Opc), ResultReg).addReg(FP));
1565    updateValueMap(I, ResultReg);
1566    return true;
1567  }
1568  
SelectFPToI(const Instruction * I,bool isSigned)1569  bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1570    // Make sure we have VFP.
1571    if (!Subtarget->hasVFP2Base()) return false;
1572  
1573    MVT DstVT;
1574    Type *RetTy = I->getType();
1575    if (!isTypeLegal(RetTy, DstVT))
1576      return false;
1577  
1578    Register Op = getRegForValue(I->getOperand(0));
1579    if (Op == 0) return false;
1580  
1581    unsigned Opc;
1582    Type *OpTy = I->getOperand(0)->getType();
1583    if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1584    else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1585      Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1586    else return false;
1587  
1588    // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1589    Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1590    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1591                            TII.get(Opc), ResultReg).addReg(Op));
1592  
1593    // This result needs to be in an integer register, but the conversion only
1594    // takes place in fp-regs.
1595    unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1596    if (IntReg == 0) return false;
1597  
1598    updateValueMap(I, IntReg);
1599    return true;
1600  }
1601  
SelectSelect(const Instruction * I)1602  bool ARMFastISel::SelectSelect(const Instruction *I) {
1603    MVT VT;
1604    if (!isTypeLegal(I->getType(), VT))
1605      return false;
1606  
1607    // Things need to be register sized for register moves.
1608    if (VT != MVT::i32) return false;
1609  
1610    Register CondReg = getRegForValue(I->getOperand(0));
1611    if (CondReg == 0) return false;
1612    Register Op1Reg = getRegForValue(I->getOperand(1));
1613    if (Op1Reg == 0) return false;
1614  
1615    // Check to see if we can use an immediate in the conditional move.
1616    int Imm = 0;
1617    bool UseImm = false;
1618    bool isNegativeImm = false;
1619    if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1620      assert(VT == MVT::i32 && "Expecting an i32.");
1621      Imm = (int)ConstInt->getValue().getZExtValue();
1622      if (Imm < 0) {
1623        isNegativeImm = true;
1624        Imm = ~Imm;
1625      }
1626      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1627        (ARM_AM::getSOImmVal(Imm) != -1);
1628    }
1629  
1630    unsigned Op2Reg = 0;
1631    if (!UseImm) {
1632      Op2Reg = getRegForValue(I->getOperand(2));
1633      if (Op2Reg == 0) return false;
1634    }
1635  
1636    unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1637    CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1638    AddOptionalDefs(
1639        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1640            .addReg(CondReg)
1641            .addImm(1));
1642  
1643    unsigned MovCCOpc;
1644    const TargetRegisterClass *RC;
1645    if (!UseImm) {
1646      RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1647      MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1648    } else {
1649      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1650      if (!isNegativeImm)
1651        MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1652      else
1653        MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1654    }
1655    Register ResultReg = createResultReg(RC);
1656    if (!UseImm) {
1657      Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1658      Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1659      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1660              ResultReg)
1661          .addReg(Op2Reg)
1662          .addReg(Op1Reg)
1663          .addImm(ARMCC::NE)
1664          .addReg(ARM::CPSR);
1665    } else {
1666      Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1667      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1668              ResultReg)
1669          .addReg(Op1Reg)
1670          .addImm(Imm)
1671          .addImm(ARMCC::EQ)
1672          .addReg(ARM::CPSR);
1673    }
1674    updateValueMap(I, ResultReg);
1675    return true;
1676  }
1677  
SelectDiv(const Instruction * I,bool isSigned)1678  bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1679    MVT VT;
1680    Type *Ty = I->getType();
1681    if (!isTypeLegal(Ty, VT))
1682      return false;
1683  
1684    // If we have integer div support we should have selected this automagically.
1685    // In case we have a real miss go ahead and return false and we'll pick
1686    // it up later.
1687    if (Subtarget->hasDivideInThumbMode())
1688      return false;
1689  
1690    // Otherwise emit a libcall.
1691    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1692    if (VT == MVT::i8)
1693      LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1694    else if (VT == MVT::i16)
1695      LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1696    else if (VT == MVT::i32)
1697      LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1698    else if (VT == MVT::i64)
1699      LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1700    else if (VT == MVT::i128)
1701      LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1702    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1703  
1704    return ARMEmitLibcall(I, LC);
1705  }
1706  
SelectRem(const Instruction * I,bool isSigned)1707  bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1708    MVT VT;
1709    Type *Ty = I->getType();
1710    if (!isTypeLegal(Ty, VT))
1711      return false;
1712  
1713    // Many ABIs do not provide a libcall for standalone remainder, so we need to
1714    // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1715    // multi-reg returns, we'll have to bail out.
1716    if (!TLI.hasStandaloneRem(VT)) {
1717      return false;
1718    }
1719  
1720    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1721    if (VT == MVT::i8)
1722      LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1723    else if (VT == MVT::i16)
1724      LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1725    else if (VT == MVT::i32)
1726      LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1727    else if (VT == MVT::i64)
1728      LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1729    else if (VT == MVT::i128)
1730      LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1731    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1732  
1733    return ARMEmitLibcall(I, LC);
1734  }
1735  
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1736  bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1737    EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1738  
1739    // We can get here in the case when we have a binary operation on a non-legal
1740    // type and the target independent selector doesn't know how to handle it.
1741    if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1742      return false;
1743  
1744    unsigned Opc;
1745    switch (ISDOpcode) {
1746      default: return false;
1747      case ISD::ADD:
1748        Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1749        break;
1750      case ISD::OR:
1751        Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1752        break;
1753      case ISD::SUB:
1754        Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1755        break;
1756    }
1757  
1758    Register SrcReg1 = getRegForValue(I->getOperand(0));
1759    if (SrcReg1 == 0) return false;
1760  
1761    // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1762    // in the instruction, rather then materializing the value in a register.
1763    Register SrcReg2 = getRegForValue(I->getOperand(1));
1764    if (SrcReg2 == 0) return false;
1765  
1766    Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1767    SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1768    SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1769    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1770                            TII.get(Opc), ResultReg)
1771                    .addReg(SrcReg1).addReg(SrcReg2));
1772    updateValueMap(I, ResultReg);
1773    return true;
1774  }
1775  
SelectBinaryFPOp(const Instruction * I,unsigned ISDOpcode)1776  bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1777    EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1778    if (!FPVT.isSimple()) return false;
1779    MVT VT = FPVT.getSimpleVT();
1780  
1781    // FIXME: Support vector types where possible.
