xref: /linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/backend.h>
13 #include <linux/iio/buffer.h>
14 #include <linux/iio/hw-consumer.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/iio/timer/stm32-lptim-trigger.h>
17 #include <linux/iio/timer/stm32-timer-trigger.h>
18 #include <linux/iio/trigger.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28 
29 #include "stm32-dfsdm.h"
30 
31 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
32 
33 /* Conversion timeout */
34 #define DFSDM_TIMEOUT_US 100000
35 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
36 
37 /* Oversampling attribute default */
38 #define DFSDM_DEFAULT_OVERSAMPLING  100
39 
40 /* Oversampling max values */
41 #define DFSDM_MAX_INT_OVERSAMPLING 256
42 #define DFSDM_MAX_FL_OVERSAMPLING 1024
43 
44 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
45 #define DFSDM_DATA_MAX BIT(30)
46 /*
47  * Data are output as two's complement data in a 24 bit field.
48  * Data from filters are in the range +/-2^(n-1)
49  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
50  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
51  * So, the resolution of samples from filter is actually limited to 23 bits
52  */
53 #define DFSDM_DATA_RES 24
54 
55 /* Filter configuration */
56 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
57 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
58 			    DFSDM_CR1_JSCAN_MASK)
59 
60 enum sd_converter_type {
61 	DFSDM_AUDIO,
62 	DFSDM_IIO,
63 };
64 
65 struct stm32_dfsdm_dev_data {
66 	int type;
67 	int (*init)(struct device *dev, struct iio_dev *indio_dev);
68 	unsigned int num_channels;
69 	const struct regmap_config *regmap_cfg;
70 };
71 
72 struct stm32_dfsdm_adc {
73 	struct stm32_dfsdm *dfsdm;
74 	const struct stm32_dfsdm_dev_data *dev_data;
75 	unsigned int fl_id;
76 	unsigned int nconv;
77 	unsigned long smask;
78 
79 	/* ADC specific */
80 	unsigned int oversamp;
81 	struct iio_hw_consumer *hwc;
82 	struct iio_backend **backend;
83 	struct completion completion;
84 	u32 *buffer;
85 
86 	/* Audio specific */
87 	unsigned int spi_freq;  /* SPI bus clock frequency */
88 	unsigned int sample_freq; /* Sample frequency after filter decimation */
89 	int (*cb)(const void *data, size_t size, void *cb_priv);
90 	void *cb_priv;
91 
92 	/* DMA */
93 	u8 *rx_buf;
94 	unsigned int bufi; /* Buffer current position */
95 	unsigned int buf_sz; /* Buffer size */
96 	struct dma_chan	*dma_chan;
97 	dma_addr_t dma_buf;
98 };
99 
100 struct stm32_dfsdm_str2field {
101 	const char	*name;
102 	unsigned int	val;
103 };
104 
105 /* DFSDM channel serial interface type */
106 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
107 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
108 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
109 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
110 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
111 	{},
112 };
113 
114 /* DFSDM channel clock source */
115 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
116 	/* External SPI clock (CLKIN x) */
117 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
118 	/* Internal SPI clock (CLKOUT) */
119 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
120 	/* Internal SPI clock divided by 2 (falling edge) */
121 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
122 	/* Internal SPI clock divided by 2 (falling edge) */
123 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
124 	{},
125 };
126 
stm32_dfsdm_str2val(const char * str,const struct stm32_dfsdm_str2field * list)127 static int stm32_dfsdm_str2val(const char *str,
128 			       const struct stm32_dfsdm_str2field *list)
129 {
130 	const struct stm32_dfsdm_str2field *p = list;
131 
132 	for (p = list; p && p->name; p++)
133 		if (!strcmp(p->name, str))
134 			return p->val;
135 
136 	return -EINVAL;
137 }
138 
139 /**
140  * struct stm32_dfsdm_trig_info - DFSDM trigger info
141  * @name:		name of the trigger, corresponding to its source
142  * @jextsel:		trigger signal selection
143  */
144 struct stm32_dfsdm_trig_info {
145 	const char *name;
146 	unsigned int jextsel;
147 };
148 
149 /* hardware injected trigger enable, edge selection */
150 enum stm32_dfsdm_jexten {
151 	STM32_DFSDM_JEXTEN_DISABLED,
152 	STM32_DFSDM_JEXTEN_RISING_EDGE,
153 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
154 	STM32_DFSDM_EXTEN_BOTH_EDGES,
155 };
156 
157 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
158 	{ TIM1_TRGO, 0 },
159 	{ TIM1_TRGO2, 1 },
160 	{ TIM8_TRGO, 2 },
161 	{ TIM8_TRGO2, 3 },
162 	{ TIM3_TRGO, 4 },
163 	{ TIM4_TRGO, 5 },
164 	{ TIM16_OC1, 6 },
165 	{ TIM6_TRGO, 7 },
166 	{ TIM7_TRGO, 8 },
167 	{ LPTIM1_OUT, 26 },
168 	{ LPTIM2_OUT, 27 },
169 	{ LPTIM3_OUT, 28 },
170 	{},
171 };
172 
stm32_dfsdm_get_jextsel(struct iio_dev * indio_dev,struct iio_trigger * trig)173 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
174 				   struct iio_trigger *trig)
175 {
176 	int i;
177 
178 	/* lookup triggers registered by stm32 timer trigger driver */
179 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
180 		/**
181 		 * Checking both stm32 timer trigger type and trig name
182 		 * should be safe against arbitrary trigger names.
183 		 */
184 		if ((is_stm32_timer_trigger(trig) ||
185 		     is_stm32_lptim_trigger(trig)) &&
186 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
187 			return stm32_dfsdm_trigs[i].jextsel;
188 		}
189 	}
190 
191 	return -EINVAL;
192 }
193 
stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter * fl,unsigned int fast,unsigned int oversamp)194 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
195 				    unsigned int fast, unsigned int oversamp)
196 {
197 	unsigned int i, d, fosr, iosr;
198 	u64 res, max;
199 	int bits, shift;
200 	unsigned int m = 1;	/* multiplication factor */
201 	unsigned int p = fl->ford;	/* filter order (ford) */
202 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
203 
204 	pr_debug("Requested oversampling: %d\n", oversamp);
205 	/*
206 	 * This function tries to compute filter oversampling and integrator
207 	 * oversampling, base on oversampling ratio requested by user.
208 	 *
209 	 * Decimation d depends on the filter order and the oversampling ratios.
210 	 * ford: filter order
211 	 * fosr: filter over sampling ratio
212 	 * iosr: integrator over sampling ratio
213 	 */
214 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
215 		m = 2;
216 		p = 2;
217 	}
218 
219 	/*
220 	 * Look for filter and integrator oversampling ratios which allows
221 	 * to maximize data output resolution.
