1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/types.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/endian.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #ifdef illumos
100 #include <sys/cred_impl.h>
101 #include <sys/procfs_isa.h>
102 #endif
103 #include <sys/taskq.h>
104 #ifdef illumos
105 #include <sys/mkdev.h>
106 #include <sys/kdi.h>
107 #endif
108 #include <sys/zone.h>
109 #include <sys/socket.h>
110 #include <netinet/in.h>
111 #include "strtolctype.h"
112
113 /* FreeBSD includes: */
114 #ifndef illumos
115 #include <sys/callout.h>
116 #include <sys/ctype.h>
117 #include <sys/eventhandler.h>
118 #include <sys/limits.h>
119 #include <sys/linker.h>
120 #include <sys/kdb.h>
121 #include <sys/jail.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131
132
133 #include <sys/mount.h>
134 #undef AT_UID
135 #undef AT_GID
136 #include <sys/vnode.h>
137 #include <sys/cred.h>
138
139 #include <sys/dtrace_bsd.h>
140
141 #include <netinet/in.h>
142
143 #include "dtrace_cddl.h"
144 #include "dtrace_debug.c"
145 #endif
146
147 #include "dtrace_xoroshiro128_plus.h"
148
149 /*
150 * DTrace Tunable Variables
151 *
152 * The following variables may be tuned by adding a line to /etc/system that
153 * includes both the name of the DTrace module ("dtrace") and the name of the
154 * variable. For example:
155 *
156 * set dtrace:dtrace_destructive_disallow = 1
157 *
158 * In general, the only variables that one should be tuning this way are those
159 * that affect system-wide DTrace behavior, and for which the default behavior
160 * is undesirable. Most of these variables are tunable on a per-consumer
161 * basis using DTrace options, and need not be tuned on a system-wide basis.
162 * When tuning these variables, avoid pathological values; while some attempt
163 * is made to verify the integrity of these variables, they are not considered
164 * part of the supported interface to DTrace, and they are therefore not
165 * checked comprehensively. Further, these variables should not be tuned
166 * dynamically via "mdb -kw" or other means; they should only be tuned via
167 * /etc/system.
168 */
169 int dtrace_destructive_disallow = 0;
170 #ifndef illumos
171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
172 int dtrace_allow_destructive = 1;
173 #endif
174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175 size_t dtrace_difo_maxsize = (256 * 1024);
176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
177 size_t dtrace_statvar_maxsize = (16 * 1024);
178 size_t dtrace_actions_max = (16 * 1024);
179 size_t dtrace_retain_max = 1024;
180 dtrace_optval_t dtrace_helper_actions_max = 128;
181 dtrace_optval_t dtrace_helper_providers_max = 32;
182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
183 size_t dtrace_strsize_default = 256;
184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
191 dtrace_optval_t dtrace_nspec_default = 1;
192 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
193 dtrace_optval_t dtrace_stackframes_default = 20;
194 dtrace_optval_t dtrace_ustackframes_default = 20;
195 dtrace_optval_t dtrace_jstackframes_default = 50;
196 dtrace_optval_t dtrace_jstackstrsize_default = 512;
197 int dtrace_msgdsize_max = 128;
198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
200 int dtrace_devdepth_max = 32;
201 int dtrace_err_verbose;
202 hrtime_t dtrace_deadman_interval = NANOSEC;
203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206 #ifndef illumos
207 int dtrace_memstr_max = 4096;
208 int dtrace_bufsize_max_frac = 128;
209 #endif
210
211 /*
212 * DTrace External Variables
213 *
214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215 * available to DTrace consumers via the backtick (`) syntax. One of these,
216 * dtrace_zero, is made deliberately so: it is provided as a source of
217 * well-known, zero-filled memory. While this variable is not documented,
218 * it is used by some translators as an implementation detail.
219 */
220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
221
222 /*
223 * DTrace Internal Variables
224 */
225 #ifdef illumos
226 static dev_info_t *dtrace_devi; /* device info */
227 #endif
228 #ifdef illumos
229 static vmem_t *dtrace_arena; /* probe ID arena */
230 static vmem_t *dtrace_minor; /* minor number arena */
231 #else
232 static taskq_t *dtrace_taskq; /* task queue */
233 static struct unrhdr *dtrace_arena; /* Probe ID number. */
234 #endif
235 static dtrace_probe_t **dtrace_probes; /* array of all probes */
236 static int dtrace_nprobes; /* number of probes */
237 static dtrace_provider_t *dtrace_provider; /* provider list */
238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
239 static int dtrace_opens; /* number of opens */
240 static int dtrace_helpers; /* number of helpers */
241 static int dtrace_getf; /* number of unpriv getf()s */
242 #ifdef illumos
243 static void *dtrace_softstate; /* softstate pointer */
244 #endif
245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
249 static int dtrace_toxranges; /* number of toxic ranges */
250 static int dtrace_toxranges_max; /* size of toxic range array */
251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
254 static kthread_t *dtrace_panicked; /* panicking thread */
255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
256 static dtrace_genid_t dtrace_probegen; /* current probe generation */
257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
262 #ifndef illumos
263 static struct mtx dtrace_unr_mtx;
264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265 static eventhandler_tag dtrace_kld_load_tag;
266 static eventhandler_tag dtrace_kld_unload_try_tag;
267 #endif
268
269 /*
270 * DTrace Locking
271 * DTrace is protected by three (relatively coarse-grained) locks:
272 *
273 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274 * including enabling state, probes, ECBs, consumer state, helper state,
275 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
276 * probe context is lock-free -- synchronization is handled via the
277 * dtrace_sync() cross call mechanism.
278 *
279 * (2) dtrace_provider_lock is required when manipulating provider state, or
280 * when provider state must be held constant.
281 *
282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283 * when meta provider state must be held constant.
284 *
285 * The lock ordering between these three locks is dtrace_meta_lock before
286 * dtrace_provider_lock before dtrace_lock. (In particular, there are
287 * several places where dtrace_provider_lock is held by the framework as it
288 * calls into the providers -- which then call back into the framework,
289 * grabbing dtrace_lock.)
290 *
291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293 * role as a coarse-grained lock; it is acquired before both of these locks.
294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297 * acquired _between_ dtrace_provider_lock and dtrace_lock.
298 */
299 static kmutex_t dtrace_lock; /* probe state lock */
300 static kmutex_t dtrace_provider_lock; /* provider state lock */
301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
302
303 #ifndef illumos
304 /* XXX FreeBSD hacks. */
305 #define cr_suid cr_svuid
306 #define cr_sgid cr_svgid
307 #define ipaddr_t in_addr_t
308 #define mod_modname pathname
309 #define vuprintf vprintf
310 #ifndef crgetzoneid
311 #define crgetzoneid(_a) 0
312 #endif
313 #define ttoproc(_a) ((_a)->td_proc)
314 #define SNOCD 0
315 #define CPU_ON_INTR(_a) 0
316
317 #define PRIV_EFFECTIVE (1 << 0)
318 #define PRIV_DTRACE_KERNEL (1 << 1)
319 #define PRIV_DTRACE_PROC (1 << 2)
320 #define PRIV_DTRACE_USER (1 << 3)
321 #define PRIV_PROC_OWNER (1 << 4)
322 #define PRIV_PROC_ZONE (1 << 5)
323 #define PRIV_ALL ~0
324
325 SYSCTL_DECL(_debug_dtrace);
326 SYSCTL_DECL(_kern_dtrace);
327 #endif
328
329 #ifdef illumos
330 #define curcpu CPU->cpu_id
331 #endif
332
333
334 /*
335 * DTrace Provider Variables
336 *
337 * These are the variables relating to DTrace as a provider (that is, the
338 * provider of the BEGIN, END, and ERROR probes).
339 */
340 static dtrace_pattr_t dtrace_provider_attr = {
341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 };
347
348 static void
dtrace_nullop(void)349 dtrace_nullop(void)
350 {}
351
352 static dtrace_pops_t dtrace_provider_ops = {
353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop,
355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 .dtps_getargdesc = NULL,
360 .dtps_getargval = NULL,
361 .dtps_usermode = NULL,
362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363 };
364
365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
366 static dtrace_id_t dtrace_probeid_end; /* special END probe */
367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
368
369 /*
370 * DTrace Helper Tracing Variables
371 *
372 * These variables should be set dynamically to enable helper tracing. The
373 * only variables that should be set are dtrace_helptrace_enable (which should
374 * be set to a non-zero value to allocate helper tracing buffers on the next
375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376 * non-zero value to deallocate helper tracing buffers on the next close of
377 * /dev/dtrace). When (and only when) helper tracing is disabled, the
378 * buffer size may also be set via dtrace_helptrace_bufsize.
379 */
380 int dtrace_helptrace_enable = 0;
381 int dtrace_helptrace_disable = 0;
382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383 uint32_t dtrace_helptrace_nlocals;
384 static dtrace_helptrace_t *dtrace_helptrace_buffer;
385 static uint32_t dtrace_helptrace_next = 0;
386 static int dtrace_helptrace_wrapped = 0;
387
388 /*
389 * DTrace Error Hashing
390 *
391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392 * table. This is very useful for checking coverage of tests that are
393 * expected to induce DIF or DOF processing errors, and may be useful for
394 * debugging problems in the DIF code generator or in DOF generation . The
395 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396 */
397 #ifdef DEBUG
398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
399 static const char *dtrace_errlast;
400 static kthread_t *dtrace_errthread;
401 static kmutex_t dtrace_errlock;
402 #endif
403
404 /*
405 * DTrace Macros and Constants
406 *
407 * These are various macros that are useful in various spots in the
408 * implementation, along with a few random constants that have no meaning
409 * outside of the implementation. There is no real structure to this cpp
410 * mishmash -- but is there ever?
411 */
412 #define DTRACE_HASHSTR(hash, probe) \
413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414
415 #define DTRACE_HASHNEXT(hash, probe) \
416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417
418 #define DTRACE_HASHPREV(hash, probe) \
419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420
421 #define DTRACE_HASHEQ(hash, lhs, rhs) \
422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424
425 #define DTRACE_AGGHASHSIZE_SLEW 17
426
427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
428
429 /*
430 * The key for a thread-local variable consists of the lower 61 bits of the
431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433 * equal to a variable identifier. This is necessary (but not sufficient) to
434 * assure that global associative arrays never collide with thread-local
435 * variables. To guarantee that they cannot collide, we must also define the
436 * order for keying dynamic variables. That order is:
437 *
438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439 *
440 * Because the variable-key and the tls-key are in orthogonal spaces, there is
441 * no way for a global variable key signature to match a thread-local key
442 * signature.
443 */
444 #ifdef illumos
445 #define DTRACE_TLS_THRKEY(where) { \
446 uint_t intr = 0; \
447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448 for (; actv; actv >>= 1) \
449 intr++; \
450 ASSERT(intr < (1 << 3)); \
451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #else
455 #define DTRACE_TLS_THRKEY(where) { \
456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457 uint_t intr = 0; \
458 uint_t actv = _c->cpu_intr_actv; \
459 for (; actv; actv >>= 1) \
460 intr++; \
461 ASSERT(intr < (1 << 3)); \
462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464 }
465 #endif
466
467 #define DT_BSWAP_8(x) ((x) & 0xff)
468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471
472 #define DT_MASK_LO 0x00000000FFFFFFFFULL
473
474 #define DTRACE_STORE(type, tomax, offset, what) \
475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what);
476
477 #if !defined(__x86) && !defined(__aarch64__)
478 #define DTRACE_ALIGNCHECK(addr, size, flags) \
479 if (addr & (size - 1)) { \
480 *flags |= CPU_DTRACE_BADALIGN; \
481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
482 return (0); \
483 }
484 #else
485 #define DTRACE_ALIGNCHECK(addr, size, flags)
486 #endif
487
488 /*
489 * Test whether a range of memory starting at testaddr of size testsz falls
490 * within the range of memory described by addr, sz. We take care to avoid
491 * problems with overflow and underflow of the unsigned quantities, and
492 * disallow all negative sizes. Ranges of size 0 are allowed.
493 */
494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497 (testaddr) + (testsz) >= (testaddr))
498
499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
500 do { \
501 if ((remp) != NULL) { \
502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
503 } \
504 } while (0)
505
506
507 /*
508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
509 * alloc_sz on the righthand side of the comparison in order to avoid overflow
510 * or underflow in the comparison with it. This is simpler than the INRANGE
511 * check above, because we know that the dtms_scratch_ptr is valid in the
512 * range. Allocations of size zero are allowed.
513 */
514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516 (mstate)->dtms_scratch_ptr >= (alloc_sz))
517
518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519 ((ptr) >= (mstate)->dtms_scratch_base && \
520 (ptr) <= \
521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522
523 #define DTRACE_LOADFUNC(bits) \
524 /*CSTYLED*/ \
525 uint##bits##_t \
526 dtrace_load##bits(uintptr_t addr) \
527 { \
528 size_t size = bits / NBBY; \
529 /*CSTYLED*/ \
530 uint##bits##_t rval; \
531 int i; \
532 volatile uint16_t *flags = (volatile uint16_t *) \
533 &cpu_core[curcpu].cpuc_dtrace_flags; \
534 \
535 DTRACE_ALIGNCHECK(addr, size, flags); \
536 \
537 for (i = 0; i < dtrace_toxranges; i++) { \
538 if (addr >= dtrace_toxrange[i].dtt_limit) \
539 continue; \
540 \
541 if (addr + size <= dtrace_toxrange[i].dtt_base) \
542 continue; \
543 \
544 /* \
545 * This address falls within a toxic region; return 0. \
546 */ \
547 *flags |= CPU_DTRACE_BADADDR; \
548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
549 return (0); \
550 } \
551 \
552 *flags |= CPU_DTRACE_NOFAULT; \
553 /*CSTYLED*/ \
554 rval = *((volatile uint##bits##_t *)addr); \
555 *flags &= ~CPU_DTRACE_NOFAULT; \
556 \
557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
558 }
559
560 #ifdef _LP64
561 #define dtrace_loadptr dtrace_load64
562 #else
563 #define dtrace_loadptr dtrace_load32
564 #endif
565
566 #define DTRACE_DYNHASH_FREE 0
567 #define DTRACE_DYNHASH_SINK 1
568 #define DTRACE_DYNHASH_VALID 2
569
570 #define DTRACE_MATCH_NEXT 0
571 #define DTRACE_MATCH_DONE 1
572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
573 #define DTRACE_STATE_ALIGN 64
574
575 #define DTRACE_FLAGS2FLT(flags) \
576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
585 DTRACEFLT_UNKNOWN)
586
587 #define DTRACEACT_ISSTRING(act) \
588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
590
591 /* Function prototype definitions: */
592 static size_t dtrace_strlen(const char *, size_t);
593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
594 static void dtrace_enabling_provide(dtrace_provider_t *);
595 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
596 static void dtrace_enabling_matchall(void);
597 static void dtrace_enabling_reap(void);
598 static dtrace_state_t *dtrace_anon_grab(void);
599 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
600 dtrace_state_t *, uint64_t, uint64_t);
601 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
602 static void dtrace_buffer_drop(dtrace_buffer_t *);
603 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
604 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
605 dtrace_state_t *, dtrace_mstate_t *);
606 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
607 dtrace_optval_t);
608 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
609 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
610 uint16_t dtrace_load16(uintptr_t);
611 uint32_t dtrace_load32(uintptr_t);
612 uint64_t dtrace_load64(uintptr_t);
613 uint8_t dtrace_load8(uintptr_t);
614 void dtrace_dynvar_clean(dtrace_dstate_t *);
615 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
616 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
617 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
618 static int dtrace_priv_proc(dtrace_state_t *);
619 static void dtrace_getf_barrier(void);
620 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
621 dtrace_mstate_t *, dtrace_vstate_t *);
622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
623 dtrace_mstate_t *, dtrace_vstate_t *);
624
625 /*
626 * DTrace Probe Context Functions
627 *
628 * These functions are called from probe context. Because probe context is
629 * any context in which C may be called, arbitrarily locks may be held,
630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
631 * As a result, functions called from probe context may only call other DTrace
632 * support functions -- they may not interact at all with the system at large.
633 * (Note that the ASSERT macro is made probe-context safe by redefining it in
634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
635 * loads are to be performed from probe context, they _must_ be in terms of
636 * the safe dtrace_load*() variants.
637 *
638 * Some functions in this block are not actually called from probe context;
639 * for these functions, there will be a comment above the function reading
640 * "Note: not called from probe context."
641 */
642 void
dtrace_panic(const char * format,...)643 dtrace_panic(const char *format, ...)
644 {
645 va_list alist;
646
647 va_start(alist, format);
648 #ifdef __FreeBSD__
649 vpanic(format, alist);
650 #else
651 dtrace_vpanic(format, alist);
652 #endif
653 va_end(alist);
654 }
655
656 int
dtrace_assfail(const char * a,const char * f,int l)657 dtrace_assfail(const char *a, const char *f, int l)
658 {
659 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
660
661 /*
662 * We just need something here that even the most clever compiler
663 * cannot optimize away.
664 */
665 return (a[(uintptr_t)f]);
666 }
667
668 /*
669 * Atomically increment a specified error counter from probe context.
670 */
671 static void
dtrace_error(uint32_t * counter)672 dtrace_error(uint32_t *counter)
673 {
674 /*
675 * Most counters stored to in probe context are per-CPU counters.
676 * However, there are some error conditions that are sufficiently
677 * arcane that they don't merit per-CPU storage. If these counters
678 * are incremented concurrently on different CPUs, scalability will be
679 * adversely affected -- but we don't expect them to be white-hot in a
680 * correctly constructed enabling...
681 */
682 uint32_t oval, nval;
683
684 do {
685 oval = *counter;
686
687 if ((nval = oval + 1) == 0) {
688 /*
689 * If the counter would wrap, set it to 1 -- assuring
690 * that the counter is never zero when we have seen
691 * errors. (The counter must be 32-bits because we
692 * aren't guaranteed a 64-bit compare&swap operation.)
693 * To save this code both the infamy of being fingered
694 * by a priggish news story and the indignity of being
695 * the target of a neo-puritan witch trial, we're
696 * carefully avoiding any colorful description of the
697 * likelihood of this condition -- but suffice it to
698 * say that it is only slightly more likely than the
699 * overflow of predicate cache IDs, as discussed in
700 * dtrace_predicate_create().
701 */
702 nval = 1;
703 }
704 } while (dtrace_cas32(counter, oval, nval) != oval);
705 }
706
707 /*
708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
709 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
710 */
711 /* BEGIN CSTYLED */
712 DTRACE_LOADFUNC(8)
713 DTRACE_LOADFUNC(16)
714 DTRACE_LOADFUNC(32)
715 DTRACE_LOADFUNC(64)
716 /* END CSTYLED */
717
718 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)719 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
720 {
721 if (dest < mstate->dtms_scratch_base)
722 return (0);
723
724 if (dest + size < dest)
725 return (0);
726
727 if (dest + size > mstate->dtms_scratch_ptr)
728 return (0);
729
730 return (1);
731 }
732
733 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)734 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
735 dtrace_statvar_t **svars, int nsvars)
736 {
737 int i;
738 size_t maxglobalsize, maxlocalsize;
739
740 if (nsvars == 0)
741 return (0);
742
743 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
744 maxlocalsize = maxglobalsize * (mp_maxid + 1);
745
746 for (i = 0; i < nsvars; i++) {
747 dtrace_statvar_t *svar = svars[i];
748 uint8_t scope;
749 size_t size;
750
751 if (svar == NULL || (size = svar->dtsv_size) == 0)
752 continue;
753
754 scope = svar->dtsv_var.dtdv_scope;
755
756 /*
757 * We verify that our size is valid in the spirit of providing
758 * defense in depth: we want to prevent attackers from using
759 * DTrace to escalate an orthogonal kernel heap corruption bug
760 * into the ability to store to arbitrary locations in memory.
761 */
762 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
763 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
764
765 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
766 svar->dtsv_size)) {
767 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
768 svar->dtsv_size);
769 return (1);
770 }
771 }
772
773 return (0);
774 }
775
776 /*
777 * Check to see if the address is within a memory region to which a store may
778 * be issued. This includes the DTrace scratch areas, and any DTrace variable
779 * region. The caller of dtrace_canstore() is responsible for performing any
780 * alignment checks that are needed before stores are actually executed.
781 */
782 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)783 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
784 dtrace_vstate_t *vstate)
785 {
786 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
787 }
788
789 /*
790 * Implementation of dtrace_canstore which communicates the upper bound of the
791 * allowed memory region.
792 */
793 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)794 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
795 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
796 {
797 /*
798 * First, check to see if the address is in scratch space...
799 */
800 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
801 mstate->dtms_scratch_size)) {
802 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
803 mstate->dtms_scratch_size);
804 return (1);
805 }
806
807 /*
808 * Now check to see if it's a dynamic variable. This check will pick
809 * up both thread-local variables and any global dynamically-allocated
810 * variables.
811 */
812 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
813 vstate->dtvs_dynvars.dtds_size)) {
814 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
815 uintptr_t base = (uintptr_t)dstate->dtds_base +
816 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
817 uintptr_t chunkoffs;
818 dtrace_dynvar_t *dvar;
819
820 /*
821 * Before we assume that we can store here, we need to make
822 * sure that it isn't in our metadata -- storing to our
823 * dynamic variable metadata would corrupt our state. For
824 * the range to not include any dynamic variable metadata,
825 * it must:
826 *
827 * (1) Start above the hash table that is at the base of
828 * the dynamic variable space
829 *
830 * (2) Have a starting chunk offset that is beyond the
831 * dtrace_dynvar_t that is at the base of every chunk
832 *
833 * (3) Not span a chunk boundary
834 *
835 * (4) Not be in the tuple space of a dynamic variable
836 *
837 */
838 if (addr < base)
839 return (0);
840
841 chunkoffs = (addr - base) % dstate->dtds_chunksize;
842
843 if (chunkoffs < sizeof (dtrace_dynvar_t))
844 return (0);
845
846 if (chunkoffs + sz > dstate->dtds_chunksize)
847 return (0);
848
849 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
850
851 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
852 return (0);
853
854 if (chunkoffs < sizeof (dtrace_dynvar_t) +
855 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
856 return (0);
857
858 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
859 return (1);
860 }
861
862 /*
863 * Finally, check the static local and global variables. These checks
864 * take the longest, so we perform them last.
865 */
866 if (dtrace_canstore_statvar(addr, sz, remain,
867 vstate->dtvs_locals, vstate->dtvs_nlocals))
868 return (1);
869
870 if (dtrace_canstore_statvar(addr, sz, remain,
871 vstate->dtvs_globals, vstate->dtvs_nglobals))
872 return (1);
873
874 return (0);
875 }
876
877
878 /*
879 * Convenience routine to check to see if the address is within a memory
880 * region in which a load may be issued given the user's privilege level;
881 * if not, it sets the appropriate error flags and loads 'addr' into the
882 * illegal value slot.
883 *
884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
885 * appropriate memory access protection.
886 */
887 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)888 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
889 dtrace_vstate_t *vstate)
890 {
891 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
892 }
893
894 /*
895 * Implementation of dtrace_canload which communicates the uppoer bound of the
896 * allowed memory region.
897 */
898 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)899 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
900 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
901 {
902 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
903 file_t *fp;
904
905 /*
906 * If we hold the privilege to read from kernel memory, then
907 * everything is readable.
908 */
909 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
910 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
911 return (1);
912 }
913
914 /*
915 * You can obviously read that which you can store.
916 */
917 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
918 return (1);
919
920 /*
921 * We're allowed to read from our own string table.
922 */
923 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
924 mstate->dtms_difo->dtdo_strlen)) {
925 DTRACE_RANGE_REMAIN(remain, addr,
926 mstate->dtms_difo->dtdo_strtab,
927 mstate->dtms_difo->dtdo_strlen);
928 return (1);
929 }
930
931 if (vstate->dtvs_state != NULL &&
932 dtrace_priv_proc(vstate->dtvs_state)) {
933 proc_t *p;
934
935 /*
936 * When we have privileges to the current process, there are
937 * several context-related kernel structures that are safe to
938 * read, even absent the privilege to read from kernel memory.
939 * These reads are safe because these structures contain only
940 * state that (1) we're permitted to read, (2) is harmless or
941 * (3) contains pointers to additional kernel state that we're
942 * not permitted to read (and as such, do not present an
943 * opportunity for privilege escalation). Finally (and
944 * critically), because of the nature of their relation with
945 * the current thread context, the memory associated with these
946 * structures cannot change over the duration of probe context,
947 * and it is therefore impossible for this memory to be
948 * deallocated and reallocated as something else while it's
949 * being operated upon.
950 */
951 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
952 DTRACE_RANGE_REMAIN(remain, addr, curthread,
953 sizeof (kthread_t));
954 return (1);
955 }
956
957 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
958 sz, curthread->t_procp, sizeof (proc_t))) {
959 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
960 sizeof (proc_t));
961 return (1);
962 }
963
964 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
965 curthread->t_cred, sizeof (cred_t))) {
966 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
967 sizeof (cred_t));
968 return (1);
969 }
970
971 #ifdef illumos
972 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
973 &(p->p_pidp->pid_id), sizeof (pid_t))) {
974 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
975 sizeof (pid_t));
976 return (1);
977 }
978
979 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
980 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
981 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
982 offsetof(cpu_t, cpu_pause_thread));
983 return (1);
984 }
985 #endif
986 }
987
988 if ((fp = mstate->dtms_getf) != NULL) {
989 uintptr_t psz = sizeof (void *);
990 vnode_t *vp;
991 vnodeops_t *op;
992
993 /*
994 * When getf() returns a file_t, the enabling is implicitly
995 * granted the (transient) right to read the returned file_t
996 * as well as the v_path and v_op->vnop_name of the underlying
997 * vnode. These accesses are allowed after a successful
998 * getf() because the members that they refer to cannot change
999 * once set -- and the barrier logic in the kernel's closef()
1000 * path assures that the file_t and its referenced vode_t
1001 * cannot themselves be stale (that is, it impossible for
1002 * either dtms_getf itself or its f_vnode member to reference
1003 * freed memory).
1004 */
1005 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1006 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1007 return (1);
1008 }
1009
1010 if ((vp = fp->f_vnode) != NULL) {
1011 size_t slen;
1012 #ifdef illumos
1013 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1014 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1015 psz);
1016 return (1);
1017 }
1018 slen = strlen(vp->v_path) + 1;
1019 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1020 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1021 slen);
1022 return (1);
1023 }
1024 #endif
1025
1026 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1027 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1028 psz);
1029 return (1);
1030 }
1031
1032 #ifdef illumos
1033 if ((op = vp->v_op) != NULL &&
1034 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1035 DTRACE_RANGE_REMAIN(remain, addr,
1036 &op->vnop_name, psz);
1037 return (1);
1038 }
1039
1040 if (op != NULL && op->vnop_name != NULL &&
1041 DTRACE_INRANGE(addr, sz, op->vnop_name,
1042 (slen = strlen(op->vnop_name) + 1))) {
1043 DTRACE_RANGE_REMAIN(remain, addr,
1044 op->vnop_name, slen);
1045 return (1);
1046 }
1047 #endif
1048 }
1049 }
1050
1051 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1052 *illval = addr;
1053 return (0);
1054 }
1055
1056 /*
1057 * Convenience routine to check to see if a given string is within a memory
1058 * region in which a load may be issued given the user's privilege level;
1059 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1060 * calls in the event that the user has all privileges.
1061 */
1062 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1063 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1064 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1065 {
1066 size_t rsize;
1067
1068 /*
1069 * If we hold the privilege to read from kernel memory, then
1070 * everything is readable.
1071 */
1072 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1073 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1074 return (1);
1075 }
1076
1077 /*
1078 * Even if the caller is uninterested in querying the remaining valid
1079 * range, it is required to ensure that the access is allowed.
1080 */
1081 if (remain == NULL) {
1082 remain = &rsize;
1083 }
1084 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1085 size_t strsz;
1086 /*
1087 * Perform the strlen after determining the length of the
1088 * memory region which is accessible. This prevents timing
1089 * information from being used to find NULs in memory which is
1090 * not accessible to the caller.
1091 */
1092 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1093 MIN(sz, *remain));
1094 if (strsz <= *remain) {
1095 return (1);
1096 }
1097 }
1098
1099 return (0);
1100 }
1101
1102 /*
1103 * Convenience routine to check to see if a given variable is within a memory
1104 * region in which a load may be issued given the user's privilege level.
1105 */
1106 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1107 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1108 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1109 {
1110 size_t sz;
1111 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1112
1113 /*
1114 * Calculate the max size before performing any checks since even
1115 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1116 * return the max length via 'remain'.
1117 */
1118 if (type->dtdt_kind == DIF_TYPE_STRING) {
1119 dtrace_state_t *state = vstate->dtvs_state;
1120
1121 if (state != NULL) {
1122 sz = state->dts_options[DTRACEOPT_STRSIZE];
1123 } else {
1124 /*
1125 * In helper context, we have a NULL state; fall back
1126 * to using the system-wide default for the string size
1127 * in this case.
1128 */
1129 sz = dtrace_strsize_default;
1130 }
1131 } else {
1132 sz = type->dtdt_size;
1133 }
1134
1135 /*
1136 * If we hold the privilege to read from kernel memory, then
1137 * everything is readable.
1138 */
1139 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1140 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1141 return (1);
1142 }
1143
1144 if (type->dtdt_kind == DIF_TYPE_STRING) {
1145 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1146 vstate));
1147 }
1148 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1149 vstate));
1150 }
1151
1152 /*
1153 * Convert a string to a signed integer using safe loads.
1154 *
1155 * NOTE: This function uses various macros from strtolctype.h to manipulate
1156 * digit values, etc -- these have all been checked to ensure they make
1157 * no additional function calls.
1158 */
1159 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1160 dtrace_strtoll(char *input, int base, size_t limit)
1161 {
1162 uintptr_t pos = (uintptr_t)input;
1163 int64_t val = 0;
1164 int x;
1165 boolean_t neg = B_FALSE;
1166 char c, cc, ccc;
1167 uintptr_t end = pos + limit;
1168
1169 /*
1170 * Consume any whitespace preceding digits.
1171 */
1172 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1173 pos++;
1174
1175 /*
1176 * Handle an explicit sign if one is present.
1177 */
1178 if (c == '-' || c == '+') {
1179 if (c == '-')
1180 neg = B_TRUE;
1181 c = dtrace_load8(++pos);
1182 }
1183
1184 /*
1185 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1186 * if present.
1187 */
1188 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1189 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1190 pos += 2;
1191 c = ccc;
1192 }
1193
1194 /*
1195 * Read in contiguous digits until the first non-digit character.
1196 */
1197 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1198 c = dtrace_load8(++pos))
1199 val = val * base + x;
1200
1201 return (neg ? -val : val);
1202 }
1203
1204 /*
1205 * Compare two strings using safe loads.
1206 */
1207 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1208 dtrace_strncmp(char *s1, char *s2, size_t limit)
1209 {
1210 uint8_t c1, c2;
1211 volatile uint16_t *flags;
1212
1213 if (s1 == s2 || limit == 0)
1214 return (0);
1215
1216 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1217
1218 do {
1219 if (s1 == NULL) {
1220 c1 = '\0';
1221 } else {
1222 c1 = dtrace_load8((uintptr_t)s1++);
1223 }
1224
1225 if (s2 == NULL) {
1226 c2 = '\0';
1227 } else {
1228 c2 = dtrace_load8((uintptr_t)s2++);
1229 }
1230
1231 if (c1 != c2)
1232 return (c1 - c2);
1233 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1234
1235 return (0);
1236 }
1237
1238 /*
1239 * Compute strlen(s) for a string using safe memory accesses. The additional
1240 * len parameter is used to specify a maximum length to ensure completion.
1241 */
1242 static size_t
dtrace_strlen(const char * s,size_t lim)1243 dtrace_strlen(const char *s, size_t lim)
1244 {
1245 uint_t len;
1246
1247 for (len = 0; len != lim; len++) {
1248 if (dtrace_load8((uintptr_t)s++) == '\0')
1249 break;
1250 }
1251
1252 return (len);
1253 }
1254
1255 /*
1256 * Check if an address falls within a toxic region.
1257 */
1258 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1259 dtrace_istoxic(uintptr_t kaddr, size_t size)
1260 {
1261 uintptr_t taddr, tsize;
1262 int i;
1263
1264 for (i = 0; i < dtrace_toxranges; i++) {
1265 taddr = dtrace_toxrange[i].dtt_base;
1266 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1267
1268 if (kaddr - taddr < tsize) {
1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1270 cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1271 return (1);
1272 }
1273
1274 if (taddr - kaddr < size) {
1275 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1276 cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1277 return (1);
1278 }
1279 }
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1286 * memory specified by the DIF program. The dst is assumed to be safe memory
1287 * that we can store to directly because it is managed by DTrace. As with
1288 * standard bcopy, overlapping copies are handled properly.
1289 */
1290 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1291 dtrace_bcopy(const void *src, void *dst, size_t len)
1292 {
1293 if (len != 0) {
1294 uint8_t *s1 = dst;
1295 const uint8_t *s2 = src;
1296
1297 if (s1 <= s2) {
1298 do {
1299 *s1++ = dtrace_load8((uintptr_t)s2++);
1300 } while (--len != 0);
1301 } else {
1302 s2 += len;
1303 s1 += len;
1304
1305 do {
1306 *--s1 = dtrace_load8((uintptr_t)--s2);
1307 } while (--len != 0);
1308 }
1309 }
1310 }
1311
1312 /*
1313 * Copy src to dst using safe memory accesses, up to either the specified
1314 * length, or the point that a nul byte is encountered. The src is assumed to
1315 * be unsafe memory specified by the DIF program. The dst is assumed to be
1316 * safe memory that we can store to directly because it is managed by DTrace.
1317 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1318 */
1319 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1320 dtrace_strcpy(const void *src, void *dst, size_t len)
1321 {
1322 if (len != 0) {
1323 uint8_t *s1 = dst, c;
1324 const uint8_t *s2 = src;
1325
1326 do {
1327 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1328 } while (--len != 0 && c != '\0');
1329 }
1330 }
1331
1332 /*
1333 * Copy src to dst, deriving the size and type from the specified (BYREF)
1334 * variable type. The src is assumed to be unsafe memory specified by the DIF
1335 * program. The dst is assumed to be DTrace variable memory that is of the
1336 * specified type; we assume that we can store to directly.
1337 */
1338 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1339 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1340 {
1341 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1342
1343 if (type->dtdt_kind == DIF_TYPE_STRING) {
1344 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1345 } else {
1346 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1347 }
1348 }
1349
1350 /*
1351 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1352 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1353 * safe memory that we can access directly because it is managed by DTrace.
1354 */
1355 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1356 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1357 {
1358 volatile uint16_t *flags;
1359
1360 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1361
1362 if (s1 == s2)
1363 return (0);
1364
1365 if (s1 == NULL || s2 == NULL)
1366 return (1);
1367
1368 if (s1 != s2 && len != 0) {
1369 const uint8_t *ps1 = s1;
1370 const uint8_t *ps2 = s2;
1371
1372 do {
1373 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1374 return (1);
1375 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1376 }
1377 return (0);
1378 }
1379
1380 /*
1381 * Zero the specified region using a simple byte-by-byte loop. Note that this
1382 * is for safe DTrace-managed memory only.
1383 */
1384 static void
dtrace_bzero(void * dst,size_t len)1385 dtrace_bzero(void *dst, size_t len)
1386 {
1387 uchar_t *cp;
1388
1389 for (cp = dst; len != 0; len--)
1390 *cp++ = 0;
1391 }
1392
1393 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1394 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1395 {
1396 uint64_t result[2];
1397
1398 result[0] = addend1[0] + addend2[0];
1399 result[1] = addend1[1] + addend2[1] +
1400 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1401
1402 sum[0] = result[0];
1403 sum[1] = result[1];
1404 }
1405
1406 /*
1407 * Shift the 128-bit value in a by b. If b is positive, shift left.
1408 * If b is negative, shift right.
1409 */
1410 static void
dtrace_shift_128(uint64_t * a,int b)1411 dtrace_shift_128(uint64_t *a, int b)
1412 {
1413 uint64_t mask;
1414
1415 if (b == 0)
1416 return;
1417
1418 if (b < 0) {
1419 b = -b;
1420 if (b >= 64) {
1421 a[0] = a[1] >> (b - 64);
1422 a[1] = 0;
1423 } else {
1424 a[0] >>= b;
1425 mask = 1LL << (64 - b);
1426 mask -= 1;
1427 a[0] |= ((a[1] & mask) << (64 - b));
1428 a[1] >>= b;
1429 }
1430 } else {
1431 if (b >= 64) {
1432 a[1] = a[0] << (b - 64);
1433 a[0] = 0;
1434 } else {
1435 a[1] <<= b;
1436 mask = a[0] >> (64 - b);
1437 a[1] |= mask;
1438 a[0] <<= b;
1439 }
1440 }
1441 }
1442
1443 /*
1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1445 * use native multiplication on those, and then re-combine into the
1446 * resulting 128-bit value.
1447 *
1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1449 * hi1 * hi2 << 64 +
1450 * hi1 * lo2 << 32 +
1451 * hi2 * lo1 << 32 +
1452 * lo1 * lo2
1453 */
1454 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1455 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1456 {
1457 uint64_t hi1, hi2, lo1, lo2;
1458 uint64_t tmp[2];
1459
1460 hi1 = factor1 >> 32;
1461 hi2 = factor2 >> 32;
1462
1463 lo1 = factor1 & DT_MASK_LO;
1464 lo2 = factor2 & DT_MASK_LO;
1465
1466 product[0] = lo1 * lo2;
1467 product[1] = hi1 * hi2;
1468
1469 tmp[0] = hi1 * lo2;
1470 tmp[1] = 0;
1471 dtrace_shift_128(tmp, 32);
1472 dtrace_add_128(product, tmp, product);
1473
1474 tmp[0] = hi2 * lo1;
1475 tmp[1] = 0;
1476 dtrace_shift_128(tmp, 32);
1477 dtrace_add_128(product, tmp, product);
1478 }
1479
1480 /*
1481 * This privilege check should be used by actions and subroutines to
1482 * verify that the user credentials of the process that enabled the
1483 * invoking ECB match the target credentials
1484 */
1485 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1486 dtrace_priv_proc_common_user(dtrace_state_t *state)
1487 {
1488 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1489
1490 /*
1491 * We should always have a non-NULL state cred here, since if cred
1492 * is null (anonymous tracing), we fast-path bypass this routine.
1493 */
1494 ASSERT(s_cr != NULL);
1495
1496 if ((cr = CRED()) != NULL &&
1497 s_cr->cr_uid == cr->cr_uid &&
1498 s_cr->cr_uid == cr->cr_ruid &&
1499 s_cr->cr_uid == cr->cr_suid &&
1500 s_cr->cr_gid == cr->cr_gid &&
1501 s_cr->cr_gid == cr->cr_rgid &&
1502 s_cr->cr_gid == cr->cr_sgid)
1503 return (1);
1504
1505 return (0);
1506 }
1507
1508 /*
1509 * This privilege check should be used by actions and subroutines to
1510 * verify that the zone of the process that enabled the invoking ECB
1511 * matches the target credentials
1512 */
1513 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1514 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1515 {
1516 #ifdef illumos
1517 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1518
1519 /*
1520 * We should always have a non-NULL state cred here, since if cred
1521 * is null (anonymous tracing), we fast-path bypass this routine.
1522 */
1523 ASSERT(s_cr != NULL);
1524
1525 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1526 return (1);
1527
1528 return (0);
1529 #else
1530 return (1);
1531 #endif
1532 }
1533
1534 /*
1535 * This privilege check should be used by actions and subroutines to
1536 * verify that the process has not setuid or changed credentials.
1537 */
1538 static int
dtrace_priv_proc_common_nocd(void)1539 dtrace_priv_proc_common_nocd(void)
1540 {
1541 proc_t *proc;
1542
1543 if ((proc = ttoproc(curthread)) != NULL &&
1544 !(proc->p_flag & SNOCD))
1545 return (1);
1546
1547 return (0);
1548 }
1549
1550 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1551 dtrace_priv_proc_destructive(dtrace_state_t *state)
1552 {
1553 int action = state->dts_cred.dcr_action;
1554
1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1556 dtrace_priv_proc_common_zone(state) == 0)
1557 goto bad;
1558
1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1560 dtrace_priv_proc_common_user(state) == 0)
1561 goto bad;
1562
1563 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1564 dtrace_priv_proc_common_nocd() == 0)
1565 goto bad;
1566
1567 return (1);
1568
1569 bad:
1570 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1571
1572 return (0);
1573 }
1574
1575 static int
dtrace_priv_proc_control(dtrace_state_t * state)1576 dtrace_priv_proc_control(dtrace_state_t *state)
1577 {
1578 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1579 return (1);
1580
1581 if (dtrace_priv_proc_common_zone(state) &&
1582 dtrace_priv_proc_common_user(state) &&
1583 dtrace_priv_proc_common_nocd())
1584 return (1);
1585
1586 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1587
1588 return (0);
1589 }
1590
1591 static int
dtrace_priv_proc(dtrace_state_t * state)1592 dtrace_priv_proc(dtrace_state_t *state)
1593 {
1594 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1595 return (1);
1596
1597 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1598
1599 return (0);
1600 }
1601
1602 static int
dtrace_priv_kernel(dtrace_state_t * state)1603 dtrace_priv_kernel(dtrace_state_t *state)
1604 {
1605 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1606 return (1);
1607
1608 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1609
1610 return (0);
1611 }
1612
1613 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1614 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1615 {
1616 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1617 return (1);
1618
1619 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1620
1621 return (0);
1622 }
1623
1624 /*
1625 * Determine if the dte_cond of the specified ECB allows for processing of
1626 * the current probe to continue. Note that this routine may allow continued
1627 * processing, but with access(es) stripped from the mstate's dtms_access
1628 * field.
1629 */
1630 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1631 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1632 dtrace_ecb_t *ecb)
1633 {
1634 dtrace_probe_t *probe = ecb->dte_probe;
1635 dtrace_provider_t *prov = probe->dtpr_provider;
1636 dtrace_pops_t *pops = &prov->dtpv_pops;
1637 int mode = DTRACE_MODE_NOPRIV_DROP;
1638
1639 ASSERT(ecb->dte_cond);
1640
1641 #ifdef illumos
1642 if (pops->dtps_mode != NULL) {
1643 mode = pops->dtps_mode(prov->dtpv_arg,
1644 probe->dtpr_id, probe->dtpr_arg);
1645
1646 ASSERT((mode & DTRACE_MODE_USER) ||
1647 (mode & DTRACE_MODE_KERNEL));
1648 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1649 (mode & DTRACE_MODE_NOPRIV_DROP));
1650 }
1651
1652 /*
1653 * If the dte_cond bits indicate that this consumer is only allowed to
1654 * see user-mode firings of this probe, call the provider's dtps_mode()
1655 * entry point to check that the probe was fired while in a user
1656 * context. If that's not the case, use the policy specified by the
1657 * provider to determine if we drop the probe or merely restrict
1658 * operation.
1659 */
1660 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1661 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1662
1663 if (!(mode & DTRACE_MODE_USER)) {
1664 if (mode & DTRACE_MODE_NOPRIV_DROP)
1665 return (0);
1666
1667 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1668 }
1669 }
1670 #endif
1671
1672 /*
1673 * This is more subtle than it looks. We have to be absolutely certain
1674 * that CRED() isn't going to change out from under us so it's only
1675 * legit to examine that structure if we're in constrained situations.
1676 * Currently, the only times we'll this check is if a non-super-user
1677 * has enabled the profile or syscall providers -- providers that
1678 * allow visibility of all processes. For the profile case, the check
1679 * above will ensure that we're examining a user context.
1680 */
1681 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1682 cred_t *cr;
1683 cred_t *s_cr = state->dts_cred.dcr_cred;
1684 proc_t *proc;
1685
1686 ASSERT(s_cr != NULL);
1687
1688 if ((cr = CRED()) == NULL ||
1689 s_cr->cr_uid != cr->cr_uid ||
1690 s_cr->cr_uid != cr->cr_ruid ||
1691 s_cr->cr_uid != cr->cr_suid ||
1692 s_cr->cr_gid != cr->cr_gid ||
1693 s_cr->cr_gid != cr->cr_rgid ||
1694 s_cr->cr_gid != cr->cr_sgid ||
1695 (proc = ttoproc(curthread)) == NULL ||
1696 (proc->p_flag & SNOCD)) {
1697 if (mode & DTRACE_MODE_NOPRIV_DROP)
1698 return (0);
1699
1700 #ifdef illumos
1701 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1702 #endif
1703 }
1704 }
1705
1706 #ifdef illumos
1707 /*
1708 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1709 * in our zone, check to see if our mode policy is to restrict rather
1710 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1711 * and DTRACE_ACCESS_ARGS
1712 */
1713 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1714 cred_t *cr;
1715 cred_t *s_cr = state->dts_cred.dcr_cred;
1716
1717 ASSERT(s_cr != NULL);
1718
1719 if ((cr = CRED()) == NULL ||
1720 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1721 if (mode & DTRACE_MODE_NOPRIV_DROP)
1722 return (0);
1723
1724 mstate->dtms_access &=
1725 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1726 }
1727 }
1728 #endif
1729
1730 return (1);
1731 }
1732
1733 /*
1734 * Note: not called from probe context. This function is called
1735 * asynchronously (and at a regular interval) from outside of probe context to
1736 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1737 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1738 */
1739 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1740 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1741 {
1742 dtrace_dynvar_t *dirty;
1743 dtrace_dstate_percpu_t *dcpu;
1744 dtrace_dynvar_t **rinsep;
1745 int i, j, work = 0;
1746
1747 CPU_FOREACH(i) {
1748 dcpu = &dstate->dtds_percpu[i];
1749 rinsep = &dcpu->dtdsc_rinsing;
1750
1751 /*
1752 * If the dirty list is NULL, there is no dirty work to do.
1753 */
1754 if (dcpu->dtdsc_dirty == NULL)
1755 continue;
1756
1757 if (dcpu->dtdsc_rinsing != NULL) {
1758 /*
1759 * If the rinsing list is non-NULL, then it is because
1760 * this CPU was selected to accept another CPU's
1761 * dirty list -- and since that time, dirty buffers
1762 * have accumulated. This is a highly unlikely
1763 * condition, but we choose to ignore the dirty
1764 * buffers -- they'll be picked up a future cleanse.
1765 */
1766 continue;
1767 }
1768
1769 if (dcpu->dtdsc_clean != NULL) {
1770 /*
1771 * If the clean list is non-NULL, then we're in a
1772 * situation where a CPU has done deallocations (we
1773 * have a non-NULL dirty list) but no allocations (we
1774 * also have a non-NULL clean list). We can't simply
1775 * move the dirty list into the clean list on this
1776 * CPU, yet we also don't want to allow this condition
1777 * to persist, lest a short clean list prevent a
1778 * massive dirty list from being cleaned (which in
1779 * turn could lead to otherwise avoidable dynamic
1780 * drops). To deal with this, we look for some CPU
1781 * with a NULL clean list, NULL dirty list, and NULL
1782 * rinsing list -- and then we borrow this CPU to
1783 * rinse our dirty list.
1784 */
1785 CPU_FOREACH(j) {
1786 dtrace_dstate_percpu_t *rinser;
1787
1788 rinser = &dstate->dtds_percpu[j];
1789
1790 if (rinser->dtdsc_rinsing != NULL)
1791 continue;
1792
1793 if (rinser->dtdsc_dirty != NULL)
1794 continue;
1795
1796 if (rinser->dtdsc_clean != NULL)
1797 continue;
1798
1799 rinsep = &rinser->dtdsc_rinsing;
1800 break;
1801 }
1802
1803 if (j > mp_maxid) {
1804 /*
1805 * We were unable to find another CPU that
1806 * could accept this dirty list -- we are
1807 * therefore unable to clean it now.
1808 */
1809 dtrace_dynvar_failclean++;
1810 continue;
1811 }
1812 }
1813
1814 work = 1;
1815
1816 /*
1817 * Atomically move the dirty list aside.
1818 */
1819 do {
1820 dirty = dcpu->dtdsc_dirty;
1821
1822 /*
1823 * Before we zap the dirty list, set the rinsing list.
1824 * (This allows for a potential assertion in
1825 * dtrace_dynvar(): if a free dynamic variable appears
1826 * on a hash chain, either the dirty list or the
1827 * rinsing list for some CPU must be non-NULL.)
1828 */
1829 *rinsep = dirty;
1830 dtrace_membar_producer();
1831 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1832 dirty, NULL) != dirty);
1833 }
1834
1835 if (!work) {
1836 /*
1837 * We have no work to do; we can simply return.
1838 */
1839 return;
1840 }
1841
1842 dtrace_sync();
1843
1844 CPU_FOREACH(i) {
1845 dcpu = &dstate->dtds_percpu[i];
1846
1847 if (dcpu->dtdsc_rinsing == NULL)
1848 continue;
1849
1850 /*
1851 * We are now guaranteed that no hash chain contains a pointer
1852 * into this dirty list; we can make it clean.
1853 */
1854 ASSERT(dcpu->dtdsc_clean == NULL);
1855 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1856 dcpu->dtdsc_rinsing = NULL;
1857 }
1858
1859 /*
1860 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1861 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1862 * This prevents a race whereby a CPU incorrectly decides that
1863 * the state should be something other than DTRACE_DSTATE_CLEAN
1864 * after dtrace_dynvar_clean() has completed.
1865 */
1866 dtrace_sync();
1867
1868 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1869 }
1870
1871 /*
1872 * Depending on the value of the op parameter, this function looks-up,
1873 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1874 * allocation is requested, this function will return a pointer to a
1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1876 * variable can be allocated. If NULL is returned, the appropriate counter
1877 * will be incremented.
1878 */
1879 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1880 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1881 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1882 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1883 {
1884 uint64_t hashval = DTRACE_DYNHASH_VALID;
1885 dtrace_dynhash_t *hash = dstate->dtds_hash;
1886 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1887 processorid_t me = curcpu, cpu = me;
1888 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1889 size_t bucket, ksize;
1890 size_t chunksize = dstate->dtds_chunksize;
1891 uintptr_t kdata, lock, nstate;
1892 uint_t i;
1893
1894 ASSERT(nkeys != 0);
1895
1896 /*
1897 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1898 * algorithm. For the by-value portions, we perform the algorithm in
1899 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1900 * bit, and seems to have only a minute effect on distribution. For
1901 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1902 * over each referenced byte. It's painful to do this, but it's much
1903 * better than pathological hash distribution. The efficacy of the
1904 * hashing algorithm (and a comparison with other algorithms) may be
1905 * found by running the ::dtrace_dynstat MDB dcmd.
1906 */
1907 for (i = 0; i < nkeys; i++) {
1908 if (key[i].dttk_size == 0) {
1909 uint64_t val = key[i].dttk_value;
1910
1911 hashval += (val >> 48) & 0xffff;
1912 hashval += (hashval << 10);
1913 hashval ^= (hashval >> 6);
1914
1915 hashval += (val >> 32) & 0xffff;
1916 hashval += (hashval << 10);
1917 hashval ^= (hashval >> 6);
1918
1919 hashval += (val >> 16) & 0xffff;
1920 hashval += (hashval << 10);
1921 hashval ^= (hashval >> 6);
1922
1923 hashval += val & 0xffff;
1924 hashval += (hashval << 10);
1925 hashval ^= (hashval >> 6);
1926 } else {
1927 /*
1928 * This is incredibly painful, but it beats the hell
1929 * out of the alternative.
1930 */
1931 uint64_t j, size = key[i].dttk_size;
1932 uintptr_t base = (uintptr_t)key[i].dttk_value;
1933
1934 if (!dtrace_canload(base, size, mstate, vstate))
1935 break;
1936
1937 for (j = 0; j < size; j++) {
1938 hashval += dtrace_load8(base + j);
1939 hashval += (hashval << 10);
1940 hashval ^= (hashval >> 6);
1941 }
1942 }
1943 }
1944
1945 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1946 return (NULL);
1947
1948 hashval += (hashval << 3);
1949 hashval ^= (hashval >> 11);
1950 hashval += (hashval << 15);
1951
1952 /*
1953 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1954 * comes out to be one of our two sentinel hash values. If this
1955 * actually happens, we set the hashval to be a value known to be a
1956 * non-sentinel value.
1957 */
1958 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1959 hashval = DTRACE_DYNHASH_VALID;
1960
1961 /*
1962 * Yes, it's painful to do a divide here. If the cycle count becomes
1963 * important here, tricks can be pulled to reduce it. (However, it's
1964 * critical that hash collisions be kept to an absolute minimum;
1965 * they're much more painful than a divide.) It's better to have a
1966 * solution that generates few collisions and still keeps things
1967 * relatively simple.
1968 */
1969 bucket = hashval % dstate->dtds_hashsize;
1970
1971 if (op == DTRACE_DYNVAR_DEALLOC) {
1972 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1973
1974 for (;;) {
1975 while ((lock = *lockp) & 1)
1976 continue;
1977
1978 if (dtrace_casptr((volatile void *)lockp,
1979 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1980 break;
1981 }
1982
1983 dtrace_membar_producer();
1984 }
1985
1986 top:
1987 prev = NULL;
1988 lock = hash[bucket].dtdh_lock;
1989
1990 dtrace_membar_consumer();
1991
1992 start = hash[bucket].dtdh_chain;
1993 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1994 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1995 op != DTRACE_DYNVAR_DEALLOC));
1996
1997 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1998 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1999 dtrace_key_t *dkey = &dtuple->dtt_key[0];
2000
2001 if (dvar->dtdv_hashval != hashval) {
2002 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2003 /*
2004 * We've reached the sink, and therefore the
2005 * end of the hash chain; we can kick out of
2006 * the loop knowing that we have seen a valid
2007 * snapshot of state.
2008 */
2009 ASSERT(dvar->dtdv_next == NULL);
2010 ASSERT(dvar == &dtrace_dynhash_sink);
2011 break;
2012 }
2013
2014 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2015 /*
2016 * We've gone off the rails: somewhere along
2017 * the line, one of the members of this hash
2018 * chain was deleted. Note that we could also
2019 * detect this by simply letting this loop run
2020 * to completion, as we would eventually hit
2021 * the end of the dirty list. However, we
2022 * want to avoid running the length of the
2023 * dirty list unnecessarily (it might be quite
2024 * long), so we catch this as early as
2025 * possible by detecting the hash marker. In
2026 * this case, we simply set dvar to NULL and
2027 * break; the conditional after the loop will
2028 * send us back to top.
2029 */
2030 dvar = NULL;
2031 break;
2032 }
2033
2034 goto next;
2035 }
2036
2037 if (dtuple->dtt_nkeys != nkeys)
2038 goto next;
2039
2040 for (i = 0; i < nkeys; i++, dkey++) {
2041 if (dkey->dttk_size != key[i].dttk_size)
2042 goto next; /* size or type mismatch */
2043
2044 if (dkey->dttk_size != 0) {
2045 if (dtrace_bcmp(
2046 (void *)(uintptr_t)key[i].dttk_value,
2047 (void *)(uintptr_t)dkey->dttk_value,
2048 dkey->dttk_size))
2049 goto next;
2050 } else {
2051 if (dkey->dttk_value != key[i].dttk_value)
2052 goto next;
2053 }
2054 }
2055
2056 if (op != DTRACE_DYNVAR_DEALLOC)
2057 return (dvar);
2058
2059 ASSERT(dvar->dtdv_next == NULL ||
2060 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2061
2062 if (prev != NULL) {
2063 ASSERT(hash[bucket].dtdh_chain != dvar);
2064 ASSERT(start != dvar);
2065 ASSERT(prev->dtdv_next == dvar);
2066 prev->dtdv_next = dvar->dtdv_next;
2067 } else {
2068 if (dtrace_casptr(&hash[bucket].dtdh_chain,
2069 start, dvar->dtdv_next) != start) {
2070 /*
2071 * We have failed to atomically swing the
2072 * hash table head pointer, presumably because
2073 * of a conflicting allocation on another CPU.
2074 * We need to reread the hash chain and try
2075 * again.
2076 */
2077 goto top;
2078 }
2079 }
2080
2081 dtrace_membar_producer();
2082
2083 /*
2084 * Now set the hash value to indicate that it's free.
2085 */
2086 ASSERT(hash[bucket].dtdh_chain != dvar);
2087 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2088
2089 dtrace_membar_producer();
2090
2091 /*
2092 * Set the next pointer to point at the dirty list, and
2093 * atomically swing the dirty pointer to the newly freed dvar.
2094 */
2095 do {
2096 next = dcpu->dtdsc_dirty;
2097 dvar->dtdv_next = next;
2098 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2099
2100 /*
2101 * Finally, unlock this hash bucket.
2102 */
2103 ASSERT(hash[bucket].dtdh_lock == lock);
2104 ASSERT(lock & 1);
2105 hash[bucket].dtdh_lock++;
2106
2107 return (NULL);
2108 next:
2109 prev = dvar;
2110 continue;
2111 }
2112
2113 if (dvar == NULL) {
2114 /*
2115 * If dvar is NULL, it is because we went off the rails:
2116 * one of the elements that we traversed in the hash chain
2117 * was deleted while we were traversing it. In this case,
2118 * we assert that we aren't doing a dealloc (deallocs lock
2119 * the hash bucket to prevent themselves from racing with
2120 * one another), and retry the hash chain traversal.
2121 */
2122 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2123 goto top;
2124 }
2125
2126 if (op != DTRACE_DYNVAR_ALLOC) {
2127 /*
2128 * If we are not to allocate a new variable, we want to
2129 * return NULL now. Before we return, check that the value
2130 * of the lock word hasn't changed. If it has, we may have
2131 * seen an inconsistent snapshot.
2132 */
2133 if (op == DTRACE_DYNVAR_NOALLOC) {
2134 if (hash[bucket].dtdh_lock != lock)
2135 goto top;
2136 } else {
2137 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2138 ASSERT(hash[bucket].dtdh_lock == lock);
2139 ASSERT(lock & 1);
2140 hash[bucket].dtdh_lock++;
2141 }
2142
2143 return (NULL);
2144 }
2145
2146 /*
2147 * We need to allocate a new dynamic variable. The size we need is the
2148 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2149 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2150 * the size of any referred-to data (dsize). We then round the final
2151 * size up to the chunksize for allocation.
2152 */
2153 for (ksize = 0, i = 0; i < nkeys; i++)
2154 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2155
2156 /*
2157 * This should be pretty much impossible, but could happen if, say,
2158 * strange DIF specified the tuple. Ideally, this should be an
2159 * assertion and not an error condition -- but that requires that the
2160 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2161 * bullet-proof. (That is, it must not be able to be fooled by
2162 * malicious DIF.) Given the lack of backwards branches in DIF,
2163 * solving this would presumably not amount to solving the Halting
2164 * Problem -- but it still seems awfully hard.
2165 */
2166 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2167 ksize + dsize > chunksize) {
2168 dcpu->dtdsc_drops++;
2169 return (NULL);
2170 }
2171
2172 nstate = DTRACE_DSTATE_EMPTY;
2173
2174 do {
2175 retry:
2176 free = dcpu->dtdsc_free;
2177
2178 if (free == NULL) {
2179 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2180 void *rval;
2181
2182 if (clean == NULL) {
2183 /*
2184 * We're out of dynamic variable space on
2185 * this CPU. Unless we have tried all CPUs,
2186 * we'll try to allocate from a different
2187 * CPU.
2188 */
2189 switch (dstate->dtds_state) {
2190 case DTRACE_DSTATE_CLEAN: {
2191 void *sp = &dstate->dtds_state;
2192
2193 if (++cpu > mp_maxid)
2194 cpu = 0;
2195
2196 if (dcpu->dtdsc_dirty != NULL &&
2197 nstate == DTRACE_DSTATE_EMPTY)
2198 nstate = DTRACE_DSTATE_DIRTY;
2199
2200 if (dcpu->dtdsc_rinsing != NULL)
2201 nstate = DTRACE_DSTATE_RINSING;
2202
2203 dcpu = &dstate->dtds_percpu[cpu];
2204
2205 if (cpu != me)
2206 goto retry;
2207
2208 (void) dtrace_cas32(sp,
2209 DTRACE_DSTATE_CLEAN, nstate);
2210
2211 /*
2212 * To increment the correct bean
2213 * counter, take another lap.
2214 */
2215 goto retry;
2216 }
2217
2218 case DTRACE_DSTATE_DIRTY:
2219 dcpu->dtdsc_dirty_drops++;
2220 break;
2221
2222 case DTRACE_DSTATE_RINSING:
2223 dcpu->dtdsc_rinsing_drops++;
2224 break;
2225
2226 case DTRACE_DSTATE_EMPTY:
2227 dcpu->dtdsc_drops++;
2228 break;
2229 }
2230
2231 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2232 return (NULL);
2233 }
2234
2235 /*
2236 * The clean list appears to be non-empty. We want to
2237 * move the clean list to the free list; we start by
2238 * moving the clean pointer aside.
2239 */
2240 if (dtrace_casptr(&dcpu->dtdsc_clean,
2241 clean, NULL) != clean) {
2242 /*
2243 * We are in one of two situations:
2244 *
2245 * (a) The clean list was switched to the
2246 * free list by another CPU.
2247 *
2248 * (b) The clean list was added to by the
2249 * cleansing cyclic.
2250 *
2251 * In either of these situations, we can
2252 * just reattempt the free list allocation.
2253 */
2254 goto retry;
2255 }
2256
2257 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2258
2259 /*
2260 * Now we'll move the clean list to our free list.
2261 * It's impossible for this to fail: the only way
2262 * the free list can be updated is through this
2263 * code path, and only one CPU can own the clean list.
2264 * Thus, it would only be possible for this to fail if
2265 * this code were racing with dtrace_dynvar_clean().
2266 * (That is, if dtrace_dynvar_clean() updated the clean
2267 * list, and we ended up racing to update the free
2268 * list.) This race is prevented by the dtrace_sync()
2269 * in dtrace_dynvar_clean() -- which flushes the
2270 * owners of the clean lists out before resetting
2271 * the clean lists.
2272 */
2273 dcpu = &dstate->dtds_percpu[me];
2274 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2275 ASSERT(rval == NULL);
2276 goto retry;
2277 }
2278
2279 dvar = free;
2280 new_free = dvar->dtdv_next;
2281 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2282
2283 /*
2284 * We have now allocated a new chunk. We copy the tuple keys into the
2285 * tuple array and copy any referenced key data into the data space
2286 * following the tuple array. As we do this, we relocate dttk_value
2287 * in the final tuple to point to the key data address in the chunk.
2288 */
2289 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2290 dvar->dtdv_data = (void *)(kdata + ksize);
2291 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2292
2293 for (i = 0; i < nkeys; i++) {
2294 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2295 size_t kesize = key[i].dttk_size;
2296
2297 if (kesize != 0) {
2298 dtrace_bcopy(
2299 (const void *)(uintptr_t)key[i].dttk_value,
2300 (void *)kdata, kesize);
2301 dkey->dttk_value = kdata;
2302 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2303 } else {
2304 dkey->dttk_value = key[i].dttk_value;
2305 }
2306
2307 dkey->dttk_size = kesize;
2308 }
2309
2310 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2311 dvar->dtdv_hashval = hashval;
2312 dvar->dtdv_next = start;
2313
2314 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2315 return (dvar);
2316
2317 /*
2318 * The cas has failed. Either another CPU is adding an element to
2319 * this hash chain, or another CPU is deleting an element from this
2320 * hash chain. The simplest way to deal with both of these cases
2321 * (though not necessarily the most efficient) is to free our
2322 * allocated block and re-attempt it all. Note that the free is
2323 * to the dirty list and _not_ to the free list. This is to prevent
2324 * races with allocators, above.
2325 */
2326 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2327
2328 dtrace_membar_producer();
2329
2330 do {
2331 free = dcpu->dtdsc_dirty;
2332 dvar->dtdv_next = free;
2333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2334
2335 goto top;
2336 }
2337
2338 /*ARGSUSED*/
2339 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2340 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2341 {
2342 if ((int64_t)nval < (int64_t)*oval)
2343 *oval = nval;
2344 }
2345
2346 /*ARGSUSED*/
2347 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2348 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2349 {
2350 if ((int64_t)nval > (int64_t)*oval)
2351 *oval = nval;
2352 }
2353
2354 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2355 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2356 {
2357 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2358 int64_t val = (int64_t)nval;
2359
2360 if (val < 0) {
2361 for (i = 0; i < zero; i++) {
2362 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2363 quanta[i] += incr;
2364 return;
2365 }
2366 }
2367 } else {
2368 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2369 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2370 quanta[i - 1] += incr;
2371 return;
2372 }
2373 }
2374
2375 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2376 return;
2377 }
2378
2379 ASSERT(0);
2380 }
2381
2382 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2383 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2384 {
2385 uint64_t arg = *lquanta++;
2386 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2387 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2388 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2389 int32_t val = (int32_t)nval, level;
2390
2391 ASSERT(step != 0);
2392 ASSERT(levels != 0);
2393
2394 if (val < base) {
2395 /*
2396 * This is an underflow.
2397 */
2398 lquanta[0] += incr;
2399 return;
2400 }
2401
2402 level = (val - base) / step;
2403
2404 if (level < levels) {
2405 lquanta[level + 1] += incr;
2406 return;
2407 }
2408
2409 /*
2410 * This is an overflow.
2411 */
2412 lquanta[levels + 1] += incr;
2413 }
2414
2415 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2416 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2417 uint16_t high, uint16_t nsteps, int64_t value)
2418 {
2419 int64_t this = 1, last, next;
2420 int base = 1, order;
2421
2422 ASSERT(factor <= nsteps);
2423 ASSERT(nsteps % factor == 0);
2424
2425 for (order = 0; order < low; order++)
2426 this *= factor;
2427
2428 /*
2429 * If our value is less than our factor taken to the power of the
2430 * low order of magnitude, it goes into the zeroth bucket.
2431 */
2432 if (value < (last = this))
2433 return (0);
2434
2435 for (this *= factor; order <= high; order++) {
2436 int nbuckets = this > nsteps ? nsteps : this;
2437
2438 if ((next = this * factor) < this) {
2439 /*
2440 * We should not generally get log/linear quantizations
2441 * with a high magnitude that allows 64-bits to
2442 * overflow, but we nonetheless protect against this
2443 * by explicitly checking for overflow, and clamping
2444 * our value accordingly.