1782    if (VT.isVector())
1783      return false;
1784  
1785    // We can get here in the case when we want to use NEON for our fp
1786    // operations, but can't figure out how to. Just use the vfp instructions
1787    // if we have them.
1788    // FIXME: It'd be nice to use NEON instructions.
1789    Type *Ty = I->getType();
1790    if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1791      return false;
1792    if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1793      return false;
1794  
1795    unsigned Opc;
1796    bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1797    switch (ISDOpcode) {
1798      default: return false;
1799      case ISD::FADD:
1800        Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1801        break;
1802      case ISD::FSUB:
1803        Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1804        break;
1805      case ISD::FMUL:
1806        Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1807        break;
1808    }
1809    Register Op1 = getRegForValue(I->getOperand(0));
1810    if (Op1 == 0) return false;
1811  
1812    Register Op2 = getRegForValue(I->getOperand(1));
1813    if (Op2 == 0) return false;
1814  
1815    Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1816    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1817                            TII.get(Opc), ResultReg)
1818                    .addReg(Op1).addReg(Op2));
1819    updateValueMap(I, ResultReg);
1820    return true;
1821  }
1822  
1823  // Call Handling Code
1824  
1825  // This is largely taken directly from CCAssignFnForNode
1826  // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return,bool isVarArg)1827  CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1828                                             bool Return,
1829                                             bool isVarArg) {
1830    switch (CC) {
1831    default:
1832      report_fatal_error("Unsupported calling convention");
1833    case CallingConv::Fast:
1834      if (Subtarget->hasVFP2Base() && !isVarArg) {
1835        if (!Subtarget->isAAPCS_ABI())
1836          return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1837        // For AAPCS ABI targets, just use VFP variant of the calling convention.
1838        return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1839      }
1840      [[fallthrough]];
1841    case CallingConv::C:
1842    case CallingConv::CXX_FAST_TLS:
1843      // Use target triple & subtarget features to do actual dispatch.
1844      if (Subtarget->isAAPCS_ABI()) {
1845        if (Subtarget->hasFPRegs() &&
1846            TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1847          return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1848        else
1849          return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1850      } else {
1851        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1852      }
1853    case CallingConv::ARM_AAPCS_VFP:
1854    case CallingConv::Swift:
1855    case CallingConv::SwiftTail:
1856      if (!isVarArg)
1857        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1858      // Fall through to soft float variant, variadic functions don't
1859      // use hard floating point ABI.
1860      [[fallthrough]];
1861    case CallingConv::ARM_AAPCS:
1862      return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1863    case CallingConv::ARM_APCS:
1864      return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1865    case CallingConv::GHC:
1866      if (Return)
1867        report_fatal_error("Can't return in GHC call convention");
1868      else
1869        return CC_ARM_APCS_GHC;
1870    case CallingConv::CFGuard_Check:
1871      return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1872    }
1873  }
1874  
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<Register> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<Register> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)1875  bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1876                                    SmallVectorImpl<Register> &ArgRegs,
1877                                    SmallVectorImpl<MVT> &ArgVTs,
1878                                    SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1879                                    SmallVectorImpl<Register> &RegArgs,
1880                                    CallingConv::ID CC,
1881                                    unsigned &NumBytes,
1882                                    bool isVarArg) {
1883    SmallVector<CCValAssign, 16> ArgLocs;
1884    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1885    CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1886                               CCAssignFnForCall(CC, false, isVarArg));
1887  
1888    // Check that we can handle all of the arguments. If we can't, then bail out
1889    // now before we add code to the MBB.
1890    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1891      CCValAssign &VA = ArgLocs[i];
1892      MVT ArgVT = ArgVTs[VA.getValNo()];
1893  
1894      // We don't handle NEON/vector parameters yet.
1895      if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1896        return false;
1897  
1898      // Now copy/store arg to correct locations.
1899      if (VA.isRegLoc() && !VA.needsCustom()) {
1900        continue;
1901      } else if (VA.needsCustom()) {
1902        // TODO: We need custom lowering for vector (v2f64) args.
1903        if (VA.getLocVT() != MVT::f64 ||
1904            // TODO: Only handle register args for now.
1905            !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1906          return false;
1907      } else {
1908        switch (ArgVT.SimpleTy) {
1909        default:
1910          return false;
1911        case MVT::i1:
1912        case MVT::i8:
1913        case MVT::i16:
1914        case MVT::i32:
1915          break;
1916        case MVT::f32:
1917          if (!Subtarget->hasVFP2Base())
1918            return false;
1919          break;
1920        case MVT::f64:
1921          if (!Subtarget->hasVFP2Base())
1922            return false;
1923          break;
1924        }
1925      }
1926    }
1927  
1928    // At the point, we are able to handle the call's arguments in fast isel.
1929  
1930    // Get a count of how many bytes are to be pushed on the stack.
1931    NumBytes = CCInfo.getStackSize();
1932  
1933    // Issue CALLSEQ_START
1934    unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1935    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1936                            TII.get(AdjStackDown))
1937                    .addImm(NumBytes).addImm(0));
1938  
1939    // Process the args.
1940    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1941      CCValAssign &VA = ArgLocs[i];
1942      const Value *ArgVal = Args[VA.getValNo()];
1943      Register Arg = ArgRegs[VA.getValNo()];
1944      MVT ArgVT = ArgVTs[VA.getValNo()];
1945  
1946      assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1947             "We don't handle NEON/vector parameters yet.");
1948  
1949      // Handle arg promotion, etc.
1950      switch (VA.getLocInfo()) {
1951        case CCValAssign::Full: break;
1952        case CCValAssign::SExt: {
1953          MVT DestVT = VA.getLocVT();
1954          Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1955          assert(Arg != 0 && "Failed to emit a sext");
1956          ArgVT = DestVT;
1957          break;
1958        }
1959        case CCValAssign::AExt:
1960        // Intentional fall-through.  Handle AExt and ZExt.
