xref: /linux/include/linux/ieee80211.h (revision 5c8013ae2e86ec36b07500ba4cacb14ab4d6f728)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * IEEE 802.11 defines
4  *
5  * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6  * <jkmaline@cc.hut.fi>
7  * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8  * Copyright (c) 2005, Devicescape Software, Inc.
9  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10  * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11  * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12  * Copyright (c) 2018 - 2024 Intel Corporation
13  */
14 
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17 
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24 
25 /*
26  * DS bit usage
27  *
28  * TA = transmitter address
29  * RA = receiver address
30  * DA = destination address
31  * SA = source address
32  *
33  * ToDS    FromDS  A1(RA)  A2(TA)  A3      A4      Use
34  * -----------------------------------------------------------------
35  *  0       0       DA      SA      BSSID   -       IBSS/DLS
36  *  0       1       DA      BSSID   SA      -       AP -> STA
37  *  1       0       BSSID   SA      DA      -       AP <- STA
38  *  1       1       RA      TA      DA      SA      unspecified (WDS)
39  */
40 
41 #define FCS_LEN 4
42 
43 #define IEEE80211_FCTL_VERS		0x0003
44 #define IEEE80211_FCTL_FTYPE		0x000c
45 #define IEEE80211_FCTL_STYPE		0x00f0
46 #define IEEE80211_FCTL_TODS		0x0100
47 #define IEEE80211_FCTL_FROMDS		0x0200
48 #define IEEE80211_FCTL_MOREFRAGS	0x0400
49 #define IEEE80211_FCTL_RETRY		0x0800
50 #define IEEE80211_FCTL_PM		0x1000
51 #define IEEE80211_FCTL_MOREDATA		0x2000
52 #define IEEE80211_FCTL_PROTECTED	0x4000
53 #define IEEE80211_FCTL_ORDER		0x8000
54 #define IEEE80211_FCTL_CTL_EXT		0x0f00
55 
56 #define IEEE80211_SCTL_FRAG		0x000F
57 #define IEEE80211_SCTL_SEQ		0xFFF0
58 
59 #define IEEE80211_FTYPE_MGMT		0x0000
60 #define IEEE80211_FTYPE_CTL		0x0004
61 #define IEEE80211_FTYPE_DATA		0x0008
62 #define IEEE80211_FTYPE_EXT		0x000c
63 
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ	0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP	0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ	0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP	0x0030
69 #define IEEE80211_STYPE_PROBE_REQ	0x0040
70 #define IEEE80211_STYPE_PROBE_RESP	0x0050
71 #define IEEE80211_STYPE_BEACON		0x0080
72 #define IEEE80211_STYPE_ATIM		0x0090
73 #define IEEE80211_STYPE_DISASSOC	0x00A0
74 #define IEEE80211_STYPE_AUTH		0x00B0
75 #define IEEE80211_STYPE_DEAUTH		0x00C0
76 #define IEEE80211_STYPE_ACTION		0x00D0
77 
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER		0x0020
80 #define IEEE80211_STYPE_CTL_EXT		0x0060
81 #define IEEE80211_STYPE_BACK_REQ	0x0080
82 #define IEEE80211_STYPE_BACK		0x0090
83 #define IEEE80211_STYPE_PSPOLL		0x00A0
84 #define IEEE80211_STYPE_RTS		0x00B0
85 #define IEEE80211_STYPE_CTS		0x00C0
86 #define IEEE80211_STYPE_ACK		0x00D0
87 #define IEEE80211_STYPE_CFEND		0x00E0
88 #define IEEE80211_STYPE_CFENDACK	0x00F0
89 
90 /* data */
91 #define IEEE80211_STYPE_DATA			0x0000
92 #define IEEE80211_STYPE_DATA_CFACK		0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL		0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL		0x0030
95 #define IEEE80211_STYPE_NULLFUNC		0x0040
96 #define IEEE80211_STYPE_CFACK			0x0050
97 #define IEEE80211_STYPE_CFPOLL			0x0060
98 #define IEEE80211_STYPE_CFACKPOLL		0x0070
99 #define IEEE80211_STYPE_QOS_DATA		0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK		0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL		0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL	0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC		0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK		0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL		0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL		0x00F0
107 
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON		0x0000
110 #define IEEE80211_STYPE_S1G_BEACON		0x0010
111 
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT	0x100
114 #define IEEE80211_S1G_BCN_CSSID		0x200
115 #define IEEE80211_S1G_BCN_ANO		0x400
116 
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS	25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES	4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS	37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES	5
122 
123 #define IEEE80211_NDP_FTYPE_CTS			0
124 #define IEEE80211_NDP_FTYPE_CF_END		0
125 #define IEEE80211_NDP_FTYPE_PS_POLL		1
126 #define IEEE80211_NDP_FTYPE_ACK			2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK		3
128 #define IEEE80211_NDP_FTYPE_BA			4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL	5
130 #define IEEE80211_NDP_FTYPE_PAGING		6
131 #define IEEE80211_NDP_FTYPE_PREQ		7
132 
133 #define SM64(f, v)	((((u64)v) << f##_S) & f)
134 
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE                    0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S                  0x0000000000000000
138 
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO      0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S                     3
142 #define IEEE80211_NDP_1M_PREQ_CSSID    0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S                   4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE    0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S                  20
146 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO      0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S                     3
151 #define IEEE80211_NDP_2M_PREQ_CSSID    0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S                   4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE    0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S                  36
155 
156 #define IEEE80211_ANO_NETTYPE_WILD              15
157 
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL		0x2000
160 #define IEEE80211_CTL_EXT_SPR		0x3000
161 #define IEEE80211_CTL_EXT_GRANT	0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS	0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS	0x6000
164 #define IEEE80211_CTL_EXT_SSW		0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK	0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK	0xa000
167 
168 
169 #define IEEE80211_SN_MASK		((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN		IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO		(IEEE80211_MAX_SN + 1)
172 
173 
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS		0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE	0x001c
177 #define IEEE80211_PV1_FCTL_STYPE	0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS		0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS	0x0200
180 #define IEEE80211_PV1_FCTL_PM		0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA	0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED	0x1000
183 #define IEEE80211_PV1_FCTL_END_SP       0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED      0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY   0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT	0x0f00
187 
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 	return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192 
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 	return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197 
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 	return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202 
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 	return ieee80211_sn_add(sn, 1);
206 }
207 
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 	return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212 
213 #define IEEE80211_SEQ_TO_SN(seq)	(((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn)	(((ssn) << 4) & IEEE80211_SCTL_SEQ)
215 
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD	2352
218 #define IEEE80211_MAX_RTS_THRESHOLD	2353
219 #define IEEE80211_MAX_AID		2007
220 #define IEEE80211_MAX_AID_S1G		8191
221 #define IEEE80211_MAX_TIM_LEN		251
222 #define IEEE80211_MAX_MESH_PEERINGS	63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224    6.2.1.1.2.
225 
226    802.11e clarifies the figure in section 7.1.2. The frame body is
227    up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN		2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230  * to 7920 bytes, see 8.2.3 General frame format
231  */
232 #define IEEE80211_MAX_DATA_LEN_DMG	7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN		2352
235 
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA		4095
238 
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839		3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935		7935
242 
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895		3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991		7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454	11454
246 
247 #define IEEE80211_MAX_SSID_LEN		32
248 
249 #define IEEE80211_MAX_MESH_ID_LEN	32
250 
251 #define IEEE80211_FIRST_TSPEC_TSID	8
252 #define IEEE80211_NUM_TIDS		16
253 
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS		8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS		4
258 
259 #define IEEE80211_QOS_CTL_LEN		2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK		0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK		0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP			0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL	0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK	0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL	0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK	0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK	0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT	0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT  0x0100
276 
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL		0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI			0x0400
281 
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD	(1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK	0x0f
285 
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO	(1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI	(1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK	(1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE	(1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK	0x0f
292 
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL	0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2	0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4	0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6	0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK	0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT	5
300 
301 #define IEEE80211_HT_CTL_LEN		4
302 
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK		0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC		0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP		0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR		0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS		0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP		0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR	0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP		0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP		0x7
313 
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK		0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ		0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ		0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ		0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ	0x3
320 
321 struct ieee80211_hdr {
322 	__le16 frame_control;
323 	__le16 duration_id;
324 	struct_group(addrs,
325 		u8 addr1[ETH_ALEN];
326 		u8 addr2[ETH_ALEN];
327 		u8 addr3[ETH_ALEN];
328 	);
329 	__le16 seq_ctrl;
330 	u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332 
333 struct ieee80211_hdr_3addr {
334 	__le16 frame_control;
335 	__le16 duration_id;
336 	u8 addr1[ETH_ALEN];
337 	u8 addr2[ETH_ALEN];
338 	u8 addr3[ETH_ALEN];
339 	__le16 seq_ctrl;
340 } __packed __aligned(2);
341 
342 struct ieee80211_qos_hdr {
343 	__le16 frame_control;
344 	__le16 duration_id;
345 	u8 addr1[ETH_ALEN];
346 	u8 addr2[ETH_ALEN];
347 	u8 addr3[ETH_ALEN];
348 	__le16 seq_ctrl;
349 	__le16 qos_ctrl;
350 } __packed __aligned(2);
351 
352 struct ieee80211_qos_hdr_4addr {
353 	__le16 frame_control;
354 	__le16 duration_id;
355 	u8 addr1[ETH_ALEN];
356 	u8 addr2[ETH_ALEN];
357 	u8 addr3[ETH_ALEN];
358 	__le16 seq_ctrl;
359 	u8 addr4[ETH_ALEN];
360 	__le16 qos_ctrl;
361 } __packed __aligned(2);
362 
363 struct ieee80211_trigger {
364 	__le16 frame_control;
365 	__le16 duration;
366 	u8 ra[ETH_ALEN];
367 	u8 ta[ETH_ALEN];
368 	__le64 common_info;
369 	u8 variable[];
370 } __packed __aligned(2);
371 
372 /**
373  * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374  * @fc: frame control bytes in little-endian byteorder
375  * Return: whether or not the frame has to-DS set
376  */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 	return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381 
382 /**
383  * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384  * @fc: frame control bytes in little-endian byteorder
385  * Return: whether or not the frame has from-DS set
386  */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 	return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391 
392 /**
393  * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394  * @fc: frame control bytes in little-endian byteorder
395  * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396  */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 	__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 	return (fc & tmp) == tmp;
401 }
402 
403 /**
404  * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405  * @fc: frame control bytes in little-endian byteorder
406  * Return: whether or not the frame has more fragments (more frags bit set)
407  */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412 
413 /**
414  * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415  * @fc: frame control bytes in little-endian byteorder
416  * Return: whether or not the retry flag is set
417  */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 	return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422 
423 /**
424  * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425  * @fc: frame control bytes in little-endian byteorder
426  * Return: whether or not the power management flag is set
427  */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 	return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432 
433 /**
434  * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435  * @fc: frame control bytes in little-endian byteorder
436  * Return: whether or not the more data flag is set
437  */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442 
443 /**
444  * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445  * @fc: frame control bytes in little-endian byteorder
446  * Return: whether or not the protected flag is set
447  */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 	return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452 
453 /**
454  * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455  * @fc: frame control bytes in little-endian byteorder
456  * Return: whether or not the order flag is set
457  */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 	return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462 
463 /**
464  * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465  * @fc: frame control bytes in little-endian byteorder
466  * Return: whether or not the frame type is management
467  */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 	       cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473 
474 /**
475  * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476  * @fc: frame control bytes in little-endian byteorder
477  * Return: whether or not the frame type is control
478  */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 	       cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484 
485 /**
486  * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487  * @fc: frame control bytes in little-endian byteorder
488  * Return: whether or not the frame is a data frame
489  */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495 
496 /**
497  * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498  * @fc: frame control bytes in little-endian byteorder
499  * Return: whether or not the frame type is extended
500  */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 	       cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506 
507 
508 /**
509  * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510  * @fc: frame control bytes in little-endian byteorder
511  * Return: whether or not the frame is a QoS data frame
512  */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 	/*
516 	 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 	 * to check the one bit
518 	 */
519 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522 
523 /**
524  * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525  * @fc: frame control bytes in little-endian byteorder
526  * Return: whether or not the frame is a QoS data frame that has data
527  *	(i.e. is not null data)
528  */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 	/*
532 	 * mask with 0x40 and test that that bit is clear to only return true
533 	 * for the data-containing substypes.