2445 */
2446 value = this - 1;
2447 }
2448
2449 if (value < this) {
2450 /*
2451 * If our value lies within this order of magnitude,
2452 * determine its position by taking the offset within
2453 * the order of magnitude, dividing by the bucket
2454 * width, and adding to our (accumulated) base.
2455 */
2456 return (base + (value - last) / (this / nbuckets));
2457 }
2458
2459 base += nbuckets - (nbuckets / factor);
2460 last = this;
2461 this = next;
2462 }
2463
2464 /*
2465 * Our value is greater than or equal to our factor taken to the
2466 * power of one plus the high magnitude -- return the top bucket.
2467 */
2468 return (base);
2469 }
2470
2471 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2472 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2473 {
2474 uint64_t arg = *llquanta++;
2475 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2476 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2477 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2478 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2479
2480 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2481 low, high, nsteps, nval)] += incr;
2482 }
2483
2484 /*ARGSUSED*/
2485 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2486 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2487 {
2488 data[0]++;
2489 data[1] += nval;
2490 }
2491
2492 /*ARGSUSED*/
2493 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2494 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2495 {
2496 int64_t snval = (int64_t)nval;
2497 uint64_t tmp[2];
2498
2499 data[0]++;
2500 data[1] += nval;
2501
2502 /*
2503 * What we want to say here is:
2504 *
2505 * data[2] += nval * nval;
2506 *
2507 * But given that nval is 64-bit, we could easily overflow, so
2508 * we do this as 128-bit arithmetic.
2509 */
2510 if (snval < 0)
2511 snval = -snval;
2512
2513 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2514 dtrace_add_128(data + 2, tmp, data + 2);
2515 }
2516
2517 /*ARGSUSED*/
2518 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2519 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2520 {
2521 *oval = *oval + 1;
2522 }
2523
2524 /*ARGSUSED*/
2525 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2526 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2527 {
2528 *oval += nval;
2529 }
2530
2531 /*
2532 * Aggregate given the tuple in the principal data buffer, and the aggregating
2533 * action denoted by the specified dtrace_aggregation_t. The aggregation
2534 * buffer is specified as the buf parameter. This routine does not return
2535 * failure; if there is no space in the aggregation buffer, the data will be
2536 * dropped, and a corresponding counter incremented.
2537 */
2538 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2539 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2540 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2541 {
2542 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2543 uint32_t i, ndx, size, fsize;
2544 uint32_t align = sizeof (uint64_t) - 1;
2545 dtrace_aggbuffer_t *agb;
2546 dtrace_aggkey_t *key;
2547 uint32_t hashval = 0, limit, isstr;
2548 caddr_t tomax, data, kdata;
2549 dtrace_actkind_t action;
2550 dtrace_action_t *act;
2551 size_t offs;
2552
2553 if (buf == NULL)
2554 return;
2555
2556 if (!agg->dtag_hasarg) {
2557 /*
2558 * Currently, only quantize() and lquantize() take additional
2559 * arguments, and they have the same semantics: an increment
2560 * value that defaults to 1 when not present. If additional
2561 * aggregating actions take arguments, the setting of the
2562 * default argument value will presumably have to become more
2563 * sophisticated...
2564 */
2565 arg = 1;
2566 }
2567
2568 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2569 size = rec->dtrd_offset - agg->dtag_base;
2570 fsize = size + rec->dtrd_size;
2571
2572 ASSERT(dbuf->dtb_tomax != NULL);
2573 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2574
2575 if ((tomax = buf->dtb_tomax) == NULL) {
2576 dtrace_buffer_drop(buf);
2577 return;
2578 }
2579
2580 /*
2581 * The metastructure is always at the bottom of the buffer.
2582 */
2583 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2584 sizeof (dtrace_aggbuffer_t));
2585
2586 if (buf->dtb_offset == 0) {
2587 /*
2588 * We just kludge up approximately 1/8th of the size to be
2589 * buckets. If this guess ends up being routinely
2590 * off-the-mark, we may need to dynamically readjust this
2591 * based on past performance.
2592 */
2593 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2594
2595 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2596 (uintptr_t)tomax || hashsize == 0) {
2597 /*
2598 * We've been given a ludicrously small buffer;
2599 * increment our drop count and leave.
2600 */
2601 dtrace_buffer_drop(buf);
2602 return;
2603 }
2604
2605 /*
2606 * And now, a pathetic attempt to try to get a an odd (or
2607 * perchance, a prime) hash size for better hash distribution.
2608 */
2609 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2610 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2611
2612 agb->dtagb_hashsize = hashsize;
2613 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2614 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2615 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2616
2617 for (i = 0; i < agb->dtagb_hashsize; i++)
2618 agb->dtagb_hash[i] = NULL;
2619 }
2620
2621 ASSERT(agg->dtag_first != NULL);
2622 ASSERT(agg->dtag_first->dta_intuple);
2623
2624 /*
2625 * Calculate the hash value based on the key. Note that we _don't_
2626 * include the aggid in the hashing (but we will store it as part of
2627 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2628 * algorithm: a simple, quick algorithm that has no known funnels, and
2629 * gets good distribution in practice. The efficacy of the hashing
2630 * algorithm (and a comparison with other algorithms) may be found by
2631 * running the ::dtrace_aggstat MDB dcmd.
2632 */
2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2634 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2635 limit = i + act->dta_rec.dtrd_size;
2636 ASSERT(limit <= size);
2637 isstr = DTRACEACT_ISSTRING(act);
2638
2639 for (; i < limit; i++) {
2640 hashval += data[i];
2641 hashval += (hashval << 10);
2642 hashval ^= (hashval >> 6);
2643
2644 if (isstr && data[i] == '\0')
2645 break;
2646 }
2647 }
2648
2649 hashval += (hashval << 3);
2650 hashval ^= (hashval >> 11);
2651 hashval += (hashval << 15);
2652
2653 /*
2654 * Yes, the divide here is expensive -- but it's generally the least
2655 * of the performance issues given the amount of data that we iterate
2656 * over to compute hash values, compare data, etc.
2657 */
2658 ndx = hashval % agb->dtagb_hashsize;
2659
2660 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2661 ASSERT((caddr_t)key >= tomax);
2662 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2663
2664 if (hashval != key->dtak_hashval || key->dtak_size != size)
2665 continue;
2666
2667 kdata = key->dtak_data;
2668 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2669
2670 for (act = agg->dtag_first; act->dta_intuple;
2671 act = act->dta_next) {
2672 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2673 limit = i + act->dta_rec.dtrd_size;
2674 ASSERT(limit <= size);
2675 isstr = DTRACEACT_ISSTRING(act);
2676
2677 for (; i < limit; i++) {
2678 if (kdata[i] != data[i])
2679 goto next;
2680
2681 if (isstr && data[i] == '\0')
2682 break;
2683 }
2684 }
2685
2686 if (action != key->dtak_action) {
2687 /*
2688 * We are aggregating on the same value in the same
2689 * aggregation with two different aggregating actions.
2690 * (This should have been picked up in the compiler,
2691 * so we may be dealing with errant or devious DIF.)
2692 * This is an error condition; we indicate as much,
2693 * and return.
2694 */
2695 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2696 return;
2697 }
2698
2699 /*
2700 * This is a hit: we need to apply the aggregator to
2701 * the value at this key.
2702 */
2703 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2704 return;
2705 next:
2706 continue;
2707 }
2708
2709 /*
2710 * We didn't find it. We need to allocate some zero-filled space,
2711 * link it into the hash table appropriately, and apply the aggregator
2712 * to the (zero-filled) value.
2713 */
2714 offs = buf->dtb_offset;
2715 while (offs & (align - 1))
2716 offs += sizeof (uint32_t);
2717
2718 /*
2719 * If we don't have enough room to both allocate a new key _and_
2720 * its associated data, increment the drop count and return.
2721 */
2722 if ((uintptr_t)tomax + offs + fsize >
2723 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2724 dtrace_buffer_drop(buf);
2725 return;
2726 }
2727
2728 /*CONSTCOND*/
2729 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2730 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2731 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2732
2733 key->dtak_data = kdata = tomax + offs;
2734 buf->dtb_offset = offs + fsize;
2735
2736 /*
2737 * Now copy the data across.
2738 */
2739 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2740
2741 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2742 kdata[i] = data[i];
2743
2744 /*
2745 * Because strings are not zeroed out by default, we need to iterate
2746 * looking for actions that store strings, and we need to explicitly
2747 * pad these strings out with zeroes.
2748 */
2749 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2750 int nul;
2751
2752 if (!DTRACEACT_ISSTRING(act))
2753 continue;
2754
2755 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2756 limit = i + act->dta_rec.dtrd_size;
2757 ASSERT(limit <= size);
2758
2759 for (nul = 0; i < limit; i++) {
2760 if (nul) {
2761 kdata[i] = '\0';
2762 continue;
2763 }
2764
2765 if (data[i] != '\0')
2766 continue;
2767
2768 nul = 1;
2769 }
2770 }
2771
2772 for (i = size; i < fsize; i++)
2773 kdata[i] = 0;
2774
2775 key->dtak_hashval = hashval;
2776 key->dtak_size = size;
2777 key->dtak_action = action;
2778 key->dtak_next = agb->dtagb_hash[ndx];
2779 agb->dtagb_hash[ndx] = key;
2780
2781 /*
2782 * Finally, apply the aggregator.
2783 */
2784 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2785 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2786 }
2787
2788 /*
2789 * Given consumer state, this routine finds a speculation in the INACTIVE
2790 * state and transitions it into the ACTIVE state. If there is no speculation
2791 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2792 * incremented -- it is up to the caller to take appropriate action.
2793 */
2794 static int
dtrace_speculation(dtrace_state_t * state)2795 dtrace_speculation(dtrace_state_t *state)
2796 {
2797 int i = 0;
2798 dtrace_speculation_state_t curstate;
2799 uint32_t *stat = &state->dts_speculations_unavail, count;
2800
2801 while (i < state->dts_nspeculations) {
2802 dtrace_speculation_t *spec = &state->dts_speculations[i];
2803
2804 curstate = spec->dtsp_state;
2805
2806 if (curstate != DTRACESPEC_INACTIVE) {
2807 if (curstate == DTRACESPEC_COMMITTINGMANY ||
2808 curstate == DTRACESPEC_COMMITTING ||
2809 curstate == DTRACESPEC_DISCARDING)
2810 stat = &state->dts_speculations_busy;
2811 i++;
2812 continue;
2813 }
2814
2815 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2816 curstate, DTRACESPEC_ACTIVE) == curstate)
2817 return (i + 1);
2818 }
2819
2820 /*
2821 * We couldn't find a speculation. If we found as much as a single
2822 * busy speculation buffer, we'll attribute this failure as "busy"
2823 * instead of "unavail".
2824 */
2825 do {
2826 count = *stat;
2827 } while (dtrace_cas32(stat, count, count + 1) != count);
2828
2829 return (0);
2830 }
2831
2832 /*
2833 * This routine commits an active speculation. If the specified speculation
2834 * is not in a valid state to perform a commit(), this routine will silently do
2835 * nothing. The state of the specified speculation is transitioned according
2836 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2837 */
2838 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2839 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2840 dtrace_specid_t which)
2841 {
2842 dtrace_speculation_t *spec;
2843 dtrace_buffer_t *src, *dest;
2844 uintptr_t daddr, saddr, dlimit, slimit;
2845 dtrace_speculation_state_t curstate, new = 0;
2846 ssize_t offs;
2847 uint64_t timestamp;
2848
2849 if (which == 0)
2850 return;
2851
2852 if (which > state->dts_nspeculations) {
2853 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2854 return;
2855 }
2856
2857 spec = &state->dts_speculations[which - 1];
2858 src = &spec->dtsp_buffer[cpu];
2859 dest = &state->dts_buffer[cpu];
2860
2861 do {
2862 curstate = spec->dtsp_state;
2863
2864 if (curstate == DTRACESPEC_COMMITTINGMANY)
2865 break;
2866
2867 switch (curstate) {
2868 case DTRACESPEC_INACTIVE:
2869 case DTRACESPEC_DISCARDING:
2870 return;
2871
2872 case DTRACESPEC_COMMITTING:
2873 /*
2874 * This is only possible if we are (a) commit()'ing
2875 * without having done a prior speculate() on this CPU
2876 * and (b) racing with another commit() on a different
2877 * CPU. There's nothing to do -- we just assert that
2878 * our offset is 0.
2879 */
2880 ASSERT(src->dtb_offset == 0);
2881 return;
2882
2883 case DTRACESPEC_ACTIVE:
2884 new = DTRACESPEC_COMMITTING;
2885 break;
2886
2887 case DTRACESPEC_ACTIVEONE:
2888 /*
2889 * This speculation is active on one CPU. If our
2890 * buffer offset is non-zero, we know that the one CPU
2891 * must be us. Otherwise, we are committing on a
2892 * different CPU from the speculate(), and we must
2893 * rely on being asynchronously cleaned.
2894 */
2895 if (src->dtb_offset != 0) {
2896 new = DTRACESPEC_COMMITTING;
2897 break;
2898 }
2899 /*FALLTHROUGH*/
2900
2901 case DTRACESPEC_ACTIVEMANY:
2902 new = DTRACESPEC_COMMITTINGMANY;
2903 break;
2904
2905 default:
2906 ASSERT(0);
2907 }
2908 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2909 curstate, new) != curstate);
2910
2911 /*
2912 * We have set the state to indicate that we are committing this
2913 * speculation. Now reserve the necessary space in the destination
2914 * buffer.
2915 */
2916 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2917 sizeof (uint64_t), state, NULL)) < 0) {
2918 dtrace_buffer_drop(dest);
2919 goto out;
2920 }
2921
2922 /*
2923 * We have sufficient space to copy the speculative buffer into the
2924 * primary buffer. First, modify the speculative buffer, filling
2925 * in the timestamp of all entries with the curstate time. The data
2926 * must have the commit() time rather than the time it was traced,
2927 * so that all entries in the primary buffer are in timestamp order.
2928 */
2929 timestamp = dtrace_gethrtime();
2930 saddr = (uintptr_t)src->dtb_tomax;
2931 slimit = saddr + src->dtb_offset;
2932 while (saddr < slimit) {
2933 size_t size;
2934 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2935
2936 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2937 saddr += sizeof (dtrace_epid_t);
2938 continue;
2939 }
2940 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2941 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2942
2943 ASSERT3U(saddr + size, <=, slimit);
2944 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2945 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2946
2947 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2948
2949 saddr += size;
2950 }
2951
2952 /*
2953 * Copy the buffer across. (Note that this is a
2954 * highly subobtimal bcopy(); in the unlikely event that this becomes
2955 * a serious performance issue, a high-performance DTrace-specific
2956 * bcopy() should obviously be invented.)
2957 */
2958 daddr = (uintptr_t)dest->dtb_tomax + offs;
2959 dlimit = daddr + src->dtb_offset;
2960 saddr = (uintptr_t)src->dtb_tomax;
2961
2962 /*
2963 * First, the aligned portion.
2964 */
2965 while (dlimit - daddr >= sizeof (uint64_t)) {
2966 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2967
2968 daddr += sizeof (uint64_t);
2969 saddr += sizeof (uint64_t);
2970 }
2971
2972 /*
2973 * Now any left-over bit...
2974 */
2975 while (dlimit - daddr)
2976 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2977
2978 /*
2979 * Finally, commit the reserved space in the destination buffer.
2980 */
2981 dest->dtb_offset = offs + src->dtb_offset;
2982
2983 out:
2984 /*
2985 * If we're lucky enough to be the only active CPU on this speculation
2986 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2987 */
2988 if (curstate == DTRACESPEC_ACTIVE ||
2989 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2990 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2991 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2992
2993 ASSERT(rval == DTRACESPEC_COMMITTING);
2994 }
2995
2996 src->dtb_offset = 0;
2997 src->dtb_xamot_drops += src->dtb_drops;
2998 src->dtb_drops = 0;
2999 }
3000
3001 /*
3002 * This routine discards an active speculation. If the specified speculation
3003 * is not in a valid state to perform a discard(), this routine will silently
3004 * do nothing. The state of the specified speculation is transitioned
3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3006 */
3007 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)3008 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3009 dtrace_specid_t which)
3010 {
3011 dtrace_speculation_t *spec;
3012 dtrace_speculation_state_t curstate, new = 0;
3013 dtrace_buffer_t *buf;
3014
3015 if (which == 0)
3016 return;
3017
3018 if (which > state->dts_nspeculations) {
3019 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3020 return;
3021 }
3022
3023 spec = &state->dts_speculations[which - 1];
3024 buf = &spec->dtsp_buffer[cpu];
3025
3026 do {
3027 curstate = spec->dtsp_state;
3028
3029 switch (curstate) {
3030 case DTRACESPEC_INACTIVE:
3031 case DTRACESPEC_COMMITTINGMANY:
3032 case DTRACESPEC_COMMITTING:
3033 case DTRACESPEC_DISCARDING:
3034 return;
3035
3036 case DTRACESPEC_ACTIVE:
3037 case DTRACESPEC_ACTIVEMANY:
3038 new = DTRACESPEC_DISCARDING;
3039 break;
3040
3041 case DTRACESPEC_ACTIVEONE:
3042 if (buf->dtb_offset != 0) {
3043 new = DTRACESPEC_INACTIVE;
3044 } else {
3045 new = DTRACESPEC_DISCARDING;
3046 }
3047 break;
3048
3049 default:
3050 ASSERT(0);
3051 }
3052 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3053 curstate, new) != curstate);
3054
3055 buf->dtb_offset = 0;
3056 buf->dtb_drops = 0;
3057 }
3058
3059 /*
3060 * Note: not called from probe context. This function is called
3061 * asynchronously from cross call context to clean any speculations that are
3062 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3064 * speculation.
3065 */
3066 static void
dtrace_speculation_clean_here(dtrace_state_t * state)3067 dtrace_speculation_clean_here(dtrace_state_t *state)
3068 {
3069 dtrace_icookie_t cookie;
3070 processorid_t cpu = curcpu;
3071 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3072 dtrace_specid_t i;
3073
3074 cookie = dtrace_interrupt_disable();
3075
3076 if (dest->dtb_tomax == NULL) {
3077 dtrace_interrupt_enable(cookie);
3078 return;
3079 }
3080
3081 for (i = 0; i < state->dts_nspeculations; i++) {
3082 dtrace_speculation_t *spec = &state->dts_speculations[i];
3083 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3084
3085 if (src->dtb_tomax == NULL)
3086 continue;
3087
3088 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3089 src->dtb_offset = 0;
3090 continue;
3091 }
3092
3093 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3094 continue;
3095
3096 if (src->dtb_offset == 0)
3097 continue;
3098
3099 dtrace_speculation_commit(state, cpu, i + 1);
3100 }
3101
3102 dtrace_interrupt_enable(cookie);
3103 }
3104
3105 /*
3106 * Note: not called from probe context. This function is called
3107 * asynchronously (and at a regular interval) to clean any speculations that
3108 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3109 * is work to be done, it cross calls all CPUs to perform that work;
3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3111 * INACTIVE state until they have been cleaned by all CPUs.
3112 */
3113 static void
dtrace_speculation_clean(dtrace_state_t * state)3114 dtrace_speculation_clean(dtrace_state_t *state)
3115 {
3116 int work = 0, rv;
3117 dtrace_specid_t i;
3118
3119 for (i = 0; i < state->dts_nspeculations; i++) {
3120 dtrace_speculation_t *spec = &state->dts_speculations[i];
3121
3122 ASSERT(!spec->dtsp_cleaning);
3123
3124 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3125 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3126 continue;
3127
3128 work++;
3129 spec->dtsp_cleaning = 1;
3130 }
3131
3132 if (!work)
3133 return;
3134
3135 dtrace_xcall(DTRACE_CPUALL,
3136 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3137
3138 /*
3139 * We now know that all CPUs have committed or discarded their
3140 * speculation buffers, as appropriate. We can now set the state
3141 * to inactive.
3142 */
3143 for (i = 0; i < state->dts_nspeculations; i++) {
3144 dtrace_speculation_t *spec = &state->dts_speculations[i];
3145 dtrace_speculation_state_t curstate, new;
3146
3147 if (!spec->dtsp_cleaning)
3148 continue;
3149
3150 curstate = spec->dtsp_state;
3151 ASSERT(curstate == DTRACESPEC_DISCARDING ||
3152 curstate == DTRACESPEC_COMMITTINGMANY);
3153
3154 new = DTRACESPEC_INACTIVE;
3155
3156 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3157 ASSERT(rv == curstate);
3158 spec->dtsp_cleaning = 0;
3159 }
3160 }
3161
3162 /*
3163 * Called as part of a speculate() to get the speculative buffer associated
3164 * with a given speculation. Returns NULL if the specified speculation is not
3165 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3166 * the active CPU is not the specified CPU -- the speculation will be
3167 * atomically transitioned into the ACTIVEMANY state.
3168 */
3169 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3170 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3171 dtrace_specid_t which)
3172 {
3173 dtrace_speculation_t *spec;
3174 dtrace_speculation_state_t curstate, new = 0;
3175 dtrace_buffer_t *buf;
3176
3177 if (which == 0)
3178 return (NULL);
3179
3180 if (which > state->dts_nspeculations) {
3181 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3182 return (NULL);
3183 }
3184
3185 spec = &state->dts_speculations[which - 1];
3186 buf = &spec->dtsp_buffer[cpuid];
3187
3188 do {
3189 curstate = spec->dtsp_state;
3190
3191 switch (curstate) {
3192 case DTRACESPEC_INACTIVE:
3193 case DTRACESPEC_COMMITTINGMANY:
3194 case DTRACESPEC_DISCARDING:
3195 return (NULL);
3196
3197 case DTRACESPEC_COMMITTING:
3198 ASSERT(buf->dtb_offset == 0);
3199 return (NULL);
3200
3201 case DTRACESPEC_ACTIVEONE:
3202 /*
3203 * This speculation is currently active on one CPU.
3204 * Check the offset in the buffer; if it's non-zero,
3205 * that CPU must be us (and we leave the state alone).
3206 * If it's zero, assume that we're starting on a new
3207 * CPU -- and change the state to indicate that the
3208 * speculation is active on more than one CPU.
3209 */
3210 if (buf->dtb_offset != 0)
3211 return (buf);
3212
3213 new = DTRACESPEC_ACTIVEMANY;
3214 break;
3215
3216 case DTRACESPEC_ACTIVEMANY:
3217 return (buf);
3218
3219 case DTRACESPEC_ACTIVE:
3220 new = DTRACESPEC_ACTIVEONE;
3221 break;
3222
3223 default:
3224 ASSERT(0);
3225 }
3226 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3227 curstate, new) != curstate);
3228
3229 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3230 return (buf);
3231 }
3232
3233 /*
3234 * Return a string. In the event that the user lacks the privilege to access
3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3236 * don't fail access checking.
3237 *
3238 * dtrace_dif_variable() uses this routine as a helper for various
3239 * builtin values such as 'execname' and 'probefunc.'
3240 */
3241 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3242 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3243 dtrace_mstate_t *mstate)
3244 {
3245 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3246 uintptr_t ret;
3247 size_t strsz;
3248
3249 /*
3250 * The easy case: this probe is allowed to read all of memory, so
3251 * we can just return this as a vanilla pointer.
3252 */
3253 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3254 return (addr);
3255
3256 /*
3257 * This is the tougher case: we copy the string in question from
3258 * kernel memory into scratch memory and return it that way: this
3259 * ensures that we won't trip up when access checking tests the
3260 * BYREF return value.
3261 */
3262 strsz = dtrace_strlen((char *)addr, size) + 1;
3263
3264 if (mstate->dtms_scratch_ptr + strsz >
3265 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3267 return (0);
3268 }
3269
3270 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3271 strsz);
3272 ret = mstate->dtms_scratch_ptr;
3273 mstate->dtms_scratch_ptr += strsz;
3274 return (ret);
3275 }
3276
3277 /*
3278 * Return a string from a memoy address which is known to have one or
3279 * more concatenated, individually zero terminated, sub-strings.
3280 * In the event that the user lacks the privilege to access
3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3282 * don't fail access checking.
3283 *
3284 * dtrace_dif_variable() uses this routine as a helper for various
3285 * builtin values such as 'execargs'.
3286 */
3287 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)3288 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3289 dtrace_mstate_t *mstate)
3290 {
3291 char *p;
3292 size_t i;
3293 uintptr_t ret;
3294
3295 if (mstate->dtms_scratch_ptr + strsz >
3296 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3298 return (0);
3299 }
3300
3301 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3302 strsz);
3303
3304 /* Replace sub-string termination characters with a space. */
3305 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3306 p++, i++)
3307 if (*p == '\0')
3308 *p = ' ';
3309
3310 ret = mstate->dtms_scratch_ptr;
3311 mstate->dtms_scratch_ptr += strsz;
3312 return (ret);
3313 }
3314
3315 /*
3316 * This function implements the DIF emulator's variable lookups. The emulator
3317 * passes a reserved variable identifier and optional built-in array index.
3318 */
3319 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3320 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3321 uint64_t ndx)
3322 {
3323 /*
3324 * If we're accessing one of the uncached arguments, we'll turn this
3325 * into a reference in the args array.
3326 */
3327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3328 ndx = v - DIF_VAR_ARG0;
3329 v = DIF_VAR_ARGS;
3330 }
3331
3332 switch (v) {
3333 case DIF_VAR_ARGS:
3334 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3335 if (ndx >= sizeof (mstate->dtms_arg) /
3336 sizeof (mstate->dtms_arg[0])) {
3337 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3338 dtrace_provider_t *pv;
3339 uint64_t val;
3340
3341 pv = mstate->dtms_probe->dtpr_provider;
3342 if (pv->dtpv_pops.dtps_getargval != NULL)
3343 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3344 mstate->dtms_probe->dtpr_id,
3345 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3346 else
3347 val = dtrace_getarg(ndx, aframes);
3348
3349 /*
3350 * This is regrettably required to keep the compiler
3351 * from tail-optimizing the call to dtrace_getarg().
3352 * The condition always evaluates to true, but the
3353 * compiler has no way of figuring that out a priori.
3354 * (None of this would be necessary if the compiler
3355 * could be relied upon to _always_ tail-optimize
3356 * the call to dtrace_getarg() -- but it can't.)
3357 */
3358 if (mstate->dtms_probe != NULL)
3359 return (val);
3360
3361 ASSERT(0);
3362 }
3363
3364 return (mstate->dtms_arg[ndx]);
3365
3366 case DIF_VAR_REGS:
3367 case DIF_VAR_UREGS: {
3368 struct trapframe *tframe;
3369
3370 if (!dtrace_priv_proc(state))
3371 return (0);
3372
3373 if (v == DIF_VAR_REGS)
3374 tframe = curthread->t_dtrace_trapframe;
3375 else
3376 tframe = curthread->td_frame;
3377
3378 if (tframe == NULL) {
3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3380 cpu_core[curcpu].cpuc_dtrace_illval = 0;
3381 return (0);
3382 }
3383
3384 return (dtrace_getreg(tframe, ndx));
3385 }
3386
3387 case DIF_VAR_CURTHREAD:
3388 if (!dtrace_priv_proc(state))
3389 return (0);
3390 return ((uint64_t)(uintptr_t)curthread);
3391
3392 case DIF_VAR_TIMESTAMP:
3393 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3394 mstate->dtms_timestamp = dtrace_gethrtime();
3395 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3396 }
3397 return (mstate->dtms_timestamp);
3398
3399 case DIF_VAR_VTIMESTAMP:
3400 ASSERT(dtrace_vtime_references != 0);
3401 return (curthread->t_dtrace_vtime);
3402
3403 case DIF_VAR_WALLTIMESTAMP:
3404 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3405 mstate->dtms_walltimestamp = dtrace_gethrestime();
3406 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3407 }
3408 return (mstate->dtms_walltimestamp);
3409
3410 #ifdef illumos
3411 case DIF_VAR_IPL:
3412 if (!dtrace_priv_kernel(state))
3413 return (0);
3414 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3415 mstate->dtms_ipl = dtrace_getipl();
3416 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3417 }
3418 return (mstate->dtms_ipl);
3419 #endif
3420
3421 case DIF_VAR_EPID:
3422 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3423 return (mstate->dtms_epid);
3424
3425 case DIF_VAR_ID:
3426 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3427 return (mstate->dtms_probe->dtpr_id);
3428
3429 case DIF_VAR_STACKDEPTH:
3430 if (!dtrace_priv_kernel(state))
3431 return (0);
3432 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3433 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3434
3435 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3436 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3437 }
3438 return (mstate->dtms_stackdepth);
3439
3440 case DIF_VAR_USTACKDEPTH:
3441 if (!dtrace_priv_proc(state))
3442 return (0);
3443 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3444 /*
3445 * See comment in DIF_VAR_PID.
3446 */
3447 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3448 CPU_ON_INTR(CPU)) {
3449 mstate->dtms_ustackdepth = 0;
3450 } else {
3451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3452 mstate->dtms_ustackdepth =
3453 dtrace_getustackdepth();
3454 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3455 }
3456 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3457 }
3458 return (mstate->dtms_ustackdepth);
3459
3460 case DIF_VAR_CALLER:
3461 if (!dtrace_priv_kernel(state))
3462 return (0);
3463 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3464 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3465
3466 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3467 /*
3468 * If this is an unanchored probe, we are
3469 * required to go through the slow path:
3470 * dtrace_caller() only guarantees correct
3471 * results for anchored probes.
3472 */
3473 pc_t caller[2] = {0, 0};
3474
3475 dtrace_getpcstack(caller, 2, aframes,
3476 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3477 mstate->dtms_caller = caller[1];
3478 } else if ((mstate->dtms_caller =
3479 dtrace_caller(aframes)) == -1) {
3480 /*
3481 * We have failed to do this the quick way;
3482 * we must resort to the slower approach of
3483 * calling dtrace_getpcstack().
3484 */
3485 pc_t caller = 0;
3486
3487 dtrace_getpcstack(&caller, 1, aframes, NULL);
3488 mstate->dtms_caller = caller;
3489 }
3490
3491 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3492 }
3493 return (mstate->dtms_caller);
3494
3495 case DIF_VAR_UCALLER:
3496 if (!dtrace_priv_proc(state))
3497 return (0);
3498
3499 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3500 uint64_t ustack[3];
3501
3502 /*
3503 * dtrace_getupcstack() fills in the first uint64_t
3504 * with the current PID. The second uint64_t will
3505 * be the program counter at user-level. The third
3506 * uint64_t will contain the caller, which is what
3507 * we're after.
3508 */
3509 ustack[2] = 0;
3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3511 dtrace_getupcstack(ustack, 3);
3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3513 mstate->dtms_ucaller = ustack[2];
3514 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3515 }
3516
3517 return (mstate->dtms_ucaller);
3518
3519 case DIF_VAR_PROBEPROV:
3520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3521 return (dtrace_dif_varstr(
3522 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3523 state, mstate));
3524
3525 case DIF_VAR_PROBEMOD:
3526 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3527 return (dtrace_dif_varstr(
3528 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3529 state, mstate));
3530
3531 case DIF_VAR_PROBEFUNC:
3532 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3533 return (dtrace_dif_varstr(
3534 (uintptr_t)mstate->dtms_probe->dtpr_func,
3535 state, mstate));
3536
3537 case DIF_VAR_PROBENAME:
3538 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3539 return (dtrace_dif_varstr(
3540 (uintptr_t)mstate->dtms_probe->dtpr_name,
3541 state, mstate));
3542
3543 case DIF_VAR_PID:
3544 if (!dtrace_priv_proc(state))
3545 return (0);
3546
3547 #ifdef illumos
3548 /*
3549 * Note that we are assuming that an unanchored probe is
3550 * always due to a high-level interrupt. (And we're assuming
3551 * that there is only a single high level interrupt.)
3552 */
3553 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3554 return (pid0.pid_id);
3555
3556 /*
3557 * It is always safe to dereference one's own t_procp pointer:
3558 * it always points to a valid, allocated proc structure.
3559 * Further, it is always safe to dereference the p_pidp member
3560 * of one's own proc structure. (These are truisms becuase
3561 * threads and processes don't clean up their own state --
3562 * they leave that task to whomever reaps them.)
3563 */
3564 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3565 #else
3566 return ((uint64_t)curproc->p_pid);
3567 #endif
3568
3569 case DIF_VAR_PPID:
3570 if (!dtrace_priv_proc(state))
3571 return (0);
3572
3573 #ifdef illumos
3574 /*
3575 * See comment in DIF_VAR_PID.
3576 */
3577 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3578 return (pid0.pid_id);
3579
3580 /*
3581 * It is always safe to dereference one's own t_procp pointer:
3582 * it always points to a valid, allocated proc structure.
3583 * (This is true because threads don't clean up their own
3584 * state -- they leave that task to whomever reaps them.)
3585 */
3586 return ((uint64_t)curthread->t_procp->p_ppid);
3587 #else
3588 if (curproc->p_pid == proc0.p_pid)
3589 return (curproc->p_pid);
3590 else
3591 return (curproc->p_pptr->p_pid);
3592 #endif
3593
3594 case DIF_VAR_TID:
3595 #ifdef illumos
3596 /*
3597 * See comment in DIF_VAR_PID.
3598 */
3599 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3600 return (0);
3601 #endif
3602
3603 return ((uint64_t)curthread->t_tid);
3604
3605 case DIF_VAR_EXECARGS: {
3606 struct pargs *p_args = curthread->td_proc->p_args;
3607
3608 if (p_args == NULL)
3609 return(0);
3610
3611 return (dtrace_dif_varstrz(
3612 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3613 }
3614
3615 case DIF_VAR_EXECNAME:
3616 #ifdef illumos
3617 if (!dtrace_priv_proc(state))
3618 return (0);
3619
3620 /*
3621 * See comment in DIF_VAR_PID.
3622 */
3623 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3624 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3625
3626 /*
3627 * It is always safe to dereference one's own t_procp pointer:
3628 * it always points to a valid, allocated proc structure.
3629 * (This is true because threads don't clean up their own
3630 * state -- they leave that task to whomever reaps them.)
3631 */
3632 return (dtrace_dif_varstr(
3633 (uintptr_t)curthread->t_procp->p_user.u_comm,
3634 state, mstate));
3635 #else
3636 return (dtrace_dif_varstr(
3637 (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3638 #endif
3639
3640 case DIF_VAR_ZONENAME:
3641 #ifdef illumos
3642 if (!dtrace_priv_proc(state))
3643 return (0);
3644
3645 /*
3646 * See comment in DIF_VAR_PID.
3647 */
3648 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3649 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3650
3651 /*
3652 * It is always safe to dereference one's own t_procp pointer:
3653 * it always points to a valid, allocated proc structure.
3654 * (This is true because threads don't clean up their own
3655 * state -- they leave that task to whomever reaps them.)
3656 */
3657 return (dtrace_dif_varstr(
3658 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3659 state, mstate));
3660 #elif defined(__FreeBSD__)
3661 /*
3662 * On FreeBSD, we introduce compatibility to zonename by falling through
3663 * into jailname.
3664 */
3665 case DIF_VAR_JAILNAME:
3666 if (!dtrace_priv_kernel(state))
3667 return (0);
3668
3669 return (dtrace_dif_varstr(
3670 (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3671 state, mstate));
3672
3673 case DIF_VAR_JID:
3674 if (!dtrace_priv_kernel(state))
3675 return (0);
3676
3677 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3678 #else
3679 return (0);
3680 #endif
3681
3682 case DIF_VAR_UID:
3683 if (!dtrace_priv_proc(state))
3684 return (0);
3685
3686 #ifdef illumos
3687 /*
3688 * See comment in DIF_VAR_PID.
3689 */
3690 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3691 return ((uint64_t)p0.p_cred->cr_uid);
3692
3693 /*
3694 * It is always safe to dereference one's own t_procp pointer:
3695 * it always points to a valid, allocated proc structure.
3696 * (This is true because threads don't clean up their own
3697 * state -- they leave that task to whomever reaps them.)
3698 *
3699 * Additionally, it is safe to dereference one's own process
3700 * credential, since this is never NULL after process birth.
3701 */
3702 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3703 #else
3704 return ((uint64_t)curthread->td_ucred->cr_uid);
3705 #endif
3706
3707 case DIF_VAR_GID:
3708 if (!dtrace_priv_proc(state))
3709 return (0);
3710
3711 #ifdef illumos
3712 /*
3713 * See comment in DIF_VAR_PID.
3714 */
3715 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3716 return ((uint64_t)p0.p_cred->cr_gid);
3717
3718 /*
3719 * It is always safe to dereference one's own t_procp pointer:
3720 * it always points to a valid, allocated proc structure.
3721 * (This is true because threads don't clean up their own
3722 * state -- they leave that task to whomever reaps them.)
3723 *
3724 * Additionally, it is safe to dereference one's own process
3725 * credential, since this is never NULL after process birth.
3726 */
3727 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3728 #else
3729 return ((uint64_t)curthread->td_ucred->cr_gid);
3730 #endif
3731
3732 case DIF_VAR_ERRNO: {
3733 #ifdef illumos
3734 klwp_t *lwp;
3735 if (!dtrace_priv_proc(state))
3736 return (0);
3737
3738 /*
3739 * See comment in DIF_VAR_PID.
3740 */
3741 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3742 return (0);
3743
3744 /*
3745 * It is always safe to dereference one's own t_lwp pointer in
3746 * the event that this pointer is non-NULL. (This is true
3747 * because threads and lwps don't clean up their own state --
3748 * they leave that task to whomever reaps them.)
3749 */
3750 if ((lwp = curthread->t_lwp) == NULL)
3751 return (0);
3752
3753 return ((uint64_t)lwp->lwp_errno);
3754 #else
3755 return (curthread->td_errno);
3756 #endif
3757 }
3758 #ifndef illumos
3759 case DIF_VAR_CPU: {
3760 return curcpu;
3761 }
3762 #endif
3763 default:
3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3765 return (0);
3766 }
3767 }
3768
3769
3770 typedef enum dtrace_json_state {
3771 DTRACE_JSON_REST = 1,
3772 DTRACE_JSON_OBJECT,
3773 DTRACE_JSON_STRING,
3774 DTRACE_JSON_STRING_ESCAPE,
3775 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3776 DTRACE_JSON_COLON,
3777 DTRACE_JSON_COMMA,
3778 DTRACE_JSON_VALUE,
3779 DTRACE_JSON_IDENTIFIER,
3780 DTRACE_JSON_NUMBER,
3781 DTRACE_JSON_NUMBER_FRAC,
3782 DTRACE_JSON_NUMBER_EXP,
3783 DTRACE_JSON_COLLECT_OBJECT
3784 } dtrace_json_state_t;
3785
3786 /*
3787 * This function possesses just enough knowledge about JSON to extract a single
3788 * value from a JSON string and store it in the scratch buffer. It is able
3789 * to extract nested object values, and members of arrays by index.
3790 *
3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3792 * be looked up as we descend into the object tree. e.g.
3793 *
3794 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3795 * with nelems = 5.
3796 *
3797 * The run time of this function must be bounded above by strsize to limit the
3798 * amount of work done in probe context. As such, it is implemented as a
3799 * simple state machine, reading one character at a time using safe loads
3800 * until we find the requested element, hit a parsing error or run off the
3801 * end of the object or string.
3802 *
3803 * As there is no way for a subroutine to return an error without interrupting
3804 * clause execution, we simply return NULL in the event of a missing key or any
3805 * other error condition. Each NULL return in this function is commented with
3806 * the error condition it represents -- parsing or otherwise.
3807 *
3808 * The set of states for the state machine closely matches the JSON
3809 * specification (http://json.org/). Briefly:
3810 *
3811 * DTRACE_JSON_REST:
3812 * Skip whitespace until we find either a top-level Object, moving
3813 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3814 *
3815 * DTRACE_JSON_OBJECT:
3816 * Locate the next key String in an Object. Sets a flag to denote
3817 * the next String as a key string and moves to DTRACE_JSON_STRING.
3818 *
3819 * DTRACE_JSON_COLON:
3820 * Skip whitespace until we find the colon that separates key Strings
3821 * from their values. Once found, move to DTRACE_JSON_VALUE.
3822 *
3823 * DTRACE_JSON_VALUE:
3824 * Detects the type of the next value (String, Number, Identifier, Object
3825 * or Array) and routes to the states that process that type. Here we also
3826 * deal with the element selector list if we are requested to traverse down
3827 * into the object tree.
3828 *
3829 * DTRACE_JSON_COMMA:
3830 * Skip whitespace until we find the comma that separates key-value pairs
3831 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3832 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3833 * states return to this state at the end of their value, unless otherwise
3834 * noted.
3835 *
3836 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3837 * Processes a Number literal from the JSON, including any exponent
3838 * component that may be present. Numbers are returned as strings, which
3839 * may be passed to strtoll() if an integer is required.
3840 *
3841 * DTRACE_JSON_IDENTIFIER:
3842 * Processes a "true", "false" or "null" literal in the JSON.
3843 *
3844 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3845 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3846 * Processes a String literal from the JSON, whether the String denotes
3847 * a key, a value or part of a larger Object. Handles all escape sequences
3848 * present in the specification, including four-digit unicode characters,
3849 * but merely includes the escape sequence without converting it to the
3850 * actual escaped character. If the String is flagged as a key, we
3851 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3852 *
3853 * DTRACE_JSON_COLLECT_OBJECT:
3854 * This state collects an entire Object (or Array), correctly handling
3855 * embedded strings. If the full element selector list matches this nested
3856 * object, we return the Object in full as a string. If not, we use this
3857 * state to skip to the next value at this level and continue processing.
3858 *
3859 * NOTE: This function uses various macros from strtolctype.h to manipulate
3860 * digit values, etc -- these have all been checked to ensure they make
3861 * no additional function calls.
3862 */
3863 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3864 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3865 char *dest)
3866 {
3867 dtrace_json_state_t state = DTRACE_JSON_REST;
3868 int64_t array_elem = INT64_MIN;
3869 int64_t array_pos = 0;
3870 uint8_t escape_unicount = 0;
3871 boolean_t string_is_key = B_FALSE;
3872 boolean_t collect_object = B_FALSE;
3873 boolean_t found_key = B_FALSE;
3874 boolean_t in_array = B_FALSE;
3875 uint32_t braces = 0, brackets = 0;
3876 char *elem = elemlist;
3877 char *dd = dest;
3878 uintptr_t cur;
3879
3880 for (cur = json; cur < json + size; cur++) {
3881 char cc = dtrace_load8(cur);
3882 if (cc == '\0')
3883 return (NULL);
3884
3885 switch (state) {
3886 case DTRACE_JSON_REST:
3887 if (isspace(cc))
3888 break;
3889
3890 if (cc == '{') {
3891 state = DTRACE_JSON_OBJECT;
3892 break;
3893 }
3894
3895 if (cc == '[') {
3896 in_array = B_TRUE;
3897 array_pos = 0;
3898 array_elem = dtrace_strtoll(elem, 10, size);
3899 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3900 state = DTRACE_JSON_VALUE;
3901 break;
3902 }
3903
3904 /*
3905 * ERROR: expected to find a top-level object or array.
3906 */
3907 return (NULL);
3908 case DTRACE_JSON_OBJECT:
3909 if (isspace(cc))
3910 break;
3911
3912 if (cc == '"') {
3913 state = DTRACE_JSON_STRING;
3914 string_is_key = B_TRUE;
3915 break;
3916 }
3917
3918 /*
3919 * ERROR: either the object did not start with a key
3920 * string, or we've run off the end of the object
3921 * without finding the requested key.
3922 */
3923 return (NULL);
3924 case DTRACE_JSON_STRING:
3925 if (cc == '\\') {
3926 *dd++ = '\\';
3927 state = DTRACE_JSON_STRING_ESCAPE;
3928 break;
3929 }
3930
3931 if (cc == '"') {
3932 if (collect_object) {
3933 /*
3934 * We don't reset the dest here, as
3935 * the string is part of a larger
3936 * object being collected.
3937 */
3938 *dd++ = cc;
3939 collect_object = B_FALSE;
3940 state = DTRACE_JSON_COLLECT_OBJECT;
3941 break;
3942 }
3943 *dd = '\0';
3944 dd = dest; /* reset string buffer */
3945 if (string_is_key) {
3946 if (dtrace_strncmp(dest, elem,
3947 size) == 0)
3948 found_key = B_TRUE;
3949 } else if (found_key) {
3950 if (nelems > 1) {
3951 /*
3952 * We expected an object, not
3953 * this string.
3954 */
3955 return (NULL);
3956 }
3957 return (dest);
3958 }
3959 state = string_is_key ? DTRACE_JSON_COLON :
3960 DTRACE_JSON_COMMA;
3961 string_is_key = B_FALSE;
3962 break;
3963 }
3964
3965 *dd++ = cc;
3966 break;
3967 case DTRACE_JSON_STRING_ESCAPE:
3968 *dd++ = cc;
3969 if (cc == 'u') {
3970 escape_unicount = 0;
3971 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3972 } else {
3973 state = DTRACE_JSON_STRING;
3974 }
3975 break;
3976 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3977 if (!isxdigit(cc)) {
3978 /*
3979 * ERROR: invalid unicode escape, expected
3980 * four valid hexidecimal digits.
3981 */
3982 return (NULL);
3983 }
3984
3985 *dd++ = cc;
3986 if (++escape_unicount == 4)
3987 state = DTRACE_JSON_STRING;
3988 break;
3989 case DTRACE_JSON_COLON:
3990 if (isspace(cc))
3991 break;
3992
3993 if (cc == ':') {
3994 state = DTRACE_JSON_VALUE;
3995 break;
3996 }
3997
3998 /*
3999 * ERROR: expected a colon.
4000 */
4001 return (NULL);
4002 case DTRACE_JSON_COMMA:
4003 if (isspace(cc))
4004 break;
4005
4006 if (cc == ',') {
4007 if (in_array) {
4008 state = DTRACE_JSON_VALUE;
4009 if (++array_pos == array_elem)
4010 found_key = B_TRUE;
4011 } else {
4012 state = DTRACE_JSON_OBJECT;
4013 }
4014 break;
4015 }
4016
4017 /*
4018 * ERROR: either we hit an unexpected character, or
4019 * we reached the end of the object or array without
4020 * finding the requested key.
4021 */
4022 return (NULL);
4023 case DTRACE_JSON_IDENTIFIER:
4024 if (islower(cc)) {
4025 *dd++ = cc;
4026 break;
4027 }
4028
4029 *dd = '\0';
4030 dd = dest; /* reset string buffer */
4031
4032 if (dtrace_strncmp(dest, "true", 5) == 0 ||
4033 dtrace_strncmp(dest, "false", 6) == 0 ||
4034 dtrace_strncmp(dest, "null", 5) == 0) {
4035 if (found_key) {
4036 if (nelems > 1) {
4037 /*
4038 * ERROR: We expected an object,
4039 * not this identifier.
4040 */
4041 return (NULL);
4042 }
4043 return (dest);
4044 } else {
4045 cur--;
4046 state = DTRACE_JSON_COMMA;
4047 break;
4048 }
4049 }
4050
4051 /*
4052 * ERROR: we did not recognise the identifier as one
4053 * of those in the JSON specification.
4054 */
4055 return (NULL);
4056 case DTRACE_JSON_NUMBER:
4057 if (cc == '.') {
4058 *dd++ = cc;
4059 state = DTRACE_JSON_NUMBER_FRAC;
4060 break;
4061 }
4062
4063 if (cc == 'x' || cc == 'X') {
4064 /*
4065 * ERROR: specification explicitly excludes
4066 * hexidecimal or octal numbers.
4067 */
4068 return (NULL);
4069 }
4070
4071 /* FALLTHRU */
4072 case DTRACE_JSON_NUMBER_FRAC:
4073 if (cc == 'e' || cc == 'E') {
4074 *dd++ = cc;
4075 state = DTRACE_JSON_NUMBER_EXP;
4076 break;
4077 }
4078
4079 if (cc == '+' || cc == '-') {
4080 /*
4081 * ERROR: expect sign as part of exponent only.
4082 */
4083 return (NULL);
4084 }
4085 /* FALLTHRU */
4086 case DTRACE_JSON_NUMBER_EXP:
4087 if (isdigit(cc) || cc == '+' || cc == '-') {
4088 *dd++ = cc;
4089 break;
4090 }
4091
4092 *dd = '\0';
4093 dd = dest; /* reset string buffer */
4094 if (found_key) {
4095 if (nelems > 1) {
4096 /*
4097 * ERROR: We expected an object, not
4098 * this number.
4099 */
4100 return (NULL);
4101 }
4102 return (dest);
4103 }
4104
4105 cur--;
4106 state = DTRACE_JSON_COMMA;
4107 break;
4108 case DTRACE_JSON_VALUE:
4109 if (isspace(cc))
4110 break;
4111
4112 if (cc == '{' || cc == '[') {
4113 if (nelems > 1 && found_key) {
4114 in_array = cc == '[' ? B_TRUE : B_FALSE;
4115 /*
4116 * If our element selector directs us
4117 * to descend into this nested object,
4118 * then move to the next selector
4119 * element in the list and restart the
4120 * state machine.
4121 */
4122 while (*elem != '\0')
4123 elem++;
4124 elem++; /* skip the inter-element NUL */
4125 nelems--;
4126 dd = dest;
4127 if (in_array) {
4128 state = DTRACE_JSON_VALUE;
4129 array_pos = 0;
4130 array_elem = dtrace_strtoll(
4131 elem, 10, size);
4132 found_key = array_elem == 0 ?
4133 B_TRUE : B_FALSE;
4134 } else {
4135 found_key = B_FALSE;
4136 state = DTRACE_JSON_OBJECT;
4137 }
4138 break;
4139 }
4140
4141 /*
4142 * Otherwise, we wish to either skip this
4143 * nested object or return it in full.
4144 */
4145 if (cc == '[')
4146 brackets = 1;
4147 else
4148 braces = 1;
4149 *dd++ = cc;
4150 state = DTRACE_JSON_COLLECT_OBJECT;
4151 break;
4152 }
4153
4154 if (cc == '"') {
4155 state = DTRACE_JSON_STRING;
4156 break;
4157 }
4158
4159 if (islower(cc)) {
4160 /*
4161 * Here we deal with true, false and null.
4162 */
4163 *dd++ = cc;
4164 state = DTRACE_JSON_IDENTIFIER;
4165 break;
4166 }
4167
4168 if (cc == '-' || isdigit(cc)) {
4169 *dd++ = cc;
4170 state = DTRACE_JSON_NUMBER;
4171 break;
4172 }
4173
4174 /*
4175 * ERROR: unexpected character at start of value.
4176 */
4177 return (NULL);
4178 case DTRACE_JSON_COLLECT_OBJECT:
4179 if (cc == '\0')
4180 /*
4181 * ERROR: unexpected end of input.
4182 */
4183 return (NULL);
4184
4185 *dd++ = cc;
4186 if (cc == '"') {
4187 collect_object = B_TRUE;
4188 state = DTRACE_JSON_STRING;
4189 break;
4190 }
4191
4192 if (cc == ']') {
4193 if (brackets-- == 0) {
4194 /*
4195 * ERROR: unbalanced brackets.
4196 */
4197 return (NULL);
4198 }
4199 } else if (cc == '}') {
4200 if (braces-- == 0) {
4201 /*
4202 * ERROR: unbalanced braces.
4203 */
4204 return (NULL);
4205 }
4206 } else if (cc == '{') {
4207 braces++;
4208 } else if (cc == '[') {
4209 brackets++;
4210 }
4211
4212 if (brackets == 0 && braces == 0) {
4213 if (found_key) {
4214 *dd = '\0';
4215 return (dest);
4216 }
4217 dd = dest; /* reset string buffer */
4218 state = DTRACE_JSON_COMMA;
4219 }
4220 break;
4221 }
4222 }
4223 return (NULL);
4224 }
4225
4226 /*
4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4228 * Notice that we don't bother validating the proper number of arguments or
4229 * their types in the tuple stack. This isn't needed because all argument
4230 * interpretation is safe because of our load safety -- the worst that can
4231 * happen is that a bogus program can obtain bogus results.
4232 */
4233 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4235 dtrace_key_t *tupregs, int nargs,
4236 dtrace_mstate_t *mstate, dtrace_state_t *state)
4237 {
4238 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4239 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4240 dtrace_vstate_t *vstate = &state->dts_vstate;
4241
4242 #ifdef illumos
4243 union {
4244 mutex_impl_t mi;
4245 uint64_t mx;
4246 } m;
4247
4248 union {
4249 krwlock_t ri;
4250 uintptr_t rw;
4251 } r;
4252 #else
4253 struct thread *lowner;
4254 union {
4255 struct lock_object *li;
4256 uintptr_t lx;
4257 } l;
4258 #endif
4259
4260 switch (subr) {
4261 case DIF_SUBR_RAND:
4262 regs[rd] = dtrace_xoroshiro128_plus_next(
4263 state->dts_rstate[curcpu]);
4264 break;
4265
4266 #ifdef illumos
4267 case DIF_SUBR_MUTEX_OWNED:
4268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4269 mstate, vstate)) {
4270 regs[rd] = 0;
4271 break;
4272 }
4273
4274 m.mx = dtrace_load64(tupregs[0].dttk_value);
4275 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4276 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4277 else
4278 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4279 break;
4280
4281 case DIF_SUBR_MUTEX_OWNER:
4282 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4283 mstate, vstate)) {
4284 regs[rd] = 0;
4285 break;
4286 }
4287
4288 m.mx = dtrace_load64(tupregs[0].dttk_value);
4289 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4290 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4291 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4292 else
4293 regs[rd] = 0;
4294 break;
4295
4296 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4297 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4298 mstate, vstate)) {
4299 regs[rd] = 0;
4300 break;
4301 }
4302
4303 m.mx = dtrace_load64(tupregs[0].dttk_value);
4304 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4305 break;
4306
4307 case DIF_SUBR_MUTEX_TYPE_SPIN:
4308 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4309 mstate, vstate)) {
4310 regs[rd] = 0;
4311 break;
4312 }
4313
4314 m.mx = dtrace_load64(tupregs[0].dttk_value);
4315 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4316 break;
4317
4318 case DIF_SUBR_RW_READ_HELD: {
4319 uintptr_t tmp;
4320
4321 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4322 mstate, vstate)) {
4323 regs[rd] = 0;
4324 break;
4325 }
4326
4327 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4328 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4329 break;
4330 }
4331
4332 case DIF_SUBR_RW_WRITE_HELD:
4333 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4334 mstate, vstate)) {
4335 regs[rd] = 0;
4336 break;
4337 }
4338
4339 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4340 regs[rd] = _RW_WRITE_HELD(&r.ri);
4341 break;
4342
4343 case DIF_SUBR_RW_ISWRITER:
4344 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4345 mstate, vstate)) {
4346 regs[rd] = 0;
4347 break;
4348 }
4349
4350 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4351 regs[rd] = _RW_ISWRITER(&r.ri);
4352 break;
4353
4354 #else /* !illumos */
4355 case DIF_SUBR_MUTEX_OWNED:
4356 if (!dtrace_canload(tupregs[0].dttk_value,
4357 sizeof (struct lock_object), mstate, vstate)) {
4358 regs[rd] = 0;
4359 break;
4360 }
4361 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4362 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4363 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4365 break;
4366
4367 case DIF_SUBR_MUTEX_OWNER:
4368 if (!dtrace_canload(tupregs[0].dttk_value,
4369 sizeof (struct lock_object), mstate, vstate)) {
4370 regs[rd] = 0;
4371 break;
4372 }
4373 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4375 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4377 regs[rd] = (uintptr_t)lowner;
4378 break;
4379
4380 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4381 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4382 mstate, vstate)) {
4383 regs[rd] = 0;
4384 break;
4385 }
4386 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4388 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4389 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4390 break;
4391
4392 case DIF_SUBR_MUTEX_TYPE_SPIN:
4393 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4394 mstate, vstate)) {
4395 regs[rd] = 0;
4396 break;
4397 }
4398 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4400 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4402 break;
4403
4404 case DIF_SUBR_RW_READ_HELD:
4405 case DIF_SUBR_SX_SHARED_HELD:
4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4407 mstate, vstate)) {
4408 regs[rd] = 0;
4409 break;
4410 }
4411 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4413 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4414 lowner == NULL;
4415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4416 break;
4417
4418 case DIF_SUBR_RW_WRITE_HELD:
4419 case DIF_SUBR_SX_EXCLUSIVE_HELD:
4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4421 mstate, vstate)) {
4422 regs[rd] = 0;
4423 break;
4424 }
4425 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4426 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4427 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4428 lowner != NULL;
4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4430 break;
4431
4432 case DIF_SUBR_RW_ISWRITER:
4433 case DIF_SUBR_SX_ISEXCLUSIVE:
4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4435 mstate, vstate)) {
4436 regs[rd] = 0;
4437 break;
4438 }
4439 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4441 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4442 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4443 regs[rd] = (lowner == curthread);
4444 break;
4445 #endif /* illumos */
4446
4447 case DIF_SUBR_BCOPY: {
4448 /*
4449 * We need to be sure that the destination is in the scratch
4450 * region -- no other region is allowed.
4451 */
4452 uintptr_t src = tupregs[0].dttk_value;
4453 uintptr_t dest = tupregs[1].dttk_value;
4454 size_t size = tupregs[2].dttk_value;
4455
4456 if (!dtrace_inscratch(dest, size, mstate)) {
4457 *flags |= CPU_DTRACE_BADADDR;
4458 *illval = regs[rd];
4459 break;
4460 }
4461
4462 if (!dtrace_canload(src, size, mstate, vstate)) {
4463 regs[rd] = 0;
4464 break;
4465 }
4466
4467 dtrace_bcopy((void *)src, (void *)dest, size);
4468 break;
4469 }
4470
4471 case DIF_SUBR_ALLOCA:
4472 case DIF_SUBR_COPYIN: {
4473 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4474 uint64_t size =
4475 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4476 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4477
4478 /*
4479 * This action doesn't require any credential checks since
4480 * probes will not activate in user contexts to which the
4481 * enabling user does not have permissions.
4482 */
4483
4484 /*
4485 * Rounding up the user allocation size could have overflowed
4486 * a large, bogus allocation (like -1ULL) to 0.
4487 */
4488 if (scratch_size < size ||
4489 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4490 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4491 regs[rd] = 0;
4492 break;
4493 }
4494
4495 if (subr == DIF_SUBR_COPYIN) {
4496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4497 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4498 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4499 }
4500
4501 mstate->dtms_scratch_ptr += scratch_size;
4502 regs[rd] = dest;
4503 break;
4504 }
4505
4506 case DIF_SUBR_COPYINTO: {
4507 uint64_t size = tupregs[1].dttk_value;
4508 uintptr_t dest = tupregs[2].dttk_value;
4509
4510 /*
4511 * This action doesn't require any credential checks since
4512 * probes will not activate in user contexts to which the
4513 * enabling user does not have permissions.
4514 */
4515 if (!dtrace_inscratch(dest, size, mstate)) {
4516 *flags |= CPU_DTRACE_BADADDR;
4517 *illval = regs[rd];
4518 break;
4519 }
4520
4521 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4522 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4523 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4524 break;
4525 }
4526
4527 case DIF_SUBR_COPYINSTR: {
4528 uintptr_t dest = mstate->dtms_scratch_ptr;
4529 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4530
4531 if (nargs > 1 && tupregs[1].dttk_value < size)
4532 size = tupregs[1].dttk_value + 1;
4533
4534 /*
4535 * This action doesn't require any credential checks since
4536 * probes will not activate in user contexts to which the
4537 * enabling user does not have permissions.
4538 */
4539 if (!DTRACE_INSCRATCH(mstate, size)) {
4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4541 regs[rd] = 0;
4542 break;
4543 }
4544
4545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4546 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4547 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4548
4549 ((char *)dest)[size - 1] = '\0';
4550 mstate->dtms_scratch_ptr += size;
4551 regs[rd] = dest;
4552 break;
4553 }
4554
4555 #ifdef illumos
4556 case DIF_SUBR_MSGSIZE:
4557 case DIF_SUBR_MSGDSIZE: {
4558 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4559 uintptr_t wptr, rptr;
4560 size_t count = 0;
4561 int cont = 0;
4562
4563 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4564
4565 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4566 vstate)) {
4567 regs[rd] = 0;
4568 break;
4569 }
4570
4571 wptr = dtrace_loadptr(baddr +
4572 offsetof(mblk_t, b_wptr));
4573
4574 rptr = dtrace_loadptr(baddr +
4575 offsetof(mblk_t, b_rptr));
4576
4577 if (wptr < rptr) {
4578 *flags |= CPU_DTRACE_BADADDR;
4579 *illval = tupregs[0].dttk_value;
4580 break;
4581 }
4582
4583 daddr = dtrace_loadptr(baddr +
4584 offsetof(mblk_t, b_datap));
4585
4586 baddr = dtrace_loadptr(baddr +
4587 offsetof(mblk_t, b_cont));
4588
4589 /*
4590 * We want to prevent against denial-of-service here,
4591 * so we're only going to search the list for
4592 * dtrace_msgdsize_max mblks.
4593 */
4594 if (cont++ > dtrace_msgdsize_max) {
4595 *flags |= CPU_DTRACE_ILLOP;
4596 break;
4597 }
4598
4599 if (subr == DIF_SUBR_MSGDSIZE) {
4600 if (dtrace_load8(daddr +
4601 offsetof(dblk_t, db_type)) != M_DATA)
4602 continue;
4603 }
4604
4605 count += wptr - rptr;
4606 }
4607
4608 if (!(*flags & CPU_DTRACE_FAULT))
4609 regs[rd] = count;
4610
4611 break;
4612 }
4613 #endif
4614
4615 case DIF_SUBR_PROGENYOF: {
4616 pid_t pid = tupregs[0].dttk_value;
4617 proc_t *p;
4618 int rval = 0;
4619
4620 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4621
4622 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4623 #ifdef illumos
4624 if (p->p_pidp->pid_id == pid) {
4625 #else
4626 if (p->p_pid == pid) {
4627 #endif
4628 rval = 1;
4629 break;
4630 }
4631 }
4632
4633 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4634
4635 regs[rd] = rval;
4636 break;
4637 }
4638
4639 case DIF_SUBR_SPECULATION:
4640 regs[rd] = dtrace_speculation(state);
4641 break;
4642
4643 case DIF_SUBR_COPYOUT: {
4644 uintptr_t kaddr = tupregs[0].dttk_value;
4645 uintptr_t uaddr = tupregs[1].dttk_value;
4646 uint64_t size = tupregs[2].dttk_value;
4647
4648 if (!dtrace_destructive_disallow &&
4649 dtrace_priv_proc_control(state) &&
4650 !dtrace_istoxic(kaddr, size) &&
4651 dtrace_canload(kaddr, size, mstate, vstate)) {
4652 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4653 dtrace_copyout(kaddr, uaddr, size, flags);
4654 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4655 }
4656 break;
4657 }
4658
4659 case DIF_SUBR_COPYOUTSTR: {
4660 uintptr_t kaddr = tupregs[0].dttk_value;
4661 uintptr_t uaddr = tupregs[1].dttk_value;
4662 uint64_t size = tupregs[2].dttk_value;
4663 size_t lim;
4664
4665 if (!dtrace_destructive_disallow &&
4666 dtrace_priv_proc_control(state) &&
4667 !dtrace_istoxic(kaddr, size) &&
4668 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4670 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4672 }
4673 break;
4674 }
4675
4676 case DIF_SUBR_STRLEN: {
4677 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4679 size_t lim;
4680
4681 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4682 regs[rd] = 0;
4683 break;
4684 }
4685
4686 regs[rd] = dtrace_strlen((char *)addr, lim);
4687 break;
4688 }
4689
4690 case DIF_SUBR_STRCHR:
4691 case DIF_SUBR_STRRCHR: {
4692 /*
4693 * We're going to iterate over the string looking for the
4694 * specified character. We will iterate until we have reached
4695 * the string length or we have found the character. If this
4696 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4697 * of the specified character instead of the first.
4698 */
4699 uintptr_t addr = tupregs[0].dttk_value;
4700 uintptr_t addr_limit;
4701 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4702 size_t lim;
4703 char c, target = (char)tupregs[1].dttk_value;
4704
4705 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4706 regs[rd] = 0;
4707 break;
4708 }
4709 addr_limit = addr + lim;
4710
4711 for (regs[rd] = 0; addr < addr_limit; addr++) {
4712 if ((c = dtrace_load8(addr)) == target) {
4713 regs[rd] = addr;
4714
4715 if (subr == DIF_SUBR_STRCHR)
4716 break;
4717 }
4718
4719 if (c == '\0')
4720 break;
4721 }
4722 break;
4723 }
4724
4725 case DIF_SUBR_STRSTR:
4726 case DIF_SUBR_INDEX:
4727 case DIF_SUBR_RINDEX: {
4728 /*
4729 * We're going to iterate over the string looking for the
4730 * specified string. We will iterate until we have reached
4731 * the string length or we have found the string. (Yes, this
4732 * is done in the most naive way possible -- but considering
4733 * that the string we're searching for is likely to be
4734 * relatively short, the complexity of Rabin-Karp or similar
4735 * hardly seems merited.)
4736 */
4737 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4738 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4739 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4740 size_t len = dtrace_strlen(addr, size);
4741 size_t sublen = dtrace_strlen(substr, size);
4742 char *limit = addr + len, *orig = addr;
4743 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4744 int inc = 1;
4745
4746 regs[rd] = notfound;
4747
4748 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4749 regs[rd] = 0;
4750 break;
4751 }
4752
4753 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4754 vstate)) {
4755 regs[rd] = 0;
4756 break;
4757 }
4758
4759 /*
4760 * strstr() and index()/rindex() have similar semantics if
4761 * both strings are the empty string: strstr() returns a
4762 * pointer to the (empty) string, and index() and rindex()
4763 * both return index 0 (regardless of any position argument).
4764 */
4765 if (sublen == 0 && len == 0) {
4766 if (subr == DIF_SUBR_STRSTR)
4767 regs[rd] = (uintptr_t)addr;
4768 else
4769 regs[rd] = 0;
4770 break;
4771 }
4772
4773 if (subr != DIF_SUBR_STRSTR) {
4774 if (subr == DIF_SUBR_RINDEX) {
4775 limit = orig - 1;
4776 addr += len;
4777 inc = -1;
4778 }
4779
4780 /*
4781 * Both index() and rindex() take an optional position
4782 * argument that denotes the starting position.
