1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_SPINLOCK(dev_map_lock); 87 static LIST_HEAD(dev_map_list); 88 89 static struct hlist_head *dev_map_create_hash(unsigned int entries, 90 int numa_node) 91 { 92 int i; 93 struct hlist_head *hash; 94 95 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 96 if (hash != NULL) 97 for (i = 0; i < entries; i++) 98 INIT_HLIST_HEAD(&hash[i]); 99 100 return hash; 101 } 102 103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 104 int idx) 105 { 106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 107 } 108 109 static int dev_map_alloc_check(union bpf_attr *attr) 110 { 111 u32 valsize = attr->value_size; 112 113 /* check sanity of attributes. 2 value sizes supported: 114 * 4 bytes: ifindex 115 * 8 bytes: ifindex + prog fd 116 */ 117 if (attr->max_entries == 0 || attr->key_size != 4 || 118 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 119 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 120 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 121 return -EINVAL; 122 123 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 124 /* Hash table size must be power of 2; roundup_pow_of_two() 125 * can overflow into UB on 32-bit arches 126 */ 127 if (attr->max_entries > 1UL << 31) 128 return -EINVAL; 129 } 130 131 return 0; 132 } 133 134 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 135 { 136 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 137 * verifier prevents writes from the BPF side 138 */ 139 attr->map_flags |= BPF_F_RDONLY_PROG; 140 bpf_map_init_from_attr(&dtab->map, attr); 141 142 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 143 /* Hash table size must be power of 2 */ 144 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 145 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 146 dtab->map.numa_node); 147 if (!dtab->dev_index_head) 148 return -ENOMEM; 149 150 spin_lock_init(&dtab->index_lock); 151 } else { 152 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 153 sizeof(struct bpf_dtab_netdev *), 154 dtab->map.numa_node); 155 if (!dtab->netdev_map) 156 return -ENOMEM; 157 } 158 159 return 0; 160 } 161 162 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 163 { 164 struct bpf_dtab *dtab; 165 int err; 166 167 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 168 if (!dtab) 169 return ERR_PTR(-ENOMEM); 170 171 err = dev_map_init_map(dtab, attr); 172 if (err) { 173 bpf_map_area_free(dtab); 174 return ERR_PTR(err); 175 } 176 177 spin_lock(&dev_map_lock); 178 list_add_tail_rcu(&dtab->list, &dev_map_list); 179 spin_unlock(&dev_map_lock); 180 181 return &dtab->map; 182 } 183 184 static void dev_map_free(struct bpf_map *map) 185 { 186 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 187 u32 i; 188 189 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 190 * so the programs (can be more than one that used this map) were 191 * disconnected from events. The following synchronize_rcu() guarantees 192 * both rcu read critical sections complete and waits for 193 * preempt-disable regions (NAPI being the relevant context here) so we 194 * are certain there will be no further reads against the netdev_map and 195 * all flush operations are complete. Flush operations can only be done 196 * from NAPI context for this reason. 197 */ 198 199 spin_lock(&dev_map_lock); 200 list_del_rcu(&dtab->list); 201 spin_unlock(&dev_map_lock); 202 203 /* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map() 204 * during NAPI callback and cleared after the XDP redirect. There is no 205 * explicit RCU read section which protects bpf_redirect_info->map but 206 * local_bh_disable() also marks the beginning an RCU section. This 207 * makes the complete softirq callback RCU protected. Thus after 208 * following synchronize_rcu() there no bpf_redirect_info->map == map 209 * assignment. 