534 	 */
535 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538 
539 /**
540  * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541  * @fc: frame control bytes in little-endian byteorder
542  * Return: whether or not the frame is an association request
543  */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549 
550 /**
551  * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552  * @fc: frame control bytes in little-endian byteorder
553  * Return: whether or not the frame is an association response
554  */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560 
561 /**
562  * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563  * @fc: frame control bytes in little-endian byteorder
564  * Return: whether or not the frame is a reassociation request
565  */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571 
572 /**
573  * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574  * @fc: frame control bytes in little-endian byteorder
575  * Return: whether or not the frame is a reassociation response
576  */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582 
583 /**
584  * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585  * @fc: frame control bytes in little-endian byteorder
586  * Return: whether or not the frame is a probe request
587  */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593 
594 /**
595  * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596  * @fc: frame control bytes in little-endian byteorder
597  * Return: whether or not the frame is a probe response
598  */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604 
605 /**
606  * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607  * @fc: frame control bytes in little-endian byteorder
608  * Return: whether or not the frame is a (regular, not S1G) beacon
609  */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615 
616 /**
617  * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618  * IEEE80211_STYPE_S1G_BEACON
619  * @fc: frame control bytes in little-endian byteorder
620  * Return: whether or not the frame is an S1G beacon
621  */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 				 IEEE80211_FCTL_STYPE)) ==
626 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628 
629 /**
630  * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631  * @fc: frame control bytes in little-endian byteorder
632  * Return: whether or not the frame contains the variable-length
633  *	next TBTT field
634  */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 	return ieee80211_is_s1g_beacon(fc) &&
638 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640 
641 /**
642  * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643  * @fc: frame control bytes in little-endian byteorder
644  * Return: whether or not the frame contains the variable-length
645  *	ANO field
646  */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 	return ieee80211_is_s1g_beacon(fc) &&
650 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652 
653 /**
654  * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655  * @fc: frame control bytes in little-endian byteorder
656  * Return: whether or not the frame contains the variable-length
657  *	compressed SSID field
658  */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 	return ieee80211_is_s1g_beacon(fc) &&
662 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664 
665 /**
666  * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
667  * @fc: frame control bytes in little-endian byteorder
668  * Return: whether or not the frame is an S1G short beacon,
669  *	i.e. it is an S1G beacon with 'next TBTT' flag set
670  */
ieee80211_is_s1g_short_beacon(__le16 fc)671 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
672 {
673 	return ieee80211_is_s1g_beacon(fc) &&
674 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
675 }
676 
677 /**
678  * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
679  * @fc: frame control bytes in little-endian byteorder
680  * Return: whether or not the frame is an ATIM frame
681  */
ieee80211_is_atim(__le16 fc)682 static inline bool ieee80211_is_atim(__le16 fc)
683 {
684 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
685 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
686 }
687 
688 /**
689  * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
690  * @fc: frame control bytes in little-endian byteorder
691  * Return: whether or not the frame is a disassociation frame
692  */
ieee80211_is_disassoc(__le16 fc)693 static inline bool ieee80211_is_disassoc(__le16 fc)
694 {
695 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
696 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
697 }
698 
699 /**
700  * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
701  * @fc: frame control bytes in little-endian byteorder
702  * Return: whether or not the frame is an authentication frame
703  */
ieee80211_is_auth(__le16 fc)704 static inline bool ieee80211_is_auth(__le16 fc)
705 {
706 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
707 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
708 }
709 
710 /**
711  * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
712  * @fc: frame control bytes in little-endian byteorder
713  * Return: whether or not the frame is a deauthentication frame
714  */
ieee80211_is_deauth(__le16 fc)715 static inline bool ieee80211_is_deauth(__le16 fc)
716 {
717 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
718 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
719 }
720 
721 /**
722  * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
723  * @fc: frame control bytes in little-endian byteorder
724  * Return: whether or not the frame is an action frame
725  */
ieee80211_is_action(__le16 fc)726 static inline bool ieee80211_is_action(__le16 fc)
727 {
728 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
729 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
730 }
731 
732 /**
733  * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
734  * @fc: frame control bytes in little-endian byteorder
735  * Return: whether or not the frame is a block-ACK request frame
736  */
ieee80211_is_back_req(__le16 fc)737 static inline bool ieee80211_is_back_req(__le16 fc)
738 {
739 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
740 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
741 }
742 
743 /**
744  * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
745  * @fc: frame control bytes in little-endian byteorder
746  * Return: whether or not the frame is a block-ACK frame
747  */
ieee80211_is_back(__le16 fc)748 static inline bool ieee80211_is_back(__le16 fc)
749 {
750 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
751 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
752 }
753 
754 /**
755  * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
756  * @fc: frame control bytes in little-endian byteorder
757  * Return: whether or not the frame is a PS-poll frame
758  */
ieee80211_is_pspoll(__le16 fc)759 static inline bool ieee80211_is_pspoll(__le16 fc)
760 {
761 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
762 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
763 }
764 
765 /**
766  * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
767  * @fc: frame control bytes in little-endian byteorder
768  * Return: whether or not the frame is an RTS frame
769  */
ieee80211_is_rts(__le16 fc)770 static inline bool ieee80211_is_rts(__le16 fc)
771 {
772 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
773 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
774 }
775 
776 /**
777  * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
778  * @fc: frame control bytes in little-endian byteorder
779  * Return: whether or not the frame is a CTS frame
780  */
ieee80211_is_cts(__le16 fc)781 static inline bool ieee80211_is_cts(__le16 fc)
782 {
783 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
784 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
785 }
786 
787 /**
788  * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
789  * @fc: frame control bytes in little-endian byteorder
790  * Return: whether or not the frame is an ACK frame
791  */
ieee80211_is_ack(__le16 fc)792 static inline bool ieee80211_is_ack(__le16 fc)
793 {
794 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
795 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
796 }
797 
798 /**
799  * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
800  * @fc: frame control bytes in little-endian byteorder
801  * Return: whether or not the frame is a CF-end frame
802  */
ieee80211_is_cfend(__le16 fc)803 static inline bool ieee80211_is_cfend(__le16 fc)
804 {
805 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
806 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
807 }
808 
809 /**
810  * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
811  * @fc: frame control bytes in little-endian byteorder
812  * Return: whether or not the frame is a CF-end-ack frame
813  */
ieee80211_is_cfendack(__le16 fc)814 static inline bool ieee80211_is_cfendack(__le16 fc)
815 {
816 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
817 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
818 }
819 
820 /**
821  * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
822  * @fc: frame control bytes in little-endian byteorder
823  * Return: whether or not the frame is a nullfunc frame
824  */
ieee80211_is_nullfunc(__le16 fc)825 static inline bool ieee80211_is_nullfunc(__le16 fc)
826 {
827 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
828 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
829 }
830 
831 /**
832  * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
833  * @fc: frame control bytes in little-endian byteorder
834  * Return: whether or not the frame is a QoS nullfunc frame
835  */
ieee80211_is_qos_nullfunc(__le16 fc)836 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
837 {
838 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
839 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
840 }
841 
842 /**
843  * ieee80211_is_trigger - check if frame is trigger frame
844  * @fc: frame control field in little-endian byteorder
845  * Return: whether or not the frame is a trigger frame
846  */
ieee80211_is_trigger(__le16 fc)847 static inline bool ieee80211_is_trigger(__le16 fc)
848 {
849 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
850 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
851 }
852 
853 /**
854  * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
855  * @fc: frame control bytes in little-endian byteorder
856  * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
857  */
ieee80211_is_any_nullfunc(__le16 fc)858 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
859 {
860 	return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
861 }
862 
863 /**
864  * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
865  * @seq_ctrl: frame sequence control bytes in little-endian byteorder
866  * Return: whether or not the frame is the first fragment (also true if
867  *	it's not fragmented at all)
868  */
ieee80211_is_first_frag(__le16 seq_ctrl)869 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
870 {
871 	return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
872 }
873 
874 /**
875  * ieee80211_is_frag - check if a frame is a fragment
876  * @hdr: 802.11 header of the frame
877  * Return: whether or not the frame is a fragment
878  */
ieee80211_is_frag(struct ieee80211_hdr * hdr)879 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
880 {
881 	return ieee80211_has_morefrags(hdr->frame_control) ||
882 	       hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
883 }
884 
ieee80211_get_sn(struct ieee80211_hdr * hdr)885 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
886 {
887 	return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
888 }
889 
890 struct ieee80211s_hdr {
891 	u8 flags;
892 	u8 ttl;
893 	__le32 seqnum;
894 	u8 eaddr1[ETH_ALEN];
895 	u8 eaddr2[ETH_ALEN];
896 } __packed __aligned(2);
897 
898 /* Mesh flags */
899 #define MESH_FLAGS_AE_A4 	0x1
900 #define MESH_FLAGS_AE_A5_A6	0x2
901 #define MESH_FLAGS_AE		0x3
902 #define MESH_FLAGS_PS_DEEP	0x4
903 
904 /**
905  * enum ieee80211_preq_flags - mesh PREQ element flags
906  *
907  * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
908  */
909 enum ieee80211_preq_flags {
910 	IEEE80211_PREQ_PROACTIVE_PREP_FLAG	= 1<<2,
911 };
912 
913 /**
914  * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
915  *
916  * @IEEE80211_PREQ_TO_FLAG: target only subfield
917  * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
918  */
919 enum ieee80211_preq_target_flags {
920 	IEEE80211_PREQ_TO_FLAG	= 1<<0,
921 	IEEE80211_PREQ_USN_FLAG	= 1<<2,
922 };
923 
924 /**
925  * struct ieee80211_quiet_ie - Quiet element
926  * @count: Quiet Count
927  * @period: Quiet Period
928  * @duration: Quiet Duration
929  * @offset: Quiet Offset
930  *
931  * This structure represents the payload of the "Quiet element" as
932  * described in IEEE Std 802.11-2020 section 9.4.2.22.
933  */
934 struct ieee80211_quiet_ie {
935 	u8 count;
936 	u8 period;
937 	__le16 duration;
938 	__le16 offset;
939 } __packed;
940 
941 /**
942  * struct ieee80211_msrment_ie - Measurement element
943  * @token: Measurement Token
944  * @mode: Measurement Report Mode
945  * @type: Measurement Type
946  * @request: Measurement Request or Measurement Report
947  *
948  * This structure represents the payload of both the "Measurement
949  * Request element" and the "Measurement Report element" as described
950  * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
951  */
952 struct ieee80211_msrment_ie {
953 	u8 token;
954 	u8 mode;
955 	u8 type;
956 	u8 request[];
957 } __packed;
958 
959 /**
960  * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
961  * @mode: Channel Switch Mode
962  * @new_ch_num: New Channel Number
963  * @count: Channel Switch Count
964  *
965  * This structure represents the payload of the "Channel Switch
966  * Announcement element" as described in IEEE Std 802.11-2020 section
967  * 9.4.2.18.