4783 */
4784 if (nargs == 3) {
4785 int64_t pos = (int64_t)tupregs[2].dttk_value;
4786
4787 /*
4788 * If the position argument to index() is
4789 * negative, Perl implicitly clamps it at
4790 * zero. This semantic is a little surprising
4791 * given the special meaning of negative
4792 * positions to similar Perl functions like
4793 * substr(), but it appears to reflect a
4794 * notion that index() can start from a
4795 * negative index and increment its way up to
4796 * the string. Given this notion, Perl's
4797 * rindex() is at least self-consistent in
4798 * that it implicitly clamps positions greater
4799 * than the string length to be the string
4800 * length. Where Perl completely loses
4801 * coherence, however, is when the specified
4802 * substring is the empty string (""). In
4803 * this case, even if the position is
4804 * negative, rindex() returns 0 -- and even if
4805 * the position is greater than the length,
4806 * index() returns the string length. These
4807 * semantics violate the notion that index()
4808 * should never return a value less than the
4809 * specified position and that rindex() should
4810 * never return a value greater than the
4811 * specified position. (One assumes that
4812 * these semantics are artifacts of Perl's
4813 * implementation and not the results of
4814 * deliberate design -- it beggars belief that
4815 * even Larry Wall could desire such oddness.)
4816 * While in the abstract one would wish for
4817 * consistent position semantics across
4818 * substr(), index() and rindex() -- or at the
4819 * very least self-consistent position
4820 * semantics for index() and rindex() -- we
4821 * instead opt to keep with the extant Perl
4822 * semantics, in all their broken glory. (Do
4823 * we have more desire to maintain Perl's
4824 * semantics than Perl does? Probably.)
4825 */
4826 if (subr == DIF_SUBR_RINDEX) {
4827 if (pos < 0) {
4828 if (sublen == 0)
4829 regs[rd] = 0;
4830 break;
4831 }
4832
4833 if (pos > len)
4834 pos = len;
4835 } else {
4836 if (pos < 0)
4837 pos = 0;
4838
4839 if (pos >= len) {
4840 if (sublen == 0)
4841 regs[rd] = len;
4842 break;
4843 }
4844 }
4845
4846 addr = orig + pos;
4847 }
4848 }
4849
4850 for (regs[rd] = notfound; addr != limit; addr += inc) {
4851 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4852 if (subr != DIF_SUBR_STRSTR) {
4853 /*
4854 * As D index() and rindex() are
4855 * modeled on Perl (and not on awk),
4856 * we return a zero-based (and not a
4857 * one-based) index. (For you Perl
4858 * weenies: no, we're not going to add
4859 * $[ -- and shouldn't you be at a con
4860 * or something?)
4861 */
4862 regs[rd] = (uintptr_t)(addr - orig);
4863 break;
4864 }
4865
4866 ASSERT(subr == DIF_SUBR_STRSTR);
4867 regs[rd] = (uintptr_t)addr;
4868 break;
4869 }
4870 }
4871
4872 break;
4873 }
4874
4875 case DIF_SUBR_STRTOK: {
4876 uintptr_t addr = tupregs[0].dttk_value;
4877 uintptr_t tokaddr = tupregs[1].dttk_value;
4878 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4879 uintptr_t limit, toklimit;
4880 size_t clim;
4881 uint8_t c = 0, tokmap[32]; /* 256 / 8 */
4882 char *dest = (char *)mstate->dtms_scratch_ptr;
4883 int i;
4884
4885 /*
4886 * Check both the token buffer and (later) the input buffer,
4887 * since both could be non-scratch addresses.
4888 */
4889 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4890 regs[rd] = 0;
4891 break;
4892 }
4893 toklimit = tokaddr + clim;
4894
4895 if (!DTRACE_INSCRATCH(mstate, size)) {
4896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4897 regs[rd] = 0;
4898 break;
4899 }
4900
4901 if (addr == 0) {
4902 /*
4903 * If the address specified is NULL, we use our saved
4904 * strtok pointer from the mstate. Note that this
4905 * means that the saved strtok pointer is _only_
4906 * valid within multiple enablings of the same probe --
4907 * it behaves like an implicit clause-local variable.
4908 */
4909 addr = mstate->dtms_strtok;
4910 limit = mstate->dtms_strtok_limit;
4911 } else {
4912 /*
4913 * If the user-specified address is non-NULL we must
4914 * access check it. This is the only time we have
4915 * a chance to do so, since this address may reside
4916 * in the string table of this clause-- future calls
4917 * (when we fetch addr from mstate->dtms_strtok)
4918 * would fail this access check.
4919 */
4920 if (!dtrace_strcanload(addr, size, &clim, mstate,
4921 vstate)) {
4922 regs[rd] = 0;
4923 break;
4924 }
4925 limit = addr + clim;
4926 }
4927
4928 /*
4929 * First, zero the token map, and then process the token
4930 * string -- setting a bit in the map for every character
4931 * found in the token string.
4932 */
4933 for (i = 0; i < sizeof (tokmap); i++)
4934 tokmap[i] = 0;
4935
4936 for (; tokaddr < toklimit; tokaddr++) {
4937 if ((c = dtrace_load8(tokaddr)) == '\0')
4938 break;
4939
4940 ASSERT((c >> 3) < sizeof (tokmap));
4941 tokmap[c >> 3] |= (1 << (c & 0x7));
4942 }
4943
4944 for (; addr < limit; addr++) {
4945 /*
4946 * We're looking for a character that is _not_
4947 * contained in the token string.
4948 */
4949 if ((c = dtrace_load8(addr)) == '\0')
4950 break;
4951
4952 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4953 break;
4954 }
4955
4956 if (c == '\0') {
4957 /*
4958 * We reached the end of the string without finding
4959 * any character that was not in the token string.
4960 * We return NULL in this case, and we set the saved
4961 * address to NULL as well.
4962 */
4963 regs[rd] = 0;
4964 mstate->dtms_strtok = 0;
4965 mstate->dtms_strtok_limit = 0;
4966 break;
4967 }
4968
4969 /*
4970 * From here on, we're copying into the destination string.
4971 */
4972 for (i = 0; addr < limit && i < size - 1; addr++) {
4973 if ((c = dtrace_load8(addr)) == '\0')
4974 break;
4975
4976 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4977 break;
4978
4979 ASSERT(i < size);
4980 dest[i++] = c;
4981 }
4982
4983 ASSERT(i < size);
4984 dest[i] = '\0';
4985 regs[rd] = (uintptr_t)dest;
4986 mstate->dtms_scratch_ptr += size;
4987 mstate->dtms_strtok = addr;
4988 mstate->dtms_strtok_limit = limit;
4989 break;
4990 }
4991
4992 case DIF_SUBR_SUBSTR: {
4993 uintptr_t s = tupregs[0].dttk_value;
4994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4995 char *d = (char *)mstate->dtms_scratch_ptr;
4996 int64_t index = (int64_t)tupregs[1].dttk_value;
4997 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4998 size_t len = dtrace_strlen((char *)s, size);
4999 int64_t i;
5000
5001 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5002 regs[rd] = 0;
5003 break;
5004 }
5005
5006 if (!DTRACE_INSCRATCH(mstate, size)) {
5007 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5008 regs[rd] = 0;
5009 break;
5010 }
5011
5012 if (nargs <= 2)
5013 remaining = (int64_t)size;
5014
5015 if (index < 0) {
5016 index += len;
5017
5018 if (index < 0 && index + remaining > 0) {
5019 remaining += index;
5020 index = 0;
5021 }
5022 }
5023
5024 if (index >= len || index < 0) {
5025 remaining = 0;
5026 } else if (remaining < 0) {
5027 remaining += len - index;
5028 } else if (index + remaining > size) {
5029 remaining = size - index;
5030 }
5031
5032 for (i = 0; i < remaining; i++) {
5033 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5034 break;
5035 }
5036
5037 d[i] = '\0';
5038
5039 mstate->dtms_scratch_ptr += size;
5040 regs[rd] = (uintptr_t)d;
5041 break;
5042 }
5043
5044 case DIF_SUBR_JSON: {
5045 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5046 uintptr_t json = tupregs[0].dttk_value;
5047 size_t jsonlen = dtrace_strlen((char *)json, size);
5048 uintptr_t elem = tupregs[1].dttk_value;
5049 size_t elemlen = dtrace_strlen((char *)elem, size);
5050
5051 char *dest = (char *)mstate->dtms_scratch_ptr;
5052 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5053 char *ee = elemlist;
5054 int nelems = 1;
5055 uintptr_t cur;
5056
5057 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5058 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5059 regs[rd] = 0;
5060 break;
5061 }
5062
5063 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5065 regs[rd] = 0;
5066 break;
5067 }
5068
5069 /*
5070 * Read the element selector and split it up into a packed list
5071 * of strings.
5072 */
5073 for (cur = elem; cur < elem + elemlen; cur++) {
5074 char cc = dtrace_load8(cur);
5075
5076 if (cur == elem && cc == '[') {
5077 /*
5078 * If the first element selector key is
5079 * actually an array index then ignore the
5080 * bracket.
5081 */
5082 continue;
5083 }
5084
5085 if (cc == ']')
5086 continue;
5087
5088 if (cc == '.' || cc == '[') {
5089 nelems++;
5090 cc = '\0';
5091 }
5092
5093 *ee++ = cc;
5094 }
5095 *ee++ = '\0';
5096
5097 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5098 nelems, dest)) != 0)
5099 mstate->dtms_scratch_ptr += jsonlen + 1;
5100 break;
5101 }
5102
5103 case DIF_SUBR_TOUPPER:
5104 case DIF_SUBR_TOLOWER: {
5105 uintptr_t s = tupregs[0].dttk_value;
5106 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5107 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5108 size_t len = dtrace_strlen((char *)s, size);
5109 char lower, upper, convert;
5110 int64_t i;
5111
5112 if (subr == DIF_SUBR_TOUPPER) {
5113 lower = 'a';
5114 upper = 'z';
5115 convert = 'A';
5116 } else {
5117 lower = 'A';
5118 upper = 'Z';
5119 convert = 'a';
5120 }
5121
5122 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5123 regs[rd] = 0;
5124 break;
5125 }
5126
5127 if (!DTRACE_INSCRATCH(mstate, size)) {
5128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5129 regs[rd] = 0;
5130 break;
5131 }
5132
5133 for (i = 0; i < size - 1; i++) {
5134 if ((c = dtrace_load8(s + i)) == '\0')
5135 break;
5136
5137 if (c >= lower && c <= upper)
5138 c = convert + (c - lower);
5139
5140 dest[i] = c;
5141 }
5142
5143 ASSERT(i < size);
5144 dest[i] = '\0';
5145 regs[rd] = (uintptr_t)dest;
5146 mstate->dtms_scratch_ptr += size;
5147 break;
5148 }
5149
5150 #ifdef illumos
5151 case DIF_SUBR_GETMAJOR:
5152 #ifdef _LP64
5153 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5154 #else
5155 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5156 #endif
5157 break;
5158
5159 case DIF_SUBR_GETMINOR:
5160 #ifdef _LP64
5161 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5162 #else
5163 regs[rd] = tupregs[0].dttk_value & MAXMIN;
5164 #endif
5165 break;
5166
5167 case DIF_SUBR_DDI_PATHNAME: {
5168 /*
5169 * This one is a galactic mess. We are going to roughly
5170 * emulate ddi_pathname(), but it's made more complicated
5171 * by the fact that we (a) want to include the minor name and
5172 * (b) must proceed iteratively instead of recursively.
5173 */
5174 uintptr_t dest = mstate->dtms_scratch_ptr;
5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176 char *start = (char *)dest, *end = start + size - 1;
5177 uintptr_t daddr = tupregs[0].dttk_value;
5178 int64_t minor = (int64_t)tupregs[1].dttk_value;
5179 char *s;
5180 int i, len, depth = 0;
5181
5182 /*
5183 * Due to all the pointer jumping we do and context we must
5184 * rely upon, we just mandate that the user must have kernel
5185 * read privileges to use this routine.
5186 */
5187 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5188 *flags |= CPU_DTRACE_KPRIV;
5189 *illval = daddr;
5190 regs[rd] = 0;
5191 }
5192
5193 if (!DTRACE_INSCRATCH(mstate, size)) {
5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5195 regs[rd] = 0;
5196 break;
5197 }
5198
5199 *end = '\0';
5200
5201 /*
5202 * We want to have a name for the minor. In order to do this,
5203 * we need to walk the minor list from the devinfo. We want
5204 * to be sure that we don't infinitely walk a circular list,
5205 * so we check for circularity by sending a scout pointer
5206 * ahead two elements for every element that we iterate over;
5207 * if the list is circular, these will ultimately point to the
5208 * same element. You may recognize this little trick as the
5209 * answer to a stupid interview question -- one that always
5210 * seems to be asked by those who had to have it laboriously
5211 * explained to them, and who can't even concisely describe
5212 * the conditions under which one would be forced to resort to
5213 * this technique. Needless to say, those conditions are
5214 * found here -- and probably only here. Is this the only use
5215 * of this infamous trick in shipping, production code? If it
5216 * isn't, it probably should be...
5217 */
5218 if (minor != -1) {
5219 uintptr_t maddr = dtrace_loadptr(daddr +
5220 offsetof(struct dev_info, devi_minor));
5221
5222 uintptr_t next = offsetof(struct ddi_minor_data, next);
5223 uintptr_t name = offsetof(struct ddi_minor_data,
5224 d_minor) + offsetof(struct ddi_minor, name);
5225 uintptr_t dev = offsetof(struct ddi_minor_data,
5226 d_minor) + offsetof(struct ddi_minor, dev);
5227 uintptr_t scout;
5228
5229 if (maddr != NULL)
5230 scout = dtrace_loadptr(maddr + next);
5231
5232 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5233 uint64_t m;
5234 #ifdef _LP64
5235 m = dtrace_load64(maddr + dev) & MAXMIN64;
5236 #else
5237 m = dtrace_load32(maddr + dev) & MAXMIN;
5238 #endif
5239 if (m != minor) {
5240 maddr = dtrace_loadptr(maddr + next);
5241
5242 if (scout == NULL)
5243 continue;
5244
5245 scout = dtrace_loadptr(scout + next);
5246
5247 if (scout == NULL)
5248 continue;
5249
5250 scout = dtrace_loadptr(scout + next);
5251
5252 if (scout == NULL)
5253 continue;
5254
5255 if (scout == maddr) {
5256 *flags |= CPU_DTRACE_ILLOP;
5257 break;
5258 }
5259
5260 continue;
5261 }
5262
5263 /*
5264 * We have the minor data. Now we need to
5265 * copy the minor's name into the end of the
5266 * pathname.
5267 */
5268 s = (char *)dtrace_loadptr(maddr + name);
5269 len = dtrace_strlen(s, size);
5270
5271 if (*flags & CPU_DTRACE_FAULT)
5272 break;
5273
5274 if (len != 0) {
5275 if ((end -= (len + 1)) < start)
5276 break;
5277
5278 *end = ':';
5279 }
5280
5281 for (i = 1; i <= len; i++)
5282 end[i] = dtrace_load8((uintptr_t)s++);
5283 break;
5284 }
5285 }
5286
5287 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5288 ddi_node_state_t devi_state;
5289
5290 devi_state = dtrace_load32(daddr +
5291 offsetof(struct dev_info, devi_node_state));
5292
5293 if (*flags & CPU_DTRACE_FAULT)
5294 break;
5295
5296 if (devi_state >= DS_INITIALIZED) {
5297 s = (char *)dtrace_loadptr(daddr +
5298 offsetof(struct dev_info, devi_addr));
5299 len = dtrace_strlen(s, size);
5300
5301 if (*flags & CPU_DTRACE_FAULT)
5302 break;
5303
5304 if (len != 0) {
5305 if ((end -= (len + 1)) < start)
5306 break;
5307
5308 *end = '@';
5309 }
5310
5311 for (i = 1; i <= len; i++)
5312 end[i] = dtrace_load8((uintptr_t)s++);
5313 }
5314
5315 /*
5316 * Now for the node name...
5317 */
5318 s = (char *)dtrace_loadptr(daddr +
5319 offsetof(struct dev_info, devi_node_name));
5320
5321 daddr = dtrace_loadptr(daddr +
5322 offsetof(struct dev_info, devi_parent));
5323
5324 /*
5325 * If our parent is NULL (that is, if we're the root
5326 * node), we're going to use the special path
5327 * "devices".
5328 */
5329 if (daddr == 0)
5330 s = "devices";
5331
5332 len = dtrace_strlen(s, size);
5333 if (*flags & CPU_DTRACE_FAULT)
5334 break;
5335
5336 if ((end -= (len + 1)) < start)
5337 break;
5338
5339 for (i = 1; i <= len; i++)
5340 end[i] = dtrace_load8((uintptr_t)s++);
5341 *end = '/';
5342
5343 if (depth++ > dtrace_devdepth_max) {
5344 *flags |= CPU_DTRACE_ILLOP;
5345 break;
5346 }
5347 }
5348
5349 if (end < start)
5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5351
5352 if (daddr == 0) {
5353 regs[rd] = (uintptr_t)end;
5354 mstate->dtms_scratch_ptr += size;
5355 }
5356
5357 break;
5358 }
5359 #endif
5360
5361 case DIF_SUBR_STRJOIN: {
5362 char *d = (char *)mstate->dtms_scratch_ptr;
5363 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5364 uintptr_t s1 = tupregs[0].dttk_value;
5365 uintptr_t s2 = tupregs[1].dttk_value;
5366 int i = 0, j = 0;
5367 size_t lim1, lim2;
5368 char c;
5369
5370 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5371 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5372 regs[rd] = 0;
5373 break;
5374 }
5375
5376 if (!DTRACE_INSCRATCH(mstate, size)) {
5377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5378 regs[rd] = 0;
5379 break;
5380 }
5381
5382 for (;;) {
5383 if (i >= size) {
5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5385 regs[rd] = 0;
5386 break;
5387 }
5388 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5389 if ((d[i++] = c) == '\0') {
5390 i--;
5391 break;
5392 }
5393 }
5394
5395 for (;;) {
5396 if (i >= size) {
5397 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5398 regs[rd] = 0;
5399 break;
5400 }
5401
5402 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5403 if ((d[i++] = c) == '\0')
5404 break;
5405 }
5406
5407 if (i < size) {
5408 mstate->dtms_scratch_ptr += i;
5409 regs[rd] = (uintptr_t)d;
5410 }
5411
5412 break;
5413 }
5414
5415 case DIF_SUBR_STRTOLL: {
5416 uintptr_t s = tupregs[0].dttk_value;
5417 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5418 size_t lim;
5419 int base = 10;
5420
5421 if (nargs > 1) {
5422 if ((base = tupregs[1].dttk_value) <= 1 ||
5423 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5424 *flags |= CPU_DTRACE_ILLOP;
5425 break;
5426 }
5427 }
5428
5429 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5430 regs[rd] = INT64_MIN;
5431 break;
5432 }
5433
5434 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5435 break;
5436 }
5437
5438 case DIF_SUBR_LLTOSTR: {
5439 int64_t i = (int64_t)tupregs[0].dttk_value;
5440 uint64_t val, digit;
5441 uint64_t size = 65; /* enough room for 2^64 in binary */
5442 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5443 int base = 10;
5444
5445 if (nargs > 1) {
5446 if ((base = tupregs[1].dttk_value) <= 1 ||
5447 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5448 *flags |= CPU_DTRACE_ILLOP;
5449 break;
5450 }
5451 }
5452
5453 val = (base == 10 && i < 0) ? i * -1 : i;
5454
5455 if (!DTRACE_INSCRATCH(mstate, size)) {
5456 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5457 regs[rd] = 0;
5458 break;
5459 }
5460
5461 for (*end-- = '\0'; val; val /= base) {
5462 if ((digit = val % base) <= '9' - '0') {
5463 *end-- = '0' + digit;
5464 } else {
5465 *end-- = 'a' + (digit - ('9' - '0') - 1);
5466 }
5467 }
5468
5469 if (i == 0 && base == 16)
5470 *end-- = '0';
5471
5472 if (base == 16)
5473 *end-- = 'x';
5474
5475 if (i == 0 || base == 8 || base == 16)
5476 *end-- = '0';
5477
5478 if (i < 0 && base == 10)
5479 *end-- = '-';
5480
5481 regs[rd] = (uintptr_t)end + 1;
5482 mstate->dtms_scratch_ptr += size;
5483 break;
5484 }
5485
5486 case DIF_SUBR_HTONS:
5487 case DIF_SUBR_NTOHS:
5488 #if BYTE_ORDER == BIG_ENDIAN
5489 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5490 #else
5491 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5492 #endif
5493 break;
5494
5495
5496 case DIF_SUBR_HTONL:
5497 case DIF_SUBR_NTOHL:
5498 #if BYTE_ORDER == BIG_ENDIAN
5499 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5500 #else
5501 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5502 #endif
5503 break;
5504
5505
5506 case DIF_SUBR_HTONLL:
5507 case DIF_SUBR_NTOHLL:
5508 #if BYTE_ORDER == BIG_ENDIAN
5509 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5510 #else
5511 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5512 #endif
5513 break;
5514
5515
5516 case DIF_SUBR_DIRNAME:
5517 case DIF_SUBR_BASENAME: {
5518 char *dest = (char *)mstate->dtms_scratch_ptr;
5519 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5520 uintptr_t src = tupregs[0].dttk_value;
5521 int i, j, len = dtrace_strlen((char *)src, size);
5522 int lastbase = -1, firstbase = -1, lastdir = -1;
5523 int start, end;
5524
5525 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5526 regs[rd] = 0;
5527 break;
5528 }
5529
5530 if (!DTRACE_INSCRATCH(mstate, size)) {
5531 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5532 regs[rd] = 0;
5533 break;
5534 }
5535
5536 /*
5537 * The basename and dirname for a zero-length string is
5538 * defined to be "."
5539 */
5540 if (len == 0) {
5541 len = 1;
5542 src = (uintptr_t)".";
5543 }
5544
5545 /*
5546 * Start from the back of the string, moving back toward the
5547 * front until we see a character that isn't a slash. That
5548 * character is the last character in the basename.
5549 */
5550 for (i = len - 1; i >= 0; i--) {
5551 if (dtrace_load8(src + i) != '/')
5552 break;
5553 }
5554
5555 if (i >= 0)
5556 lastbase = i;
5557
5558 /*
5559 * Starting from the last character in the basename, move
5560 * towards the front until we find a slash. The character
5561 * that we processed immediately before that is the first
5562 * character in the basename.
5563 */
5564 for (; i >= 0; i--) {
5565 if (dtrace_load8(src + i) == '/')
5566 break;
5567 }
5568
5569 if (i >= 0)
5570 firstbase = i + 1;
5571
5572 /*
5573 * Now keep going until we find a non-slash character. That
5574 * character is the last character in the dirname.
5575 */
5576 for (; i >= 0; i--) {
5577 if (dtrace_load8(src + i) != '/')
5578 break;
5579 }
5580
5581 if (i >= 0)
5582 lastdir = i;
5583
5584 ASSERT(!(lastbase == -1 && firstbase != -1));
5585 ASSERT(!(firstbase == -1 && lastdir != -1));
5586
5587 if (lastbase == -1) {
5588 /*
5589 * We didn't find a non-slash character. We know that
5590 * the length is non-zero, so the whole string must be
5591 * slashes. In either the dirname or the basename
5592 * case, we return '/'.
5593 */
5594 ASSERT(firstbase == -1);
5595 firstbase = lastbase = lastdir = 0;
5596 }
5597
5598 if (firstbase == -1) {
5599 /*
5600 * The entire string consists only of a basename
5601 * component. If we're looking for dirname, we need
5602 * to change our string to be just "."; if we're
5603 * looking for a basename, we'll just set the first
5604 * character of the basename to be 0.
5605 */
5606 if (subr == DIF_SUBR_DIRNAME) {
5607 ASSERT(lastdir == -1);
5608 src = (uintptr_t)".";
5609 lastdir = 0;
5610 } else {
5611 firstbase = 0;
5612 }
5613 }
5614
5615 if (subr == DIF_SUBR_DIRNAME) {
5616 if (lastdir == -1) {
5617 /*
5618 * We know that we have a slash in the name --
5619 * or lastdir would be set to 0, above. And
5620 * because lastdir is -1, we know that this
5621 * slash must be the first character. (That
5622 * is, the full string must be of the form
5623 * "/basename".) In this case, the last
5624 * character of the directory name is 0.
5625 */
5626 lastdir = 0;
5627 }
5628
5629 start = 0;
5630 end = lastdir;
5631 } else {
5632 ASSERT(subr == DIF_SUBR_BASENAME);
5633 ASSERT(firstbase != -1 && lastbase != -1);
5634 start = firstbase;
5635 end = lastbase;
5636 }
5637
5638 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5639 dest[j] = dtrace_load8(src + i);
5640
5641 dest[j] = '\0';
5642 regs[rd] = (uintptr_t)dest;
5643 mstate->dtms_scratch_ptr += size;
5644 break;
5645 }
5646
5647 case DIF_SUBR_GETF: {
5648 uintptr_t fd = tupregs[0].dttk_value;
5649 struct filedesc *fdp;
5650 file_t *fp;
5651
5652 if (!dtrace_priv_proc(state)) {
5653 regs[rd] = 0;
5654 break;
5655 }
5656 fdp = curproc->p_fd;
5657 FILEDESC_SLOCK(fdp);
5658 /*
5659 * XXXMJG this looks broken as no ref is taken.
5660 */
5661 fp = fget_noref(fdp, fd);
5662 mstate->dtms_getf = fp;
5663 regs[rd] = (uintptr_t)fp;
5664 FILEDESC_SUNLOCK(fdp);
5665 break;
5666 }
5667
5668 case DIF_SUBR_CLEANPATH: {
5669 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5671 uintptr_t src = tupregs[0].dttk_value;
5672 size_t lim;
5673 int i = 0, j = 0;
5674 #ifdef illumos
5675 zone_t *z;
5676 #endif
5677
5678 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5679 regs[rd] = 0;
5680 break;
5681 }
5682
5683 if (!DTRACE_INSCRATCH(mstate, size)) {
5684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5685 regs[rd] = 0;
5686 break;
5687 }
5688
5689 /*
5690 * Move forward, loading each character.
5691 */
5692 do {
5693 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5694 next:
5695 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5696 break;
5697
5698 if (c != '/') {
5699 dest[j++] = c;
5700 continue;
5701 }
5702
5703 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5704
5705 if (c == '/') {
5706 /*
5707 * We have two slashes -- we can just advance
5708 * to the next character.
5709 */
5710 goto next;
5711 }
5712
5713 if (c != '.') {
5714 /*
5715 * This is not "." and it's not ".." -- we can
5716 * just store the "/" and this character and
5717 * drive on.
5718 */
5719 dest[j++] = '/';
5720 dest[j++] = c;
5721 continue;
5722 }
5723
5724 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5725
5726 if (c == '/') {
5727 /*
5728 * This is a "/./" component. We're not going
5729 * to store anything in the destination buffer;
5730 * we're just going to go to the next component.
5731 */
5732 goto next;
5733 }
5734
5735 if (c != '.') {
5736 /*
5737 * This is not ".." -- we can just store the
5738 * "/." and this character and continue
5739 * processing.
5740 */
5741 dest[j++] = '/';
5742 dest[j++] = '.';
5743 dest[j++] = c;
5744 continue;
5745 }
5746
5747 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5748
5749 if (c != '/' && c != '\0') {
5750 /*
5751 * This is not ".." -- it's "..[mumble]".
5752 * We'll store the "/.." and this character
5753 * and continue processing.
5754 */
5755 dest[j++] = '/';
5756 dest[j++] = '.';
5757 dest[j++] = '.';
5758 dest[j++] = c;
5759 continue;
5760 }
5761
5762 /*
5763 * This is "/../" or "/..\0". We need to back up
5764 * our destination pointer until we find a "/".
5765 */
5766 i--;
5767 while (j != 0 && dest[--j] != '/')
5768 continue;
5769
5770 if (c == '\0')
5771 dest[++j] = '/';
5772 } while (c != '\0');
5773
5774 dest[j] = '\0';
5775
5776 #ifdef illumos
5777 if (mstate->dtms_getf != NULL &&
5778 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5779 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5780 /*
5781 * If we've done a getf() as a part of this ECB and we
5782 * don't have kernel access (and we're not in the global
5783 * zone), check if the path we cleaned up begins with
5784 * the zone's root path, and trim it off if so. Note
5785 * that this is an output cleanliness issue, not a
5786 * security issue: knowing one's zone root path does
5787 * not enable privilege escalation.
5788 */
5789 if (strstr(dest, z->zone_rootpath) == dest)
5790 dest += strlen(z->zone_rootpath) - 1;
5791 }
5792 #endif
5793
5794 regs[rd] = (uintptr_t)dest;
5795 mstate->dtms_scratch_ptr += size;
5796 break;
5797 }
5798
5799 case DIF_SUBR_INET_NTOA:
5800 case DIF_SUBR_INET_NTOA6:
5801 case DIF_SUBR_INET_NTOP: {
5802 size_t size;
5803 int af, argi, i;
5804 char *base, *end;
5805
5806 if (subr == DIF_SUBR_INET_NTOP) {
5807 af = (int)tupregs[0].dttk_value;
5808 argi = 1;
5809 } else {
5810 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5811 argi = 0;
5812 }
5813
5814 if (af == AF_INET) {
5815 ipaddr_t ip4;
5816 uint8_t *ptr8, val;
5817
5818 if (!dtrace_canload(tupregs[argi].dttk_value,
5819 sizeof (ipaddr_t), mstate, vstate)) {
5820 regs[rd] = 0;
5821 break;
5822 }
5823
5824 /*
5825 * Safely load the IPv4 address.
5826 */
5827 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5828
5829 /*
5830 * Check an IPv4 string will fit in scratch.
5831 */
5832 size = INET_ADDRSTRLEN;
5833 if (!DTRACE_INSCRATCH(mstate, size)) {
5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5835 regs[rd] = 0;
5836 break;
5837 }
5838 base = (char *)mstate->dtms_scratch_ptr;
5839 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5840
5841 /*
5842 * Stringify as a dotted decimal quad.
5843 */
5844 *end-- = '\0';
5845 ptr8 = (uint8_t *)&ip4;
5846 for (i = 3; i >= 0; i--) {
5847 val = ptr8[i];
5848
5849 if (val == 0) {
5850 *end-- = '0';
5851 } else {
5852 for (; val; val /= 10) {
5853 *end-- = '0' + (val % 10);
5854 }
5855 }
5856
5857 if (i > 0)
5858 *end-- = '.';
5859 }
5860 ASSERT(end + 1 >= base);
5861
5862 } else if (af == AF_INET6) {
5863 struct in6_addr ip6;
5864 int firstzero, tryzero, numzero, v6end;
5865 uint16_t val;
5866 const char digits[] = "0123456789abcdef";
5867
5868 /*
5869 * Stringify using RFC 1884 convention 2 - 16 bit
5870 * hexadecimal values with a zero-run compression.
5871 * Lower case hexadecimal digits are used.
5872 * eg, fe80::214:4fff:fe0b:76c8.
5873 * The IPv4 embedded form is returned for inet_ntop,
5874 * just the IPv4 string is returned for inet_ntoa6.
5875 */
5876
5877 if (!dtrace_canload(tupregs[argi].dttk_value,
5878 sizeof (struct in6_addr), mstate, vstate)) {
5879 regs[rd] = 0;
5880 break;
5881 }
5882
5883 /*
5884 * Safely load the IPv6 address.
5885 */
5886 dtrace_bcopy(
5887 (void *)(uintptr_t)tupregs[argi].dttk_value,
5888 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5889
5890 /*
5891 * Check an IPv6 string will fit in scratch.
5892 */
5893 size = INET6_ADDRSTRLEN;
5894 if (!DTRACE_INSCRATCH(mstate, size)) {
5895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5896 regs[rd] = 0;
5897 break;
5898 }
5899 base = (char *)mstate->dtms_scratch_ptr;
5900 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5901 *end-- = '\0';
5902
5903 /*
5904 * Find the longest run of 16 bit zero values
5905 * for the single allowed zero compression - "::".
5906 */
5907 firstzero = -1;
5908 tryzero = -1;
5909 numzero = 1;
5910 for (i = 0; i < sizeof (struct in6_addr); i++) {
5911 #ifdef illumos
5912 if (ip6._S6_un._S6_u8[i] == 0 &&
5913 #else
5914 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5915 #endif
5916 tryzero == -1 && i % 2 == 0) {
5917 tryzero = i;
5918 continue;
5919 }
5920
5921 if (tryzero != -1 &&
5922 #ifdef illumos
5923 (ip6._S6_un._S6_u8[i] != 0 ||
5924 #else
5925 (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5926 #endif
5927 i == sizeof (struct in6_addr) - 1)) {
5928
5929 if (i - tryzero <= numzero) {
5930 tryzero = -1;
5931 continue;
5932 }
5933
5934 firstzero = tryzero;
5935 numzero = i - i % 2 - tryzero;
5936 tryzero = -1;
5937
5938 #ifdef illumos
5939 if (ip6._S6_un._S6_u8[i] == 0 &&
5940 #else
5941 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5942 #endif
5943 i == sizeof (struct in6_addr) - 1)
5944 numzero += 2;
5945 }
5946 }
5947 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5948
5949 /*
5950 * Check for an IPv4 embedded address.
5951 */
5952 v6end = sizeof (struct in6_addr) - 2;
5953 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5954 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5955 for (i = sizeof (struct in6_addr) - 1;
5956 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5957 ASSERT(end >= base);
5958
5959 #ifdef illumos
5960 val = ip6._S6_un._S6_u8[i];
5961 #else
5962 val = ip6.__u6_addr.__u6_addr8[i];
5963 #endif
5964
5965 if (val == 0) {
5966 *end-- = '0';
5967 } else {
5968 for (; val; val /= 10) {
5969 *end-- = '0' + val % 10;
5970 }
5971 }
5972
5973 if (i > DTRACE_V4MAPPED_OFFSET)
5974 *end-- = '.';
5975 }
5976
5977 if (subr == DIF_SUBR_INET_NTOA6)
5978 goto inetout;
5979
5980 /*
5981 * Set v6end to skip the IPv4 address that
5982 * we have already stringified.
5983 */
5984 v6end = 10;
5985 }
5986
5987 /*
5988 * Build the IPv6 string by working through the
5989 * address in reverse.
5990 */
5991 for (i = v6end; i >= 0; i -= 2) {
5992 ASSERT(end >= base);
5993
5994 if (i == firstzero + numzero - 2) {
5995 *end-- = ':';
5996 *end-- = ':';
5997 i -= numzero - 2;
5998 continue;
5999 }
6000
6001 if (i < 14 && i != firstzero - 2)
6002 *end-- = ':';
6003
6004 #ifdef illumos
6005 val = (ip6._S6_un._S6_u8[i] << 8) +
6006 ip6._S6_un._S6_u8[i + 1];
6007 #else
6008 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6009 ip6.__u6_addr.__u6_addr8[i + 1];
6010 #endif
6011
6012 if (val == 0) {
6013 *end-- = '0';
6014 } else {
6015 for (; val; val /= 16) {
6016 *end-- = digits[val % 16];
6017 }
6018 }
6019 }
6020 ASSERT(end + 1 >= base);
6021
6022 } else {
6023 /*
6024 * The user didn't use AH_INET or AH_INET6.
6025 */
6026 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6027 regs[rd] = 0;
6028 break;
6029 }
6030
6031 inetout: regs[rd] = (uintptr_t)end + 1;
6032 mstate->dtms_scratch_ptr += size;
6033 break;
6034 }
6035
6036 case DIF_SUBR_MEMREF: {
6037 uintptr_t size = 2 * sizeof(uintptr_t);
6038 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6039 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6040
6041 /* address and length */
6042 memref[0] = tupregs[0].dttk_value;
6043 memref[1] = tupregs[1].dttk_value;
6044
6045 regs[rd] = (uintptr_t) memref;
6046 mstate->dtms_scratch_ptr += scratch_size;
6047 break;
6048 }
6049
6050 #ifndef illumos
6051 case DIF_SUBR_MEMSTR: {
6052 char *str = (char *)mstate->dtms_scratch_ptr;
6053 uintptr_t mem = tupregs[0].dttk_value;
6054 char c = tupregs[1].dttk_value;
6055 size_t size = tupregs[2].dttk_value;
6056 uint8_t n;
6057 int i;
6058
6059 regs[rd] = 0;
6060
6061 if (size == 0)
6062 break;
6063
6064 if (!dtrace_canload(mem, size - 1, mstate, vstate))
6065 break;
6066
6067 if (!DTRACE_INSCRATCH(mstate, size)) {
6068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6069 break;
6070 }
6071
6072 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6073 *flags |= CPU_DTRACE_ILLOP;
6074 break;
6075 }
6076
6077 for (i = 0; i < size - 1; i++) {
6078 n = dtrace_load8(mem++);
6079 str[i] = (n == 0) ? c : n;
6080 }
6081 str[size - 1] = 0;
6082
6083 regs[rd] = (uintptr_t)str;
6084 mstate->dtms_scratch_ptr += size;
6085 break;
6086 }
6087 #endif
6088 }
6089 }
6090
6091 /*
6092 * Emulate the execution of DTrace IR instructions specified by the given
6093 * DIF object. This function is deliberately void of assertions as all of
6094 * the necessary checks are handled by a call to dtrace_difo_validate().
6095 */
6096 static uint64_t
6097 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6098 dtrace_vstate_t *vstate, dtrace_state_t *state)
6099 {
6100 const dif_instr_t *text = difo->dtdo_buf;
6101 const uint_t textlen = difo->dtdo_len;
6102 const char *strtab = difo->dtdo_strtab;
6103 const uint64_t *inttab = difo->dtdo_inttab;
6104
6105 uint64_t rval = 0;
6106 dtrace_statvar_t *svar;
6107 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6108 dtrace_difv_t *v;
6109 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6110 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6111
6112 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6113 uint64_t regs[DIF_DIR_NREGS];
6114 uint64_t *tmp;
6115
6116 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6117 int64_t cc_r;
6118 uint_t pc = 0, id, opc = 0;
6119 uint8_t ttop = 0;
6120 dif_instr_t instr;
6121 uint_t r1, r2, rd;
6122
6123 /*
6124 * We stash the current DIF object into the machine state: we need it
6125 * for subsequent access checking.
6126 */
6127 mstate->dtms_difo = difo;
6128
6129 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
6130
6131 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6132 opc = pc;
6133
6134 instr = text[pc++];
6135 r1 = DIF_INSTR_R1(instr);
6136 r2 = DIF_INSTR_R2(instr);
6137 rd = DIF_INSTR_RD(instr);
6138
6139 switch (DIF_INSTR_OP(instr)) {
6140 case DIF_OP_OR:
6141 regs[rd] = regs[r1] | regs[r2];
6142 break;
6143 case DIF_OP_XOR:
6144 regs[rd] = regs[r1] ^ regs[r2];
6145 break;
6146 case DIF_OP_AND:
6147 regs[rd] = regs[r1] & regs[r2];
6148 break;
6149 case DIF_OP_SLL:
6150 regs[rd] = regs[r1] << regs[r2];
6151 break;
6152 case DIF_OP_SRL:
6153 regs[rd] = regs[r1] >> regs[r2];
6154 break;
6155 case DIF_OP_SUB:
6156 regs[rd] = regs[r1] - regs[r2];
6157 break;
6158 case DIF_OP_ADD:
6159 regs[rd] = regs[r1] + regs[r2];
6160 break;
6161 case DIF_OP_MUL:
6162 regs[rd] = regs[r1] * regs[r2];
6163 break;
6164 case DIF_OP_SDIV:
6165 if (regs[r2] == 0) {
6166 regs[rd] = 0;
6167 *flags |= CPU_DTRACE_DIVZERO;
6168 } else {
6169 regs[rd] = (int64_t)regs[r1] /
6170 (int64_t)regs[r2];
6171 }
6172 break;
6173
6174 case DIF_OP_UDIV:
6175 if (regs[r2] == 0) {
6176 regs[rd] = 0;
6177 *flags |= CPU_DTRACE_DIVZERO;
6178 } else {
6179 regs[rd] = regs[r1] / regs[r2];
6180 }
6181 break;
6182
6183 case DIF_OP_SREM:
6184 if (regs[r2] == 0) {
6185 regs[rd] = 0;
6186 *flags |= CPU_DTRACE_DIVZERO;
6187 } else {
6188 regs[rd] = (int64_t)regs[r1] %
6189 (int64_t)regs[r2];
6190 }
6191 break;
6192
6193 case DIF_OP_UREM:
6194 if (regs[r2] == 0) {
6195 regs[rd] = 0;
6196 *flags |= CPU_DTRACE_DIVZERO;
6197 } else {
6198 regs[rd] = regs[r1] % regs[r2];
6199 }
6200 break;
6201
6202 case DIF_OP_NOT:
6203 regs[rd] = ~regs[r1];
6204 break;
6205 case DIF_OP_MOV:
6206 regs[rd] = regs[r1];
6207 break;
6208 case DIF_OP_CMP:
6209 cc_r = regs[r1] - regs[r2];
6210 cc_n = cc_r < 0;
6211 cc_z = cc_r == 0;
6212 cc_v = 0;
6213 cc_c = regs[r1] < regs[r2];
6214 break;
6215 case DIF_OP_TST:
6216 cc_n = cc_v = cc_c = 0;
6217 cc_z = regs[r1] == 0;
6218 break;
6219 case DIF_OP_BA:
6220 pc = DIF_INSTR_LABEL(instr);
6221 break;
6222 case DIF_OP_BE:
6223 if (cc_z)
6224 pc = DIF_INSTR_LABEL(instr);
6225 break;
6226 case DIF_OP_BNE:
6227 if (cc_z == 0)
6228 pc = DIF_INSTR_LABEL(instr);
6229 break;
6230 case DIF_OP_BG:
6231 if ((cc_z | (cc_n ^ cc_v)) == 0)
6232 pc = DIF_INSTR_LABEL(instr);
6233 break;
6234 case DIF_OP_BGU:
6235 if ((cc_c | cc_z) == 0)
6236 pc = DIF_INSTR_LABEL(instr);
6237 break;
6238 case DIF_OP_BGE:
6239 if ((cc_n ^ cc_v) == 0)
6240 pc = DIF_INSTR_LABEL(instr);
6241 break;
6242 case DIF_OP_BGEU:
6243 if (cc_c == 0)
6244 pc = DIF_INSTR_LABEL(instr);
6245 break;
6246 case DIF_OP_BL:
6247 if (cc_n ^ cc_v)
6248 pc = DIF_INSTR_LABEL(instr);
6249 break;
6250 case DIF_OP_BLU:
6251 if (cc_c)
6252 pc = DIF_INSTR_LABEL(instr);
6253 break;
6254 case DIF_OP_BLE:
6255 if (cc_z | (cc_n ^ cc_v))
6256 pc = DIF_INSTR_LABEL(instr);
6257 break;
6258 case DIF_OP_BLEU:
6259 if (cc_c | cc_z)
6260 pc = DIF_INSTR_LABEL(instr);
6261 break;
6262 case DIF_OP_RLDSB:
6263 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6264 break;
6265 /*FALLTHROUGH*/
6266 case DIF_OP_LDSB:
6267 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6268 break;
6269 case DIF_OP_RLDSH:
6270 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6271 break;
6272 /*FALLTHROUGH*/
6273 case DIF_OP_LDSH:
6274 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6275 break;
6276 case DIF_OP_RLDSW:
6277 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6278 break;
6279 /*FALLTHROUGH*/
6280 case DIF_OP_LDSW:
6281 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6282 break;
6283 case DIF_OP_RLDUB:
6284 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6285 break;
6286 /*FALLTHROUGH*/
6287 case DIF_OP_LDUB:
6288 regs[rd] = dtrace_load8(regs[r1]);
6289 break;
6290 case DIF_OP_RLDUH:
6291 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6292 break;
6293 /*FALLTHROUGH*/
6294 case DIF_OP_LDUH:
6295 regs[rd] = dtrace_load16(regs[r1]);
6296 break;
6297 case DIF_OP_RLDUW:
6298 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6299 break;
6300 /*FALLTHROUGH*/
6301 case DIF_OP_LDUW:
6302 regs[rd] = dtrace_load32(regs[r1]);
6303 break;
6304 case DIF_OP_RLDX:
6305 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6306 break;
6307 /*FALLTHROUGH*/
6308 case DIF_OP_LDX:
6309 regs[rd] = dtrace_load64(regs[r1]);
6310 break;
6311 case DIF_OP_ULDSB:
6312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313 regs[rd] = (int8_t)
6314 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6315 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316 break;
6317 case DIF_OP_ULDSH:
6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319 regs[rd] = (int16_t)
6320 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322 break;
6323 case DIF_OP_ULDSW:
6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325 regs[rd] = (int32_t)
6326 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328 break;
6329 case DIF_OP_ULDUB:
6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331 regs[rd] =
6332 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334 break;
6335 case DIF_OP_ULDUH:
6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337 regs[rd] =
6338 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340 break;
6341 case DIF_OP_ULDUW:
6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343 regs[rd] =
6344 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346 break;
6347 case DIF_OP_ULDX:
6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6349 regs[rd] =
6350 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6352 break;
6353 case DIF_OP_RET:
6354 rval = regs[rd];
6355 pc = textlen;
6356 break;
6357 case DIF_OP_NOP:
6358 break;
6359 case DIF_OP_SETX:
6360 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6361 break;
6362 case DIF_OP_SETS:
6363 regs[rd] = (uint64_t)(uintptr_t)
6364 (strtab + DIF_INSTR_STRING(instr));
6365 break;
6366 case DIF_OP_SCMP: {
6367 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6368 uintptr_t s1 = regs[r1];
6369 uintptr_t s2 = regs[r2];
6370 size_t lim1, lim2;
6371
6372 /*
6373 * If one of the strings is NULL then the limit becomes
6374 * 0 which compares 0 characters in dtrace_strncmp()
6375 * resulting in a false positive. dtrace_strncmp()
6376 * treats a NULL as an empty 1-char string.
6377 */
6378 lim1 = lim2 = 1;
6379
6380 if (s1 != 0 &&
6381 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6382 break;
6383 if (s2 != 0 &&
6384 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6385 break;
6386
6387 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6388 MIN(lim1, lim2));
6389
6390 cc_n = cc_r < 0;
6391 cc_z = cc_r == 0;
6392 cc_v = cc_c = 0;
6393 break;
6394 }
6395 case DIF_OP_LDGA:
6396 regs[rd] = dtrace_dif_variable(mstate, state,
6397 r1, regs[r2]);
6398 break;
6399 case DIF_OP_LDGS:
6400 id = DIF_INSTR_VAR(instr);
6401
6402 if (id >= DIF_VAR_OTHER_UBASE) {
6403 uintptr_t a;
6404
6405 id -= DIF_VAR_OTHER_UBASE;
6406 svar = vstate->dtvs_globals[id];
6407 ASSERT(svar != NULL);
6408 v = &svar->dtsv_var;
6409
6410 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6411 regs[rd] = svar->dtsv_data;
6412 break;
6413 }
6414
6415 a = (uintptr_t)svar->dtsv_data;
6416
6417 if (*(uint8_t *)a == UINT8_MAX) {
6418 /*
6419 * If the 0th byte is set to UINT8_MAX
6420 * then this is to be treated as a
6421 * reference to a NULL variable.
6422 */
6423 regs[rd] = 0;
6424 } else {
6425 regs[rd] = a + sizeof (uint64_t);
6426 }
6427
6428 break;
6429 }
6430
6431 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6432 break;
6433
6434 case DIF_OP_STGS:
6435 id = DIF_INSTR_VAR(instr);
6436
6437 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6438 id -= DIF_VAR_OTHER_UBASE;
6439
6440 VERIFY(id < vstate->dtvs_nglobals);
6441 svar = vstate->dtvs_globals[id];
6442 ASSERT(svar != NULL);
6443 v = &svar->dtsv_var;
6444
6445 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6446 uintptr_t a = (uintptr_t)svar->dtsv_data;
6447 size_t lim;
6448
6449 ASSERT(a != 0);
6450 ASSERT(svar->dtsv_size != 0);
6451
6452 if (regs[rd] == 0) {
6453 *(uint8_t *)a = UINT8_MAX;
6454 break;
6455 } else {
6456 *(uint8_t *)a = 0;
6457 a += sizeof (uint64_t);
6458 }
6459 if (!dtrace_vcanload(
6460 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6461 &lim, mstate, vstate))
6462 break;
6463
6464 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6465 (void *)a, &v->dtdv_type, lim);
6466 break;
6467 }
6468
6469 svar->dtsv_data = regs[rd];
6470 break;
6471
6472 case DIF_OP_LDTA:
6473 /*
6474 * There are no DTrace built-in thread-local arrays at
6475 * present. This opcode is saved for future work.
6476 */
6477 *flags |= CPU_DTRACE_ILLOP;
6478 regs[rd] = 0;
6479 break;
6480
6481 case DIF_OP_LDLS:
6482 id = DIF_INSTR_VAR(instr);
6483
6484 if (id < DIF_VAR_OTHER_UBASE) {
6485 /*
6486 * For now, this has no meaning.
6487 */
6488 regs[rd] = 0;
6489 break;
6490 }
6491
6492 id -= DIF_VAR_OTHER_UBASE;
6493
6494 ASSERT(id < vstate->dtvs_nlocals);
6495 ASSERT(vstate->dtvs_locals != NULL);
6496
6497 svar = vstate->dtvs_locals[id];
6498 ASSERT(svar != NULL);
6499 v = &svar->dtsv_var;
6500
6501 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6502 uintptr_t a = (uintptr_t)svar->dtsv_data;
6503 size_t sz = v->dtdv_type.dtdt_size;
6504 size_t lim;
6505
6506 sz += sizeof (uint64_t);
6507 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6508 a += curcpu * sz;
6509
6510 if (*(uint8_t *)a == UINT8_MAX) {
6511 /*
6512 * If the 0th byte is set to UINT8_MAX
6513 * then this is to be treated as a
6514 * reference to a NULL variable.
6515 */
6516 regs[rd] = 0;
6517 } else {
6518 regs[rd] = a + sizeof (uint64_t);
6519 }
6520
6521 break;
6522 }
6523
6524 ASSERT(svar->dtsv_size ==
6525 (mp_maxid + 1) * sizeof (uint64_t));
6526 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6527 regs[rd] = tmp[curcpu];
6528 break;
6529
6530 case DIF_OP_STLS:
6531 id = DIF_INSTR_VAR(instr);
6532
6533 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6534 id -= DIF_VAR_OTHER_UBASE;
6535 VERIFY(id < vstate->dtvs_nlocals);
6536
6537 ASSERT(vstate->dtvs_locals != NULL);
6538 svar = vstate->dtvs_locals[id];
6539 ASSERT(svar != NULL);
6540 v = &svar->dtsv_var;
6541
6542 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6543 uintptr_t a = (uintptr_t)svar->dtsv_data;
6544 size_t sz = v->dtdv_type.dtdt_size;
6545 size_t lim;
6546
6547 sz += sizeof (uint64_t);
6548 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6549 a += curcpu * sz;
6550
6551 if (regs[rd] == 0) {
6552 *(uint8_t *)a = UINT8_MAX;
6553 break;
6554 } else {
6555 *(uint8_t *)a = 0;
6556 a += sizeof (uint64_t);
6557 }
6558
6559 if (!dtrace_vcanload(
6560 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6561 &lim, mstate, vstate))
6562 break;
6563
6564 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6565 (void *)a, &v->dtdv_type, lim);
6566 break;
6567 }
6568
6569 ASSERT(svar->dtsv_size ==
6570 (mp_maxid + 1) * sizeof (uint64_t));
6571 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6572 tmp[curcpu] = regs[rd];
6573 break;
6574
6575 case DIF_OP_LDTS: {
6576 dtrace_dynvar_t *dvar;
6577 dtrace_key_t *key;
6578
6579 id = DIF_INSTR_VAR(instr);
6580 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6581 id -= DIF_VAR_OTHER_UBASE;
6582 v = &vstate->dtvs_tlocals[id];
6583
6584 key = &tupregs[DIF_DTR_NREGS];
6585 key[0].dttk_value = (uint64_t)id;
6586 key[0].dttk_size = 0;
6587 DTRACE_TLS_THRKEY(key[1].dttk_value);
6588 key[1].dttk_size = 0;
6589
6590 dvar = dtrace_dynvar(dstate, 2, key,
6591 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6592 mstate, vstate);
6593
6594 if (dvar == NULL) {
6595 regs[rd] = 0;
6596 break;
6597 }
6598
6599 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6600 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6601 } else {
6602 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6603 }
6604
6605 break;
6606 }
6607
6608 case DIF_OP_STTS: {
6609 dtrace_dynvar_t *dvar;
6610 dtrace_key_t *key;
6611
6612 id = DIF_INSTR_VAR(instr);
6613 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6614 id -= DIF_VAR_OTHER_UBASE;
6615 VERIFY(id < vstate->dtvs_ntlocals);
6616
6617 key = &tupregs[DIF_DTR_NREGS];
6618 key[0].dttk_value = (uint64_t)id;
6619 key[0].dttk_size = 0;
6620 DTRACE_TLS_THRKEY(key[1].dttk_value);
6621 key[1].dttk_size = 0;
6622 v = &vstate->dtvs_tlocals[id];
6623
6624 dvar = dtrace_dynvar(dstate, 2, key,
6625 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6626 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6627 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6628 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6629
6630 /*
6631 * Given that we're storing to thread-local data,
6632 * we need to flush our predicate cache.
6633 */
6634 curthread->t_predcache = 0;
6635
6636 if (dvar == NULL)
6637 break;
6638
6639 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6640 size_t lim;
6641
6642 if (!dtrace_vcanload(
6643 (void *)(uintptr_t)regs[rd],
6644 &v->dtdv_type, &lim, mstate, vstate))
6645 break;
6646
6647 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6648 dvar->dtdv_data, &v->dtdv_type, lim);
6649 } else {
6650 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6651 }
6652
6653 break;
6654 }
6655
6656 case DIF_OP_SRA:
6657 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6658 break;
6659
6660 case DIF_OP_CALL:
6661 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6662 regs, tupregs, ttop, mstate, state);
6663 break;
6664
6665 case DIF_OP_PUSHTR:
6666 if (ttop == DIF_DTR_NREGS) {
6667 *flags |= CPU_DTRACE_TUPOFLOW;
6668 break;
6669 }
6670
6671 if (r1 == DIF_TYPE_STRING) {
6672 /*
6673 * If this is a string type and the size is 0,
6674 * we'll use the system-wide default string
6675 * size. Note that we are _not_ looking at
6676 * the value of the DTRACEOPT_STRSIZE option;
6677 * had this been set, we would expect to have
6678 * a non-zero size value in the "pushtr".
6679 */
6680 tupregs[ttop].dttk_size =
6681 dtrace_strlen((char *)(uintptr_t)regs[rd],
6682 regs[r2] ? regs[r2] :
6683 dtrace_strsize_default) + 1;
6684 } else {
6685 if (regs[r2] > LONG_MAX) {
6686 *flags |= CPU_DTRACE_ILLOP;
6687 break;
6688 }
6689
6690 tupregs[ttop].dttk_size = regs[r2];
6691 }
6692
6693 tupregs[ttop++].dttk_value = regs[rd];
6694 break;
6695
6696 case DIF_OP_PUSHTV:
6697 if (ttop == DIF_DTR_NREGS) {
6698 *flags |= CPU_DTRACE_TUPOFLOW;
6699 break;
6700 }
6701
6702 tupregs[ttop].dttk_value = regs[rd];
6703 tupregs[ttop++].dttk_size = 0;
6704 break;
6705
6706 case DIF_OP_POPTS:
6707 if (ttop != 0)
6708 ttop--;
6709 break;
6710
6711 case DIF_OP_FLUSHTS:
6712 ttop = 0;
6713 break;
6714
6715 case DIF_OP_LDGAA:
6716 case DIF_OP_LDTAA: {
6717 dtrace_dynvar_t *dvar;
6718 dtrace_key_t *key = tupregs;
6719 uint_t nkeys = ttop;
6720
6721 id = DIF_INSTR_VAR(instr);
6722 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6723 id -= DIF_VAR_OTHER_UBASE;
6724
6725 key[nkeys].dttk_value = (uint64_t)id;
6726 key[nkeys++].dttk_size = 0;
6727
6728 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6729 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6730 key[nkeys++].dttk_size = 0;
6731 VERIFY(id < vstate->dtvs_ntlocals);
6732 v = &vstate->dtvs_tlocals[id];
6733 } else {
6734 VERIFY(id < vstate->dtvs_nglobals);
6735 v = &vstate->dtvs_globals[id]->dtsv_var;
6736 }
6737
6738 dvar = dtrace_dynvar(dstate, nkeys, key,
6739 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6740 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6741 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6742
6743 if (dvar == NULL) {
6744 regs[rd] = 0;
6745 break;
6746 }
6747
6748 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6749 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6750 } else {
6751 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6752 }
6753
6754 break;
6755 }
6756
6757 case DIF_OP_STGAA:
6758 case DIF_OP_STTAA: {
6759 dtrace_dynvar_t *dvar;
6760 dtrace_key_t *key = tupregs;
6761 uint_t nkeys = ttop;
6762
6763 id = DIF_INSTR_VAR(instr);
6764 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6765 id -= DIF_VAR_OTHER_UBASE;
6766
6767 key[nkeys].dttk_value = (uint64_t)id;
6768 key[nkeys++].dttk_size = 0;
6769
6770 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6771 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6772 key[nkeys++].dttk_size = 0;
6773 VERIFY(id < vstate->dtvs_ntlocals);
6774 v = &vstate->dtvs_tlocals[id];
6775 } else {
6776 VERIFY(id < vstate->dtvs_nglobals);
6777 v = &vstate->dtvs_globals[id]->dtsv_var;
6778 }
6779
6780 dvar = dtrace_dynvar(dstate, nkeys, key,
6781 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6782 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6783 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6784 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6785
6786 if (dvar == NULL)
6787 break;
6788
6789 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6790 size_t lim;
6791
6792 if (!dtrace_vcanload(
6793 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6794 &lim, mstate, vstate))
6795 break;
6796
6797 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6798 dvar->dtdv_data, &v->dtdv_type, lim);
6799 } else {
6800 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6801 }
6802
6803 break;
6804 }
6805
6806 case DIF_OP_ALLOCS: {
6807 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6808 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6809
6810 /*
6811 * Rounding up the user allocation size could have
6812 * overflowed large, bogus allocations (like -1ULL) to
6813 * 0.
6814 */
6815 if (size < regs[r1] ||
6816 !DTRACE_INSCRATCH(mstate, size)) {
6817 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6818 regs[rd] = 0;
6819 break;
6820 }
6821
6822 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6823 mstate->dtms_scratch_ptr += size;
6824 regs[rd] = ptr;
6825 break;
6826 }
6827
6828 case DIF_OP_COPYS:
6829 if (!dtrace_canstore(regs[rd], regs[r2],
6830 mstate, vstate)) {
6831 *flags |= CPU_DTRACE_BADADDR;
6832 *illval = regs[rd];
6833 break;
6834 }
6835
6836 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6837 break;
6838
6839 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6840 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6841 break;
6842
6843 case DIF_OP_STB:
6844 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6845 *flags |= CPU_DTRACE_BADADDR;
6846 *illval = regs[rd];
6847 break;
6848 }
6849 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6850 break;
6851
6852 case DIF_OP_STH:
6853 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6854 *flags |= CPU_DTRACE_BADADDR;
6855 *illval = regs[rd];
6856 break;
6857 }
6858 if (regs[rd] & 1) {
6859 *flags |= CPU_DTRACE_BADALIGN;
6860 *illval = regs[rd];
6861 break;
6862 }
6863 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6864 break;
6865
6866 case DIF_OP_STW:
6867 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6868 *flags |= CPU_DTRACE_BADADDR;
6869 *illval = regs[rd];
6870 break;
6871 }
6872 if (regs[rd] & 3) {
6873 *flags |= CPU_DTRACE_BADALIGN;
6874 *illval = regs[rd];
6875 break;
6876 }
6877 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6878 break;
6879
6880 case DIF_OP_STX:
6881 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6882 *flags |= CPU_DTRACE_BADADDR;
6883 *illval = regs[rd];
6884 break;
6885 }
6886 if (regs[rd] & 7) {
6887 *flags |= CPU_DTRACE_BADALIGN;
6888 *illval = regs[rd];
6889 break;
6890 }
6891 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6892 break;
6893 }
6894 }
6895
6896 if (!(*flags & CPU_DTRACE_FAULT))
6897 return (rval);
6898
6899 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6900 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6901
6902 return (0);
6903 }
6904
6905 static void
6906 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6907 {
6908 dtrace_probe_t *probe = ecb->dte_probe;
6909 dtrace_provider_t *prov = probe->dtpr_provider;
6910 char c[DTRACE_FULLNAMELEN + 80], *str;
6911 char *msg = "dtrace: breakpoint action at probe ";
6912 char *ecbmsg = " (ecb ";
6913 uintptr_t val = (uintptr_t)ecb;
6914 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6915
6916 if (dtrace_destructive_disallow)
6917 return;
6918
6919 /*
6920 * It's impossible to be taking action on the NULL probe.
6921 */
6922 ASSERT(probe != NULL);
6923
6924 /*
6925 * This is a poor man's (destitute man's?) sprintf(): we want to
6926 * print the provider name, module name, function name and name of
6927 * the probe, along with the hex address of the ECB with the breakpoint
6928 * action -- all of which we must place in the character buffer by
6929 * hand.
6930 */
6931 while (*msg != '\0')
6932 c[i++] = *msg++;
6933
6934 for (str = prov->dtpv_name; *str != '\0'; str++)
6935 c[i++] = *str;
6936 c[i++] = ':';
6937
6938 for (str = probe->dtpr_mod; *str != '\0'; str++)
6939 c[i++] = *str;
6940 c[i++] = ':';
6941
6942 for (str = probe->dtpr_func; *str != '\0'; str++)
6943 c[i++] = *str;
6944 c[i++] = ':';
6945
6946 for (str = probe->dtpr_name; *str != '\0'; str++)
6947 c[i++] = *str;
6948
6949 while (*ecbmsg != '\0')
6950 c[i++] = *ecbmsg++;
6951
6952 while (shift >= 0) {
6953 size_t mask = (size_t)0xf << shift;
6954
6955 if (val >= ((size_t)1 << shift))
6956 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6957 shift -= 4;
6958 }
6959
6960 c[i++] = ')';
6961 c[i] = '\0';
6962
6963 #ifdef illumos
6964 debug_enter(c);
6965 #else
6966 kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6967 #endif
6968 }
6969
6970 static void
6971 dtrace_action_panic(dtrace_ecb_t *ecb)
6972 {
6973 dtrace_probe_t *probe = ecb->dte_probe;
6974
6975 /*
6976 * It's impossible to be taking action on the NULL probe.
6977 */
6978 ASSERT(probe != NULL);
6979
6980 if (dtrace_destructive_disallow)
6981 return;
6982
6983 if (dtrace_panicked != NULL)
6984 return;
6985
6986 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6987 return;
6988
6989 /*
6990 * We won the right to panic. (We want to be sure that only one
6991 * thread calls panic() from dtrace_probe(), and that panic() is
6992 * called exactly once.)
6993 */
6994 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6995 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6996 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6997 }
6998
6999 static void
7000 dtrace_action_raise(uint64_t sig)
7001 {
7002 if (dtrace_destructive_disallow)
7003 return;
7004
7005 if (sig >= NSIG) {
7006 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7007 return;
7008 }
7009
7010 #ifdef illumos
7011 /*
7012 * raise() has a queue depth of 1 -- we ignore all subsequent
7013 * invocations of the raise() action.
7014 */
7015 if (curthread->t_dtrace_sig == 0)
7016 curthread->t_dtrace_sig = (uint8_t)sig;
7017
7018 curthread->t_sig_check = 1;
7019 aston(curthread);
7020 #else
7021 struct proc *p = curproc;
7022 PROC_LOCK(p);
7023 kern_psignal(p, sig);
7024 PROC_UNLOCK(p);
7025 #endif
7026 }
7027
7028 static void
7029 dtrace_action_stop(void)
7030 {
7031 if (dtrace_destructive_disallow)
7032 return;
7033
7034 #ifdef illumos
7035 if (!curthread->t_dtrace_stop) {
7036 curthread->t_dtrace_stop = 1;
7037 curthread->t_sig_check = 1;
7038 aston(curthread);
7039 }
7040 #else
7041 struct proc *p = curproc;
7042 PROC_LOCK(p);
7043 kern_psignal(p, SIGSTOP);
7044 PROC_UNLOCK(p);
7045 #endif
7046 }
7047
7048 static void
7049 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7050 {
7051 hrtime_t now;
7052 volatile uint16_t *flags;
7053 #ifdef illumos
7054 cpu_t *cpu = CPU;
7055 #else
7056 cpu_t *cpu = &solaris_cpu[curcpu];
7057 #endif
7058
7059 if (dtrace_destructive_disallow)
7060 return;
7061
7062 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7063
7064 now = dtrace_gethrtime();
7065
7066 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7067 /*
7068 * We need to advance the mark to the current time.
7069 */
7070 cpu->cpu_dtrace_chillmark = now;
7071 cpu->cpu_dtrace_chilled = 0;
7072 }
7073
7074 /*
7075 * Now check to see if the requested chill time would take us over
7076 * the maximum amount of time allowed in the chill interval. (Or
7077 * worse, if the calculation itself induces overflow.)
7078 */
7079 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7080 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7081 *flags |= CPU_DTRACE_ILLOP;
7082 return;
7083 }
7084
7085 while (dtrace_gethrtime() - now < val)
7086 continue;
7087
7088 /*
7089 * Normally, we assure that the value of the variable "timestamp" does
7090 * not change within an ECB. The presence of chill() represents an
7091 * exception to this rule, however.
7092 */
7093 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7094 cpu->cpu_dtrace_chilled += val;
7095 }
7096
7097 static void
7098 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7099 uint64_t *buf, uint64_t arg)
7100 {
7101 int nframes = DTRACE_USTACK_NFRAMES(arg);
7102 int strsize = DTRACE_USTACK_STRSIZE(arg);
7103 uint64_t *pcs = &buf[1], *fps;
7104 char *str = (char *)&pcs[nframes];
7105 int size, offs = 0, i, j;
7106 size_t rem;
7107 uintptr_t old = mstate->dtms_scratch_ptr, saved;
7108 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7109 char *sym;
7110
7111 /*
7112 * Should be taking a faster path if string space has not been
7113 * allocated.