210 */ 211 synchronize_rcu(); 212 213 /* Make sure prior __dev_map_entry_free() have completed. */ 214 rcu_barrier(); 215 216 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 217 for (i = 0; i < dtab->n_buckets; i++) { 218 struct bpf_dtab_netdev *dev; 219 struct hlist_head *head; 220 struct hlist_node *next; 221 222 head = dev_map_index_hash(dtab, i); 223 224 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 225 hlist_del_rcu(&dev->index_hlist); 226 if (dev->xdp_prog) 227 bpf_prog_put(dev->xdp_prog); 228 dev_put(dev->dev); 229 kfree(dev); 230 } 231 } 232 233 bpf_map_area_free(dtab->dev_index_head); 234 } else { 235 for (i = 0; i < dtab->map.max_entries; i++) { 236 struct bpf_dtab_netdev *dev; 237 238 dev = rcu_dereference_raw(dtab->netdev_map[i]); 239 if (!dev) 240 continue; 241 242 if (dev->xdp_prog) 243 bpf_prog_put(dev->xdp_prog); 244 dev_put(dev->dev); 245 kfree(dev); 246 } 247 248 bpf_map_area_free(dtab->netdev_map); 249 } 250 251 bpf_map_area_free(dtab); 252 } 253 254 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 255 { 256 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 257 u32 index = key ? *(u32 *)key : U32_MAX; 258 u32 *next = next_key; 259 260 if (index >= dtab->map.max_entries) { 261 *next = 0; 262 return 0; 263 } 264 265 if (index == dtab->map.max_entries - 1) 266 return -ENOENT; 267 *next = index + 1; 268 return 0; 269 } 270 271 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 272 * by local_bh_disable() (from XDP calls inside NAPI). The 273 * rcu_read_lock_bh_held() below makes lockdep accept both. 274 */ 275 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 276 { 277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 278 struct hlist_head *head = dev_map_index_hash(dtab, key); 279 struct bpf_dtab_netdev *dev; 280 281 hlist_for_each_entry_rcu(dev, head, index_hlist, 282 lockdep_is_held(&dtab->index_lock)) 283 if (dev->idx == key) 284 return dev; 285 286 return NULL; 287 } 288 289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 290 void *next_key) 291 { 292 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 293 u32 idx, *next = next_key; 294 struct bpf_dtab_netdev *dev, *next_dev; 295 struct hlist_head *head; 296 int i = 0; 297 298 if (!key) 299 goto find_first; 300 301 idx = *(u32 *)key; 302 303 dev = __dev_map_hash_lookup_elem(map, idx); 304 if (!dev) 305 goto find_first; 306 307 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 308 struct bpf_dtab_netdev, index_hlist); 309 310 if (next_dev) { 311 *next = next_dev->idx; 312 return 0; 313 } 314 315 i = idx & (dtab->n_buckets - 1); 316 i++; 317 318 find_first: 319 for (; i < dtab->n_buckets; i++) { 320 head = dev_map_index_hash(dtab, i); 321 322 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 323 struct bpf_dtab_netdev, 324 index_hlist); 325 if (next_dev) { 326 *next = next_dev->idx; 327 return 0; 328 } 329 } 330 331 return -ENOENT; 332 } 333 334 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 335 struct xdp_frame **frames, int n, 336 struct net_device *tx_dev, 337 struct net_device *rx_dev) 338 { 339 struct xdp_txq_info txq = { .dev = tx_dev }; 340 struct xdp_rxq_info rxq = { .dev = rx_dev }; 341 struct xdp_buff xdp; 342 int i, nframes = 0; 343 344 for (i = 0; i < n; i++) { 345 struct xdp_frame *xdpf = frames[i]; 346 u32 act; 347 int err; 348 349 xdp_convert_frame_to_buff(xdpf, &xdp); 350 xdp.txq = &txq; 351 xdp.rxq = &rxq; 352 353 act = bpf_prog_run_xdp(xdp_prog, &xdp); 354 switch (act) { 355 case XDP_PASS: 356 err = xdp_update_frame_from_buff(&xdp, xdpf); 357 if (unlikely(err < 0)) 358 xdp_return_frame_rx_napi(xdpf); 359 else 360 frames[nframes++] = xdpf; 361 break; 362 default: 363 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 364 fallthrough; 365 case XDP_ABORTED: 366 trace_xdp_exception(tx_dev, xdp_prog, act); 367 fallthrough; 368 case XDP_DROP: 369 xdp_return_frame_rx_napi(xdpf); 370 break; 371 } 372 } 373 return nframes; /* sent frames count */ 374 } 375 376 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 377 { 378 struct net_device *dev = bq->dev; 379 unsigned int cnt = bq->count; 380 int sent = 0, err = 0; 381 int to_send = cnt; 382 int i; 383 384 if (unlikely(!cnt)) 385 return; 386 387 for (i = 0; i < cnt; i++) { 388 struct xdp_frame *xdpf = bq->q[i]; 389 390 prefetch(xdpf); 391 } 392 393 if (bq->xdp_prog) { 394 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx); 395 if (!to_send) 396 goto out; 397 } 398 399 