968  */
969 struct ieee80211_channel_sw_ie {
970 	u8 mode;
971 	u8 new_ch_num;
972 	u8 count;
973 } __packed;
974 
975 /**
976  * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
977  * @mode: Channel Switch Mode
978  * @new_operating_class: New Operating Class
979  * @new_ch_num: New Channel Number
980  * @count: Channel Switch Count
981  *
982  * This structure represents the "Extended Channel Switch Announcement
983  * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
984  */
985 struct ieee80211_ext_chansw_ie {
986 	u8 mode;
987 	u8 new_operating_class;
988 	u8 new_ch_num;
989 	u8 count;
990 } __packed;
991 
992 /**
993  * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
994  * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
995  *	values here
996  * This structure represents the "Secondary Channel Offset element"
997  */
998 struct ieee80211_sec_chan_offs_ie {
999 	u8 sec_chan_offs;
1000 } __packed;
1001 
1002 /**
1003  * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
1004  * @mesh_ttl: Time To Live
1005  * @mesh_flags: Flags
1006  * @mesh_reason: Reason Code
1007  * @mesh_pre_value: Precedence Value
1008  *
1009  * This structure represents the payload of the "Mesh Channel Switch
1010  * Parameters element" as described in IEEE Std 802.11-2020 section
1011  * 9.4.2.102.
1012  */
1013 struct ieee80211_mesh_chansw_params_ie {
1014 	u8 mesh_ttl;
1015 	u8 mesh_flags;
1016 	__le16 mesh_reason;
1017 	__le16 mesh_pre_value;
1018 } __packed;
1019 
1020 /**
1021  * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1022  * @new_channel_width: New Channel Width
1023  * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1024  * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1025  *
1026  * This structure represents the payload of the "Wide Bandwidth
1027  * Channel Switch element" as described in IEEE Std 802.11-2020
1028  * section 9.4.2.160.
1029  */
1030 struct ieee80211_wide_bw_chansw_ie {
1031 	u8 new_channel_width;
1032 	u8 new_center_freq_seg0, new_center_freq_seg1;
1033 } __packed;
1034 
1035 /**
1036  * struct ieee80211_tim_ie - Traffic Indication Map information element
1037  * @dtim_count: DTIM Count
1038  * @dtim_period: DTIM Period
1039  * @bitmap_ctrl: Bitmap Control
1040  * @required_octet: "Syntatic sugar" to force the struct size to the
1041  *                  minimum valid size when carried in a non-S1G PPDU
1042  * @virtual_map: Partial Virtual Bitmap
1043  *
1044  * This structure represents the payload of the "TIM element" as
1045  * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1046  * definition is only applicable when the element is carried in a
1047  * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1048  * Control and Partial Virtual Bitmap may not be present.
1049  */
1050 struct ieee80211_tim_ie {
1051 	u8 dtim_count;
1052 	u8 dtim_period;
1053 	u8 bitmap_ctrl;
1054 	union {
1055 		u8 required_octet;
1056 		DECLARE_FLEX_ARRAY(u8, virtual_map);
1057 	};
1058 } __packed;
1059 
1060 /**
1061  * struct ieee80211_meshconf_ie - Mesh Configuration element
1062  * @meshconf_psel: Active Path Selection Protocol Identifier
1063  * @meshconf_pmetric: Active Path Selection Metric Identifier
1064  * @meshconf_congest: Congestion Control Mode Identifier
1065  * @meshconf_synch: Synchronization Method Identifier
1066  * @meshconf_auth: Authentication Protocol Identifier
1067  * @meshconf_form: Mesh Formation Info
1068  * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1069  *
1070  * This structure represents the payload of the "Mesh Configuration
1071  * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1072  */
1073 struct ieee80211_meshconf_ie {
1074 	u8 meshconf_psel;
1075 	u8 meshconf_pmetric;
1076 	u8 meshconf_congest;
1077 	u8 meshconf_synch;
1078 	u8 meshconf_auth;
1079 	u8 meshconf_form;
1080 	u8 meshconf_cap;
1081 } __packed;
1082 
1083 /**
1084  * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1085  *
1086  * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1087  *	additional mesh peerings with other mesh STAs
1088  * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1089  * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1090  *	is ongoing
1091  * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1092  *	neighbors in deep sleep mode
1093  *
1094  * Enumerates the "Mesh Capability" as described in IEEE Std
1095  * 802.11-2020 section 9.4.2.97.7.
1096  */
1097 enum mesh_config_capab_flags {
1098 	IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS		= 0x01,
1099 	IEEE80211_MESHCONF_CAPAB_FORWARDING		= 0x08,
1100 	IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING		= 0x20,
1101 	IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL	= 0x40,
1102 };
1103 
1104 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1105 
1106 /*
1107  * mesh channel switch parameters element's flag indicator
1108  *
1109  */
1110 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1111 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1112 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1113 
1114 /**
1115  * struct ieee80211_rann_ie - RANN (root announcement) element
1116  * @rann_flags: Flags
1117  * @rann_hopcount: Hop Count
1118  * @rann_ttl: Element TTL
1119  * @rann_addr: Root Mesh STA Address
1120  * @rann_seq: HWMP Sequence Number
1121  * @rann_interval: Interval
1122  * @rann_metric: Metric
1123  *
1124  * This structure represents the payload of the "RANN element" as
1125  * described in IEEE Std 802.11-2020 section 9.4.2.111.
1126  */
1127 struct ieee80211_rann_ie {
1128 	u8 rann_flags;
1129 	u8 rann_hopcount;
1130 	u8 rann_ttl;
1131 	u8 rann_addr[ETH_ALEN];
1132 	__le32 rann_seq;
1133 	__le32 rann_interval;
1134 	__le32 rann_metric;
1135 } __packed;
1136 
1137 enum ieee80211_rann_flags {
1138 	RANN_FLAG_IS_GATE = 1 << 0,
1139 };
1140 
1141 enum ieee80211_ht_chanwidth_values {
1142 	IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1143 	IEEE80211_HT_CHANWIDTH_ANY = 1,
1144 };
1145 
1146 /**
1147  * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1148  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1149  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1150  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1151  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1152  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1153  * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1154  * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1155  *	(the NSS value is the value of this field + 1)
1156  * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1157  * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1158  *	using a beamforming steering matrix
1159  */
1160 enum ieee80211_vht_opmode_bits {
1161 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK	= 0x03,
1162 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ	= 0,
1163 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ	= 1,
1164 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ	= 2,
1165 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ	= 3,
1166 	IEEE80211_OPMODE_NOTIF_BW_160_80P80	= 0x04,
1167 	IEEE80211_OPMODE_NOTIF_RX_NSS_MASK	= 0x70,
1168 	IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT	= 4,
1169 	IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF	= 0x80,
1170 };
1171 
1172 /**
1173  * enum ieee80211_s1g_chanwidth - S1G channel widths
1174  * These are defined in IEEE802.11-2016ah Table 10-20
1175  * as BSS Channel Width
1176  *
1177  * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1178  * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1179  * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1180  * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1181  * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1182  */
1183 enum ieee80211_s1g_chanwidth {
1184 	IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1185 	IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1186 	IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1187 	IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1188 	IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1189 };
1190 
1191 #define WLAN_SA_QUERY_TR_ID_LEN 2
1192 #define WLAN_MEMBERSHIP_LEN 8
1193 #define WLAN_USER_POSITION_LEN 16
1194 
1195 /**
1196  * struct ieee80211_tpc_report_ie - TPC Report element
1197  * @tx_power: Transmit Power
1198  * @link_margin: Link Margin
1199  *
1200  * This structure represents the payload of the "TPC Report element" as
1201  * described in IEEE Std 802.11-2020 section 9.4.2.16.
1202  */
1203 struct ieee80211_tpc_report_ie {
1204 	u8 tx_power;
1205 	u8 link_margin;
1206 } __packed;
1207 
1208 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK	GENMASK(2, 1)
1209 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT	1
1210 #define IEEE80211_ADDBA_EXT_NO_FRAG		BIT(0)
1211 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK	GENMASK(7, 5)
1212 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT	10
1213 
1214 struct ieee80211_addba_ext_ie {
1215 	u8 data;
1216 } __packed;
1217 
1218 /**
1219  * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1220  * @compat_info: Compatibility Information
1221  * @beacon_int: Beacon Interval
1222  * @tsf_completion: TSF Completion
1223  *
1224  * This structure represents the payload of the "S1G Beacon
1225  * Compatibility element" as described in IEEE Std 802.11-2020 section
1226  * 9.4.2.196.
1227  */
1228 struct ieee80211_s1g_bcn_compat_ie {
1229 	__le16 compat_info;
1230 	__le16 beacon_int;
1231 	__le32 tsf_completion;
1232 } __packed;
1233 
1234 /**
1235  * struct ieee80211_s1g_oper_ie - S1G Operation element
1236  * @ch_width: S1G Operation Information Channel Width
1237  * @oper_class: S1G Operation Information Operating Class
1238  * @primary_ch: S1G Operation Information Primary Channel Number
1239  * @oper_ch: S1G Operation Information  Channel Center Frequency
1240  * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1241  *
1242  * This structure represents the payload of the "S1G Operation
1243  * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1244  */
1245 struct ieee80211_s1g_oper_ie {
1246 	u8 ch_width;
1247 	u8 oper_class;
1248 	u8 primary_ch;
1249 	u8 oper_ch;
1250 	__le16 basic_mcs_nss;
1251 } __packed;
1252 
1253 /**
1254  * struct ieee80211_aid_response_ie - AID Response element
1255  * @aid: AID/Group AID
1256  * @switch_count: AID Switch Count
1257  * @response_int: AID Response Interval
1258  *
1259  * This structure represents the payload of the "AID Response element"
1260  * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1261  */
1262 struct ieee80211_aid_response_ie {
1263 	__le16 aid;
1264 	u8 switch_count;
1265 	__le16 response_int;
1266 } __packed;
1267 
1268 struct ieee80211_s1g_cap {
1269 	u8 capab_info[10];
1270 	u8 supp_mcs_nss[5];
1271 } __packed;
1272 
1273 struct ieee80211_ext {
1274 	__le16 frame_control;
1275 	__le16 duration;
1276 	union {
1277 		struct {
1278 			u8 sa[ETH_ALEN];
1279 			__le32 timestamp;
1280 			u8 change_seq;
1281 			u8 variable[];
1282 		} __packed s1g_beacon;
1283 	} u;
1284 } __packed __aligned(2);
1285 
1286 /**
1287  * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1288  * @fc: frame control bytes in little-endian byteorder
1289  * Return: total length in bytes of the optional fixed-length fields
1290  *
1291  * S1G beacons may contain up to three optional fixed-length fields that
1292  * precede the variable-length elements. Whether these fields are present
1293  * is indicated by flags in the frame control field.