7114 */
7115 ASSERT(strsize != 0);
7116
7117 /*
7118 * We will first allocate some temporary space for the frame pointers.
7119 */
7120 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7121 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7122 (nframes * sizeof (uint64_t));
7123
7124 if (!DTRACE_INSCRATCH(mstate, size)) {
7125 /*
7126 * Not enough room for our frame pointers -- need to indicate
7127 * that we ran out of scratch space.
7128 */
7129 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7130 return;
7131 }
7132
7133 mstate->dtms_scratch_ptr += size;
7134 saved = mstate->dtms_scratch_ptr;
7135
7136 /*
7137 * Now get a stack with both program counters and frame pointers.
7138 */
7139 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7140 dtrace_getufpstack(buf, fps, nframes + 1);
7141 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7142
7143 /*
7144 * If that faulted, we're cooked.
7145 */
7146 if (*flags & CPU_DTRACE_FAULT)
7147 goto out;
7148
7149 /*
7150 * Now we want to walk up the stack, calling the USTACK helper. For
7151 * each iteration, we restore the scratch pointer.
7152 */
7153 for (i = 0; i < nframes; i++) {
7154 mstate->dtms_scratch_ptr = saved;
7155
7156 if (offs >= strsize)
7157 break;
7158
7159 sym = (char *)(uintptr_t)dtrace_helper(
7160 DTRACE_HELPER_ACTION_USTACK,
7161 mstate, state, pcs[i], fps[i]);
7162
7163 /*
7164 * If we faulted while running the helper, we're going to
7165 * clear the fault and null out the corresponding string.
7166 */
7167 if (*flags & CPU_DTRACE_FAULT) {
7168 *flags &= ~CPU_DTRACE_FAULT;
7169 str[offs++] = '\0';
7170 continue;
7171 }
7172
7173 if (sym == NULL) {
7174 str[offs++] = '\0';
7175 continue;
7176 }
7177
7178 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7179 &(state->dts_vstate))) {
7180 str[offs++] = '\0';
7181 continue;
7182 }
7183
7184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7185
7186 /*
7187 * Now copy in the string that the helper returned to us.
7188 */
7189 for (j = 0; offs + j < strsize && j < rem; j++) {
7190 if ((str[offs + j] = sym[j]) == '\0')
7191 break;
7192 }
7193
7194 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7195
7196 offs += j + 1;
7197 }
7198
7199 if (offs >= strsize) {
7200 /*
7201 * If we didn't have room for all of the strings, we don't
7202 * abort processing -- this needn't be a fatal error -- but we
7203 * still want to increment a counter (dts_stkstroverflows) to
7204 * allow this condition to be warned about. (If this is from
7205 * a jstack() action, it is easily tuned via jstackstrsize.)
7206 */
7207 dtrace_error(&state->dts_stkstroverflows);
7208 }
7209
7210 while (offs < strsize)
7211 str[offs++] = '\0';
7212
7213 out:
7214 mstate->dtms_scratch_ptr = old;
7215 }
7216
7217 static void
7218 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7219 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7220 {
7221 volatile uint16_t *flags;
7222 uint64_t val = *valp;
7223 size_t valoffs = *valoffsp;
7224
7225 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7226 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7227
7228 /*
7229 * If this is a string, we're going to only load until we find the zero
7230 * byte -- after which we'll store zero bytes.
7231 */
7232 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7233 char c = '\0' + 1;
7234 size_t s;
7235
7236 for (s = 0; s < size; s++) {
7237 if (c != '\0' && dtkind == DIF_TF_BYREF) {
7238 c = dtrace_load8(val++);
7239 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7240 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7241 c = dtrace_fuword8((void *)(uintptr_t)val++);
7242 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7243 if (*flags & CPU_DTRACE_FAULT)
7244 break;
7245 }
7246
7247 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7248
7249 if (c == '\0' && intuple)
7250 break;
7251 }
7252 } else {
7253 uint8_t c;
7254 while (valoffs < end) {
7255 if (dtkind == DIF_TF_BYREF) {
7256 c = dtrace_load8(val++);
7257 } else if (dtkind == DIF_TF_BYUREF) {
7258 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7259 c = dtrace_fuword8((void *)(uintptr_t)val++);
7260 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7261 if (*flags & CPU_DTRACE_FAULT)
7262 break;
7263 }
7264
7265 DTRACE_STORE(uint8_t, tomax,
7266 valoffs++, c);
7267 }
7268 }
7269
7270 *valp = val;
7271 *valoffsp = valoffs;
7272 }
7273
7274 /*
7275 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7276 * defined, we also assert that we are not recursing unless the probe ID is an
7277 * error probe.
7278 */
7279 static dtrace_icookie_t
7280 dtrace_probe_enter(dtrace_id_t id)
7281 {
7282 dtrace_icookie_t cookie;
7283
7284 cookie = dtrace_interrupt_disable();
7285
7286 /*
7287 * Unless this is an ERROR probe, we are not allowed to recurse in
7288 * dtrace_probe(). Recursing into DTrace probe usually means that a
7289 * function is instrumented that should not have been instrumented or
7290 * that the ordering guarantee of the records will be violated,
7291 * resulting in unexpected output. If there is an exception to this
7292 * assertion, a new case should be added.
7293 */
7294 ASSERT(curthread->t_dtrace_inprobe == 0 ||
7295 id == dtrace_probeid_error);
7296 curthread->t_dtrace_inprobe = 1;
7297
7298 return (cookie);
7299 }
7300
7301 /*
7302 * Clears the per-thread inprobe flag and enables interrupts.
7303 */
7304 static void
7305 dtrace_probe_exit(dtrace_icookie_t cookie)
7306 {
7307
7308 curthread->t_dtrace_inprobe = 0;
7309 dtrace_interrupt_enable(cookie);
7310 }
7311
7312 /*
7313 * If you're looking for the epicenter of DTrace, you just found it. This
7314 * is the function called by the provider to fire a probe -- from which all
7315 * subsequent probe-context DTrace activity emanates.
7316 */
7317 void
7318 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7319 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7320 {
7321 processorid_t cpuid;
7322 dtrace_icookie_t cookie;
7323 dtrace_probe_t *probe;
7324 dtrace_mstate_t mstate;
7325 dtrace_ecb_t *ecb;
7326 dtrace_action_t *act;
7327 intptr_t offs;
7328 size_t size;
7329 int vtime, onintr;
7330 volatile uint16_t *flags;
7331 hrtime_t now;
7332
7333 if (KERNEL_PANICKED())
7334 return;
7335
7336 #ifdef illumos
7337 /*
7338 * Kick out immediately if this CPU is still being born (in which case
7339 * curthread will be set to -1) or the current thread can't allow
7340 * probes in its current context.
7341 */
7342 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7343 return;
7344 #endif
7345
7346 cookie = dtrace_probe_enter(id);
7347 probe = dtrace_probes[id - 1];
7348 cpuid = curcpu;
7349 onintr = CPU_ON_INTR(CPU);
7350
7351 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7352 probe->dtpr_predcache == curthread->t_predcache) {
7353 /*
7354 * We have hit in the predicate cache; we know that
7355 * this predicate would evaluate to be false.
7356 */
7357 dtrace_probe_exit(cookie);
7358 return;
7359 }
7360
7361 #ifdef illumos
7362 if (panic_quiesce) {
7363 #else
7364 if (KERNEL_PANICKED()) {
7365 #endif
7366 /*
7367 * We don't trace anything if we're panicking.
7368 */
7369 dtrace_probe_exit(cookie);
7370 return;
7371 }
7372
7373 now = mstate.dtms_timestamp = dtrace_gethrtime();
7374 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7375 vtime = dtrace_vtime_references != 0;
7376
7377 if (vtime && curthread->t_dtrace_start)
7378 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7379
7380 mstate.dtms_difo = NULL;
7381 mstate.dtms_probe = probe;
7382 mstate.dtms_strtok = 0;
7383 mstate.dtms_arg[0] = arg0;
7384 mstate.dtms_arg[1] = arg1;
7385 mstate.dtms_arg[2] = arg2;
7386 mstate.dtms_arg[3] = arg3;
7387 mstate.dtms_arg[4] = arg4;
7388
7389 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7390
7391 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7392 dtrace_predicate_t *pred = ecb->dte_predicate;
7393 dtrace_state_t *state = ecb->dte_state;
7394 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7395 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7396 dtrace_vstate_t *vstate = &state->dts_vstate;
7397 dtrace_provider_t *prov = probe->dtpr_provider;
7398 uint64_t tracememsize = 0;
7399 int committed = 0;
7400 caddr_t tomax;
7401
7402 /*
7403 * A little subtlety with the following (seemingly innocuous)
7404 * declaration of the automatic 'val': by looking at the
7405 * code, you might think that it could be declared in the
7406 * action processing loop, below. (That is, it's only used in
7407 * the action processing loop.) However, it must be declared
7408 * out of that scope because in the case of DIF expression
7409 * arguments to aggregating actions, one iteration of the
7410 * action loop will use the last iteration's value.
7411 */
7412 uint64_t val = 0;
7413
7414 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7415 mstate.dtms_getf = NULL;
7416
7417 *flags &= ~CPU_DTRACE_ERROR;
7418
7419 if (prov == dtrace_provider) {
7420 /*
7421 * If dtrace itself is the provider of this probe,
7422 * we're only going to continue processing the ECB if
7423 * arg0 (the dtrace_state_t) is equal to the ECB's
7424 * creating state. (This prevents disjoint consumers
7425 * from seeing one another's metaprobes.)
7426 */
7427 if (arg0 != (uint64_t)(uintptr_t)state)
7428 continue;
7429 }
7430
7431 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7432 /*
7433 * We're not currently active. If our provider isn't
7434 * the dtrace pseudo provider, we're not interested.
7435 */
7436 if (prov != dtrace_provider)
7437 continue;
7438
7439 /*
7440 * Now we must further check if we are in the BEGIN
7441 * probe. If we are, we will only continue processing
7442 * if we're still in WARMUP -- if one BEGIN enabling
7443 * has invoked the exit() action, we don't want to
7444 * evaluate subsequent BEGIN enablings.
7445 */
7446 if (probe->dtpr_id == dtrace_probeid_begin &&
7447 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7448 ASSERT(state->dts_activity ==
7449 DTRACE_ACTIVITY_DRAINING);
7450 continue;
7451 }
7452 }
7453
7454 if (ecb->dte_cond) {
7455 /*
7456 * If the dte_cond bits indicate that this
7457 * consumer is only allowed to see user-mode firings
7458 * of this probe, call the provider's dtps_usermode()
7459 * entry point to check that the probe was fired
7460 * while in a user context. Skip this ECB if that's
7461 * not the case.
7462 */
7463 if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7464 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7465 probe->dtpr_id, probe->dtpr_arg) == 0)
7466 continue;
7467
7468 #ifdef illumos
7469 /*
7470 * This is more subtle than it looks. We have to be
7471 * absolutely certain that CRED() isn't going to
7472 * change out from under us so it's only legit to
7473 * examine that structure if we're in constrained
7474 * situations. Currently, the only times we'll this
7475 * check is if a non-super-user has enabled the
7476 * profile or syscall providers -- providers that
7477 * allow visibility of all processes. For the
7478 * profile case, the check above will ensure that
7479 * we're examining a user context.
7480 */
7481 if (ecb->dte_cond & DTRACE_COND_OWNER) {
7482 cred_t *cr;
7483 cred_t *s_cr =
7484 ecb->dte_state->dts_cred.dcr_cred;
7485 proc_t *proc;
7486
7487 ASSERT(s_cr != NULL);
7488
7489 if ((cr = CRED()) == NULL ||
7490 s_cr->cr_uid != cr->cr_uid ||
7491 s_cr->cr_uid != cr->cr_ruid ||
7492 s_cr->cr_uid != cr->cr_suid ||
7493 s_cr->cr_gid != cr->cr_gid ||
7494 s_cr->cr_gid != cr->cr_rgid ||
7495 s_cr->cr_gid != cr->cr_sgid ||
7496 (proc = ttoproc(curthread)) == NULL ||
7497 (proc->p_flag & SNOCD))
7498 continue;
7499 }
7500
7501 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7502 cred_t *cr;
7503 cred_t *s_cr =
7504 ecb->dte_state->dts_cred.dcr_cred;
7505
7506 ASSERT(s_cr != NULL);
7507
7508 if ((cr = CRED()) == NULL ||
7509 s_cr->cr_zone->zone_id !=
7510 cr->cr_zone->zone_id)
7511 continue;
7512 }
7513 #endif
7514 }
7515
7516 if (now - state->dts_alive > dtrace_deadman_timeout) {
7517 /*
7518 * We seem to be dead. Unless we (a) have kernel
7519 * destructive permissions (b) have explicitly enabled
7520 * destructive actions and (c) destructive actions have
7521 * not been disabled, we're going to transition into
7522 * the KILLED state, from which no further processing
7523 * on this state will be performed.
7524 */
7525 if (!dtrace_priv_kernel_destructive(state) ||
7526 !state->dts_cred.dcr_destructive ||
7527 dtrace_destructive_disallow) {
7528 void *activity = &state->dts_activity;
7529 dtrace_activity_t curstate;
7530
7531 do {
7532 curstate = state->dts_activity;
7533 } while (dtrace_cas32(activity, curstate,
7534 DTRACE_ACTIVITY_KILLED) != curstate);
7535
7536 continue;
7537 }
7538 }
7539
7540 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7541 ecb->dte_alignment, state, &mstate)) < 0)
7542 continue;
7543
7544 tomax = buf->dtb_tomax;
7545 ASSERT(tomax != NULL);
7546
7547 if (ecb->dte_size != 0) {
7548 dtrace_rechdr_t dtrh;
7549 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7550 mstate.dtms_timestamp = dtrace_gethrtime();
7551 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7552 }
7553 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7554 dtrh.dtrh_epid = ecb->dte_epid;
7555 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7556 mstate.dtms_timestamp);
7557 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7558 }
7559
7560 mstate.dtms_epid = ecb->dte_epid;
7561 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7562
7563 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7564 mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7565 else
7566 mstate.dtms_access = 0;
7567
7568 if (pred != NULL) {
7569 dtrace_difo_t *dp = pred->dtp_difo;
7570 uint64_t rval;
7571
7572 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7573
7574 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7575 dtrace_cacheid_t cid = probe->dtpr_predcache;
7576
7577 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7578 /*
7579 * Update the predicate cache...
7580 */
7581 ASSERT(cid == pred->dtp_cacheid);
7582 curthread->t_predcache = cid;
7583 }
7584
7585 continue;
7586 }
7587 }
7588
7589 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7590 act != NULL; act = act->dta_next) {
7591 size_t valoffs;
7592 dtrace_difo_t *dp;
7593 dtrace_recdesc_t *rec = &act->dta_rec;
7594
7595 size = rec->dtrd_size;
7596 valoffs = offs + rec->dtrd_offset;
7597
7598 if (DTRACEACT_ISAGG(act->dta_kind)) {
7599 uint64_t v = 0xbad;
7600 dtrace_aggregation_t *agg;
7601
7602 agg = (dtrace_aggregation_t *)act;
7603
7604 if ((dp = act->dta_difo) != NULL)
7605 v = dtrace_dif_emulate(dp,
7606 &mstate, vstate, state);
7607
7608 if (*flags & CPU_DTRACE_ERROR)
7609 continue;
7610
7611 /*
7612 * Note that we always pass the expression
7613 * value from the previous iteration of the
7614 * action loop. This value will only be used
7615 * if there is an expression argument to the
7616 * aggregating action, denoted by the
7617 * dtag_hasarg field.
7618 */
7619 dtrace_aggregate(agg, buf,
7620 offs, aggbuf, v, val);
7621 continue;
7622 }
7623
7624 switch (act->dta_kind) {
7625 case DTRACEACT_STOP:
7626 if (dtrace_priv_proc_destructive(state))
7627 dtrace_action_stop();
7628 continue;
7629
7630 case DTRACEACT_BREAKPOINT:
7631 if (dtrace_priv_kernel_destructive(state))
7632 dtrace_action_breakpoint(ecb);
7633 continue;
7634
7635 case DTRACEACT_PANIC:
7636 if (dtrace_priv_kernel_destructive(state))
7637 dtrace_action_panic(ecb);
7638 continue;
7639
7640 case DTRACEACT_STACK:
7641 if (!dtrace_priv_kernel(state))
7642 continue;
7643
7644 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7645 size / sizeof (pc_t), probe->dtpr_aframes,
7646 DTRACE_ANCHORED(probe) ? NULL :
7647 (uint32_t *)arg0);
7648 continue;
7649
7650 case DTRACEACT_JSTACK:
7651 case DTRACEACT_USTACK:
7652 if (!dtrace_priv_proc(state))
7653 continue;
7654
7655 /*
7656 * See comment in DIF_VAR_PID.
7657 */
7658 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7659 CPU_ON_INTR(CPU)) {
7660 int depth = DTRACE_USTACK_NFRAMES(
7661 rec->dtrd_arg) + 1;
7662
7663 dtrace_bzero((void *)(tomax + valoffs),
7664 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7665 + depth * sizeof (uint64_t));
7666
7667 continue;
7668 }
7669
7670 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7671 curproc->p_dtrace_helpers != NULL) {
7672 /*
7673 * This is the slow path -- we have
7674 * allocated string space, and we're
7675 * getting the stack of a process that
7676 * has helpers. Call into a separate
7677 * routine to perform this processing.
7678 */
7679 dtrace_action_ustack(&mstate, state,
7680 (uint64_t *)(tomax + valoffs),
7681 rec->dtrd_arg);
7682 continue;
7683 }
7684
7685 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7686 dtrace_getupcstack((uint64_t *)
7687 (tomax + valoffs),
7688 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7689 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7690 continue;
7691
7692 default:
7693 break;
7694 }
7695
7696 dp = act->dta_difo;
7697 ASSERT(dp != NULL);
7698
7699 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7700
7701 if (*flags & CPU_DTRACE_ERROR)
7702 continue;
7703
7704 switch (act->dta_kind) {
7705 case DTRACEACT_SPECULATE: {
7706 dtrace_rechdr_t *dtrh;
7707
7708 ASSERT(buf == &state->dts_buffer[cpuid]);
7709 buf = dtrace_speculation_buffer(state,
7710 cpuid, val);
7711
7712 if (buf == NULL) {
7713 *flags |= CPU_DTRACE_DROP;
7714 continue;
7715 }
7716
7717 offs = dtrace_buffer_reserve(buf,
7718 ecb->dte_needed, ecb->dte_alignment,
7719 state, NULL);
7720
7721 if (offs < 0) {
7722 *flags |= CPU_DTRACE_DROP;
7723 continue;
7724 }
7725
7726 tomax = buf->dtb_tomax;
7727 ASSERT(tomax != NULL);
7728
7729 if (ecb->dte_size == 0)
7730 continue;
7731
7732 ASSERT3U(ecb->dte_size, >=,
7733 sizeof (dtrace_rechdr_t));
7734 dtrh = ((void *)(tomax + offs));
7735 dtrh->dtrh_epid = ecb->dte_epid;
7736 /*
7737 * When the speculation is committed, all of
7738 * the records in the speculative buffer will
7739 * have their timestamps set to the commit
7740 * time. Until then, it is set to a sentinel
7741 * value, for debugability.
7742 */
7743 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7744 continue;
7745 }
7746
7747 case DTRACEACT_PRINTM: {
7748 /*
7749 * printm() assumes that the DIF returns a
7750 * pointer returned by memref(). memref() is a
7751 * subroutine that is used to get around the
7752 * single-valued returns of DIF and is assumed
7753 * to always be allocated in the scratch space.
7754 * Therefore, we need to validate that the
7755 * pointer given to printm() is in the scratch
7756 * space in order to avoid a potential panic.
7757 */
7758 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7759
7760 if (!DTRACE_INSCRATCHPTR(&mstate,
7761 (uintptr_t)memref, 2 * sizeof(uintptr_t))) {
7762 *flags |= CPU_DTRACE_BADADDR;
7763 continue;
7764 }
7765
7766 /* Get the size from the memref. */
7767 size = memref[1];
7768
7769 /*
7770 * Check if the size exceeds the allocated
7771 * buffer size.
7772 */
7773 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7774 /* Flag a drop! */
7775 *flags |= CPU_DTRACE_DROP;
7776 continue;
7777 }
7778
7779 /* Store the size in the buffer first. */
7780 DTRACE_STORE(uintptr_t, tomax,
7781 valoffs, size);
7782
7783 /*
7784 * Offset the buffer address to the start
7785 * of the data.
7786 */
7787 valoffs += sizeof(uintptr_t);
7788
7789 /*
7790 * Reset to the memory address rather than
7791 * the memref array, then let the BYREF
7792 * code below do the work to store the
7793 * memory data in the buffer.
7794 */
7795 val = memref[0];
7796 break;
7797 }
7798
7799 case DTRACEACT_CHILL:
7800 if (dtrace_priv_kernel_destructive(state))
7801 dtrace_action_chill(&mstate, val);
7802 continue;
7803
7804 case DTRACEACT_RAISE:
7805 if (dtrace_priv_proc_destructive(state))
7806 dtrace_action_raise(val);
7807 continue;
7808
7809 case DTRACEACT_COMMIT:
7810 ASSERT(!committed);
7811
7812 /*
7813 * We need to commit our buffer state.
7814 */
7815 if (ecb->dte_size)
7816 buf->dtb_offset = offs + ecb->dte_size;
7817 buf = &state->dts_buffer[cpuid];
7818 dtrace_speculation_commit(state, cpuid, val);
7819 committed = 1;
7820 continue;
7821
7822 case DTRACEACT_DISCARD:
7823 dtrace_speculation_discard(state, cpuid, val);
7824 continue;
7825
7826 case DTRACEACT_DIFEXPR:
7827 case DTRACEACT_LIBACT:
7828 case DTRACEACT_PRINTF:
7829 case DTRACEACT_PRINTA:
7830 case DTRACEACT_SYSTEM:
7831 case DTRACEACT_FREOPEN:
7832 case DTRACEACT_TRACEMEM:
7833 break;
7834
7835 case DTRACEACT_TRACEMEM_DYNSIZE:
7836 tracememsize = val;
7837 break;
7838
7839 case DTRACEACT_SYM:
7840 case DTRACEACT_MOD:
7841 if (!dtrace_priv_kernel(state))
7842 continue;
7843 break;
7844
7845 case DTRACEACT_USYM:
7846 case DTRACEACT_UMOD:
7847 case DTRACEACT_UADDR: {
7848 #ifdef illumos
7849 struct pid *pid = curthread->t_procp->p_pidp;
7850 #endif
7851
7852 if (!dtrace_priv_proc(state))
7853 continue;
7854
7855 DTRACE_STORE(uint64_t, tomax,
7856 #ifdef illumos
7857 valoffs, (uint64_t)pid->pid_id);
7858 #else
7859 valoffs, (uint64_t) curproc->p_pid);
7860 #endif
7861 DTRACE_STORE(uint64_t, tomax,
7862 valoffs + sizeof (uint64_t), val);
7863
7864 continue;
7865 }
7866
7867 case DTRACEACT_EXIT: {
7868 /*
7869 * For the exit action, we are going to attempt
7870 * to atomically set our activity to be
7871 * draining. If this fails (either because
7872 * another CPU has beat us to the exit action,
7873 * or because our current activity is something
7874 * other than ACTIVE or WARMUP), we will
7875 * continue. This assures that the exit action
7876 * can be successfully recorded at most once
7877 * when we're in the ACTIVE state. If we're
7878 * encountering the exit() action while in
7879 * COOLDOWN, however, we want to honor the new
7880 * status code. (We know that we're the only
7881 * thread in COOLDOWN, so there is no race.)
7882 */
7883 void *activity = &state->dts_activity;
7884 dtrace_activity_t curstate = state->dts_activity;
7885
7886 if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7887 break;
7888
7889 if (curstate != DTRACE_ACTIVITY_WARMUP)
7890 curstate = DTRACE_ACTIVITY_ACTIVE;
7891
7892 if (dtrace_cas32(activity, curstate,
7893 DTRACE_ACTIVITY_DRAINING) != curstate) {
7894 *flags |= CPU_DTRACE_DROP;
7895 continue;
7896 }
7897
7898 break;
7899 }
7900
7901 default:
7902 ASSERT(0);
7903 }
7904
7905 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7906 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7907 uintptr_t end = valoffs + size;
7908
7909 if (tracememsize != 0 &&
7910 valoffs + tracememsize < end) {
7911 end = valoffs + tracememsize;
7912 tracememsize = 0;
7913 }
7914
7915 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7916 !dtrace_vcanload((void *)(uintptr_t)val,
7917 &dp->dtdo_rtype, NULL, &mstate, vstate))
7918 continue;
7919
7920 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7921 &val, end, act->dta_intuple,
7922 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7923 DIF_TF_BYREF: DIF_TF_BYUREF);
7924 continue;
7925 }
7926
7927 switch (size) {
7928 case 0:
7929 break;
7930
7931 case sizeof (uint8_t):
7932 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7933 break;
7934 case sizeof (uint16_t):
7935 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7936 break;
7937 case sizeof (uint32_t):
7938 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7939 break;
7940 case sizeof (uint64_t):
7941 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7942 break;
7943 default:
7944 /*
7945 * Any other size should have been returned by
7946 * reference, not by value.
7947 */
7948 ASSERT(0);
7949 break;
7950 }
7951 }
7952
7953 if (*flags & CPU_DTRACE_DROP)
7954 continue;
7955
7956 if (*flags & CPU_DTRACE_FAULT) {
7957 int ndx;
7958 dtrace_action_t *err;
7959
7960 buf->dtb_errors++;
7961
7962 if (probe->dtpr_id == dtrace_probeid_error) {
7963 /*
7964 * There's nothing we can do -- we had an
7965 * error on the error probe. We bump an
7966 * error counter to at least indicate that
7967 * this condition happened.
7968 */
7969 dtrace_error(&state->dts_dblerrors);
7970 continue;
7971 }
7972
7973 if (vtime) {
7974 /*
7975 * Before recursing on dtrace_probe(), we
7976 * need to explicitly clear out our start
7977 * time to prevent it from being accumulated
7978 * into t_dtrace_vtime.
7979 */
7980 curthread->t_dtrace_start = 0;
7981 }
7982
7983 /*
7984 * Iterate over the actions to figure out which action
7985 * we were processing when we experienced the error.
7986 * Note that act points _past_ the faulting action; if
7987 * act is ecb->dte_action, the fault was in the
7988 * predicate, if it's ecb->dte_action->dta_next it's
7989 * in action #1, and so on.
7990 */
7991 for (err = ecb->dte_action, ndx = 0;
7992 err != act; err = err->dta_next, ndx++)
7993 continue;
7994
7995 dtrace_probe_error(state, ecb->dte_epid, ndx,
7996 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7997 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7998 cpu_core[cpuid].cpuc_dtrace_illval);
7999
8000 continue;
8001 }
8002
8003 if (!committed)
8004 buf->dtb_offset = offs + ecb->dte_size;
8005 }
8006
8007 if (vtime)
8008 curthread->t_dtrace_start = dtrace_gethrtime();
8009
8010 dtrace_probe_exit(cookie);
8011 }
8012
8013 /*
8014 * DTrace Probe Hashing Functions
8015 *
8016 * The functions in this section (and indeed, the functions in remaining
8017 * sections) are not _called_ from probe context. (Any exceptions to this are
8018 * marked with a "Note:".) Rather, they are called from elsewhere in the
8019 * DTrace framework to look-up probes in, add probes to and remove probes from
8020 * the DTrace probe hashes. (Each probe is hashed by each element of the
8021 * probe tuple -- allowing for fast lookups, regardless of what was
8022 * specified.)
8023 */
8024 static uint_t
8025 dtrace_hash_str(const char *p)
8026 {
8027 unsigned int g;
8028 uint_t hval = 0;
8029
8030 while (*p) {
8031 hval = (hval << 4) + *p++;
8032 if ((g = (hval & 0xf0000000)) != 0)
8033 hval ^= g >> 24;
8034 hval &= ~g;
8035 }
8036 return (hval);
8037 }
8038
8039 static dtrace_hash_t *
8040 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs)
8041 {
8042 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8043
8044 hash->dth_stroffs = stroffs;
8045 hash->dth_nextoffs = nextoffs;
8046 hash->dth_prevoffs = prevoffs;
8047
8048 hash->dth_size = 1;
8049 hash->dth_mask = hash->dth_size - 1;
8050
8051 hash->dth_tab = kmem_zalloc(hash->dth_size *
8052 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8053
8054 return (hash);
8055 }
8056
8057 static void
8058 dtrace_hash_destroy(dtrace_hash_t *hash)
8059 {
8060 #ifdef DEBUG
8061 int i;
8062
8063 for (i = 0; i < hash->dth_size; i++)
8064 ASSERT(hash->dth_tab[i] == NULL);
8065 #endif
8066
8067 kmem_free(hash->dth_tab,
8068 hash->dth_size * sizeof (dtrace_hashbucket_t *));
8069 kmem_free(hash, sizeof (dtrace_hash_t));
8070 }
8071
8072 static void
8073 dtrace_hash_resize(dtrace_hash_t *hash)
8074 {
8075 int size = hash->dth_size, i, ndx;
8076 int new_size = hash->dth_size << 1;
8077 int new_mask = new_size - 1;
8078 dtrace_hashbucket_t **new_tab, *bucket, *next;
8079
8080 ASSERT((new_size & new_mask) == 0);
8081
8082 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8083
8084 for (i = 0; i < size; i++) {
8085 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8086 dtrace_probe_t *probe = bucket->dthb_chain;
8087
8088 ASSERT(probe != NULL);
8089 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8090
8091 next = bucket->dthb_next;
8092 bucket->dthb_next = new_tab[ndx];
8093 new_tab[ndx] = bucket;
8094 }
8095 }
8096
8097 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8098 hash->dth_tab = new_tab;
8099 hash->dth_size = new_size;
8100 hash->dth_mask = new_mask;
8101 }
8102
8103 static void
8104 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8105 {
8106 int hashval = DTRACE_HASHSTR(hash, new);
8107 int ndx = hashval & hash->dth_mask;
8108 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8109 dtrace_probe_t **nextp, **prevp;
8110
8111 for (; bucket != NULL; bucket = bucket->dthb_next) {
8112 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8113 goto add;
8114 }
8115
8116 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8117 dtrace_hash_resize(hash);
8118 dtrace_hash_add(hash, new);
8119 return;
8120 }
8121
8122 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8123 bucket->dthb_next = hash->dth_tab[ndx];
8124 hash->dth_tab[ndx] = bucket;
8125 hash->dth_nbuckets++;
8126
8127 add:
8128 nextp = DTRACE_HASHNEXT(hash, new);
8129 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8130 *nextp = bucket->dthb_chain;
8131
8132 if (bucket->dthb_chain != NULL) {
8133 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8134 ASSERT(*prevp == NULL);
8135 *prevp = new;
8136 }
8137
8138 bucket->dthb_chain = new;
8139 bucket->dthb_len++;
8140 }
8141
8142 static dtrace_probe_t *
8143 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8144 {
8145 int hashval = DTRACE_HASHSTR(hash, template);
8146 int ndx = hashval & hash->dth_mask;
8147 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8148
8149 for (; bucket != NULL; bucket = bucket->dthb_next) {
8150 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8151 return (bucket->dthb_chain);
8152 }
8153
8154 return (NULL);
8155 }
8156
8157 static int
8158 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8159 {
8160 int hashval = DTRACE_HASHSTR(hash, template);
8161 int ndx = hashval & hash->dth_mask;
8162 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8163
8164 for (; bucket != NULL; bucket = bucket->dthb_next) {
8165 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8166 return (bucket->dthb_len);
8167 }
8168
8169 return (0);
8170 }
8171
8172 static void
8173 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8174 {
8175 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8176 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8177
8178 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8179 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8180
8181 /*
8182 * Find the bucket that we're removing this probe from.
8183 */
8184 for (; bucket != NULL; bucket = bucket->dthb_next) {
8185 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8186 break;
8187 }
8188
8189 ASSERT(bucket != NULL);
8190
8191 if (*prevp == NULL) {
8192 if (*nextp == NULL) {
8193 /*
8194 * The removed probe was the only probe on this
8195 * bucket; we need to remove the bucket.
8196 */
8197 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8198
8199 ASSERT(bucket->dthb_chain == probe);
8200 ASSERT(b != NULL);
8201
8202 if (b == bucket) {
8203 hash->dth_tab[ndx] = bucket->dthb_next;
8204 } else {
8205 while (b->dthb_next != bucket)
8206 b = b->dthb_next;
8207 b->dthb_next = bucket->dthb_next;
8208 }
8209
8210 ASSERT(hash->dth_nbuckets > 0);
8211 hash->dth_nbuckets--;
8212 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8213 return;
8214 }
8215
8216 bucket->dthb_chain = *nextp;
8217 } else {
8218 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8219 }
8220
8221 if (*nextp != NULL)
8222 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8223 }
8224
8225 /*
8226 * DTrace Utility Functions
8227 *
8228 * These are random utility functions that are _not_ called from probe context.
8229 */
8230 static int
8231 dtrace_badattr(const dtrace_attribute_t *a)
8232 {
8233 return (a->dtat_name > DTRACE_STABILITY_MAX ||
8234 a->dtat_data > DTRACE_STABILITY_MAX ||
8235 a->dtat_class > DTRACE_CLASS_MAX);
8236 }
8237
8238 /*
8239 * Return a duplicate copy of a string. If the specified string is NULL,
8240 * this function returns a zero-length string.
8241 */
8242 static char *
8243 dtrace_strdup(const char *str)
8244 {
8245 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8246
8247 if (str != NULL)
8248 (void) strcpy(new, str);
8249
8250 return (new);
8251 }
8252
8253 #define DTRACE_ISALPHA(c) \
8254 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8255
8256 static int
8257 dtrace_badname(const char *s)
8258 {
8259 char c;
8260
8261 if (s == NULL || (c = *s++) == '\0')
8262 return (0);
8263
8264 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8265 return (1);
8266
8267 while ((c = *s++) != '\0') {
8268 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8269 c != '-' && c != '_' && c != '.' && c != '`')
8270 return (1);
8271 }
8272
8273 return (0);
8274 }
8275
8276 static void
8277 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8278 {
8279 uint32_t priv;
8280
8281 #ifdef illumos
8282 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8283 /*
8284 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8285 */
8286 priv = DTRACE_PRIV_ALL;
8287 } else {
8288 *uidp = crgetuid(cr);
8289 *zoneidp = crgetzoneid(cr);
8290
8291 priv = 0;
8292 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8293 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8294 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8295 priv |= DTRACE_PRIV_USER;
8296 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8297 priv |= DTRACE_PRIV_PROC;
8298 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8299 priv |= DTRACE_PRIV_OWNER;
8300 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8301 priv |= DTRACE_PRIV_ZONEOWNER;
8302 }
8303 #else
8304 priv = DTRACE_PRIV_ALL;
8305 #endif
8306
8307 *privp = priv;
8308 }
8309
8310 #ifdef DTRACE_ERRDEBUG
8311 static void
8312 dtrace_errdebug(const char *str)
8313 {
8314 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8315 int occupied = 0;
8316
8317 mutex_enter(&dtrace_errlock);
8318 dtrace_errlast = str;
8319 dtrace_errthread = curthread;
8320
8321 while (occupied++ < DTRACE_ERRHASHSZ) {
8322 if (dtrace_errhash[hval].dter_msg == str) {
8323 dtrace_errhash[hval].dter_count++;
8324 goto out;
8325 }
8326
8327 if (dtrace_errhash[hval].dter_msg != NULL) {
8328 hval = (hval + 1) % DTRACE_ERRHASHSZ;
8329 continue;
8330 }
8331
8332 dtrace_errhash[hval].dter_msg = str;
8333 dtrace_errhash[hval].dter_count = 1;
8334 goto out;
8335 }
8336
8337 panic("dtrace: undersized error hash");
8338 out:
8339 mutex_exit(&dtrace_errlock);
8340 }
8341 #endif
8342
8343 /*
8344 * DTrace Matching Functions
8345 *
8346 * These functions are used to match groups of probes, given some elements of
8347 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8348 */
8349 static int
8350 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8351 zoneid_t zoneid)
8352 {
8353 if (priv != DTRACE_PRIV_ALL) {
8354 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8355 uint32_t match = priv & ppriv;
8356
8357 /*
8358 * No PRIV_DTRACE_* privileges...
8359 */
8360 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8361 DTRACE_PRIV_KERNEL)) == 0)
8362 return (0);
8363
8364 /*
8365 * No matching bits, but there were bits to match...
8366 */
8367 if (match == 0 && ppriv != 0)
8368 return (0);
8369
8370 /*
8371 * Need to have permissions to the process, but don't...
8372 */
8373 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8374 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8375 return (0);
8376 }
8377
8378 /*
8379 * Need to be in the same zone unless we possess the
8380 * privilege to examine all zones.
8381 */
8382 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8383 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8384 return (0);
8385 }
8386 }
8387
8388 return (1);
8389 }
8390
8391 /*
8392 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8393 * consists of input pattern strings and an ops-vector to evaluate them.
8394 * This function returns >0 for match, 0 for no match, and <0 for error.
8395 */
8396 static int
8397 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8398 uint32_t priv, uid_t uid, zoneid_t zoneid)
8399 {
8400 dtrace_provider_t *pvp = prp->dtpr_provider;
8401 int rv;
8402
8403 if (pvp->dtpv_defunct)
8404 return (0);
8405
8406 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8407 return (rv);
8408
8409 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8410 return (rv);
8411
8412 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8413 return (rv);
8414
8415 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8416 return (rv);
8417
8418 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8419 return (0);
8420
8421 return (rv);
8422 }
8423
8424 /*
8425 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8426 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
8427 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8428 * In addition, all of the recursion cases except for '*' matching have been
8429 * unwound. For '*', we still implement recursive evaluation, but a depth
8430 * counter is maintained and matching is aborted if we recurse too deep.
8431 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8432 */
8433 static int
8434 dtrace_match_glob(const char *s, const char *p, int depth)
8435 {
8436 const char *olds;
8437 char s1, c;
8438 int gs;
8439
8440 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8441 return (-1);
8442
8443 if (s == NULL)
8444 s = ""; /* treat NULL as empty string */
8445
8446 top:
8447 olds = s;
8448 s1 = *s++;
8449
8450 if (p == NULL)
8451 return (0);
8452
8453 if ((c = *p++) == '\0')
8454 return (s1 == '\0');
8455
8456 switch (c) {
8457 case '[': {
8458 int ok = 0, notflag = 0;
8459 char lc = '\0';
8460
8461 if (s1 == '\0')
8462 return (0);
8463
8464 if (*p == '!') {
8465 notflag = 1;
8466 p++;
8467 }
8468
8469 if ((c = *p++) == '\0')
8470 return (0);
8471
8472 do {
8473 if (c == '-' && lc != '\0' && *p != ']') {
8474 if ((c = *p++) == '\0')
8475 return (0);
8476 if (c == '\\' && (c = *p++) == '\0')
8477 return (0);
8478
8479 if (notflag) {
8480 if (s1 < lc || s1 > c)
8481 ok++;
8482 else
8483 return (0);
8484 } else if (lc <= s1 && s1 <= c)
8485 ok++;
8486
8487 } else if (c == '\\' && (c = *p++) == '\0')
8488 return (0);
8489
8490 lc = c; /* save left-hand 'c' for next iteration */
8491
8492 if (notflag) {
8493 if (s1 != c)
8494 ok++;
8495 else
8496 return (0);
8497 } else if (s1 == c)
8498 ok++;
8499
8500 if ((c = *p++) == '\0')
8501 return (0);
8502
8503 } while (c != ']');
8504
8505 if (ok)
8506 goto top;
8507
8508 return (0);
8509 }
8510
8511 case '\\':
8512 if ((c = *p++) == '\0')
8513 return (0);
8514 /*FALLTHRU*/
8515
8516 default:
8517 if (c != s1)
8518 return (0);
8519 /*FALLTHRU*/
8520
8521 case '?':
8522 if (s1 != '\0')
8523 goto top;
8524 return (0);
8525
8526 case '*':
8527 while (*p == '*')
8528 p++; /* consecutive *'s are identical to a single one */
8529
8530 if (*p == '\0')
8531 return (1);
8532
8533 for (s = olds; *s != '\0'; s++) {
8534 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8535 return (gs);
8536 }
8537
8538 return (0);
8539 }
8540 }
8541
8542 /*ARGSUSED*/
8543 static int
8544 dtrace_match_string(const char *s, const char *p, int depth)
8545 {
8546 return (s != NULL && strcmp(s, p) == 0);
8547 }
8548
8549 /*ARGSUSED*/
8550 static int
8551 dtrace_match_nul(const char *s, const char *p, int depth)
8552 {
8553 return (1); /* always match the empty pattern */
8554 }
8555
8556 /*ARGSUSED*/
8557 static int
8558 dtrace_match_nonzero(const char *s, const char *p, int depth)
8559 {
8560 return (s != NULL && s[0] != '\0');
8561 }
8562
8563 static int
8564 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8565 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8566 {
8567 dtrace_probe_t template, *probe;
8568 dtrace_hash_t *hash = NULL;
8569 int len, best = INT_MAX, nmatched = 0;
8570 dtrace_id_t i;
8571
8572 ASSERT(MUTEX_HELD(&dtrace_lock));
8573
8574 /*
8575 * If the probe ID is specified in the key, just lookup by ID and
8576 * invoke the match callback once if a matching probe is found.
8577 */
8578 if (pkp->dtpk_id != DTRACE_IDNONE) {
8579 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8580 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8581 (void) (*matched)(probe, arg);
8582 nmatched++;
8583 }
8584 return (nmatched);
8585 }
8586
8587 template.dtpr_mod = (char *)pkp->dtpk_mod;
8588 template.dtpr_func = (char *)pkp->dtpk_func;
8589 template.dtpr_name = (char *)pkp->dtpk_name;
8590
8591 /*
8592 * We want to find the most distinct of the module name, function
8593 * name, and name. So for each one that is not a glob pattern or
8594 * empty string, we perform a lookup in the corresponding hash and
8595 * use the hash table with the fewest collisions to do our search.
8596 */
8597 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8598 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8599 best = len;
8600 hash = dtrace_bymod;
8601 }
8602
8603 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8604 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8605 best = len;
8606 hash = dtrace_byfunc;
8607 }
8608
8609 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8610 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8611 best = len;
8612 hash = dtrace_byname;
8613 }
8614
8615 /*
8616 * If we did not select a hash table, iterate over every probe and
8617 * invoke our callback for each one that matches our input probe key.
8618 */
8619 if (hash == NULL) {
8620 for (i = 0; i < dtrace_nprobes; i++) {
8621 if ((probe = dtrace_probes[i]) == NULL ||
8622 dtrace_match_probe(probe, pkp, priv, uid,
8623 zoneid) <= 0)
8624 continue;
8625
8626 nmatched++;
8627
8628 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8629 break;
8630 }
8631
8632 return (nmatched);
8633 }
8634
8635 /*
8636 * If we selected a hash table, iterate over each probe of the same key
8637 * name and invoke the callback for every probe that matches the other
8638 * attributes of our input probe key.
8639 */
8640 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8641 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8642
8643 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8644 continue;
8645
8646 nmatched++;
8647
8648 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8649 break;
8650 }
8651
8652 return (nmatched);
8653 }
8654
8655 /*
8656 * Return the function pointer dtrace_probecmp() should use to compare the
8657 * specified pattern with a string. For NULL or empty patterns, we select
8658 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8659 * For non-empty non-glob strings, we use dtrace_match_string().
8660 */
8661 static dtrace_probekey_f *
8662 dtrace_probekey_func(const char *p)
8663 {
8664 char c;
8665
8666 if (p == NULL || *p == '\0')
8667 return (&dtrace_match_nul);
8668
8669 while ((c = *p++) != '\0') {
8670 if (c == '[' || c == '?' || c == '*' || c == '\\')
8671 return (&dtrace_match_glob);
8672 }
8673
8674 return (&dtrace_match_string);
8675 }
8676
8677 /*
8678 * Build a probe comparison key for use with dtrace_match_probe() from the
8679 * given probe description. By convention, a null key only matches anchored
8680 * probes: if each field is the empty string, reset dtpk_fmatch to
8681 * dtrace_match_nonzero().
8682 */
8683 static void
8684 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8685 {
8686 pkp->dtpk_prov = pdp->dtpd_provider;
8687 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8688
8689 pkp->dtpk_mod = pdp->dtpd_mod;
8690 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8691
8692 pkp->dtpk_func = pdp->dtpd_func;
8693 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8694
8695 pkp->dtpk_name = pdp->dtpd_name;
8696 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8697
8698 pkp->dtpk_id = pdp->dtpd_id;
8699
8700 if (pkp->dtpk_id == DTRACE_IDNONE &&
8701 pkp->dtpk_pmatch == &dtrace_match_nul &&
8702 pkp->dtpk_mmatch == &dtrace_match_nul &&
8703 pkp->dtpk_fmatch == &dtrace_match_nul &&
8704 pkp->dtpk_nmatch == &dtrace_match_nul)
8705 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8706 }
8707
8708 /*
8709 * DTrace Provider-to-Framework API Functions
8710 *
8711 * These functions implement much of the Provider-to-Framework API, as
8712 * described in <sys/dtrace.h>. The parts of the API not in this section are
8713 * the functions in the API for probe management (found below), and
8714 * dtrace_probe() itself (found above).
8715 */
8716
8717 /*
8718 * Register the calling provider with the DTrace framework. This should
8719 * generally be called by DTrace providers in their attach(9E) entry point.
8720 */
8721 int
8722 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8723 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8724 {
8725 dtrace_provider_t *provider;
8726
8727 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8728 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8729 "arguments", name ? name : "<NULL>");
8730 return (EINVAL);
8731 }
8732
8733 if (name[0] == '\0' || dtrace_badname(name)) {
8734 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8735 "provider name", name);
8736 return (EINVAL);
8737 }
8738
8739 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8740 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8741 pops->dtps_destroy == NULL ||
8742 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8743 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8744 "provider ops", name);
8745 return (EINVAL);
8746 }
8747
8748 if (dtrace_badattr(&pap->dtpa_provider) ||
8749 dtrace_badattr(&pap->dtpa_mod) ||
8750 dtrace_badattr(&pap->dtpa_func) ||
8751 dtrace_badattr(&pap->dtpa_name) ||
8752 dtrace_badattr(&pap->dtpa_args)) {
8753 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8754 "provider attributes", name);
8755 return (EINVAL);
8756 }
8757
8758 if (priv & ~DTRACE_PRIV_ALL) {
8759 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8760 "privilege attributes", name);
8761 return (EINVAL);
8762 }
8763
8764 if ((priv & DTRACE_PRIV_KERNEL) &&
8765 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8766 pops->dtps_usermode == NULL) {
8767 cmn_err(CE_WARN, "failed to register provider '%s': need "
8768 "dtps_usermode() op for given privilege attributes", name);
8769 return (EINVAL);
8770 }
8771
8772 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8773 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8774 (void) strcpy(provider->dtpv_name, name);
8775
8776 provider->dtpv_attr = *pap;
8777 provider->dtpv_priv.dtpp_flags = priv;
8778 if (cr != NULL) {
8779 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8780 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8781 }
8782 provider->dtpv_pops = *pops;
8783
8784 if (pops->dtps_provide == NULL) {
8785 ASSERT(pops->dtps_provide_module != NULL);
8786 provider->dtpv_pops.dtps_provide =
8787 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8788 }
8789
8790 if (pops->dtps_provide_module == NULL) {
8791 ASSERT(pops->dtps_provide != NULL);
8792 provider->dtpv_pops.dtps_provide_module =
8793 (void (*)(void *, modctl_t *))dtrace_nullop;
8794 }
8795
8796 if (pops->dtps_suspend == NULL) {
8797 ASSERT(pops->dtps_resume == NULL);
8798 provider->dtpv_pops.dtps_suspend =
8799 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8800 provider->dtpv_pops.dtps_resume =
8801 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8802 }
8803
8804 provider->dtpv_arg = arg;
8805 *idp = (dtrace_provider_id_t)provider;
8806
8807 if (pops == &dtrace_provider_ops) {
8808 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8809 ASSERT(MUTEX_HELD(&dtrace_lock));
8810 ASSERT(dtrace_anon.dta_enabling == NULL);
8811
8812 /*
8813 * We make sure that the DTrace provider is at the head of
8814 * the provider chain.
8815 */
8816 provider->dtpv_next = dtrace_provider;
8817 dtrace_provider = provider;
8818 return (0);
8819 }
8820
8821 mutex_enter(&dtrace_provider_lock);
8822 mutex_enter(&dtrace_lock);
8823
8824 /*
8825 * If there is at least one provider registered, we'll add this
8826 * provider after the first provider.
8827 */
8828 if (dtrace_provider != NULL) {
8829 provider->dtpv_next = dtrace_provider->dtpv_next;
8830 dtrace_provider->dtpv_next = provider;
8831 } else {
8832 dtrace_provider = provider;
8833 }
8834
8835 if (dtrace_retained != NULL) {
8836 dtrace_enabling_provide(provider);
8837
8838 /*
8839 * Now we need to call dtrace_enabling_matchall() -- which
8840 * will acquire cpu_lock and dtrace_lock. We therefore need
8841 * to drop all of our locks before calling into it...
8842 */
8843 mutex_exit(&dtrace_lock);
8844 mutex_exit(&dtrace_provider_lock);
8845 dtrace_enabling_matchall();
8846
8847 return (0);
8848 }
8849
8850 mutex_exit(&dtrace_lock);
8851 mutex_exit(&dtrace_provider_lock);
8852
8853 return (0);
8854 }
8855
8856 /*
8857 * Unregister the specified provider from the DTrace framework. This should
8858 * generally be called by DTrace providers in their detach(9E) entry point.
8859 */
8860 int
8861 dtrace_unregister(dtrace_provider_id_t id)
8862 {
8863 dtrace_provider_t *old = (dtrace_provider_t *)id;
8864 dtrace_provider_t *prev = NULL;
8865 int i, self = 0, noreap = 0;
8866 dtrace_probe_t *probe, *first = NULL;
8867
8868 if (old->dtpv_pops.dtps_enable ==
8869 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8870 /*
8871 * If DTrace itself is the provider, we're called with locks
8872 * already held.
8873 */
8874 ASSERT(old == dtrace_provider);
8875 #ifdef illumos
8876 ASSERT(dtrace_devi != NULL);
8877 #endif
8878 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8879 ASSERT(MUTEX_HELD(&dtrace_lock));
8880 self = 1;
8881
8882 if (dtrace_provider->dtpv_next != NULL) {
8883 /*
8884 * There's another provider here; return failure.
8885 */
8886 return (EBUSY);
8887 }
8888 } else {
8889 mutex_enter(&dtrace_provider_lock);
8890 #ifdef illumos
8891 mutex_enter(&mod_lock);
8892 #endif
8893 mutex_enter(&dtrace_lock);
8894 }
8895
8896 /*
8897 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8898 * probes, we refuse to let providers slither away, unless this
8899 * provider has already been explicitly invalidated.
8900 */
8901 if (!old->dtpv_defunct &&
8902 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8903 dtrace_anon.dta_state->dts_necbs > 0))) {
8904 if (!self) {
8905 mutex_exit(&dtrace_lock);
8906 #ifdef illumos
8907 mutex_exit(&mod_lock);
8908 #endif
8909 mutex_exit(&dtrace_provider_lock);
8910 }
8911 return (EBUSY);
8912 }
8913
8914 /*
8915 * Attempt to destroy the probes associated with this provider.
8916 */
8917 for (i = 0; i < dtrace_nprobes; i++) {
8918 if ((probe = dtrace_probes[i]) == NULL)
8919 continue;
8920
8921 if (probe->dtpr_provider != old)
8922 continue;
8923
8924 if (probe->dtpr_ecb == NULL)
8925 continue;
8926
8927 /*
8928 * If we are trying to unregister a defunct provider, and the
8929 * provider was made defunct within the interval dictated by
8930 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8931 * attempt to reap our enablings. To denote that the provider
8932 * should reattempt to unregister itself at some point in the
8933 * future, we will return a differentiable error code (EAGAIN
8934 * instead of EBUSY) in this case.
8935 */
8936 if (dtrace_gethrtime() - old->dtpv_defunct >
8937 dtrace_unregister_defunct_reap)
8938 noreap = 1;
8939
8940 if (!self) {
8941 mutex_exit(&dtrace_lock);
8942 #ifdef illumos
8943 mutex_exit(&mod_lock);
8944 #endif
8945 mutex_exit(&dtrace_provider_lock);
8946 }
8947
8948 if (noreap)
8949 return (EBUSY);
8950
8951 (void) taskq_dispatch(dtrace_taskq,
8952 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8953
8954 return (EAGAIN);
8955 }
8956
8957 /*
8958 * All of the probes for this provider are disabled; we can safely
8959 * remove all of them from their hash chains and from the probe array.
8960 */
8961 for (i = 0; i < dtrace_nprobes; i++) {
8962 if ((probe = dtrace_probes[i]) == NULL)
8963 continue;
8964
8965 if (probe->dtpr_provider != old)
8966 continue;
8967
8968 dtrace_probes[i] = NULL;
8969
8970 dtrace_hash_remove(dtrace_bymod, probe);
8971 dtrace_hash_remove(dtrace_byfunc, probe);
8972 dtrace_hash_remove(dtrace_byname, probe);
8973
8974 if (first == NULL) {
8975 first = probe;
8976 probe->dtpr_nextmod = NULL;
8977 } else {
8978 probe->dtpr_nextmod = first;
8979 first = probe;
8980 }
8981 }
8982
8983 /*
8984 * The provider's probes have been removed from the hash chains and
8985 * from the probe array. Now issue a dtrace_sync() to be sure that
8986 * everyone has cleared out from any probe array processing.
8987 */
8988 dtrace_sync();
8989
8990 for (probe = first; probe != NULL; probe = first) {
8991 first = probe->dtpr_nextmod;
8992
8993 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8994 probe->dtpr_arg);
8995 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8996 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8997 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8998 #ifdef illumos
8999 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
9000 #else
9001 free_unr(dtrace_arena, probe->dtpr_id);
9002 #endif
9003 kmem_free(probe, sizeof (dtrace_probe_t));
9004 }
9005
9006 if ((prev = dtrace_provider) == old) {
9007 #ifdef illumos
9008 ASSERT(self || dtrace_devi == NULL);
9009 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9010 #endif
9011 dtrace_provider = old->dtpv_next;
9012 } else {
9013 while (prev != NULL && prev->dtpv_next != old)
9014 prev = prev->dtpv_next;
9015
9016 if (prev == NULL) {
9017 panic("attempt to unregister non-existent "
9018 "dtrace provider %p\n", (void *)id);
9019 }
9020
9021 prev->dtpv_next = old->dtpv_next;
9022 }
9023
9024 if (!self) {
9025 mutex_exit(&dtrace_lock);
9026 #ifdef illumos
9027 mutex_exit(&mod_lock);
9028 #endif
9029 mutex_exit(&dtrace_provider_lock);
9030 }
9031
9032 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9033 kmem_free(old, sizeof (dtrace_provider_t));
9034
9035 return (0);
9036 }
9037
9038 /*
9039 * Invalidate the specified provider. All subsequent probe lookups for the
9040 * specified provider will fail, but its probes will not be removed.
9041 */
9042 void
9043 dtrace_invalidate(dtrace_provider_id_t id)
9044 {
9045 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9046
9047 ASSERT(pvp->dtpv_pops.dtps_enable !=
9048 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9049
9050 mutex_enter(&dtrace_provider_lock);
9051 mutex_enter(&dtrace_lock);
9052
9053 pvp->dtpv_defunct = dtrace_gethrtime();
9054
9055 mutex_exit(&dtrace_lock);
9056 mutex_exit(&dtrace_provider_lock);
9057 }
9058
9059 /*
9060 * Indicate whether or not DTrace has attached.
9061 */
9062 int
9063 dtrace_attached(void)
9064 {
9065 /*
9066 * dtrace_provider will be non-NULL iff the DTrace driver has
9067 * attached. (It's non-NULL because DTrace is always itself a
9068 * provider.)
9069 */
9070 return (dtrace_provider != NULL);
9071 }
9072
9073 /*
9074 * Remove all the unenabled probes for the given provider. This function is
9075 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9076 * -- just as many of its associated probes as it can.
9077 */
9078 int
9079 dtrace_condense(dtrace_provider_id_t id)
9080 {
9081 dtrace_provider_t *prov = (dtrace_provider_t *)id;
9082 int i;
9083 dtrace_probe_t *probe;
9084
9085 /*
9086 * Make sure this isn't the dtrace provider itself.
9087 */
9088 ASSERT(prov->dtpv_pops.dtps_enable !=
9089 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9090
9091 mutex_enter(&dtrace_provider_lock);
9092 mutex_enter(&dtrace_lock);
9093
9094 /*
9095 * Attempt to destroy the probes associated with this provider.
9096 */
9097 for (i = 0; i < dtrace_nprobes; i++) {
9098 if ((probe = dtrace_probes[i]) == NULL)
9099 continue;
9100
9101 if (probe->dtpr_provider != prov)
9102 continue;
9103
9104 if (probe->dtpr_ecb != NULL)
9105 continue;
9106
9107 dtrace_probes[i] = NULL;
9108
9109 dtrace_hash_remove(dtrace_bymod, probe);
9110 dtrace_hash_remove(dtrace_byfunc, probe);
9111 dtrace_hash_remove(dtrace_byname, probe);
9112
9113 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9114 probe->dtpr_arg);
9115 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9116 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9117 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9118 kmem_free(probe, sizeof (dtrace_probe_t));
9119 #ifdef illumos
9120 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9121 #else
9122 free_unr(dtrace_arena, i + 1);
9123 #endif
9124 }
9125
9126 mutex_exit(&dtrace_lock);
9127 mutex_exit(&dtrace_provider_lock);
9128
9129 return (0);
9130 }
9131
9132 /*
9133 * DTrace Probe Management Functions
9134 *
9135 * The functions in this section perform the DTrace probe management,
9136 * including functions to create probes, look-up probes, and call into the
9137 * providers to request that probes be provided. Some of these functions are
9138 * in the Provider-to-Framework API; these functions can be identified by the
9139 * fact that they are not declared "static".
9140 */
9141
9142 /*
9143 * Create a probe with the specified module name, function name, and name.
9144 */
9145 dtrace_id_t
9146 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9147 const char *func, const char *name, int aframes, void *arg)
9148 {
9149 dtrace_probe_t *probe, **probes;
9150 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9151 dtrace_id_t id;
9152
9153 if (provider == dtrace_provider) {
9154 ASSERT(MUTEX_HELD(&dtrace_lock));
9155 } else {
9156 mutex_enter(&dtrace_lock);
9157 }
9158
9159 #ifdef illumos
9160 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9161 VM_BESTFIT | VM_SLEEP);
9162 #else
9163 id = alloc_unr(dtrace_arena);
9164 #endif
9165 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9166
9167 probe->dtpr_id = id;
9168 probe->dtpr_gen = dtrace_probegen++;
9169 probe->dtpr_mod = dtrace_strdup(mod);
9170 probe->dtpr_func = dtrace_strdup(func);
9171 probe->dtpr_name = dtrace_strdup(name);
9172 probe->dtpr_arg = arg;
9173 probe->dtpr_aframes = aframes;
9174 probe->dtpr_provider = provider;
9175
9176 dtrace_hash_add(dtrace_bymod, probe);
9177 dtrace_hash_add(dtrace_byfunc, probe);
9178 dtrace_hash_add(dtrace_byname, probe);
9179
9180 if (id - 1 >= dtrace_nprobes) {
9181 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9182 size_t nsize = osize << 1;
9183
9184 if (nsize == 0) {
9185 ASSERT(osize == 0);
9186 ASSERT(dtrace_probes == NULL);
9187 nsize = sizeof (dtrace_probe_t *);
9188 }
9189
9190 probes = kmem_zalloc(nsize, KM_SLEEP);
9191
9192 if (dtrace_probes == NULL) {
9193 ASSERT(osize == 0);
9194 dtrace_probes = probes;
9195 dtrace_nprobes = 1;
9196 } else {
9197 dtrace_probe_t **oprobes = dtrace_probes;
9198
9199 bcopy(oprobes, probes, osize);
9200 dtrace_membar_producer();
9201 dtrace_probes = probes;
9202
9203 dtrace_sync();
9204
9205 /*
9206 * All CPUs are now seeing the new probes array; we can
9207 * safely free the old array.
9208 */
9209 kmem_free(oprobes, osize);
9210 dtrace_nprobes <<= 1;
9211 }
9212
9213 ASSERT(id - 1 < dtrace_nprobes);
9214 }
9215
9216 ASSERT(dtrace_probes[id - 1] == NULL);
9217 dtrace_probes[id - 1] = probe;
9218
9219 if (provider != dtrace_provider)
9220 mutex_exit(&dtrace_lock);
9221
9222 return (id);
9223 }
9224
9225 static dtrace_probe_t *
9226 dtrace_probe_lookup_id(dtrace_id_t id)
9227 {
9228 ASSERT(MUTEX_HELD(&dtrace_lock));
9229
9230 if (id == 0 || id > dtrace_nprobes)
9231 return (NULL);
9232
9233 return (dtrace_probes[id - 1]);
9234 }
9235
9236 static int
9237 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9238 {
9239 *((dtrace_id_t *)arg) = probe->dtpr_id;
9240
9241 return (DTRACE_MATCH_DONE);
9242 }
9243
9244 /*
9245 * Look up a probe based on provider and one or more of module name, function
9246 * name and probe name.
9247 */
9248 dtrace_id_t
9249 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9250 char *func, char *name)
9251 {
9252 dtrace_probekey_t pkey;
9253 dtrace_id_t id;
9254 int match;
9255
9256 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9257 pkey.dtpk_pmatch = &dtrace_match_string;
9258 pkey.dtpk_mod = mod;
9259 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9260 pkey.dtpk_func = func;
9261 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9262 pkey.dtpk_name = name;
9263 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9264 pkey.dtpk_id = DTRACE_IDNONE;
9265
9266 mutex_enter(&dtrace_lock);
9267 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9268 dtrace_probe_lookup_match, &id);
9269 mutex_exit(&dtrace_lock);
9270
9271 ASSERT(match == 1 || match == 0);
9272 return (match ? id : 0);
9273 }
9274
9275 /*
9276 * Returns the probe argument associated with the specified probe.
9277 */
9278 void *
9279 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9280 {
9281 dtrace_probe_t *probe;
9282 void *rval = NULL;
9283
9284 mutex_enter(&dtrace_lock);
9285
9286 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9287 probe->dtpr_provider == (dtrace_provider_t *)id)
9288 rval = probe->dtpr_arg;
9289
9290 mutex_exit(&dtrace_lock);
9291
9292 return (rval);
9293 }
9294
9295 /*
9296 * Copy a probe into a probe description.
9297 */
9298 static void
9299 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9300 {
9301 bzero(pdp, sizeof (dtrace_probedesc_t));
9302 pdp->dtpd_id = prp->dtpr_id;
9303
9304 (void) strncpy(pdp->dtpd_provider,
9305 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9306
9307 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9308 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9309 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9310 }
9311
9312 /*
9313 * Called to indicate that a probe -- or probes -- should be provided by a
9314 * specfied provider. If the specified description is NULL, the provider will
9315 * be told to provide all of its probes. (This is done whenever a new
9316 * consumer comes along, or whenever a retained enabling is to be matched.) If
9317 * the specified description is non-NULL, the provider is given the
9318 * opportunity to dynamically provide the specified probe, allowing providers
9319 * to support the creation of probes on-the-fly. (So-called _autocreated_
9320 * probes.) If the provider is NULL, the operations will be applied to all
9321 * providers; if the provider is non-NULL the operations will only be applied
9322 * to the specified provider. The dtrace_provider_lock must be held, and the
9323 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9324 * will need to grab the dtrace_lock when it reenters the framework through
9325 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9326 */
9327 static void
9328 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9329 {
9330 #ifdef illumos
9331 modctl_t *ctl;
9332 #endif
9333 int all = 0;
9334
9335 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9336
9337 if (prv == NULL) {
9338 all = 1;
9339 prv = dtrace_provider;
9340 }
9341
9342 do {
9343 /*
9344 * First, call the blanket provide operation.
9345 */
9346 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9347
9348 #ifdef illumos
9349 /*
9350 * Now call the per-module provide operation. We will grab
9351 * mod_lock to prevent the list from being modified. Note
9352 * that this also prevents the mod_busy bits from changing.
9353 * (mod_busy can only be changed with mod_lock held.)
9354 */
9355 mutex_enter(&mod_lock);
9356
9357 ctl = &modules;
9358 do {
9359 if (ctl->mod_busy || ctl->mod_mp == NULL)
9360 continue;
9361
9362 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9363
9364 } while ((ctl = ctl->mod_next) != &modules);
9365
9366 mutex_exit(&mod_lock);
9367 #endif
9368 } while (all && (prv = prv->dtpv_next) != NULL);
9369 }
9370
9371 #ifdef illumos
9372 /*
9373 * Iterate over each probe, and call the Framework-to-Provider API function
9374 * denoted by offs.
9375 */
9376 static void
9377 dtrace_probe_foreach(uintptr_t offs)
9378 {
9379 dtrace_provider_t *prov;
9380 void (*func)(void *, dtrace_id_t, void *);
9381 dtrace_probe_t *probe;
9382 dtrace_icookie_t cookie;
9383 int i;
9384
9385 /*
9386 * We disable interrupts to walk through the probe array. This is
9387 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9388 * won't see stale data.
9389 */
9390 cookie = dtrace_interrupt_disable();
9391
9392 for (i = 0; i < dtrace_nprobes; i++) {
9393 if ((probe = dtrace_probes[i]) == NULL)
9394 continue;
9395
9396 if (probe->dtpr_ecb == NULL) {
9397 /*
9398 * This probe isn't enabled -- don't call the function.