1961        case CCValAssign::ZExt: {
1962          MVT DestVT = VA.getLocVT();
1963          Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1964          assert(Arg != 0 && "Failed to emit a zext");
1965          ArgVT = DestVT;
1966          break;
1967        }
1968        case CCValAssign::BCvt: {
1969          unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1970          assert(BC != 0 && "Failed to emit a bitcast!");
1971          Arg = BC;
1972          ArgVT = VA.getLocVT();
1973          break;
1974        }
1975        default: llvm_unreachable("Unknown arg promotion!");
1976      }
1977  
1978      // Now copy/store arg to correct locations.
1979      if (VA.isRegLoc() && !VA.needsCustom()) {
1980        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1981                TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1982        RegArgs.push_back(VA.getLocReg());
1983      } else if (VA.needsCustom()) {
1984        // TODO: We need custom lowering for vector (v2f64) args.
1985        assert(VA.getLocVT() == MVT::f64 &&
1986               "Custom lowering for v2f64 args not available");
1987  
1988        // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1989        CCValAssign &NextVA = ArgLocs[++i];
1990  
1991        assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1992               "We only handle register args!");
1993  
1994        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1995                                TII.get(ARM::VMOVRRD), VA.getLocReg())
1996                        .addReg(NextVA.getLocReg(), RegState::Define)
1997                        .addReg(Arg));
1998        RegArgs.push_back(VA.getLocReg());
1999        RegArgs.push_back(NextVA.getLocReg());
2000      } else {
2001        assert(VA.isMemLoc());
2002        // Need to store on the stack.
2003  
2004        // Don't emit stores for undef values.
2005        if (isa<UndefValue>(ArgVal))
2006          continue;
2007  
2008        Address Addr;
2009        Addr.BaseType = Address::RegBase;
2010        Addr.Base.Reg = ARM::SP;
2011        Addr.Offset = VA.getLocMemOffset();
2012  
2013        bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2014        assert(EmitRet && "Could not emit a store for argument!");
2015      }
2016    }
2017  
2018    return true;
2019  }
2020  
FinishCall(MVT RetVT,SmallVectorImpl<Register> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)2021  bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2022                               const Instruction *I, CallingConv::ID CC,
2023                               unsigned &NumBytes, bool isVarArg) {
2024    // Issue CALLSEQ_END
2025    unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2026    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2027                            TII.get(AdjStackUp))
2028                    .addImm(NumBytes).addImm(-1ULL));
2029  
2030    // Now the return value.
2031    if (RetVT != MVT::isVoid) {
2032      SmallVector<CCValAssign, 16> RVLocs;
2033      CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2034      CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2035  
2036      // Copy all of the result registers out of their specified physreg.
2037      if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2038        // For this move we copy into two registers and then move into the
2039        // double fp reg we want.
2040        MVT DestVT = RVLocs[0].getValVT();
2041        const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2042        Register ResultReg = createResultReg(DstRC);
2043        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2044                                TII.get(ARM::VMOVDRR), ResultReg)
2045                        .addReg(RVLocs[0].getLocReg())
2046                        .addReg(RVLocs[1].getLocReg()));
2047  
2048        UsedRegs.push_back(RVLocs[0].getLocReg());
2049        UsedRegs.push_back(RVLocs[1].getLocReg());
2050  
2051        // Finally update the result.
2052        updateValueMap(I, ResultReg);
2053      } else {
2054        assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2055        MVT CopyVT = RVLocs[0].getValVT();
2056  
2057        // Special handling for extended integers.
2058        if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2059          CopyVT = MVT::i32;
2060  
2061        const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2062  
2063        Register ResultReg = createResultReg(DstRC);
2064        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2065                TII.get(TargetOpcode::COPY),
2066                ResultReg).addReg(RVLocs[0].getLocReg());
2067        UsedRegs.push_back(RVLocs[0].getLocReg());
2068  
2069        // Finally update the result.
2070        updateValueMap(I, ResultReg);
2071      }
2072    }
2073  
2074    return true;
2075  }
2076  
SelectRet(const Instruction * I)2077  bool ARMFastISel::SelectRet(const Instruction *I) {
2078    const ReturnInst *Ret = cast<ReturnInst>(I);
2079    const Function &F = *I->getParent()->getParent();
2080    const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2081  
2082    if (!FuncInfo.CanLowerReturn)
2083      return false;
2084  
2085    if (TLI.supportSwiftError() &&
2086        F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2087      return false;
2088  
2089    if (TLI.supportSplitCSR(FuncInfo.MF))
2090      return false;
2091  
2092    // Build a list of return value registers.
2093    SmallVector<unsigned, 4> RetRegs;
2094  
2095    CallingConv::ID CC = F.getCallingConv();
2096    if (Ret->getNumOperands() > 0) {
2097      SmallVector<ISD::OutputArg, 4> Outs;
2098      GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2099  
2100      // Analyze operands of the call, assigning locations to each operand.
2101      SmallVector<CCValAssign, 16> ValLocs;
2102      CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2103      CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2104                                                   F.isVarArg()));
2105  
2106      const Value *RV = Ret->getOperand(0);
2107      Register Reg = getRegForValue(RV);
2108      if (Reg == 0)
2109        return false;
2110  
2111      // Only handle a single return value for now.
2112      if (ValLocs.size() != 1)
2113        return false;
2114  
2115      CCValAssign &VA = ValLocs[0];
2116  
2117      // Don't bother handling odd stuff for now.
2118      if (VA.getLocInfo() != CCValAssign::Full)
2119        return false;
2120      // Only handle register returns for now.
2121      if (!VA.isRegLoc())
2122        return false;
2123  
2124      unsigned SrcReg = Reg + VA.getValNo();
2125      EVT RVEVT = TLI.getValueType(DL, RV->getType());
2126      if (!RVEVT.isSimple()) return false;
2127      MVT RVVT = RVEVT.getSimpleVT();
2128      MVT DestVT = VA.getValVT();
2129      // Special handling for extended integers.
2130      if (RVVT != DestVT) {
2131        if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2132          return false;
2133  
2134        assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2135  
2136        // Perform extension if flagged as either zext or sext.  Otherwise, do
2137        // nothing.
2138        if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2139          SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2140          if (SrcReg == 0) return false;
2141        }
2142      }
2143  
2144      // Make the copy.
2145      Register DstReg = VA.getLocReg();
2146      const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2147      // Avoid a cross-class copy. This is very unlikely.
2148      if (!SrcRC->contains(DstReg))
2149        return false;
2150      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2151              TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2152  
2153      // Add register to return instruction.
