1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021-2023 Intel Corporation
4 */
5
6 #include "xe_mmio.h"
7
8 #include <linux/delay.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/minmax.h>
11 #include <linux/pci.h>
12
13 #include <drm/drm_managed.h>
14 #include <drm/drm_print.h>
15
16 #include "regs/xe_bars.h"
17 #include "regs/xe_regs.h"
18 #include "xe_device.h"
19 #include "xe_gt.h"
20 #include "xe_gt_printk.h"
21 #include "xe_gt_sriov_vf.h"
22 #include "xe_macros.h"
23 #include "xe_sriov.h"
24 #include "xe_trace.h"
25
tiles_fini(void * arg)26 static void tiles_fini(void *arg)
27 {
28 struct xe_device *xe = arg;
29 struct xe_tile *tile;
30 int id;
31
32 for_each_remote_tile(tile, xe, id)
33 tile->mmio.regs = NULL;
34 }
35
36 /*
37 * On multi-tile devices, partition the BAR space for MMIO on each tile,
38 * possibly accounting for register override on the number of tiles available.
39 * tile_mmio_size contains both the tile's 4MB register space, as well as
40 * additional space for the GTT and other (possibly unused) regions).
41 * Resulting memory layout is like below:
42 *
43 * .----------------------. <- tile_count * tile_mmio_size
44 * | .... |
45 * |----------------------| <- 2 * tile_mmio_size
46 * | tile1 GTT + other |
47 * |----------------------| <- 1 * tile_mmio_size + 4MB
48 * | tile1->mmio.regs |
49 * |----------------------| <- 1 * tile_mmio_size
50 * | tile0 GTT + other |
51 * |----------------------| <- 4MB
52 * | tile0->mmio.regs |
53 * '----------------------' <- 0MB
54 */
mmio_multi_tile_setup(struct xe_device * xe,size_t tile_mmio_size)55 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
56 {
57 struct xe_tile *tile;
58 void __iomem *regs;
59 u8 id;
60
61 /*
62 * Nothing to be done as tile 0 has already been setup earlier with the
63 * entire BAR mapped - see xe_mmio_init()
64 */
65 if (xe->info.tile_count == 1)
66 return;
67
68 /* Possibly override number of tile based on configuration register */
69 if (!xe->info.skip_mtcfg) {
70 struct xe_mmio *mmio = xe_root_tile_mmio(xe);
71 u8 tile_count;
72 u32 mtcfg;
73
74 /*
75 * Although the per-tile mmio regs are not yet initialized, this
76 * is fine as it's going to the root tile's mmio, that's
77 * guaranteed to be initialized earlier in xe_mmio_init()
78 */
79 mtcfg = xe_mmio_read64_2x32(mmio, XEHP_MTCFG_ADDR);
80 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
81
82 if (tile_count < xe->info.tile_count) {
83 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
84 xe->info.tile_count, tile_count);
85 xe->info.tile_count = tile_count;
86
87 /*
88 * FIXME: Needs some work for standalone media, but
89 * should be impossible with multi-tile for now:
90 * multi-tile platform with standalone media doesn't
91 * exist
92 */
93 xe->info.gt_count = xe->info.tile_count;
94 }
95 }
96
97 regs = xe->mmio.regs;
98 for_each_tile(tile, xe, id) {
99 tile->mmio.regs_size = SZ_4M;
100 tile->mmio.regs = regs;
101 tile->mmio.tile = tile;
102 regs += tile_mmio_size;
103 }
104 }
105
106 /*
107 * On top of all the multi-tile MMIO space there can be a platform-dependent
108 * extension for each tile, resulting in a layout like below:
109 *
110 * .----------------------. <- ext_base + tile_count * tile_mmio_ext_size
111 * | .... |
112 * |----------------------| <- ext_base + 2 * tile_mmio_ext_size
113 * | tile1->mmio_ext.regs |
114 * |----------------------| <- ext_base + 1 * tile_mmio_ext_size
115 * | tile0->mmio_ext.regs |
116 * |======================| <- ext_base = tile_count * tile_mmio_size
117 * | |
118 * | mmio.regs |
119 * | |
120 * '----------------------' <- 0MB
121 *
122 * Set up the tile[]->mmio_ext pointers/sizes.