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 400 if (sent < 0) { 401 /* If ndo_xdp_xmit fails with an errno, no frames have 402 * been xmit'ed. 403 */ 404 err = sent; 405 sent = 0; 406 } 407 408 /* If not all frames have been transmitted, it is our 409 * responsibility to free them 410 */ 411 for (i = sent; unlikely(i < to_send); i++) 412 xdp_return_frame_rx_napi(bq->q[i]); 413 414 out: 415 bq->count = 0; 416 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 417 } 418 419 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 420 * driver before returning from its napi->poll() routine. See the comment above 421 * xdp_do_flush() in filter.c. 422 */ 423 void __dev_flush(struct list_head *flush_list) 424 { 425 struct xdp_dev_bulk_queue *bq, *tmp; 426 427 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 428 bq_xmit_all(bq, XDP_XMIT_FLUSH); 429 bq->dev_rx = NULL; 430 bq->xdp_prog = NULL; 431 __list_del_clearprev(&bq->flush_node); 432 } 433 } 434 435 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 436 * by local_bh_disable() (from XDP calls inside NAPI). The 437 * rcu_read_lock_bh_held() below makes lockdep accept both. 438 */ 439 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 440 { 441 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 442 struct bpf_dtab_netdev *obj; 443 444 if (key >= map->max_entries) 445 return NULL; 446 447 obj = rcu_dereference_check(dtab->netdev_map[key], 448 rcu_read_lock_bh_held()); 449 return obj; 450 } 451 452 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 453 * variable access, and map elements stick around. See comment above 454 * xdp_do_flush() in filter.c. 455 */ 456 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 457 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 458 { 459 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 460 461 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 462 bq_xmit_all(bq, 0); 463 464 /* Ingress dev_rx will be the same for all xdp_frame's in 465 * bulk_queue, because bq stored per-CPU and must be flushed 466 * from net_device drivers NAPI func end. 467 * 468 * Do the same with xdp_prog and flush_list since these fields 469 * are only ever modified together. 470 */ 471 if (!bq->dev_rx) { 472 struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list(); 473 474 bq->dev_rx = dev_rx; 475 bq->xdp_prog = xdp_prog; 476 list_add(&bq->flush_node, flush_list); 477 } 478 479 bq->q[bq->count++] = xdpf; 480 } 481 482 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 483 struct net_device *dev_rx, 484 struct bpf_prog *xdp_prog) 485 { 486 int err; 487 488 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 489 return -EOPNOTSUPP; 490 491 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 492 xdp_frame_has_frags(xdpf))) 493 return -EOPNOTSUPP; 494 495 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 496 if (unlikely(err)) 497 return err; 498 499 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 500 return 0; 501 } 502 503 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 504 { 505 struct xdp_txq_info txq = { .dev = dst->dev }; 506 struct xdp_buff xdp; 507 u32 act; 508 509 if (!dst->xdp_prog) 510 return XDP_PASS; 511 512 __skb_pull(skb, skb->mac_len); 513 xdp.txq = &txq; 514 515 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 516 switch (act) { 517 case XDP_PASS: 518 __skb_push(skb, skb->mac_len); 519 break; 520 default: 521 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 522 fallthrough; 523 case XDP_ABORTED: 524 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 525 fallthrough; 526 case XDP_DROP: 527 kfree_skb(skb); 528 break; 529 } 530 531 return act; 532 } 533 534 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 535 struct net_device *dev_rx) 536 { 537 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 538 } 539 540 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 541 struct net_device *dev_rx) 542 { 543 struct net_device *dev = dst->dev; 544 545 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 546 } 547 548 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 549 { 550 if (!obj) 551 return false; 552 553 