222 	 */
223 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
224 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
225 			if (fast)
226 				d = fosr * iosr;
227 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
228 				d = fosr * (iosr + 3) + 2;
229 			else
230 				d = fosr * (iosr - 1 + p) + p;
231 
232 			if (d > oversamp)
233 				break;
234 			else if (d != oversamp)
235 				continue;
236 			/*
237 			 * Check resolution (limited to signed 32 bits)
238 			 *   res <= 2^31
239 			 * Sincx filters:
240 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
241 			 * FastSinc filter
242 			 *   res = m * fosr^p x iosr (with m=2, p=2)
243 			 */
244 			res = fosr;
245 			for (i = p - 1; i > 0; i--) {
246 				res = res * (u64)fosr;
247 				if (res > DFSDM_DATA_MAX)
248 					break;
249 			}
250 			if (res > DFSDM_DATA_MAX)
251 				continue;
252 
253 			res = res * (u64)m * (u64)iosr;
254 			if (res > DFSDM_DATA_MAX)
255 				continue;
256 
257 			if (res >= flo->res) {
258 				flo->res = res;
259 				flo->fosr = fosr;
260 				flo->iosr = iosr;
261 
262 				bits = fls(flo->res);
263 				/* 8 LBSs in data register contain chan info */
264 				max = flo->res << 8;
265 
266 				/* if resolution is not a power of two */
267 				if (flo->res > BIT(bits - 1))
268 					bits++;
269 				else
270 					max--;
271 
272 				shift = DFSDM_DATA_RES - bits;
273 				/*
274 				 * Compute right/left shift
275 				 * Right shift is performed by hardware
276 				 * when transferring samples to data register.
277 				 * Left shift is done by software on buffer
278 				 */
279 				if (shift > 0) {
280 					/* Resolution is lower than 24 bits */
281 					flo->rshift = 0;
282 					flo->lshift = shift;
283 				} else {
284 					/*
285 					 * If resolution is 24 bits or more,
286 					 * max positive value may be ambiguous
287 					 * (equal to max negative value as sign
288 					 * bit is dropped).
289 					 * Reduce resolution to 23 bits (rshift)
290 					 * to keep the sign on bit 23 and treat
291 					 * saturation before rescaling on 24
292 					 * bits (lshift).
293 					 */
294 					flo->rshift = 1 - shift;
295 					flo->lshift = 1;
296 					max >>= flo->rshift;
297 				}
298 				flo->max = (s32)max;
299 				flo->bits = bits;
300 
301 				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
302 					 fast, flo->fosr, flo->iosr,
303 					 flo->res, bits, flo->rshift,
304 					 flo->lshift);
305 			}
306 		}
307 	}
308 
309 	if (!flo->res)
310 		return -EINVAL;
311 
312 	return 0;
313 }
314 
stm32_dfsdm_compute_all_osrs(struct iio_dev * indio_dev,unsigned int oversamp)315 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
316 					unsigned int oversamp)
317 {
318 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
319 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
320 	int ret0, ret1;
321 
322 	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
323 	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
324 
325 	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
326 	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
327 	if (ret0 < 0 && ret1 < 0) {
328 		dev_err(&indio_dev->dev,
329 			"Filter parameters not found: errors %d/%d\n",
330 			ret0, ret1);
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
stm32_dfsdm_start_channel(struct iio_dev * indio_dev)337 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
338 {
339 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
340 	struct regmap *regmap = adc->dfsdm->regmap;
341 	const struct iio_chan_spec *chan;
342 	unsigned int bit;
343 	int ret;
344 
345 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
346 		chan = indio_dev->channels + bit;
347 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
348 					 DFSDM_CHCFGR1_CHEN_MASK,
349 					 DFSDM_CHCFGR1_CHEN(1));
350 		if (ret < 0)
351 			return ret;
352 	}
353 
354 	return 0;
355 }
356 
stm32_dfsdm_stop_channel(struct iio_dev * indio_dev)357 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
358 {
359 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
360 	struct regmap *regmap = adc->dfsdm->regmap;
361 	const struct iio_chan_spec *chan;
362 	unsigned int bit;
363 
364 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
365 		chan = indio_dev->channels + bit;
366 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
367 				   DFSDM_CHCFGR1_CHEN_MASK,
368 				   DFSDM_CHCFGR1_CHEN(0));
369 	}
370 }
371 
stm32_dfsdm_chan_configure(struct stm32_dfsdm * dfsdm,struct stm32_dfsdm_channel * ch)372 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
373 				      struct stm32_dfsdm_channel *ch)
374 {
375 	unsigned int id = ch->id;
376 	struct regmap *regmap = dfsdm->regmap;
377 	int ret;
378 
379 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
380 				 DFSDM_CHCFGR1_SITP_MASK,
381 				 DFSDM_CHCFGR1_SITP(ch->type));
382 	if (ret < 0)
383 		return ret;
384 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
385 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
386 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
387 	if (ret < 0)
388 		return ret;
389 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
390 				  DFSDM_CHCFGR1_CHINSEL_MASK,
391 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
392 }
393 
stm32_dfsdm_start_filter(struct stm32_dfsdm_adc * adc,unsigned int fl_id,struct iio_trigger * trig)394 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
395 				    unsigned int fl_id,
396 				    struct iio_trigger *trig)
397 {
398 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
399 	int ret;
400 
401 	/* Enable filter */
402 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
403 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
404 	if (ret < 0)
405 		return ret;
406 
407 	/* Nothing more to do for injected (scan mode/triggered) conversions */
408 	if (adc->nconv > 1 || trig)
409 		return 0;
410 
411 	/* Software start (single or continuous) regular conversion */
412 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
413 				  DFSDM_CR1_RSWSTART_MASK,
414 				  DFSDM_CR1_RSWSTART(1));
415 }
416 
stm32_dfsdm_stop_filter(struct stm32_dfsdm * dfsdm,unsigned int fl_id)417 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
418 				    unsigned int fl_id)
419 {
420 	/* Disable conversion */
421 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
422 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
423 }
424 
stm32_dfsdm_filter_set_trig(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)425 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
426 				       unsigned int fl_id,
427 				       struct iio_trigger *trig)
428 {
429 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
430 	struct regmap *regmap = adc->dfsdm->regmap;
431 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
432 	int ret;
433 
434 	if (trig) {
435 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
436 		if (ret < 0)
437 			return ret;
438 
439 		/* set trigger source and polarity (default to rising edge) */
440 		jextsel = ret;
441 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
442 	}
443 
444 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
445 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
446 				 DFSDM_CR1_JEXTSEL(jextsel) |
447 				 DFSDM_CR1_JEXTEN(jexten));
448 	if (ret < 0)
449 		return ret;
450 
451 	return 0;
452 }
453 
stm32_dfsdm_channels_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)454 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
455 					  unsigned int fl_id,
456 					  struct iio_trigger *trig)
457 {
458 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
459 	struct regmap *regmap = adc->dfsdm->regmap;
460 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
461 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
462 	const struct iio_chan_spec *chan;
463 	unsigned int bit;
464 	int ret;
465 
466 	fl->fast = 0;
467 
468 	/*
469 	 * In continuous mode, use fast mode configuration,
470 	 * if it provides a better resolution.