2154      RetRegs.push_back(VA.getLocReg());
2155    }
2156  
2157    unsigned RetOpc;
2158    if (IsCmseNSEntry)
2159      if (isThumb2)
2160        RetOpc = ARM::tBXNS_RET;
2161      else
2162        llvm_unreachable("CMSE not valid for non-Thumb targets");
2163    else
2164      RetOpc = Subtarget->getReturnOpcode();
2165  
2166    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2167                                      TII.get(RetOpc));
2168    AddOptionalDefs(MIB);
2169    for (unsigned R : RetRegs)
2170      MIB.addReg(R, RegState::Implicit);
2171    return true;
2172  }
2173  
ARMSelectCallOp(bool UseReg)2174  unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2175    if (UseReg)
2176      return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2177    else
2178      return isThumb2 ? ARM::tBL : ARM::BL;
2179  }
2180  
getLibcallReg(const Twine & Name)2181  unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2182    // Manually compute the global's type to avoid building it when unnecessary.
2183    Type *GVTy = PointerType::get(*Context, /*AS=*/0);
2184    EVT LCREVT = TLI.getValueType(DL, GVTy);
2185    if (!LCREVT.isSimple()) return 0;
2186  
2187    GlobalValue *GV = M.getNamedGlobal(Name.str());
2188    if (!GV)
2189      GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2190                              GlobalValue::ExternalLinkage, nullptr, Name);
2191  
2192    return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2193  }
2194  
2195  // A quick function that will emit a call for a named libcall in F with the
2196  // vector of passed arguments for the Instruction in I. We can assume that we
2197  // can emit a call for any libcall we can produce. This is an abridged version
2198  // of the full call infrastructure since we won't need to worry about things
2199  // like computed function pointers or strange arguments at call sites.
2200  // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2201  // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)2202  bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2203    CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2204  
2205    // Handle *simple* calls for now.
2206    Type *RetTy = I->getType();
2207    MVT RetVT;
2208    if (RetTy->isVoidTy())
2209      RetVT = MVT::isVoid;
2210    else if (!isTypeLegal(RetTy, RetVT))
2211      return false;
2212  
2213    // Can't handle non-double multi-reg retvals.
2214    if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2215      SmallVector<CCValAssign, 16> RVLocs;
2216      CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2217      CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2218      if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2219        return false;
2220    }
2221  
2222    // Set up the argument vectors.
2223    SmallVector<Value*, 8> Args;
2224    SmallVector<Register, 8> ArgRegs;
2225    SmallVector<MVT, 8> ArgVTs;
2226    SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2227    Args.reserve(I->getNumOperands());
2228    ArgRegs.reserve(I->getNumOperands());
2229    ArgVTs.reserve(I->getNumOperands());
2230    ArgFlags.reserve(I->getNumOperands());
2231    for (Value *Op :  I->operands()) {
2232      Register Arg = getRegForValue(Op);
2233      if (Arg == 0) return false;
2234  
2235      Type *ArgTy = Op->getType();
2236      MVT ArgVT;
2237      if (!isTypeLegal(ArgTy, ArgVT)) return false;
2238  
2239      ISD::ArgFlagsTy Flags;
2240      Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2241  
2242      Args.push_back(Op);
2243      ArgRegs.push_back(Arg);
2244      ArgVTs.push_back(ArgVT);
2245      ArgFlags.push_back(Flags);
2246    }
2247  
2248    // Handle the arguments now that we've gotten them.
2249    SmallVector<Register, 4> RegArgs;
2250    unsigned NumBytes;
2251    if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2252                         RegArgs, CC, NumBytes, false))
2253      return false;
2254  
2255    Register CalleeReg;
2256    if (Subtarget->genLongCalls()) {
2257      CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2258      if (CalleeReg == 0) return false;
2259    }
2260  
2261    // Issue the call.
2262    unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2263    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2264                                      MIMD, TII.get(CallOpc));
2265    // BL / BLX don't take a predicate, but tBL / tBLX do.
2266    if (isThumb2)
2267      MIB.add(predOps(ARMCC::AL));
2268    if (Subtarget->genLongCalls()) {
2269      CalleeReg =
2270          constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2271      MIB.addReg(CalleeReg);
2272    } else
2273      MIB.addExternalSymbol(TLI.getLibcallName(Call));
2274  
2275    // Add implicit physical register uses to the call.
2276    for (Register R : RegArgs)
2277      MIB.addReg(R, RegState::Implicit);
2278  
2279    // Add a register mask with the call-preserved registers.
2280    // Proper defs for return values will be added by setPhysRegsDeadExcept().
2281    MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2282  
2283    // Finish off the call including any return values.
2284    SmallVector<Register, 4> UsedRegs;
2285    if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2286  
2287    // Set all unused physreg defs as dead.
2288    static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2289  
2290    return true;
2291  }
2292  
SelectCall(const Instruction * I,const char * IntrMemName=nullptr)2293  bool ARMFastISel::SelectCall(const Instruction *I,
2294                               const char *IntrMemName = nullptr) {
2295    const CallInst *CI = cast<CallInst>(I);
2296    const Value *Callee = CI->getCalledOperand();
2297  
2298    // Can't handle inline asm.
2299    if (isa<InlineAsm>(Callee)) return false;
2300  
2301    // Allow SelectionDAG isel to handle tail calls.
2302    if (CI->isTailCall()) return false;
2303  
2304    // Check the calling convention.
2305    CallingConv::ID CC = CI->getCallingConv();
2306  
2307    // TODO: Avoid some calling conventions?
2308  
2309    FunctionType *FTy = CI->getFunctionType();
2310    bool isVarArg = FTy->isVarArg();
2311  
2312    // Handle *simple* calls for now.
2313    Type *RetTy = I->getType();
2314    MVT RetVT;
2315    if (RetTy->isVoidTy())
2316      RetVT = MVT::isVoid;
2317    else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2318             RetVT != MVT::i8  && RetVT != MVT::i1)
2319      return false;
2320  
2321    // Can't handle non-double multi-reg retvals.
2322    if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2323        RetVT != MVT::i16 && RetVT != MVT::i32) {
2324      SmallVector<CCValAssign, 16> RVLocs;
2325      CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2326      CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2327      if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2328        return false;
2329    }
2330  
2331    // Set up the argument vectors.