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 554 return false; 555 556 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 557 xdp_frame_has_frags(xdpf))) 558 return false; 559 560 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 561 return false; 562 563 return true; 564 } 565 566 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 567 struct net_device *dev_rx, 568 struct xdp_frame *xdpf) 569 { 570 struct xdp_frame *nxdpf; 571 572 nxdpf = xdpf_clone(xdpf); 573 if (!nxdpf) 574 return -ENOMEM; 575 576 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 577 578 return 0; 579 } 580 581 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 582 { 583 while (num_excluded--) { 584 if (ifindex == excluded[num_excluded]) 585 return true; 586 } 587 return false; 588 } 589 590 /* Get ifindex of each upper device. 'indexes' must be able to hold at 591 * least MAX_NEST_DEV elements. 592 * Returns the number of ifindexes added. 593 */ 594 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 595 { 596 struct net_device *upper; 597 struct list_head *iter; 598 int n = 0; 599 600 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 601 indexes[n++] = upper->ifindex; 602 } 603 return n; 604 } 605 606 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 607 struct bpf_map *map, bool exclude_ingress) 608 { 609 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 610 struct bpf_dtab_netdev *dst, *last_dst = NULL; 611 int excluded_devices[1+MAX_NEST_DEV]; 612 struct hlist_head *head; 613 int num_excluded = 0; 614 unsigned int i; 615 int err; 616 617 if (exclude_ingress) { 618 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 619 excluded_devices[num_excluded++] = dev_rx->ifindex; 620 } 621 622 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 623 for (i = 0; i < map->max_entries; i++) { 624 dst = rcu_dereference_check(dtab->netdev_map[i], 625 rcu_read_lock_bh_held()); 626 if (!is_valid_dst(dst, xdpf)) 627 continue; 628 629 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 630 continue; 631 632 /* we only need n-1 clones; last_dst enqueued below */ 633 if (!last_dst) { 634 last_dst = dst; 635 continue; 636 } 637 638 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 639 if (err) 640 return err; 641 642 last_dst = dst; 643 } 644 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 645 for (i = 0; i < dtab->n_buckets; i++) { 646 head = dev_map_index_hash(dtab, i); 647 hlist_for_each_entry_rcu(dst, head, index_hlist, 648 lockdep_is_held(&dtab->index_lock)) { 649 if (!is_valid_dst(dst, xdpf)) 650 continue; 651 652 if (is_ifindex_excluded(excluded_devices, num_excluded, 653 dst->dev->ifindex)) 654 continue; 655 656 /* we only need n-1 clones; last_dst enqueued below */ 657 if (!last_dst) { 658 last_dst = dst; 659 continue; 660 } 661 662 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 663 if (err) 664 return err; 665 666 last_dst = dst; 667 } 668 } 669 } 670 671 /* consume the last copy of the frame */ 672 if (last_dst) 673 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 674 else 675 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 676 677 return 0; 678 } 679 680 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 681 struct bpf_prog *xdp_prog) 682 { 683 int err; 684 685 err = xdp_ok_fwd_dev(dst->dev, skb->len); 686 if (unlikely(err)) 687 return err; 688 689 /* Redirect has already succeeded semantically at this point, so we just 690 * return 0 even if packet is dropped. Helper below takes care of 691 * freeing skb. 692 */ 693 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 694 return 0; 695 696 skb->dev = dst->dev; 697 generic_xdp_tx(skb, xdp_prog); 698 699 return 0; 700 } 701 702 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 703 struct sk_buff *skb, 704 struct bpf_prog *xdp_prog) 705 { 706 struct sk_buff *nskb; 707 int err; 708 709 nskb = skb_clone(skb, GFP_ATOMIC); 710 if (!nskb) 711 return -ENOMEM; 712 713 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 714 if (unlikely(err)) { 715 consume_skb(nskb); 716 return err; 717 } 718 719 return 0; 720 } 721 722 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 723 struct