471 	 */
472 	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
473 		if (fl->flo[1].res >= fl->flo[0].res) {
474 			fl->fast = 1;
475 			flo = &fl->flo[1];
476 		}
477 	}
478 
479 	if (!flo->res)
480 		return -EINVAL;
481 
482 	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
483 		min(flo->bits, (u32)DFSDM_DATA_RES - 1));
484 
485 	for_each_set_bit(bit, &adc->smask,
486 			 sizeof(adc->smask) * BITS_PER_BYTE) {
487 		chan = indio_dev->channels + bit;
488 
489 		ret = regmap_update_bits(regmap,
490 					 DFSDM_CHCFGR2(chan->channel),
491 					 DFSDM_CHCFGR2_DTRBS_MASK,
492 					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
493 		if (ret)
494 			return ret;
495 	}
496 
497 	return 0;
498 }
499 
stm32_dfsdm_filter_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)500 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
501 					unsigned int fl_id,
502 					struct iio_trigger *trig)
503 {
504 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
505 	struct regmap *regmap = adc->dfsdm->regmap;
506 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
507 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
508 	u32 cr1;
509 	const struct iio_chan_spec *chan;
510 	unsigned int bit, jchg = 0;
511 	int ret;
512 
513 	/* Average integrator oversampling */
514 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
515 				 DFSDM_FCR_IOSR(flo->iosr - 1));
516 	if (ret)
517 		return ret;
518 
519 	/* Filter order and Oversampling */
520 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
521 				 DFSDM_FCR_FOSR(flo->fosr - 1));
522 	if (ret)
523 		return ret;
524 
525 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
526 				 DFSDM_FCR_FORD(fl->ford));
527 	if (ret)
528 		return ret;
529 
530 	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
531 	if (ret)
532 		return ret;
533 
534 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
535 				 DFSDM_CR1_FAST_MASK,
536 				 DFSDM_CR1_FAST(fl->fast));
537 	if (ret)
538 		return ret;
539 
540 	/*
541 	 * DFSDM modes configuration W.R.T audio/iio type modes
542 	 * ----------------------------------------------------------------
543 	 * Modes         | regular |  regular     | injected | injected   |
544 	 *               |         |  continuous  |          | + scan     |
545 	 * --------------|---------|--------------|----------|------------|
546 	 * single conv   |    x    |              |          |            |
547 	 * (1 chan)      |         |              |          |            |
548 	 * --------------|---------|--------------|----------|------------|
549 	 * 1 Audio chan	 |         | sample freq  |          |            |
550 	 *               |         | or sync_mode |          |            |
551 	 * --------------|---------|--------------|----------|------------|
552 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
553 	 *               |         | or sync_mode |          |            |
554 	 * --------------|---------|--------------|----------|------------|
555 	 * 2+ IIO chans  |         |              |          | trigger or |
556 	 *               |         |              |          | sync_mode  |
557 	 * ----------------------------------------------------------------
558 	 */
559 	if (adc->nconv == 1 && !trig) {
560 		bit = __ffs(adc->smask);
561 		chan = indio_dev->channels + bit;
562 
563 		/* Use regular conversion for single channel without trigger */
564 		cr1 = DFSDM_CR1_RCH(chan->channel);
565 
566 		/* Continuous conversions triggered by SPI clk in buffer mode */
567 		if (iio_buffer_enabled(indio_dev))
568 			cr1 |= DFSDM_CR1_RCONT(1);
569 
570 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
571 	} else {
572 		/* Use injected conversion for multiple channels */
573 		for_each_set_bit(bit, &adc->smask,
574 				 sizeof(adc->smask) * BITS_PER_BYTE) {
575 			chan = indio_dev->channels + bit;
576 			jchg |= BIT(chan->channel);
577 		}
578 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
579 		if (ret < 0)
580 			return ret;
581 
582 		/* Use scan mode for multiple channels */
583 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
584 
585 		/*
586 		 * Continuous conversions not supported in injected mode,
587 		 * either use:
588 		 * - conversions in sync with filter 0
589 		 * - triggered conversions
590 		 */
591 		if (!fl->sync_mode && !trig)
592 			return -EINVAL;
593 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
594 	}
595 
596 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
597 				  cr1);
598 }
599 
stm32_dfsdm_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch)600 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
601 					struct iio_dev *indio_dev,
602 					struct iio_chan_spec *ch)
603 {
604 	struct stm32_dfsdm_channel *df_ch;
605 	const char *of_str;
606 	int chan_idx = ch->scan_index;
607 	int ret, val;
608 
609 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
610 					 "st,adc-channels", chan_idx,
611 					 &ch->channel);
612 	if (ret < 0) {
613 		dev_err(&indio_dev->dev,
614 			" Error parsing 'st,adc-channels' for idx %d\n",
615 			chan_idx);
616 		return ret;
617 	}
618 	if (ch->channel >= dfsdm->num_chs) {
619 		dev_err(&indio_dev->dev,
620 			" Error bad channel number %d (max = %d)\n",
621 			ch->channel, dfsdm->num_chs);
622 		return -EINVAL;
623 	}
624 
625 	ret = of_property_read_string_index(indio_dev->dev.of_node,
626 					    "st,adc-channel-names", chan_idx,
627 					    &ch->datasheet_name);
628 	if (ret < 0) {
629 		dev_err(&indio_dev->dev,
630 			" Error parsing 'st,adc-channel-names' for idx %d\n",
631 			chan_idx);
632 		return ret;
633 	}
634 
635 	df_ch =  &dfsdm->ch_list[ch->channel];
636 	df_ch->id = ch->channel;
637 
638 	ret = of_property_read_string_index(indio_dev->dev.of_node,
639 					    "st,adc-channel-types", chan_idx,
640 					    &of_str);
641 	if (!ret) {
642 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
643 		if (val < 0)
644 			return val;
645 	} else {
646 		val = 0;
647 	}
648 	df_ch->type = val;
649 
650 	ret = of_property_read_string_index(indio_dev->dev.of_node,
651 					    "st,adc-channel-clk-src", chan_idx,
652 					    &of_str);
653 	if (!ret) {
654 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
655 		if (val < 0)
656 			return val;
657 	} else {
658 		val = 0;
659 	}
660 	df_ch->src = val;
661 
662 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
663 					 "st,adc-alt-channel", chan_idx,
664 					 &df_ch->alt_si);
665 	if (ret < 0)
666 		df_ch->alt_si = 0;
667 
668 	return 0;
669 }
670 
stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * node)671 static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
672 						struct iio_dev *indio_dev,
673 						struct iio_chan_spec *ch,
674 						struct fwnode_handle *node)
675 {
676 	struct stm32_dfsdm_channel *df_ch;
677 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
678 	struct iio_backend *backend;
679 	const char *of_str;
680 	int ret, val;
681 
682 	ret = fwnode_property_read_u32(node, "reg", &ch->channel);
683 	if (ret < 0) {
684 		dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
685 		return ret;
686 	}
687 
688 	if (ch->channel >= dfsdm->num_chs) {
689 		dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
690 			ch->channel, dfsdm->num_chs);
691 		return -EINVAL;
692 	}
693 
694 	ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
695 	if (ret < 0) {
696 		dev_err(&indio_dev->dev,
697 			" Error parsing 'label' for idx %d\n", ch->channel);
698 		return ret;
699 	}
700 
701 	df_ch =  &dfsdm->ch_list[ch->channel];
702 	df_ch->id = ch->channel;
703 
704 	ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
705 	if (!ret) {
706 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
707 		if (val < 0)
708 			return val;
709 	} else {
710 		val = 0;
711 	}
712 	df_ch->type = val;
713 
