1 //===-- dfsan_allocator.cpp -------------------------- --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of DataflowSanitizer.
10 //
11 // DataflowSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13
14 #include "dfsan_allocator.h"
15
16 #include "dfsan.h"
17 #include "dfsan_flags.h"
18 #include "dfsan_thread.h"
19 #include "sanitizer_common/sanitizer_allocator.h"
20 #include "sanitizer_common/sanitizer_allocator_checks.h"
21 #include "sanitizer_common/sanitizer_allocator_interface.h"
22 #include "sanitizer_common/sanitizer_allocator_report.h"
23 #include "sanitizer_common/sanitizer_errno.h"
24
25 namespace __dfsan {
26
27 struct Metadata {
28 uptr requested_size;
29 };
30
31 struct DFsanMapUnmapCallback {
OnMap__dfsan::DFsanMapUnmapCallback32 void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
OnMapSecondary__dfsan::DFsanMapUnmapCallback33 void OnMapSecondary(uptr p, uptr size, uptr user_begin,
34 uptr user_size) const {
35 OnMap(p, size);
36 }
OnUnmap__dfsan::DFsanMapUnmapCallback37 void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
38 };
39
40 // Note: to ensure that the allocator is compatible with the application memory
41 // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
42 // duplicated as MappingDesc::ALLOCATOR in dfsan_platform.h.
43 #if defined(__aarch64__)
44 const uptr kAllocatorSpace = 0xE00000000000ULL;
45 #else
46 const uptr kAllocatorSpace = 0x700000000000ULL;
47 #endif
48 const uptr kMaxAllowedMallocSize = 1ULL << 40;
49
50 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
51 static const uptr kSpaceBeg = kAllocatorSpace;
52 static const uptr kSpaceSize = 0x40000000000; // 4T.
53 static const uptr kMetadataSize = sizeof(Metadata);
54 typedef DefaultSizeClassMap SizeClassMap;
55 typedef DFsanMapUnmapCallback MapUnmapCallback;
56 static const uptr kFlags = 0;
57 using AddressSpaceView = LocalAddressSpaceView;
58 };
59
60 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
61
62 typedef CombinedAllocator<PrimaryAllocator> Allocator;
63 typedef Allocator::AllocatorCache AllocatorCache;
64
65 static Allocator allocator;
66 static AllocatorCache fallback_allocator_cache;
67 static StaticSpinMutex fallback_mutex;
68
69 static uptr max_malloc_size;
70
dfsan_allocator_init()71 void dfsan_allocator_init() {
72 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
73 allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
74 if (common_flags()->max_allocation_size_mb)
75 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
76 kMaxAllowedMallocSize);
77 else
78 max_malloc_size = kMaxAllowedMallocSize;
79 }
80
GetAllocatorCache(DFsanThreadLocalMallocStorage * ms)81 AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) {
82 CHECK(ms);
83 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
84 return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
85 }
86
CommitBack()87 void DFsanThreadLocalMallocStorage::CommitBack() {
88 allocator.SwallowCache(GetAllocatorCache(this));
89 }
90
DFsanAllocate(uptr size,uptr alignment,bool zeroise)91 static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) {
92 if (size > max_malloc_size) {
93 if (AllocatorMayReturnNull()) {
94 Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n",
95 size);
96 return nullptr;
97 }
98 BufferedStackTrace stack;
99 ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
100 }
101 if (UNLIKELY(IsRssLimitExceeded())) {
102 if (AllocatorMayReturnNull())
103 return nullptr;
104 BufferedStackTrace stack;
105 ReportRssLimitExceeded(&stack);
106 }
107 DFsanThread *t = GetCurrentThread();
108 void *allocated;
109 if (t) {
110 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
111 allocated = allocator.Allocate(cache, size, alignment);
112 } else {
113 SpinMutexLock l(&fallback_mutex);
114 AllocatorCache *cache = &fallback_allocator_cache;
115 allocated = allocator.Allocate(cache, size, alignment);
116 }
117 if (UNLIKELY(!allocated)) {
118 SetAllocatorOutOfMemory();
119 if (AllocatorMayReturnNull())
120 return nullptr;
121 BufferedStackTrace stack;
122 ReportOutOfMemory(size, &stack);
123 }
124 Metadata *meta =
125 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
126 meta->requested_size = size;
127 if (zeroise) {
128 internal_memset(allocated, 0, size);
129 dfsan_set_label(0, allocated, size);
130 } else if (flags().zero_in_malloc) {
131 dfsan_set_label(0, allocated, size);
132 }
133 return allocated;
134 }
135
dfsan_deallocate(void * p)136 void dfsan_deallocate(void *p) {
137 CHECK(p);
138 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
139 uptr size = meta->requested_size;
140 meta->requested_size = 0;
141 if (flags().zero_in_free)
142 dfsan_set_label(0, p, size);
143 DFsanThread *t = GetCurrentThread();
144 if (t) {
145 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
146 allocator.Deallocate(cache, p);
147 } else {
148 SpinMutexLock l(&fallback_mutex);
149 AllocatorCache *cache = &fallback_allocator_cache;
150 allocator.Deallocate(cache, p);
151 }
152 }
153
DFsanReallocate(void * old_p,uptr new_size,uptr alignment)154 void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) {
155 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(old_p));
156 uptr old_size = meta->requested_size;
157 uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
158 if (new_size <= actually_allocated_size) {
159 // We are not reallocating here.