1294  *
1295  * From IEEE 802.11-2024 section 9.3.4.3:
1296  *  - Next TBTT field may be 0 or 3 bytes
1297  *  - Short SSID field may be 0 or 4 bytes
1298  *  - Access Network Options (ANO) field may be 0 or 1 byte
1299  */
1300 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1301 ieee80211_s1g_optional_len(__le16 fc)
1302 {
1303 	size_t len = 0;
1304 
1305 	if (ieee80211_s1g_has_next_tbtt(fc))
1306 		len += 3;
1307 
1308 	if (ieee80211_s1g_has_cssid(fc))
1309 		len += 4;
1310 
1311 	if (ieee80211_s1g_has_ano(fc))
1312 		len += 1;
1313 
1314 	return len;
1315 }
1316 
1317 #define IEEE80211_TWT_CONTROL_NDP			BIT(0)
1318 #define IEEE80211_TWT_CONTROL_RESP_MODE			BIT(1)
1319 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST	BIT(3)
1320 #define IEEE80211_TWT_CONTROL_RX_DISABLED		BIT(4)
1321 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT		BIT(5)
1322 
1323 #define IEEE80211_TWT_REQTYPE_REQUEST			BIT(0)
1324 #define IEEE80211_TWT_REQTYPE_SETUP_CMD			GENMASK(3, 1)
1325 #define IEEE80211_TWT_REQTYPE_TRIGGER			BIT(4)
1326 #define IEEE80211_TWT_REQTYPE_IMPLICIT			BIT(5)
1327 #define IEEE80211_TWT_REQTYPE_FLOWTYPE			BIT(6)
1328 #define IEEE80211_TWT_REQTYPE_FLOWID			GENMASK(9, 7)
1329 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP		GENMASK(14, 10)
1330 #define IEEE80211_TWT_REQTYPE_PROTECTION		BIT(15)
1331 
1332 enum ieee80211_twt_setup_cmd {
1333 	TWT_SETUP_CMD_REQUEST,
1334 	TWT_SETUP_CMD_SUGGEST,
1335 	TWT_SETUP_CMD_DEMAND,
1336 	TWT_SETUP_CMD_GROUPING,
1337 	TWT_SETUP_CMD_ACCEPT,
1338 	TWT_SETUP_CMD_ALTERNATE,
1339 	TWT_SETUP_CMD_DICTATE,
1340 	TWT_SETUP_CMD_REJECT,
1341 };
1342 
1343 struct ieee80211_twt_params {
1344 	__le16 req_type;
1345 	__le64 twt;
1346 	u8 min_twt_dur;
1347 	__le16 mantissa;
1348 	u8 channel;
1349 } __packed;
1350 
1351 struct ieee80211_twt_setup {
1352 	u8 dialog_token;
1353 	u8 element_id;
1354 	u8 length;
1355 	u8 control;
1356 	u8 params[];
1357 } __packed;
1358 
1359 #define IEEE80211_TTLM_MAX_CNT				2
1360 #define IEEE80211_TTLM_CONTROL_DIRECTION		0x03
1361 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP		0x04
1362 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT	0x08
1363 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT	0x10
1364 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE		0x20
1365 
1366 #define IEEE80211_TTLM_DIRECTION_DOWN		0
1367 #define IEEE80211_TTLM_DIRECTION_UP		1
1368 #define IEEE80211_TTLM_DIRECTION_BOTH		2
1369 
1370 /**
1371  * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1372  *
1373  * Defined in section 9.4.2.314 in P802.11be_D4
1374  *
1375  * @control: the first part of control field
1376  * @optional: the second part of control field
1377  */
1378 struct ieee80211_ttlm_elem {
1379 	u8 control;
1380 	u8 optional[];
1381 } __packed;
1382 
1383 /**
1384  * struct ieee80211_bss_load_elem - BSS Load elemen
1385  *
1386  * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1387  *
1388  * @sta_count: total number of STAs currently associated with the AP.
1389  * @channel_util: Percentage of time that the access point sensed the channel
1390  *	was busy. This value is in range [0, 255], the highest value means
1391  *	100% busy.
1392  * @avail_admission_capa: remaining amount of medium time used for admission
1393  *	control.
1394  */
1395 struct ieee80211_bss_load_elem {
1396 	__le16 sta_count;
1397 	u8 channel_util;
1398 	__le16 avail_admission_capa;
1399 } __packed;
1400 
1401 struct ieee80211_mgmt {
1402 	__le16 frame_control;
1403 	__le16 duration;
1404 	u8 da[ETH_ALEN];
1405 	u8 sa[ETH_ALEN];
1406 	u8 bssid[ETH_ALEN];
1407 	__le16 seq_ctrl;
1408 	union {
1409 		struct {
1410 			__le16 auth_alg;
1411 			__le16 auth_transaction;
1412 			__le16 status_code;
1413 			/* possibly followed by Challenge text */
1414 			u8 variable[];
1415 		} __packed auth;
1416 		struct {
1417 			__le16 reason_code;
1418 		} __packed deauth;
1419 		struct {
1420 			__le16 capab_info;
1421 			__le16 listen_interval;
1422 			/* followed by SSID and Supported rates */
1423 			u8 variable[];
1424 		} __packed assoc_req;
1425 		struct {
1426 			__le16 capab_info;
1427 			__le16 status_code;
1428 			__le16 aid;
1429 			/* followed by Supported rates */
1430 			u8 variable[];
1431 		} __packed assoc_resp, reassoc_resp;
1432 		struct {
1433 			__le16 capab_info;
1434 			__le16 status_code;
1435 			u8 variable[];
1436 		} __packed s1g_assoc_resp, s1g_reassoc_resp;
1437 		struct {
1438 			__le16 capab_info;
1439 			__le16 listen_interval;
1440 			u8 current_ap[ETH_ALEN];
1441 			/* followed by SSID and Supported rates */
1442 			u8 variable[];
1443 		} __packed reassoc_req;
1444 		struct {
1445 			__le16 reason_code;
1446 		} __packed disassoc;
1447 		struct {
1448 			__le64 timestamp;
1449 			__le16 beacon_int;
1450 			__le16 capab_info;
1451 			/* followed by some of SSID, Supported rates,
1452 			 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1453 			u8 variable[];
1454 		} __packed beacon;
1455 		struct {
1456 			/* only variable items: SSID, Supported rates */
1457 			DECLARE_FLEX_ARRAY(u8, variable);
1458 		} __packed probe_req;
1459 		struct {
1460 			__le64 timestamp;
1461 			__le16 beacon_int;
1462 			__le16 capab_info;
1463 			/* followed by some of SSID, Supported rates,
1464 			 * FH Params, DS Params, CF Params, IBSS Params */
1465 			u8 variable[];
1466 		} __packed probe_resp;
1467 		struct {
1468 			u8 category;
1469 			union {
1470 				struct {
1471 					u8 action_code;
1472 					u8 dialog_token;
1473 					u8 status_code;
1474 					u8 variable[];
1475 				} __packed wme_action;
1476 				struct{
1477 					u8 action_code;
1478 					u8 variable[];
1479 				} __packed chan_switch;
1480 				struct{
1481 					u8 action_code;
1482 					struct ieee80211_ext_chansw_ie data;
1483 					u8 variable[];
1484 				} __packed ext_chan_switch;
1485 				struct{
1486 					u8 action_code;
1487 					u8 dialog_token;
1488 					u8 element_id;
1489 					u8 length;
1490 					struct ieee80211_msrment_ie msr_elem;
1491 				} __packed measurement;
1492 				struct{
1493 					u8 action_code;
1494 					u8 dialog_token;
1495 					__le16 capab;
1496 					__le16 timeout;
1497 					__le16 start_seq_num;
1498 					/* followed by BA Extension */
1499 					u8 variable[];
1500 				} __packed addba_req;
1501 				struct{
1502 					u8 action_code;
1503 					u8 dialog_token;
1504 					__le16 status;
1505 					__le16 capab;
1506 					__le16 timeout;
1507 					/* followed by BA Extension */
1508 					u8 variable[];
1509 				} __packed addba_resp;
1510 				struct{
1511 					u8 action_code;
1512 					__le16 params;
1513 					__le16 reason_code;
1514 				} __packed delba;
1515 				struct {
1516 					u8 action_code;
1517 					u8 variable[];
1518 				} __packed self_prot;
1519 				struct{
1520 					u8 action_code;
1521 					u8 variable[];
1522 				} __packed mesh_action;
1523 				struct {
1524 					u8 action;
1525 					u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1526 				} __packed sa_query;
1527 				struct {
1528 					u8 action;
1529 					u8 smps_control;
1530 				} __packed ht_smps;
1531 				struct {
1532 					u8 action_code;
1533 					u8 chanwidth;
1534 				} __packed ht_notify_cw;
1535 				struct {
1536 					u8 action_code;
1537 					u8 dialog_token;
1538 					__le16 capability;
1539 					u8 variable[];
1540 				} __packed tdls_discover_resp;
1541 				struct {
1542 					u8 action_code;
1543 					u8 operating_mode;
1544 				} __packed vht_opmode_notif;
1545 				struct {
1546 					u8 action_code;
1547 					u8 membership[WLAN_MEMBERSHIP_LEN];
1548 					u8 position[WLAN_USER_POSITION_LEN];
1549 				} __packed vht_group_notif;
1550 				struct {
1551 					u8 action_code;
1552 					u8 dialog_token;
1553 					u8 tpc_elem_id;
1554 					u8 tpc_elem_length;
1555 					struct ieee80211_tpc_report_ie tpc;
1556 				} __packed tpc_report;
1557 				struct {
1558 					u8 action_code;
1559 					u8 dialog_token;
1560 					u8 follow_up;
1561 					u8 tod[6];
1562 					u8 toa[6];
1563 					__le16 tod_error;
1564 					__le16 toa_error;
1565 					u8 variable[];
1566 				} __packed ftm;
1567 				struct {
1568 					u8 action_code;
1569 					u8 variable[];
1570 				} __packed s1g;
1571 				struct {
1572 					u8 action_code;
1573 					u8 dialog_token;
1574 					u8 follow_up;
1575 					u32 tod;
1576 					u32 toa;
1577 					u8 max_tod_error;
1578 					u8 max_toa_error;
1579 				} __packed wnm_timing_msr;
1580 				struct {
1581 					u8 action_code;
1582 					u8 dialog_token;
1583 					u8 variable[];
1584 				} __packed ttlm_req;
1585 				struct {
1586 					u8 action_code;
1587 					u8 dialog_token;
1588 					__le16 status_code;
1589 					u8 variable[];
1590 				} __packed ttlm_res;
1591 				struct {
1592 					u8 action_code;
1593 				} __packed ttlm_tear_down;
1594 				struct {
1595 					u8 action_code;
1596 					u8 dialog_token;
1597 					u8 variable[];
1598 				} __packed ml_reconf_req;
1599 				struct {
1600 					u8 action_code;
1601 					u8 dialog_token;
1602 					u8 count;
1603 					u8 variable[];
1604 				} __packed ml_reconf_resp;
1605 				struct {
1606 					u8 action_code;
1607 					u8 variable[];
1608 				} __packed epcs;
1609 			} u;
1610 		} __packed action;
1611 		DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1612 	} u;
1613 } __packed __aligned(2);
1614 
1615 /* Supported rates membership selectors */
1616 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY	127
1617 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY	126
1618 #define BSS_MEMBERSHIP_SELECTOR_GLK	125
1619 #define BSS_MEMBERSHIP_SELECTOR_EPD	124
1620 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1621 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY	122
1622 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY	121
1623 
1624 #define BSS_MEMBERSHIP_SELECTOR_MIN	BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1625 
1626 /* mgmt header + 1 byte category code */
1627 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1628 
1629 
1630 /* Management MIC information element (IEEE 802.11w) */
1631 struct ieee80211_mmie {
1632 	u8 element_id;
1633 	u8 length;
1634 	__le16 key_id;
1635 	u8 sequence_number[6];
1636 	u8 mic[8];
1637 } __packed;
1638 
1639 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1640 struct ieee80211_mmie_16 {
1641 	u8 element_id;
1642 	u8 length;
1643 	__le16 key_id;
1644 	u8 sequence_number[6];
1645 	u8 mic[16];
1646 } __packed;
1647 
1648 struct ieee80211_vendor_ie {
1649 	u8 element_id;
1650 	u8 len;
1651 	u8 oui[3];
1652 	u8 oui_type;
1653 } __packed;
1654 
1655 struct ieee80211_wmm_ac_param {
1656 	u8 aci_aifsn; /* AIFSN, ACM, ACI */
1657 	u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1658 	__le16 txop_limit;
1659 } __packed;
1660 
1661 struct ieee80211_wmm_param_ie {
1662 	u8 element_id; /* Element ID: 221 (0xdd); */
1663 	u8 len; /* Length: 24 */
1664 	/* required fields for WMM version 1 */
1665 	u8 oui[3]; /* 00:50:f2 */
1666 	u8 oui_type; /* 2 */
1667 	u8 oui_subtype; /* 1 */
1668 	u8 version; /* 1 for WMM version 1.0 */
1669 	u8 qos_info; /* AP/STA specific QoS info */
1670 	u8 reserved; /* 0 */
1671 	/* AC_BE, AC_BK, AC_VI, AC_VO */
1672 	struct ieee80211_wmm_ac_param ac[4];
1673 } __packed;
1674 
1675 /* Control frames */
1676 struct ieee80211_rts {
1677 	__le16 frame_control;
1678 	__le16 duration;
1679 	u8 ra[ETH_ALEN];
1680 	u8 ta[ETH_ALEN];
1681 } __packed __aligned(2);
1682 
1683 struct ieee80211_cts {
1684 	__le16 frame_control;
1685 	__le16 duration;
1686 	u8 ra[ETH_ALEN];
1687 } __packed __aligned(2);
1688 
1689 struct ieee80211_pspoll {
1690 	__le16 frame_control;
1691 	__le16 aid;
1692 	u8 bssid[ETH_ALEN];
1693 	u8 ta[ETH_ALEN];
1694 } __packed __aligned(2);
1695 
1696 /* TDLS */
1697 
1698 /* Channel switch timing */
1699 struct ieee80211_ch_switch_timing {
1700 	__le16 switch_time;
1701 	__le16 switch_timeout;
1702 } __packed;
1703 
1704 /* Link-id information element */
1705 struct ieee80211_tdls_lnkie {
1706 	u8 ie_type; /* Link Identifier IE */
1707 	u8 ie_len;
1708 	u8 bssid[ETH_ALEN];
1709 	u8 init_sta[ETH_ALEN];
1710 	u8 resp_sta[ETH_ALEN];
1711 } __packed;
1712 
1713 struct ieee80211_tdls_data {
1714 	u8 da[ETH_ALEN];
1715 	u8 sa[ETH_ALEN];
1716 	__be16 ether_type;
1717 	u8 payload_type;
1718 	u8 category;
1719 	u8 action_code;
1720 	union {
1721 		struct {
1722 			u8 dialog_token;
1723 			__le16 capability;
1724 			u8 variable[];
1725 		} __packed setup_req;
1726 		struct {
1727 			__le16 status_code;
1728 			u8 dialog_token;
1729 			__le16 capability;
1730 			u8 variable[];
1731 		} __packed setup_resp;
1732 		struct {
1733 			__le16 status_code;
1734 			u8 dialog_token;
1735 			u8 variable[];
1736 		} __packed setup_cfm;
1737 		struct {
1738 			__le16 reason_code;
1739 			u8 variable[];
1740 		} __packed teardown;
1741 		struct {
1742 			u8 dialog_token;
1743 			u8 variable[];
1744 		} __packed discover_req;
1745 		struct {
1746 			u8 target_channel;
1747 			u8 oper_class;
1748 			u8 variable[];
1749 		} __packed chan_switch_req;
1750 		struct {
1751 			__le16 status_code;
1752 			u8 variable[];
1753 		} __packed chan_switch_resp;
1754 	} u;
1755 } __packed;
1756 
1757 /*
1758  * Peer-to-Peer IE attribute related definitions.