bpf_prog *xdp_prog, struct bpf_map *map, 724 bool exclude_ingress) 725 { 726 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 727 struct bpf_dtab_netdev *dst, *last_dst = NULL; 728 int excluded_devices[1+MAX_NEST_DEV]; 729 struct hlist_head *head; 730 struct hlist_node *next; 731 int num_excluded = 0; 732 unsigned int i; 733 int err; 734 735 if (exclude_ingress) { 736 num_excluded = get_upper_ifindexes(dev, excluded_devices); 737 excluded_devices[num_excluded++] = dev->ifindex; 738 } 739 740 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 741 for (i = 0; i < map->max_entries; i++) { 742 dst = rcu_dereference_check(dtab->netdev_map[i], 743 rcu_read_lock_bh_held()); 744 if (!dst) 745 continue; 746 747 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 748 continue; 749 750 /* we only need n-1 clones; last_dst enqueued below */ 751 if (!last_dst) { 752 last_dst = dst; 753 continue; 754 } 755 756 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 757 if (err) 758 return err; 759 760 last_dst = dst; 761 762 } 763 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 764 for (i = 0; i < dtab->n_buckets; i++) { 765 head = dev_map_index_hash(dtab, i); 766 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 767 if (is_ifindex_excluded(excluded_devices, num_excluded, 768 dst->dev->ifindex)) 769 continue; 770 771 /* we only need n-1 clones; last_dst enqueued below */ 772 if (!last_dst) { 773 last_dst = dst; 774 continue; 775 } 776 777 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 778 if (err) 779 return err; 780 781 last_dst = dst; 782 } 783 } 784 } 785 786 /* consume the first skb and return */ 787 if (last_dst) 788 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 789 790 /* dtab is empty */ 791 consume_skb(skb); 792 return 0; 793 } 794 795 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 796 { 797 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 798 799 return obj ? &obj->val : NULL; 800 } 801 802 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 803 { 804 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 805 *(u32 *)key); 806 return obj ? &obj->val : NULL; 807 } 808 809 static void __dev_map_entry_free(struct rcu_head *rcu) 810 { 811 struct bpf_dtab_netdev *dev; 812 813 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 814 if (dev->xdp_prog) 815 bpf_prog_put(dev->xdp_prog); 816 dev_put(dev->dev); 817 kfree(dev); 818 } 819 820 static long dev_map_delete_elem(struct bpf_map *map, void *key) 821 { 822 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 823 struct bpf_dtab_netdev *old_dev; 824 u32 k = *(u32 *)key; 825 826 if (k >= map->max_entries) 827 return -EINVAL; 828 829 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 830 if (old_dev) { 831 call_rcu(&old_dev->rcu, __dev_map_entry_free); 832 atomic_dec((atomic_t *)&dtab->items); 833 } 834 return 0; 835 } 836 837 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 838 { 839 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 840 struct bpf_dtab_netdev *old_dev; 841 u32 k = *(u32 *)key; 842 unsigned long flags; 843 int ret = -ENOENT; 844 845 spin_lock_irqsave(&dtab->index_lock, flags); 846 847 old_dev = __dev_map_hash_lookup_elem(map, k); 848 if (old_dev) { 849 dtab->items--; 850 hlist_del_init_rcu(&old_dev->index_hlist); 851 call_rcu(&old_dev->rcu, __dev_map_entry_free); 852 ret = 0; 853 } 854 spin_unlock_irqrestore(&dtab->index_lock, flags); 855 856 return ret; 857 } 858 859 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 860 struct bpf_dtab *dtab, 861 struct bpf_devmap_val *val, 862 unsigned int idx) 863 { 864 struct bpf_prog *prog = NULL; 865 struct bpf_dtab_netdev *dev; 866 867 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 868 GFP_NOWAIT | __GFP_NOWARN, 869 dtab->map.numa_node); 870 if (!dev) 871 return ERR_PTR(-ENOMEM); 872 873 dev->dev = dev_get_by_index(net, val->ifindex); 874 if (!dev->dev) 875 goto err_out; 876 877 if (val->bpf_prog.fd > 0) { 878 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 879 BPF_PROG_TYPE_XDP, false); 880 if (IS_ERR(prog)) 881 goto err_put_dev; 882 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 883 !bpf_prog_map_compatible(&dtab->map, prog)) 884 goto err_put_prog; 885 } 886 887 dev->idx = idx; 888 if (prog) { 889 dev->xdp_prog = prog; 890 dev->val.bpf_prog.id = prog->aux->id; 891 } else { 892 dev->xdp_prog = NULL; 893 dev->val.bpf_prog.id = 0; 894 } 895 dev->val.ifindex = val->ifindex; 896 897 return dev; 898 err_put_prog: 899 bpf_prog_put(prog); 900 err_put_dev: 901 dev_put(dev->dev); 902 err_out: 903 kfree(dev); 904 return ERR_PTR(-EINVAL); 905 } 906 907 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 908 void *key, void *value, u64 map_flags) 909 { 910 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 911 struct bpf_dtab_netdev *dev, *old_dev; 912 struct bpf_devmap_val val = {}; 913 u32 i = *(u32 *)key; 914 915 if (unlikely(map_flags > BPF_EXIST)) 916 return -EINVAL; 917 if (unlikely(i >= dtab->map.max_entries)) 918 return -E2BIG; 919 if (unlikely(map_flags == BPF_NOEXIST)) 920 return -EEXIST; 921 922 /* already verified value_size <= sizeof val */ 923 memcpy(&val, value, map->value_size); 924 925 if (!val.ifindex) { 926 dev = NULL; 927 /* can not specify fd if ifindex is 0 */ 928 if (val.bpf_prog.fd > 0) 929 return -EINVAL; 930 } else { 931 dev = __dev_map_alloc_node(net, dtab, &val, i); 932 if (IS_ERR(dev)) 933 return PTR_ERR(dev); 934 } 935 936 /* Use call_rcu() here to ensure rcu critical sections have completed 937 * Remembering the driver side flush operation will happen before the 938 * net device is removed. 939 */ 940 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 941 if (old_dev) 942 call_rcu(&old_dev->rcu, __dev_map_entry_free); 943 else 944 atomic_inc((atomic_t *)&dtab->items); 945 946 return 0; 947 } 948 949 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 950 u64 map_flags) 951 { 952 return __dev_map_update_elem(current->nsproxy->net_ns, 953 map, key, value, map_flags); 954 } 955 956 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 957 void *key, void *value, u64 map_flags) 958 { 959 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 960 struct bpf_dtab_netdev *dev, *old_dev; 961 struct bpf_devmap_val val = {}; 962 u32 idx = *(u32 *)key; 963 unsigned long flags; 964 int err = -EEXIST; 965 966 /* already verified value_size <= sizeof val */ 967 memcpy(&val, value, map->value_size); 968 969 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 970 return -EINVAL; 971 972 spin_lock_irqsave(&dtab->index_lock, flags); 973 974 old_dev = __dev_map_hash_lookup_elem(map, idx); 975 if (old_dev && (map_flags & BPF_NOEXIST)) 976 goto out_err; 977 978 dev = __dev_map_alloc_node(net, dtab, &val, idx); 979 if (IS_ERR(dev)) { 980 err = PTR_ERR(dev); 981 goto out_err; 982 } 983 984 if (old_dev) { 985 hlist_del_rcu(&old_dev->index_hlist); 986 } else { 987 if (dtab->items >= dtab->map.max_entries) { 988 spin_unlock_irqrestore(&dtab->index_lock, flags); 989 call_rcu(&dev->rcu, __dev_map_entry_free); 990 return -E2BIG; 991 } 992 dtab->items++; 993 } 994 995 hlist_add_head_rcu(&dev->index_hlist, 996 dev_map_index_hash(dtab, idx)); 997 spin_unlock_irqrestore(&dtab->index_lock, flags); 998 999 if (old_dev) 1000 call_rcu(&old_dev->rcu, __dev_map_entry_free); 1001 1002 return 0; 1003 1004 out_err: 1005 spin_unlock_irqrestore(&dtab->index_lock, flags); 1006 return err; 1007 } 1008 1009 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1010 u64 map_flags) 1011 { 1012 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1013 map, key, value, map_flags); 1014 } 1015 1016 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1017 { 1018 return __bpf_xdp_redirect_map(map, ifindex, flags, 1019 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1020 __dev_map_lookup_elem); 1021 } 1022 1023 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1024 { 1025 return __bpf_xdp_redirect_map(map, ifindex, flags, 1026 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1027 __dev_map_hash_lookup_elem); 1028 } 1029 1030 static u64 dev_map_mem_usage(const struct bpf_map *map) 1031 { 1032 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1033 u64 usage = sizeof(struct bpf_dtab); 1034 1035 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1036 