160 meta->requested_size = new_size;
161 if (new_size > old_size && flags().zero_in_malloc)
162 dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size);
163 return old_p;
164 }
165 uptr memcpy_size = Min(new_size, old_size);
166 void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/);
167 if (new_p) {
168 dfsan_copy_memory(new_p, old_p, memcpy_size);
169 dfsan_deallocate(old_p);
170 }
171 return new_p;
172 }
173
DFsanCalloc(uptr nmemb,uptr size)174 void *DFsanCalloc(uptr nmemb, uptr size) {
175 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
176 if (AllocatorMayReturnNull())
177 return nullptr;
178 BufferedStackTrace stack;
179 ReportCallocOverflow(nmemb, size, &stack);
180 }
181 return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/);
182 }
183
AllocationBegin(const void * p)184 static const void *AllocationBegin(const void *p) {
185 if (!p)
186 return nullptr;
187 void *beg = allocator.GetBlockBegin(p);
188 if (!beg)
189 return nullptr;
190 Metadata *b = (Metadata *)allocator.GetMetaData(beg);
191 if (!b)
192 return nullptr;
193 if (b->requested_size == 0)
194 return nullptr;
195 return (const void *)beg;
196 }
197
AllocationSize(const void * p)198 static uptr AllocationSize(const void *p) {
199 if (!p)
200 return 0;
201 const void *beg = allocator.GetBlockBegin(p);
202 if (beg != p)
203 return 0;
204 Metadata *b = (Metadata *)allocator.GetMetaData(p);
205 return b->requested_size;
206 }
207
AllocationSizeFast(const void * p)208 static uptr AllocationSizeFast(const void *p) {
209 return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
210 }
211
dfsan_malloc(uptr size)212 void *dfsan_malloc(uptr size) {
213 return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
214 }
215
dfsan_calloc(uptr nmemb,uptr size)216 void *dfsan_calloc(uptr nmemb, uptr size) {
217 return SetErrnoOnNull(DFsanCalloc(nmemb, size));
218 }
219
dfsan_realloc(void * ptr,uptr size)220 void *dfsan_realloc(void *ptr, uptr size) {
221 if (!ptr)
222 return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
223 if (size == 0) {
224 dfsan_deallocate(ptr);
225 return nullptr;
226 }
227 return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64)));
228 }
229
dfsan_reallocarray(void * ptr,uptr nmemb,uptr size)230 void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) {
231 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
232 errno = errno_ENOMEM;
233 if (AllocatorMayReturnNull())
234 return nullptr;
235 BufferedStackTrace stack;
236 ReportReallocArrayOverflow(nmemb, size, &stack);
237 }
238 return dfsan_realloc(ptr, nmemb * size);
239 }
240
dfsan_valloc(uptr size)241 void *dfsan_valloc(uptr size) {
242 return SetErrnoOnNull(
243 DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/));
244 }
245
dfsan_pvalloc(uptr size)246 void *dfsan_pvalloc(uptr size) {
247 uptr PageSize = GetPageSizeCached();
248 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
249 errno = errno_ENOMEM;
250 if (AllocatorMayReturnNull())
251 return nullptr;
252 BufferedStackTrace stack;
253 ReportPvallocOverflow(size, &stack);
254 }
255 // pvalloc(0) should allocate one page.
256 size = size ? RoundUpTo(size, PageSize) : PageSize;
257 return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/));
258 }
259
dfsan_aligned_alloc(uptr alignment,uptr size)260 void *dfsan_aligned_alloc(uptr alignment, uptr size) {
261 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
262 errno = errno_EINVAL;
263 if (AllocatorMayReturnNull())
264 return nullptr;
265 BufferedStackTrace stack;
266 ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
267 }
268 return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
269 }
270
dfsan_memalign(uptr alignment,uptr size)271 void *dfsan_memalign(uptr alignment, uptr size) {
272 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
273 errno = errno_EINVAL;
274 if (AllocatorMayReturnNull())
275 return nullptr;
276 BufferedStackTrace stack;
277 ReportInvalidAllocationAlignment(alignment, &stack);
278 }
279 return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
280 }
281
dfsan_posix_memalign(void ** memptr,uptr alignment,uptr size)282 int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) {
283 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
284 if (AllocatorMayReturnNull())
285 return errno_EINVAL;
286 BufferedStackTrace stack;
287 ReportInvalidPosixMemalignAlignment(alignment, &stack);
288 }
289 void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/);
290 if (UNLIKELY(!ptr))
291 // OOM error is already taken care of by DFsanAllocate.
292 return errno_ENOMEM;
293 CHECK(IsAligned((uptr)ptr, alignment));
294 *memptr = ptr;
295 return 0;
296 }
297
298 } // namespace __dfsan
299
300 using namespace __dfsan;
301
__sanitizer_get_current_allocated_bytes()302 uptr __sanitizer_get_current_allocated_bytes() {
303 uptr stats[AllocatorStatCount];
304 allocator.GetStats(stats);
305 return stats[AllocatorStatAllocated];
306 }
307
__sanitizer_get_heap_size()308 uptr __sanitizer_get_heap_size() {
309 uptr stats[AllocatorStatCount];
310 allocator.GetStats(stats);
311 return stats[AllocatorStatMapped];
312 }
313
__sanitizer_get_free_bytes()314 uptr __sanitizer_get_free_bytes() { return 1; }
315
__sanitizer_get_unmapped_bytes()316 uptr __sanitizer_get_unmapped_bytes() { return 1; }
317
__sanitizer_get_estimated_allocated_size(uptr size)318 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
319
__sanitizer_get_ownership(const void * p)320 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
321
__sanitizer_get_allocated_begin(const void * p)322 const void *__sanitizer_get_allocated_begin(const void *p) {
323 return AllocationBegin(p);
324 }
325
__sanitizer_get_allocated_size(const void * p)326 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
327
__sanitizer_get_allocated_size_fast(const void * p)328 uptr __sanitizer_get_allocated_size_fast(const void *p) {
329 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
330 uptr ret = AllocationSizeFast(p);
331 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
332 return ret;
333 }
334