9399 */
9400 continue;
9401 }
9402
9403 prov = probe->dtpr_provider;
9404 func = *((void(**)(void *, dtrace_id_t, void *))
9405 ((uintptr_t)&prov->dtpv_pops + offs));
9406
9407 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9408 }
9409
9410 dtrace_interrupt_enable(cookie);
9411 }
9412 #endif
9413
9414 static int
9415 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9416 {
9417 dtrace_probekey_t pkey;
9418 uint32_t priv;
9419 uid_t uid;
9420 zoneid_t zoneid;
9421
9422 ASSERT(MUTEX_HELD(&dtrace_lock));
9423 dtrace_ecb_create_cache = NULL;
9424
9425 if (desc == NULL) {
9426 /*
9427 * If we're passed a NULL description, we're being asked to
9428 * create an ECB with a NULL probe.
9429 */
9430 (void) dtrace_ecb_create_enable(NULL, enab);
9431 return (0);
9432 }
9433
9434 dtrace_probekey(desc, &pkey);
9435 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9436 &priv, &uid, &zoneid);
9437
9438 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9439 enab));
9440 }
9441
9442 /*
9443 * DTrace Helper Provider Functions
9444 */
9445 static void
9446 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9447 {
9448 attr->dtat_name = DOF_ATTR_NAME(dofattr);
9449 attr->dtat_data = DOF_ATTR_DATA(dofattr);
9450 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9451 }
9452
9453 static void
9454 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9455 const dof_provider_t *dofprov, char *strtab)
9456 {
9457 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9458 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9459 dofprov->dofpv_provattr);
9460 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9461 dofprov->dofpv_modattr);
9462 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9463 dofprov->dofpv_funcattr);
9464 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9465 dofprov->dofpv_nameattr);
9466 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9467 dofprov->dofpv_argsattr);
9468 }
9469
9470 static void
9471 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9472 {
9473 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9474 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9475 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9476 dof_provider_t *provider;
9477 dof_probe_t *probe;
9478 uint32_t *off, *enoff;
9479 uint8_t *arg;
9480 char *strtab;
9481 uint_t i, nprobes;
9482 dtrace_helper_provdesc_t dhpv;
9483 dtrace_helper_probedesc_t dhpb;
9484 dtrace_meta_t *meta = dtrace_meta_pid;
9485 dtrace_mops_t *mops = &meta->dtm_mops;
9486 void *parg;
9487
9488 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9489 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9490 provider->dofpv_strtab * dof->dofh_secsize);
9491 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9492 provider->dofpv_probes * dof->dofh_secsize);
9493 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9494 provider->dofpv_prargs * dof->dofh_secsize);
9495 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9496 provider->dofpv_proffs * dof->dofh_secsize);
9497
9498 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9499 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9500 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9501 enoff = NULL;
9502
9503 /*
9504 * See dtrace_helper_provider_validate().
9505 */
9506 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9507 provider->dofpv_prenoffs != DOF_SECT_NONE) {
9508 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9509 provider->dofpv_prenoffs * dof->dofh_secsize);
9510 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9511 }
9512
9513 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9514
9515 /*
9516 * Create the provider.
9517 */
9518 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9519
9520 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9521 return;
9522
9523 meta->dtm_count++;
9524
9525 /*
9526 * Create the probes.
9527 */
9528 for (i = 0; i < nprobes; i++) {
9529 probe = (dof_probe_t *)(uintptr_t)(daddr +
9530 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9531
9532 /* See the check in dtrace_helper_provider_validate(). */
9533 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9534 continue;
9535
9536 dhpb.dthpb_mod = dhp->dofhp_mod;
9537 dhpb.dthpb_func = strtab + probe->dofpr_func;
9538 dhpb.dthpb_name = strtab + probe->dofpr_name;
9539 dhpb.dthpb_base = probe->dofpr_addr;
9540 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9541 dhpb.dthpb_noffs = probe->dofpr_noffs;
9542 if (enoff != NULL) {
9543 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9544 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9545 } else {
9546 dhpb.dthpb_enoffs = NULL;
9547 dhpb.dthpb_nenoffs = 0;
9548 }
9549 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9550 dhpb.dthpb_nargc = probe->dofpr_nargc;
9551 dhpb.dthpb_xargc = probe->dofpr_xargc;
9552 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9553 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9554
9555 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9556 }
9557 }
9558
9559 static void
9560 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9561 {
9562 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9563 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9564 int i;
9565
9566 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9567
9568 for (i = 0; i < dof->dofh_secnum; i++) {
9569 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9570 dof->dofh_secoff + i * dof->dofh_secsize);
9571
9572 if (sec->dofs_type != DOF_SECT_PROVIDER)
9573 continue;
9574
9575 dtrace_helper_provide_one(dhp, sec, pid);
9576 }
9577
9578 /*
9579 * We may have just created probes, so we must now rematch against
9580 * any retained enablings. Note that this call will acquire both
9581 * cpu_lock and dtrace_lock; the fact that we are holding
9582 * dtrace_meta_lock now is what defines the ordering with respect to
9583 * these three locks.
9584 */
9585 dtrace_enabling_matchall();
9586 }
9587
9588 static void
9589 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9590 {
9591 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9592 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9593 dof_sec_t *str_sec;
9594 dof_provider_t *provider;
9595 char *strtab;
9596 dtrace_helper_provdesc_t dhpv;
9597 dtrace_meta_t *meta = dtrace_meta_pid;
9598 dtrace_mops_t *mops = &meta->dtm_mops;
9599
9600 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9601 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9602 provider->dofpv_strtab * dof->dofh_secsize);
9603
9604 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9605
9606 /*
9607 * Create the provider.
9608 */
9609 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9610
9611 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9612
9613 meta->dtm_count--;
9614 }
9615
9616 static void
9617 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9618 {
9619 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9620 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9621 int i;
9622
9623 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9624
9625 for (i = 0; i < dof->dofh_secnum; i++) {
9626 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9627 dof->dofh_secoff + i * dof->dofh_secsize);
9628
9629 if (sec->dofs_type != DOF_SECT_PROVIDER)
9630 continue;
9631
9632 dtrace_helper_provider_remove_one(dhp, sec, pid);
9633 }
9634 }
9635
9636 /*
9637 * DTrace Meta Provider-to-Framework API Functions
9638 *
9639 * These functions implement the Meta Provider-to-Framework API, as described
9640 * in <sys/dtrace.h>.
9641 */
9642 int
9643 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9644 dtrace_meta_provider_id_t *idp)
9645 {
9646 dtrace_meta_t *meta;
9647 dtrace_helpers_t *help, *next;
9648 int i;
9649
9650 *idp = DTRACE_METAPROVNONE;
9651
9652 /*
9653 * We strictly don't need the name, but we hold onto it for
9654 * debuggability. All hail error queues!
9655 */
9656 if (name == NULL) {
9657 cmn_err(CE_WARN, "failed to register meta-provider: "
9658 "invalid name");
9659 return (EINVAL);
9660 }
9661
9662 if (mops == NULL ||
9663 mops->dtms_create_probe == NULL ||
9664 mops->dtms_provide_pid == NULL ||
9665 mops->dtms_remove_pid == NULL) {
9666 cmn_err(CE_WARN, "failed to register meta-register %s: "
9667 "invalid ops", name);
9668 return (EINVAL);
9669 }
9670
9671 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9672 meta->dtm_mops = *mops;
9673 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9674 (void) strcpy(meta->dtm_name, name);
9675 meta->dtm_arg = arg;
9676
9677 mutex_enter(&dtrace_meta_lock);
9678 mutex_enter(&dtrace_lock);
9679
9680 if (dtrace_meta_pid != NULL) {
9681 mutex_exit(&dtrace_lock);
9682 mutex_exit(&dtrace_meta_lock);
9683 cmn_err(CE_WARN, "failed to register meta-register %s: "
9684 "user-land meta-provider exists", name);
9685 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9686 kmem_free(meta, sizeof (dtrace_meta_t));
9687 return (EINVAL);
9688 }
9689
9690 dtrace_meta_pid = meta;
9691 *idp = (dtrace_meta_provider_id_t)meta;
9692
9693 /*
9694 * If there are providers and probes ready to go, pass them
9695 * off to the new meta provider now.
9696 */
9697
9698 help = dtrace_deferred_pid;
9699 dtrace_deferred_pid = NULL;
9700
9701 mutex_exit(&dtrace_lock);
9702
9703 while (help != NULL) {
9704 for (i = 0; i < help->dthps_nprovs; i++) {
9705 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9706 help->dthps_pid);
9707 }
9708
9709 next = help->dthps_next;
9710 help->dthps_next = NULL;
9711 help->dthps_prev = NULL;
9712 help->dthps_deferred = 0;
9713 help = next;
9714 }
9715
9716 mutex_exit(&dtrace_meta_lock);
9717
9718 return (0);
9719 }
9720
9721 int
9722 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9723 {
9724 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9725
9726 mutex_enter(&dtrace_meta_lock);
9727 mutex_enter(&dtrace_lock);
9728
9729 if (old == dtrace_meta_pid) {
9730 pp = &dtrace_meta_pid;
9731 } else {
9732 panic("attempt to unregister non-existent "
9733 "dtrace meta-provider %p\n", (void *)old);
9734 }
9735
9736 if (old->dtm_count != 0) {
9737 mutex_exit(&dtrace_lock);
9738 mutex_exit(&dtrace_meta_lock);
9739 return (EBUSY);
9740 }
9741
9742 *pp = NULL;
9743
9744 mutex_exit(&dtrace_lock);
9745 mutex_exit(&dtrace_meta_lock);
9746
9747 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9748 kmem_free(old, sizeof (dtrace_meta_t));
9749
9750 return (0);
9751 }
9752
9753
9754 /*
9755 * DTrace DIF Object Functions
9756 */
9757 static int
9758 dtrace_difo_err(uint_t pc, const char *format, ...)
9759 {
9760 if (dtrace_err_verbose) {
9761 va_list alist;
9762
9763 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9764 va_start(alist, format);
9765 (void) vuprintf(format, alist);
9766 va_end(alist);
9767 }
9768
9769 #ifdef DTRACE_ERRDEBUG
9770 dtrace_errdebug(format);
9771 #endif
9772 return (1);
9773 }
9774
9775 /*
9776 * Validate a DTrace DIF object by checking the IR instructions. The following
9777 * rules are currently enforced by dtrace_difo_validate():
9778 *
9779 * 1. Each instruction must have a valid opcode
9780 * 2. Each register, string, variable, or subroutine reference must be valid
9781 * 3. No instruction can modify register %r0 (must be zero)
9782 * 4. All instruction reserved bits must be set to zero
9783 * 5. The last instruction must be a "ret" instruction
9784 * 6. All branch targets must reference a valid instruction _after_ the branch
9785 */
9786 static int
9787 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9788 cred_t *cr)
9789 {
9790 int err = 0, i;
9791 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9792 int kcheckload;
9793 uint_t pc;
9794 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9795
9796 kcheckload = cr == NULL ||
9797 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9798
9799 dp->dtdo_destructive = 0;
9800
9801 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9802 dif_instr_t instr = dp->dtdo_buf[pc];
9803
9804 uint_t r1 = DIF_INSTR_R1(instr);
9805 uint_t r2 = DIF_INSTR_R2(instr);
9806 uint_t rd = DIF_INSTR_RD(instr);
9807 uint_t rs = DIF_INSTR_RS(instr);
9808 uint_t label = DIF_INSTR_LABEL(instr);
9809 uint_t v = DIF_INSTR_VAR(instr);
9810 uint_t subr = DIF_INSTR_SUBR(instr);
9811 uint_t type = DIF_INSTR_TYPE(instr);
9812 uint_t op = DIF_INSTR_OP(instr);
9813
9814 switch (op) {
9815 case DIF_OP_OR:
9816 case DIF_OP_XOR:
9817 case DIF_OP_AND:
9818 case DIF_OP_SLL:
9819 case DIF_OP_SRL:
9820 case DIF_OP_SRA:
9821 case DIF_OP_SUB:
9822 case DIF_OP_ADD:
9823 case DIF_OP_MUL:
9824 case DIF_OP_SDIV:
9825 case DIF_OP_UDIV:
9826 case DIF_OP_SREM:
9827 case DIF_OP_UREM:
9828 case DIF_OP_COPYS:
9829 if (r1 >= nregs)
9830 err += efunc(pc, "invalid register %u\n", r1);
9831 if (r2 >= nregs)
9832 err += efunc(pc, "invalid register %u\n", r2);
9833 if (rd >= nregs)
9834 err += efunc(pc, "invalid register %u\n", rd);
9835 if (rd == 0)
9836 err += efunc(pc, "cannot write to %%r0\n");
9837 break;
9838 case DIF_OP_NOT:
9839 case DIF_OP_MOV:
9840 case DIF_OP_ALLOCS:
9841 if (r1 >= nregs)
9842 err += efunc(pc, "invalid register %u\n", r1);
9843 if (r2 != 0)
9844 err += efunc(pc, "non-zero reserved bits\n");
9845 if (rd >= nregs)
9846 err += efunc(pc, "invalid register %u\n", rd);
9847 if (rd == 0)
9848 err += efunc(pc, "cannot write to %%r0\n");
9849 break;
9850 case DIF_OP_LDSB:
9851 case DIF_OP_LDSH:
9852 case DIF_OP_LDSW:
9853 case DIF_OP_LDUB:
9854 case DIF_OP_LDUH:
9855 case DIF_OP_LDUW:
9856 case DIF_OP_LDX:
9857 if (r1 >= nregs)
9858 err += efunc(pc, "invalid register %u\n", r1);
9859 if (r2 != 0)
9860 err += efunc(pc, "non-zero reserved bits\n");
9861 if (rd >= nregs)
9862 err += efunc(pc, "invalid register %u\n", rd);
9863 if (rd == 0)
9864 err += efunc(pc, "cannot write to %%r0\n");
9865 if (kcheckload)
9866 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9867 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9868 break;
9869 case DIF_OP_RLDSB:
9870 case DIF_OP_RLDSH:
9871 case DIF_OP_RLDSW:
9872 case DIF_OP_RLDUB:
9873 case DIF_OP_RLDUH:
9874 case DIF_OP_RLDUW:
9875 case DIF_OP_RLDX:
9876 if (r1 >= nregs)
9877 err += efunc(pc, "invalid register %u\n", r1);
9878 if (r2 != 0)
9879 err += efunc(pc, "non-zero reserved bits\n");
9880 if (rd >= nregs)
9881 err += efunc(pc, "invalid register %u\n", rd);
9882 if (rd == 0)
9883 err += efunc(pc, "cannot write to %%r0\n");
9884 break;
9885 case DIF_OP_ULDSB:
9886 case DIF_OP_ULDSH:
9887 case DIF_OP_ULDSW:
9888 case DIF_OP_ULDUB:
9889 case DIF_OP_ULDUH:
9890 case DIF_OP_ULDUW:
9891 case DIF_OP_ULDX:
9892 if (r1 >= nregs)
9893 err += efunc(pc, "invalid register %u\n", r1);
9894 if (r2 != 0)
9895 err += efunc(pc, "non-zero reserved bits\n");
9896 if (rd >= nregs)
9897 err += efunc(pc, "invalid register %u\n", rd);
9898 if (rd == 0)
9899 err += efunc(pc, "cannot write to %%r0\n");
9900 break;
9901 case DIF_OP_STB:
9902 case DIF_OP_STH:
9903 case DIF_OP_STW:
9904 case DIF_OP_STX:
9905 if (r1 >= nregs)
9906 err += efunc(pc, "invalid register %u\n", r1);
9907 if (r2 != 0)
9908 err += efunc(pc, "non-zero reserved bits\n");
9909 if (rd >= nregs)
9910 err += efunc(pc, "invalid register %u\n", rd);
9911 if (rd == 0)
9912 err += efunc(pc, "cannot write to 0 address\n");
9913 break;
9914 case DIF_OP_CMP:
9915 case DIF_OP_SCMP:
9916 if (r1 >= nregs)
9917 err += efunc(pc, "invalid register %u\n", r1);
9918 if (r2 >= nregs)
9919 err += efunc(pc, "invalid register %u\n", r2);
9920 if (rd != 0)
9921 err += efunc(pc, "non-zero reserved bits\n");
9922 break;
9923 case DIF_OP_TST:
9924 if (r1 >= nregs)
9925 err += efunc(pc, "invalid register %u\n", r1);
9926 if (r2 != 0 || rd != 0)
9927 err += efunc(pc, "non-zero reserved bits\n");
9928 break;
9929 case DIF_OP_BA:
9930 case DIF_OP_BE:
9931 case DIF_OP_BNE:
9932 case DIF_OP_BG:
9933 case DIF_OP_BGU:
9934 case DIF_OP_BGE:
9935 case DIF_OP_BGEU:
9936 case DIF_OP_BL:
9937 case DIF_OP_BLU:
9938 case DIF_OP_BLE:
9939 case DIF_OP_BLEU:
9940 if (label >= dp->dtdo_len) {
9941 err += efunc(pc, "invalid branch target %u\n",
9942 label);
9943 }
9944 if (label <= pc) {
9945 err += efunc(pc, "backward branch to %u\n",
9946 label);
9947 }
9948 break;
9949 case DIF_OP_RET:
9950 if (r1 != 0 || r2 != 0)
9951 err += efunc(pc, "non-zero reserved bits\n");
9952 if (rd >= nregs)
9953 err += efunc(pc, "invalid register %u\n", rd);
9954 break;
9955 case DIF_OP_NOP:
9956 case DIF_OP_POPTS:
9957 case DIF_OP_FLUSHTS:
9958 if (r1 != 0 || r2 != 0 || rd != 0)
9959 err += efunc(pc, "non-zero reserved bits\n");
9960 break;
9961 case DIF_OP_SETX:
9962 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9963 err += efunc(pc, "invalid integer ref %u\n",
9964 DIF_INSTR_INTEGER(instr));
9965 }
9966 if (rd >= nregs)
9967 err += efunc(pc, "invalid register %u\n", rd);
9968 if (rd == 0)
9969 err += efunc(pc, "cannot write to %%r0\n");
9970 break;
9971 case DIF_OP_SETS:
9972 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9973 err += efunc(pc, "invalid string ref %u\n",
9974 DIF_INSTR_STRING(instr));
9975 }
9976 if (rd >= nregs)
9977 err += efunc(pc, "invalid register %u\n", rd);
9978 if (rd == 0)
9979 err += efunc(pc, "cannot write to %%r0\n");
9980 break;
9981 case DIF_OP_LDGA:
9982 case DIF_OP_LDTA:
9983 if (r1 > DIF_VAR_ARRAY_MAX)
9984 err += efunc(pc, "invalid array %u\n", r1);
9985 if (r2 >= nregs)
9986 err += efunc(pc, "invalid register %u\n", r2);
9987 if (rd >= nregs)
9988 err += efunc(pc, "invalid register %u\n", rd);
9989 if (rd == 0)
9990 err += efunc(pc, "cannot write to %%r0\n");
9991 break;
9992 case DIF_OP_LDGS:
9993 case DIF_OP_LDTS:
9994 case DIF_OP_LDLS:
9995 case DIF_OP_LDGAA:
9996 case DIF_OP_LDTAA:
9997 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9998 err += efunc(pc, "invalid variable %u\n", v);
9999 if (rd >= nregs)
10000 err += efunc(pc, "invalid register %u\n", rd);
10001 if (rd == 0)
10002 err += efunc(pc, "cannot write to %%r0\n");
10003 break;
10004 case DIF_OP_STGS:
10005 case DIF_OP_STTS:
10006 case DIF_OP_STLS:
10007 case DIF_OP_STGAA:
10008 case DIF_OP_STTAA:
10009 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10010 err += efunc(pc, "invalid variable %u\n", v);
10011 if (rs >= nregs)
10012 err += efunc(pc, "invalid register %u\n", rd);
10013 break;
10014 case DIF_OP_CALL:
10015 if (subr > DIF_SUBR_MAX)
10016 err += efunc(pc, "invalid subr %u\n", subr);
10017 if (rd >= nregs)
10018 err += efunc(pc, "invalid register %u\n", rd);
10019 if (rd == 0)
10020 err += efunc(pc, "cannot write to %%r0\n");
10021
10022 if (subr == DIF_SUBR_COPYOUT ||
10023 subr == DIF_SUBR_COPYOUTSTR) {
10024 dp->dtdo_destructive = 1;
10025 }
10026
10027 if (subr == DIF_SUBR_GETF) {
10028 #ifdef __FreeBSD__
10029 err += efunc(pc, "getf() not supported");
10030 #else
10031 /*
10032 * If we have a getf() we need to record that
10033 * in our state. Note that our state can be
10034 * NULL if this is a helper -- but in that
10035 * case, the call to getf() is itself illegal,
10036 * and will be caught (slightly later) when
10037 * the helper is validated.
10038 */
10039 if (vstate->dtvs_state != NULL)
10040 vstate->dtvs_state->dts_getf++;
10041 #endif
10042 }
10043
10044 break;
10045 case DIF_OP_PUSHTR:
10046 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10047 err += efunc(pc, "invalid ref type %u\n", type);
10048 if (r2 >= nregs)
10049 err += efunc(pc, "invalid register %u\n", r2);
10050 if (rs >= nregs)
10051 err += efunc(pc, "invalid register %u\n", rs);
10052 break;
10053 case DIF_OP_PUSHTV:
10054 if (type != DIF_TYPE_CTF)
10055 err += efunc(pc, "invalid val type %u\n", type);
10056 if (r2 >= nregs)
10057 err += efunc(pc, "invalid register %u\n", r2);
10058 if (rs >= nregs)
10059 err += efunc(pc, "invalid register %u\n", rs);
10060 break;
10061 default:
10062 err += efunc(pc, "invalid opcode %u\n",
10063 DIF_INSTR_OP(instr));
10064 }
10065 }
10066
10067 if (dp->dtdo_len != 0 &&
10068 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10069 err += efunc(dp->dtdo_len - 1,
10070 "expected 'ret' as last DIF instruction\n");
10071 }
10072
10073 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10074 /*
10075 * If we're not returning by reference, the size must be either
10076 * 0 or the size of one of the base types.
10077 */
10078 switch (dp->dtdo_rtype.dtdt_size) {
10079 case 0:
10080 case sizeof (uint8_t):
10081 case sizeof (uint16_t):
10082 case sizeof (uint32_t):
10083 case sizeof (uint64_t):
10084 break;
10085
10086 default:
10087 err += efunc(dp->dtdo_len - 1, "bad return size\n");
10088 }
10089 }
10090
10091 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10092 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10093 dtrace_diftype_t *vt, *et;
10094 uint_t id, ndx;
10095
10096 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10097 v->dtdv_scope != DIFV_SCOPE_THREAD &&
10098 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10099 err += efunc(i, "unrecognized variable scope %d\n",
10100 v->dtdv_scope);
10101 break;
10102 }
10103
10104 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10105 v->dtdv_kind != DIFV_KIND_SCALAR) {
10106 err += efunc(i, "unrecognized variable type %d\n",
10107 v->dtdv_kind);
10108 break;
10109 }
10110
10111 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10112 err += efunc(i, "%d exceeds variable id limit\n", id);
10113 break;
10114 }
10115
10116 if (id < DIF_VAR_OTHER_UBASE)
10117 continue;
10118
10119 /*
10120 * For user-defined variables, we need to check that this
10121 * definition is identical to any previous definition that we
10122 * encountered.
10123 */
10124 ndx = id - DIF_VAR_OTHER_UBASE;
10125
10126 switch (v->dtdv_scope) {
10127 case DIFV_SCOPE_GLOBAL:
10128 if (maxglobal == -1 || ndx > maxglobal)
10129 maxglobal = ndx;
10130
10131 if (ndx < vstate->dtvs_nglobals) {
10132 dtrace_statvar_t *svar;
10133
10134 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10135 existing = &svar->dtsv_var;
10136 }
10137
10138 break;
10139
10140 case DIFV_SCOPE_THREAD:
10141 if (maxtlocal == -1 || ndx > maxtlocal)
10142 maxtlocal = ndx;
10143
10144 if (ndx < vstate->dtvs_ntlocals)
10145 existing = &vstate->dtvs_tlocals[ndx];
10146 break;
10147
10148 case DIFV_SCOPE_LOCAL:
10149 if (maxlocal == -1 || ndx > maxlocal)
10150 maxlocal = ndx;
10151
10152 if (ndx < vstate->dtvs_nlocals) {
10153 dtrace_statvar_t *svar;
10154
10155 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10156 existing = &svar->dtsv_var;
10157 }
10158
10159 break;
10160 }
10161
10162 vt = &v->dtdv_type;
10163
10164 if (vt->dtdt_flags & DIF_TF_BYREF) {
10165 if (vt->dtdt_size == 0) {
10166 err += efunc(i, "zero-sized variable\n");
10167 break;
10168 }
10169
10170 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10171 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10172 vt->dtdt_size > dtrace_statvar_maxsize) {
10173 err += efunc(i, "oversized by-ref static\n");
10174 break;
10175 }
10176 }
10177
10178 if (existing == NULL || existing->dtdv_id == 0)
10179 continue;
10180
10181 ASSERT(existing->dtdv_id == v->dtdv_id);
10182 ASSERT(existing->dtdv_scope == v->dtdv_scope);
10183
10184 if (existing->dtdv_kind != v->dtdv_kind)
10185 err += efunc(i, "%d changed variable kind\n", id);
10186
10187 et = &existing->dtdv_type;
10188
10189 if (vt->dtdt_flags != et->dtdt_flags) {
10190 err += efunc(i, "%d changed variable type flags\n", id);
10191 break;
10192 }
10193
10194 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10195 err += efunc(i, "%d changed variable type size\n", id);
10196 break;
10197 }
10198 }
10199
10200 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10201 dif_instr_t instr = dp->dtdo_buf[pc];
10202
10203 uint_t v = DIF_INSTR_VAR(instr);
10204 uint_t op = DIF_INSTR_OP(instr);
10205
10206 switch (op) {
10207 case DIF_OP_LDGS:
10208 case DIF_OP_LDGAA:
10209 case DIF_OP_STGS:
10210 case DIF_OP_STGAA:
10211 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10212 err += efunc(pc, "invalid variable %u\n", v);
10213 break;
10214 case DIF_OP_LDTS:
10215 case DIF_OP_LDTAA:
10216 case DIF_OP_STTS:
10217 case DIF_OP_STTAA:
10218 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10219 err += efunc(pc, "invalid variable %u\n", v);
10220 break;
10221 case DIF_OP_LDLS:
10222 case DIF_OP_STLS:
10223 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10224 err += efunc(pc, "invalid variable %u\n", v);
10225 break;
10226 default:
10227 break;
10228 }
10229 }
10230
10231 return (err);
10232 }
10233
10234 /*
10235 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
10236 * are much more constrained than normal DIFOs. Specifically, they may
10237 * not:
10238 *
10239 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10240 * miscellaneous string routines
10241 * 2. Access DTrace variables other than the args[] array, and the
10242 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10243 * 3. Have thread-local variables.
10244 * 4. Have dynamic variables.
10245 */
10246 static int
10247 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10248 {
10249 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10250 int err = 0;
10251 uint_t pc;
10252
10253 for (pc = 0; pc < dp->dtdo_len; pc++) {
10254 dif_instr_t instr = dp->dtdo_buf[pc];
10255
10256 uint_t v = DIF_INSTR_VAR(instr);
10257 uint_t subr = DIF_INSTR_SUBR(instr);
10258 uint_t op = DIF_INSTR_OP(instr);
10259
10260 switch (op) {
10261 case DIF_OP_OR:
10262 case DIF_OP_XOR:
10263 case DIF_OP_AND:
10264 case DIF_OP_SLL:
10265 case DIF_OP_SRL:
10266 case DIF_OP_SRA:
10267 case DIF_OP_SUB:
10268 case DIF_OP_ADD:
10269 case DIF_OP_MUL:
10270 case DIF_OP_SDIV:
10271 case DIF_OP_UDIV:
10272 case DIF_OP_SREM:
10273 case DIF_OP_UREM:
10274 case DIF_OP_COPYS:
10275 case DIF_OP_NOT:
10276 case DIF_OP_MOV:
10277 case DIF_OP_RLDSB:
10278 case DIF_OP_RLDSH:
10279 case DIF_OP_RLDSW:
10280 case DIF_OP_RLDUB:
10281 case DIF_OP_RLDUH:
10282 case DIF_OP_RLDUW:
10283 case DIF_OP_RLDX:
10284 case DIF_OP_ULDSB:
10285 case DIF_OP_ULDSH:
10286 case DIF_OP_ULDSW:
10287 case DIF_OP_ULDUB:
10288 case DIF_OP_ULDUH:
10289 case DIF_OP_ULDUW:
10290 case DIF_OP_ULDX:
10291 case DIF_OP_STB:
10292 case DIF_OP_STH:
10293 case DIF_OP_STW:
10294 case DIF_OP_STX:
10295 case DIF_OP_ALLOCS:
10296 case DIF_OP_CMP:
10297 case DIF_OP_SCMP:
10298 case DIF_OP_TST:
10299 case DIF_OP_BA:
10300 case DIF_OP_BE:
10301 case DIF_OP_BNE:
10302 case DIF_OP_BG:
10303 case DIF_OP_BGU:
10304 case DIF_OP_BGE:
10305 case DIF_OP_BGEU:
10306 case DIF_OP_BL:
10307 case DIF_OP_BLU:
10308 case DIF_OP_BLE:
10309 case DIF_OP_BLEU:
10310 case DIF_OP_RET:
10311 case DIF_OP_NOP:
10312 case DIF_OP_POPTS:
10313 case DIF_OP_FLUSHTS:
10314 case DIF_OP_SETX:
10315 case DIF_OP_SETS:
10316 case DIF_OP_LDGA:
10317 case DIF_OP_LDLS:
10318 case DIF_OP_STGS:
10319 case DIF_OP_STLS:
10320 case DIF_OP_PUSHTR:
10321 case DIF_OP_PUSHTV:
10322 break;
10323
10324 case DIF_OP_LDGS:
10325 if (v >= DIF_VAR_OTHER_UBASE)
10326 break;
10327
10328 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10329 break;
10330
10331 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10332 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10333 v == DIF_VAR_EXECARGS ||
10334 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10335 v == DIF_VAR_UID || v == DIF_VAR_GID)
10336 break;
10337
10338 err += efunc(pc, "illegal variable %u\n", v);
10339 break;
10340
10341 case DIF_OP_LDTA:
10342 case DIF_OP_LDTS:
10343 case DIF_OP_LDGAA:
10344 case DIF_OP_LDTAA:
10345 err += efunc(pc, "illegal dynamic variable load\n");
10346 break;
10347
10348 case DIF_OP_STTS:
10349 case DIF_OP_STGAA:
10350 case DIF_OP_STTAA:
10351 err += efunc(pc, "illegal dynamic variable store\n");
10352 break;
10353
10354 case DIF_OP_CALL:
10355 if (subr == DIF_SUBR_ALLOCA ||
10356 subr == DIF_SUBR_BCOPY ||
10357 subr == DIF_SUBR_COPYIN ||
10358 subr == DIF_SUBR_COPYINTO ||
10359 subr == DIF_SUBR_COPYINSTR ||
10360 subr == DIF_SUBR_INDEX ||
10361 subr == DIF_SUBR_INET_NTOA ||
10362 subr == DIF_SUBR_INET_NTOA6 ||
10363 subr == DIF_SUBR_INET_NTOP ||
10364 subr == DIF_SUBR_JSON ||
10365 subr == DIF_SUBR_LLTOSTR ||
10366 subr == DIF_SUBR_STRTOLL ||
10367 subr == DIF_SUBR_RINDEX ||
10368 subr == DIF_SUBR_STRCHR ||
10369 subr == DIF_SUBR_STRJOIN ||
10370 subr == DIF_SUBR_STRRCHR ||
10371 subr == DIF_SUBR_STRSTR ||
10372 subr == DIF_SUBR_HTONS ||
10373 subr == DIF_SUBR_HTONL ||
10374 subr == DIF_SUBR_HTONLL ||
10375 subr == DIF_SUBR_NTOHS ||
10376 subr == DIF_SUBR_NTOHL ||
10377 subr == DIF_SUBR_NTOHLL ||
10378 subr == DIF_SUBR_MEMREF)
10379 break;
10380 #ifdef __FreeBSD__
10381 if (subr == DIF_SUBR_MEMSTR)
10382 break;
10383 #endif
10384
10385 err += efunc(pc, "invalid subr %u\n", subr);
10386 break;
10387
10388 default:
10389 err += efunc(pc, "invalid opcode %u\n",
10390 DIF_INSTR_OP(instr));
10391 }
10392 }
10393
10394 return (err);
10395 }
10396
10397 /*
10398 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10399 * basis; 0 if not.
10400 */
10401 static int
10402 dtrace_difo_cacheable(dtrace_difo_t *dp)
10403 {
10404 int i;
10405
10406 if (dp == NULL)
10407 return (0);
10408
10409 for (i = 0; i < dp->dtdo_varlen; i++) {
10410 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10411
10412 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10413 continue;
10414
10415 switch (v->dtdv_id) {
10416 case DIF_VAR_CURTHREAD:
10417 case DIF_VAR_PID:
10418 case DIF_VAR_TID:
10419 case DIF_VAR_EXECARGS:
10420 case DIF_VAR_EXECNAME:
10421 case DIF_VAR_ZONENAME:
10422 break;
10423
10424 default:
10425 return (0);
10426 }
10427 }
10428
10429 /*
10430 * This DIF object may be cacheable. Now we need to look for any
10431 * array loading instructions, any memory loading instructions, or
10432 * any stores to thread-local variables.
10433 */
10434 for (i = 0; i < dp->dtdo_len; i++) {
10435 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10436
10437 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10438 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10439 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10440 op == DIF_OP_LDGA || op == DIF_OP_STTS)
10441 return (0);
10442 }
10443
10444 return (1);
10445 }
10446
10447 static void
10448 dtrace_difo_hold(dtrace_difo_t *dp)
10449 {
10450 int i;
10451
10452 ASSERT(MUTEX_HELD(&dtrace_lock));
10453
10454 dp->dtdo_refcnt++;
10455 ASSERT(dp->dtdo_refcnt != 0);
10456
10457 /*
10458 * We need to check this DIF object for references to the variable
10459 * DIF_VAR_VTIMESTAMP.
10460 */
10461 for (i = 0; i < dp->dtdo_varlen; i++) {
10462 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10463
10464 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10465 continue;
10466
10467 if (dtrace_vtime_references++ == 0)
10468 dtrace_vtime_enable();
10469 }
10470 }
10471
10472 /*
10473 * This routine calculates the dynamic variable chunksize for a given DIF
10474 * object. The calculation is not fool-proof, and can probably be tricked by
10475 * malicious DIF -- but it works for all compiler-generated DIF. Because this
10476 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10477 * if a dynamic variable size exceeds the chunksize.
10478 */
10479 static void
10480 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10481 {
10482 uint64_t sval = 0;
10483 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10484 const dif_instr_t *text = dp->dtdo_buf;
10485 uint_t pc, srd = 0;
10486 uint_t ttop = 0;
10487 size_t size, ksize;
10488 uint_t id, i;
10489
10490 for (pc = 0; pc < dp->dtdo_len; pc++) {
10491 dif_instr_t instr = text[pc];
10492 uint_t op = DIF_INSTR_OP(instr);
10493 uint_t rd = DIF_INSTR_RD(instr);
10494 uint_t r1 = DIF_INSTR_R1(instr);
10495 uint_t nkeys = 0;
10496 uchar_t scope = 0;
10497
10498 dtrace_key_t *key = tupregs;
10499
10500 switch (op) {
10501 case DIF_OP_SETX:
10502 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10503 srd = rd;
10504 continue;
10505
10506 case DIF_OP_STTS:
10507 key = &tupregs[DIF_DTR_NREGS];
10508 key[0].dttk_size = 0;
10509 key[1].dttk_size = 0;
10510 nkeys = 2;
10511 scope = DIFV_SCOPE_THREAD;
10512 break;
10513
10514 case DIF_OP_STGAA:
10515 case DIF_OP_STTAA:
10516 nkeys = ttop;
10517
10518 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10519 key[nkeys++].dttk_size = 0;
10520
10521 key[nkeys++].dttk_size = 0;
10522
10523 if (op == DIF_OP_STTAA) {
10524 scope = DIFV_SCOPE_THREAD;
10525 } else {
10526 scope = DIFV_SCOPE_GLOBAL;
10527 }
10528
10529 break;
10530
10531 case DIF_OP_PUSHTR:
10532 if (ttop == DIF_DTR_NREGS)
10533 return;
10534
10535 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10536 /*
10537 * If the register for the size of the "pushtr"
10538 * is %r0 (or the value is 0) and the type is
10539 * a string, we'll use the system-wide default
10540 * string size.
10541 */
10542 tupregs[ttop++].dttk_size =
10543 dtrace_strsize_default;
10544 } else {
10545 if (srd == 0)
10546 return;
10547
10548 if (sval > LONG_MAX)
10549 return;
10550
10551 tupregs[ttop++].dttk_size = sval;
10552 }
10553
10554 break;
10555
10556 case DIF_OP_PUSHTV:
10557 if (ttop == DIF_DTR_NREGS)
10558 return;
10559
10560 tupregs[ttop++].dttk_size = 0;
10561 break;
10562
10563 case DIF_OP_FLUSHTS:
10564 ttop = 0;
10565 break;
10566
10567 case DIF_OP_POPTS:
10568 if (ttop != 0)
10569 ttop--;
10570 break;
10571 }
10572
10573 sval = 0;
10574 srd = 0;
10575
10576 if (nkeys == 0)
10577 continue;
10578
10579 /*
10580 * We have a dynamic variable allocation; calculate its size.
10581 */
10582 for (ksize = 0, i = 0; i < nkeys; i++)
10583 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10584
10585 size = sizeof (dtrace_dynvar_t);
10586 size += sizeof (dtrace_key_t) * (nkeys - 1);
10587 size += ksize;
10588
10589 /*
10590 * Now we need to determine the size of the stored data.
10591 */
10592 id = DIF_INSTR_VAR(instr);
10593
10594 for (i = 0; i < dp->dtdo_varlen; i++) {
10595 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10596
10597 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10598 size += v->dtdv_type.dtdt_size;
10599 break;
10600 }
10601 }
10602
10603 if (i == dp->dtdo_varlen)
10604 return;
10605
10606 /*
10607 * We have the size. If this is larger than the chunk size
10608 * for our dynamic variable state, reset the chunk size.
10609 */
10610 size = P2ROUNDUP(size, sizeof (uint64_t));
10611
10612 /*
10613 * Before setting the chunk size, check that we're not going
10614 * to set it to a negative value...
10615 */
10616 if (size > LONG_MAX)
10617 return;
10618
10619 /*
10620 * ...and make certain that we didn't badly overflow.
10621 */
10622 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10623 return;
10624
10625 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10626 vstate->dtvs_dynvars.dtds_chunksize = size;
10627 }
10628 }
10629
10630 static void
10631 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10632 {
10633 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10634 uint_t id;
10635
10636 ASSERT(MUTEX_HELD(&dtrace_lock));
10637 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10638
10639 for (i = 0; i < dp->dtdo_varlen; i++) {
10640 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10641 dtrace_statvar_t *svar, ***svarp = NULL;
10642 size_t dsize = 0;
10643 uint8_t scope = v->dtdv_scope;
10644 int *np = NULL;
10645
10646 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10647 continue;
10648
10649 id -= DIF_VAR_OTHER_UBASE;
10650
10651 switch (scope) {
10652 case DIFV_SCOPE_THREAD:
10653 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10654 dtrace_difv_t *tlocals;
10655
10656 if ((ntlocals = (otlocals << 1)) == 0)
10657 ntlocals = 1;
10658
10659 osz = otlocals * sizeof (dtrace_difv_t);
10660 nsz = ntlocals * sizeof (dtrace_difv_t);
10661
10662 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10663
10664 if (osz != 0) {
10665 bcopy(vstate->dtvs_tlocals,
10666 tlocals, osz);
10667 kmem_free(vstate->dtvs_tlocals, osz);
10668 }
10669
10670 vstate->dtvs_tlocals = tlocals;
10671 vstate->dtvs_ntlocals = ntlocals;
10672 }
10673
10674 vstate->dtvs_tlocals[id] = *v;
10675 continue;
10676
10677 case DIFV_SCOPE_LOCAL:
10678 np = &vstate->dtvs_nlocals;
10679 svarp = &vstate->dtvs_locals;
10680
10681 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10682 dsize = (mp_maxid + 1) *
10683 (v->dtdv_type.dtdt_size +
10684 sizeof (uint64_t));
10685 else
10686 dsize = (mp_maxid + 1) * sizeof (uint64_t);
10687
10688 break;
10689
10690 case DIFV_SCOPE_GLOBAL:
10691 np = &vstate->dtvs_nglobals;
10692 svarp = &vstate->dtvs_globals;
10693
10694 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10695 dsize = v->dtdv_type.dtdt_size +
10696 sizeof (uint64_t);
10697
10698 break;
10699
10700 default:
10701 ASSERT(0);
10702 }
10703
10704 while (id >= (oldsvars = *np)) {
10705 dtrace_statvar_t **statics;
10706 int newsvars, oldsize, newsize;
10707
10708 if ((newsvars = (oldsvars << 1)) == 0)
10709 newsvars = 1;
10710
10711 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10712 newsize = newsvars * sizeof (dtrace_statvar_t *);
10713
10714 statics = kmem_zalloc(newsize, KM_SLEEP);
10715
10716 if (oldsize != 0) {
10717 bcopy(*svarp, statics, oldsize);
10718 kmem_free(*svarp, oldsize);
10719 }
10720
10721 *svarp = statics;
10722 *np = newsvars;
10723 }
10724
10725 if ((svar = (*svarp)[id]) == NULL) {
10726 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10727 svar->dtsv_var = *v;
10728
10729 if ((svar->dtsv_size = dsize) != 0) {
10730 svar->dtsv_data = (uint64_t)(uintptr_t)
10731 kmem_zalloc(dsize, KM_SLEEP);
10732 }
10733
10734 (*svarp)[id] = svar;
10735 }
10736
10737 svar->dtsv_refcnt++;
10738 }
10739
10740 dtrace_difo_chunksize(dp, vstate);
10741 dtrace_difo_hold(dp);
10742 }
10743
10744 static dtrace_difo_t *
10745 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10746 {
10747 dtrace_difo_t *new;
10748 size_t sz;
10749
10750 ASSERT(dp->dtdo_buf != NULL);
10751 ASSERT(dp->dtdo_refcnt != 0);
10752
10753 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10754
10755 ASSERT(dp->dtdo_buf != NULL);
10756 sz = dp->dtdo_len * sizeof (dif_instr_t);
10757 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10758 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10759 new->dtdo_len = dp->dtdo_len;
10760
10761 if (dp->dtdo_strtab != NULL) {
10762 ASSERT(dp->dtdo_strlen != 0);
10763 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10764 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10765 new->dtdo_strlen = dp->dtdo_strlen;
10766 }
10767
10768 if (dp->dtdo_inttab != NULL) {
10769 ASSERT(dp->dtdo_intlen != 0);
10770 sz = dp->dtdo_intlen * sizeof (uint64_t);
10771 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10772 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10773 new->dtdo_intlen = dp->dtdo_intlen;
10774 }
10775
10776 if (dp->dtdo_vartab != NULL) {
10777 ASSERT(dp->dtdo_varlen != 0);
10778 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10779 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10780 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10781 new->dtdo_varlen = dp->dtdo_varlen;
10782 }
10783
10784 dtrace_difo_init(new, vstate);
10785 return (new);
10786 }
10787
10788 static void
10789 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10790 {
10791 int i;
10792
10793 ASSERT(dp->dtdo_refcnt == 0);
10794
10795 for (i = 0; i < dp->dtdo_varlen; i++) {
10796 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10797 dtrace_statvar_t *svar, **svarp = NULL;
10798 uint_t id;
10799 uint8_t scope = v->dtdv_scope;
10800 int *np = NULL;
10801
10802 switch (scope) {
10803 case DIFV_SCOPE_THREAD:
10804 continue;
10805
10806 case DIFV_SCOPE_LOCAL:
10807 np = &vstate->dtvs_nlocals;
10808 svarp = vstate->dtvs_locals;
10809 break;
10810
10811 case DIFV_SCOPE_GLOBAL:
10812 np = &vstate->dtvs_nglobals;
10813 svarp = vstate->dtvs_globals;
10814 break;
10815
10816 default:
10817 ASSERT(0);
10818 }
10819
10820 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10821 continue;
10822
10823 id -= DIF_VAR_OTHER_UBASE;
10824 ASSERT(id < *np);
10825
10826 svar = svarp[id];
10827 ASSERT(svar != NULL);
10828 ASSERT(svar->dtsv_refcnt > 0);
10829
10830 if (--svar->dtsv_refcnt > 0)
10831 continue;
10832
10833 if (svar->dtsv_size != 0) {
10834 ASSERT(svar->dtsv_data != 0);
10835 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10836 svar->dtsv_size);
10837 }
10838
10839 kmem_free(svar, sizeof (dtrace_statvar_t));
10840 svarp[id] = NULL;
10841 }
10842
10843 if (dp->dtdo_buf != NULL)
10844 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10845 if (dp->dtdo_inttab != NULL)
10846 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10847 if (dp->dtdo_strtab != NULL)
10848 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10849 if (dp->dtdo_vartab != NULL)
10850 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10851
10852 kmem_free(dp, sizeof (dtrace_difo_t));
10853 }
10854
10855 static void
10856 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10857 {
10858 int i;
10859
10860 ASSERT(MUTEX_HELD(&dtrace_lock));
10861 ASSERT(dp->dtdo_refcnt != 0);
10862
10863 for (i = 0; i < dp->dtdo_varlen; i++) {
10864 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10865
10866 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10867 continue;
10868
10869 ASSERT(dtrace_vtime_references > 0);
10870 if (--dtrace_vtime_references == 0)
10871 dtrace_vtime_disable();
10872 }
10873
10874 if (--dp->dtdo_refcnt == 0)
10875 dtrace_difo_destroy(dp, vstate);
10876 }
10877
10878 /*
10879 * DTrace Format Functions
10880 */
10881 static uint16_t
10882 dtrace_format_add(dtrace_state_t *state, char *str)
10883 {
10884 char *fmt, **new;
10885 uint16_t ndx, len = strlen(str) + 1;
10886
10887 fmt = kmem_zalloc(len, KM_SLEEP);
10888 bcopy(str, fmt, len);
10889
10890 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10891 if (state->dts_formats[ndx] == NULL) {
10892 state->dts_formats[ndx] = fmt;
10893 return (ndx + 1);
10894 }
10895 }
10896
10897 if (state->dts_nformats == USHRT_MAX) {
10898 /*
10899 * This is only likely if a denial-of-service attack is being
10900 * attempted. As such, it's okay to fail silently here.
10901 */
10902 kmem_free(fmt, len);
10903 return (0);
10904 }
10905
10906 /*
10907 * For simplicity, we always resize the formats array to be exactly the
10908 * number of formats.
10909 */
10910 ndx = state->dts_nformats++;
10911 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10912
10913 if (state->dts_formats != NULL) {
10914 ASSERT(ndx != 0);
10915 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10916 kmem_free(state->dts_formats, ndx * sizeof (char *));
10917 }
10918
10919 state->dts_formats = new;
10920 state->dts_formats[ndx] = fmt;
10921
10922 return (ndx + 1);
10923 }
10924
10925 static void
10926 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10927 {
10928 char *fmt;
10929
10930 ASSERT(state->dts_formats != NULL);
10931 ASSERT(format <= state->dts_nformats);
10932 ASSERT(state->dts_formats[format - 1] != NULL);
10933
10934 fmt = state->dts_formats[format - 1];
10935 kmem_free(fmt, strlen(fmt) + 1);
10936 state->dts_formats[format - 1] = NULL;
10937 }
10938
10939 static void
10940 dtrace_format_destroy(dtrace_state_t *state)
10941 {
10942 int i;
10943
10944 if (state->dts_nformats == 0) {
10945 ASSERT(state->dts_formats == NULL);
10946 return;
10947 }
10948
10949 ASSERT(state->dts_formats != NULL);
10950
10951 for (i = 0; i < state->dts_nformats; i++) {
10952 char *fmt = state->dts_formats[i];
10953
10954 if (fmt == NULL)
10955 continue;
10956
10957 kmem_free(fmt, strlen(fmt) + 1);
10958 }
10959
10960 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10961 state->dts_nformats = 0;
10962 state->dts_formats = NULL;
10963 }
10964
10965 /*
10966 * DTrace Predicate Functions
10967 */
10968 static dtrace_predicate_t *
10969 dtrace_predicate_create(dtrace_difo_t *dp)
10970 {
10971 dtrace_predicate_t *pred;
10972
10973 ASSERT(MUTEX_HELD(&dtrace_lock));
10974 ASSERT(dp->dtdo_refcnt != 0);
10975
10976 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10977 pred->dtp_difo = dp;
10978 pred->dtp_refcnt = 1;
10979
10980 if (!dtrace_difo_cacheable(dp))
10981 return (pred);
10982
10983 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10984 /*
10985 * This is only theoretically possible -- we have had 2^32
10986 * cacheable predicates on this machine. We cannot allow any
10987 * more predicates to become cacheable: as unlikely as it is,
10988 * there may be a thread caching a (now stale) predicate cache
10989 * ID. (N.B.: the temptation is being successfully resisted to
10990 * have this cmn_err() "Holy shit -- we executed this code!")
10991 */
10992 return (pred);
10993 }
10994
10995 pred->dtp_cacheid = dtrace_predcache_id++;
10996
10997 return (pred);
10998 }
10999
11000 static void
11001 dtrace_predicate_hold(dtrace_predicate_t *pred)
11002 {
11003 ASSERT(MUTEX_HELD(&dtrace_lock));
11004 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11005 ASSERT(pred->dtp_refcnt > 0);
11006
11007 pred->dtp_refcnt++;
11008 }
11009
11010 static void
11011 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11012 {
11013 dtrace_difo_t *dp = pred->dtp_difo;
11014
11015 ASSERT(MUTEX_HELD(&dtrace_lock));
11016 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11017 ASSERT(pred->dtp_refcnt > 0);
11018
11019 if (--pred->dtp_refcnt == 0) {
11020 dtrace_difo_release(pred->dtp_difo, vstate);
11021 kmem_free(pred, sizeof (dtrace_predicate_t));
11022 }
11023 }
11024
11025 /*
11026 * DTrace Action Description Functions
11027 */
11028 static dtrace_actdesc_t *
11029 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11030 uint64_t uarg, uint64_t arg)
11031 {
11032 dtrace_actdesc_t *act;
11033
11034 #ifdef illumos
11035 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11036 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11037 #endif
11038
11039 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11040 act->dtad_kind = kind;
11041 act->dtad_ntuple = ntuple;
11042 act->dtad_uarg = uarg;
11043 act->dtad_arg = arg;
11044 act->dtad_refcnt = 1;
11045
11046 return (act);
11047 }
11048
11049 static void
11050 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11051 {
11052 ASSERT(act->dtad_refcnt >= 1);
11053 act->dtad_refcnt++;
11054 }
11055
11056 static void
11057 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11058 {
11059 dtrace_actkind_t kind = act->dtad_kind;
11060 dtrace_difo_t *dp;
11061
11062 ASSERT(act->dtad_refcnt >= 1);
11063
11064 if (--act->dtad_refcnt != 0)
11065 return;
11066
11067 if ((dp = act->dtad_difo) != NULL)
11068 dtrace_difo_release(dp, vstate);
11069
11070 if (DTRACEACT_ISPRINTFLIKE(kind)) {
11071 char *str = (char *)(uintptr_t)act->dtad_arg;
11072
11073 #ifdef illumos
11074 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11075 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11076 #endif
11077
11078 if (str != NULL)
11079 kmem_free(str, strlen(str) + 1);
11080 }
11081
11082 kmem_free(act, sizeof (dtrace_actdesc_t));
11083 }
11084
11085 /*
11086 * DTrace ECB Functions
11087 */
11088 static dtrace_ecb_t *
11089 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11090 {
11091 dtrace_ecb_t *ecb;
11092 dtrace_epid_t epid;
11093
11094 ASSERT(MUTEX_HELD(&dtrace_lock));
11095
11096 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11097 ecb->dte_predicate = NULL;
11098 ecb->dte_probe = probe;
11099
11100 /*
11101 * The default size is the size of the default action: recording
11102 * the header.
11103 */
11104 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11105 ecb->dte_alignment = sizeof (dtrace_epid_t);
11106
11107 epid = state->dts_epid++;
11108
11109 if (epid - 1 >= state->dts_necbs) {
11110 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11111 int necbs = state->dts_necbs << 1;
11112
11113 ASSERT(epid == state->dts_necbs + 1);
11114
11115 if (necbs == 0) {
11116 ASSERT(oecbs == NULL);
11117 necbs = 1;
11118 }
11119
11120 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11121
11122 if (oecbs != NULL)
11123 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11124
11125 dtrace_membar_producer();
11126 state->dts_ecbs = ecbs;
11127
11128 if (oecbs != NULL) {
11129 /*
11130 * If this state is active, we must dtrace_sync()
11131 * before we can free the old dts_ecbs array: we're
11132 * coming in hot, and there may be active ring
11133 * buffer processing (which indexes into the dts_ecbs
11134 * array) on another CPU.
11135 */
11136 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11137 dtrace_sync();
11138
11139 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11140 }
11141
11142 dtrace_membar_producer();
11143 state->dts_necbs = necbs;
11144 }
11145
11146 ecb->dte_state = state;
11147
11148 ASSERT(state->dts_ecbs[epid - 1] == NULL);
11149 dtrace_membar_producer();
11150 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11151
11152 return (ecb);
11153 }
11154
11155 static void
11156 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11157 {
11158 dtrace_probe_t *probe = ecb->dte_probe;
11159
11160 ASSERT(MUTEX_HELD(&cpu_lock));
11161 ASSERT(MUTEX_HELD(&dtrace_lock));
11162 ASSERT(ecb->dte_next == NULL);
11163
11164 if (probe == NULL) {
11165 /*
11166 * This is the NULL probe -- there's nothing to do.
11167 */
11168 return;
11169 }
11170
11171 if (probe->dtpr_ecb == NULL) {
11172 dtrace_provider_t *prov = probe->dtpr_provider;
11173
11174 /*
11175 * We're the first ECB on this probe.
11176 */
11177 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11178
11179 if (ecb->dte_predicate != NULL)
11180 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11181
11182 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11183 probe->dtpr_id, probe->dtpr_arg);
11184 } else {
11185 /*
11186 * This probe is already active. Swing the last pointer to
11187 * point to the new ECB, and issue a dtrace_sync() to assure
11188 * that all CPUs have seen the change.
11189 */
11190 ASSERT(probe->dtpr_ecb_last != NULL);
11191 probe->dtpr_ecb_last->dte_next = ecb;
11192 probe->dtpr_ecb_last = ecb;
11193 probe->dtpr_predcache = 0;
11194
11195 dtrace_sync();
11196 }
11197 }
11198
11199 static int
11200 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11201 {
11202 dtrace_action_t *act;
11203 uint32_t curneeded = UINT32_MAX;
11204 uint32_t aggbase = UINT32_MAX;
11205
11206 /*
11207 * If we record anything, we always record the dtrace_rechdr_t. (And
11208 * we always record it first.)
11209 */
11210 ecb->dte_size = sizeof (dtrace_rechdr_t);
11211 ecb->dte_alignment = sizeof (dtrace_epid_t);
11212
11213 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11214 dtrace_recdesc_t *rec = &act->dta_rec;
11215 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11216
11217 ecb->dte_alignment = MAX(ecb->dte_alignment,
11218 rec->dtrd_alignment);
11219
11220 if (DTRACEACT_ISAGG(act->dta_kind)) {
11221 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11222
11223 ASSERT(rec->dtrd_size != 0);
11224 ASSERT(agg->dtag_first != NULL);
11225 ASSERT(act->dta_prev->dta_intuple);
11226 ASSERT(aggbase != UINT32_MAX);
11227 ASSERT(curneeded != UINT32_MAX);
11228
11229 agg->dtag_base = aggbase;
11230
11231 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11232 rec->dtrd_offset = curneeded;
11233 if (curneeded + rec->dtrd_size < curneeded)
11234 return (EINVAL);
11235 curneeded += rec->dtrd_size;
11236 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11237
11238 aggbase = UINT32_MAX;
11239 curneeded = UINT32_MAX;
11240 } else if (act->dta_intuple) {
11241 if (curneeded == UINT32_MAX) {
11242 /*
11243 * This is the first record in a tuple. Align
11244 * curneeded to be at offset 4 in an 8-byte
11245 * aligned block.
11246 */
11247 ASSERT(act->dta_prev == NULL ||
11248 !act->dta_prev->dta_intuple);
11249 ASSERT3U(aggbase, ==, UINT32_MAX);
11250 curneeded = P2PHASEUP(ecb->dte_size,
11251 sizeof (uint64_t), sizeof (dtrace_aggid_t));
11252
11253 aggbase = curneeded - sizeof (dtrace_aggid_t);
11254 ASSERT(IS_P2ALIGNED(aggbase,
11255 sizeof (uint64_t)));
11256 }
11257 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11258 rec->dtrd_offset = curneeded;
11259 if (curneeded + rec->dtrd_size < curneeded)
11260 return (EINVAL);
11261 curneeded += rec->dtrd_size;
11262 } else {
11263 /* tuples must be followed by an aggregation */
11264 ASSERT(act->dta_prev == NULL ||
11265 !act->dta_prev->dta_intuple);
11266
11267 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11268 rec->dtrd_alignment);
11269 rec->dtrd_offset = ecb->dte_size;
11270 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11271 return (EINVAL);
11272 ecb->dte_size += rec->dtrd_size;
11273 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11274 }
11275 }
11276
11277 if ((act = ecb->dte_action) != NULL &&
11278 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11279 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11280 /*
11281 * If the size is still sizeof (dtrace_rechdr_t), then all
11282 * actions store no data; set the size to 0.
11283 */
11284 ecb->dte_size = 0;
11285 }
11286
11287 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11288 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11289 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11290 ecb->dte_needed);
11291 return (0);
11292 }
11293
11294 static dtrace_action_t *
11295 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11296 {
11297 dtrace_aggregation_t *agg;
11298 size_t size = sizeof (uint64_t);
11299 int ntuple = desc->dtad_ntuple;
11300 dtrace_action_t *act;
11301 dtrace_recdesc_t *frec;
11302 dtrace_aggid_t aggid;
11303 dtrace_state_t *state = ecb->dte_state;
11304
11305 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11306 agg->dtag_ecb = ecb;
11307
11308 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11309
11310 switch (desc->dtad_kind) {
11311 case DTRACEAGG_MIN:
11312 agg->dtag_initial = INT64_MAX;
11313 agg->dtag_aggregate = dtrace_aggregate_min;
11314 break;
11315
11316 case DTRACEAGG_MAX:
11317 agg->dtag_initial = INT64_MIN;
11318 agg->dtag_aggregate = dtrace_aggregate_max;
11319 break;
11320
11321 case DTRACEAGG_COUNT:
11322 agg->dtag_aggregate = dtrace_aggregate_count;
11323 break;
11324
11325 case DTRACEAGG_QUANTIZE:
11326 agg->dtag_aggregate = dtrace_aggregate_quantize;
11327 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11328 sizeof (uint64_t);
11329 break;
11330
11331 case DTRACEAGG_LQUANTIZE: {
11332 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11333 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11334
11335 agg->dtag_initial = desc->dtad_arg;
11336 agg->dtag_aggregate = dtrace_aggregate_lquantize;
11337
11338 if (step == 0 || levels == 0)
11339 goto err;
11340
11341 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11342 break;
11343 }
11344
11345 case DTRACEAGG_LLQUANTIZE: {
11346 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11347 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11348 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11349 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11350 int64_t v;
11351
11352 agg->dtag_initial = desc->dtad_arg;
11353 agg->dtag_aggregate = dtrace_aggregate_llquantize;
11354
11355 if (factor < 2 || low >= high || nsteps < factor)
11356 goto err;
11357
11358 /*
11359 * Now check that the number of steps evenly divides a power
11360 * of the factor. (This assures both integer bucket size and
11361 * linearity within each magnitude.)
11362 */
11363 for (v = factor; v < nsteps; v *= factor)
11364 continue;
11365
11366 if ((v % nsteps) || (nsteps % factor))
11367 goto err;
11368
11369 size = (dtrace_aggregate_llquantize_bucket(factor,
11370 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11371 break;
11372 }
11373
11374 case DTRACEAGG_AVG:
11375 agg->dtag_aggregate = dtrace_aggregate_avg;
11376 size = sizeof (uint64_t) * 2;
11377 break;
11378
11379 case DTRACEAGG_STDDEV:
11380 agg->dtag_aggregate = dtrace_aggregate_stddev;
11381 size = sizeof (uint64_t) * 4;
11382 break;
11383
11384 case DTRACEAGG_SUM:
11385 agg->dtag_aggregate = dtrace_aggregate_sum;
11386 break;
11387
11388 default:
11389 goto err;
11390 }
11391
11392 agg->dtag_action.dta_rec.dtrd_size = size;
11393
11394 if (ntuple == 0)
11395 goto err;
11396
11397 /*
11398 * We must make sure that we have enough actions for the n-tuple.
11399 */
11400 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11401 if (DTRACEACT_ISAGG(act->dta_kind))
11402 break;
11403
11404 if (--ntuple == 0) {
11405 /*
11406 * This is the action with which our n-tuple begins.
11407 */
11408 agg->dtag_first = act;
11409 goto success;
11410 }
11411 }
11412
11413 /*
11414 * This n-tuple is short by ntuple elements. Return failure.
11415 */
11416 ASSERT(ntuple != 0);
11417 err:
11418 kmem_free(agg, sizeof (dtrace_aggregation_t));
11419 return (NULL);
11420
11421 success:
11422 /*
11423 * If the last action in the tuple has a size of zero, it's actually
11424 * an expression argument for the aggregating action.
11425 */
11426 ASSERT(ecb->dte_action_last != NULL);
11427 act = ecb->dte_action_last;
11428
11429 if (act->dta_kind == DTRACEACT_DIFEXPR) {
11430 ASSERT(act->dta_difo != NULL);
11431
11432 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11433 agg->dtag_hasarg = 1;
11434 }
11435
11436 /*
11437 * We need to allocate an id for this aggregation.
11438 */
11439 #ifdef illumos
11440 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11441 VM_BESTFIT | VM_SLEEP);
11442 #else
11443 aggid = alloc_unr(state->dts_aggid_arena);
11444 #endif
11445
11446 if (aggid - 1 >= state->dts_naggregations) {
11447 dtrace_aggregation_t **oaggs = state->dts_aggregations;
11448 dtrace_aggregation_t **aggs;
11449 int naggs = state->dts_naggregations << 1;
11450 int onaggs = state->dts_naggregations;
11451
11452 ASSERT(aggid == state->dts_naggregations + 1);
11453
11454 if (naggs == 0) {
11455 ASSERT(oaggs == NULL);
11456 naggs = 1;
11457 }
11458
11459 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11460
11461 if (oaggs != NULL) {
11462 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11463 kmem_free(oaggs, onaggs * sizeof (*aggs));
11464 }
11465
11466 state->dts_aggregations = aggs;
11467 state->dts_naggregations = naggs;
11468 }
11469
11470 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11471 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11472
11473 frec = &agg->dtag_first->dta_rec;
11474 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11475 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11476
11477 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11478 ASSERT(!act->dta_intuple);
11479 act->dta_intuple = 1;
11480 }
11481
11482 return (&agg->dtag_action);
11483 }
11484
11485 static void
11486 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11487 {
11488 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11489 dtrace_state_t *state = ecb->dte_state;
11490 dtrace_aggid_t aggid = agg->dtag_id;
11491
11492 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11493 #ifdef illumos
11494 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11495 #else
11496 free_unr(state->dts_aggid_arena, aggid);
11497 #endif
11498
11499 ASSERT(state->dts_aggregations[aggid - 1] == agg);
11500 state->dts_aggregations[aggid - 1] = NULL;
11501
11502 kmem_free(agg, sizeof (dtrace_aggregation_t));
11503 }
11504
11505 static int
11506 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11507 {
11508 dtrace_action_t *action, *last;
11509 dtrace_difo_t *dp = desc->dtad_difo;
11510 uint32_t size = 0, align = sizeof (uint8_t), mask;
11511 uint16_t format = 0;
11512 dtrace_recdesc_t *rec;
11513 dtrace_state_t *state = ecb->dte_state;
11514 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11515 uint64_t arg = desc->dtad_arg;
11516
11517 ASSERT(MUTEX_HELD(&dtrace_lock));
11518 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11519
11520 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11521 /*
11522 * If this is an aggregating action, there must be neither
11523 * a speculate nor a commit on the action chain.
11524 */
11525 dtrace_action_t *act;
11526
11527 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11528 if (act->dta_kind == DTRACEACT_COMMIT)
11529 return (EINVAL);
11530
11531 if (act->dta_kind == DTRACEACT_SPECULATE)
11532 return (EINVAL);
11533 }
11534
11535 action = dtrace_ecb_aggregation_create(ecb, desc);
11536
11537 if (action == NULL)
11538 return (EINVAL);
11539 } else {
11540 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11541 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11542 dp != NULL && dp->dtdo_destructive)) {
11543 state->dts_destructive = 1;
11544 }
11545
11546 switch (desc->dtad_kind) {
11547 case DTRACEACT_PRINTF:
11548 case DTRACEACT_PRINTA:
11549 case DTRACEACT_SYSTEM:
11550 case DTRACEACT_FREOPEN:
11551 case DTRACEACT_DIFEXPR:
11552 /*
11553 * We know that our arg is a string -- turn it into a
11554 * format.