123 */
mmio_extension_setup(struct xe_device * xe,size_t tile_mmio_size,size_t tile_mmio_ext_size)124 static void mmio_extension_setup(struct xe_device *xe, size_t tile_mmio_size,
125 size_t tile_mmio_ext_size)
126 {
127 struct xe_tile *tile;
128 void __iomem *regs;
129 u8 id;
130
131 if (!xe->info.has_mmio_ext)
132 return;
133
134 regs = xe->mmio.regs + tile_mmio_size * xe->info.tile_count;
135 for_each_tile(tile, xe, id) {
136 tile->mmio_ext.regs_size = tile_mmio_ext_size;
137 tile->mmio_ext.regs = regs;
138 tile->mmio_ext.tile = tile;
139 regs += tile_mmio_ext_size;
140 }
141 }
142
xe_mmio_probe_tiles(struct xe_device * xe)143 int xe_mmio_probe_tiles(struct xe_device *xe)
144 {
145 size_t tile_mmio_size = SZ_16M;
146 size_t tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
147
148 mmio_multi_tile_setup(xe, tile_mmio_size);
149 mmio_extension_setup(xe, tile_mmio_size, tile_mmio_ext_size);
150
151 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
152 }
153
mmio_fini(void * arg)154 static void mmio_fini(void *arg)
155 {
156 struct xe_device *xe = arg;
157 struct xe_tile *root_tile = xe_device_get_root_tile(xe);
158
159 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
160 xe->mmio.regs = NULL;
161 root_tile->mmio.regs = NULL;
162 }
163
xe_mmio_init(struct xe_device * xe)164 int xe_mmio_init(struct xe_device *xe)
165 {
166 struct xe_tile *root_tile = xe_device_get_root_tile(xe);
167 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
168
169 /*
170 * Map the entire BAR.
171 * The first 16MB of the BAR, belong to the root tile, and include:
172 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
173 */
174 xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR);
175 xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0);
176 if (xe->mmio.regs == NULL) {
177 drm_err(&xe->drm, "failed to map registers\n");
178 return -EIO;
179 }
180
181 /* Setup first tile; other tiles (if present) will be setup later. */
182 root_tile->mmio.regs_size = SZ_4M;
183 root_tile->mmio.regs = xe->mmio.regs;
184 root_tile->mmio.tile = root_tile;
185
186 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
187 }
188
mmio_flush_pending_writes(struct xe_mmio * mmio)189 static void mmio_flush_pending_writes(struct xe_mmio *mmio)
190 {
191 #define DUMMY_REG_OFFSET 0x130030
192 int i;
193
194 if (mmio->tile->xe->info.platform != XE_LUNARLAKE)
195 return;
196
197 /* 4 dummy writes */
198 for (i = 0; i < 4; i++)
199 writel(0, mmio->regs + DUMMY_REG_OFFSET);
200 }
201
xe_mmio_read8(struct xe_mmio * mmio,struct xe_reg reg)202 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg)
203 {
204 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
205 u8 val;
206
207 /* Wa_15015404425 */
208 mmio_flush_pending_writes(mmio);
209
210 val = readb(mmio->regs + addr);
211 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
212
213 return val;
214 }
215
xe_mmio_read16(struct xe_mmio * mmio,struct xe_reg reg)216 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg)
217 {
218 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
219 u16 val;
220
221 /* Wa_15015404425 */
222 mmio_flush_pending_writes(mmio);
223
224 val = readw(mmio->regs + addr);
225 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
226
227 return val;
228 }
229
xe_mmio_write32(struct xe_mmio * mmio,struct xe_reg reg,u32 val)230 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val)
231 {
232 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
233
234 trace_xe_reg_rw(mmio, true, addr, val, sizeof(val));
235
236 if (!reg.vf && mmio->sriov_vf_gt)
237 xe_gt_sriov_vf_write32(mmio->sriov_vf_gt, reg, val);
238 else
239 writel(val, mmio->regs + addr);
240 }
241
xe_mmio_read32(struct xe_mmio * mmio,struct xe_reg reg)242 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg)
243 {
244 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
245 u32 val;
246
247 /* Wa_15015404425 */
248 mmio_flush_pending_writes(mmio);
249
250 if (!reg.vf && mmio->sriov_vf_gt)
251 val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt, reg);
252 else
253 val = readl(mmio->regs + addr);
254
255 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
256
257 return val;
258 }
259
xe_mmio_rmw32(struct xe_mmio * mmio,struct xe_reg reg,u32 clr,u32 set)260 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set)
261 {
262 u32 old, reg_val;
263
264 old = xe_mmio_read32(mmio, reg);
265 reg_val = (old & ~clr) | set;
266 xe_mmio_write32(mmio, reg, reg_val);
267
268 return old;
269 }
270
xe_mmio_write32_and_verify(struct xe_mmio * mmio,struct xe_reg reg,u32 val,u32 mask,u32 eval)271 int xe_mmio_write32_and_verify(struct xe_mmio *mmio,
272 struct xe_reg reg, u32 val, u32 mask, u32 eval)
273 {
274 u32 reg_val;
275
276 xe_mmio_write32(mmio, reg, val);
277 reg_val = xe_mmio_read32(mmio, reg);
278
279 return (reg_val & mask) != eval ? -EINVAL : 0;
280 }
281
xe_mmio_in_range(const struct xe_mmio * mmio,const struct xe_mmio_range * range,struct xe_reg reg)282 bool xe_mmio_in_range(const struct xe_mmio *mmio,
283 const struct xe_mmio_range *range,
284 struct xe_reg reg)
285 {
286 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
287
288 return range && addr >= range->start && addr <= range->end;
289 }
290
291 /**
292 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
293 * @mmio: MMIO target
294 * @reg: register to read value from
295 *
296 * Although Intel GPUs have some 64-bit registers, the hardware officially
297 * only supports GTTMMADR register reads of 32 bits or smaller. Even if
298 * a readq operation may return a reasonable value, that violation of the
299 * spec shouldn't be relied upon and all 64-bit register reads should be
300 * performed as two 32-bit reads of the upper and lower dwords.