1759  */
1760 /*
1761  * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1762  */
1763 enum ieee80211_p2p_attr_id {
1764 	IEEE80211_P2P_ATTR_STATUS = 0,
1765 	IEEE80211_P2P_ATTR_MINOR_REASON,
1766 	IEEE80211_P2P_ATTR_CAPABILITY,
1767 	IEEE80211_P2P_ATTR_DEVICE_ID,
1768 	IEEE80211_P2P_ATTR_GO_INTENT,
1769 	IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1770 	IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1771 	IEEE80211_P2P_ATTR_GROUP_BSSID,
1772 	IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1773 	IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1774 	IEEE80211_P2P_ATTR_MANAGABILITY,
1775 	IEEE80211_P2P_ATTR_CHANNEL_LIST,
1776 	IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1777 	IEEE80211_P2P_ATTR_DEVICE_INFO,
1778 	IEEE80211_P2P_ATTR_GROUP_INFO,
1779 	IEEE80211_P2P_ATTR_GROUP_ID,
1780 	IEEE80211_P2P_ATTR_INTERFACE,
1781 	IEEE80211_P2P_ATTR_OPER_CHANNEL,
1782 	IEEE80211_P2P_ATTR_INVITE_FLAGS,
1783 	/* 19 - 220: Reserved */
1784 	IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1785 
1786 	IEEE80211_P2P_ATTR_MAX
1787 };
1788 
1789 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1790 /* Typical max value used here */
1791 #define IEEE80211_P2P_NOA_DESC_MAX	4
1792 
1793 struct ieee80211_p2p_noa_desc {
1794 	u8 count;
1795 	__le32 duration;
1796 	__le32 interval;
1797 	__le32 start_time;
1798 } __packed;
1799 
1800 struct ieee80211_p2p_noa_attr {
1801 	u8 index;
1802 	u8 oppps_ctwindow;
1803 	struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1804 } __packed;
1805 
1806 #define IEEE80211_P2P_OPPPS_ENABLE_BIT		BIT(7)
1807 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK	0x7F
1808 
1809 /**
1810  * struct ieee80211_bar - Block Ack Request frame format
1811  * @frame_control: Frame Control
1812  * @duration: Duration
1813  * @ra: RA
1814  * @ta: TA
1815  * @control: BAR Control
1816  * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1817  *
1818  * This structure represents the "BlockAckReq frame format"
1819  * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1820 */
1821 struct ieee80211_bar {
1822 	__le16 frame_control;
1823 	__le16 duration;
1824 	__u8 ra[ETH_ALEN];
1825 	__u8 ta[ETH_ALEN];
1826 	__le16 control;
1827 	__le16 start_seq_num;
1828 } __packed;
1829 
1830 /* 802.11 BAR control masks */
1831 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL	0x0000
1832 #define IEEE80211_BAR_CTRL_MULTI_TID		0x0002
1833 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA	0x0004
1834 #define IEEE80211_BAR_CTRL_TID_INFO_MASK	0xf000
1835 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT	12
1836 
1837 #define IEEE80211_HT_MCS_MASK_LEN		10
1838 
1839 /**
1840  * struct ieee80211_mcs_info - Supported MCS Set field
1841  * @rx_mask: RX mask
1842  * @rx_highest: highest supported RX rate. If set represents
1843  *	the highest supported RX data rate in units of 1 Mbps.
1844  *	If this field is 0 this value should not be used to
1845  *	consider the highest RX data rate supported.
1846  * @tx_params: TX parameters
1847  * @reserved: Reserved bits
1848  *
1849  * This structure represents the "Supported MCS Set field" as
1850  * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1851  */
1852 struct ieee80211_mcs_info {
1853 	u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1854 	__le16 rx_highest;
1855 	u8 tx_params;
1856 	u8 reserved[3];
1857 } __packed;
1858 
1859 /* 802.11n HT capability MSC set */
1860 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK	0x3ff
1861 #define IEEE80211_HT_MCS_TX_DEFINED		0x01
1862 #define IEEE80211_HT_MCS_TX_RX_DIFF		0x02
1863 /* value 0 == 1 stream etc */
1864 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK	0x0C
1865 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT	2
1866 #define		IEEE80211_HT_MCS_TX_MAX_STREAMS	4
1867 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION	0x10
1868 
1869 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1870 
1871 /*
1872  * 802.11n D5.0 20.3.5 / 20.6 says:
1873  * - indices 0 to 7 and 32 are single spatial stream
1874  * - 8 to 31 are multiple spatial streams using equal modulation
1875  *   [8..15 for two streams, 16..23 for three and 24..31 for four]
1876  * - remainder are multiple spatial streams using unequal modulation
1877  */
1878 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1879 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1880 	(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1881 
1882 /**
1883  * struct ieee80211_ht_cap - HT capabilities element
1884  * @cap_info: HT Capability Information
1885  * @ampdu_params_info: A-MPDU Parameters
1886  * @mcs: Supported MCS Set
1887  * @extended_ht_cap_info: HT Extended Capabilities
1888  * @tx_BF_cap_info: Transmit Beamforming Capabilities
1889  * @antenna_selection_info: ASEL Capability
1890  *
1891  * This structure represents the payload of the "HT Capabilities
1892  * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1893  */
1894 struct ieee80211_ht_cap {
1895 	__le16 cap_info;
1896 	u8 ampdu_params_info;
1897 
1898 	/* 16 bytes MCS information */
1899 	struct ieee80211_mcs_info mcs;
1900 
1901 	__le16 extended_ht_cap_info;
1902 	__le32 tx_BF_cap_info;
1903 	u8 antenna_selection_info;
1904 } __packed;
1905 
1906 /* 802.11n HT capabilities masks (for cap_info) */
1907 #define IEEE80211_HT_CAP_LDPC_CODING		0x0001
1908 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40	0x0002
1909 #define IEEE80211_HT_CAP_SM_PS			0x000C
1910 #define		IEEE80211_HT_CAP_SM_PS_SHIFT	2
1911 #define IEEE80211_HT_CAP_GRN_FLD		0x0010
1912 #define IEEE80211_HT_CAP_SGI_20			0x0020
1913 #define IEEE80211_HT_CAP_SGI_40			0x0040
1914 #define IEEE80211_HT_CAP_TX_STBC		0x0080
1915 #define IEEE80211_HT_CAP_RX_STBC		0x0300
1916 #define		IEEE80211_HT_CAP_RX_STBC_SHIFT	8
1917 #define IEEE80211_HT_CAP_DELAY_BA		0x0400
1918 #define IEEE80211_HT_CAP_MAX_AMSDU		0x0800
1919 #define IEEE80211_HT_CAP_DSSSCCK40		0x1000
1920 #define IEEE80211_HT_CAP_RESERVED		0x2000
1921 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT	0x4000
1922 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT		0x8000
1923 
1924 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1925 #define IEEE80211_HT_EXT_CAP_PCO		0x0001
1926 #define IEEE80211_HT_EXT_CAP_PCO_TIME		0x0006
1927 #define		IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT	1
1928 #define IEEE80211_HT_EXT_CAP_MCS_FB		0x0300
1929 #define		IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT	8
1930 #define IEEE80211_HT_EXT_CAP_HTC_SUP		0x0400
1931 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER	0x0800
1932 
1933 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1934 #define IEEE80211_HT_AMPDU_PARM_FACTOR		0x03
1935 #define IEEE80211_HT_AMPDU_PARM_DENSITY		0x1C
1936 #define		IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT	2
1937 
1938 /*
1939  * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1940  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1941  */
1942 enum ieee80211_max_ampdu_length_exp {
1943 	IEEE80211_HT_MAX_AMPDU_8K = 0,
1944 	IEEE80211_HT_MAX_AMPDU_16K = 1,
1945 	IEEE80211_HT_MAX_AMPDU_32K = 2,
1946 	IEEE80211_HT_MAX_AMPDU_64K = 3
1947 };
1948 
1949 /*
1950  * Maximum length of AMPDU that the STA can receive in VHT.