714 	ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
715 	if (!ret) {
716 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
717 		if (val < 0)
718 			return val;
719 	} else {
720 		val = 0;
721 	}
722 	df_ch->src = val;
723 
724 	ret = fwnode_property_read_u32(node, "st,adc-alt-channel", &df_ch->alt_si);
725 	if (ret != -EINVAL)
726 		df_ch->alt_si = 0;
727 
728 	if (adc->dev_data->type == DFSDM_IIO) {
729 		backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
730 		if (IS_ERR(backend))
731 			return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
732 					     "Failed to get backend\n");
733 		adc->backend[ch->scan_index] = backend;
734 	}
735 
736 	return 0;
737 }
738 
dfsdm_adc_audio_get_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)739 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
740 					  uintptr_t priv,
741 					  const struct iio_chan_spec *chan,
742 					  char *buf)
743 {
744 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
745 
746 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
747 }
748 
dfsdm_adc_set_samp_freq(struct iio_dev * indio_dev,unsigned int sample_freq,unsigned int spi_freq)749 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
750 				   unsigned int sample_freq,
751 				   unsigned int spi_freq)
752 {
753 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
754 	unsigned int oversamp;
755 	int ret;
756 
757 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
758 	if (spi_freq % sample_freq)
759 		dev_dbg(&indio_dev->dev,
760 			"Rate not accurate. requested (%u), actual (%u)\n",
761 			sample_freq, spi_freq / oversamp);
762 
763 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
764 	if (ret < 0)
765 		return ret;
766 
767 	adc->sample_freq = spi_freq / oversamp;
768 	adc->oversamp = oversamp;
769 
770 	return 0;
771 }
772 
dfsdm_adc_audio_set_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)773 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
774 					  uintptr_t priv,
775 					  const struct iio_chan_spec *chan,
776 					  const char *buf, size_t len)
777 {
778 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
779 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
780 	unsigned int sample_freq = adc->sample_freq;
781 	unsigned int spi_freq;
782 	int ret;
783 
784 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
785 	/* If DFSDM is master on SPI, SPI freq can not be updated */
786 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
787 		return -EPERM;
788 
789 	ret = kstrtoint(buf, 0, &spi_freq);
790 	if (ret)
791 		return ret;
792 
793 	if (!spi_freq)
794 		return -EINVAL;
795 
796 	if (sample_freq) {
797 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
798 		if (ret < 0)
799 			return ret;
800 	}
801 	adc->spi_freq = spi_freq;
802 
803 	return len;
804 }
805 
stm32_dfsdm_start_conv(struct iio_dev * indio_dev,struct iio_trigger * trig)806 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
807 				  struct iio_trigger *trig)
808 {
809 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
810 	struct regmap *regmap = adc->dfsdm->regmap;
811 	int ret;
812 
813 	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
814 	if (ret < 0)
815 		return ret;
816 
817 	ret = stm32_dfsdm_start_channel(indio_dev);
818 	if (ret < 0)
819 		return ret;
820 
821 	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
822 	if (ret < 0)
823 		goto stop_channels;
824 
825 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
826 	if (ret < 0)
827 		goto filter_unconfigure;
828 
829 	return 0;
830 
831 filter_unconfigure:
832 	regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
833 stop_channels:
834 	stm32_dfsdm_stop_channel(indio_dev);
835 
836 	return ret;
837 }
838 
stm32_dfsdm_stop_conv(struct iio_dev * indio_dev)839 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
840 {
841 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
842 	struct regmap *regmap = adc->dfsdm->regmap;
843 
844 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
845 
846 	regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
847 
848 	stm32_dfsdm_stop_channel(indio_dev);
849 }
850 
stm32_dfsdm_set_watermark(struct iio_dev * indio_dev,unsigned int val)851 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
852 				     unsigned int val)
853 {
854 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
855 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
856 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
857 
858 	/*
859 	 * DMA cyclic transfers are used, buffer is split into two periods.
860 	 * There should be :
861 	 * - always one buffer (period) DMA is working on
862 	 * - one buffer (period) driver pushed to ASoC side.
863 	 */
864 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
865 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
866 
867 	return 0;
868 }
869 
stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc * adc)870 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
871 {
872 	struct dma_tx_state state;
873 	enum dma_status status;
874 
875 	status = dmaengine_tx_status(adc->dma_chan,
876 				     adc->dma_chan->cookie,
877 				     &state);
878 	if (status == DMA_IN_PROGRESS) {
879 		/* Residue is size in bytes from end of buffer */
880 		unsigned int i = adc->buf_sz - state.residue;
881 		unsigned int size;
882 
883 		/* Return available bytes */
884 		if (i >= adc->bufi)
885 			size = i - adc->bufi;
886 		else
887 			size = adc->buf_sz + i - adc->bufi;
888 
889 		return size;
890 	}
891 
892 	return 0;
893 }
894 
stm32_dfsdm_process_data(struct stm32_dfsdm_adc * adc,s32 * buffer)895 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
896 					    s32 *buffer)
897 {
898 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
899 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
900 	unsigned int i = adc->nconv;
901 	s32 *ptr = buffer;
902 
903 	while (i--) {
904 		/* Mask 8 LSB that contains the channel ID */
905 		*ptr &= 0xFFFFFF00;
906 		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
907 		if (*ptr > flo->max)
908 			*ptr -= 1;
909 		/*
910 		 * Samples from filter are retrieved with 23 bits resolution
911 		 * or less. Shift left to align MSB on 24 bits.
912 		 */
913 		*ptr <<= flo->lshift;
914 
915 		ptr++;
916 	}
917 }
918 
stm32_dfsdm_dma_buffer_done(void * data)919 static void stm32_dfsdm_dma_buffer_done(void *data)
920 {
921 	struct iio_dev *indio_dev = data;
922 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
923 	int available = stm32_dfsdm_adc_dma_residue(adc);
924 	size_t old_pos;
925 
926 	/*
927 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
928 	 * offers only an interface to push data samples per samples.
929 	 * For this reason IIO buffer interface is not used and interface is
930 	 * bypassed using a private callback registered by ASoC.
931 	 * This should be a temporary solution waiting a cyclic DMA engine
932 	 * support in IIO.
933 	 */
934 
935 	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
936 		adc->bufi, available);
937 	old_pos = adc->bufi;
938 
939 	while (available >= indio_dev->scan_bytes) {
940 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
941 
942 		stm32_dfsdm_process_data(adc, buffer);
943 
944 		available -= indio_dev->scan_bytes;
945 		adc->bufi += indio_dev->scan_bytes;
946 		if (adc->bufi >= adc->buf_sz) {
947 			if (adc->cb)
948 				adc->cb(&adc->rx_buf[old_pos],
949 					 adc->buf_sz - old_pos, adc->cb_priv);
950 			adc->bufi = 0;
951 			old_pos = 0;
952 		}
953 		/*
954 		 * In DMA mode the trigger services of IIO are not used
955 		 * (e.g. no call to iio_trigger_poll).
956 		 * Calling irq handler associated to the hardware trigger is not
957 		 * relevant as the conversions have already been done. Data
958 		 * transfers are performed directly in DMA callback instead.