2332    SmallVector<Value*, 8> Args;
2333    SmallVector<Register, 8> ArgRegs;
2334    SmallVector<MVT, 8> ArgVTs;
2335    SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2336    unsigned arg_size = CI->arg_size();
2337    Args.reserve(arg_size);
2338    ArgRegs.reserve(arg_size);
2339    ArgVTs.reserve(arg_size);
2340    ArgFlags.reserve(arg_size);
2341    for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2342      // If we're lowering a memory intrinsic instead of a regular call, skip the
2343      // last argument, which shouldn't be passed to the underlying function.
2344      if (IntrMemName && ArgE - ArgI <= 1)
2345        break;
2346  
2347      ISD::ArgFlagsTy Flags;
2348      unsigned ArgIdx = ArgI - CI->arg_begin();
2349      if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2350        Flags.setSExt();
2351      if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2352        Flags.setZExt();
2353  
2354      // FIXME: Only handle *easy* calls for now.
2355      if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2356          CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2357          CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2358          CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2359          CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2360          CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2361        return false;
2362  
2363      Type *ArgTy = (*ArgI)->getType();
2364      MVT ArgVT;
2365      if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2366          ArgVT != MVT::i1)
2367        return false;
2368  
2369      Register Arg = getRegForValue(*ArgI);
2370      if (!Arg.isValid())
2371        return false;
2372  
2373      Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2374  
2375      Args.push_back(*ArgI);
2376      ArgRegs.push_back(Arg);
2377      ArgVTs.push_back(ArgVT);
2378      ArgFlags.push_back(Flags);
2379    }
2380  
2381    // Handle the arguments now that we've gotten them.
2382    SmallVector<Register, 4> RegArgs;
2383    unsigned NumBytes;
2384    if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2385                         RegArgs, CC, NumBytes, isVarArg))
2386      return false;
2387  
2388    bool UseReg = false;
2389    const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2390    if (!GV || Subtarget->genLongCalls()) UseReg = true;
2391  
2392    Register CalleeReg;
2393    if (UseReg) {
2394      if (IntrMemName)
2395        CalleeReg = getLibcallReg(IntrMemName);
2396      else
2397        CalleeReg = getRegForValue(Callee);
2398  
2399      if (CalleeReg == 0) return false;
2400    }
2401  
2402    // Issue the call.
2403    unsigned CallOpc = ARMSelectCallOp(UseReg);
2404    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2405                                      MIMD, TII.get(CallOpc));
2406  
2407    // ARM calls don't take a predicate, but tBL / tBLX do.
2408    if(isThumb2)
2409      MIB.add(predOps(ARMCC::AL));
2410    if (UseReg) {
2411      CalleeReg =
2412          constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2413      MIB.addReg(CalleeReg);
2414    } else if (!IntrMemName)
2415      MIB.addGlobalAddress(GV, 0, 0);
2416    else
2417      MIB.addExternalSymbol(IntrMemName, 0);
2418  
2419    // Add implicit physical register uses to the call.
2420    for (Register R : RegArgs)
2421      MIB.addReg(R, RegState::Implicit);
2422  
2423    // Add a register mask with the call-preserved registers.
2424    // Proper defs for return values will be added by setPhysRegsDeadExcept().
2425    MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2426  
2427    // Finish off the call including any return values.
2428    SmallVector<Register, 4> UsedRegs;
2429    if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2430      return false;
2431  
2432    // Set all unused physreg defs as dead.
2433    static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2434  
2435    return true;
2436  }
2437  
ARMIsMemCpySmall(uint64_t Len)2438  bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2439    return Len <= 16;
2440  }
2441  
ARMTryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,MaybeAlign Alignment)2442  bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
2443                                          MaybeAlign Alignment) {
2444    // Make sure we don't bloat code by inlining very large memcpy's.
2445    if (!ARMIsMemCpySmall(Len))
2446      return false;
2447  
2448    while (Len) {
2449      MVT VT;
2450      if (!Alignment || *Alignment >= 4) {
2451        if (Len >= 4)
2452          VT = MVT::i32;
2453        else if (Len >= 2)
2454          VT = MVT::i16;
2455        else {
2456          assert(Len == 1 && "Expected a length of 1!");
2457          VT = MVT::i8;
2458        }
2459      } else {
2460        assert(Alignment && "Alignment is set in this branch");
2461        // Bound based on alignment.
2462        if (Len >= 2 && *Alignment == 2)
2463          VT = MVT::i16;
2464        else {
2465          VT = MVT::i8;
2466        }
2467      }
2468  
2469      bool RV;
2470      Register ResultReg;
2471      RV = ARMEmitLoad(VT, ResultReg, Src);
2472      assert(RV && "Should be able to handle this load.");
2473      RV = ARMEmitStore(VT, ResultReg, Dest);
2474      assert(RV && "Should be able to handle this store.");
2475      (void)RV;
2476  
2477      unsigned Size = VT.getSizeInBits()/8;
2478      Len -= Size;
2479      Dest.Offset += Size;
2480      Src.Offset += Size;
2481    }
2482  
2483    return true;
2484  }
2485  
SelectIntrinsicCall(const IntrinsicInst & I)2486  bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2487    // FIXME: Handle more intrinsics.
2488    switch (I.getIntrinsicID()) {
2489    default: return false;
2490    case Intrinsic::frameaddress: {
2491      MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2492      MFI.setFrameAddressIsTaken(true);
2493  
2494      unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2495      const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2496                                               : &ARM::GPRRegClass;
2497  
2498      const ARMBaseRegisterInfo *RegInfo =
2499          static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2500      Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2501      unsigned SrcReg = FramePtr;
2502  
2503      // Recursively load frame address
2504      // ldr r0 [fp]
2505      // ldr r0 [r0]
2506      // ldr r0 [r0]
2507      // ...
2508      unsigned DestReg;
2509      unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2510      while (Depth--) {
2511        DestReg = createResultReg(RC);
2512        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2513                                TII.get(LdrOpc), DestReg)
2514                        .addReg(SrcReg).addImm(0));
2515        SrcReg = DestReg;
2516      }
2517      updateValueMap(&I, SrcReg);
2518      return true;
2519    }
2520    case Intrinsic::memcpy:
2521    case Intrinsic::memmove: {
2522      const MemTransferInst &MTI = cast<MemTransferInst>(I);
2523      // Don't handle volatile.
2524      if (MTI.isVolatile())
2525        return false;
2526  
2527      // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2528      // we would emit dead code because we don't currently handle memmoves.