1951  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1952  */
1953 enum ieee80211_vht_max_ampdu_length_exp {
1954 	IEEE80211_VHT_MAX_AMPDU_8K = 0,
1955 	IEEE80211_VHT_MAX_AMPDU_16K = 1,
1956 	IEEE80211_VHT_MAX_AMPDU_32K = 2,
1957 	IEEE80211_VHT_MAX_AMPDU_64K = 3,
1958 	IEEE80211_VHT_MAX_AMPDU_128K = 4,
1959 	IEEE80211_VHT_MAX_AMPDU_256K = 5,
1960 	IEEE80211_VHT_MAX_AMPDU_512K = 6,
1961 	IEEE80211_VHT_MAX_AMPDU_1024K = 7
1962 };
1963 
1964 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1965 
1966 /* Minimum MPDU start spacing */
1967 enum ieee80211_min_mpdu_spacing {
1968 	IEEE80211_HT_MPDU_DENSITY_NONE = 0,	/* No restriction */
1969 	IEEE80211_HT_MPDU_DENSITY_0_25 = 1,	/* 1/4 usec */
1970 	IEEE80211_HT_MPDU_DENSITY_0_5 = 2,	/* 1/2 usec */
1971 	IEEE80211_HT_MPDU_DENSITY_1 = 3,	/* 1 usec */
1972 	IEEE80211_HT_MPDU_DENSITY_2 = 4,	/* 2 usec */
1973 	IEEE80211_HT_MPDU_DENSITY_4 = 5,	/* 4 usec */
1974 	IEEE80211_HT_MPDU_DENSITY_8 = 6,	/* 8 usec */
1975 	IEEE80211_HT_MPDU_DENSITY_16 = 7	/* 16 usec */
1976 };
1977 
1978 /**
1979  * struct ieee80211_ht_operation - HT operation IE
1980  * @primary_chan: Primary Channel
1981  * @ht_param: HT Operation Information parameters
1982  * @operation_mode: HT Operation Information operation mode
1983  * @stbc_param: HT Operation Information STBC params
1984  * @basic_set: Basic HT-MCS Set
1985  *
1986  * This structure represents the payload of the "HT Operation
1987  * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1988  */
1989 struct ieee80211_ht_operation {
1990 	u8 primary_chan;
1991 	u8 ht_param;
1992 	__le16 operation_mode;
1993 	__le16 stbc_param;
1994 	u8 basic_set[16];
1995 } __packed;
1996 
1997 /* for ht_param */
1998 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET		0x03
1999 #define		IEEE80211_HT_PARAM_CHA_SEC_NONE		0x00
2000 #define		IEEE80211_HT_PARAM_CHA_SEC_ABOVE	0x01
2001 #define		IEEE80211_HT_PARAM_CHA_SEC_BELOW	0x03
2002 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY		0x04
2003 #define IEEE80211_HT_PARAM_RIFS_MODE			0x08
2004 
2005 /* for operation_mode */
2006 #define IEEE80211_HT_OP_MODE_PROTECTION			0x0003
2007 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONE		0
2008 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER	1
2009 #define		IEEE80211_HT_OP_MODE_PROTECTION_20MHZ		2
2010 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED	3
2011 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT		0x0004
2012 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT		0x0010
2013 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT		5
2014 #define IEEE80211_HT_OP_MODE_CCFS2_MASK			0x1fe0
2015 
2016 /* for stbc_param */
2017 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON		0x0040
2018 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT		0x0080
2019 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON		0x0100
2020 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT	0x0200
2021 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE		0x0400
2022 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE		0x0800
2023 
2024 
2025 /* block-ack parameters */
2026 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
2027 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
2028 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
2029 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
2030 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2031 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2032 
2033 /*
2034  * A-MPDU buffer sizes
2035  * According to HT size varies from 8 to 64 frames
2036  * HE adds the ability to have up to 256 frames.
2037  * EHT adds the ability to have up to 1K frames.
2038  */
2039 #define IEEE80211_MIN_AMPDU_BUF		0x8
2040 #define IEEE80211_MAX_AMPDU_BUF_HT	0x40
2041 #define IEEE80211_MAX_AMPDU_BUF_HE	0x100
2042 #define IEEE80211_MAX_AMPDU_BUF_EHT	0x400
2043 
2044 
2045 /* Spatial Multiplexing Power Save Modes (for capability) */
2046 #define WLAN_HT_CAP_SM_PS_STATIC	0
2047 #define WLAN_HT_CAP_SM_PS_DYNAMIC	1
2048 #define WLAN_HT_CAP_SM_PS_INVALID	2
2049 #define WLAN_HT_CAP_SM_PS_DISABLED	3
2050 
2051 /* for SM power control field lower two bits */
2052 #define WLAN_HT_SMPS_CONTROL_DISABLED	0
2053 #define WLAN_HT_SMPS_CONTROL_STATIC	1
2054 #define WLAN_HT_SMPS_CONTROL_DYNAMIC	3
2055 
2056 /**
2057  * struct ieee80211_vht_mcs_info - VHT MCS information
2058  * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2059  * @rx_highest: Indicates highest long GI VHT PPDU data rate
2060  *	STA can receive. Rate expressed in units of 1 Mbps.
2061  *	If this field is 0 this value should not be used to
2062  *	consider the highest RX data rate supported.
2063  *	The top 3 bits of this field indicate the Maximum NSTS,total
2064  *	(a beamformee capability.)
2065  * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2066  * @tx_highest: Indicates highest long GI VHT PPDU data rate
2067  *	STA can transmit. Rate expressed in units of 1 Mbps.
2068  *	If this field is 0 this value should not be used to
2069  *	consider the highest TX data rate supported.
2070  *	The top 2 bits of this field are reserved, the
2071  *	3rd bit from the top indiciates VHT Extended NSS BW
2072  *	Capability.
2073  */
2074 struct ieee80211_vht_mcs_info {
2075 	__le16 rx_mcs_map;
2076 	__le16 rx_highest;
2077 	__le16 tx_mcs_map;
2078 	__le16 tx_highest;
2079 } __packed;
2080 
2081 /* for rx_highest */
2082 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT	13
2083 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK	(7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2084 
2085 /* for tx_highest */
2086 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE	(1 << 13)
2087 
2088 /**
2089  * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2090  * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2091  *	number of streams
2092  * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2093  * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2094  * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2095  *
2096  * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2097  * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2098  * both split into 8 subfields by number of streams. These values indicate
2099  * which MCSes are supported for the number of streams the value appears
2100  * for.
2101  */
2102 enum ieee80211_vht_mcs_support {
2103 	IEEE80211_VHT_MCS_SUPPORT_0_7	= 0,
2104 	IEEE80211_VHT_MCS_SUPPORT_0_8	= 1,
2105 	IEEE80211_VHT_MCS_SUPPORT_0_9	= 2,
2106 	IEEE80211_VHT_MCS_NOT_SUPPORTED	= 3,
2107 };
2108 
2109 /**
2110  * struct ieee80211_vht_cap - VHT capabilities
2111  *
2112  * This structure is the "VHT capabilities element" as
2113  * described in 802.11ac D3.0 8.4.2.160
2114  * @vht_cap_info: VHT capability info
2115  * @supp_mcs: VHT MCS supported rates
2116  */
2117 struct ieee80211_vht_cap {
2118 	__le32 vht_cap_info;
2119 	struct ieee80211_vht_mcs_info supp_mcs;
2120 } __packed;
2121 
2122 /**
2123  * enum ieee80211_vht_chanwidth - VHT channel width
2124  * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2125  *	determine the channel width (20 or 40 MHz)
2126  * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2127  * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2128  * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2129  */
2130 enum ieee80211_vht_chanwidth {
2131 	IEEE80211_VHT_CHANWIDTH_USE_HT		= 0,
2132 	IEEE80211_VHT_CHANWIDTH_80MHZ		= 1,
2133 	IEEE80211_VHT_CHANWIDTH_160MHZ		= 2,
2134 	IEEE80211_VHT_CHANWIDTH_80P80MHZ	= 3,
2135 };
2136 
2137 /**
2138  * struct ieee80211_vht_operation - VHT operation IE
2139  *
2140  * This structure is the "VHT operation element" as
2141  * described in 802.11ac D3.0 8.4.2.161
2142  * @chan_width: Operating channel width
2143  * @center_freq_seg0_idx: center freq segment 0 index
2144  * @center_freq_seg1_idx: center freq segment 1 index
2145  * @basic_mcs_set: VHT Basic MCS rate set
2146  */
2147 struct ieee80211_vht_operation {
2148 	u8 chan_width;
2149 	u8 center_freq_seg0_idx;
2150 	u8 center_freq_seg1_idx;
2151 	__le16 basic_mcs_set;
2152 } __packed;
2153 
2154 /**
2155  * struct ieee80211_he_cap_elem - HE capabilities element
2156  * @mac_cap_info: HE MAC Capabilities Information
2157  * @phy_cap_info: HE PHY Capabilities Information
2158  *
2159  * This structure represents the fixed fields of the payload of the
2160  * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2161  * sections 9.4.2.248.2 and 9.4.2.248.3.
2162  */
2163 struct ieee80211_he_cap_elem {
2164 	u8 mac_cap_info[6];
2165 	u8 phy_cap_info[11];
2166 } __packed;
2167 
2168 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN	5
2169 
2170 /**
2171  * enum ieee80211_he_mcs_support - HE MCS support definitions
2172  * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2173  *	number of streams
2174  * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2175  * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2176  * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2177  *
2178  * These definitions are used in each 2-bit subfield of the rx_mcs_*
2179  * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2180  * both split into 8 subfields by number of streams. These values indicate
2181  * which MCSes are supported for the number of streams the value appears
2182  * for.
2183  */
2184 enum ieee80211_he_mcs_support {
2185 	IEEE80211_HE_MCS_SUPPORT_0_7	= 0,
2186 	IEEE80211_HE_MCS_SUPPORT_0_9	= 1,
2187 	IEEE80211_HE_MCS_SUPPORT_0_11	= 2,
2188 	IEEE80211_HE_MCS_NOT_SUPPORTED	= 3,
2189 };
2190 
2191 /**
2192  * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2193  *
2194  * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2195  * described in P802.11ax_D2.0 section 9.4.2.237.4
2196  *
2197  * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2198  *     widths less than 80MHz.
2199  * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2200  *     widths less than 80MHz.
2201  * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2202  *     width 160MHz.
2203  * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2204  *     width 160MHz.
2205  * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2206  *     channel width 80p80MHz.
2207  * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2208  *     channel width 80p80MHz.
2209  */
2210 struct ieee80211_he_mcs_nss_supp {
2211 	__le16 rx_mcs_80;
2212 	__le16 tx_mcs_80;
2213 	__le16 rx_mcs_160;
2214 	__le16 tx_mcs_160;
2215 	__le16 rx_mcs_80p80;
2216 	__le16 tx_mcs_80p80;
2217 } __packed;
2218 
2219 /**
2220  * struct ieee80211_he_operation - HE Operation element
2221  * @he_oper_params: HE Operation Parameters + BSS Color Information
2222  * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2223  * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2224  *            BSSID Indicator, and 6 GHz Operation Information
2225  *
2226  * This structure represents the payload of the "HE Operation
2227  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2228  */
2229 struct ieee80211_he_operation {
2230 	__le32 he_oper_params;
2231 	__le16 he_mcs_nss_set;
2232 	u8 optional[];
2233 } __packed;
2234 
2235 /**
2236  * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2237  * @he_sr_control: SR Control
2238  * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2239  *            Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2240  *            Bitmap, and SRG Partial BSSID Bitmap
2241  *
2242  * This structure represents the payload of the "Spatial Reuse
2243  * Parameter Set element" as described in IEEE Std 802.11ax-2021
2244  * section 9.4.2.252.
2245  */
2246 struct ieee80211_he_spr {
2247 	u8 he_sr_control;
2248 	u8 optional[];
2249 } __packed;
2250 
2251 /**
2252  * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2253  * @aifsn: ACI/AIFSN
2254  * @ecw_min_max: ECWmin/ECWmax
2255  * @mu_edca_timer: MU EDCA Timer
2256  *
2257  * This structure represents the "MU AC Parameter Record" as described
2258  * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2259  */
2260 struct ieee80211_he_mu_edca_param_ac_rec {
2261 	u8 aifsn;
2262 	u8 ecw_min_max;
2263 	u8 mu_edca_timer;
2264 } __packed;
2265 
2266 /**
2267  * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2268  * @mu_qos_info: QoS Info
2269  * @ac_be: MU AC_BE Parameter Record
2270  * @ac_bk: MU AC_BK Parameter Record
2271  * @ac_vi: MU AC_VI Parameter Record
2272  * @ac_vo: MU AC_VO Parameter Record
2273  *
2274  * This structure represents the payload of the "MU EDCA Parameter Set
2275  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2276  */
2277 struct ieee80211_mu_edca_param_set {
2278 	u8 mu_qos_info;
2279 	struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2280 	struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2281 	struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2282 	struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2283 } __packed;
2284 
2285 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2286 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2287 
2288 /**
2289  * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2290  * supported NSS for per MCS.