959 		 * This implementation avoids to call trigger irq handler that
960 		 * may sleep, in an atomic context (DMA irq handler context).
961 		 */
962 		if (adc->dev_data->type == DFSDM_IIO)
963 			iio_push_to_buffers(indio_dev, buffer);
964 	}
965 	if (adc->cb)
966 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
967 			adc->cb_priv);
968 }
969 
stm32_dfsdm_adc_dma_start(struct iio_dev * indio_dev)970 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
971 {
972 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
973 	/*
974 	 * The DFSDM supports half-word transfers. However, for 16 bits record,
975 	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
976 	 * shift is required.
977 	 */
978 	struct dma_slave_config config = {
979 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
980 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
981 	};
982 	struct dma_async_tx_descriptor *desc;
983 	dma_cookie_t cookie;
984 	int ret;
985 
986 	if (!adc->dma_chan)
987 		return -EINVAL;
988 
989 	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
990 		adc->buf_sz, adc->buf_sz / 2);
991 
992 	if (adc->nconv == 1 && !indio_dev->trig)
993 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
994 	else
995 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
996 	ret = dmaengine_slave_config(adc->dma_chan, &config);
997 	if (ret)
998 		return ret;
999 
1000 	/* Prepare a DMA cyclic transaction */
1001 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1002 					 adc->dma_buf,
1003 					 adc->buf_sz, adc->buf_sz / 2,
1004 					 DMA_DEV_TO_MEM,
1005 					 DMA_PREP_INTERRUPT);
1006 	if (!desc)
1007 		return -EBUSY;
1008 
1009 	desc->callback = stm32_dfsdm_dma_buffer_done;
1010 	desc->callback_param = indio_dev;
1011 
1012 	cookie = dmaengine_submit(desc);
1013 	ret = dma_submit_error(cookie);
1014 	if (ret)
1015 		goto err_stop_dma;
1016 
1017 	/* Issue pending DMA requests */
1018 	dma_async_issue_pending(adc->dma_chan);
1019 
1020 	if (adc->nconv == 1 && !indio_dev->trig) {
1021 		/* Enable regular DMA transfer*/
1022 		ret = regmap_set_bits(adc->dfsdm->regmap,
1023 				      DFSDM_CR1(adc->fl_id),
1024 				      DFSDM_CR1_RDMAEN_MASK);
1025 	} else {
1026 		/* Enable injected DMA transfer*/
1027 		ret = regmap_set_bits(adc->dfsdm->regmap,
1028 				      DFSDM_CR1(adc->fl_id),
1029 				      DFSDM_CR1_JDMAEN_MASK);
1030 	}
1031 
1032 	if (ret < 0)
1033 		goto err_stop_dma;
1034 
1035 	return 0;
1036 
1037 err_stop_dma:
1038 	dmaengine_terminate_all(adc->dma_chan);
1039 
1040 	return ret;
1041 }
1042 
stm32_dfsdm_adc_dma_stop(struct iio_dev * indio_dev)1043 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1044 {
1045 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1046 
1047 	if (!adc->dma_chan)
1048 		return;
1049 
1050 	regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1051 			  DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1052 	dmaengine_terminate_all(adc->dma_chan);
1053 }
1054 
stm32_dfsdm_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1055 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1056 					const unsigned long *scan_mask)
1057 {
1058 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1059 
1060 	adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1061 	adc->smask = *scan_mask;
1062 
1063 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1064 
1065 	return 0;
1066 }
1067 
stm32_dfsdm_postenable(struct iio_dev * indio_dev)1068 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1069 {
1070 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1071 	int i = 0;
1072 	int ret;
1073 
1074 	/* Reset adc buffer index */
1075 	adc->bufi = 0;
1076 
1077 	if (adc->hwc) {
1078 		ret = iio_hw_consumer_enable(adc->hwc);
1079 		if (ret < 0)
1080 			return ret;
1081 	}
1082 
1083 	if (adc->backend) {
1084 		while (adc->backend[i]) {
1085 			ret = iio_backend_enable(adc->backend[i]);
1086 			if (ret < 0)
1087 				return ret;
1088 			i++;
1089 		}
1090 	}
1091 
1092 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1093 	if (ret < 0)
1094 		goto err_stop_hwc;
1095 
1096 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1097 	if (ret) {
1098 		dev_err(&indio_dev->dev, "Can't start DMA\n");
1099 		goto stop_dfsdm;
1100 	}
1101 
1102 	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1103 	if (ret) {
1104 		dev_err(&indio_dev->dev, "Can't start conversion\n");
1105 		goto err_stop_dma;
1106 	}
1107 
1108 	return 0;
1109 
1110 err_stop_dma:
1111 	stm32_dfsdm_adc_dma_stop(indio_dev);
1112 stop_dfsdm:
1113 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1114 err_stop_hwc:
1115 	if (adc->hwc)
1116 		iio_hw_consumer_disable(adc->hwc);
1117 
1118 	return ret;
1119 }
1120 
stm32_dfsdm_predisable(struct iio_dev * indio_dev)1121 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1122 {
1123 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1124 	int i = 0;
1125 
1126 	stm32_dfsdm_stop_conv(indio_dev);
1127 
1128 	stm32_dfsdm_adc_dma_stop(indio_dev);
1129 
1130 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1131 
1132 	if (adc->backend) {
1133 		while (adc->backend[i]) {
1134 			iio_backend_disable(adc->backend[i]);
1135 			i++;
1136 		}
1137 	}
1138 
1139 	if (adc->hwc)
1140 		iio_hw_consumer_disable(adc->hwc);
1141 
1142 	return 0;
1143 }
1144 
1145 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1146 	.postenable = &stm32_dfsdm_postenable,
1147 	.predisable = &stm32_dfsdm_predisable,
1148 };
1149 
1150 /**
1151  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1152  *                             DMA transfer period is achieved.
1153  *
1154  * @iio_dev: Handle to IIO device.
1155  * @cb: Pointer to callback function:
1156  *      - data: pointer to data buffer
1157  *      - size: size in byte of the data buffer
1158  *      - private: pointer to consumer private structure.
1159  * @private: Pointer to consumer private structure.
1160  */
stm32_dfsdm_get_buff_cb(struct iio_dev * iio_dev,int (* cb)(const void * data,size_t size,void * private),void * private)1161 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1162 			    int (*cb)(const void *data, size_t size,
1163 				      void *private),
1164 			    void *private)
1165 {
1166 	struct stm32_dfsdm_adc *adc;
1167 
1168 	if (!iio_dev)
1169 		return -EINVAL;
1170 	adc = iio_priv(iio_dev);
1171 
1172 	adc->cb = cb;
1173 	adc->cb_priv = private;
1174 
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1178 
1179 /**
1180  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1181  *
1182  * @iio_dev: Handle to IIO device.