2529      bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2530      if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2531        // Small memcpy's are common enough that we want to do them without a call
2532        // if possible.
2533        uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2534        if (ARMIsMemCpySmall(Len)) {
2535          Address Dest, Src;
2536          if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2537              !ARMComputeAddress(MTI.getRawSource(), Src))
2538            return false;
2539          MaybeAlign Alignment;
2540          if (MTI.getDestAlign() || MTI.getSourceAlign())
2541            Alignment = std::min(MTI.getDestAlign().valueOrOne(),
2542                                 MTI.getSourceAlign().valueOrOne());
2543          if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2544            return true;
2545        }
2546      }
2547  
2548      if (!MTI.getLength()->getType()->isIntegerTy(32))
2549        return false;
2550  
2551      if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2552        return false;
2553  
2554      const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2555      return SelectCall(&I, IntrMemName);
2556    }
2557    case Intrinsic::memset: {
2558      const MemSetInst &MSI = cast<MemSetInst>(I);
2559      // Don't handle volatile.
2560      if (MSI.isVolatile())
2561        return false;
2562  
2563      if (!MSI.getLength()->getType()->isIntegerTy(32))
2564        return false;
2565  
2566      if (MSI.getDestAddressSpace() > 255)
2567        return false;
2568  
2569      return SelectCall(&I, "memset");
2570    }
2571    case Intrinsic::trap: {
2572      unsigned Opcode;
2573      if (Subtarget->isThumb())
2574        Opcode = ARM::tTRAP;
2575      else
2576        Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2577      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode));
2578      return true;
2579    }
2580    }
2581  }
2582  
SelectTrunc(const Instruction * I)2583  bool ARMFastISel::SelectTrunc(const Instruction *I) {
2584    // The high bits for a type smaller than the register size are assumed to be
2585    // undefined.
2586    Value *Op = I->getOperand(0);
2587  
2588    EVT SrcVT, DestVT;
2589    SrcVT = TLI.getValueType(DL, Op->getType(), true);
2590    DestVT = TLI.getValueType(DL, I->getType(), true);
2591  
2592    if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2593      return false;
2594    if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2595      return false;
2596  
2597    Register SrcReg = getRegForValue(Op);
2598    if (!SrcReg) return false;
2599  
2600    // Because the high bits are undefined, a truncate doesn't generate
2601    // any code.
2602    updateValueMap(I, SrcReg);
2603    return true;
2604  }
2605  
ARMEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)2606  unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2607                                      bool isZExt) {
2608    if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2609      return 0;
2610    if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2611      return 0;
2612  
2613    // Table of which combinations can be emitted as a single instruction,
2614    // and which will require two.
2615    static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2616      //            ARM                     Thumb
2617      //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2618      //    ext:     s  z      s  z          s  z      s  z
2619      /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2620      /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2621      /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2622    };
2623  
2624    // Target registers for:
2625    //  - For ARM can never be PC.
2626    //  - For 16-bit Thumb are restricted to lower 8 registers.
2627    //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2628    static const TargetRegisterClass *RCTbl[2][2] = {
2629      // Instructions: Two                     Single
2630      /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2631      /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2632    };
2633  
2634    // Table governing the instruction(s) to be emitted.
2635    static const struct InstructionTable {
2636      uint32_t Opc   : 16;
2637      uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2638      uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2639      uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2640    } IT[2][2][3][2] = {
2641      { // Two instructions (first is left shift, second is in this table).
2642        { // ARM                Opc           S  Shift             Imm
2643          /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2644          /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2645          /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2646          /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2647          /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2648          /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2649        },
2650        { // Thumb              Opc           S  Shift             Imm
2651          /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2652          /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2653          /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2654          /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2655          /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2656          /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2657        }
2658      },
2659      { // Single instruction.
2660        { // ARM                Opc           S  Shift             Imm
2661          /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2662          /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2663          /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2664          /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2665          /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2666          /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2667        },
2668        { // Thumb              Opc           S  Shift             Imm
2669          /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2670          /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2671          /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2672          /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2673          /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2674          /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2675        }
2676      }
2677    };
2678  
2679    unsigned SrcBits = SrcVT.getSizeInBits();
2680    unsigned DestBits = DestVT.getSizeInBits();
2681    (void) DestBits;
2682    assert((SrcBits < DestBits) && "can only extend to larger types");
2683    assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2684           "other sizes unimplemented");
2685    assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2686           "other sizes unimplemented");
2687  
2688    bool hasV6Ops = Subtarget->hasV6Ops();
2689    unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2690    assert((Bitness < 3) && "sanity-check table bounds");
2691  
2692    bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2693    const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2694    const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2695    unsigned Opc = ITP->Opc;
2696    assert(ARM::KILL != Opc && "Invalid table entry");
2697    unsigned hasS = ITP->hasS;
2698    ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2699    assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2700           "only MOVsi has shift operand addressing mode");
2701    unsigned Imm = ITP->Imm;
2702  
2703    // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2704    bool setsCPSR = &ARM::tGPRRegClass == RC;
2705    unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2706    unsigned ResultReg;
2707    // MOVsi encodes shift and immediate in shift operand addressing mode.
2708    // The following condition has the same value when emitting two
2709    // instruction sequences: both are shifts.
2710    bool ImmIsSO = (Shift != ARM_AM::no_shift);
2711  
2712    // Either one or two instructions are emitted.
2713    // They're always of the form:
2714    //   dst = in OP imm
2715    // CPSR is set only by 16-bit Thumb instructions.
2716    // Predicate, if any, is AL.
2717    // S bit, if available, is always 0.
2718    // When two are emitted the first's result will feed as the second's input,
2719    // that value is then dead.
2720    unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2721    for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2722      ResultReg = createResultReg(RC);
2723      bool isLsl = (0 == Instr) && !isSingleInstr;
2724      unsigned Opcode = isLsl ? LSLOpc : Opc;
2725      ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2726      unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2727      bool isKill = 1 == Instr;
2728      MachineInstrBuilder MIB = BuildMI(
2729          *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg);
2730      if (setsCPSR)
2731        MIB.addReg(ARM::CPSR, RegState::Define);
2732      SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2733      MIB.addReg(SrcReg, isKill * RegState::Kill)
2734          .addImm(ImmEnc)
2735          .add(predOps(ARMCC::AL));
2736      if (hasS)
2737        MIB.add(condCodeOp());
2738      // Second instruction consumes the first's result.