2291  *
2292  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2293  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2294  * for Tx.
2295  *
2296  * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2297  *     supported for reception and the maximum number of spatial streams
2298  *     supported for transmission for MCS 0 - 7.
2299  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2300  *     supported for reception and the maximum number of spatial streams
2301  *     supported for transmission for MCS 8 - 9.
2302  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2303  *     supported for reception and the maximum number of spatial streams
2304  *     supported for transmission for MCS 10 - 11.
2305  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2306  *     supported for reception and the maximum number of spatial streams
2307  *     supported for transmission for MCS 12 - 13.
2308  * @rx_tx_max_nss: array of the previous fields for easier loop access
2309  */
2310 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2311 	union {
2312 		struct {
2313 			u8 rx_tx_mcs7_max_nss;
2314 			u8 rx_tx_mcs9_max_nss;
2315 			u8 rx_tx_mcs11_max_nss;
2316 			u8 rx_tx_mcs13_max_nss;
2317 		};
2318 		u8 rx_tx_max_nss[4];
2319 	};
2320 };
2321 
2322 /**
2323  * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2324  * 20MHz only stations).
2325  *
2326  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2327  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2328  * for Tx.
2329  *
2330  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2331  *     supported for reception and the maximum number of spatial streams
2332  *     supported for transmission for MCS 0 - 9.
2333  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2334  *     supported for reception and the maximum number of spatial streams
2335  *     supported for transmission for MCS 10 - 11.
2336  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2337  *     supported for reception and the maximum number of spatial streams
2338  *     supported for transmission for MCS 12 - 13.
2339  * @rx_tx_max_nss: array of the previous fields for easier loop access
2340  */
2341 struct ieee80211_eht_mcs_nss_supp_bw {
2342 	union {
2343 		struct {
2344 			u8 rx_tx_mcs9_max_nss;
2345 			u8 rx_tx_mcs11_max_nss;
2346 			u8 rx_tx_mcs13_max_nss;
2347 		};
2348 		u8 rx_tx_max_nss[3];
2349 	};
2350 };
2351 
2352 /**
2353  * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2354  *
2355  * This structure is the "EHT Capabilities element" fixed fields as
2356  * described in P802.11be_D2.0 section 9.4.2.313.
2357  *
2358  * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2359  * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2360  */
2361 struct ieee80211_eht_cap_elem_fixed {
2362 	u8 mac_cap_info[2];
2363 	u8 phy_cap_info[9];
2364 } __packed;
2365 
2366 /**
2367  * struct ieee80211_eht_cap_elem - EHT capabilities element
2368  * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2369  * @optional: optional parts
2370  */
2371 struct ieee80211_eht_cap_elem {
2372 	struct ieee80211_eht_cap_elem_fixed fixed;
2373 
2374 	/*
2375 	 * Followed by:
2376 	 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2377 	 * EHT PPE Thresholds field: variable length.
2378 	 */
2379 	u8 optional[];
2380 } __packed;
2381 
2382 #define IEEE80211_EHT_OPER_INFO_PRESENT	                        0x01
2383 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT	0x02
2384 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION	                0x04
2385 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT         0x08
2386 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK      0x30
2387 #define IEEE80211_EHT_OPER_MCS15_DISABLE                        0x40
2388 
2389 /**
2390  * struct ieee80211_eht_operation - eht operation element
2391  *
2392  * This structure is the "EHT Operation Element" fields as
2393  * described in P802.11be_D2.0 section 9.4.2.311
2394  *
2395  * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2396  * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2397  *     EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2398  *     receive.
2399  * @optional: optional parts
2400  */
2401 struct ieee80211_eht_operation {
2402 	u8 params;
2403 	struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2404 	u8 optional[];
2405 } __packed;
2406 
2407 /**
2408  * struct ieee80211_eht_operation_info - eht operation information
2409  *
2410  * @control: EHT operation information control.
2411  * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2412  *     EHT BSS.
2413  * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2414  * @optional: optional parts
2415  */
2416 struct ieee80211_eht_operation_info {
2417 	u8 control;
2418 	u8 ccfs0;
2419 	u8 ccfs1;
2420 	u8 optional[];
2421 } __packed;
2422 
2423 /* 802.11ac VHT Capabilities */
2424 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895			0x00000000
2425 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991			0x00000001
2426 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454			0x00000002
2427 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK				0x00000003
2428 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ		0x00000004
2429 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ	0x00000008
2430 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK			0x0000000C
2431 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT			2
2432 #define IEEE80211_VHT_CAP_RXLDPC				0x00000010
2433 #define IEEE80211_VHT_CAP_SHORT_GI_80				0x00000020
2434 #define IEEE80211_VHT_CAP_SHORT_GI_160				0x00000040
2435 #define IEEE80211_VHT_CAP_TXSTBC				0x00000080
2436 #define IEEE80211_VHT_CAP_RXSTBC_1				0x00000100
2437 #define IEEE80211_VHT_CAP_RXSTBC_2				0x00000200
2438 #define IEEE80211_VHT_CAP_RXSTBC_3				0x00000300
2439 #define IEEE80211_VHT_CAP_RXSTBC_4				0x00000400
2440 #define IEEE80211_VHT_CAP_RXSTBC_MASK				0x00000700
2441 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT				8
2442 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE			0x00000800
2443 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE			0x00001000
2444 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT                  13
2445 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK			\
2446 		(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2447 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT		16
2448 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK		\
2449 		(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2450 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE			0x00080000
2451 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE			0x00100000
2452 #define IEEE80211_VHT_CAP_VHT_TXOP_PS				0x00200000
2453 #define IEEE80211_VHT_CAP_HTC_VHT				0x00400000
2454 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT	23
2455 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK	\
2456 		(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2457 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB	0x08000000
2458 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB	0x0c000000
2459 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN			0x10000000
2460 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN			0x20000000
2461 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT			30
2462 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK			0xc0000000
2463 
2464 /**
2465  * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2466  * @cap: VHT capabilities of the peer
2467  * @bw: bandwidth to use
2468  * @mcs: MCS index to use
2469  * @ext_nss_bw_capable: indicates whether or not the local transmitter
2470  *	(rate scaling algorithm) can deal with the new logic
2471  *	(dot11VHTExtendedNSSBWCapable)
2472  * @max_vht_nss: current maximum NSS as advertised by the STA in
2473  *	operating mode notification, can be 0 in which case the
2474  *	capability data will be used to derive this (from MCS support)
2475  * Return: The maximum NSS that can be used for the given bandwidth/MCS
2476  *	combination
2477  *
2478  * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2479  * vary for a given BW/MCS. This function parses the data.
2480  *
2481  * Note: This function is exported by cfg80211.
2482  */
2483 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2484 			      enum ieee80211_vht_chanwidth bw,
2485 			      int mcs, bool ext_nss_bw_capable,
2486 			      unsigned int max_vht_nss);
2487 
2488 /* 802.11ax HE MAC capabilities */
2489 #define IEEE80211_HE_MAC_CAP0_HTC_HE				0x01
2490 #define IEEE80211_HE_MAC_CAP0_TWT_REQ				0x02
2491 #define IEEE80211_HE_MAC_CAP0_TWT_RES				0x04
2492 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP		0x00
2493 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1		0x08
2494 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2		0x10
2495 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3		0x18
2496 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK			0x18
2497 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1		0x00
2498 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2		0x20
2499 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4		0x40
2500 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8		0x60
2501 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16		0x80
2502 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32		0xa0
2503 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64		0xc0
2504 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED	0xe0
2505 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK		0xe0
2506 
2507 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED		0x00
2508 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128			0x01
2509 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256			0x02
2510 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512			0x03
2511 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK		0x03
2512 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US		0x00
2513 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US		0x04
2514 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US		0x08
2515 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK		0x0c
2516 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1		0x00
2517 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2		0x10
2518 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3		0x20
2519 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4		0x30
2520 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5		0x40
2521 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6		0x50
2522 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7		0x60
2523 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8		0x70
2524 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK		0x70
2525 
2526 /* Link adaptation is split between byte HE_MAC_CAP1 and
2527  * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2528  * in which case the following values apply:
2529  * 0 = No feedback.
2530  * 1 = reserved.
2531  * 2 = Unsolicited feedback.
2532  * 3 = both
2533  */
2534 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION			0x80
2535 
2536 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION			0x01
2537 #define IEEE80211_HE_MAC_CAP2_ALL_ACK				0x02
2538 #define IEEE80211_HE_MAC_CAP2_TRS				0x04
2539 #define IEEE80211_HE_MAC_CAP2_BSR				0x08
2540 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT				0x10
2541 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP			0x20
2542 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING			0x40
2543 #define IEEE80211_HE_MAC_CAP2_ACK_EN				0x80
2544 
2545 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL			0x02
2546 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA				0x04
2547 
2548 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2549  * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2550  * same field in the HE capabilities.
2551  */
2552 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0		0x00
2553 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1		0x08
2554 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2		0x10
2555 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3		0x18
2556 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK		0x18
2557 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG			0x20
2558 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED			0x40
2559 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS		0x80
2560 
2561 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG		0x01
2562 #define IEEE80211_HE_MAC_CAP4_QTP				0x02
2563 #define IEEE80211_HE_MAC_CAP4_BQR				0x04
2564 #define IEEE80211_HE_MAC_CAP4_PSR_RESP				0x08
2565 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP			0x10
2566 #define IEEE80211_HE_MAC_CAP4_OPS				0x20
2567 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU			0x40
2568 /* Multi TID agg TX is split between byte #4 and #5
2569  * The value is a combination of B39,B40,B41
2570  */
2571 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39		0x80
2572 
2573 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40		0x01
2574 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41		0x02
2575 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION	0x04
2576 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU			0x08
2577 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX		0x10
2578 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS			0x20
2579 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING		0x40
2580 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX		0x80
2581 
2582 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR	20
2583 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR	16
2584 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR	13
2585 
2586 /* 802.11ax HE PHY capabilities */
2587 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G		0x02
2588 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G	0x04
2589 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G		0x08
2590 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G	0x10
2591 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL		0x1e
2592 
2593 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G	0x20
2594 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G	0x40
2595 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK			0xfe
2596 
2597 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ	0x01
2598 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ	0x02
2599 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ	0x04
2600 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ	0x08
2601 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK			0x0f
2602 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A				0x10
2603 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD			0x20
2604 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US		0x40
2605 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2606 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS			0x80
2607 
2608 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS			0x01
2609 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US			0x02
2610 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ			0x04
2611 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ			0x08
2612 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX				0x10
2613 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX				0x20
2614 
2615 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2616  * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2617  * case it indicates support for Tx.