11555 */
11556 if (arg == 0) {
11557 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11558 desc->dtad_kind == DTRACEACT_DIFEXPR);
11559 format = 0;
11560 } else {
11561 ASSERT(arg != 0);
11562 #ifdef illumos
11563 ASSERT(arg > KERNELBASE);
11564 #endif
11565 format = dtrace_format_add(state,
11566 (char *)(uintptr_t)arg);
11567 }
11568
11569 /*FALLTHROUGH*/
11570 case DTRACEACT_LIBACT:
11571 case DTRACEACT_TRACEMEM:
11572 case DTRACEACT_TRACEMEM_DYNSIZE:
11573 if (dp == NULL)
11574 return (EINVAL);
11575
11576 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11577 break;
11578
11579 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11580 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11581 return (EINVAL);
11582
11583 size = opt[DTRACEOPT_STRSIZE];
11584 }
11585
11586 break;
11587
11588 case DTRACEACT_STACK:
11589 if ((nframes = arg) == 0) {
11590 nframes = opt[DTRACEOPT_STACKFRAMES];
11591 ASSERT(nframes > 0);
11592 arg = nframes;
11593 }
11594
11595 size = nframes * sizeof (pc_t);
11596 break;
11597
11598 case DTRACEACT_JSTACK:
11599 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11600 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11601
11602 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11603 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11604
11605 arg = DTRACE_USTACK_ARG(nframes, strsize);
11606
11607 /*FALLTHROUGH*/
11608 case DTRACEACT_USTACK:
11609 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11610 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11611 strsize = DTRACE_USTACK_STRSIZE(arg);
11612 nframes = opt[DTRACEOPT_USTACKFRAMES];
11613 ASSERT(nframes > 0);
11614 arg = DTRACE_USTACK_ARG(nframes, strsize);
11615 }
11616
11617 /*
11618 * Save a slot for the pid.
11619 */
11620 size = (nframes + 1) * sizeof (uint64_t);
11621 size += DTRACE_USTACK_STRSIZE(arg);
11622 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11623
11624 break;
11625
11626 case DTRACEACT_SYM:
11627 case DTRACEACT_MOD:
11628 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11629 sizeof (uint64_t)) ||
11630 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11631 return (EINVAL);
11632 break;
11633
11634 case DTRACEACT_USYM:
11635 case DTRACEACT_UMOD:
11636 case DTRACEACT_UADDR:
11637 if (dp == NULL ||
11638 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11639 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11640 return (EINVAL);
11641
11642 /*
11643 * We have a slot for the pid, plus a slot for the
11644 * argument. To keep things simple (aligned with
11645 * bitness-neutral sizing), we store each as a 64-bit
11646 * quantity.
11647 */
11648 size = 2 * sizeof (uint64_t);
11649 break;
11650
11651 case DTRACEACT_STOP:
11652 case DTRACEACT_BREAKPOINT:
11653 case DTRACEACT_PANIC:
11654 break;
11655
11656 case DTRACEACT_CHILL:
11657 case DTRACEACT_DISCARD:
11658 case DTRACEACT_RAISE:
11659 if (dp == NULL)
11660 return (EINVAL);
11661 break;
11662
11663 case DTRACEACT_EXIT:
11664 if (dp == NULL ||
11665 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11666 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11667 return (EINVAL);
11668 break;
11669
11670 case DTRACEACT_SPECULATE:
11671 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11672 return (EINVAL);
11673
11674 if (dp == NULL)
11675 return (EINVAL);
11676
11677 state->dts_speculates = 1;
11678 break;
11679
11680 case DTRACEACT_PRINTM:
11681 size = dp->dtdo_rtype.dtdt_size;
11682 break;
11683
11684 case DTRACEACT_COMMIT: {
11685 dtrace_action_t *act = ecb->dte_action;
11686
11687 for (; act != NULL; act = act->dta_next) {
11688 if (act->dta_kind == DTRACEACT_COMMIT)
11689 return (EINVAL);
11690 }
11691
11692 if (dp == NULL)
11693 return (EINVAL);
11694 break;
11695 }
11696
11697 default:
11698 return (EINVAL);
11699 }
11700
11701 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11702 /*
11703 * If this is a data-storing action or a speculate,
11704 * we must be sure that there isn't a commit on the
11705 * action chain.
11706 */
11707 dtrace_action_t *act = ecb->dte_action;
11708
11709 for (; act != NULL; act = act->dta_next) {
11710 if (act->dta_kind == DTRACEACT_COMMIT)
11711 return (EINVAL);
11712 }
11713 }
11714
11715 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11716 action->dta_rec.dtrd_size = size;
11717 }
11718
11719 action->dta_refcnt = 1;
11720 rec = &action->dta_rec;
11721 size = rec->dtrd_size;
11722
11723 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11724 if (!(size & mask)) {
11725 align = mask + 1;
11726 break;
11727 }
11728 }
11729
11730 action->dta_kind = desc->dtad_kind;
11731
11732 if ((action->dta_difo = dp) != NULL)
11733 dtrace_difo_hold(dp);
11734
11735 rec->dtrd_action = action->dta_kind;
11736 rec->dtrd_arg = arg;
11737 rec->dtrd_uarg = desc->dtad_uarg;
11738 rec->dtrd_alignment = (uint16_t)align;
11739 rec->dtrd_format = format;
11740
11741 if ((last = ecb->dte_action_last) != NULL) {
11742 ASSERT(ecb->dte_action != NULL);
11743 action->dta_prev = last;
11744 last->dta_next = action;
11745 } else {
11746 ASSERT(ecb->dte_action == NULL);
11747 ecb->dte_action = action;
11748 }
11749
11750 ecb->dte_action_last = action;
11751
11752 return (0);
11753 }
11754
11755 static void
11756 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11757 {
11758 dtrace_action_t *act = ecb->dte_action, *next;
11759 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11760 dtrace_difo_t *dp;
11761 uint16_t format;
11762
11763 if (act != NULL && act->dta_refcnt > 1) {
11764 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11765 act->dta_refcnt--;
11766 } else {
11767 for (; act != NULL; act = next) {
11768 next = act->dta_next;
11769 ASSERT(next != NULL || act == ecb->dte_action_last);
11770 ASSERT(act->dta_refcnt == 1);
11771
11772 if ((format = act->dta_rec.dtrd_format) != 0)
11773 dtrace_format_remove(ecb->dte_state, format);
11774
11775 if ((dp = act->dta_difo) != NULL)
11776 dtrace_difo_release(dp, vstate);
11777
11778 if (DTRACEACT_ISAGG(act->dta_kind)) {
11779 dtrace_ecb_aggregation_destroy(ecb, act);
11780 } else {
11781 kmem_free(act, sizeof (dtrace_action_t));
11782 }
11783 }
11784 }
11785
11786 ecb->dte_action = NULL;
11787 ecb->dte_action_last = NULL;
11788 ecb->dte_size = 0;
11789 }
11790
11791 static void
11792 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11793 {
11794 /*
11795 * We disable the ECB by removing it from its probe.
11796 */
11797 dtrace_ecb_t *pecb, *prev = NULL;
11798 dtrace_probe_t *probe = ecb->dte_probe;
11799
11800 ASSERT(MUTEX_HELD(&dtrace_lock));
11801
11802 if (probe == NULL) {
11803 /*
11804 * This is the NULL probe; there is nothing to disable.
11805 */
11806 return;
11807 }
11808
11809 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11810 if (pecb == ecb)
11811 break;
11812 prev = pecb;
11813 }
11814
11815 ASSERT(pecb != NULL);
11816
11817 if (prev == NULL) {
11818 probe->dtpr_ecb = ecb->dte_next;
11819 } else {
11820 prev->dte_next = ecb->dte_next;
11821 }
11822
11823 if (ecb == probe->dtpr_ecb_last) {
11824 ASSERT(ecb->dte_next == NULL);
11825 probe->dtpr_ecb_last = prev;
11826 }
11827
11828 /*
11829 * The ECB has been disconnected from the probe; now sync to assure
11830 * that all CPUs have seen the change before returning.
11831 */
11832 dtrace_sync();
11833
11834 if (probe->dtpr_ecb == NULL) {
11835 /*
11836 * That was the last ECB on the probe; clear the predicate
11837 * cache ID for the probe, disable it and sync one more time
11838 * to assure that we'll never hit it again.
11839 */
11840 dtrace_provider_t *prov = probe->dtpr_provider;
11841
11842 ASSERT(ecb->dte_next == NULL);
11843 ASSERT(probe->dtpr_ecb_last == NULL);
11844 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11845 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11846 probe->dtpr_id, probe->dtpr_arg);
11847 dtrace_sync();
11848 } else {
11849 /*
11850 * There is at least one ECB remaining on the probe. If there
11851 * is _exactly_ one, set the probe's predicate cache ID to be
11852 * the predicate cache ID of the remaining ECB.
11853 */
11854 ASSERT(probe->dtpr_ecb_last != NULL);
11855 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11856
11857 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11858 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11859
11860 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11861
11862 if (p != NULL)
11863 probe->dtpr_predcache = p->dtp_cacheid;
11864 }
11865
11866 ecb->dte_next = NULL;
11867 }
11868 }
11869
11870 static void
11871 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11872 {
11873 dtrace_state_t *state = ecb->dte_state;
11874 dtrace_vstate_t *vstate = &state->dts_vstate;
11875 dtrace_predicate_t *pred;
11876 dtrace_epid_t epid = ecb->dte_epid;
11877
11878 ASSERT(MUTEX_HELD(&dtrace_lock));
11879 ASSERT(ecb->dte_next == NULL);
11880 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11881
11882 if ((pred = ecb->dte_predicate) != NULL)
11883 dtrace_predicate_release(pred, vstate);
11884
11885 dtrace_ecb_action_remove(ecb);
11886
11887 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11888 state->dts_ecbs[epid - 1] = NULL;
11889
11890 kmem_free(ecb, sizeof (dtrace_ecb_t));
11891 }
11892
11893 static dtrace_ecb_t *
11894 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11895 dtrace_enabling_t *enab)
11896 {
11897 dtrace_ecb_t *ecb;
11898 dtrace_predicate_t *pred;
11899 dtrace_actdesc_t *act;
11900 dtrace_provider_t *prov;
11901 dtrace_ecbdesc_t *desc = enab->dten_current;
11902
11903 ASSERT(MUTEX_HELD(&dtrace_lock));
11904 ASSERT(state != NULL);
11905
11906 ecb = dtrace_ecb_add(state, probe);
11907 ecb->dte_uarg = desc->dted_uarg;
11908
11909 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11910 dtrace_predicate_hold(pred);
11911 ecb->dte_predicate = pred;
11912 }
11913
11914 if (probe != NULL) {
11915 /*
11916 * If the provider shows more leg than the consumer is old
11917 * enough to see, we need to enable the appropriate implicit
11918 * predicate bits to prevent the ecb from activating at
11919 * revealing times.
11920 *
11921 * Providers specifying DTRACE_PRIV_USER at register time
11922 * are stating that they need the /proc-style privilege
11923 * model to be enforced, and this is what DTRACE_COND_OWNER
11924 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11925 */
11926 prov = probe->dtpr_provider;
11927 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11928 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11929 ecb->dte_cond |= DTRACE_COND_OWNER;
11930
11931 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11932 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11933 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11934
11935 /*
11936 * If the provider shows us kernel innards and the user
11937 * is lacking sufficient privilege, enable the
11938 * DTRACE_COND_USERMODE implicit predicate.
11939 */
11940 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11941 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11942 ecb->dte_cond |= DTRACE_COND_USERMODE;
11943 }
11944
11945 if (dtrace_ecb_create_cache != NULL) {
11946 /*
11947 * If we have a cached ecb, we'll use its action list instead
11948 * of creating our own (saving both time and space).
11949 */
11950 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11951 dtrace_action_t *act = cached->dte_action;
11952
11953 if (act != NULL) {
11954 ASSERT(act->dta_refcnt > 0);
11955 act->dta_refcnt++;
11956 ecb->dte_action = act;
11957 ecb->dte_action_last = cached->dte_action_last;
11958 ecb->dte_needed = cached->dte_needed;
11959 ecb->dte_size = cached->dte_size;
11960 ecb->dte_alignment = cached->dte_alignment;
11961 }
11962
11963 return (ecb);
11964 }
11965
11966 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11967 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11968 dtrace_ecb_destroy(ecb);
11969 return (NULL);
11970 }
11971 }
11972
11973 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11974 dtrace_ecb_destroy(ecb);
11975 return (NULL);
11976 }
11977
11978 return (dtrace_ecb_create_cache = ecb);
11979 }
11980
11981 static int
11982 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11983 {
11984 dtrace_ecb_t *ecb;
11985 dtrace_enabling_t *enab = arg;
11986 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11987
11988 ASSERT(state != NULL);
11989
11990 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11991 /*
11992 * This probe was created in a generation for which this
11993 * enabling has previously created ECBs; we don't want to
11994 * enable it again, so just kick out.
11995 */
11996 return (DTRACE_MATCH_NEXT);
11997 }
11998
11999 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
12000 return (DTRACE_MATCH_DONE);
12001
12002 dtrace_ecb_enable(ecb);
12003 return (DTRACE_MATCH_NEXT);
12004 }
12005
12006 static dtrace_ecb_t *
12007 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12008 {
12009 dtrace_ecb_t *ecb;
12010
12011 ASSERT(MUTEX_HELD(&dtrace_lock));
12012
12013 if (id == 0 || id > state->dts_necbs)
12014 return (NULL);
12015
12016 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12017 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12018
12019 return (state->dts_ecbs[id - 1]);
12020 }
12021
12022 static dtrace_aggregation_t *
12023 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12024 {
12025 dtrace_aggregation_t *agg;
12026
12027 ASSERT(MUTEX_HELD(&dtrace_lock));
12028
12029 if (id == 0 || id > state->dts_naggregations)
12030 return (NULL);
12031
12032 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12033 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12034 agg->dtag_id == id);
12035
12036 return (state->dts_aggregations[id - 1]);
12037 }
12038
12039 /*
12040 * DTrace Buffer Functions
12041 *
12042 * The following functions manipulate DTrace buffers. Most of these functions
12043 * are called in the context of establishing or processing consumer state;
12044 * exceptions are explicitly noted.
12045 */
12046
12047 /*
12048 * Note: called from cross call context. This function switches the two
12049 * buffers on a given CPU. The atomicity of this operation is assured by
12050 * disabling interrupts while the actual switch takes place; the disabling of
12051 * interrupts serializes the execution with any execution of dtrace_probe() on
12052 * the same CPU.
12053 */
12054 static void
12055 dtrace_buffer_switch(dtrace_buffer_t *buf)
12056 {
12057 caddr_t tomax = buf->dtb_tomax;
12058 caddr_t xamot = buf->dtb_xamot;
12059 dtrace_icookie_t cookie;
12060 hrtime_t now;
12061
12062 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12064
12065 cookie = dtrace_interrupt_disable();
12066 now = dtrace_gethrtime();
12067 buf->dtb_tomax = xamot;
12068 buf->dtb_xamot = tomax;
12069 buf->dtb_xamot_drops = buf->dtb_drops;
12070 buf->dtb_xamot_offset = buf->dtb_offset;
12071 buf->dtb_xamot_errors = buf->dtb_errors;
12072 buf->dtb_xamot_flags = buf->dtb_flags;
12073 buf->dtb_offset = 0;
12074 buf->dtb_drops = 0;
12075 buf->dtb_errors = 0;
12076 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12077 buf->dtb_interval = now - buf->dtb_switched;
12078 buf->dtb_switched = now;
12079 dtrace_interrupt_enable(cookie);
12080 }
12081
12082 /*
12083 * Note: called from cross call context. This function activates a buffer
12084 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
12085 * is guaranteed by the disabling of interrupts.
12086 */
12087 static void
12088 dtrace_buffer_activate(dtrace_state_t *state)
12089 {
12090 dtrace_buffer_t *buf;
12091 dtrace_icookie_t cookie = dtrace_interrupt_disable();
12092
12093 buf = &state->dts_buffer[curcpu];
12094
12095 if (buf->dtb_tomax != NULL) {
12096 /*
12097 * We might like to assert that the buffer is marked inactive,
12098 * but this isn't necessarily true: the buffer for the CPU
12099 * that processes the BEGIN probe has its buffer activated
12100 * manually. In this case, we take the (harmless) action
12101 * re-clearing the bit INACTIVE bit.
12102 */
12103 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12104 }
12105
12106 dtrace_interrupt_enable(cookie);
12107 }
12108
12109 #ifdef __FreeBSD__
12110 /*
12111 * Activate the specified per-CPU buffer. This is used instead of
12112 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12113 * activating anonymous state.
12114 */
12115 static void
12116 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12117 {
12118
12119 if (state->dts_buffer[cpu].dtb_tomax != NULL)
12120 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12121 }
12122 #endif
12123
12124 static int
12125 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12126 processorid_t cpu, int *factor)
12127 {
12128 #ifdef illumos
12129 cpu_t *cp;
12130 #endif
12131 dtrace_buffer_t *buf;
12132 int allocated = 0, desired = 0;
12133
12134 #ifdef illumos
12135 ASSERT(MUTEX_HELD(&cpu_lock));
12136 ASSERT(MUTEX_HELD(&dtrace_lock));
12137
12138 *factor = 1;
12139
12140 if (size > dtrace_nonroot_maxsize &&
12141 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12142 return (EFBIG);
12143
12144 cp = cpu_list;
12145
12146 do {
12147 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12148 continue;
12149
12150 buf = &bufs[cp->cpu_id];
12151
12152 /*
12153 * If there is already a buffer allocated for this CPU, it
12154 * is only possible that this is a DR event. In this case,
12155 */
12156 if (buf->dtb_tomax != NULL) {
12157 ASSERT(buf->dtb_size == size);
12158 continue;
12159 }
12160
12161 ASSERT(buf->dtb_xamot == NULL);
12162
12163 if ((buf->dtb_tomax = kmem_zalloc(size,
12164 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12165 goto err;
12166
12167 buf->dtb_size = size;
12168 buf->dtb_flags = flags;
12169 buf->dtb_offset = 0;
12170 buf->dtb_drops = 0;
12171
12172 if (flags & DTRACEBUF_NOSWITCH)
12173 continue;
12174
12175 if ((buf->dtb_xamot = kmem_zalloc(size,
12176 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12177 goto err;
12178 } while ((cp = cp->cpu_next) != cpu_list);
12179
12180 return (0);
12181
12182 err:
12183 cp = cpu_list;
12184
12185 do {
12186 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12187 continue;
12188
12189 buf = &bufs[cp->cpu_id];
12190 desired += 2;
12191
12192 if (buf->dtb_xamot != NULL) {
12193 ASSERT(buf->dtb_tomax != NULL);
12194 ASSERT(buf->dtb_size == size);
12195 kmem_free(buf->dtb_xamot, size);
12196 allocated++;
12197 }
12198
12199 if (buf->dtb_tomax != NULL) {
12200 ASSERT(buf->dtb_size == size);
12201 kmem_free(buf->dtb_tomax, size);
12202 allocated++;
12203 }
12204
12205 buf->dtb_tomax = NULL;
12206 buf->dtb_xamot = NULL;
12207 buf->dtb_size = 0;
12208 } while ((cp = cp->cpu_next) != cpu_list);
12209 #else
12210 int i;
12211
12212 *factor = 1;
12213 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12214 defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12215 /*
12216 * FreeBSD isn't good at limiting the amount of memory we
12217 * ask to malloc, so let's place a limit here before trying
12218 * to do something that might well end in tears at bedtime.
12219 */
12220 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12221 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12222 return (ENOMEM);
12223 #endif
12224
12225 ASSERT(MUTEX_HELD(&dtrace_lock));
12226 CPU_FOREACH(i) {
12227 if (cpu != DTRACE_CPUALL && cpu != i)
12228 continue;
12229
12230 buf = &bufs[i];
12231
12232 /*
12233 * If there is already a buffer allocated for this CPU, it
12234 * is only possible that this is a DR event. In this case,
12235 * the buffer size must match our specified size.
12236 */
12237 if (buf->dtb_tomax != NULL) {
12238 ASSERT(buf->dtb_size == size);
12239 continue;
12240 }
12241
12242 ASSERT(buf->dtb_xamot == NULL);
12243
12244 if ((buf->dtb_tomax = kmem_zalloc(size,
12245 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12246 goto err;
12247
12248 buf->dtb_size = size;
12249 buf->dtb_flags = flags;
12250 buf->dtb_offset = 0;
12251 buf->dtb_drops = 0;
12252
12253 if (flags & DTRACEBUF_NOSWITCH)
12254 continue;
12255
12256 if ((buf->dtb_xamot = kmem_zalloc(size,
12257 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12258 goto err;
12259 }
12260
12261 return (0);
12262
12263 err:
12264 /*
12265 * Error allocating memory, so free the buffers that were
12266 * allocated before the failed allocation.
12267 */
12268 CPU_FOREACH(i) {
12269 if (cpu != DTRACE_CPUALL && cpu != i)
12270 continue;
12271
12272 buf = &bufs[i];
12273 desired += 2;
12274
12275 if (buf->dtb_xamot != NULL) {
12276 ASSERT(buf->dtb_tomax != NULL);
12277 ASSERT(buf->dtb_size == size);
12278 kmem_free(buf->dtb_xamot, size);
12279 allocated++;
12280 }
12281
12282 if (buf->dtb_tomax != NULL) {
12283 ASSERT(buf->dtb_size == size);
12284 kmem_free(buf->dtb_tomax, size);
12285 allocated++;
12286 }
12287
12288 buf->dtb_tomax = NULL;
12289 buf->dtb_xamot = NULL;
12290 buf->dtb_size = 0;
12291
12292 }
12293 #endif
12294 *factor = desired / (allocated > 0 ? allocated : 1);
12295
12296 return (ENOMEM);
12297 }
12298
12299 /*
12300 * Note: called from probe context. This function just increments the drop
12301 * count on a buffer. It has been made a function to allow for the
12302 * possibility of understanding the source of mysterious drop counts. (A
12303 * problem for which one may be particularly disappointed that DTrace cannot
12304 * be used to understand DTrace.)
12305 */
12306 static void
12307 dtrace_buffer_drop(dtrace_buffer_t *buf)
12308 {
12309 buf->dtb_drops++;
12310 }
12311
12312 /*
12313 * Note: called from probe context. This function is called to reserve space
12314 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
12315 * mstate. Returns the new offset in the buffer, or a negative value if an
12316 * error has occurred.
12317 */
12318 static ssize_t
12319 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12320 dtrace_state_t *state, dtrace_mstate_t *mstate)
12321 {
12322 ssize_t offs = buf->dtb_offset, soffs;
12323 intptr_t woffs;
12324 caddr_t tomax;
12325 size_t total;
12326
12327 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12328 return (-1);
12329
12330 if ((tomax = buf->dtb_tomax) == NULL) {
12331 dtrace_buffer_drop(buf);
12332 return (-1);
12333 }
12334
12335 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12336 while (offs & (align - 1)) {
12337 /*
12338 * Assert that our alignment is off by a number which
12339 * is itself sizeof (uint32_t) aligned.
12340 */
12341 ASSERT(!((align - (offs & (align - 1))) &
12342 (sizeof (uint32_t) - 1)));
12343 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12344 offs += sizeof (uint32_t);
12345 }
12346
12347 if ((soffs = offs + needed) > buf->dtb_size) {
12348 dtrace_buffer_drop(buf);
12349 return (-1);
12350 }
12351
12352 if (mstate == NULL)
12353 return (offs);
12354
12355 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12356 mstate->dtms_scratch_size = buf->dtb_size - soffs;
12357 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12358
12359 return (offs);
12360 }
12361
12362 if (buf->dtb_flags & DTRACEBUF_FILL) {
12363 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12364 (buf->dtb_flags & DTRACEBUF_FULL))
12365 return (-1);
12366 goto out;
12367 }
12368
12369 total = needed + (offs & (align - 1));
12370
12371 /*
12372 * For a ring buffer, life is quite a bit more complicated. Before
12373 * we can store any padding, we need to adjust our wrapping offset.
12374 * (If we've never before wrapped or we're not about to, no adjustment
12375 * is required.)
12376 */
12377 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12378 offs + total > buf->dtb_size) {
12379 woffs = buf->dtb_xamot_offset;
12380
12381 if (offs + total > buf->dtb_size) {
12382 /*
12383 * We can't fit in the end of the buffer. First, a
12384 * sanity check that we can fit in the buffer at all.
12385 */
12386 if (total > buf->dtb_size) {
12387 dtrace_buffer_drop(buf);
12388 return (-1);
12389 }
12390
12391 /*
12392 * We're going to be storing at the top of the buffer,
12393 * so now we need to deal with the wrapped offset. We
12394 * only reset our wrapped offset to 0 if it is
12395 * currently greater than the current offset. If it
12396 * is less than the current offset, it is because a
12397 * previous allocation induced a wrap -- but the
12398 * allocation didn't subsequently take the space due
12399 * to an error or false predicate evaluation. In this
12400 * case, we'll just leave the wrapped offset alone: if
12401 * the wrapped offset hasn't been advanced far enough
12402 * for this allocation, it will be adjusted in the
12403 * lower loop.
12404 */
12405 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12406 if (woffs >= offs)
12407 woffs = 0;
12408 } else {
12409 woffs = 0;
12410 }
12411
12412 /*
12413 * Now we know that we're going to be storing to the
12414 * top of the buffer and that there is room for us
12415 * there. We need to clear the buffer from the current
12416 * offset to the end (there may be old gunk there).
12417 */
12418 while (offs < buf->dtb_size)
12419 tomax[offs++] = 0;
12420
12421 /*
12422 * We need to set our offset to zero. And because we
12423 * are wrapping, we need to set the bit indicating as
12424 * much. We can also adjust our needed space back
12425 * down to the space required by the ECB -- we know
12426 * that the top of the buffer is aligned.
12427 */
12428 offs = 0;
12429 total = needed;
12430 buf->dtb_flags |= DTRACEBUF_WRAPPED;
12431 } else {
12432 /*
12433 * There is room for us in the buffer, so we simply
12434 * need to check the wrapped offset.
12435 */
12436 if (woffs < offs) {
12437 /*
12438 * The wrapped offset is less than the offset.
12439 * This can happen if we allocated buffer space
12440 * that induced a wrap, but then we didn't
12441 * subsequently take the space due to an error
12442 * or false predicate evaluation. This is
12443 * okay; we know that _this_ allocation isn't
12444 * going to induce a wrap. We still can't
12445 * reset the wrapped offset to be zero,
12446 * however: the space may have been trashed in
12447 * the previous failed probe attempt. But at
12448 * least the wrapped offset doesn't need to
12449 * be adjusted at all...
12450 */
12451 goto out;
12452 }
12453 }
12454
12455 while (offs + total > woffs) {
12456 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12457 size_t size;
12458
12459 if (epid == DTRACE_EPIDNONE) {
12460 size = sizeof (uint32_t);
12461 } else {
12462 ASSERT3U(epid, <=, state->dts_necbs);
12463 ASSERT(state->dts_ecbs[epid - 1] != NULL);
12464
12465 size = state->dts_ecbs[epid - 1]->dte_size;
12466 }
12467
12468 ASSERT(woffs + size <= buf->dtb_size);
12469 ASSERT(size != 0);
12470
12471 if (woffs + size == buf->dtb_size) {
12472 /*
12473 * We've reached the end of the buffer; we want
12474 * to set the wrapped offset to 0 and break
12475 * out. However, if the offs is 0, then we're
12476 * in a strange edge-condition: the amount of
12477 * space that we want to reserve plus the size
12478 * of the record that we're overwriting is
12479 * greater than the size of the buffer. This
12480 * is problematic because if we reserve the
12481 * space but subsequently don't consume it (due
12482 * to a failed predicate or error) the wrapped
12483 * offset will be 0 -- yet the EPID at offset 0
12484 * will not be committed. This situation is
12485 * relatively easy to deal with: if we're in
12486 * this case, the buffer is indistinguishable
12487 * from one that hasn't wrapped; we need only
12488 * finish the job by clearing the wrapped bit,
12489 * explicitly setting the offset to be 0, and
12490 * zero'ing out the old data in the buffer.
12491 */
12492 if (offs == 0) {
12493 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12494 buf->dtb_offset = 0;
12495 woffs = total;
12496
12497 while (woffs < buf->dtb_size)
12498 tomax[woffs++] = 0;
12499 }
12500
12501 woffs = 0;
12502 break;
12503 }
12504
12505 woffs += size;
12506 }
12507
12508 /*
12509 * We have a wrapped offset. It may be that the wrapped offset
12510 * has become zero -- that's okay.
12511 */
12512 buf->dtb_xamot_offset = woffs;
12513 }
12514
12515 out:
12516 /*
12517 * Now we can plow the buffer with any necessary padding.
12518 */
12519 while (offs & (align - 1)) {
12520 /*
12521 * Assert that our alignment is off by a number which
12522 * is itself sizeof (uint32_t) aligned.
12523 */
12524 ASSERT(!((align - (offs & (align - 1))) &
12525 (sizeof (uint32_t) - 1)));
12526 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12527 offs += sizeof (uint32_t);
12528 }
12529
12530 if (buf->dtb_flags & DTRACEBUF_FILL) {
12531 if (offs + needed > buf->dtb_size - state->dts_reserve) {
12532 buf->dtb_flags |= DTRACEBUF_FULL;
12533 return (-1);
12534 }
12535 }
12536
12537 if (mstate == NULL)
12538 return (offs);
12539
12540 /*
12541 * For ring buffers and fill buffers, the scratch space is always
12542 * the inactive buffer.
12543 */
12544 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12545 mstate->dtms_scratch_size = buf->dtb_size;
12546 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12547
12548 return (offs);
12549 }
12550
12551 static void
12552 dtrace_buffer_polish(dtrace_buffer_t *buf)
12553 {
12554 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12555 ASSERT(MUTEX_HELD(&dtrace_lock));
12556
12557 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12558 return;
12559
12560 /*
12561 * We need to polish the ring buffer. There are three cases:
12562 *
12563 * - The first (and presumably most common) is that there is no gap
12564 * between the buffer offset and the wrapped offset. In this case,
12565 * there is nothing in the buffer that isn't valid data; we can
12566 * mark the buffer as polished and return.
12567 *
12568 * - The second (less common than the first but still more common
12569 * than the third) is that there is a gap between the buffer offset
12570 * and the wrapped offset, and the wrapped offset is larger than the
12571 * buffer offset. This can happen because of an alignment issue, or
12572 * can happen because of a call to dtrace_buffer_reserve() that
12573 * didn't subsequently consume the buffer space. In this case,
12574 * we need to zero the data from the buffer offset to the wrapped
12575 * offset.
12576 *
12577 * - The third (and least common) is that there is a gap between the
12578 * buffer offset and the wrapped offset, but the wrapped offset is
12579 * _less_ than the buffer offset. This can only happen because a
12580 * call to dtrace_buffer_reserve() induced a wrap, but the space
12581 * was not subsequently consumed. In this case, we need to zero the
12582 * space from the offset to the end of the buffer _and_ from the
12583 * top of the buffer to the wrapped offset.
12584 */
12585 if (buf->dtb_offset < buf->dtb_xamot_offset) {
12586 bzero(buf->dtb_tomax + buf->dtb_offset,
12587 buf->dtb_xamot_offset - buf->dtb_offset);
12588 }
12589
12590 if (buf->dtb_offset > buf->dtb_xamot_offset) {
12591 bzero(buf->dtb_tomax + buf->dtb_offset,
12592 buf->dtb_size - buf->dtb_offset);
12593 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12594 }
12595 }
12596
12597 /*
12598 * This routine determines if data generated at the specified time has likely
12599 * been entirely consumed at user-level. This routine is called to determine
12600 * if an ECB on a defunct probe (but for an active enabling) can be safely
12601 * disabled and destroyed.
12602 */
12603 static int
12604 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12605 {
12606 int i;
12607
12608 CPU_FOREACH(i) {
12609 dtrace_buffer_t *buf = &bufs[i];
12610
12611 if (buf->dtb_size == 0)
12612 continue;
12613
12614 if (buf->dtb_flags & DTRACEBUF_RING)
12615 return (0);
12616
12617 if (!buf->dtb_switched && buf->dtb_offset != 0)
12618 return (0);
12619
12620 if (buf->dtb_switched - buf->dtb_interval < when)
12621 return (0);
12622 }
12623
12624 return (1);
12625 }
12626
12627 static void
12628 dtrace_buffer_free(dtrace_buffer_t *bufs)
12629 {
12630 int i;
12631
12632 CPU_FOREACH(i) {
12633 dtrace_buffer_t *buf = &bufs[i];
12634
12635 if (buf->dtb_tomax == NULL) {
12636 ASSERT(buf->dtb_xamot == NULL);
12637 ASSERT(buf->dtb_size == 0);
12638 continue;
12639 }
12640
12641 if (buf->dtb_xamot != NULL) {
12642 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12643 kmem_free(buf->dtb_xamot, buf->dtb_size);
12644 }
12645
12646 kmem_free(buf->dtb_tomax, buf->dtb_size);
12647 buf->dtb_size = 0;
12648 buf->dtb_tomax = NULL;
12649 buf->dtb_xamot = NULL;
12650 }
12651 }
12652
12653 /*
12654 * DTrace Enabling Functions
12655 */
12656 static dtrace_enabling_t *
12657 dtrace_enabling_create(dtrace_vstate_t *vstate)
12658 {
12659 dtrace_enabling_t *enab;
12660
12661 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12662 enab->dten_vstate = vstate;
12663
12664 return (enab);
12665 }
12666
12667 static void
12668 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12669 {
12670 dtrace_ecbdesc_t **ndesc;
12671 size_t osize, nsize;
12672
12673 /*
12674 * We can't add to enablings after we've enabled them, or after we've
12675 * retained them.
12676 */
12677 ASSERT(enab->dten_probegen == 0);
12678 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12679
12680 if (enab->dten_ndesc < enab->dten_maxdesc) {
12681 enab->dten_desc[enab->dten_ndesc++] = ecb;
12682 return;
12683 }
12684
12685 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12686
12687 if (enab->dten_maxdesc == 0) {
12688 enab->dten_maxdesc = 1;
12689 } else {
12690 enab->dten_maxdesc <<= 1;
12691 }
12692
12693 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12694
12695 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12696 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12697 bcopy(enab->dten_desc, ndesc, osize);
12698 if (enab->dten_desc != NULL)
12699 kmem_free(enab->dten_desc, osize);
12700
12701 enab->dten_desc = ndesc;
12702 enab->dten_desc[enab->dten_ndesc++] = ecb;
12703 }
12704
12705 static void
12706 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12707 dtrace_probedesc_t *pd)
12708 {
12709 dtrace_ecbdesc_t *new;
12710 dtrace_predicate_t *pred;
12711 dtrace_actdesc_t *act;
12712
12713 /*
12714 * We're going to create a new ECB description that matches the
12715 * specified ECB in every way, but has the specified probe description.
12716 */
12717 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12718
12719 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12720 dtrace_predicate_hold(pred);
12721
12722 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12723 dtrace_actdesc_hold(act);
12724
12725 new->dted_action = ecb->dted_action;
12726 new->dted_pred = ecb->dted_pred;
12727 new->dted_probe = *pd;
12728 new->dted_uarg = ecb->dted_uarg;
12729
12730 dtrace_enabling_add(enab, new);
12731 }
12732
12733 static void
12734 dtrace_enabling_dump(dtrace_enabling_t *enab)
12735 {
12736 int i;
12737
12738 for (i = 0; i < enab->dten_ndesc; i++) {
12739 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12740
12741 #ifdef __FreeBSD__
12742 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12743 desc->dtpd_provider, desc->dtpd_mod,
12744 desc->dtpd_func, desc->dtpd_name);
12745 #else
12746 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12747 desc->dtpd_provider, desc->dtpd_mod,
12748 desc->dtpd_func, desc->dtpd_name);
12749 #endif
12750 }
12751 }
12752
12753 static void
12754 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12755 {
12756 int i;
12757 dtrace_ecbdesc_t *ep;
12758 dtrace_vstate_t *vstate = enab->dten_vstate;
12759
12760 ASSERT(MUTEX_HELD(&dtrace_lock));
12761
12762 for (i = 0; i < enab->dten_ndesc; i++) {
12763 dtrace_actdesc_t *act, *next;
12764 dtrace_predicate_t *pred;
12765
12766 ep = enab->dten_desc[i];
12767
12768 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12769 dtrace_predicate_release(pred, vstate);
12770
12771 for (act = ep->dted_action; act != NULL; act = next) {
12772 next = act->dtad_next;
12773 dtrace_actdesc_release(act, vstate);
12774 }
12775
12776 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12777 }
12778
12779 if (enab->dten_desc != NULL)
12780 kmem_free(enab->dten_desc,
12781 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12782
12783 /*
12784 * If this was a retained enabling, decrement the dts_nretained count
12785 * and take it off of the dtrace_retained list.
12786 */
12787 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12788 dtrace_retained == enab) {
12789 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12790 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12791 enab->dten_vstate->dtvs_state->dts_nretained--;
12792 dtrace_retained_gen++;
12793 }
12794
12795 if (enab->dten_prev == NULL) {
12796 if (dtrace_retained == enab) {
12797 dtrace_retained = enab->dten_next;
12798
12799 if (dtrace_retained != NULL)
12800 dtrace_retained->dten_prev = NULL;
12801 }
12802 } else {
12803 ASSERT(enab != dtrace_retained);
12804 ASSERT(dtrace_retained != NULL);
12805 enab->dten_prev->dten_next = enab->dten_next;
12806 }
12807
12808 if (enab->dten_next != NULL) {
12809 ASSERT(dtrace_retained != NULL);
12810 enab->dten_next->dten_prev = enab->dten_prev;
12811 }
12812
12813 kmem_free(enab, sizeof (dtrace_enabling_t));
12814 }
12815
12816 static int
12817 dtrace_enabling_retain(dtrace_enabling_t *enab)
12818 {
12819 dtrace_state_t *state;
12820
12821 ASSERT(MUTEX_HELD(&dtrace_lock));
12822 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12823 ASSERT(enab->dten_vstate != NULL);
12824
12825 state = enab->dten_vstate->dtvs_state;
12826 ASSERT(state != NULL);
12827
12828 /*
12829 * We only allow each state to retain dtrace_retain_max enablings.
12830 */
12831 if (state->dts_nretained >= dtrace_retain_max)
12832 return (ENOSPC);
12833
12834 state->dts_nretained++;
12835 dtrace_retained_gen++;
12836
12837 if (dtrace_retained == NULL) {
12838 dtrace_retained = enab;
12839 return (0);
12840 }
12841
12842 enab->dten_next = dtrace_retained;
12843 dtrace_retained->dten_prev = enab;
12844 dtrace_retained = enab;
12845
12846 return (0);
12847 }
12848
12849 static int
12850 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12851 dtrace_probedesc_t *create)
12852 {
12853 dtrace_enabling_t *new, *enab;
12854 int found = 0, err = ENOENT;
12855
12856 ASSERT(MUTEX_HELD(&dtrace_lock));
12857 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12858 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12859 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12860 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12861
12862 new = dtrace_enabling_create(&state->dts_vstate);
12863
12864 /*
12865 * Iterate over all retained enablings, looking for enablings that
12866 * match the specified state.
12867 */
12868 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12869 int i;
12870
12871 /*
12872 * dtvs_state can only be NULL for helper enablings -- and
12873 * helper enablings can't be retained.
12874 */
12875 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12876
12877 if (enab->dten_vstate->dtvs_state != state)
12878 continue;
12879
12880 /*
12881 * Now iterate over each probe description; we're looking for
12882 * an exact match to the specified probe description.
12883 */
12884 for (i = 0; i < enab->dten_ndesc; i++) {
12885 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12886 dtrace_probedesc_t *pd = &ep->dted_probe;
12887
12888 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12889 continue;
12890
12891 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12892 continue;
12893
12894 if (strcmp(pd->dtpd_func, match->dtpd_func))
12895 continue;
12896
12897 if (strcmp(pd->dtpd_name, match->dtpd_name))
12898 continue;
12899
12900 /*
12901 * We have a winning probe! Add it to our growing
12902 * enabling.
12903 */
12904 found = 1;
12905 dtrace_enabling_addlike(new, ep, create);
12906 }
12907 }
12908
12909 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12910 dtrace_enabling_destroy(new);
12911 return (err);
12912 }
12913
12914 return (0);
12915 }
12916
12917 static void
12918 dtrace_enabling_retract(dtrace_state_t *state)
12919 {
12920 dtrace_enabling_t *enab, *next;
12921
12922 ASSERT(MUTEX_HELD(&dtrace_lock));
12923
12924 /*
12925 * Iterate over all retained enablings, destroy the enablings retained
12926 * for the specified state.
12927 */
12928 for (enab = dtrace_retained; enab != NULL; enab = next) {
12929 next = enab->dten_next;
12930
12931 /*
12932 * dtvs_state can only be NULL for helper enablings -- and
12933 * helper enablings can't be retained.
12934 */
12935 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12936
12937 if (enab->dten_vstate->dtvs_state == state) {
12938 ASSERT(state->dts_nretained > 0);
12939 dtrace_enabling_destroy(enab);
12940 }
12941 }
12942
12943 ASSERT(state->dts_nretained == 0);
12944 }
12945
12946 static int
12947 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12948 {
12949 int i = 0;
12950 int matched = 0;
12951
12952 ASSERT(MUTEX_HELD(&cpu_lock));
12953 ASSERT(MUTEX_HELD(&dtrace_lock));
12954
12955 for (i = 0; i < enab->dten_ndesc; i++) {
12956 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12957
12958 enab->dten_current = ep;
12959 enab->dten_error = 0;
12960
12961 matched += dtrace_probe_enable(&ep->dted_probe, enab);
12962
12963 if (enab->dten_error != 0) {
12964 /*
12965 * If we get an error half-way through enabling the
12966 * probes, we kick out -- perhaps with some number of
12967 * them enabled. Leaving enabled probes enabled may
12968 * be slightly confusing for user-level, but we expect
12969 * that no one will attempt to actually drive on in
12970 * the face of such errors. If this is an anonymous
12971 * enabling (indicated with a NULL nmatched pointer),
12972 * we cmn_err() a message. We aren't expecting to
12973 * get such an error -- such as it can exist at all,
12974 * it would be a result of corrupted DOF in the driver
12975 * properties.
12976 */
12977 if (nmatched == NULL) {
12978 cmn_err(CE_WARN, "dtrace_enabling_match() "
12979 "error on %p: %d", (void *)ep,
12980 enab->dten_error);
12981 }
12982
12983 return (enab->dten_error);
12984 }
12985 }
12986
12987 enab->dten_probegen = dtrace_probegen;
12988 if (nmatched != NULL)
12989 *nmatched = matched;
12990
12991 return (0);
12992 }
12993
12994 static void
12995 dtrace_enabling_matchall(void)
12996 {
12997 dtrace_enabling_t *enab;
12998
12999 mutex_enter(&cpu_lock);
13000 mutex_enter(&dtrace_lock);
13001
13002 /*
13003 * Iterate over all retained enablings to see if any probes match
13004 * against them. We only perform this operation on enablings for which
13005 * we have sufficient permissions by virtue of being in the global zone
13006 * or in the same zone as the DTrace client. Because we can be called
13007 * after dtrace_detach() has been called, we cannot assert that there
13008 * are retained enablings. We can safely load from dtrace_retained,
13009 * however: the taskq_destroy() at the end of dtrace_detach() will
13010 * block pending our completion.
13011 */
13012 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13013 #ifdef illumos
13014 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13015
13016 if (INGLOBALZONE(curproc) ||
13017 cr != NULL && getzoneid() == crgetzoneid(cr))
13018 #endif
13019 (void) dtrace_enabling_match(enab, NULL);
13020 }
13021
13022 mutex_exit(&dtrace_lock);
13023 mutex_exit(&cpu_lock);
13024 }
13025
13026 /*
13027 * If an enabling is to be enabled without having matched probes (that is, if
13028 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13029 * enabling must be _primed_ by creating an ECB for every ECB description.
13030 * This must be done to assure that we know the number of speculations, the
13031 * number of aggregations, the minimum buffer size needed, etc. before we
13032 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
13033 * enabling any probes, we create ECBs for every ECB decription, but with a
13034 * NULL probe -- which is exactly what this function does.
13035 */
13036 static void
13037 dtrace_enabling_prime(dtrace_state_t *state)
13038 {
13039 dtrace_enabling_t *enab;
13040 int i;
13041
13042 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13043 ASSERT(enab->dten_vstate->dtvs_state != NULL);
13044
13045 if (enab->dten_vstate->dtvs_state != state)
13046 continue;
13047
13048 /*
13049 * We don't want to prime an enabling more than once, lest
13050 * we allow a malicious user to induce resource exhaustion.
13051 * (The ECBs that result from priming an enabling aren't
13052 * leaked -- but they also aren't deallocated until the
13053 * consumer state is destroyed.)
13054 */
13055 if (enab->dten_primed)
13056 continue;
13057
13058 for (i = 0; i < enab->dten_ndesc; i++) {
13059 enab->dten_current = enab->dten_desc[i];
13060 (void) dtrace_probe_enable(NULL, enab);
13061 }
13062
13063 enab->dten_primed = 1;
13064 }
13065 }
13066
13067 /*
13068 * Called to indicate that probes should be provided due to retained
13069 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
13070 * must take an initial lap through the enabling calling the dtps_provide()
13071 * entry point explicitly to allow for autocreated probes.
13072 */
13073 static void
13074 dtrace_enabling_provide(dtrace_provider_t *prv)
13075 {
13076 int i, all = 0;
13077 dtrace_probedesc_t desc;
13078 dtrace_genid_t gen;
13079
13080 ASSERT(MUTEX_HELD(&dtrace_lock));
13081 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13082
13083 if (prv == NULL) {
13084 all = 1;
13085 prv = dtrace_provider;
13086 }
13087
13088 do {
13089 dtrace_enabling_t *enab;
13090 void *parg = prv->dtpv_arg;
13091
13092 retry:
13093 gen = dtrace_retained_gen;
13094 for (enab = dtrace_retained; enab != NULL;
13095 enab = enab->dten_next) {
13096 for (i = 0; i < enab->dten_ndesc; i++) {
13097 desc = enab->dten_desc[i]->dted_probe;
13098 mutex_exit(&dtrace_lock);
13099 prv->dtpv_pops.dtps_provide(parg, &desc);
13100 mutex_enter(&dtrace_lock);
13101 /*
13102 * Process the retained enablings again if
13103 * they have changed while we weren't holding
13104 * dtrace_lock.
13105 */
13106 if (gen != dtrace_retained_gen)
13107 goto retry;
13108 }
13109 }
13110 } while (all && (prv = prv->dtpv_next) != NULL);
13111
13112 mutex_exit(&dtrace_lock);
13113 dtrace_probe_provide(NULL, all ? NULL : prv);
13114 mutex_enter(&dtrace_lock);
13115 }
13116
13117 /*
13118 * Called to reap ECBs that are attached to probes from defunct providers.
13119 */
13120 static void
13121 dtrace_enabling_reap(void)
13122 {
13123 dtrace_provider_t *prov;
13124 dtrace_probe_t *probe;
13125 dtrace_ecb_t *ecb;
13126 hrtime_t when;
13127 int i;
13128
13129 mutex_enter(&cpu_lock);
13130 mutex_enter(&dtrace_lock);
13131
13132 for (i = 0; i < dtrace_nprobes; i++) {
13133 if ((probe = dtrace_probes[i]) == NULL)
13134 continue;
13135
13136 if (probe->dtpr_ecb == NULL)
13137 continue;
13138
13139 prov = probe->dtpr_provider;
13140
13141 if ((when = prov->dtpv_defunct) == 0)
13142 continue;
13143
13144 /*
13145 * We have ECBs on a defunct provider: we want to reap these
13146 * ECBs to allow the provider to unregister. The destruction
13147 * of these ECBs must be done carefully: if we destroy the ECB
13148 * and the consumer later wishes to consume an EPID that
13149 * corresponds to the destroyed ECB (and if the EPID metadata
13150 * has not been previously consumed), the consumer will abort
13151 * processing on the unknown EPID. To reduce (but not, sadly,
13152 * eliminate) the possibility of this, we will only destroy an
13153 * ECB for a defunct provider if, for the state that
13154 * corresponds to the ECB:
13155 *
13156 * (a) There is no speculative tracing (which can effectively
13157 * cache an EPID for an arbitrary amount of time).
13158 *
13159 * (b) The principal buffers have been switched twice since the
13160 * provider became defunct.
13161 *
13162 * (c) The aggregation buffers are of zero size or have been
13163 * switched twice since the provider became defunct.
13164 *
13165 * We use dts_speculates to determine (a) and call a function
13166 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
13167 * that as soon as we've been unable to destroy one of the ECBs
13168 * associated with the probe, we quit trying -- reaping is only
13169 * fruitful in as much as we can destroy all ECBs associated
13170 * with the defunct provider's probes.
13171 */
13172 while ((ecb = probe->dtpr_ecb) != NULL) {
13173 dtrace_state_t *state = ecb->dte_state;
13174 dtrace_buffer_t *buf = state->dts_buffer;
13175 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13176
13177 if (state->dts_speculates)
13178 break;
13179
13180 if (!dtrace_buffer_consumed(buf, when))
13181 break;
13182
13183 if (!dtrace_buffer_consumed(aggbuf, when))
13184 break;
13185
13186 dtrace_ecb_disable(ecb);
13187 ASSERT(probe->dtpr_ecb != ecb);
13188 dtrace_ecb_destroy(ecb);
13189 }
13190 }
13191
13192 mutex_exit(&dtrace_lock);
13193 mutex_exit(&cpu_lock);
13194 }
13195
13196 /*
13197 * DTrace DOF Functions
13198 */
13199 /*ARGSUSED*/
13200 static void
13201 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13202 {
13203 if (dtrace_err_verbose)
13204 cmn_err(CE_WARN, "failed to process DOF: %s", str);
13205
13206 #ifdef DTRACE_ERRDEBUG
13207 dtrace_errdebug(str);
13208 #endif
13209 }
13210
13211 /*
13212 * Create DOF out of a currently enabled state. Right now, we only create
13213 * DOF containing the run-time options -- but this could be expanded to create
13214 * complete DOF representing the enabled state.
13215 */
13216 static dof_hdr_t *
13217 dtrace_dof_create(dtrace_state_t *state)
13218 {
13219 dof_hdr_t *dof;
13220 dof_sec_t *sec;
13221 dof_optdesc_t *opt;
13222 int i, len = sizeof (dof_hdr_t) +
13223 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13224 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13225
13226 ASSERT(MUTEX_HELD(&dtrace_lock));
13227
13228 dof = kmem_zalloc(len, KM_SLEEP);
13229 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13230 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13231 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13232 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13233
13234 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13235 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13236 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13237 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13238 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13239 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13240
13241 dof->dofh_flags = 0;
13242 dof->dofh_hdrsize = sizeof (dof_hdr_t);
13243 dof->dofh_secsize = sizeof (dof_sec_t);
13244 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
13245 dof->dofh_secoff = sizeof (dof_hdr_t);
13246 dof->dofh_loadsz = len;
13247 dof->dofh_filesz = len;
13248 dof->dofh_pad = 0;
13249
13250 /*
13251 * Fill in the option section header...
13252 */
13253 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13254 sec->dofs_type = DOF_SECT_OPTDESC;
13255 sec->dofs_align = sizeof (uint64_t);
13256 sec->dofs_flags = DOF_SECF_LOAD;
13257 sec->dofs_entsize = sizeof (dof_optdesc_t);
13258
13259 opt = (dof_optdesc_t *)((uintptr_t)sec +
13260 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13261
13262 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13263 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13264
13265 for (i = 0; i < DTRACEOPT_MAX; i++) {
13266 opt[i].dofo_option = i;
13267 opt[i].dofo_strtab = DOF_SECIDX_NONE;
13268 opt[i].dofo_value = state->dts_options[i];
13269 }
13270
13271 return (dof);
13272 }
13273
13274 static dof_hdr_t *
13275 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13276 {
13277 dof_hdr_t hdr, *dof;
13278
13279 ASSERT(!MUTEX_HELD(&dtrace_lock));
13280
13281 /*
13282 * First, we're going to copyin() the sizeof (dof_hdr_t).
13283 */
13284 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13285 dtrace_dof_error(NULL, "failed to copyin DOF header");
13286 *errp = EFAULT;
13287 return (NULL);
13288 }
13289
13290 /*
13291 * Now we'll allocate the entire DOF and copy it in -- provided
13292 * that the length isn't outrageous.
13293 */
13294 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13295 dtrace_dof_error(&hdr, "load size exceeds maximum");
13296 *errp = E2BIG;
13297 return (NULL);
13298 }
13299
13300 if (hdr.dofh_loadsz < sizeof (hdr)) {
13301 dtrace_dof_error(&hdr, "invalid load size");
13302 *errp = EINVAL;
13303 return (NULL);
13304 }
13305
13306 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13307
13308 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13309 dof->dofh_loadsz != hdr.dofh_loadsz) {
13310 kmem_free(dof, hdr.dofh_loadsz);
13311 *errp = EFAULT;
13312 return (NULL);
13313 }
13314
13315 return (dof);
13316 }
13317
13318 #ifdef __FreeBSD__
13319 static dof_hdr_t *
13320 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13321 {
13322 dof_hdr_t hdr, *dof;
13323 struct thread *td;
13324 size_t loadsz;
13325
13326 ASSERT(!MUTEX_HELD(&dtrace_lock));
13327
13328 td = curthread;
13329
13330 /*
13331 * First, we're going to copyin() the sizeof (dof_hdr_t).
13332 */
13333 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13334 dtrace_dof_error(NULL, "failed to copyin DOF header");
13335 *errp = EFAULT;
13336 return (NULL);
13337 }
13338
13339 /*
13340 * Now we'll allocate the entire DOF and copy it in -- provided
13341 * that the length isn't outrageous.
13342 */
13343 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13344 dtrace_dof_error(&hdr, "load size exceeds maximum");
13345 *errp = E2BIG;
13346 return (NULL);
13347 }
13348 loadsz = (size_t)hdr.dofh_loadsz;
13349
13350 if (loadsz < sizeof (hdr)) {
13351 dtrace_dof_error(&hdr, "invalid load size");
13352 *errp = EINVAL;
13353 return (NULL);
13354 }
13355
13356 dof = kmem_alloc(loadsz, KM_SLEEP);
13357
13358 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13359 dof->dofh_loadsz != loadsz) {
13360 kmem_free(dof, hdr.dofh_loadsz);
13361 *errp = EFAULT;
13362 return (NULL);
13363 }
13364
13365 return (dof);
13366 }
13367
13368 static __inline uchar_t
13369 dtrace_dof_char(char c)
13370 {
13371
13372 switch (c) {
13373 case '0':
13374 case '1':
13375 case '2':
13376 case '3':
13377 case '4':
13378 case '5':
13379 case '6':
13380 case '7':
13381 case '8':
13382 case '9':
13383 return (c - '0');
13384 case 'A':
13385 case 'B':
13386 case 'C':
13387 case 'D':
13388 case 'E':
13389 case 'F':
13390 return (c - 'A' + 10);
13391 case 'a':
13392 case 'b':
13393 case 'c':
13394 case 'd':
13395 case 'e':
13396 case 'f':
13397 return (c - 'a' + 10);
13398 }
13399 /* Should not reach here. */
13400 return (UCHAR_MAX);
13401 }
13402 #endif /* __FreeBSD__ */
13403
13404 static dof_hdr_t *
13405 dtrace_dof_property(const char *name)
13406 {
13407 #ifdef __FreeBSD__
13408 uint8_t *dofbuf;
13409 u_char *data, *eol;
13410 caddr_t doffile;
13411 size_t bytes, len, i;
13412 dof_hdr_t *dof;
13413 u_char c1, c2;
13414
13415 dof = NULL;
13416
13417 doffile = preload_search_by_type("dtrace_dof");
13418 if (doffile == NULL)
13419 return (NULL);
13420
13421 data = preload_fetch_addr(doffile);
13422 len = preload_fetch_size(doffile);
13423 for (;;) {
13424 /* Look for the end of the line. All lines end in a newline. */
13425 eol = memchr(data, '\n', len);
13426 if (eol == NULL)
13427 return (NULL);
13428
13429 if (strncmp(name, data, strlen(name)) == 0)
13430 break;
13431
13432 eol++; /* skip past the newline */
13433 len -= eol - data;
13434 data = eol;
13435 }
13436
13437 /* We've found the data corresponding to the specified key. */
13438
13439 data += strlen(name) + 1; /* skip past the '=' */
13440 len = eol - data;
13441 if (len % 2 != 0) {
13442 dtrace_dof_error(NULL, "invalid DOF encoding length");
13443 goto doferr;
13444 }
13445 bytes = len / 2;
13446 if (bytes < sizeof(dof_hdr_t)) {
13447 dtrace_dof_error(NULL, "truncated header");
13448 goto doferr;
13449 }
13450
13451 /*
13452 * Each byte is represented by the two ASCII characters in its hex
13453 * representation.
13454 */
13455 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13456 for (i = 0; i < bytes; i++) {
13457 c1 = dtrace_dof_char(data[i * 2]);
13458 c2 = dtrace_dof_char(data[i * 2 + 1]);
13459 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13460 dtrace_dof_error(NULL, "invalid hex char in DOF");
13461 goto doferr;
13462 }
13463 dofbuf[i] = c1 * 16 + c2;
13464 }
13465
13466 dof = (dof_hdr_t *)dofbuf;
13467 if (bytes < dof->dofh_loadsz) {
13468 dtrace_dof_error(NULL, "truncated DOF");
13469 goto doferr;
13470 }
13471
13472 if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13473 dtrace_dof_error(NULL, "oversized DOF");
13474 goto doferr;
13475 }
13476
13477 return (dof);
13478
13479 doferr:
13480 free(dof, M_SOLARIS);
13481 return (NULL);
13482 #else /* __FreeBSD__ */
13483 uchar_t *buf;
13484 uint64_t loadsz;
13485 unsigned int len, i;
13486 dof_hdr_t *dof;
13487
13488 /*
13489 * Unfortunately, array of values in .conf files are always (and
13490 * only) interpreted to be integer arrays. We must read our DOF
13491 * as an integer array, and then squeeze it into a byte array.
13492 */
13493 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13494 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13495 return (NULL);
13496
13497 for (i = 0; i < len; i++)
13498 buf[i] = (uchar_t)(((int *)buf)[i]);
13499
13500 if (len < sizeof (dof_hdr_t)) {
13501 ddi_prop_free(buf);
13502 dtrace_dof_error(NULL, "truncated header");
13503 return (NULL);
13504 }
13505
13506 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13507 ddi_prop_free(buf);
13508 dtrace_dof_error(NULL, "truncated DOF");
13509 return (NULL);
13510 }
13511
13512 if (loadsz >= dtrace_dof_maxsize) {
13513 ddi_prop_free(buf);
13514 dtrace_dof_error(NULL, "oversized DOF");
13515 return (NULL);
13516 }
13517
13518 dof = kmem_alloc(loadsz, KM_SLEEP);
13519 bcopy(buf, dof, loadsz);
13520 ddi_prop_free(buf);
13521
13522 return (dof);
13523 #endif /* !__FreeBSD__ */
13524 }
13525
13526 static void
13527 dtrace_dof_destroy(dof_hdr_t *dof)
13528 {
13529 kmem_free(dof, dof->dofh_loadsz);
13530 }
13531
13532 /*
13533 * Return the dof_sec_t pointer corresponding to a given section index. If the
13534 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
13535 * a type other than DOF_SECT_NONE is specified, the header is checked against
13536 * this type and NULL is returned if the types do not match.
13537 */
13538 static dof_sec_t *
13539 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13540 {
13541 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13542 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13543
13544 if (i >= dof->dofh_secnum) {
13545 dtrace_dof_error(dof, "referenced section index is invalid");
13546 return (NULL);
13547 }
13548
13549 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13550 dtrace_dof_error(dof, "referenced section is not loadable");
13551 return (NULL);
13552 }
13553
13554 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13555 dtrace_dof_error(dof, "referenced section is the wrong type");
13556 return (NULL);
13557 }
13558
13559 return (sec);
13560 }
13561
13562 static dtrace_probedesc_t *
13563 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13564 {
13565 dof_probedesc_t *probe;
13566 dof_sec_t *strtab;
13567 uintptr_t daddr = (uintptr_t)dof;
13568 uintptr_t str;
13569 size_t size;
13570
13571 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13572 dtrace_dof_error(dof, "invalid probe section");
13573 return (NULL);
13574 }
13575
13576 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13577 dtrace_dof_error(dof, "bad alignment in probe description");
13578 return (NULL);
13579 }
13580
13581 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13582 dtrace_dof_error(dof, "truncated probe description");
13583 return (NULL);
13584 }
13585
13586 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13587 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13588
13589 if (strtab == NULL)
13590 return (NULL);
13591
13592 str = daddr + strtab->dofs_offset;
13593 size = strtab->dofs_size;
13594
13595 if (probe->dofp_provider >= strtab->dofs_size) {
13596 dtrace_dof_error(dof, "corrupt probe provider");
13597 return (NULL);
13598 }
13599
13600 (void) strncpy(desc->dtpd_provider,
13601 (char *)(str + probe->dofp_provider),
13602 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13603
13604 if (probe->dofp_mod >= strtab->dofs_size) {
13605 dtrace_dof_error(dof, "corrupt probe module");
13606 return (NULL);
13607 }
13608
13609 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13610 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13611
13612 if (probe->dofp_func >= strtab->dofs_size) {
13613 dtrace_dof_error(dof, "corrupt probe function");
13614 return (NULL);
13615 }
13616
13617 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13618 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13619
13620 if (probe->dofp_name >= strtab->dofs_size) {
13621 dtrace_dof_error(dof, "corrupt probe name");
13622 return (NULL);
13623 }
13624
13625 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13626 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13627
13628 return (desc);
13629 }
13630
13631 static dtrace_difo_t *
13632 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13633 cred_t *cr)
13634 {
13635 dtrace_difo_t *dp;
13636 size_t ttl = 0;
13637 dof_difohdr_t *dofd;
13638 uintptr_t daddr = (uintptr_t)dof;
13639 size_t max = dtrace_difo_maxsize;
13640 int i, l, n;
13641
13642 static const struct {
13643 int section;
13644 int bufoffs;
13645 int lenoffs;
13646 int entsize;
13647 int align;
13648 const char *msg;
13649 } difo[] = {
13650 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13651 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13652 sizeof (dif_instr_t), "multiple DIF sections" },
13653
13654 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13655 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13656 sizeof (uint64_t), "multiple integer tables" },
13657
13658 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13659 offsetof(dtrace_difo_t, dtdo_strlen), 0,
13660 sizeof (char), "multiple string tables" },
13661
13662 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13663 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13664 sizeof (uint_t), "multiple variable tables" },
13665
13666 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13667 };
13668
13669 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13670 dtrace_dof_error(dof, "invalid DIFO header section");
13671 return (NULL);
13672 }
13673
13674 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13675 dtrace_dof_error(dof, "bad alignment in DIFO header");
13676 return (NULL);
13677 }
13678
13679 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13680 sec->dofs_size % sizeof (dof_secidx_t)) {
13681 dtrace_dof_error(dof, "bad size in DIFO header");
13682 return (NULL);
13683 }
13684
13685 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13686 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13687
13688 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13689 dp->dtdo_rtype = dofd->dofd_rtype;
13690
13691 for (l = 0; l < n; l++) {
13692 dof_sec_t *subsec;
13693 void **bufp;
13694 uint32_t *lenp;
13695
13696 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13697 dofd->dofd_links[l])) == NULL)
13698 goto err; /* invalid section link */
13699
13700 if (ttl + subsec->dofs_size > max) {
13701 dtrace_dof_error(dof, "exceeds maximum size");
13702 goto err;
13703 }
13704
13705 ttl += subsec->dofs_size;
13706
13707 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13708 if (subsec->dofs_type != difo[i].section)
13709 continue;
13710
13711 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13712 dtrace_dof_error(dof, "section not loaded");
13713 goto err;
13714 }
13715
13716 if (subsec->dofs_align != difo[i].align) {
13717 dtrace_dof_error(dof, "bad alignment");
13718 goto err;
13719 }
13720
13721 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13722 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13723
13724 if (*bufp != NULL) {
13725 dtrace_dof_error(dof, difo[i].msg);
13726 goto err;
13727 }
13728
13729 if (difo[i].entsize != subsec->dofs_entsize) {
13730 dtrace_dof_error(dof, "entry size mismatch");
13731 goto err;
13732 }
13733
13734 if (subsec->dofs_entsize != 0 &&
13735 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13736 dtrace_dof_error(dof, "corrupt entry size");
13737 goto err;
13738 }
13739
13740 *lenp = subsec->dofs_size;
13741 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13742 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13743 *bufp, subsec->dofs_size);
13744
13745 if (subsec->dofs_entsize != 0)
13746 *lenp /= subsec->dofs_entsize;
13747
13748 break;
13749 }
13750
13751 /*
13752 * If we encounter a loadable DIFO sub-section that is not
13753 * known to us, assume this is a broken program and fail.
13754 */
13755 if (difo[i].section == DOF_SECT_NONE &&
13756 (subsec->dofs_flags & DOF_SECF_LOAD)) {
13757 dtrace_dof_error(dof, "unrecognized DIFO subsection");
13758 goto err;
13759 }
13760 }
13761
13762 if (dp->dtdo_buf == NULL) {
13763 /*
13764 * We can't have a DIF object without DIF text.
13765 */
13766 dtrace_dof_error(dof, "missing DIF text");
13767 goto err;
13768 }
13769
13770 /*
13771 * Before we validate the DIF object, run through the variable table
13772 * looking for the strings -- if any of their size are under, we'll set
13773 * their size to be the system-wide default string size. Note that
13774 * this should _not_ happen if the "strsize" option has been set --
13775 * in this case, the compiler should have set the size to reflect the
13776 * setting of the option.