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1037 else 1038 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1039 usage += atomic_read((atomic_t *)&dtab->items) * 1040 (u64)sizeof(struct bpf_dtab_netdev); 1041 return usage; 1042 } 1043 1044 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1045 const struct bpf_map_ops dev_map_ops = { 1046 .map_meta_equal = bpf_map_meta_equal, 1047 .map_alloc_check = dev_map_alloc_check, 1048 .map_alloc = dev_map_alloc, 1049 .map_free = dev_map_free, 1050 .map_get_next_key = dev_map_get_next_key, 1051 .map_lookup_elem = dev_map_lookup_elem, 1052 .map_update_elem = dev_map_update_elem, 1053 .map_delete_elem = dev_map_delete_elem, 1054 .map_check_btf = map_check_no_btf, 1055 .map_mem_usage = dev_map_mem_usage, 1056 .map_btf_id = &dev_map_btf_ids[0], 1057 .map_redirect = dev_map_redirect, 1058 }; 1059 1060 const struct bpf_map_ops dev_map_hash_ops = { 1061 .map_meta_equal = bpf_map_meta_equal, 1062 .map_alloc_check = dev_map_alloc_check, 1063 .map_alloc = dev_map_alloc, 1064 .map_free = dev_map_free, 1065 .map_get_next_key = dev_map_hash_get_next_key, 1066 .map_lookup_elem = dev_map_hash_lookup_elem, 1067 .map_update_elem = dev_map_hash_update_elem, 1068 .map_delete_elem = dev_map_hash_delete_elem, 1069 .map_check_btf = map_check_no_btf, 1070 .map_mem_usage = dev_map_mem_usage, 1071 .map_btf_id = &dev_map_btf_ids[0], 1072 .map_redirect = dev_hash_map_redirect, 1073 }; 1074 1075 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1076 struct net_device *netdev) 1077 { 1078 unsigned long flags; 1079 u32 i; 1080 1081 spin_lock_irqsave(&dtab->index_lock, flags); 1082 for (i = 0; i < dtab->n_buckets; i++) { 1083 struct bpf_dtab_netdev *dev; 1084 struct hlist_head *head; 1085 struct hlist_node *next; 1086 1087 head = dev_map_index_hash(dtab, i); 1088 1089 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1090 if (netdev != dev->dev) 1091 continue; 1092 1093 dtab->items--; 1094 hlist_del_rcu(&dev->index_hlist); 1095 call_rcu(&dev->rcu, __dev_map_entry_free); 1096 } 1097 } 1098 spin_unlock_irqrestore(&dtab->index_lock, flags); 1099 } 1100 1101 static int dev_map_notification(struct notifier_block *notifier, 1102 ulong event, void *ptr) 1103 { 1104 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1105 struct bpf_dtab *dtab; 1106 int i, cpu; 1107 1108 switch (event) { 1109 case NETDEV_REGISTER: 1110 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1111 break; 1112 1113 /* will be freed in free_netdev() */ 1114 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1115 if (!netdev->xdp_bulkq) 1116 return NOTIFY_BAD; 1117 1118 for_each_possible_cpu(cpu) 1119 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1120 break; 1121 case NETDEV_UNREGISTER: 1122 /* This rcu_read_lock/unlock pair is needed because 1123 * dev_map_list is an RCU list AND to ensure a delete 1124 * operation does not free a netdev_map entry while we 1125 * are comparing it against the netdev being unregistered. 1126 */ 1127 rcu_read_lock(); 1128 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1129 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1130 dev_map_hash_remove_netdev(dtab, netdev); 1131 continue; 1132 } 1133 1134 for (i = 0; i < dtab->map.max_entries; i++) { 1135 struct bpf_dtab_netdev *dev, *odev; 1136 1137 dev = rcu_dereference(dtab->netdev_map[i]); 1138 if (!dev || netdev != dev->dev) 1139 continue; 1140 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1141 if (dev == odev) { 1142 call_rcu(&dev->rcu, 1143 __dev_map_entry_free); 1144 atomic_dec((atomic_t *)&dtab->items); 1145 } 1146 } 1147 } 1148 rcu_read_unlock(); 1149 break; 1150 default: 1151 break; 1152 } 1153 return NOTIFY_OK; 1154 } 1155 1156 static struct notifier_block dev_map_notifier = { 1157 .notifier_call = dev_map_notification, 1158 }; 1159 1160 static int __init dev_map_init(void) 1161 { 1162 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1163 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1164 offsetof(struct _bpf_dtab_netdev, dev)); 1165 register_netdevice_notifier(&dev_map_notifier); 1166 1167 return 0; 1168 } 1169 1170 subsys_initcall(dev_map_init); 1171