2739      SrcReg = ResultReg;
2740    }
2741  
2742    return ResultReg;
2743  }
2744  
SelectIntExt(const Instruction * I)2745  bool ARMFastISel::SelectIntExt(const Instruction *I) {
2746    // On ARM, in general, integer casts don't involve legal types; this code
2747    // handles promotable integers.
2748    Type *DestTy = I->getType();
2749    Value *Src = I->getOperand(0);
2750    Type *SrcTy = Src->getType();
2751  
2752    bool isZExt = isa<ZExtInst>(I);
2753    Register SrcReg = getRegForValue(Src);
2754    if (!SrcReg) return false;
2755  
2756    EVT SrcEVT, DestEVT;
2757    SrcEVT = TLI.getValueType(DL, SrcTy, true);
2758    DestEVT = TLI.getValueType(DL, DestTy, true);
2759    if (!SrcEVT.isSimple()) return false;
2760    if (!DestEVT.isSimple()) return false;
2761  
2762    MVT SrcVT = SrcEVT.getSimpleVT();
2763    MVT DestVT = DestEVT.getSimpleVT();
2764    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2765    if (ResultReg == 0) return false;
2766    updateValueMap(I, ResultReg);
2767    return true;
2768  }
2769  
SelectShift(const Instruction * I,ARM_AM::ShiftOpc ShiftTy)2770  bool ARMFastISel::SelectShift(const Instruction *I,
2771                                ARM_AM::ShiftOpc ShiftTy) {
2772    // We handle thumb2 mode by target independent selector
2773    // or SelectionDAG ISel.
2774    if (isThumb2)
2775      return false;
2776  
2777    // Only handle i32 now.
2778    EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2779    if (DestVT != MVT::i32)
2780      return false;
2781  
2782    unsigned Opc = ARM::MOVsr;
2783    unsigned ShiftImm;
2784    Value *Src2Value = I->getOperand(1);
2785    if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2786      ShiftImm = CI->getZExtValue();
2787  
2788      // Fall back to selection DAG isel if the shift amount
2789      // is zero or greater than the width of the value type.
2790      if (ShiftImm == 0 || ShiftImm >=32)
2791        return false;
2792  
2793      Opc = ARM::MOVsi;
2794    }
2795  
2796    Value *Src1Value = I->getOperand(0);
2797    Register Reg1 = getRegForValue(Src1Value);
2798    if (Reg1 == 0) return false;
2799  
2800    unsigned Reg2 = 0;
2801    if (Opc == ARM::MOVsr) {
2802      Reg2 = getRegForValue(Src2Value);
2803      if (Reg2 == 0) return false;
2804    }
2805  
2806    Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2807    if(ResultReg == 0) return false;
2808  
2809    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2810                                      TII.get(Opc), ResultReg)
2811                              .addReg(Reg1);
2812  
2813    if (Opc == ARM::MOVsi)
2814      MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2815    else if (Opc == ARM::MOVsr) {
2816      MIB.addReg(Reg2);
2817      MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2818    }
2819  
2820    AddOptionalDefs(MIB);
2821    updateValueMap(I, ResultReg);
2822    return true;
2823  }
2824  
2825  // TODO: SoftFP support.
fastSelectInstruction(const Instruction * I)2826  bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2827    switch (I->getOpcode()) {
2828      case Instruction::Load:
2829        return SelectLoad(I);
2830      case Instruction::Store:
2831        return SelectStore(I);
2832      case Instruction::Br:
2833        return SelectBranch(I);
2834      case Instruction::IndirectBr:
2835        return SelectIndirectBr(I);
2836      case Instruction::ICmp:
2837      case Instruction::FCmp:
2838        return SelectCmp(I);
2839      case Instruction::FPExt:
2840        return SelectFPExt(I);
2841      case Instruction::FPTrunc:
2842        return SelectFPTrunc(I);
2843      case Instruction::SIToFP:
2844        return SelectIToFP(I, /*isSigned*/ true);
2845      case Instruction::UIToFP:
2846        return SelectIToFP(I, /*isSigned*/ false);
2847      case Instruction::FPToSI:
2848        return SelectFPToI(I, /*isSigned*/ true);
2849      case Instruction::FPToUI:
2850        return SelectFPToI(I, /*isSigned*/ false);
2851      case Instruction::Add:
2852        return SelectBinaryIntOp(I, ISD::ADD);
2853      case Instruction::Or:
2854        return SelectBinaryIntOp(I, ISD::OR);
2855      case Instruction::Sub:
2856        return SelectBinaryIntOp(I, ISD::SUB);
2857      case Instruction::FAdd:
2858        return SelectBinaryFPOp(I, ISD::FADD);
2859      case Instruction::FSub:
2860        return SelectBinaryFPOp(I, ISD::FSUB);
2861      case Instruction::FMul:
2862        return SelectBinaryFPOp(I, ISD::FMUL);
2863      case Instruction::SDiv:
2864        return SelectDiv(I, /*isSigned*/ true);
2865      case Instruction::UDiv:
2866        return SelectDiv(I, /*isSigned*/ false);
2867      case Instruction::SRem:
2868        return SelectRem(I, /*isSigned*/ true);
2869      case Instruction::URem:
2870        return SelectRem(I, /*isSigned*/ false);
2871      case Instruction::Call:
2872        if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2873          return SelectIntrinsicCall(*II);
2874        return SelectCall(I);
2875      case Instruction::Select:
2876        return SelectSelect(I);
2877      case Instruction::Ret:
2878        return SelectRet(I);
2879      case Instruction::Trunc:
2880        return SelectTrunc(I);
2881      case Instruction::ZExt:
2882      case Instruction::SExt:
2883        return SelectIntExt(I);
2884      case Instruction::Shl:
2885        return SelectShift(I, ARM_AM::lsl);
2886      case Instruction::LShr:
2887        return SelectShift(I, ARM_AM::lsr);
2888      case Instruction::AShr:
2889        return SelectShift(I, ARM_AM::asr);
2890      default: break;
2891    }
2892    return false;
2893  }
2894  
2895  // This table describes sign- and zero-extend instructions which can be
2896  // folded into a preceding load. All of these extends have an immediate
2897  // (sometimes a mask and sometimes a shift) that's applied after
2898  // extension.