13777 */
13778 for (i = 0; i < dp->dtdo_varlen; i++) {
13779 dtrace_difv_t *v = &dp->dtdo_vartab[i];
13780 dtrace_diftype_t *t = &v->dtdv_type;
13781
13782 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13783 continue;
13784
13785 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13786 t->dtdt_size = dtrace_strsize_default;
13787 }
13788
13789 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13790 goto err;
13791
13792 dtrace_difo_init(dp, vstate);
13793 return (dp);
13794
13795 err:
13796 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13797 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13798 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13799 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13800
13801 kmem_free(dp, sizeof (dtrace_difo_t));
13802 return (NULL);
13803 }
13804
13805 static dtrace_predicate_t *
13806 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13807 cred_t *cr)
13808 {
13809 dtrace_difo_t *dp;
13810
13811 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13812 return (NULL);
13813
13814 return (dtrace_predicate_create(dp));
13815 }
13816
13817 static dtrace_actdesc_t *
13818 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13819 cred_t *cr)
13820 {
13821 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13822 dof_actdesc_t *desc;
13823 dof_sec_t *difosec;
13824 size_t offs;
13825 uintptr_t daddr = (uintptr_t)dof;
13826 uint64_t arg;
13827 dtrace_actkind_t kind;
13828
13829 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13830 dtrace_dof_error(dof, "invalid action section");
13831 return (NULL);
13832 }
13833
13834 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13835 dtrace_dof_error(dof, "truncated action description");
13836 return (NULL);
13837 }
13838
13839 if (sec->dofs_align != sizeof (uint64_t)) {
13840 dtrace_dof_error(dof, "bad alignment in action description");
13841 return (NULL);
13842 }
13843
13844 if (sec->dofs_size < sec->dofs_entsize) {
13845 dtrace_dof_error(dof, "section entry size exceeds total size");
13846 return (NULL);
13847 }
13848
13849 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13850 dtrace_dof_error(dof, "bad entry size in action description");
13851 return (NULL);
13852 }
13853
13854 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13855 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13856 return (NULL);
13857 }
13858
13859 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13860 desc = (dof_actdesc_t *)(daddr +
13861 (uintptr_t)sec->dofs_offset + offs);
13862 kind = (dtrace_actkind_t)desc->dofa_kind;
13863
13864 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13865 (kind != DTRACEACT_PRINTA ||
13866 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13867 (kind == DTRACEACT_DIFEXPR &&
13868 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13869 dof_sec_t *strtab;
13870 char *str, *fmt;
13871 uint64_t i;
13872
13873 /*
13874 * The argument to these actions is an index into the
13875 * DOF string table. For printf()-like actions, this
13876 * is the format string. For print(), this is the
13877 * CTF type of the expression result.
13878 */
13879 if ((strtab = dtrace_dof_sect(dof,
13880 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13881 goto err;
13882
13883 str = (char *)((uintptr_t)dof +
13884 (uintptr_t)strtab->dofs_offset);
13885
13886 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13887 if (str[i] == '\0')
13888 break;
13889 }
13890
13891 if (i >= strtab->dofs_size) {
13892 dtrace_dof_error(dof, "bogus format string");
13893 goto err;
13894 }
13895
13896 if (i == desc->dofa_arg) {
13897 dtrace_dof_error(dof, "empty format string");
13898 goto err;
13899 }
13900
13901 i -= desc->dofa_arg;
13902 fmt = kmem_alloc(i + 1, KM_SLEEP);
13903 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13904 arg = (uint64_t)(uintptr_t)fmt;
13905 } else {
13906 if (kind == DTRACEACT_PRINTA) {
13907 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13908 arg = 0;
13909 } else {
13910 arg = desc->dofa_arg;
13911 }
13912 }
13913
13914 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13915 desc->dofa_uarg, arg);
13916
13917 if (last != NULL) {
13918 last->dtad_next = act;
13919 } else {
13920 first = act;
13921 }
13922
13923 last = act;
13924
13925 if (desc->dofa_difo == DOF_SECIDX_NONE)
13926 continue;
13927
13928 if ((difosec = dtrace_dof_sect(dof,
13929 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13930 goto err;
13931
13932 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13933
13934 if (act->dtad_difo == NULL)
13935 goto err;
13936 }
13937
13938 ASSERT(first != NULL);
13939 return (first);
13940
13941 err:
13942 for (act = first; act != NULL; act = next) {
13943 next = act->dtad_next;
13944 dtrace_actdesc_release(act, vstate);
13945 }
13946
13947 return (NULL);
13948 }
13949
13950 static dtrace_ecbdesc_t *
13951 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13952 cred_t *cr)
13953 {
13954 dtrace_ecbdesc_t *ep;
13955 dof_ecbdesc_t *ecb;
13956 dtrace_probedesc_t *desc;
13957 dtrace_predicate_t *pred = NULL;
13958
13959 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13960 dtrace_dof_error(dof, "truncated ECB description");
13961 return (NULL);
13962 }
13963
13964 if (sec->dofs_align != sizeof (uint64_t)) {
13965 dtrace_dof_error(dof, "bad alignment in ECB description");
13966 return (NULL);
13967 }
13968
13969 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13970 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13971
13972 if (sec == NULL)
13973 return (NULL);
13974
13975 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13976 ep->dted_uarg = ecb->dofe_uarg;
13977 desc = &ep->dted_probe;
13978
13979 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13980 goto err;
13981
13982 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13983 if ((sec = dtrace_dof_sect(dof,
13984 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13985 goto err;
13986
13987 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13988 goto err;
13989
13990 ep->dted_pred.dtpdd_predicate = pred;
13991 }
13992
13993 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13994 if ((sec = dtrace_dof_sect(dof,
13995 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13996 goto err;
13997
13998 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13999
14000 if (ep->dted_action == NULL)
14001 goto err;
14002 }
14003
14004 return (ep);
14005
14006 err:
14007 if (pred != NULL)
14008 dtrace_predicate_release(pred, vstate);
14009 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14010 return (NULL);
14011 }
14012
14013 /*
14014 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14015 * specified DOF. SETX relocations are computed using 'ubase', the base load
14016 * address of the object containing the DOF, and DOFREL relocations are relative
14017 * to the relocation offset within the DOF.
14018 */
14019 static int
14020 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14021 uint64_t udaddr)
14022 {
14023 uintptr_t daddr = (uintptr_t)dof;
14024 uintptr_t ts_end;
14025 dof_relohdr_t *dofr =
14026 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14027 dof_sec_t *ss, *rs, *ts;
14028 dof_relodesc_t *r;
14029 uint_t i, n;
14030
14031 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14032 sec->dofs_align != sizeof (dof_secidx_t)) {
14033 dtrace_dof_error(dof, "invalid relocation header");
14034 return (-1);
14035 }
14036
14037 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14038 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14039 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14040 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14041
14042 if (ss == NULL || rs == NULL || ts == NULL)
14043 return (-1); /* dtrace_dof_error() has been called already */
14044
14045 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14046 rs->dofs_align != sizeof (uint64_t)) {
14047 dtrace_dof_error(dof, "invalid relocation section");
14048 return (-1);
14049 }
14050
14051 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14052 n = rs->dofs_size / rs->dofs_entsize;
14053
14054 for (i = 0; i < n; i++) {
14055 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14056
14057 switch (r->dofr_type) {
14058 case DOF_RELO_NONE:
14059 break;
14060 case DOF_RELO_SETX:
14061 case DOF_RELO_DOFREL:
14062 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14063 sizeof (uint64_t) > ts->dofs_size) {
14064 dtrace_dof_error(dof, "bad relocation offset");
14065 return (-1);
14066 }
14067
14068 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14069 dtrace_dof_error(dof, "bad relocation offset");
14070 return (-1);
14071 }
14072
14073 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14074 dtrace_dof_error(dof, "misaligned setx relo");
14075 return (-1);
14076 }
14077
14078 if (r->dofr_type == DOF_RELO_SETX)
14079 *(uint64_t *)taddr += ubase;
14080 else
14081 *(uint64_t *)taddr +=
14082 udaddr + ts->dofs_offset + r->dofr_offset;
14083 break;
14084 default:
14085 dtrace_dof_error(dof, "invalid relocation type");
14086 return (-1);
14087 }
14088
14089 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14090 }
14091
14092 return (0);
14093 }
14094
14095 /*
14096 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14097 * header: it should be at the front of a memory region that is at least
14098 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14099 * size. It need not be validated in any other way.
14100 */
14101 static int
14102 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14103 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14104 {
14105 uint64_t len = dof->dofh_loadsz, seclen;
14106 uintptr_t daddr = (uintptr_t)dof;
14107 dtrace_ecbdesc_t *ep;
14108 dtrace_enabling_t *enab;
14109 uint_t i;
14110
14111 ASSERT(MUTEX_HELD(&dtrace_lock));
14112 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14113
14114 /*
14115 * Check the DOF header identification bytes. In addition to checking
14116 * valid settings, we also verify that unused bits/bytes are zeroed so
14117 * we can use them later without fear of regressing existing binaries.
14118 */
14119 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14120 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14121 dtrace_dof_error(dof, "DOF magic string mismatch");
14122 return (-1);
14123 }
14124
14125 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14126 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14127 dtrace_dof_error(dof, "DOF has invalid data model");
14128 return (-1);
14129 }
14130
14131 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14132 dtrace_dof_error(dof, "DOF encoding mismatch");
14133 return (-1);
14134 }
14135
14136 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14137 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14138 dtrace_dof_error(dof, "DOF version mismatch");
14139 return (-1);
14140 }
14141
14142 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14143 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14144 return (-1);
14145 }
14146
14147 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14148 dtrace_dof_error(dof, "DOF uses too many integer registers");
14149 return (-1);
14150 }
14151
14152 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14153 dtrace_dof_error(dof, "DOF uses too many tuple registers");
14154 return (-1);
14155 }
14156
14157 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14158 if (dof->dofh_ident[i] != 0) {
14159 dtrace_dof_error(dof, "DOF has invalid ident byte set");
14160 return (-1);
14161 }
14162 }
14163
14164 if (dof->dofh_flags & ~DOF_FL_VALID) {
14165 dtrace_dof_error(dof, "DOF has invalid flag bits set");
14166 return (-1);
14167 }
14168
14169 if (dof->dofh_secsize == 0) {
14170 dtrace_dof_error(dof, "zero section header size");
14171 return (-1);
14172 }
14173
14174 /*
14175 * Check that the section headers don't exceed the amount of DOF
14176 * data. Note that we cast the section size and number of sections
14177 * to uint64_t's to prevent possible overflow in the multiplication.
14178 */
14179 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14180
14181 if (dof->dofh_secoff > len || seclen > len ||
14182 dof->dofh_secoff + seclen > len) {
14183 dtrace_dof_error(dof, "truncated section headers");
14184 return (-1);
14185 }
14186
14187 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14188 dtrace_dof_error(dof, "misaligned section headers");
14189 return (-1);
14190 }
14191
14192 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14193 dtrace_dof_error(dof, "misaligned section size");
14194 return (-1);
14195 }
14196
14197 /*
14198 * Take an initial pass through the section headers to be sure that
14199 * the headers don't have stray offsets. If the 'noprobes' flag is
14200 * set, do not permit sections relating to providers, probes, or args.
14201 */
14202 for (i = 0; i < dof->dofh_secnum; i++) {
14203 dof_sec_t *sec = (dof_sec_t *)(daddr +
14204 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14205
14206 if (noprobes) {
14207 switch (sec->dofs_type) {
14208 case DOF_SECT_PROVIDER:
14209 case DOF_SECT_PROBES:
14210 case DOF_SECT_PRARGS:
14211 case DOF_SECT_PROFFS:
14212 dtrace_dof_error(dof, "illegal sections "
14213 "for enabling");
14214 return (-1);
14215 }
14216 }
14217
14218 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14219 !(sec->dofs_flags & DOF_SECF_LOAD)) {
14220 dtrace_dof_error(dof, "loadable section with load "
14221 "flag unset");
14222 return (-1);
14223 }
14224
14225 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14226 continue; /* just ignore non-loadable sections */
14227
14228 if (!ISP2(sec->dofs_align)) {
14229 dtrace_dof_error(dof, "bad section alignment");
14230 return (-1);
14231 }
14232
14233 if (sec->dofs_offset & (sec->dofs_align - 1)) {
14234 dtrace_dof_error(dof, "misaligned section");
14235 return (-1);
14236 }
14237
14238 if (sec->dofs_offset > len || sec->dofs_size > len ||
14239 sec->dofs_offset + sec->dofs_size > len) {
14240 dtrace_dof_error(dof, "corrupt section header");
14241 return (-1);
14242 }
14243
14244 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14245 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14246 dtrace_dof_error(dof, "non-terminating string table");
14247 return (-1);
14248 }
14249 }
14250
14251 /*
14252 * Take a second pass through the sections and locate and perform any
14253 * relocations that are present. We do this after the first pass to
14254 * be sure that all sections have had their headers validated.
14255 */
14256 for (i = 0; i < dof->dofh_secnum; i++) {
14257 dof_sec_t *sec = (dof_sec_t *)(daddr +
14258 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14259
14260 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14261 continue; /* skip sections that are not loadable */
14262
14263 switch (sec->dofs_type) {
14264 case DOF_SECT_URELHDR:
14265 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14266 return (-1);
14267 break;
14268 }
14269 }
14270
14271 if ((enab = *enabp) == NULL)
14272 enab = *enabp = dtrace_enabling_create(vstate);
14273
14274 for (i = 0; i < dof->dofh_secnum; i++) {
14275 dof_sec_t *sec = (dof_sec_t *)(daddr +
14276 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14277
14278 if (sec->dofs_type != DOF_SECT_ECBDESC)
14279 continue;
14280
14281 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14282 dtrace_enabling_destroy(enab);
14283 *enabp = NULL;
14284 return (-1);
14285 }
14286
14287 dtrace_enabling_add(enab, ep);
14288 }
14289
14290 return (0);
14291 }
14292
14293 /*
14294 * Process DOF for any options. This routine assumes that the DOF has been
14295 * at least processed by dtrace_dof_slurp().
14296 */
14297 static int
14298 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14299 {
14300 int i, rval;
14301 uint32_t entsize;
14302 size_t offs;
14303 dof_optdesc_t *desc;
14304
14305 for (i = 0; i < dof->dofh_secnum; i++) {
14306 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14307 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14308
14309 if (sec->dofs_type != DOF_SECT_OPTDESC)
14310 continue;
14311
14312 if (sec->dofs_align != sizeof (uint64_t)) {
14313 dtrace_dof_error(dof, "bad alignment in "
14314 "option description");
14315 return (EINVAL);
14316 }
14317
14318 if ((entsize = sec->dofs_entsize) == 0) {
14319 dtrace_dof_error(dof, "zeroed option entry size");
14320 return (EINVAL);
14321 }
14322
14323 if (entsize < sizeof (dof_optdesc_t)) {
14324 dtrace_dof_error(dof, "bad option entry size");
14325 return (EINVAL);
14326 }
14327
14328 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14329 desc = (dof_optdesc_t *)((uintptr_t)dof +
14330 (uintptr_t)sec->dofs_offset + offs);
14331
14332 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14333 dtrace_dof_error(dof, "non-zero option string");
14334 return (EINVAL);
14335 }
14336
14337 if (desc->dofo_value == DTRACEOPT_UNSET) {
14338 dtrace_dof_error(dof, "unset option");
14339 return (EINVAL);
14340 }
14341
14342 if ((rval = dtrace_state_option(state,
14343 desc->dofo_option, desc->dofo_value)) != 0) {
14344 dtrace_dof_error(dof, "rejected option");
14345 return (rval);
14346 }
14347 }
14348 }
14349
14350 return (0);
14351 }
14352
14353 /*
14354 * DTrace Consumer State Functions
14355 */
14356 static int
14357 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14358 {
14359 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14360 void *base;
14361 uintptr_t limit;
14362 dtrace_dynvar_t *dvar, *next, *start;
14363 int i;
14364
14365 ASSERT(MUTEX_HELD(&dtrace_lock));
14366 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14367
14368 bzero(dstate, sizeof (dtrace_dstate_t));
14369
14370 if ((dstate->dtds_chunksize = chunksize) == 0)
14371 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14372
14373 VERIFY(dstate->dtds_chunksize < LONG_MAX);
14374
14375 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14376 size = min;
14377
14378 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14379 return (ENOMEM);
14380
14381 dstate->dtds_size = size;
14382 dstate->dtds_base = base;
14383 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14384 bzero(dstate->dtds_percpu,
14385 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t));
14386
14387 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14388
14389 if (hashsize != 1 && (hashsize & 1))
14390 hashsize--;
14391
14392 dstate->dtds_hashsize = hashsize;
14393 dstate->dtds_hash = dstate->dtds_base;
14394
14395 /*
14396 * Set all of our hash buckets to point to the single sink, and (if
14397 * it hasn't already been set), set the sink's hash value to be the
14398 * sink sentinel value. The sink is needed for dynamic variable
14399 * lookups to know that they have iterated over an entire, valid hash
14400 * chain.
14401 */
14402 for (i = 0; i < hashsize; i++)
14403 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14404
14405 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14406 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14407
14408 /*
14409 * Determine number of active CPUs. Divide free list evenly among
14410 * active CPUs.
14411 */
14412 start = (dtrace_dynvar_t *)
14413 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14414 limit = (uintptr_t)base + size;
14415
14416 VERIFY((uintptr_t)start < limit);
14417 VERIFY((uintptr_t)start >= (uintptr_t)base);
14418
14419 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1);
14420 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14421
14422 CPU_FOREACH(i) {
14423 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14424
14425 /*
14426 * If we don't even have enough chunks to make it once through
14427 * NCPUs, we're just going to allocate everything to the first
14428 * CPU. And if we're on the last CPU, we're going to allocate
14429 * whatever is left over. In either case, we set the limit to
14430 * be the limit of the dynamic variable space.
14431 */
14432 if (maxper == 0 || i == mp_maxid) {
14433 limit = (uintptr_t)base + size;
14434 start = NULL;
14435 } else {
14436 limit = (uintptr_t)start + maxper;
14437 start = (dtrace_dynvar_t *)limit;
14438 }
14439
14440 VERIFY(limit <= (uintptr_t)base + size);
14441
14442 for (;;) {
14443 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14444 dstate->dtds_chunksize);
14445
14446 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14447 break;
14448
14449 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14450 (uintptr_t)dvar <= (uintptr_t)base + size);
14451 dvar->dtdv_next = next;
14452 dvar = next;
14453 }
14454
14455 if (maxper == 0)
14456 break;
14457 }
14458
14459 return (0);
14460 }
14461
14462 static void
14463 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14464 {
14465 ASSERT(MUTEX_HELD(&cpu_lock));
14466
14467 if (dstate->dtds_base == NULL)
14468 return;
14469
14470 kmem_free(dstate->dtds_base, dstate->dtds_size);
14471 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14472 }
14473
14474 static void
14475 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14476 {
14477 /*
14478 * Logical XOR, where are you?
14479 */
14480 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14481
14482 if (vstate->dtvs_nglobals > 0) {
14483 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14484 sizeof (dtrace_statvar_t *));
14485 }
14486
14487 if (vstate->dtvs_ntlocals > 0) {
14488 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14489 sizeof (dtrace_difv_t));
14490 }
14491
14492 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14493
14494 if (vstate->dtvs_nlocals > 0) {
14495 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14496 sizeof (dtrace_statvar_t *));
14497 }
14498 }
14499
14500 #ifdef illumos
14501 static void
14502 dtrace_state_clean(dtrace_state_t *state)
14503 {
14504 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14505 return;
14506
14507 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14508 dtrace_speculation_clean(state);
14509 }
14510
14511 static void
14512 dtrace_state_deadman(dtrace_state_t *state)
14513 {
14514 hrtime_t now;
14515
14516 dtrace_sync();
14517
14518 now = dtrace_gethrtime();
14519
14520 if (state != dtrace_anon.dta_state &&
14521 now - state->dts_laststatus >= dtrace_deadman_user)
14522 return;
14523
14524 /*
14525 * We must be sure that dts_alive never appears to be less than the
14526 * value upon entry to dtrace_state_deadman(), and because we lack a
14527 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14528 * store INT64_MAX to it, followed by a memory barrier, followed by
14529 * the new value. This assures that dts_alive never appears to be
14530 * less than its true value, regardless of the order in which the
14531 * stores to the underlying storage are issued.
14532 */
14533 state->dts_alive = INT64_MAX;
14534 dtrace_membar_producer();
14535 state->dts_alive = now;
14536 }
14537 #else /* !illumos */
14538 static void
14539 dtrace_state_clean(void *arg)
14540 {
14541 dtrace_state_t *state = arg;
14542 dtrace_optval_t *opt = state->dts_options;
14543
14544 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14545 return;
14546
14547 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14548 dtrace_speculation_clean(state);
14549
14550 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14551 dtrace_state_clean, state);
14552 }
14553
14554 static void
14555 dtrace_state_deadman(void *arg)
14556 {
14557 dtrace_state_t *state = arg;
14558 hrtime_t now;
14559
14560 dtrace_sync();
14561
14562 dtrace_debug_output();
14563
14564 now = dtrace_gethrtime();
14565
14566 if (state != dtrace_anon.dta_state &&
14567 now - state->dts_laststatus >= dtrace_deadman_user)
14568 return;
14569
14570 /*
14571 * We must be sure that dts_alive never appears to be less than the
14572 * value upon entry to dtrace_state_deadman(), and because we lack a
14573 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14574 * store INT64_MAX to it, followed by a memory barrier, followed by
14575 * the new value. This assures that dts_alive never appears to be
14576 * less than its true value, regardless of the order in which the
14577 * stores to the underlying storage are issued.
14578 */
14579 state->dts_alive = INT64_MAX;
14580 dtrace_membar_producer();
14581 state->dts_alive = now;
14582
14583 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14584 dtrace_state_deadman, state);
14585 }
14586 #endif /* illumos */
14587
14588 static dtrace_state_t *
14589 #ifdef illumos
14590 dtrace_state_create(dev_t *devp, cred_t *cr)
14591 #else
14592 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14593 #endif
14594 {
14595 #ifdef illumos
14596 minor_t minor;
14597 major_t major;
14598 #else
14599 cred_t *cr = NULL;
14600 int m = 0;
14601 #endif
14602 char c[30];
14603 dtrace_state_t *state;
14604 dtrace_optval_t *opt;
14605 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i;
14606 int cpu_it;
14607
14608 ASSERT(MUTEX_HELD(&dtrace_lock));
14609 ASSERT(MUTEX_HELD(&cpu_lock));
14610
14611 #ifdef illumos
14612 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14613 VM_BESTFIT | VM_SLEEP);
14614
14615 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14616 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14617 return (NULL);
14618 }
14619
14620 state = ddi_get_soft_state(dtrace_softstate, minor);
14621 #else
14622 if (dev != NULL) {
14623 cr = dev->si_cred;
14624 m = dev2unit(dev);
14625 }
14626
14627 /* Allocate memory for the state. */
14628 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14629 #endif
14630
14631 state->dts_epid = DTRACE_EPIDNONE + 1;
14632
14633 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14634 #ifdef illumos
14635 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14636 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14637
14638 if (devp != NULL) {
14639 major = getemajor(*devp);
14640 } else {
14641 major = ddi_driver_major(dtrace_devi);
14642 }
14643
14644 state->dts_dev = makedevice(major, minor);
14645
14646 if (devp != NULL)
14647 *devp = state->dts_dev;
14648 #else
14649 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14650 state->dts_dev = dev;
14651 #endif
14652
14653 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14654 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14655
14656 /*
14657 * Allocate and initialise the per-process per-CPU random state.
14658 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14659 * assumed to be seeded at this point (if from Fortuna seed file).
14660 */
14661 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14662 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) {
14663 /*
14664 * Each CPU is assigned a 2^64 period, non-overlapping
14665 * subsequence.
14666 */
14667 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1],
14668 state->dts_rstate[cpu_it]);
14669 }
14670
14671 #ifdef illumos
14672 state->dts_cleaner = CYCLIC_NONE;
14673 state->dts_deadman = CYCLIC_NONE;
14674 #else
14675 callout_init(&state->dts_cleaner, 1);
14676 callout_init(&state->dts_deadman, 1);
14677 #endif
14678 state->dts_vstate.dtvs_state = state;
14679
14680 for (i = 0; i < DTRACEOPT_MAX; i++)
14681 state->dts_options[i] = DTRACEOPT_UNSET;
14682
14683 /*
14684 * Set the default options.
14685 */
14686 opt = state->dts_options;
14687 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14688 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14689 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14690 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14691 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14692 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14693 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14694 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14695 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14696 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14697 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14698 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14699 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14700 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14701
14702 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14703
14704 /*
14705 * Depending on the user credentials, we set flag bits which alter probe
14706 * visibility or the amount of destructiveness allowed. In the case of
14707 * actual anonymous tracing, or the possession of all privileges, all of
14708 * the normal checks are bypassed.
14709 */
14710 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14711 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14712 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14713 } else {
14714 /*
14715 * Set up the credentials for this instantiation. We take a
14716 * hold on the credential to prevent it from disappearing on
14717 * us; this in turn prevents the zone_t referenced by this
14718 * credential from disappearing. This means that we can
14719 * examine the credential and the zone from probe context.
14720 */
14721 crhold(cr);
14722 state->dts_cred.dcr_cred = cr;
14723
14724 /*
14725 * CRA_PROC means "we have *some* privilege for dtrace" and
14726 * unlocks the use of variables like pid, zonename, etc.
14727 */
14728 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14729 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14730 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14731 }
14732
14733 /*
14734 * dtrace_user allows use of syscall and profile providers.
14735 * If the user also has proc_owner and/or proc_zone, we
14736 * extend the scope to include additional visibility and
14737 * destructive power.
14738 */
14739 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14740 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14741 state->dts_cred.dcr_visible |=
14742 DTRACE_CRV_ALLPROC;
14743
14744 state->dts_cred.dcr_action |=
14745 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14746 }
14747
14748 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14749 state->dts_cred.dcr_visible |=
14750 DTRACE_CRV_ALLZONE;
14751
14752 state->dts_cred.dcr_action |=
14753 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14754 }
14755
14756 /*
14757 * If we have all privs in whatever zone this is,
14758 * we can do destructive things to processes which
14759 * have altered credentials.
14760 */
14761 #ifdef illumos
14762 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14763 cr->cr_zone->zone_privset)) {
14764 state->dts_cred.dcr_action |=
14765 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14766 }
14767 #endif
14768 }
14769
14770 /*
14771 * Holding the dtrace_kernel privilege also implies that
14772 * the user has the dtrace_user privilege from a visibility
14773 * perspective. But without further privileges, some
14774 * destructive actions are not available.
14775 */
14776 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14777 /*
14778 * Make all probes in all zones visible. However,
14779 * this doesn't mean that all actions become available
14780 * to all zones.
14781 */
14782 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14783 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14784
14785 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14786 DTRACE_CRA_PROC;
14787 /*
14788 * Holding proc_owner means that destructive actions
14789 * for *this* zone are allowed.
14790 */
14791 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14792 state->dts_cred.dcr_action |=
14793 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14794
14795 /*
14796 * Holding proc_zone means that destructive actions
14797 * for this user/group ID in all zones is allowed.
14798 */
14799 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14800 state->dts_cred.dcr_action |=
14801 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14802
14803 #ifdef illumos
14804 /*
14805 * If we have all privs in whatever zone this is,
14806 * we can do destructive things to processes which
14807 * have altered credentials.
14808 */
14809 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14810 cr->cr_zone->zone_privset)) {
14811 state->dts_cred.dcr_action |=
14812 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14813 }
14814 #endif
14815 }
14816
14817 /*
14818 * Holding the dtrace_proc privilege gives control over fasttrap
14819 * and pid providers. We need to grant wider destructive
14820 * privileges in the event that the user has proc_owner and/or
14821 * proc_zone.
14822 */
14823 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14824 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14825 state->dts_cred.dcr_action |=
14826 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14827
14828 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14829 state->dts_cred.dcr_action |=
14830 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14831 }
14832 }
14833
14834 return (state);
14835 }
14836
14837 static int
14838 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14839 {
14840 dtrace_optval_t *opt = state->dts_options, size;
14841 processorid_t cpu = 0;
14842 int flags = 0, rval, factor, divisor = 1;
14843
14844 ASSERT(MUTEX_HELD(&dtrace_lock));
14845 ASSERT(MUTEX_HELD(&cpu_lock));
14846 ASSERT(which < DTRACEOPT_MAX);
14847 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14848 (state == dtrace_anon.dta_state &&
14849 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14850
14851 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14852 return (0);
14853
14854 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14855 cpu = opt[DTRACEOPT_CPU];
14856
14857 if (which == DTRACEOPT_SPECSIZE)
14858 flags |= DTRACEBUF_NOSWITCH;
14859
14860 if (which == DTRACEOPT_BUFSIZE) {
14861 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14862 flags |= DTRACEBUF_RING;
14863
14864 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14865 flags |= DTRACEBUF_FILL;
14866
14867 if (state != dtrace_anon.dta_state ||
14868 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14869 flags |= DTRACEBUF_INACTIVE;
14870 }
14871
14872 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14873 /*
14874 * The size must be 8-byte aligned. If the size is not 8-byte
14875 * aligned, drop it down by the difference.
14876 */
14877 if (size & (sizeof (uint64_t) - 1))
14878 size -= size & (sizeof (uint64_t) - 1);
14879
14880 if (size < state->dts_reserve) {
14881 /*
14882 * Buffers always must be large enough to accommodate
14883 * their prereserved space. We return E2BIG instead
14884 * of ENOMEM in this case to allow for user-level
14885 * software to differentiate the cases.
14886 */
14887 return (E2BIG);
14888 }
14889
14890 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14891
14892 if (rval != ENOMEM) {
14893 opt[which] = size;
14894 return (rval);
14895 }
14896
14897 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14898 return (rval);
14899
14900 for (divisor = 2; divisor < factor; divisor <<= 1)
14901 continue;
14902 }
14903
14904 return (ENOMEM);
14905 }
14906
14907 static int
14908 dtrace_state_buffers(dtrace_state_t *state)
14909 {
14910 dtrace_speculation_t *spec = state->dts_speculations;
14911 int rval, i;
14912
14913 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14914 DTRACEOPT_BUFSIZE)) != 0)
14915 return (rval);
14916
14917 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14918 DTRACEOPT_AGGSIZE)) != 0)
14919 return (rval);
14920
14921 for (i = 0; i < state->dts_nspeculations; i++) {
14922 if ((rval = dtrace_state_buffer(state,
14923 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14924 return (rval);
14925 }
14926
14927 return (0);
14928 }
14929
14930 static void
14931 dtrace_state_prereserve(dtrace_state_t *state)
14932 {
14933 dtrace_ecb_t *ecb;
14934 dtrace_probe_t *probe;
14935
14936 state->dts_reserve = 0;
14937
14938 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14939 return;
14940
14941 /*
14942 * If our buffer policy is a "fill" buffer policy, we need to set the
14943 * prereserved space to be the space required by the END probes.
14944 */
14945 probe = dtrace_probes[dtrace_probeid_end - 1];
14946 ASSERT(probe != NULL);
14947
14948 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14949 if (ecb->dte_state != state)
14950 continue;
14951
14952 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14953 }
14954 }
14955
14956 static int
14957 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14958 {
14959 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14960 dtrace_speculation_t *spec;
14961 dtrace_buffer_t *buf;
14962 #ifdef illumos
14963 cyc_handler_t hdlr;
14964 cyc_time_t when;
14965 #endif
14966 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
14967 dtrace_icookie_t cookie;
14968
14969 mutex_enter(&cpu_lock);
14970 mutex_enter(&dtrace_lock);
14971
14972 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14973 rval = EBUSY;
14974 goto out;
14975 }
14976
14977 /*
14978 * Before we can perform any checks, we must prime all of the
14979 * retained enablings that correspond to this state.
14980 */
14981 dtrace_enabling_prime(state);
14982
14983 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14984 rval = EACCES;
14985 goto out;
14986 }
14987
14988 dtrace_state_prereserve(state);
14989
14990 /*
14991 * Now we want to do is try to allocate our speculations.
14992 * We do not automatically resize the number of speculations; if
14993 * this fails, we will fail the operation.
14994 */
14995 nspec = opt[DTRACEOPT_NSPEC];
14996 ASSERT(nspec != DTRACEOPT_UNSET);
14997
14998 if (nspec > INT_MAX) {
14999 rval = ENOMEM;
15000 goto out;
15001 }
15002
15003 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15004 KM_NOSLEEP | KM_NORMALPRI);
15005
15006 if (spec == NULL) {
15007 rval = ENOMEM;
15008 goto out;
15009 }
15010
15011 state->dts_speculations = spec;
15012 state->dts_nspeculations = (int)nspec;
15013
15014 for (i = 0; i < nspec; i++) {
15015 if ((buf = kmem_zalloc(bufsize,
15016 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15017 rval = ENOMEM;
15018 goto err;
15019 }
15020
15021 spec[i].dtsp_buffer = buf;
15022 }
15023
15024 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15025 if (dtrace_anon.dta_state == NULL) {
15026 rval = ENOENT;
15027 goto out;
15028 }
15029
15030 if (state->dts_necbs != 0) {
15031 rval = EALREADY;
15032 goto out;
15033 }
15034
15035 state->dts_anon = dtrace_anon_grab();
15036 ASSERT(state->dts_anon != NULL);
15037 state = state->dts_anon;
15038
15039 /*
15040 * We want "grabanon" to be set in the grabbed state, so we'll
15041 * copy that option value from the grabbing state into the
15042 * grabbed state.
15043 */
15044 state->dts_options[DTRACEOPT_GRABANON] =
15045 opt[DTRACEOPT_GRABANON];
15046
15047 *cpu = dtrace_anon.dta_beganon;
15048
15049 /*
15050 * If the anonymous state is active (as it almost certainly
15051 * is if the anonymous enabling ultimately matched anything),
15052 * we don't allow any further option processing -- but we
15053 * don't return failure.
15054 */
15055 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15056 goto out;
15057 }
15058
15059 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15060 opt[DTRACEOPT_AGGSIZE] != 0) {
15061 if (state->dts_aggregations == NULL) {
15062 /*
15063 * We're not going to create an aggregation buffer
15064 * because we don't have any ECBs that contain
15065 * aggregations -- set this option to 0.
15066 */
15067 opt[DTRACEOPT_AGGSIZE] = 0;
15068 } else {
15069 /*
15070 * If we have an aggregation buffer, we must also have
15071 * a buffer to use as scratch.
15072 */
15073 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15074 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15075 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15076 }
15077 }
15078 }
15079
15080 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15081 opt[DTRACEOPT_SPECSIZE] != 0) {
15082 if (!state->dts_speculates) {
15083 /*
15084 * We're not going to create speculation buffers
15085 * because we don't have any ECBs that actually
15086 * speculate -- set the speculation size to 0.
15087 */
15088 opt[DTRACEOPT_SPECSIZE] = 0;
15089 }
15090 }
15091
15092 /*
15093 * The bare minimum size for any buffer that we're actually going to
15094 * do anything to is sizeof (uint64_t).
15095 */
15096 sz = sizeof (uint64_t);
15097
15098 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15099 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15100 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15101 /*
15102 * A buffer size has been explicitly set to 0 (or to a size
15103 * that will be adjusted to 0) and we need the space -- we
15104 * need to return failure. We return ENOSPC to differentiate
15105 * it from failing to allocate a buffer due to failure to meet
15106 * the reserve (for which we return E2BIG).
15107 */
15108 rval = ENOSPC;
15109 goto out;
15110 }
15111
15112 if ((rval = dtrace_state_buffers(state)) != 0)
15113 goto err;
15114
15115 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15116 sz = dtrace_dstate_defsize;
15117
15118 do {
15119 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15120
15121 if (rval == 0)
15122 break;
15123
15124 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15125 goto err;
15126 } while (sz >>= 1);
15127
15128 opt[DTRACEOPT_DYNVARSIZE] = sz;
15129
15130 if (rval != 0)
15131 goto err;
15132
15133 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15134 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15135
15136 if (opt[DTRACEOPT_CLEANRATE] == 0)
15137 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15138
15139 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15140 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15141
15142 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15143 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15144
15145 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15146 #ifdef illumos
15147 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15148 hdlr.cyh_arg = state;
15149 hdlr.cyh_level = CY_LOW_LEVEL;
15150
15151 when.cyt_when = 0;
15152 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15153
15154 state->dts_cleaner = cyclic_add(&hdlr, &when);
15155
15156 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15157 hdlr.cyh_arg = state;
15158 hdlr.cyh_level = CY_LOW_LEVEL;
15159
15160 when.cyt_when = 0;
15161 when.cyt_interval = dtrace_deadman_interval;
15162
15163 state->dts_deadman = cyclic_add(&hdlr, &when);
15164 #else
15165 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15166 dtrace_state_clean, state);
15167 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15168 dtrace_state_deadman, state);
15169 #endif
15170
15171 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15172
15173 #ifdef illumos
15174 if (state->dts_getf != 0 &&
15175 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15176 /*
15177 * We don't have kernel privs but we have at least one call
15178 * to getf(); we need to bump our zone's count, and (if
15179 * this is the first enabling to have an unprivileged call
15180 * to getf()) we need to hook into closef().
15181 */
15182 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15183
15184 if (dtrace_getf++ == 0) {
15185 ASSERT(dtrace_closef == NULL);
15186 dtrace_closef = dtrace_getf_barrier;
15187 }
15188 }
15189 #endif
15190
15191 /*
15192 * Now it's time to actually fire the BEGIN probe. We need to disable
15193 * interrupts here both to record the CPU on which we fired the BEGIN
15194 * probe (the data from this CPU will be processed first at user
15195 * level) and to manually activate the buffer for this CPU.
15196 */
15197 cookie = dtrace_interrupt_disable();
15198 *cpu = curcpu;
15199 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15200 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15201
15202 dtrace_probe(dtrace_probeid_begin,
15203 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15204 dtrace_interrupt_enable(cookie);
15205 /*
15206 * We may have had an exit action from a BEGIN probe; only change our
15207 * state to ACTIVE if we're still in WARMUP.
15208 */
15209 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15210 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15211
15212 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15213 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15214
15215 #ifdef __FreeBSD__
15216 /*
15217 * We enable anonymous tracing before APs are started, so we must
15218 * activate buffers using the current CPU.
15219 */
15220 if (state == dtrace_anon.dta_state) {
15221 CPU_FOREACH(i)
15222 dtrace_buffer_activate_cpu(state, i);
15223 } else
15224 dtrace_xcall(DTRACE_CPUALL,
15225 (dtrace_xcall_t)dtrace_buffer_activate, state);
15226 #else
15227 /*
15228 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15229 * want each CPU to transition its principal buffer out of the
15230 * INACTIVE state. Doing this assures that no CPU will suddenly begin
15231 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15232 * atomically transition from processing none of a state's ECBs to
15233 * processing all of them.
15234 */
15235 dtrace_xcall(DTRACE_CPUALL,
15236 (dtrace_xcall_t)dtrace_buffer_activate, state);
15237 #endif
15238 goto out;
15239
15240 err:
15241 dtrace_buffer_free(state->dts_buffer);
15242 dtrace_buffer_free(state->dts_aggbuffer);
15243
15244 if ((nspec = state->dts_nspeculations) == 0) {
15245 ASSERT(state->dts_speculations == NULL);
15246 goto out;
15247 }
15248
15249 spec = state->dts_speculations;
15250 ASSERT(spec != NULL);
15251
15252 for (i = 0; i < state->dts_nspeculations; i++) {
15253 if ((buf = spec[i].dtsp_buffer) == NULL)
15254 break;
15255
15256 dtrace_buffer_free(buf);
15257 kmem_free(buf, bufsize);
15258 }
15259
15260 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15261 state->dts_nspeculations = 0;
15262 state->dts_speculations = NULL;
15263
15264 out:
15265 mutex_exit(&dtrace_lock);
15266 mutex_exit(&cpu_lock);
15267
15268 return (rval);
15269 }
15270
15271 static int
15272 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15273 {
15274 dtrace_icookie_t cookie;
15275
15276 ASSERT(MUTEX_HELD(&dtrace_lock));
15277
15278 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15279 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15280 return (EINVAL);
15281
15282 /*
15283 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15284 * to be sure that every CPU has seen it. See below for the details
15285 * on why this is done.
15286 */
15287 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15288 dtrace_sync();
15289
15290 /*
15291 * By this point, it is impossible for any CPU to be still processing
15292 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
15293 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15294 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
15295 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15296 * iff we're in the END probe.
15297 */
15298 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15299 dtrace_sync();
15300 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15301
15302 /*
15303 * Finally, we can release the reserve and call the END probe. We
15304 * disable interrupts across calling the END probe to allow us to
15305 * return the CPU on which we actually called the END probe. This
15306 * allows user-land to be sure that this CPU's principal buffer is
15307 * processed last.
15308 */
15309 state->dts_reserve = 0;
15310
15311 cookie = dtrace_interrupt_disable();
15312 *cpu = curcpu;
15313 dtrace_probe(dtrace_probeid_end,
15314 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15315 dtrace_interrupt_enable(cookie);
15316
15317 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15318 dtrace_sync();
15319
15320 #ifdef illumos
15321 if (state->dts_getf != 0 &&
15322 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15323 /*
15324 * We don't have kernel privs but we have at least one call
15325 * to getf(); we need to lower our zone's count, and (if
15326 * this is the last enabling to have an unprivileged call
15327 * to getf()) we need to clear the closef() hook.
15328 */
15329 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15330 ASSERT(dtrace_closef == dtrace_getf_barrier);
15331 ASSERT(dtrace_getf > 0);
15332
15333 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15334
15335 if (--dtrace_getf == 0)
15336 dtrace_closef = NULL;
15337 }
15338 #endif
15339
15340 return (0);
15341 }
15342
15343 static int
15344 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15345 dtrace_optval_t val)
15346 {
15347 ASSERT(MUTEX_HELD(&dtrace_lock));
15348
15349 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15350 return (EBUSY);
15351
15352 if (option >= DTRACEOPT_MAX)
15353 return (EINVAL);
15354
15355 if (option != DTRACEOPT_CPU && val < 0)
15356 return (EINVAL);
15357
15358 switch (option) {
15359 case DTRACEOPT_DESTRUCTIVE:
15360 if (dtrace_destructive_disallow)
15361 return (EACCES);
15362
15363 state->dts_cred.dcr_destructive = 1;
15364 break;
15365
15366 case DTRACEOPT_BUFSIZE:
15367 case DTRACEOPT_DYNVARSIZE:
15368 case DTRACEOPT_AGGSIZE:
15369 case DTRACEOPT_SPECSIZE:
15370 case DTRACEOPT_STRSIZE:
15371 if (val < 0)
15372 return (EINVAL);
15373
15374 if (val >= LONG_MAX) {
15375 /*
15376 * If this is an otherwise negative value, set it to
15377 * the highest multiple of 128m less than LONG_MAX.
15378 * Technically, we're adjusting the size without
15379 * regard to the buffer resizing policy, but in fact,
15380 * this has no effect -- if we set the buffer size to
15381 * ~LONG_MAX and the buffer policy is ultimately set to
15382 * be "manual", the buffer allocation is guaranteed to
15383 * fail, if only because the allocation requires two
15384 * buffers. (We set the the size to the highest
15385 * multiple of 128m because it ensures that the size
15386 * will remain a multiple of a megabyte when
15387 * repeatedly halved -- all the way down to 15m.)
15388 */
15389 val = LONG_MAX - (1 << 27) + 1;
15390 }
15391 }
15392
15393 state->dts_options[option] = val;
15394
15395 return (0);
15396 }
15397
15398 static void
15399 dtrace_state_destroy(dtrace_state_t *state)
15400 {
15401 dtrace_ecb_t *ecb;
15402 dtrace_vstate_t *vstate = &state->dts_vstate;
15403 #ifdef illumos
15404 minor_t minor = getminor(state->dts_dev);
15405 #endif
15406 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15407 dtrace_speculation_t *spec = state->dts_speculations;
15408 int nspec = state->dts_nspeculations;
15409 uint32_t match;
15410
15411 ASSERT(MUTEX_HELD(&dtrace_lock));
15412 ASSERT(MUTEX_HELD(&cpu_lock));
15413
15414 /*
15415 * First, retract any retained enablings for this state.
15416 */
15417 dtrace_enabling_retract(state);
15418 ASSERT(state->dts_nretained == 0);
15419
15420 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15421 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15422 /*
15423 * We have managed to come into dtrace_state_destroy() on a
15424 * hot enabling -- almost certainly because of a disorderly
15425 * shutdown of a consumer. (That is, a consumer that is
15426 * exiting without having called dtrace_stop().) In this case,
15427 * we're going to set our activity to be KILLED, and then
15428 * issue a sync to be sure that everyone is out of probe
15429 * context before we start blowing away ECBs.
15430 */
15431 state->dts_activity = DTRACE_ACTIVITY_KILLED;
15432 dtrace_sync();
15433 }
15434
15435 /*
15436 * Release the credential hold we took in dtrace_state_create().
15437 */
15438 if (state->dts_cred.dcr_cred != NULL)
15439 crfree(state->dts_cred.dcr_cred);
15440
15441 /*
15442 * Now we can safely disable and destroy any enabled probes. Because
15443 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15444 * (especially if they're all enabled), we take two passes through the
15445 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15446 * in the second we disable whatever is left over.
15447 */
15448 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15449 for (i = 0; i < state->dts_necbs; i++) {
15450 if ((ecb = state->dts_ecbs[i]) == NULL)
15451 continue;
15452
15453 if (match && ecb->dte_probe != NULL) {
15454 dtrace_probe_t *probe = ecb->dte_probe;
15455 dtrace_provider_t *prov = probe->dtpr_provider;
15456
15457 if (!(prov->dtpv_priv.dtpp_flags & match))
15458 continue;
15459 }
15460
15461 dtrace_ecb_disable(ecb);
15462 dtrace_ecb_destroy(ecb);
15463 }
15464
15465 if (!match)
15466 break;
15467 }
15468
15469 /*
15470 * Before we free the buffers, perform one more sync to assure that
15471 * every CPU is out of probe context.
15472 */
15473 dtrace_sync();
15474
15475 dtrace_buffer_free(state->dts_buffer);
15476 dtrace_buffer_free(state->dts_aggbuffer);
15477
15478 for (i = 0; i < nspec; i++)
15479 dtrace_buffer_free(spec[i].dtsp_buffer);
15480
15481 #ifdef illumos
15482 if (state->dts_cleaner != CYCLIC_NONE)
15483 cyclic_remove(state->dts_cleaner);
15484
15485 if (state->dts_deadman != CYCLIC_NONE)
15486 cyclic_remove(state->dts_deadman);
15487 #else
15488 callout_stop(&state->dts_cleaner);
15489 callout_drain(&state->dts_cleaner);
15490 callout_stop(&state->dts_deadman);
15491 callout_drain(&state->dts_deadman);
15492 #endif
15493
15494 dtrace_dstate_fini(&vstate->dtvs_dynvars);
15495 dtrace_vstate_fini(vstate);
15496 if (state->dts_ecbs != NULL)
15497 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15498
15499 if (state->dts_aggregations != NULL) {
15500 #ifdef DEBUG
15501 for (i = 0; i < state->dts_naggregations; i++)
15502 ASSERT(state->dts_aggregations[i] == NULL);
15503 #endif
15504 ASSERT(state->dts_naggregations > 0);
15505 kmem_free(state->dts_aggregations,
15506 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15507 }
15508
15509 kmem_free(state->dts_buffer, bufsize);
15510 kmem_free(state->dts_aggbuffer, bufsize);
15511
15512 for (i = 0; i < nspec; i++)
15513 kmem_free(spec[i].dtsp_buffer, bufsize);
15514
15515 if (spec != NULL)
15516 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15517
15518 dtrace_format_destroy(state);
15519
15520 if (state->dts_aggid_arena != NULL) {
15521 #ifdef illumos
15522 vmem_destroy(state->dts_aggid_arena);
15523 #else
15524 delete_unrhdr(state->dts_aggid_arena);
15525 #endif
15526 state->dts_aggid_arena = NULL;
15527 }
15528 #ifdef illumos
15529 ddi_soft_state_free(dtrace_softstate, minor);
15530 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15531 #endif
15532 }
15533
15534 /*
15535 * DTrace Anonymous Enabling Functions
15536 */
15537 static dtrace_state_t *
15538 dtrace_anon_grab(void)
15539 {
15540 dtrace_state_t *state;
15541
15542 ASSERT(MUTEX_HELD(&dtrace_lock));
15543
15544 if ((state = dtrace_anon.dta_state) == NULL) {
15545 ASSERT(dtrace_anon.dta_enabling == NULL);
15546 return (NULL);
15547 }
15548
15549 ASSERT(dtrace_anon.dta_enabling != NULL);
15550 ASSERT(dtrace_retained != NULL);
15551
15552 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15553 dtrace_anon.dta_enabling = NULL;
15554 dtrace_anon.dta_state = NULL;
15555
15556 return (state);
15557 }
15558
15559 static void
15560 dtrace_anon_property(void)
15561 {
15562 int i, rv;
15563 dtrace_state_t *state;
15564 dof_hdr_t *dof;
15565 char c[32]; /* enough for "dof-data-" + digits */
15566
15567 ASSERT(MUTEX_HELD(&dtrace_lock));
15568 ASSERT(MUTEX_HELD(&cpu_lock));
15569
15570 for (i = 0; ; i++) {
15571 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
15572
15573 dtrace_err_verbose = 1;
15574
15575 if ((dof = dtrace_dof_property(c)) == NULL) {
15576 dtrace_err_verbose = 0;
15577 break;
15578 }
15579
15580 #ifdef illumos
15581 /*
15582 * We want to create anonymous state, so we need to transition
15583 * the kernel debugger to indicate that DTrace is active. If
15584 * this fails (e.g. because the debugger has modified text in
15585 * some way), we won't continue with the processing.
15586 */
15587 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15588 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15589 "enabling ignored.");
15590 dtrace_dof_destroy(dof);
15591 break;
15592 }
15593 #endif
15594
15595 /*
15596 * If we haven't allocated an anonymous state, we'll do so now.
15597 */
15598 if ((state = dtrace_anon.dta_state) == NULL) {
15599 state = dtrace_state_create(NULL, NULL);
15600 dtrace_anon.dta_state = state;
15601
15602 if (state == NULL) {
15603 /*
15604 * This basically shouldn't happen: the only
15605 * failure mode from dtrace_state_create() is a
15606 * failure of ddi_soft_state_zalloc() that
15607 * itself should never happen. Still, the
15608 * interface allows for a failure mode, and
15609 * we want to fail as gracefully as possible:
15610 * we'll emit an error message and cease
15611 * processing anonymous state in this case.
15612 */
15613 cmn_err(CE_WARN, "failed to create "
15614 "anonymous state");
15615 dtrace_dof_destroy(dof);
15616 break;
15617 }
15618 }
15619
15620 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15621 &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15622
15623 if (rv == 0)
15624 rv = dtrace_dof_options(dof, state);
15625
15626 dtrace_err_verbose = 0;
15627 dtrace_dof_destroy(dof);
15628
15629 if (rv != 0) {
15630 /*
15631 * This is malformed DOF; chuck any anonymous state
15632 * that we created.
15633 */
15634 ASSERT(dtrace_anon.dta_enabling == NULL);
15635 dtrace_state_destroy(state);
15636 dtrace_anon.dta_state = NULL;
15637 break;
15638 }
15639
15640 ASSERT(dtrace_anon.dta_enabling != NULL);
15641 }
15642
15643 if (dtrace_anon.dta_enabling != NULL) {
15644 int rval;
15645
15646 /*
15647 * dtrace_enabling_retain() can only fail because we are
15648 * trying to retain more enablings than are allowed -- but
15649 * we only have one anonymous enabling, and we are guaranteed
15650 * to be allowed at least one retained enabling; we assert
15651 * that dtrace_enabling_retain() returns success.
15652 */
15653 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15654 ASSERT(rval == 0);
15655
15656 dtrace_enabling_dump(dtrace_anon.dta_enabling);
15657 }
15658 }
15659
15660 /*
15661 * DTrace Helper Functions
15662 */
15663 static void
15664 dtrace_helper_trace(dtrace_helper_action_t *helper,
15665 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15666 {
15667 uint32_t size, next, nnext, i;
15668 dtrace_helptrace_t *ent, *buffer;
15669 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15670
15671 if ((buffer = dtrace_helptrace_buffer) == NULL)
15672 return;
15673
15674 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15675
15676 /*
15677 * What would a tracing framework be without its own tracing
15678 * framework? (Well, a hell of a lot simpler, for starters...)
15679 */
15680 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15681 sizeof (uint64_t) - sizeof (uint64_t);
15682
15683 /*
15684 * Iterate until we can allocate a slot in the trace buffer.
15685 */
15686 do {
15687 next = dtrace_helptrace_next;
15688
15689 if (next + size < dtrace_helptrace_bufsize) {
15690 nnext = next + size;
15691 } else {
15692 nnext = size;
15693 }
15694 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15695
15696 /*
15697 * We have our slot; fill it in.
15698 */
15699 if (nnext == size) {
15700 dtrace_helptrace_wrapped++;
15701 next = 0;
15702 }
15703
15704 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15705 ent->dtht_helper = helper;
15706 ent->dtht_where = where;
15707 ent->dtht_nlocals = vstate->dtvs_nlocals;
15708
15709 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15710 mstate->dtms_fltoffs : -1;
15711 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15712 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15713
15714 for (i = 0; i < vstate->dtvs_nlocals; i++) {
15715 dtrace_statvar_t *svar;
15716
15717 if ((svar = vstate->dtvs_locals[i]) == NULL)
15718 continue;
15719
15720 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t));
15721 ent->dtht_locals[i] =
15722 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15723 }
15724 }
15725
15726 static uint64_t
15727 dtrace_helper(int which, dtrace_mstate_t *mstate,
15728 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15729 {
15730 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15731 uint64_t sarg0 = mstate->dtms_arg[0];
15732 uint64_t sarg1 = mstate->dtms_arg[1];
15733 uint64_t rval = 0;
15734 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15735 dtrace_helper_action_t *helper;
15736 dtrace_vstate_t *vstate;
15737 dtrace_difo_t *pred;
15738 int i, trace = dtrace_helptrace_buffer != NULL;
15739
15740 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15741
15742 if (helpers == NULL)
15743 return (0);
15744
15745 if ((helper = helpers->dthps_actions[which]) == NULL)
15746 return (0);
15747
15748 vstate = &helpers->dthps_vstate;
15749 mstate->dtms_arg[0] = arg0;
15750 mstate->dtms_arg[1] = arg1;
15751
15752 /*
15753 * Now iterate over each helper. If its predicate evaluates to 'true',
15754 * we'll call the corresponding actions. Note that the below calls
15755 * to dtrace_dif_emulate() may set faults in machine state. This is
15756 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
15757 * the stored DIF offset with its own (which is the desired behavior).
15758 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15759 * from machine state; this is okay, too.
15760 */
15761 for (; helper != NULL; helper = helper->dtha_next) {
15762 if ((pred = helper->dtha_predicate) != NULL) {
15763 if (trace)
15764 dtrace_helper_trace(helper, mstate, vstate, 0);
15765
15766 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15767 goto next;
15768
15769 if (*flags & CPU_DTRACE_FAULT)
15770 goto err;
15771 }
15772
15773 for (i = 0; i < helper->dtha_nactions; i++) {
15774 if (trace)
15775 dtrace_helper_trace(helper,
15776 mstate, vstate, i + 1);
15777
15778 rval = dtrace_dif_emulate(helper->dtha_actions[i],
15779 mstate, vstate, state);
15780
15781 if (*flags & CPU_DTRACE_FAULT)
15782 goto err;
15783 }
15784
15785 next:
15786 if (trace)
15787 dtrace_helper_trace(helper, mstate, vstate,
15788 DTRACE_HELPTRACE_NEXT);
15789 }
15790
15791 if (trace)
15792 dtrace_helper_trace(helper, mstate, vstate,
15793 DTRACE_HELPTRACE_DONE);
15794
15795 /*
15796 * Restore the arg0 that we saved upon entry.
15797 */
15798 mstate->dtms_arg[0] = sarg0;
15799 mstate->dtms_arg[1] = sarg1;
15800
15801 return (rval);
15802
15803 err:
15804 if (trace)
15805 dtrace_helper_trace(helper, mstate, vstate,
15806 DTRACE_HELPTRACE_ERR);
15807
15808 /*
15809 * Restore the arg0 that we saved upon entry.
15810 */
15811 mstate->dtms_arg[0] = sarg0;
15812 mstate->dtms_arg[1] = sarg1;
15813
15814 return (0);
15815 }
15816
15817 static void
15818 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15819 dtrace_vstate_t *vstate)
15820 {
15821 int i;
15822
15823 if (helper->dtha_predicate != NULL)
15824 dtrace_difo_release(helper->dtha_predicate, vstate);
15825
15826 for (i = 0; i < helper->dtha_nactions; i++) {
15827 ASSERT(helper->dtha_actions[i] != NULL);
15828 dtrace_difo_release(helper->dtha_actions[i], vstate);
15829 }
15830
15831 kmem_free(helper->dtha_actions,
15832 helper->dtha_nactions * sizeof (dtrace_difo_t *));
15833 kmem_free(helper, sizeof (dtrace_helper_action_t));
15834 }
15835
15836 static int
15837 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15838 {
15839 proc_t *p = curproc;
15840 dtrace_vstate_t *vstate;
15841 int i;
15842
15843 if (help == NULL)
15844 help = p->p_dtrace_helpers;
15845
15846 ASSERT(MUTEX_HELD(&dtrace_lock));
15847
15848 if (help == NULL || gen > help->dthps_generation)
15849 return (EINVAL);
15850
15851 vstate = &help->dthps_vstate;
15852
15853 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15854 dtrace_helper_action_t *last = NULL, *h, *next;
15855
15856 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15857 next = h->dtha_next;
15858
15859 if (h->dtha_generation == gen) {
15860 if (last != NULL) {
15861 last->dtha_next = next;
15862 } else {
15863 help->dthps_actions[i] = next;
15864 }
15865
15866 dtrace_helper_action_destroy(h, vstate);
15867 } else {
15868 last = h;
15869 }
15870 }
15871 }
15872
15873 /*
15874 * Interate until we've cleared out all helper providers with the
15875 * given generation number.
15876 */
15877 for (;;) {
15878 dtrace_helper_provider_t *prov;
15879
15880 /*
15881 * Look for a helper provider with the right generation. We
15882 * have to start back at the beginning of the list each time
15883 * because we drop dtrace_lock. It's unlikely that we'll make
15884 * more than two passes.
15885 */
15886 for (i = 0; i < help->dthps_nprovs; i++) {
15887 prov = help->dthps_provs[i];
15888
15889 if (prov->dthp_generation == gen)
15890 break;
15891 }
15892
15893 /*
15894 * If there were no matches, we're done.
15895 */
15896 if (i == help->dthps_nprovs)
15897 break;
15898
15899 /*
15900 * Move the last helper provider into this slot.
15901 */
15902 help->dthps_nprovs--;
15903 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15904 help->dthps_provs[help->dthps_nprovs] = NULL;
15905
15906 mutex_exit(&dtrace_lock);
15907
15908 /*
15909 * If we have a meta provider, remove this helper provider.
15910 */
15911 mutex_enter(&dtrace_meta_lock);
15912 if (dtrace_meta_pid != NULL) {
15913 ASSERT(dtrace_deferred_pid == NULL);
15914 dtrace_helper_provider_remove(&prov->dthp_prov,
15915 p->p_pid);
15916 }
15917 mutex_exit(&dtrace_meta_lock);
15918
15919 dtrace_helper_provider_destroy(prov);
15920
15921 mutex_enter(&dtrace_lock);
15922 }
15923
15924 return (0);
15925 }
15926
15927 static int
15928 dtrace_helper_validate(dtrace_helper_action_t *helper)
15929 {
15930 int err = 0, i;
15931 dtrace_difo_t *dp;
15932
15933 if ((dp = helper->dtha_predicate) != NULL)
15934 err += dtrace_difo_validate_helper(dp);
15935
15936 for (i = 0; i < helper->dtha_nactions; i++)
15937 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15938
15939 return (err == 0);
15940 }
15941
15942 static int
15943 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15944 dtrace_helpers_t *help)
15945 {
15946 dtrace_helper_action_t *helper, *last;
15947 dtrace_actdesc_t *act;
15948 dtrace_vstate_t *vstate;
15949 dtrace_predicate_t *pred;
15950 int count = 0, nactions = 0, i;
15951
15952 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15953 return (EINVAL);
15954
15955 last = help->dthps_actions[which];
15956 vstate = &help->dthps_vstate;
15957
15958 for (count = 0; last != NULL; last = last->dtha_next) {
15959 count++;
15960 if (last->dtha_next == NULL)
15961 break;
15962 }
15963
15964 /*
15965 * If we already have dtrace_helper_actions_max helper actions for this
15966 * helper action type, we'll refuse to add a new one.
15967 */
15968 if (count >= dtrace_helper_actions_max)
15969 return (ENOSPC);
15970
15971 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15972 helper->dtha_generation = help->dthps_generation;
15973
15974 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15975 ASSERT(pred->dtp_difo != NULL);
15976 dtrace_difo_hold(pred->dtp_difo);
15977 helper->dtha_predicate = pred->dtp_difo;
15978 }
15979
15980 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15981 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15982 goto err;
15983
15984 if (act->dtad_difo == NULL)
15985 goto err;
15986
15987 nactions++;
15988 }
15989
15990 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15991 (helper->dtha_nactions = nactions), KM_SLEEP);
15992
15993 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15994 dtrace_difo_hold(act->dtad_difo);
15995 helper->dtha_actions[i++] = act->dtad_difo;
15996 }
15997
15998 if (!dtrace_helper_validate(helper))
15999 goto err;
16000
16001 if (last == NULL) {
16002 help->dthps_actions[which] = helper;
16003 } else {
16004 last->dtha_next = helper;
16005 }
16006
16007 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16008 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16009 dtrace_helptrace_next = 0;
16010 }
16011
16012 return (0);
16013 err:
16014 dtrace_helper_action_destroy(helper, vstate);
16015 return (EINVAL);
16016 }
16017
16018 static void
16019 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16020 dof_helper_t *dofhp)
16021 {
16022 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16023
16024 mutex_enter(&dtrace_meta_lock);
16025 mutex_enter(&dtrace_lock);
16026
16027 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16028 /*
16029 * If the dtrace module is loaded but not attached, or if
16030 * there aren't isn't a meta provider registered to deal with
16031 * these provider descriptions, we need to postpone creating
16032 * the actual providers until later.
16033 */
16034
16035 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16036 dtrace_deferred_pid != help) {
16037 help->dthps_deferred = 1;
16038 help->dthps_pid = p->p_pid;
16039 help->dthps_next = dtrace_deferred_pid;
16040 help->dthps_prev = NULL;
16041 if (dtrace_deferred_pid != NULL)
16042 dtrace_deferred_pid->dthps_prev = help;
16043 dtrace_deferred_pid = help;
16044 }
16045
16046 mutex_exit(&dtrace_lock);
16047
16048 } else if (dofhp != NULL) {
16049 /*
16050 * If the dtrace module is loaded and we have a particular
16051 * helper provider description, pass that off to the
16052 * meta provider.
16053 */
16054
16055 mutex_exit(&dtrace_lock);
16056
16057 dtrace_helper_provide(dofhp, p->p_pid);
16058
16059 } else {
16060 /*
16061 * Otherwise, just pass all the helper provider descriptions
16062 * off to the meta provider.
16063 */
16064
16065 int i;
16066 mutex_exit(&dtrace_lock);
16067
16068 for (i = 0; i < help->dthps_nprovs; i++) {
16069 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16070 p->p_pid);
16071 }
16072 }
16073
16074 mutex_exit(&dtrace_meta_lock);
16075 }
16076
16077 static int
16078 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16079 {
16080 dtrace_helper_provider_t *hprov, **tmp_provs;
16081 uint_t tmp_maxprovs, i;
16082
16083 ASSERT(MUTEX_HELD(&dtrace_lock));
16084 ASSERT(help != NULL);
16085
16086 /*
16087 * If we already have dtrace_helper_providers_max helper providers,
16088 * we're refuse to add a new one.
16089 */
16090 if (help->dthps_nprovs >= dtrace_helper_providers_max)
16091 return (ENOSPC);
16092
16093 /*
16094 * Check to make sure this isn't a duplicate.
16095 */
16096 for (i = 0; i < help->dthps_nprovs; i++) {
16097 if (dofhp->dofhp_addr ==
16098 help->dthps_provs[i]->dthp_prov.dofhp_addr)
16099 return (EALREADY);
16100 }
16101
16102 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16103 hprov->dthp_prov = *dofhp;
16104 hprov->dthp_ref = 1;
16105 hprov->dthp_generation = gen;
16106
16107 /*
16108 * Allocate a bigger table for helper providers if it's already full.
16109 */
16110 if (help->dthps_maxprovs == help->dthps_nprovs) {
16111 tmp_maxprovs = help->dthps_maxprovs;
16112 tmp_provs = help->dthps_provs;
16113
16114 if (help->dthps_maxprovs == 0)
16115 help->dthps_maxprovs = 2;
16116 else
16117 help->dthps_maxprovs *= 2;
16118 if (help->dthps_maxprovs > dtrace_helper_providers_max)
16119 help->dthps_maxprovs = dtrace_helper_providers_max;
16120
16121 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16122
16123 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16124 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16125
16126 if (tmp_provs != NULL) {
16127 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16128 sizeof (dtrace_helper_provider_t *));
16129 kmem_free(tmp_provs, tmp_maxprovs *
16130 sizeof (dtrace_helper_provider_t *));
16131 }
16132 }
16133
16134 help->dthps_provs[help->dthps_nprovs] = hprov;
16135 help->dthps_nprovs++;
16136
16137 return (0);
16138 }
16139
16140 static void
16141 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16142 {
16143 mutex_enter(&dtrace_lock);
16144
16145 if (--hprov->dthp_ref == 0) {
16146 dof_hdr_t *dof;
16147 mutex_exit(&dtrace_lock);
16148 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16149 dtrace_dof_destroy(dof);
16150 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16151 } else {
16152 mutex_exit(&dtrace_lock);
16153 }
16154 }
16155
16156 static int
16157 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16158 {
16159 uintptr_t daddr = (uintptr_t)dof;
16160 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16161 dof_provider_t *provider;
16162 dof_probe_t *probe;
16163 uint8_t *arg;
16164 char *strtab, *typestr;
16165 dof_stridx_t typeidx;
16166 size_t typesz;
16167 uint_t nprobes, j, k;
16168
16169 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16170
16171 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16172 dtrace_dof_error(dof, "misaligned section offset");
16173 return (-1);
16174 }
16175
16176 /*
16177 * The section needs to be large enough to contain the DOF provider
16178 * structure appropriate for the given version.