301 *
302 * When reading registers that may be changing (such as
303 * counters), a rollover of the lower dword between the two 32-bit reads
304 * can be problematic. This function attempts to ensure the upper dword has
305 * stabilized before returning the 64-bit value.
306 *
307 * Note that because this function may re-read the register multiple times
308 * while waiting for the value to stabilize it should not be used to read
309 * any registers where read operations have side effects.
310 *
311 * Returns the value of the 64-bit register.
312 */
xe_mmio_read64_2x32(struct xe_mmio * mmio,struct xe_reg reg)313 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg)
314 {
315 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
316 u32 ldw, udw, oldudw, retries;
317
318 reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr);
319 reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr);
320
321 /* we shouldn't adjust just one register address */
322 xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4);
323
324 oldudw = xe_mmio_read32(mmio, reg_udw);
325 for (retries = 5; retries; --retries) {
326 ldw = xe_mmio_read32(mmio, reg);
327 udw = xe_mmio_read32(mmio, reg_udw);
328
329 if (udw == oldudw)
330 break;
331
332 oldudw = udw;
333 }
334
335 drm_WARN(&mmio->tile->xe->drm, retries == 0,
336 "64-bit read of %#x did not stabilize\n", reg.addr);
337
338 return (u64)udw << 32 | ldw;
339 }
340
__xe_mmio_wait32(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic,bool expect_match)341 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
342 u32 *out_val, bool atomic, bool expect_match)
343 {
344 ktime_t cur = ktime_get_raw();
345 const ktime_t end = ktime_add_us(cur, timeout_us);
346 int ret = -ETIMEDOUT;
347 s64 wait = 10;
348 u32 read;
349 bool check;
350
351 for (;;) {
352 read = xe_mmio_read32(mmio, reg);
353
354 check = (read & mask) == val;
355 if (!expect_match)
356 check = !check;
357
358 if (check) {
359 ret = 0;
360 break;
361 }
362
363 cur = ktime_get_raw();
364 if (!ktime_before(cur, end))
365 break;
366
367 if (ktime_after(ktime_add_us(cur, wait), end))
368 wait = ktime_us_delta(end, cur);
369
370 if (atomic)
371 udelay(wait);
372 else
373 usleep_range(wait, wait << 1);
374 wait <<= 1;
375 }
376
377 if (ret != 0) {
378 read = xe_mmio_read32(mmio, reg);
379
380 check = (read & mask) == val;
381 if (!expect_match)
382 check = !check;
383
384 if (check)
385 ret = 0;
386 }
387
388 if (out_val)
389 *out_val = read;
390
391 return ret;
392 }
393
394 /**
395 * xe_mmio_wait32() - Wait for a register to match the desired masked value
396 * @mmio: MMIO target
397 * @reg: register to read value from
398 * @mask: mask to be applied to the value read from the register
399 * @val: desired value after applying the mask
400 * @timeout_us: time out after this period of time. Wait logic tries to be
401 * smart, applying an exponential backoff until @timeout_us is reached.
402 * @out_val: if not NULL, points where to store the last unmasked value
403 * @atomic: needs to be true if calling from an atomic context
404 *
405 * This function polls for the desired masked value and returns zero on success
406 * or -ETIMEDOUT if timed out.
407 *
408 * Note that @timeout_us represents the minimum amount of time to wait before
409 * giving up. The actual time taken by this function can be a little more than
410 * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
411 * it is possible that this function succeeds even after @timeout_us has passed.
412 */
xe_mmio_wait32(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic)413 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
414 u32 *out_val, bool atomic)
415 {
416 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true);
417 }
418
419 /**
420 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
421 * @mmio: MMIO target
422 * @reg: register to read value from
423 * @mask: mask to be applied to the value read from the register
424 * @val: value not to be matched after applying the mask
425 * @timeout_us: time out after this period of time
426 * @out_val: if not NULL, points where to store the last unmasked value
427 * @atomic: needs to be true if calling from an atomic context
428 *
429 * This function works exactly like xe_mmio_wait32() with the exception that
430 * @val is expected not to be matched.
431 */
xe_mmio_wait32_not(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic)432 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
433 u32 *out_val, bool atomic)
434 {
435 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false);
436 }
437