1183  */
stm32_dfsdm_release_buff_cb(struct iio_dev * iio_dev)1184 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1185 {
1186 	struct stm32_dfsdm_adc *adc;
1187 
1188 	if (!iio_dev)
1189 		return -EINVAL;
1190 	adc = iio_priv(iio_dev);
1191 
1192 	adc->cb = NULL;
1193 	adc->cb_priv = NULL;
1194 
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1198 
stm32_dfsdm_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1199 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1200 				   const struct iio_chan_spec *chan, int *res)
1201 {
1202 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1203 	long time_left;
1204 	int ret;
1205 
1206 	reinit_completion(&adc->completion);
1207 
1208 	adc->buffer = res;
1209 
1210 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1211 	if (ret < 0)
1212 		return ret;
1213 
1214 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1215 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1216 	if (ret < 0)
1217 		goto stop_dfsdm;
1218 
1219 	adc->nconv = 1;
1220 	adc->smask = BIT(chan->scan_index);
1221 	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1222 	if (ret < 0) {
1223 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1224 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1225 		goto stop_dfsdm;
1226 	}
1227 
1228 	time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1229 							      DFSDM_TIMEOUT);
1230 
1231 	/* Mask IRQ for regular conversion achievement*/
1232 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1233 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1234 
1235 	if (time_left == 0)
1236 		ret = -ETIMEDOUT;
1237 	else if (time_left < 0)
1238 		ret = time_left;
1239 	else
1240 		ret = IIO_VAL_INT;
1241 
1242 	stm32_dfsdm_stop_conv(indio_dev);
1243 
1244 	stm32_dfsdm_process_data(adc, res);
1245 
1246 stop_dfsdm:
1247 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1248 
1249 	return ret;
1250 }
1251 
stm32_dfsdm_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1252 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1253 				 struct iio_chan_spec const *chan,
1254 				 int val, int val2, long mask)
1255 {
1256 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1257 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1258 	unsigned int spi_freq;
1259 	int ret = -EINVAL;
1260 
1261 	switch (ch->src) {
1262 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1263 		spi_freq = adc->dfsdm->spi_master_freq;
1264 		break;
1265 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1266 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1267 		spi_freq = adc->dfsdm->spi_master_freq / 2;
1268 		break;
1269 	default:
1270 		spi_freq = adc->spi_freq;
1271 	}
1272 
1273 	switch (mask) {
1274 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1275 		ret = iio_device_claim_direct_mode(indio_dev);
1276 		if (ret)
1277 			return ret;
1278 
1279 		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1280 		if (!ret) {
1281 			dev_dbg(&indio_dev->dev,
1282 				"Sampling rate changed from (%u) to (%u)\n",
1283 				adc->sample_freq, spi_freq / val);
1284 			adc->oversamp = val;
1285 			adc->sample_freq = spi_freq / val;
1286 		}
1287 		iio_device_release_direct_mode(indio_dev);
1288 		return ret;
1289 
1290 	case IIO_CHAN_INFO_SAMP_FREQ:
1291 		if (!val)
1292 			return -EINVAL;
1293 
1294 		ret = iio_device_claim_direct_mode(indio_dev);
1295 		if (ret)
1296 			return ret;
1297 
1298 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1299 		iio_device_release_direct_mode(indio_dev);
1300 		return ret;
1301 	}
1302 
1303 	return -EINVAL;
1304 }
1305 
stm32_dfsdm_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1306 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1307 				struct iio_chan_spec const *chan, int *val,
1308 				int *val2, long mask)
1309 {
1310 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1311 
1312 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1313 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1314 	u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1315 	int idx = chan->scan_index;
1316 	int ret;
1317 
1318 	if (flo->lshift < chan->scan_type.shift)
1319 		max = flo->max >> (chan->scan_type.shift - flo->lshift);
1320 
1321 	switch (mask) {
1322 	case IIO_CHAN_INFO_RAW:
1323 		ret = iio_device_claim_direct_mode(indio_dev);
1324 		if (ret)
1325 			return ret;
1326 		if (adc->hwc)
1327 			ret = iio_hw_consumer_enable(adc->hwc);
1328 		if (adc->backend)
1329 			ret = iio_backend_enable(adc->backend[idx]);
1330 		if (ret < 0) {
1331 			dev_err(&indio_dev->dev,
1332 				"%s: IIO enable failed (channel %d)\n",
1333 				__func__, chan->channel);
1334 			iio_device_release_direct_mode(indio_dev);
1335 			return ret;
1336 		}
1337 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1338 		if (adc->hwc)
1339 			iio_hw_consumer_disable(adc->hwc);
1340 		if (adc->backend)
1341 			iio_backend_disable(adc->backend[idx]);
1342 		if (ret < 0) {
1343 			dev_err(&indio_dev->dev,
1344 				"%s: Conversion failed (channel %d)\n",
1345 				__func__, chan->channel);
1346 			iio_device_release_direct_mode(indio_dev);
1347 			return ret;
1348 		}
1349 		iio_device_release_direct_mode(indio_dev);
1350 		return IIO_VAL_INT;
1351 
1352 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1353 		*val = adc->oversamp;
1354 
1355 		return IIO_VAL_INT;
1356 
1357 	case IIO_CHAN_INFO_SAMP_FREQ:
1358 		*val = adc->sample_freq;
1359 
1360 		return IIO_VAL_INT;
1361 
1362 	case IIO_CHAN_INFO_SCALE:
1363 		/*
1364 		 * Scale is expressed in mV.
1365 		 * When fast mode is disabled, actual resolution may be lower
1366 		 * than 2^n, where n = realbits - 1.
1367 		 * This leads to underestimating the input voltage.
1368 		 * To compensate this deviation, the voltage reference can be
1369 		 * corrected with a factor = realbits resolution / actual max
1370 		 */
1371 		if (adc->backend) {
1372 			ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1373 			if (ret < 0)
1374 				return ret;
1375 
1376 			*val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1377 			*val2 = chan->scan_type.realbits;
1378 			if (chan->differential)
1379 				*val *= 2;
1380 		}
1381 		return IIO_VAL_FRACTIONAL_LOG2;
1382 
1383 	case IIO_CHAN_INFO_OFFSET:
1384 		/*
1385 		 * DFSDM output data are in the range [-2^n, 2^n],
1386 		 * with n = realbits - 1.
1387 		 * - Differential modulator:
1388 		 * Offset correspond to SD modulator offset.
1389 		 * - Single ended modulator:
1390 		 * Input is in [0V, Vref] range,
1391 		 * where 0V corresponds to -2^n, and Vref to 2^n.
1392 		 * Add 2^n to offset. (i.e. middle of input range)
1393 		 * offset = offset(sd) * vref / res(sd) * max / vref.