2899  static const struct FoldableLoadExtendsStruct {
2900    uint16_t Opc[2];  // ARM, Thumb.
2901    uint8_t ExpectedImm;
2902    uint8_t isZExt     : 1;
2903    uint8_t ExpectedVT : 7;
2904  } FoldableLoadExtends[] = {
2905    { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2906    { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2907    { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2908    { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2909    { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2910  };
2911  
2912  /// The specified machine instr operand is a vreg, and that
2913  /// vreg is being provided by the specified load instruction.  If possible,
2914  /// try to fold the load as an operand to the instruction, returning true if
2915  /// successful.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2916  bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2917                                        const LoadInst *LI) {
2918    // Verify we have a legal type before going any further.
2919    MVT VT;
2920    if (!isLoadTypeLegal(LI->getType(), VT))
2921      return false;
2922  
2923    // Combine load followed by zero- or sign-extend.
2924    // ldrb r1, [r0]       ldrb r1, [r0]
2925    // uxtb r2, r1     =>
2926    // mov  r3, r2         mov  r3, r1
2927    if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2928      return false;
2929    const uint64_t Imm = MI->getOperand(2).getImm();
2930  
2931    bool Found = false;
2932    bool isZExt;
2933    for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2934      if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2935          (uint64_t)FLE.ExpectedImm == Imm &&
2936          MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2937        Found = true;
2938        isZExt = FLE.isZExt;
2939      }
2940    }
2941    if (!Found) return false;
2942  
2943    // See if we can handle this address.
2944    Address Addr;
2945    if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2946  
2947    Register ResultReg = MI->getOperand(0).getReg();
2948    if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false))
2949      return false;
2950    MachineBasicBlock::iterator I(MI);
2951    removeDeadCode(I, std::next(I));
2952    return true;
2953  }
2954  
ARMLowerPICELF(const GlobalValue * GV,MVT VT)2955  unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2956    bool UseGOT_PREL = !GV->isDSOLocal();
2957    LLVMContext *Context = &MF->getFunction().getContext();
2958    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2959    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2960    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2961        GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2962        UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2963        /*AddCurrentAddress=*/UseGOT_PREL);
2964  
2965    Align ConstAlign =
2966        MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0));
2967    unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2968    MachineMemOperand *CPMMO =
2969        MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2970                                 MachineMemOperand::MOLoad, 4, Align(4));
2971  
2972    Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2973    unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2974    MachineInstrBuilder MIB =
2975        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg)
2976            .addConstantPoolIndex(Idx)
2977            .addMemOperand(CPMMO);
2978    if (Opc == ARM::LDRcp)
2979      MIB.addImm(0);
2980    MIB.add(predOps(ARMCC::AL));
2981  
2982    // Fix the address by adding pc.
2983    Register DestReg = createResultReg(TLI.getRegClassFor(VT));
2984    Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2985                                                            : ARM::PICADD;
2986    DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2987    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2988              .addReg(TempReg)
2989              .addImm(ARMPCLabelIndex);
2990  
2991    if (!Subtarget->isThumb())
2992      MIB.add(predOps(ARMCC::AL));
2993  
2994    if (UseGOT_PREL && Subtarget->isThumb()) {
2995      Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2996      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2997                    TII.get(ARM::t2LDRi12), NewDestReg)
2998                .addReg(DestReg)
2999                .addImm(0);
3000      DestReg = NewDestReg;
3001      AddOptionalDefs(MIB);
3002    }
3003    return DestReg;
3004  }
3005  
fastLowerArguments()3006  bool ARMFastISel::fastLowerArguments() {
3007    if (!FuncInfo.CanLowerReturn)
3008      return false;
3009  
3010    const Function *F = FuncInfo.Fn;
3011    if (F->isVarArg())
3012      return false;
3013  
3014    CallingConv::ID CC = F->getCallingConv();
3015    switch (CC) {
3016    default:
3017      return false;
3018    case CallingConv::Fast:
3019    case CallingConv::C:
3020    case CallingConv::ARM_AAPCS_VFP:
3021    case CallingConv::ARM_AAPCS:
3022    case CallingConv::ARM_APCS:
3023    case CallingConv::Swift:
3024    case CallingConv::SwiftTail:
3025      break;
3026    }
3027  
3028    // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3029    // which are passed in r0 - r3.
3030    for (const Argument &Arg : F->args()) {
3031      if (Arg.getArgNo() >= 4)
3032        return false;
3033  
3034      if (Arg.hasAttribute(Attribute::InReg) ||
3035          Arg.hasAttribute(Attribute::StructRet) ||
3036          Arg.hasAttribute(Attribute::SwiftSelf) ||
3037          Arg.hasAttribute(Attribute::SwiftError) ||
3038          Arg.hasAttribute(Attribute::ByVal))
3039        return false;
3040  
3041      Type *ArgTy = Arg.getType();
3042      if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3043        return false;
3044  
3045      EVT ArgVT = TLI.getValueType(DL, ArgTy);
3046      if (!ArgVT.isSimple()) return false;
3047      switch (ArgVT.getSimpleVT().SimpleTy) {
3048      case MVT::i8:
3049      case MVT::i16:
3050      case MVT::i32:
3051        break;
3052      default:
3053        return false;
3054      }
3055    }
3056  
3057    static const MCPhysReg GPRArgRegs[] = {
3058      ARM::R0, ARM::R1, ARM::R2, ARM::R3
3059    };
3060  
3061    const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3062    for (const Argument &Arg : F->args()) {
3063      unsigned ArgNo = Arg.getArgNo();
3064      unsigned SrcReg = GPRArgRegs[ArgNo];
3065      Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3066      // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3067      // Without this, EmitLiveInCopies may eliminate the livein if its only
3068      // use is a bitcast (which isn't turned into an instruction).
3069      Register ResultReg = createResultReg(RC);
3070      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3071              TII.get(TargetOpcode::COPY),
3072              ResultReg).addReg(DstReg, getKillRegState(true));
3073      updateValueMap(&Arg, ResultReg);
3074    }
3075  
3076    return true;
3077  }
3078  
3079  namespace llvm {
3080  
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3081    FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3082                                  const TargetLibraryInfo *libInfo) {
3083      if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3084        return new ARMFastISel(funcInfo, libInfo);
3085  
3086      return nullptr;
3087    }
3088  
3089  } // end namespace llvm
3090