16179 */
16180 if (sec->dofs_size <
16181 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16182 offsetof(dof_provider_t, dofpv_prenoffs) :
16183 sizeof (dof_provider_t))) {
16184 dtrace_dof_error(dof, "provider section too small");
16185 return (-1);
16186 }
16187
16188 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16189 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16190 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16191 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16192 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16193
16194 if (str_sec == NULL || prb_sec == NULL ||
16195 arg_sec == NULL || off_sec == NULL)
16196 return (-1);
16197
16198 enoff_sec = NULL;
16199
16200 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16201 provider->dofpv_prenoffs != DOF_SECT_NONE &&
16202 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16203 provider->dofpv_prenoffs)) == NULL)
16204 return (-1);
16205
16206 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16207
16208 if (provider->dofpv_name >= str_sec->dofs_size ||
16209 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16210 dtrace_dof_error(dof, "invalid provider name");
16211 return (-1);
16212 }
16213
16214 if (prb_sec->dofs_entsize == 0 ||
16215 prb_sec->dofs_entsize > prb_sec->dofs_size) {
16216 dtrace_dof_error(dof, "invalid entry size");
16217 return (-1);
16218 }
16219
16220 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16221 dtrace_dof_error(dof, "misaligned entry size");
16222 return (-1);
16223 }
16224
16225 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16226 dtrace_dof_error(dof, "invalid entry size");
16227 return (-1);
16228 }
16229
16230 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16231 dtrace_dof_error(dof, "misaligned section offset");
16232 return (-1);
16233 }
16234
16235 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16236 dtrace_dof_error(dof, "invalid entry size");
16237 return (-1);
16238 }
16239
16240 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16241
16242 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16243
16244 /*
16245 * Take a pass through the probes to check for errors.
16246 */
16247 for (j = 0; j < nprobes; j++) {
16248 probe = (dof_probe_t *)(uintptr_t)(daddr +
16249 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16250
16251 if (probe->dofpr_func >= str_sec->dofs_size) {
16252 dtrace_dof_error(dof, "invalid function name");
16253 return (-1);
16254 }
16255
16256 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16257 dtrace_dof_error(dof, "function name too long");
16258 /*
16259 * Keep going if the function name is too long.
16260 * Unlike provider and probe names, we cannot reasonably
16261 * impose restrictions on function names, since they're
16262 * a property of the code being instrumented. We will
16263 * skip this probe in dtrace_helper_provide_one().
16264 */
16265 }
16266
16267 if (probe->dofpr_name >= str_sec->dofs_size ||
16268 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16269 dtrace_dof_error(dof, "invalid probe name");
16270 return (-1);
16271 }
16272
16273 /*
16274 * The offset count must not wrap the index, and the offsets
16275 * must also not overflow the section's data.
16276 */
16277 if (probe->dofpr_offidx + probe->dofpr_noffs <
16278 probe->dofpr_offidx ||
16279 (probe->dofpr_offidx + probe->dofpr_noffs) *
16280 off_sec->dofs_entsize > off_sec->dofs_size) {
16281 dtrace_dof_error(dof, "invalid probe offset");
16282 return (-1);
16283 }
16284
16285 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16286 /*
16287 * If there's no is-enabled offset section, make sure
16288 * there aren't any is-enabled offsets. Otherwise
16289 * perform the same checks as for probe offsets
16290 * (immediately above).
16291 */
16292 if (enoff_sec == NULL) {
16293 if (probe->dofpr_enoffidx != 0 ||
16294 probe->dofpr_nenoffs != 0) {
16295 dtrace_dof_error(dof, "is-enabled "
16296 "offsets with null section");
16297 return (-1);
16298 }
16299 } else if (probe->dofpr_enoffidx +
16300 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16301 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16302 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16303 dtrace_dof_error(dof, "invalid is-enabled "
16304 "offset");
16305 return (-1);
16306 }
16307
16308 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16309 dtrace_dof_error(dof, "zero probe and "
16310 "is-enabled offsets");
16311 return (-1);
16312 }
16313 } else if (probe->dofpr_noffs == 0) {
16314 dtrace_dof_error(dof, "zero probe offsets");
16315 return (-1);
16316 }
16317
16318 if (probe->dofpr_argidx + probe->dofpr_xargc <
16319 probe->dofpr_argidx ||
16320 (probe->dofpr_argidx + probe->dofpr_xargc) *
16321 arg_sec->dofs_entsize > arg_sec->dofs_size) {
16322 dtrace_dof_error(dof, "invalid args");
16323 return (-1);
16324 }
16325
16326 typeidx = probe->dofpr_nargv;
16327 typestr = strtab + probe->dofpr_nargv;
16328 for (k = 0; k < probe->dofpr_nargc; k++) {
16329 if (typeidx >= str_sec->dofs_size) {
16330 dtrace_dof_error(dof, "bad "
16331 "native argument type");
16332 return (-1);
16333 }
16334
16335 typesz = strlen(typestr) + 1;
16336 if (typesz > DTRACE_ARGTYPELEN) {
16337 dtrace_dof_error(dof, "native "
16338 "argument type too long");
16339 return (-1);
16340 }
16341 typeidx += typesz;
16342 typestr += typesz;
16343 }
16344
16345 typeidx = probe->dofpr_xargv;
16346 typestr = strtab + probe->dofpr_xargv;
16347 for (k = 0; k < probe->dofpr_xargc; k++) {
16348 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16349 dtrace_dof_error(dof, "bad "
16350 "native argument index");
16351 return (-1);
16352 }
16353
16354 if (typeidx >= str_sec->dofs_size) {
16355 dtrace_dof_error(dof, "bad "
16356 "translated argument type");
16357 return (-1);
16358 }
16359
16360 typesz = strlen(typestr) + 1;
16361 if (typesz > DTRACE_ARGTYPELEN) {
16362 dtrace_dof_error(dof, "translated argument "
16363 "type too long");
16364 return (-1);
16365 }
16366
16367 typeidx += typesz;
16368 typestr += typesz;
16369 }
16370 }
16371
16372 return (0);
16373 }
16374
16375 static int
16376 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16377 {
16378 dtrace_helpers_t *help;
16379 dtrace_vstate_t *vstate;
16380 dtrace_enabling_t *enab = NULL;
16381 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16382 uintptr_t daddr = (uintptr_t)dof;
16383
16384 ASSERT(MUTEX_HELD(&dtrace_lock));
16385
16386 if ((help = p->p_dtrace_helpers) == NULL)
16387 help = dtrace_helpers_create(p);
16388
16389 vstate = &help->dthps_vstate;
16390
16391 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16392 dhp->dofhp_dof, B_FALSE)) != 0) {
16393 dtrace_dof_destroy(dof);
16394 return (rv);
16395 }
16396
16397 /*
16398 * Look for helper providers and validate their descriptions.
16399 */
16400 for (i = 0; i < dof->dofh_secnum; i++) {
16401 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16402 dof->dofh_secoff + i * dof->dofh_secsize);
16403
16404 if (sec->dofs_type != DOF_SECT_PROVIDER)
16405 continue;
16406
16407 if (dtrace_helper_provider_validate(dof, sec) != 0) {
16408 dtrace_enabling_destroy(enab);
16409 dtrace_dof_destroy(dof);
16410 return (-1);
16411 }
16412
16413 nprovs++;
16414 }
16415
16416 /*
16417 * Now we need to walk through the ECB descriptions in the enabling.
16418 */
16419 for (i = 0; i < enab->dten_ndesc; i++) {
16420 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16421 dtrace_probedesc_t *desc = &ep->dted_probe;
16422
16423 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16424 continue;
16425
16426 if (strcmp(desc->dtpd_mod, "helper") != 0)
16427 continue;
16428
16429 if (strcmp(desc->dtpd_func, "ustack") != 0)
16430 continue;
16431
16432 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16433 ep, help)) != 0) {
16434 /*
16435 * Adding this helper action failed -- we are now going
16436 * to rip out the entire generation and return failure.
16437 */
16438 (void) dtrace_helper_destroygen(help,
16439 help->dthps_generation);
16440 dtrace_enabling_destroy(enab);
16441 dtrace_dof_destroy(dof);
16442 return (-1);
16443 }
16444
16445 nhelpers++;
16446 }
16447
16448 if (nhelpers < enab->dten_ndesc)
16449 dtrace_dof_error(dof, "unmatched helpers");
16450
16451 gen = help->dthps_generation++;
16452 dtrace_enabling_destroy(enab);
16453
16454 if (nprovs > 0) {
16455 /*
16456 * Now that this is in-kernel, we change the sense of the
16457 * members: dofhp_dof denotes the in-kernel copy of the DOF
16458 * and dofhp_addr denotes the address at user-level.
16459 */
16460 dhp->dofhp_addr = dhp->dofhp_dof;
16461 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16462
16463 if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16464 mutex_exit(&dtrace_lock);
16465 dtrace_helper_provider_register(p, help, dhp);
16466 mutex_enter(&dtrace_lock);
16467
16468 destroy = 0;
16469 }
16470 }
16471
16472 if (destroy)
16473 dtrace_dof_destroy(dof);
16474
16475 return (gen);
16476 }
16477
16478 static dtrace_helpers_t *
16479 dtrace_helpers_create(proc_t *p)
16480 {
16481 dtrace_helpers_t *help;
16482
16483 ASSERT(MUTEX_HELD(&dtrace_lock));
16484 ASSERT(p->p_dtrace_helpers == NULL);
16485
16486 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16487 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16488 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16489
16490 p->p_dtrace_helpers = help;
16491 dtrace_helpers++;
16492
16493 return (help);
16494 }
16495
16496 #ifdef illumos
16497 static
16498 #endif
16499 void
16500 dtrace_helpers_destroy(proc_t *p)
16501 {
16502 dtrace_helpers_t *help;
16503 dtrace_vstate_t *vstate;
16504 #ifdef illumos
16505 proc_t *p = curproc;
16506 #endif
16507 int i;
16508
16509 mutex_enter(&dtrace_lock);
16510
16511 ASSERT(p->p_dtrace_helpers != NULL);
16512 ASSERT(dtrace_helpers > 0);
16513
16514 help = p->p_dtrace_helpers;
16515 vstate = &help->dthps_vstate;
16516
16517 /*
16518 * We're now going to lose the help from this process.
16519 */
16520 p->p_dtrace_helpers = NULL;
16521 dtrace_sync();
16522
16523 /*
16524 * Destory the helper actions.
16525 */
16526 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16527 dtrace_helper_action_t *h, *next;
16528
16529 for (h = help->dthps_actions[i]; h != NULL; h = next) {
16530 next = h->dtha_next;
16531 dtrace_helper_action_destroy(h, vstate);
16532 h = next;
16533 }
16534 }
16535
16536 mutex_exit(&dtrace_lock);
16537
16538 /*
16539 * Destroy the helper providers.
16540 */
16541 if (help->dthps_maxprovs > 0) {
16542 mutex_enter(&dtrace_meta_lock);
16543 if (dtrace_meta_pid != NULL) {
16544 ASSERT(dtrace_deferred_pid == NULL);
16545
16546 for (i = 0; i < help->dthps_nprovs; i++) {
16547 dtrace_helper_provider_remove(
16548 &help->dthps_provs[i]->dthp_prov, p->p_pid);
16549 }
16550 } else {
16551 mutex_enter(&dtrace_lock);
16552 ASSERT(help->dthps_deferred == 0 ||
16553 help->dthps_next != NULL ||
16554 help->dthps_prev != NULL ||
16555 help == dtrace_deferred_pid);
16556
16557 /*
16558 * Remove the helper from the deferred list.
16559 */
16560 if (help->dthps_next != NULL)
16561 help->dthps_next->dthps_prev = help->dthps_prev;
16562 if (help->dthps_prev != NULL)
16563 help->dthps_prev->dthps_next = help->dthps_next;
16564 if (dtrace_deferred_pid == help) {
16565 dtrace_deferred_pid = help->dthps_next;
16566 ASSERT(help->dthps_prev == NULL);
16567 }
16568
16569 mutex_exit(&dtrace_lock);
16570 }
16571
16572 mutex_exit(&dtrace_meta_lock);
16573
16574 for (i = 0; i < help->dthps_nprovs; i++) {
16575 dtrace_helper_provider_destroy(help->dthps_provs[i]);
16576 }
16577
16578 kmem_free(help->dthps_provs, help->dthps_maxprovs *
16579 sizeof (dtrace_helper_provider_t *));
16580 }
16581
16582 mutex_enter(&dtrace_lock);
16583
16584 dtrace_vstate_fini(&help->dthps_vstate);
16585 kmem_free(help->dthps_actions,
16586 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16587 kmem_free(help, sizeof (dtrace_helpers_t));
16588
16589 --dtrace_helpers;
16590 mutex_exit(&dtrace_lock);
16591 }
16592
16593 #ifdef illumos
16594 static
16595 #endif
16596 void
16597 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16598 {
16599 dtrace_helpers_t *help, *newhelp;
16600 dtrace_helper_action_t *helper, *new, *last;
16601 dtrace_difo_t *dp;
16602 dtrace_vstate_t *vstate;
16603 int i, j, sz, hasprovs = 0;
16604
16605 mutex_enter(&dtrace_lock);
16606 ASSERT(from->p_dtrace_helpers != NULL);
16607 ASSERT(dtrace_helpers > 0);
16608
16609 help = from->p_dtrace_helpers;
16610 newhelp = dtrace_helpers_create(to);
16611 ASSERT(to->p_dtrace_helpers != NULL);
16612
16613 newhelp->dthps_generation = help->dthps_generation;
16614 vstate = &newhelp->dthps_vstate;
16615
16616 /*
16617 * Duplicate the helper actions.
16618 */
16619 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16620 if ((helper = help->dthps_actions[i]) == NULL)
16621 continue;
16622
16623 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16624 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16625 KM_SLEEP);
16626 new->dtha_generation = helper->dtha_generation;
16627
16628 if ((dp = helper->dtha_predicate) != NULL) {
16629 dp = dtrace_difo_duplicate(dp, vstate);
16630 new->dtha_predicate = dp;
16631 }
16632
16633 new->dtha_nactions = helper->dtha_nactions;
16634 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16635 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16636
16637 for (j = 0; j < new->dtha_nactions; j++) {
16638 dtrace_difo_t *dp = helper->dtha_actions[j];
16639
16640 ASSERT(dp != NULL);
16641 dp = dtrace_difo_duplicate(dp, vstate);
16642 new->dtha_actions[j] = dp;
16643 }
16644
16645 if (last != NULL) {
16646 last->dtha_next = new;
16647 } else {
16648 newhelp->dthps_actions[i] = new;
16649 }
16650
16651 last = new;
16652 }
16653 }
16654
16655 /*
16656 * Duplicate the helper providers and register them with the
16657 * DTrace framework.
16658 */
16659 if (help->dthps_nprovs > 0) {
16660 newhelp->dthps_nprovs = help->dthps_nprovs;
16661 newhelp->dthps_maxprovs = help->dthps_nprovs;
16662 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16663 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16664 for (i = 0; i < newhelp->dthps_nprovs; i++) {
16665 newhelp->dthps_provs[i] = help->dthps_provs[i];
16666 newhelp->dthps_provs[i]->dthp_ref++;
16667 }
16668
16669 hasprovs = 1;
16670 }
16671
16672 mutex_exit(&dtrace_lock);
16673
16674 if (hasprovs)
16675 dtrace_helper_provider_register(to, newhelp, NULL);
16676 }
16677
16678 /*
16679 * DTrace Hook Functions
16680 */
16681 static void
16682 dtrace_module_loaded(modctl_t *ctl)
16683 {
16684 dtrace_provider_t *prv;
16685
16686 mutex_enter(&dtrace_provider_lock);
16687 #ifdef illumos
16688 mutex_enter(&mod_lock);
16689 #endif
16690
16691 #ifdef illumos
16692 ASSERT(ctl->mod_busy);
16693 #endif
16694
16695 /*
16696 * We're going to call each providers per-module provide operation
16697 * specifying only this module.
16698 */
16699 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16700 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16701
16702 #ifdef illumos
16703 mutex_exit(&mod_lock);
16704 #endif
16705 mutex_exit(&dtrace_provider_lock);
16706
16707 /*
16708 * If we have any retained enablings, we need to match against them.
16709 * Enabling probes requires that cpu_lock be held, and we cannot hold
16710 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16711 * module. (In particular, this happens when loading scheduling
16712 * classes.) So if we have any retained enablings, we need to dispatch
16713 * our task queue to do the match for us.
16714 */
16715 mutex_enter(&dtrace_lock);
16716
16717 if (dtrace_retained == NULL) {
16718 mutex_exit(&dtrace_lock);
16719 return;
16720 }
16721
16722 (void) taskq_dispatch(dtrace_taskq,
16723 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16724
16725 mutex_exit(&dtrace_lock);
16726
16727 /*
16728 * And now, for a little heuristic sleaze: in general, we want to
16729 * match modules as soon as they load. However, we cannot guarantee
16730 * this, because it would lead us to the lock ordering violation
16731 * outlined above. The common case, of course, is that cpu_lock is
16732 * _not_ held -- so we delay here for a clock tick, hoping that that's
16733 * long enough for the task queue to do its work. If it's not, it's
16734 * not a serious problem -- it just means that the module that we
16735 * just loaded may not be immediately instrumentable.
16736 */
16737 delay(1);
16738 }
16739
16740 static void
16741 #ifdef illumos
16742 dtrace_module_unloaded(modctl_t *ctl)
16743 #else
16744 dtrace_module_unloaded(modctl_t *ctl, int *error)
16745 #endif
16746 {
16747 dtrace_probe_t template, *probe, *first, *next;
16748 dtrace_provider_t *prov;
16749 #ifndef illumos
16750 char modname[DTRACE_MODNAMELEN];
16751 size_t len;
16752 #endif
16753
16754 #ifdef illumos
16755 template.dtpr_mod = ctl->mod_modname;
16756 #else
16757 /* Handle the fact that ctl->filename may end in ".ko". */
16758 strlcpy(modname, ctl->filename, sizeof(modname));
16759 len = strlen(ctl->filename);
16760 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16761 modname[len - 3] = '\0';
16762 template.dtpr_mod = modname;
16763 #endif
16764
16765 mutex_enter(&dtrace_provider_lock);
16766 #ifdef illumos
16767 mutex_enter(&mod_lock);
16768 #endif
16769 mutex_enter(&dtrace_lock);
16770
16771 #ifndef illumos
16772 if (ctl->nenabled > 0) {
16773 /* Don't allow unloads if a probe is enabled. */
16774 mutex_exit(&dtrace_provider_lock);
16775 mutex_exit(&dtrace_lock);
16776 *error = -1;
16777 printf(
16778 "kldunload: attempt to unload module that has DTrace probes enabled\n");
16779 return;
16780 }
16781 #endif
16782
16783 if (dtrace_bymod == NULL) {
16784 /*
16785 * The DTrace module is loaded (obviously) but not attached;
16786 * we don't have any work to do.
16787 */
16788 mutex_exit(&dtrace_provider_lock);
16789 #ifdef illumos
16790 mutex_exit(&mod_lock);
16791 #endif
16792 mutex_exit(&dtrace_lock);
16793 return;
16794 }
16795
16796 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16797 probe != NULL; probe = probe->dtpr_nextmod) {
16798 if (probe->dtpr_ecb != NULL) {
16799 mutex_exit(&dtrace_provider_lock);
16800 #ifdef illumos
16801 mutex_exit(&mod_lock);
16802 #endif
16803 mutex_exit(&dtrace_lock);
16804
16805 /*
16806 * This shouldn't _actually_ be possible -- we're
16807 * unloading a module that has an enabled probe in it.
16808 * (It's normally up to the provider to make sure that
16809 * this can't happen.) However, because dtps_enable()
16810 * doesn't have a failure mode, there can be an
16811 * enable/unload race. Upshot: we don't want to
16812 * assert, but we're not going to disable the
16813 * probe, either.
16814 */
16815 if (dtrace_err_verbose) {
16816 #ifdef illumos
16817 cmn_err(CE_WARN, "unloaded module '%s' had "
16818 "enabled probes", ctl->mod_modname);
16819 #else
16820 cmn_err(CE_WARN, "unloaded module '%s' had "
16821 "enabled probes", modname);
16822 #endif
16823 }
16824
16825 return;
16826 }
16827 }
16828
16829 probe = first;
16830
16831 for (first = NULL; probe != NULL; probe = next) {
16832 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16833
16834 dtrace_probes[probe->dtpr_id - 1] = NULL;
16835
16836 next = probe->dtpr_nextmod;
16837 dtrace_hash_remove(dtrace_bymod, probe);
16838 dtrace_hash_remove(dtrace_byfunc, probe);
16839 dtrace_hash_remove(dtrace_byname, probe);
16840
16841 if (first == NULL) {
16842 first = probe;
16843 probe->dtpr_nextmod = NULL;
16844 } else {
16845 probe->dtpr_nextmod = first;
16846 first = probe;
16847 }
16848 }
16849
16850 /*
16851 * We've removed all of the module's probes from the hash chains and
16852 * from the probe array. Now issue a dtrace_sync() to be sure that
16853 * everyone has cleared out from any probe array processing.
16854 */
16855 dtrace_sync();
16856
16857 for (probe = first; probe != NULL; probe = first) {
16858 first = probe->dtpr_nextmod;
16859 prov = probe->dtpr_provider;
16860 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16861 probe->dtpr_arg);
16862 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16863 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16864 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16865 #ifdef illumos
16866 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16867 #else
16868 free_unr(dtrace_arena, probe->dtpr_id);
16869 #endif
16870 kmem_free(probe, sizeof (dtrace_probe_t));
16871 }
16872
16873 mutex_exit(&dtrace_lock);
16874 #ifdef illumos
16875 mutex_exit(&mod_lock);
16876 #endif
16877 mutex_exit(&dtrace_provider_lock);
16878 }
16879
16880 #ifndef illumos
16881 static void
16882 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16883 {
16884
16885 dtrace_module_loaded(lf);
16886 }
16887
16888 static void
16889 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16890 {
16891
16892 if (*error != 0)
16893 /* We already have an error, so don't do anything. */
16894 return;
16895 dtrace_module_unloaded(lf, error);
16896 }
16897 #endif
16898
16899 #ifdef illumos
16900 static void
16901 dtrace_suspend(void)
16902 {
16903 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16904 }
16905
16906 static void
16907 dtrace_resume(void)
16908 {
16909 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16910 }
16911 #endif
16912
16913 static int
16914 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16915 {
16916 ASSERT(MUTEX_HELD(&cpu_lock));
16917 mutex_enter(&dtrace_lock);
16918
16919 switch (what) {
16920 case CPU_CONFIG: {
16921 dtrace_state_t *state;
16922 dtrace_optval_t *opt, rs, c;
16923
16924 /*
16925 * For now, we only allocate a new buffer for anonymous state.
16926 */
16927 if ((state = dtrace_anon.dta_state) == NULL)
16928 break;
16929
16930 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16931 break;
16932
16933 opt = state->dts_options;
16934 c = opt[DTRACEOPT_CPU];
16935
16936 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16937 break;
16938
16939 /*
16940 * Regardless of what the actual policy is, we're going to
16941 * temporarily set our resize policy to be manual. We're
16942 * also going to temporarily set our CPU option to denote
16943 * the newly configured CPU.
16944 */
16945 rs = opt[DTRACEOPT_BUFRESIZE];
16946 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16947 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16948
16949 (void) dtrace_state_buffers(state);
16950
16951 opt[DTRACEOPT_BUFRESIZE] = rs;
16952 opt[DTRACEOPT_CPU] = c;
16953
16954 break;
16955 }
16956
16957 case CPU_UNCONFIG:
16958 /*
16959 * We don't free the buffer in the CPU_UNCONFIG case. (The
16960 * buffer will be freed when the consumer exits.)
16961 */
16962 break;
16963
16964 default:
16965 break;
16966 }
16967
16968 mutex_exit(&dtrace_lock);
16969 return (0);
16970 }
16971
16972 #ifdef illumos
16973 static void
16974 dtrace_cpu_setup_initial(processorid_t cpu)
16975 {
16976 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16977 }
16978 #endif
16979
16980 static void
16981 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16982 {
16983 if (dtrace_toxranges >= dtrace_toxranges_max) {
16984 int osize, nsize;
16985 dtrace_toxrange_t *range;
16986
16987 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16988
16989 if (osize == 0) {
16990 ASSERT(dtrace_toxrange == NULL);
16991 ASSERT(dtrace_toxranges_max == 0);
16992 dtrace_toxranges_max = 1;
16993 } else {
16994 dtrace_toxranges_max <<= 1;
16995 }
16996
16997 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16998 range = kmem_zalloc(nsize, KM_SLEEP);
16999
17000 if (dtrace_toxrange != NULL) {
17001 ASSERT(osize != 0);
17002 bcopy(dtrace_toxrange, range, osize);
17003 kmem_free(dtrace_toxrange, osize);
17004 }
17005
17006 dtrace_toxrange = range;
17007 }
17008
17009 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17010 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17011
17012 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17013 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17014 dtrace_toxranges++;
17015 }
17016
17017 static void
17018 dtrace_getf_barrier(void)
17019 {
17020 #ifdef illumos
17021 /*
17022 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17023 * that contain calls to getf(), this routine will be called on every
17024 * closef() before either the underlying vnode is released or the
17025 * file_t itself is freed. By the time we are here, it is essential
17026 * that the file_t can no longer be accessed from a call to getf()
17027 * in probe context -- that assures that a dtrace_sync() can be used
17028 * to clear out any enablings referring to the old structures.
17029 */
17030 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17031 kcred->cr_zone->zone_dtrace_getf != 0)
17032 dtrace_sync();
17033 #endif
17034 }
17035
17036 /*
17037 * DTrace Driver Cookbook Functions
17038 */
17039 #ifdef illumos
17040 /*ARGSUSED*/
17041 static int
17042 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17043 {
17044 dtrace_provider_id_t id;
17045 dtrace_state_t *state = NULL;
17046 dtrace_enabling_t *enab;
17047
17048 mutex_enter(&cpu_lock);
17049 mutex_enter(&dtrace_provider_lock);
17050 mutex_enter(&dtrace_lock);
17051
17052 if (ddi_soft_state_init(&dtrace_softstate,
17053 sizeof (dtrace_state_t), 0) != 0) {
17054 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17055 mutex_exit(&cpu_lock);
17056 mutex_exit(&dtrace_provider_lock);
17057 mutex_exit(&dtrace_lock);
17058 return (DDI_FAILURE);
17059 }
17060
17061 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17062 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17063 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17064 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17065 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17066 ddi_remove_minor_node(devi, NULL);
17067 ddi_soft_state_fini(&dtrace_softstate);
17068 mutex_exit(&cpu_lock);
17069 mutex_exit(&dtrace_provider_lock);
17070 mutex_exit(&dtrace_lock);
17071 return (DDI_FAILURE);
17072 }
17073
17074 ddi_report_dev(devi);
17075 dtrace_devi = devi;
17076
17077 dtrace_modload = dtrace_module_loaded;
17078 dtrace_modunload = dtrace_module_unloaded;
17079 dtrace_cpu_init = dtrace_cpu_setup_initial;
17080 dtrace_helpers_cleanup = dtrace_helpers_destroy;
17081 dtrace_helpers_fork = dtrace_helpers_duplicate;
17082 dtrace_cpustart_init = dtrace_suspend;
17083 dtrace_cpustart_fini = dtrace_resume;
17084 dtrace_debugger_init = dtrace_suspend;
17085 dtrace_debugger_fini = dtrace_resume;
17086
17087 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17088
17089 ASSERT(MUTEX_HELD(&cpu_lock));
17090
17091 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17092 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17093 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17094 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17095 VM_SLEEP | VMC_IDENTIFIER);
17096 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17097 1, INT_MAX, 0);
17098
17099 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17100 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17101 NULL, NULL, NULL, NULL, NULL, 0);
17102
17103 ASSERT(MUTEX_HELD(&cpu_lock));
17104 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17105 offsetof(dtrace_probe_t, dtpr_nextmod),
17106 offsetof(dtrace_probe_t, dtpr_prevmod));
17107
17108 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17109 offsetof(dtrace_probe_t, dtpr_nextfunc),
17110 offsetof(dtrace_probe_t, dtpr_prevfunc));
17111
17112 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17113 offsetof(dtrace_probe_t, dtpr_nextname),
17114 offsetof(dtrace_probe_t, dtpr_prevname));
17115
17116 if (dtrace_retain_max < 1) {
17117 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17118 "setting to 1", dtrace_retain_max);
17119 dtrace_retain_max = 1;
17120 }
17121
17122 /*
17123 * Now discover our toxic ranges.
17124 */
17125 dtrace_toxic_ranges(dtrace_toxrange_add);
17126
17127 /*
17128 * Before we register ourselves as a provider to our own framework,
17129 * we would like to assert that dtrace_provider is NULL -- but that's
17130 * not true if we were loaded as a dependency of a DTrace provider.
17131 * Once we've registered, we can assert that dtrace_provider is our
17132 * pseudo provider.
17133 */
17134 (void) dtrace_register("dtrace", &dtrace_provider_attr,
17135 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17136
17137 ASSERT(dtrace_provider != NULL);
17138 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17139
17140 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17141 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17142 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17143 dtrace_provider, NULL, NULL, "END", 0, NULL);
17144 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17145 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17146
17147 dtrace_anon_property();
17148 mutex_exit(&cpu_lock);
17149
17150 /*
17151 * If there are already providers, we must ask them to provide their
17152 * probes, and then match any anonymous enabling against them. Note
17153 * that there should be no other retained enablings at this time:
17154 * the only retained enablings at this time should be the anonymous
17155 * enabling.
17156 */
17157 if (dtrace_anon.dta_enabling != NULL) {
17158 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17159
17160 dtrace_enabling_provide(NULL);
17161 state = dtrace_anon.dta_state;
17162
17163 /*
17164 * We couldn't hold cpu_lock across the above call to
17165 * dtrace_enabling_provide(), but we must hold it to actually
17166 * enable the probes. We have to drop all of our locks, pick
17167 * up cpu_lock, and regain our locks before matching the
17168 * retained anonymous enabling.
17169 */
17170 mutex_exit(&dtrace_lock);
17171 mutex_exit(&dtrace_provider_lock);
17172
17173 mutex_enter(&cpu_lock);
17174 mutex_enter(&dtrace_provider_lock);
17175 mutex_enter(&dtrace_lock);
17176
17177 if ((enab = dtrace_anon.dta_enabling) != NULL)
17178 (void) dtrace_enabling_match(enab, NULL);
17179
17180 mutex_exit(&cpu_lock);
17181 }
17182
17183 mutex_exit(&dtrace_lock);
17184 mutex_exit(&dtrace_provider_lock);
17185
17186 if (state != NULL) {
17187 /*
17188 * If we created any anonymous state, set it going now.
17189 */
17190 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17191 }
17192
17193 return (DDI_SUCCESS);
17194 }
17195 #endif /* illumos */
17196
17197 #ifndef illumos
17198 static void dtrace_dtr(void *);
17199 #endif
17200
17201 /*ARGSUSED*/
17202 static int
17203 #ifdef illumos
17204 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17205 #else
17206 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17207 #endif
17208 {
17209 dtrace_state_t *state;
17210 uint32_t priv;
17211 uid_t uid;
17212 zoneid_t zoneid;
17213
17214 #ifdef illumos
17215 if (getminor(*devp) == DTRACEMNRN_HELPER)
17216 return (0);
17217
17218 /*
17219 * If this wasn't an open with the "helper" minor, then it must be
17220 * the "dtrace" minor.
17221 */
17222 if (getminor(*devp) == DTRACEMNRN_DTRACE)
17223 return (ENXIO);
17224 #else
17225 cred_t *cred_p = NULL;
17226 cred_p = dev->si_cred;
17227
17228 /*
17229 * If no DTRACE_PRIV_* bits are set in the credential, then the
17230 * caller lacks sufficient permission to do anything with DTrace.
17231 */
17232 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17233 if (priv == DTRACE_PRIV_NONE) {
17234 #endif
17235
17236 return (EACCES);
17237 }
17238
17239 /*
17240 * Ask all providers to provide all their probes.
17241 */
17242 mutex_enter(&dtrace_provider_lock);
17243 dtrace_probe_provide(NULL, NULL);
17244 mutex_exit(&dtrace_provider_lock);
17245
17246 mutex_enter(&cpu_lock);
17247 mutex_enter(&dtrace_lock);
17248 dtrace_opens++;
17249 dtrace_membar_producer();
17250
17251 #ifdef illumos
17252 /*
17253 * If the kernel debugger is active (that is, if the kernel debugger
17254 * modified text in some way), we won't allow the open.
17255 */
17256 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17257 dtrace_opens--;
17258 mutex_exit(&cpu_lock);
17259 mutex_exit(&dtrace_lock);
17260 return (EBUSY);
17261 }
17262
17263 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17264 /*
17265 * If DTrace helper tracing is enabled, we need to allocate the
17266 * trace buffer and initialize the values.
17267 */
17268 dtrace_helptrace_buffer =
17269 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17270 dtrace_helptrace_next = 0;
17271 dtrace_helptrace_wrapped = 0;
17272 dtrace_helptrace_enable = 0;
17273 }
17274
17275 state = dtrace_state_create(devp, cred_p);
17276 #else
17277 state = dtrace_state_create(dev, NULL);
17278 devfs_set_cdevpriv(state, dtrace_dtr);
17279 #endif
17280
17281 mutex_exit(&cpu_lock);
17282
17283 if (state == NULL) {
17284 #ifdef illumos
17285 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17286 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17287 #else
17288 --dtrace_opens;
17289 #endif
17290 mutex_exit(&dtrace_lock);
17291 return (EAGAIN);
17292 }
17293
17294 mutex_exit(&dtrace_lock);
17295
17296 return (0);
17297 }
17298
17299 /*ARGSUSED*/
17300 #ifdef illumos
17301 static int
17302 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17303 #else
17304 static void
17305 dtrace_dtr(void *data)
17306 #endif
17307 {
17308 #ifdef illumos
17309 minor_t minor = getminor(dev);
17310 dtrace_state_t *state;
17311 #endif
17312 dtrace_helptrace_t *buf = NULL;
17313
17314 #ifdef illumos
17315 if (minor == DTRACEMNRN_HELPER)
17316 return (0);
17317
17318 state = ddi_get_soft_state(dtrace_softstate, minor);
17319 #else
17320 dtrace_state_t *state = data;
17321 #endif
17322
17323 mutex_enter(&cpu_lock);
17324 mutex_enter(&dtrace_lock);
17325
17326 #ifdef illumos
17327 if (state->dts_anon)
17328 #else
17329 if (state != NULL && state->dts_anon)
17330 #endif
17331 {
17332 /*
17333 * There is anonymous state. Destroy that first.
17334 */
17335 ASSERT(dtrace_anon.dta_state == NULL);
17336 dtrace_state_destroy(state->dts_anon);
17337 }
17338
17339 if (dtrace_helptrace_disable) {
17340 /*
17341 * If we have been told to disable helper tracing, set the
17342 * buffer to NULL before calling into dtrace_state_destroy();
17343 * we take advantage of its dtrace_sync() to know that no
17344 * CPU is in probe context with enabled helper tracing
17345 * after it returns.
17346 */
17347 buf = dtrace_helptrace_buffer;
17348 dtrace_helptrace_buffer = NULL;
17349 }
17350
17351 #ifdef illumos
17352 dtrace_state_destroy(state);
17353 #else
17354 if (state != NULL) {
17355 dtrace_state_destroy(state);
17356 kmem_free(state, 0);
17357 }
17358 #endif
17359 ASSERT(dtrace_opens > 0);
17360
17361 #ifdef illumos
17362 /*
17363 * Only relinquish control of the kernel debugger interface when there
17364 * are no consumers and no anonymous enablings.
17365 */
17366 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17367 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17368 #else
17369 --dtrace_opens;
17370 #endif
17371
17372 if (buf != NULL) {
17373 kmem_free(buf, dtrace_helptrace_bufsize);
17374 dtrace_helptrace_disable = 0;
17375 }
17376
17377 mutex_exit(&dtrace_lock);
17378 mutex_exit(&cpu_lock);
17379
17380 #ifdef illumos
17381 return (0);
17382 #endif
17383 }
17384
17385 #ifdef illumos
17386 /*ARGSUSED*/
17387 static int
17388 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17389 {
17390 int rval;
17391 dof_helper_t help, *dhp = NULL;
17392
17393 switch (cmd) {
17394 case DTRACEHIOC_ADDDOF:
17395 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17396 dtrace_dof_error(NULL, "failed to copyin DOF helper");
17397 return (EFAULT);
17398 }
17399
17400 dhp = &help;
17401 arg = (intptr_t)help.dofhp_dof;
17402 /*FALLTHROUGH*/
17403
17404 case DTRACEHIOC_ADD: {
17405 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17406
17407 if (dof == NULL)
17408 return (rval);
17409
17410 mutex_enter(&dtrace_lock);
17411
17412 /*
17413 * dtrace_helper_slurp() takes responsibility for the dof --
17414 * it may free it now or it may save it and free it later.
17415 */
17416 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17417 *rv = rval;
17418 rval = 0;
17419 } else {
17420 rval = EINVAL;
17421 }
17422
17423 mutex_exit(&dtrace_lock);
17424 return (rval);
17425 }
17426
17427 case DTRACEHIOC_REMOVE: {
17428 mutex_enter(&dtrace_lock);
17429 rval = dtrace_helper_destroygen(NULL, arg);
17430 mutex_exit(&dtrace_lock);
17431
17432 return (rval);
17433 }
17434
17435 default:
17436 break;
17437 }
17438
17439 return (ENOTTY);
17440 }
17441
17442 /*ARGSUSED*/
17443 static int
17444 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17445 {
17446 minor_t minor = getminor(dev);
17447 dtrace_state_t *state;
17448 int rval;
17449
17450 if (minor == DTRACEMNRN_HELPER)
17451 return (dtrace_ioctl_helper(cmd, arg, rv));
17452
17453 state = ddi_get_soft_state(dtrace_softstate, minor);
17454
17455 if (state->dts_anon) {
17456 ASSERT(dtrace_anon.dta_state == NULL);
17457 state = state->dts_anon;
17458 }
17459
17460 switch (cmd) {
17461 case DTRACEIOC_PROVIDER: {
17462 dtrace_providerdesc_t pvd;
17463 dtrace_provider_t *pvp;
17464
17465 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17466 return (EFAULT);
17467
17468 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17469 mutex_enter(&dtrace_provider_lock);
17470
17471 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17472 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17473 break;
17474 }
17475
17476 mutex_exit(&dtrace_provider_lock);
17477
17478 if (pvp == NULL)
17479 return (ESRCH);
17480
17481 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17482 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17483
17484 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17485 return (EFAULT);
17486
17487 return (0);
17488 }
17489
17490 case DTRACEIOC_EPROBE: {
17491 dtrace_eprobedesc_t epdesc;
17492 dtrace_ecb_t *ecb;
17493 dtrace_action_t *act;
17494 void *buf;
17495 size_t size;
17496 uintptr_t dest;
17497 int nrecs;
17498
17499 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17500 return (EFAULT);
17501
17502 mutex_enter(&dtrace_lock);
17503
17504 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17505 mutex_exit(&dtrace_lock);
17506 return (EINVAL);
17507 }
17508
17509 if (ecb->dte_probe == NULL) {
17510 mutex_exit(&dtrace_lock);
17511 return (EINVAL);
17512 }
17513
17514 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17515 epdesc.dtepd_uarg = ecb->dte_uarg;
17516 epdesc.dtepd_size = ecb->dte_size;
17517
17518 nrecs = epdesc.dtepd_nrecs;
17519 epdesc.dtepd_nrecs = 0;
17520 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17521 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17522 continue;
17523
17524 epdesc.dtepd_nrecs++;
17525 }
17526
17527 /*
17528 * Now that we have the size, we need to allocate a temporary
17529 * buffer in which to store the complete description. We need
17530 * the temporary buffer to be able to drop dtrace_lock()
17531 * across the copyout(), below.
17532 */
17533 size = sizeof (dtrace_eprobedesc_t) +
17534 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17535
17536 buf = kmem_alloc(size, KM_SLEEP);
17537 dest = (uintptr_t)buf;
17538
17539 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17540 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17541
17542 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17543 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17544 continue;
17545
17546 if (nrecs-- == 0)
17547 break;
17548
17549 bcopy(&act->dta_rec, (void *)dest,
17550 sizeof (dtrace_recdesc_t));
17551 dest += sizeof (dtrace_recdesc_t);
17552 }
17553
17554 mutex_exit(&dtrace_lock);
17555
17556 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17557 kmem_free(buf, size);
17558 return (EFAULT);
17559 }
17560
17561 kmem_free(buf, size);
17562 return (0);
17563 }
17564
17565 case DTRACEIOC_AGGDESC: {
17566 dtrace_aggdesc_t aggdesc;
17567 dtrace_action_t *act;
17568 dtrace_aggregation_t *agg;
17569 int nrecs;
17570 uint32_t offs;
17571 dtrace_recdesc_t *lrec;
17572 void *buf;
17573 size_t size;
17574 uintptr_t dest;
17575
17576 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17577 return (EFAULT);
17578
17579 mutex_enter(&dtrace_lock);
17580
17581 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17582 mutex_exit(&dtrace_lock);
17583 return (EINVAL);
17584 }
17585
17586 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17587
17588 nrecs = aggdesc.dtagd_nrecs;
17589 aggdesc.dtagd_nrecs = 0;
17590
17591 offs = agg->dtag_base;
17592 lrec = &agg->dtag_action.dta_rec;
17593 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17594
17595 for (act = agg->dtag_first; ; act = act->dta_next) {
17596 ASSERT(act->dta_intuple ||
17597 DTRACEACT_ISAGG(act->dta_kind));
17598
17599 /*
17600 * If this action has a record size of zero, it
17601 * denotes an argument to the aggregating action.
17602 * Because the presence of this record doesn't (or
17603 * shouldn't) affect the way the data is interpreted,
17604 * we don't copy it out to save user-level the
17605 * confusion of dealing with a zero-length record.
17606 */
17607 if (act->dta_rec.dtrd_size == 0) {
17608 ASSERT(agg->dtag_hasarg);
17609 continue;
17610 }
17611
17612 aggdesc.dtagd_nrecs++;
17613
17614 if (act == &agg->dtag_action)
17615 break;
17616 }
17617
17618 /*
17619 * Now that we have the size, we need to allocate a temporary
17620 * buffer in which to store the complete description. We need
17621 * the temporary buffer to be able to drop dtrace_lock()
17622 * across the copyout(), below.
17623 */
17624 size = sizeof (dtrace_aggdesc_t) +
17625 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17626
17627 buf = kmem_alloc(size, KM_SLEEP);
17628 dest = (uintptr_t)buf;
17629
17630 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17631 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17632
17633 for (act = agg->dtag_first; ; act = act->dta_next) {
17634 dtrace_recdesc_t rec = act->dta_rec;
17635
17636 /*
17637 * See the comment in the above loop for why we pass
17638 * over zero-length records.
17639 */
17640 if (rec.dtrd_size == 0) {
17641 ASSERT(agg->dtag_hasarg);
17642 continue;
17643 }
17644
17645 if (nrecs-- == 0)
17646 break;
17647
17648 rec.dtrd_offset -= offs;
17649 bcopy(&rec, (void *)dest, sizeof (rec));
17650 dest += sizeof (dtrace_recdesc_t);
17651
17652 if (act == &agg->dtag_action)
17653 break;
17654 }
17655
17656 mutex_exit(&dtrace_lock);
17657
17658 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17659 kmem_free(buf, size);
17660 return (EFAULT);
17661 }
17662
17663 kmem_free(buf, size);
17664 return (0);
17665 }
17666
17667 case DTRACEIOC_ENABLE: {
17668 dof_hdr_t *dof;
17669 dtrace_enabling_t *enab = NULL;
17670 dtrace_vstate_t *vstate;
17671 int err = 0;
17672
17673 *rv = 0;
17674
17675 /*
17676 * If a NULL argument has been passed, we take this as our
17677 * cue to reevaluate our enablings.
17678 */
17679 if (arg == NULL) {
17680 dtrace_enabling_matchall();
17681
17682 return (0);
17683 }
17684
17685 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17686 return (rval);
17687
17688 mutex_enter(&cpu_lock);
17689 mutex_enter(&dtrace_lock);
17690 vstate = &state->dts_vstate;
17691
17692 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17693 mutex_exit(&dtrace_lock);
17694 mutex_exit(&cpu_lock);
17695 dtrace_dof_destroy(dof);
17696 return (EBUSY);
17697 }
17698
17699 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17700 mutex_exit(&dtrace_lock);
17701 mutex_exit(&cpu_lock);
17702 dtrace_dof_destroy(dof);
17703 return (EINVAL);
17704 }
17705
17706 if ((rval = dtrace_dof_options(dof, state)) != 0) {
17707 dtrace_enabling_destroy(enab);
17708 mutex_exit(&dtrace_lock);
17709 mutex_exit(&cpu_lock);
17710 dtrace_dof_destroy(dof);
17711 return (rval);
17712 }
17713
17714 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17715 err = dtrace_enabling_retain(enab);
17716 } else {
17717 dtrace_enabling_destroy(enab);
17718 }
17719
17720 mutex_exit(&cpu_lock);
17721 mutex_exit(&dtrace_lock);
17722 dtrace_dof_destroy(dof);
17723
17724 return (err);
17725 }
17726
17727 case DTRACEIOC_REPLICATE: {
17728 dtrace_repldesc_t desc;
17729 dtrace_probedesc_t *match = &desc.dtrpd_match;
17730 dtrace_probedesc_t *create = &desc.dtrpd_create;
17731 int err;
17732
17733 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17734 return (EFAULT);
17735
17736 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17737 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17738 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17739 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17740
17741 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17742 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17743 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17744 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17745
17746 mutex_enter(&dtrace_lock);
17747 err = dtrace_enabling_replicate(state, match, create);
17748 mutex_exit(&dtrace_lock);
17749
17750 return (err);
17751 }
17752
17753 case DTRACEIOC_PROBEMATCH:
17754 case DTRACEIOC_PROBES: {
17755 dtrace_probe_t *probe = NULL;
17756 dtrace_probedesc_t desc;
17757 dtrace_probekey_t pkey;
17758 dtrace_id_t i;
17759 int m = 0;
17760 uint32_t priv;
17761 uid_t uid;
17762 zoneid_t zoneid;
17763
17764 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17765 return (EFAULT);
17766
17767 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17768 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17769 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17770 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17771
17772 /*
17773 * Before we attempt to match this probe, we want to give
17774 * all providers the opportunity to provide it.
17775 */
17776 if (desc.dtpd_id == DTRACE_IDNONE) {
17777 mutex_enter(&dtrace_provider_lock);
17778 dtrace_probe_provide(&desc, NULL);
17779 mutex_exit(&dtrace_provider_lock);
17780 desc.dtpd_id++;
17781 }
17782
17783 if (cmd == DTRACEIOC_PROBEMATCH) {
17784 dtrace_probekey(&desc, &pkey);
17785 pkey.dtpk_id = DTRACE_IDNONE;
17786 }
17787
17788 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17789
17790 mutex_enter(&dtrace_lock);
17791
17792 if (cmd == DTRACEIOC_PROBEMATCH) {
17793 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17794 if ((probe = dtrace_probes[i - 1]) != NULL &&
17795 (m = dtrace_match_probe(probe, &pkey,
17796 priv, uid, zoneid)) != 0)
17797 break;
17798 }
17799
17800 if (m < 0) {
17801 mutex_exit(&dtrace_lock);
17802 return (EINVAL);
17803 }
17804
17805 } else {
17806 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17807 if ((probe = dtrace_probes[i - 1]) != NULL &&
17808 dtrace_match_priv(probe, priv, uid, zoneid))
17809 break;
17810 }
17811 }
17812
17813 if (probe == NULL) {
17814 mutex_exit(&dtrace_lock);
17815 return (ESRCH);
17816 }
17817
17818 dtrace_probe_description(probe, &desc);
17819 mutex_exit(&dtrace_lock);
17820
17821 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17822 return (EFAULT);
17823
17824 return (0);
17825 }
17826
17827 case DTRACEIOC_PROBEARG: {
17828 dtrace_argdesc_t desc;
17829 dtrace_probe_t *probe;
17830 dtrace_provider_t *prov;
17831
17832 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17833 return (EFAULT);
17834
17835 if (desc.dtargd_id == DTRACE_IDNONE)
17836 return (EINVAL);
17837
17838 if (desc.dtargd_ndx == DTRACE_ARGNONE)
17839 return (EINVAL);
17840
17841 mutex_enter(&dtrace_provider_lock);
17842 mutex_enter(&mod_lock);
17843 mutex_enter(&dtrace_lock);
17844
17845 if (desc.dtargd_id > dtrace_nprobes) {
17846 mutex_exit(&dtrace_lock);
17847 mutex_exit(&mod_lock);
17848 mutex_exit(&dtrace_provider_lock);
17849 return (EINVAL);
17850 }
17851
17852 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17853 mutex_exit(&dtrace_lock);
17854 mutex_exit(&mod_lock);
17855 mutex_exit(&dtrace_provider_lock);
17856 return (EINVAL);
17857 }
17858
17859 mutex_exit(&dtrace_lock);
17860
17861 prov = probe->dtpr_provider;
17862
17863 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17864 /*
17865 * There isn't any typed information for this probe.
17866 * Set the argument number to DTRACE_ARGNONE.
17867 */
17868 desc.dtargd_ndx = DTRACE_ARGNONE;
17869 } else {
17870 desc.dtargd_native[0] = '\0';
17871 desc.dtargd_xlate[0] = '\0';
17872 desc.dtargd_mapping = desc.dtargd_ndx;
17873
17874 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17875 probe->dtpr_id, probe->dtpr_arg, &desc);
17876 }
17877
17878 mutex_exit(&mod_lock);
17879 mutex_exit(&dtrace_provider_lock);
17880
17881 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17882 return (EFAULT);
17883
17884 return (0);
17885 }
17886
17887 case DTRACEIOC_GO: {
17888 processorid_t cpuid;
17889 rval = dtrace_state_go(state, &cpuid);
17890
17891 if (rval != 0)
17892 return (rval);
17893
17894 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17895 return (EFAULT);
17896
17897 return (0);
17898 }
17899
17900 case DTRACEIOC_STOP: {
17901 processorid_t cpuid;
17902
17903 mutex_enter(&dtrace_lock);
17904 rval = dtrace_state_stop(state, &cpuid);
17905 mutex_exit(&dtrace_lock);
17906
17907 if (rval != 0)
17908 return (rval);
17909
17910 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17911 return (EFAULT);
17912
17913 return (0);
17914 }
17915
17916 case DTRACEIOC_DOFGET: {
17917 dof_hdr_t hdr, *dof;
17918 uint64_t len;
17919
17920 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17921 return (EFAULT);
17922
17923 mutex_enter(&dtrace_lock);
17924 dof = dtrace_dof_create(state);
17925 mutex_exit(&dtrace_lock);
17926
17927 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17928 rval = copyout(dof, (void *)arg, len);
17929 dtrace_dof_destroy(dof);
17930
17931 return (rval == 0 ? 0 : EFAULT);
17932 }
17933
17934 case DTRACEIOC_AGGSNAP:
17935 case DTRACEIOC_BUFSNAP: {
17936 dtrace_bufdesc_t desc;
17937 caddr_t cached;
17938 dtrace_buffer_t *buf;
17939
17940 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17941 return (EFAULT);
17942
17943 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17944 return (EINVAL);
17945
17946 mutex_enter(&dtrace_lock);
17947
17948 if (cmd == DTRACEIOC_BUFSNAP) {
17949 buf = &state->dts_buffer[desc.dtbd_cpu];
17950 } else {
17951 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17952 }
17953
17954 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17955 size_t sz = buf->dtb_offset;
17956
17957 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17958 mutex_exit(&dtrace_lock);
17959 return (EBUSY);
17960 }
17961
17962 /*
17963 * If this buffer has already been consumed, we're
17964 * going to indicate that there's nothing left here
17965 * to consume.
17966 */
17967 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17968 mutex_exit(&dtrace_lock);
17969
17970 desc.dtbd_size = 0;
17971 desc.dtbd_drops = 0;
17972 desc.dtbd_errors = 0;
17973 desc.dtbd_oldest = 0;
17974 sz = sizeof (desc);
17975
17976 if (copyout(&desc, (void *)arg, sz) != 0)
17977 return (EFAULT);
17978
17979 return (0);
17980 }
17981
17982 /*
17983 * If this is a ring buffer that has wrapped, we want
17984 * to copy the whole thing out.
17985 */
17986 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17987 dtrace_buffer_polish(buf);
17988 sz = buf->dtb_size;
17989 }
17990
17991 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17992 mutex_exit(&dtrace_lock);
17993 return (EFAULT);
17994 }
17995
17996 desc.dtbd_size = sz;
17997 desc.dtbd_drops = buf->dtb_drops;
17998 desc.dtbd_errors = buf->dtb_errors;
17999 desc.dtbd_oldest = buf->dtb_xamot_offset;
18000 desc.dtbd_timestamp = dtrace_gethrtime();
18001
18002 mutex_exit(&dtrace_lock);
18003
18004 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18005 return (EFAULT);
18006
18007 buf->dtb_flags |= DTRACEBUF_CONSUMED;
18008
18009 return (0);
18010 }
18011
18012 if (buf->dtb_tomax == NULL) {
18013 ASSERT(buf->dtb_xamot == NULL);
18014 mutex_exit(&dtrace_lock);
18015 return (ENOENT);
18016 }
18017
18018 cached = buf->dtb_tomax;
18019 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18020
18021 dtrace_xcall(desc.dtbd_cpu,
18022 (dtrace_xcall_t)dtrace_buffer_switch, buf);
18023
18024 state->dts_errors += buf->dtb_xamot_errors;
18025
18026 /*
18027 * If the buffers did not actually switch, then the cross call
18028 * did not take place -- presumably because the given CPU is
18029 * not in the ready set. If this is the case, we'll return
18030 * ENOENT.
18031 */
18032 if (buf->dtb_tomax == cached) {
18033 ASSERT(buf->dtb_xamot != cached);
18034 mutex_exit(&dtrace_lock);
18035 return (ENOENT);
18036 }
18037
18038 ASSERT(cached == buf->dtb_xamot);
18039
18040 /*
18041 * We have our snapshot; now copy it out.
18042 */
18043 if (copyout(buf->dtb_xamot, desc.dtbd_data,
18044 buf->dtb_xamot_offset) != 0) {
18045 mutex_exit(&dtrace_lock);
18046 return (EFAULT);
18047 }
18048
18049 desc.dtbd_size = buf->dtb_xamot_offset;
18050 desc.dtbd_drops = buf->dtb_xamot_drops;
18051 desc.dtbd_errors = buf->dtb_xamot_errors;
18052 desc.dtbd_oldest = 0;
18053 desc.dtbd_timestamp = buf->dtb_switched;
18054
18055 mutex_exit(&dtrace_lock);
18056
18057 /*
18058 * Finally, copy out the buffer description.
18059 */
18060 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18061 return (EFAULT);
18062
18063 return (0);
18064 }
18065
18066 case DTRACEIOC_CONF: {
18067 dtrace_conf_t conf;
18068
18069 bzero(&conf, sizeof (conf));
18070 conf.dtc_difversion = DIF_VERSION;
18071 conf.dtc_difintregs = DIF_DIR_NREGS;
18072 conf.dtc_diftupregs = DIF_DTR_NREGS;
18073 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18074
18075 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18076 return (EFAULT);
18077
18078 return (0);
18079 }
18080
18081 case DTRACEIOC_STATUS: {
18082 dtrace_status_t stat;
18083 dtrace_dstate_t *dstate;
18084 int i, j;
18085 uint64_t nerrs;
18086
18087 /*
18088 * See the comment in dtrace_state_deadman() for the reason
18089 * for setting dts_laststatus to INT64_MAX before setting
18090 * it to the correct value.
18091 */
18092 state->dts_laststatus = INT64_MAX;
18093 dtrace_membar_producer();
18094 state->dts_laststatus = dtrace_gethrtime();
18095
18096 bzero(&stat, sizeof (stat));
18097
18098 mutex_enter(&dtrace_lock);
18099
18100 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18101 mutex_exit(&dtrace_lock);
18102 return (ENOENT);
18103 }
18104
18105 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18106 stat.dtst_exiting = 1;
18107
18108 nerrs = state->dts_errors;
18109 dstate = &state->dts_vstate.dtvs_dynvars;
18110
18111 for (i = 0; i < NCPU; i++) {
18112 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18113
18114 stat.dtst_dyndrops += dcpu->dtdsc_drops;
18115 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18116 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18117
18118 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18119 stat.dtst_filled++;
18120
18121 nerrs += state->dts_buffer[i].dtb_errors;
18122
18123 for (j = 0; j < state->dts_nspeculations; j++) {
18124 dtrace_speculation_t *spec;
18125 dtrace_buffer_t *buf;
18126
18127 spec = &state->dts_speculations[j];
18128 buf = &spec->dtsp_buffer[i];
18129 stat.dtst_specdrops += buf->dtb_xamot_drops;
18130 }
18131 }
18132
18133 stat.dtst_specdrops_busy = state->dts_speculations_busy;
18134 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18135 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18136 stat.dtst_dblerrors = state->dts_dblerrors;
18137 stat.dtst_killed =
18138 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18139 stat.dtst_errors = nerrs;
18140
18141 mutex_exit(&dtrace_lock);
18142
18143 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18144 return (EFAULT);
18145
18146 return (0);
18147 }
18148
18149 case DTRACEIOC_FORMAT: {
18150 dtrace_fmtdesc_t fmt;
18151 char *str;
18152 int len;
18153
18154 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18155 return (EFAULT);
18156
18157 mutex_enter(&dtrace_lock);
18158
18159 if (fmt.dtfd_format == 0 ||
18160 fmt.dtfd_format > state->dts_nformats) {
18161 mutex_exit(&dtrace_lock);
18162 return (EINVAL);
18163 }
18164
18165 /*
18166 * Format strings are allocated contiguously and they are
18167 * never freed; if a format index is less than the number
18168 * of formats, we can assert that the format map is non-NULL
18169 * and that the format for the specified index is non-NULL.
18170 */
18171 ASSERT(state->dts_formats != NULL);
18172 str = state->dts_formats[fmt.dtfd_format - 1];
18173 ASSERT(str != NULL);
18174
18175 len = strlen(str) + 1;
18176
18177 if (len > fmt.dtfd_length) {
18178 fmt.dtfd_length = len;
18179
18180 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18181 mutex_exit(&dtrace_lock);
18182 return (EINVAL);
18183 }
18184 } else {
18185 if (copyout(str, fmt.dtfd_string, len) != 0) {
18186 mutex_exit(&dtrace_lock);
18187 return (EINVAL);
18188 }
18189 }
18190
18191 mutex_exit(&dtrace_lock);
18192 return (0);
18193 }
18194
18195 default:
18196 break;
18197 }
18198
18199 return (ENOTTY);
18200 }
18201
18202 /*ARGSUSED*/
18203 static int
18204 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18205 {
18206 dtrace_state_t *state;
18207
18208 switch (cmd) {
18209 case DDI_DETACH:
18210 break;
18211
18212 case DDI_SUSPEND:
18213 return (DDI_SUCCESS);
18214
18215 default:
18216 return (DDI_FAILURE);
18217 }
18218
18219 mutex_enter(&cpu_lock);
18220 mutex_enter(&dtrace_provider_lock);
18221 mutex_enter(&dtrace_lock);
18222
18223 ASSERT(dtrace_opens == 0);
18224
18225 if (dtrace_helpers > 0) {
18226 mutex_exit(&dtrace_provider_lock);
18227 mutex_exit(&dtrace_lock);
18228 mutex_exit(&cpu_lock);
18229 return (DDI_FAILURE);
18230 }
18231
18232 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18233 mutex_exit(&dtrace_provider_lock);
18234 mutex_exit(&dtrace_lock);
18235 mutex_exit(&cpu_lock);
18236 return (DDI_FAILURE);
18237 }
18238
18239 dtrace_provider = NULL;
18240
18241 if ((state = dtrace_anon_grab()) != NULL) {
18242 /*
18243 * If there were ECBs on this state, the provider should
18244 * have not been allowed to detach; assert that there is
18245 * none.
18246 */
18247 ASSERT(state->dts_necbs == 0);
18248 dtrace_state_destroy(state);
18249
18250 /*
18251 * If we're being detached with anonymous state, we need to
18252 * indicate to the kernel debugger that DTrace is now inactive.
18253 */
18254 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18255 }
18256
18257 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18258 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18259 dtrace_cpu_init = NULL;
18260 dtrace_helpers_cleanup = NULL;
18261 dtrace_helpers_fork = NULL;
18262 dtrace_cpustart_init = NULL;
18263 dtrace_cpustart_fini = NULL;
18264 dtrace_debugger_init = NULL;
18265 dtrace_debugger_fini = NULL;
18266 dtrace_modload = NULL;
18267 dtrace_modunload = NULL;
18268
18269 ASSERT(dtrace_getf == 0);
18270 ASSERT(dtrace_closef == NULL);
18271
18272 mutex_exit(&cpu_lock);
18273
18274 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18275 dtrace_probes = NULL;
18276 dtrace_nprobes = 0;
18277
18278 dtrace_hash_destroy(dtrace_bymod);
18279 dtrace_hash_destroy(dtrace_byfunc);
18280 dtrace_hash_destroy(dtrace_byname);
18281 dtrace_bymod = NULL;
18282 dtrace_byfunc = NULL;
18283 dtrace_byname = NULL;
18284
18285 kmem_cache_destroy(dtrace_state_cache);
18286 vmem_destroy(dtrace_minor);
18287 vmem_destroy(dtrace_arena);
18288
18289 if (dtrace_toxrange != NULL) {
18290 kmem_free(dtrace_toxrange,
18291 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18292 dtrace_toxrange = NULL;
18293 dtrace_toxranges = 0;
18294 dtrace_toxranges_max = 0;
18295 }
18296
18297 ddi_remove_minor_node(dtrace_devi, NULL);
18298 dtrace_devi = NULL;
18299
18300 ddi_soft_state_fini(&dtrace_softstate);
18301
18302 ASSERT(dtrace_vtime_references == 0);
18303 ASSERT(dtrace_opens == 0);
18304 ASSERT(dtrace_retained == NULL);
18305
18306 mutex_exit(&dtrace_lock);
18307 mutex_exit(&dtrace_provider_lock);
18308
18309 /*
18310 * We don't destroy the task queue until after we have dropped our
18311 * locks (taskq_destroy() may block on running tasks). To prevent
18312 * attempting to do work after we have effectively detached but before
18313 * the task queue has been destroyed, all tasks dispatched via the
18314 * task queue must check that DTrace is still attached before
18315 * performing any operation.
18316 */
18317 taskq_destroy(dtrace_taskq);
18318 dtrace_taskq = NULL;
18319
18320 return (DDI_SUCCESS);
18321 }
18322 #endif
18323
18324 #ifdef illumos
18325 /*ARGSUSED*/
18326 static int
18327 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18328 {
18329 int error;
18330
18331 switch (infocmd) {
18332 case DDI_INFO_DEVT2DEVINFO:
18333 *result = (void *)dtrace_devi;
18334 error = DDI_SUCCESS;
18335 break;
18336 case DDI_INFO_DEVT2INSTANCE:
18337 *result = (void *)0;
18338 error = DDI_SUCCESS;
18339 break;
18340 default:
18341 error = DDI_FAILURE;
18342 }
18343 return (error);
18344 }
18345 #endif
18346
18347 #ifdef illumos
18348 static struct cb_ops dtrace_cb_ops = {
18349 dtrace_open, /* open */
18350 dtrace_close, /* close */
18351 nulldev, /* strategy */
18352 nulldev, /* print */
18353 nodev, /* dump */
18354 nodev, /* read */
18355 nodev, /* write */
18356 dtrace_ioctl, /* ioctl */
18357 nodev, /* devmap */
18358 nodev, /* mmap */
18359 nodev, /* segmap */
18360 nochpoll, /* poll */
18361 ddi_prop_op, /* cb_prop_op */
18362 0, /* streamtab */
18363 D_NEW | D_MP /* Driver compatibility flag */
18364 };
18365
18366 static struct dev_ops dtrace_ops = {
18367 DEVO_REV, /* devo_rev */
18368 0, /* refcnt */
18369 dtrace_info, /* get_dev_info */
18370 nulldev, /* identify */
18371 nulldev, /* probe */
18372 dtrace_attach, /* attach */
18373 dtrace_detach, /* detach */
18374 nodev, /* reset */
18375 &dtrace_cb_ops, /* driver operations */
18376 NULL, /* bus operations */
18377 nodev /* dev power */
18378 };
18379
18380 static struct modldrv modldrv = {
18381 &mod_driverops, /* module type (this is a pseudo driver) */
18382 "Dynamic Tracing", /* name of module */
18383 &dtrace_ops, /* driver ops */
18384 };
18385
18386 static struct modlinkage modlinkage = {
18387 MODREV_1,
18388 (void *)&modldrv,
18389 NULL
18390 };
18391
18392 int
18393 _init(void)
18394 {
18395 return (mod_install(&modlinkage));
18396 }
18397
18398 int
18399 _info(struct modinfo *modinfop)
18400 {
18401 return (mod_info(&modlinkage, modinfop));
18402 }
18403
18404 int
18405 _fini(void)
18406 {
18407 return (mod_remove(&modlinkage));
18408 }
18409 #else
18410
18411 static d_ioctl_t dtrace_ioctl;
18412 static d_ioctl_t dtrace_ioctl_helper;
18413 static void dtrace_load(void *);
18414 static int dtrace_unload(void);
18415 static struct cdev *dtrace_dev;
18416 static struct cdev *helper_dev;
18417
18418 void dtrace_invop_init(void);
18419 void dtrace_invop_uninit(void);
18420
18421 static struct cdevsw dtrace_cdevsw = {
18422 .d_version = D_VERSION,
18423 .d_ioctl = dtrace_ioctl,
18424 .d_open = dtrace_open,
18425 .d_name = "dtrace",
18426 };
18427
18428 static struct cdevsw helper_cdevsw = {
18429 .d_version = D_VERSION,
18430 .d_ioctl = dtrace_ioctl_helper,
18431 .d_name = "helper",
18432 };
18433
18434 #include <dtrace_anon.c>
18435 #include <dtrace_ioctl.c>
18436 #include <dtrace_load.c>
18437 #include <dtrace_modevent.c>
18438 #include <dtrace_sysctl.c>
18439 #include <dtrace_unload.c>
18440 #include <dtrace_vtime.c>
18441 #include <dtrace_hacks.c>
18442
18443 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18444 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18445 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18446
18447 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18448 MODULE_VERSION(dtrace, 1);
18449 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18450 #endif
18451