1394 		 */
1395 		if (adc->backend) {
1396 			ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1397 			if (ret < 0)
1398 				return ret;
1399 
1400 			*val = div_u64((u64)max * *val, BIT(*val2 - 1));
1401 			if (!chan->differential)
1402 				*val += max;
1403 		}
1404 		return IIO_VAL_INT;
1405 	}
1406 
1407 	return -EINVAL;
1408 }
1409 
stm32_dfsdm_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1410 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1411 					struct iio_trigger *trig)
1412 {
1413 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1414 }
1415 
1416 static const struct iio_info stm32_dfsdm_info_audio = {
1417 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1418 	.read_raw = stm32_dfsdm_read_raw,
1419 	.write_raw = stm32_dfsdm_write_raw,
1420 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1421 };
1422 
1423 static const struct iio_info stm32_dfsdm_info_adc = {
1424 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1425 	.read_raw = stm32_dfsdm_read_raw,
1426 	.write_raw = stm32_dfsdm_write_raw,
1427 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1428 	.validate_trigger = stm32_dfsdm_validate_trigger,
1429 };
1430 
stm32_dfsdm_irq(int irq,void * arg)1431 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1432 {
1433 	struct iio_dev *indio_dev = arg;
1434 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1435 	struct regmap *regmap = adc->dfsdm->regmap;
1436 	unsigned int status, int_en;
1437 
1438 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1439 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1440 
1441 	if (status & DFSDM_ISR_REOCF_MASK) {
1442 		/* Read the data register clean the IRQ status */
1443 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1444 		complete(&adc->completion);
1445 	}
1446 
1447 	if (status & DFSDM_ISR_ROVRF_MASK) {
1448 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1449 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1450 		regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1451 				DFSDM_ICR_CLRROVRF_MASK);
1452 	}
1453 
1454 	return IRQ_HANDLED;
1455 }
1456 
1457 /*
1458  * Define external info for SPI Frequency and audio sampling rate that can be
1459  * configured by ASoC driver through consumer.h API
1460  */
1461 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1462 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1463 	{
1464 		.name = "spi_clk_freq",
1465 		.shared = IIO_SHARED_BY_TYPE,
1466 		.read = dfsdm_adc_audio_get_spiclk,
1467 		.write = dfsdm_adc_audio_set_spiclk,
1468 	},
1469 	{ }
1470 };
1471 
stm32_dfsdm_dma_release(struct iio_dev * indio_dev)1472 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1473 {
1474 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1475 
1476 	if (adc->dma_chan) {
1477 		dma_free_coherent(adc->dma_chan->device->dev,
1478 				  DFSDM_DMA_BUFFER_SIZE,
1479 				  adc->rx_buf, adc->dma_buf);
1480 		dma_release_channel(adc->dma_chan);
1481 	}
1482 }
1483 
stm32_dfsdm_dma_request(struct device * dev,struct iio_dev * indio_dev)1484 static int stm32_dfsdm_dma_request(struct device *dev,
1485 				   struct iio_dev *indio_dev)
1486 {
1487 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1488 
1489 	adc->dma_chan = dma_request_chan(dev, "rx");
1490 	if (IS_ERR(adc->dma_chan)) {
1491 		int ret = PTR_ERR(adc->dma_chan);
1492 
1493 		adc->dma_chan = NULL;
1494 		return ret;
1495 	}
1496 
1497 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1498 					 DFSDM_DMA_BUFFER_SIZE,
1499 					 &adc->dma_buf, GFP_KERNEL);
1500 	if (!adc->rx_buf) {
1501 		dma_release_channel(adc->dma_chan);
1502 		return -ENOMEM;
1503 	}
1504 
1505 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1506 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1507 
1508 	return 0;
1509 }
1510 
stm32_dfsdm_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * child)1511 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1512 					 struct fwnode_handle *child)
1513 {
1514 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1515 	int ret;
1516 
1517 	if (child)
1518 		ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1519 	else /* Legacy binding */
1520 		ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1521 	if (ret < 0)
1522 		return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1523 
1524 	ch->type = IIO_VOLTAGE;
1525 	ch->indexed = 1;
1526 
1527 	/*
1528 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1529 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1530 	 */
1531 	if (child) {
1532 		ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1533 					 BIT(IIO_CHAN_INFO_SCALE) |
1534 					 BIT(IIO_CHAN_INFO_OFFSET);
1535 	} else {
1536 		/* Legacy. Scaling not supported */
1537 		ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1538 	}
1539 
1540 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1541 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1542 
1543 	if (adc->dev_data->type == DFSDM_AUDIO) {
1544 		ch->ext_info = dfsdm_adc_audio_ext_info;
1545 		ch->scan_index = 0;
1546 	} else {
1547 		ch->scan_type.shift = 8;
1548 	}
1549 	ch->scan_type.sign = 's';
1550 	ch->scan_type.realbits = 24;
1551 	ch->scan_type.storagebits = 32;
1552 
1553 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1554 					  &adc->dfsdm->ch_list[ch->channel]);
1555 }
1556 
stm32_dfsdm_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1557 static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1558 {
1559 	int num_ch = indio_dev->num_channels;
1560 	int chan_idx = 0;
1561 	int ret;
1562 
1563 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1564 		channels[chan_idx].scan_index = chan_idx;
1565 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1566 		if (ret < 0)
1567 			return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1568 	}
1569 
1570 	return 0;
1571 }
1572 
stm32_dfsdm_generic_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1573 static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1574 {
1575 	int chan_idx = 0, ret;
1576 
1577 	device_for_each_child_node_scoped(&indio_dev->dev, child) {
1578 		/* Skip DAI node in DFSDM audio nodes */
1579 		if (fwnode_property_present(child, "compatible"))
1580 			continue;
1581 
1582 		channels[chan_idx].scan_index = chan_idx;
1583 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1584 		if (ret < 0)
1585 			return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1586 
1587 		chan_idx++;
1588 	}
1589 
1590 	return chan_idx;
1591 }
1592 
stm32_dfsdm_audio_init(struct device * dev,struct iio_dev * indio_dev)1593 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1594 {
1595 	struct iio_chan_spec *ch;
1596 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1597 	struct stm32_dfsdm_channel *d_ch;
1598 	bool legacy = false;
1599 	int num_ch, ret;
1600 
1601 	/* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1602 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1603 	if (num_ch == 1)
1604 		legacy = true;
1605 
1606 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1607 	if (!ch)
1608 		return -ENOMEM;
1609 
1610 	indio_dev->num_channels = 1;
1611 	indio_dev->channels = ch;
1612 
1613 	if (legacy)
1614 		ret = stm32_dfsdm_chan_init(indio_dev, ch);
1615 	else
1616 		ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1617 
1618 	if (ret < 0) {
1619 		dev_err(&indio_dev->dev, "Channels init failed\n");
1620 		return ret;
1621 	}
1622 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1623 
1624 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1625 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1626 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1627 
1628 	return stm32_dfsdm_dma_request(dev, indio_dev);
1629 }
1630 
stm32_dfsdm_adc_init(struct device * dev,struct iio_dev * indio_dev)1631 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1632 {
1633 	struct iio_chan_spec *ch;
1634 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1635 	int num_ch, ret;
1636 	bool legacy = false;
1637 
1638 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1639 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1640 	if (ret < 0)
1641 		return ret;
1642 
1643 	num_ch = device_get_child_node_count(&indio_dev->dev);
1644 	if (!num_ch) {
1645 		/* No channels nodes found. Assume legacy binding */
1646 		num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1647 		if (num_ch < 0) {
1648 			dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1649 			return num_ch;
1650 		}
1651 
1652 		legacy = true;
1653 	}
1654 
1655 	if (num_ch > adc->dfsdm->num_chs) {
1656 		dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1657 			num_ch, adc->dfsdm->num_chs);
1658 		return -EINVAL;
1659 	}
1660 	indio_dev->num_channels = num_ch;
1661 
1662 	if (legacy) {
1663 		/* Bind to SD modulator IIO device. */
1664 		adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1665 		if (IS_ERR(adc->hwc))
1666 			return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1667 					     "waiting for SD modulator\n");
1668 	} else {
1669 		/* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1670 		adc->hwc = NULL;
1671 
1672 		adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1673 					    GFP_KERNEL);
1674 		if (!adc->backend)
1675 			return -ENOMEM;
1676 	}
1677 
1678 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1679 	if (!ch)
1680 		return -ENOMEM;
1681 	indio_dev->channels = ch;
1682 
1683 	if (legacy)
1684 		ret = stm32_dfsdm_chan_init(indio_dev, ch);
1685 	else
1686 		ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1687 	if (ret < 0)
1688 		return ret;
1689 
1690 	init_completion(&adc->completion);
1691 
1692 	/* Optionally request DMA */
1693 	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1694 	if (ret) {
1695 		if (ret != -ENODEV)
1696 			return dev_err_probe(dev, ret,
1697 					     "DMA channel request failed with\n");
1698 
1699 		dev_dbg(dev, "No DMA support\n");
1700 		return 0;
1701 	}
1702 
1703 	ret = iio_triggered_buffer_setup(indio_dev,
1704 					 &iio_pollfunc_store_time, NULL,
1705 					 &stm32_dfsdm_buffer_setup_ops);
1706 	if (ret) {
1707 		stm32_dfsdm_dma_release(indio_dev);
1708 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1709 		return ret;
1710 	}
1711 
1712 	/* lptimer/timer hardware triggers */
1713 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1714 
1715 	return 0;
1716 }
1717 
1718 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1719 	.type = DFSDM_IIO,
1720 	.init = stm32_dfsdm_adc_init,
1721 };
1722 
1723 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1724 	.type = DFSDM_AUDIO,
1725 	.init = stm32_dfsdm_audio_init,
1726 };
1727 
1728 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1729 	{
1730 		.compatible = "st,stm32-dfsdm-adc",
1731 		.data = &stm32h7_dfsdm_adc_data,
1732 	},
1733 	{
1734 		.compatible = "st,stm32-dfsdm-dmic",
1735 		.data = &stm32h7_dfsdm_audio_data,
1736 	},
1737 	{}
1738 };
1739 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1740 
stm32_dfsdm_adc_probe(struct platform_device * pdev)1741 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1742 {
1743 	struct device *dev = &pdev->dev;
1744 	struct stm32_dfsdm_adc *adc;
1745 	struct device_node *np = dev->of_node;
1746 	const struct stm32_dfsdm_dev_data *dev_data;
1747 	struct iio_dev *iio;
1748 	char *name;
1749 	int ret, irq, val;
1750 
1751 	dev_data = of_device_get_match_data(dev);
1752 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1753 	if (!iio) {
1754 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1755 		return -ENOMEM;
1756 	}
1757 
1758 	adc = iio_priv(iio);
1759 	adc->dfsdm = dev_get_drvdata(dev->parent);
1760 
1761 	iio->dev.of_node = np;
1762 	iio->modes = INDIO_DIRECT_MODE;
1763 
1764 	platform_set_drvdata(pdev, iio);
1765 
1766 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1767 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1768 		dev_err(dev, "Missing or bad reg property\n");
1769 		return -EINVAL;
1770 	}
1771 
1772 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1773 	if (!name)
1774 		return -ENOMEM;
1775 	if (dev_data->type == DFSDM_AUDIO) {
1776 		iio->info = &stm32_dfsdm_info_audio;
1777 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1778 	} else {
1779 		iio->info = &stm32_dfsdm_info_adc;
1780 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1781 	}
1782 	iio->name = name;
1783 
1784 	/*
1785 	 * In a first step IRQs generated for channels are not treated.
1786 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1787 	 */
1788 	irq = platform_get_irq(pdev, 0);
1789 	if (irq < 0)
1790 		return irq;
1791 
1792 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1793 			       0, pdev->name, iio);
1794 	if (ret < 0) {
1795 		dev_err(dev, "Failed to request IRQ\n");
1796 		return ret;
1797 	}
1798 
1799 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1800 	if (ret < 0) {
1801 		dev_err(dev, "Failed to set filter order\n");
1802 		return ret;
1803 	}
1804 
1805 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1806 
1807 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1808 	if (!ret)
1809 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1810 
1811 	adc->dev_data = dev_data;
1812 	ret = dev_data->init(dev, iio);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	ret = iio_device_register(iio);
1817 	if (ret < 0)
1818 		goto err_cleanup;
1819 
1820 	if (dev_data->type == DFSDM_AUDIO) {
1821 		ret = of_platform_populate(np, NULL, NULL, dev);
1822 		if (ret < 0) {
1823 			dev_err(dev, "Failed to find an audio DAI\n");
1824 			goto err_unregister;
1825 		}
1826 	}
1827 
1828 	return 0;
1829 
1830 err_unregister:
1831 	iio_device_unregister(iio);
1832 err_cleanup:
1833 	stm32_dfsdm_dma_release(iio);
1834 
1835 	return ret;
1836 }
1837 
stm32_dfsdm_adc_remove(struct platform_device * pdev)1838 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1839 {
1840 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1841 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1842 
1843 	if (adc->dev_data->type == DFSDM_AUDIO)
1844 		of_platform_depopulate(&pdev->dev);
1845 	iio_device_unregister(indio_dev);
1846 	stm32_dfsdm_dma_release(indio_dev);
1847 }
1848 
stm32_dfsdm_adc_suspend(struct device * dev)1849 static int stm32_dfsdm_adc_suspend(struct device *dev)
1850 {
1851 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1852 
1853 	if (iio_buffer_enabled(indio_dev))
1854 		stm32_dfsdm_predisable(indio_dev);
1855 
1856 	return 0;
1857 }
1858 
stm32_dfsdm_adc_resume(struct device * dev)1859 static int stm32_dfsdm_adc_resume(struct device *dev)
1860 {
1861 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1862 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1863 	const struct iio_chan_spec *chan;
1864 	struct stm32_dfsdm_channel *ch;
1865 	int i, ret;
1866 
1867 	/* restore channels configuration */
1868 	for (i = 0; i < indio_dev->num_channels; i++) {
1869 		chan = indio_dev->channels + i;
1870 		ch = &adc->dfsdm->ch_list[chan->channel];
1871 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1872 		if (ret)
1873 			return ret;
1874 	}
1875 
1876 	if (iio_buffer_enabled(indio_dev))
1877 		stm32_dfsdm_postenable(indio_dev);
1878 
1879 	return 0;
1880 }
1881 
1882 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1883 				stm32_dfsdm_adc_suspend,
1884 				stm32_dfsdm_adc_resume);
1885 
1886 static struct platform_driver stm32_dfsdm_adc_driver = {
1887 	.driver = {
1888 		.name = "stm32-dfsdm-adc",
1889 		.of_match_table = stm32_dfsdm_adc_match,
1890 		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1891 	},
1892 	.probe = stm32_dfsdm_adc_probe,
1893 	.remove_new = stm32_dfsdm_adc_remove,
1894 };
1895 module_platform_driver(stm32_dfsdm_adc_driver);
1896 
1897 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1898 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1899 MODULE_LICENSE("GPL v2");
1900 MODULE_IMPORT_NS(IIO_BACKEND);
1901