2618  */
2619 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO			0x40
2620 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO			0x80
2621 
2622 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM			0x00
2623 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK			0x01
2624 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK			0x02
2625 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM			0x03
2626 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK			0x03
2627 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1				0x00
2628 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2				0x04
2629 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM			0x00
2630 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK			0x08
2631 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK			0x10
2632 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM			0x18
2633 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK			0x18
2634 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1				0x00
2635 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2				0x20
2636 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU		0x40
2637 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER				0x80
2638 
2639 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE				0x01
2640 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER				0x02
2641 
2642 /* Minimal allowed value of Max STS under 80MHz is 3 */
2643 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4		0x0c
2644 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5		0x10
2645 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6		0x14
2646 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7		0x18
2647 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8		0x1c
2648 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK	0x1c
2649 
2650 /* Minimal allowed value of Max STS above 80MHz is 3 */
2651 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4		0x60
2652 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5		0x80
2653 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6		0xa0
2654 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7		0xc0
2655 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8		0xe0
2656 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK	0xe0
2657 
2658 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1	0x00
2659 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2	0x01
2660 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3	0x02
2661 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4	0x03
2662 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5	0x04
2663 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6	0x05
2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7	0x06
2665 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8	0x07
2666 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK	0x07
2667 
2668 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1	0x00
2669 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2	0x08
2670 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3	0x10
2671 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4	0x18
2672 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5	0x20
2673 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6	0x28
2674 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7	0x30
2675 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8	0x38
2676 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK	0x38
2677 
2678 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK				0x40
2679 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK				0x80
2680 
2681 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU			0x01
2682 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU			0x02
2683 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB			0x04
2684 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB		0x08
2685 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB				0x10
2686 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE			0x20
2687 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO		0x40
2688 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT			0x80
2689 
2690 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR				0x01
2691 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP			0x02
2692 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI		0x04
2693 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1					0x08
2694 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2					0x10
2695 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3					0x18
2696 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4					0x20
2697 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5					0x28
2698 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6					0x30
2699 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7					0x38
2700 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK				0x38
2701 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ			0x40
2702 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ			0x80
2703 
2704 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI		0x01
2705 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G		0x02
2706 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU			0x04
2707 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU			0x08
2708 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI		0x10
2709 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF		0x20
2710 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242				0x00
2711 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484				0x40
2712 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996				0x80
2713 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996				0xc0
2714 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK				0xc0
2715 
2716 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM		0x01
2717 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK		0x02
2718 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU		0x04
2719 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU		0x08
2720 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB	0x10
2721 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB	0x20
2722 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US			0x0
2723 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US			0x1
2724 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US			0x2
2725 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED		0x3
2726 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS			6
2727 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK			0xc0
2728 
2729 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF			0x01
2730 
2731 /* 802.11ax HE TX/RX MCS NSS Support  */
2732 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS			(3)
2733 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS			(6)
2734 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS			(11)
2735 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK			0x07c0
2736 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK			0xf800
2737 
2738 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2739 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2740 	HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2741 	HIGHEST_MCS_SUPPORTED_MCS8,
2742 	HIGHEST_MCS_SUPPORTED_MCS9,
2743 	HIGHEST_MCS_SUPPORTED_MCS10,
2744 	HIGHEST_MCS_SUPPORTED_MCS11,
2745 };
2746 
2747 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2748 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2749 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2750 {
2751 	u8 count = 4;
2752 
2753 	if (he_cap->phy_cap_info[0] &
2754 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2755 		count += 4;
2756 
2757 	if (he_cap->phy_cap_info[0] &
2758 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2759 		count += 4;
2760 
2761 	return count;
2762 }
2763 
2764 /* 802.11ax HE PPE Thresholds */
2765 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS			(1)
2766 #define IEEE80211_PPE_THRES_NSS_POS				(0)
2767 #define IEEE80211_PPE_THRES_NSS_MASK				(7)
2768 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU	\
2769 	(BIT(5) | BIT(6))
2770 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK		0x78
2771 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS		(3)
2772 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE			(3)
2773 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE			(7)
2774 
2775 /*
2776  * Calculate 802.11ax HE capabilities IE PPE field size
2777  * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2778  */
2779 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2780 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2781 {
2782 	u8 n;
2783 
2784 	if ((phy_cap_info[6] &
2785 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2786 		return 0;
2787 
2788 	n = hweight8(ppe_thres_hdr &
2789 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2790 	n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2791 		   IEEE80211_PPE_THRES_NSS_POS));
2792 
2793 	/*
2794 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2795 	 * total size.
2796 	 */
2797 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2798 	n = DIV_ROUND_UP(n, 8);
2799 
2800 	return n;
2801 }
2802 
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2803 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2804 {
2805 	const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2806 	u8 needed = sizeof(*he_cap_ie_elem);
2807 
2808 	if (len < needed)
2809 		return false;
2810 
2811 	needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2812 	if (len < needed)
2813 		return false;
2814 
2815 	if (he_cap_ie_elem->phy_cap_info[6] &
2816 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2817 		if (len < needed + 1)
2818 			return false;
2819 		needed += ieee80211_he_ppe_size(data[needed],
2820 						he_cap_ie_elem->phy_cap_info);
2821 	}
2822 
2823 	return len >= needed;
2824 }
2825 
2826 /* HE Operation defines */
2827 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK		0x00000007
2828 #define IEEE80211_HE_OPERATION_TWT_REQUIRED			0x00000008
2829 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK		0x00003ff0
2830 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET		4
2831 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO			0x00004000
2832 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS			0x00008000
2833 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE			0x00010000
2834 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO			0x00020000
2835 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK			0x3f000000
2836 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET			24
2837 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR		0x40000000
2838 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED		0x80000000
2839 
2840 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP		0
2841 #define IEEE80211_6GHZ_CTRL_REG_SP_AP		1
2842 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP		2
2843 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP	3
2844 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP	4
2845 
2846 /**
2847  * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2848  * @primary: primary channel
2849  * @control: control flags
2850  * @ccfs0: channel center frequency segment 0
2851  * @ccfs1: channel center frequency segment 1
2852  * @minrate: minimum rate (in 1 Mbps units)
2853  */
2854 struct ieee80211_he_6ghz_oper {
2855 	u8 primary;
2856 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH	0x3
2857 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ	0
2858 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ	1
2859 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ	2
2860 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ	3
2861 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON	0x4
2862 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO	0x38
2863 	u8 control;
2864 	u8 ccfs0;
2865 	u8 ccfs1;
2866 	u8 minrate;
2867 } __packed;
2868 
2869 /* transmit power interpretation type of transmit power envelope element */
2870 enum ieee80211_tx_power_intrpt_type {
2871 	IEEE80211_TPE_LOCAL_EIRP,
2872 	IEEE80211_TPE_LOCAL_EIRP_PSD,
2873 	IEEE80211_TPE_REG_CLIENT_EIRP,
2874 	IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2875 };
2876 
2877 /* category type of transmit power envelope element */
2878 enum ieee80211_tx_power_category_6ghz {
2879 	IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2880 	IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2881 };
2882 
2883 /*
2884  * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2885  * setting to 63.5 dBm means no constraint.
2886  */
2887 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT	127
2888 
2889 /*
2890  * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2891  * setting to 127 indicates no PSD limit for the 20 MHz channel.
2892  */
2893 #define IEEE80211_TPE_PSD_NO_LIMIT		127
2894 
2895 /**
2896  * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2897  * @info: Transmit Power Information field
2898  * @variable: Maximum Transmit Power field
2899  *
2900  * This structure represents the payload of the "Transmit Power
2901  * Envelope element" as described in IEEE Std 802.11ax-2021 section
2902  * 9.4.2.161
2903  */
2904 struct ieee80211_tx_pwr_env {
2905 	u8 info;
2906 	u8 variable[];
2907 } __packed;
2908 
2909 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2910 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2911 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2912 
2913 #define IEEE80211_TX_PWR_ENV_EXT_COUNT	0xF
2914 
ieee80211_valid_tpe_element(const u8 * data,u8 len)2915 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2916 {
2917 	const struct ieee80211_tx_pwr_env *env = (const void *)data;
2918 	u8 count, interpret, category;
2919 	u8 needed = sizeof(*env);
2920 	u8 N; /* also called N in the spec */
2921 
2922 	if (len < needed)
2923 		return false;
2924 
2925 	count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2926 	interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2927 	category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2928 
2929 	switch (category) {
2930 	case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2931 	case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2932 		break;
2933 	default:
2934 		return false;
2935 	}
2936 
2937 	switch (interpret) {
2938 	case IEEE80211_TPE_LOCAL_EIRP:
2939 	case IEEE80211_TPE_REG_CLIENT_EIRP:
2940 		if (count > 3)
2941 			return false;
2942 
2943 		/* count == 0 encodes 1 value for 20 MHz, etc. */
2944 		needed += count + 1;
2945 
2946 		if (len < needed)
2947 			return false;
2948 
2949 		/* there can be extension fields not accounted for in 'count' */
2950 
2951 		return true;
2952 	case IEEE80211_TPE_LOCAL_EIRP_PSD:
2953 	case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2954 		if (count > 4)
2955 			return false;
2956 
2957 		N = count ? 1 << (count - 1) : 1;
2958 		needed += N;
2959 
2960 		if (len < needed)
2961 			return false;
2962 
2963 		if (len > needed) {
2964 			u8 K = u8_get_bits(env->variable[N],
2965 					   IEEE80211_TX_PWR_ENV_EXT_COUNT);
2966 
2967 			needed += 1 + K;
2968 			if (len < needed)
2969 				return false;
2970 		}
2971 
2972 		return true;
2973 	}
2974 
2975 	return false;
2976 }
2977 
2978 /*
2979  * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2980  * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2981  *	after the ext ID byte. It is assumed that he_oper_ie has at least
2982  *	sizeof(struct ieee80211_he_operation) bytes, the caller must have
2983  *	validated this.
2984  * @return the actual size of the IE data (not including header), or 0 on error
2985  */
2986 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2987 ieee80211_he_oper_size(const u8 *he_oper_ie)
2988 {
2989 	const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2990 	u8 oper_len = sizeof(struct ieee80211_he_operation);
2991 	u32 he_oper_params;
2992 
2993 	/* Make sure the input is not NULL */
2994 	if (!he_oper_ie)
2995 		return 0;
2996 
2997 	/* Calc required length */
2998 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2999 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3000 		oper_len += 3;
3001 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3002 		oper_len++;
3003 	if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
3004 		oper_len += sizeof(struct ieee80211_he_6ghz_oper);
3005 
3006 	/* Add the first byte (extension ID) to the total length */
3007 	oper_len++;
3008 
3009 	return oper_len;
3010 }
3011 
3012 /**
3013  * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
3014  * @he_oper: HE operation element (must be pre-validated for size)
3015  *	but may be %NULL
3016  *
3017  * Return: a pointer to the 6 GHz operation field, or %NULL
3018  */
3019 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)3020 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
3021 {
3022 	const u8 *ret;
3023 	u32 he_oper_params;
3024 
3025 	if (!he_oper)
3026 		return NULL;
3027 
3028 	ret = (const void *)&he_oper->optional;
3029 
3030 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3031 
3032 	if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3033 		return NULL;
3034 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3035 		ret += 3;
3036 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3037 		ret++;
3038 
3039 	return (const void *)ret;
3040 }
3041 
3042 /* HE Spatial Reuse defines */
3043 #define IEEE80211_HE_SPR_PSR_DISALLOWED				BIT(0)
3044 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED		BIT(1)
3045 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT			BIT(2)
3046 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT		BIT(3)
3047 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED		BIT(4)
3048 
3049 /*
3050  * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3051  * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3052  *	after the ext ID byte. It is assumed that he_spr_ie has at least
3053  *	sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3054  *	this
3055  * @return the actual size of the IE data (not including header), or 0 on error
3056  */
3057 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3058 ieee80211_he_spr_size(const u8 *he_spr_ie)
3059 {
3060 	const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3061 	u8 spr_len = sizeof(struct ieee80211_he_spr);
3062 	u8 he_spr_params;
3063 
3064 	/* Make sure the input is not NULL */
3065 	if (!he_spr_ie)
3066 		return 0;
3067 
3068 	/* Calc required length */
3069 	he_spr_params = he_spr->he_sr_control;
3070 	if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3071 		spr_len++;
3072 	if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3073 		spr_len += 18;
3074 
3075 	/* Add the first byte (extension ID) to the total length */
3076 	spr_len++;
3077 
3078 	return spr_len;
3079 }
3080 
3081 /* S1G Capabilities Information field */
3082 #define IEEE80211_S1G_CAPABILITY_LEN	15
3083 
3084 #define S1G_CAP0_S1G_LONG	BIT(0)
3085 #define S1G_CAP0_SGI_1MHZ	BIT(1)
3086 #define S1G_CAP0_SGI_2MHZ	BIT(2)
3087 #define S1G_CAP0_SGI_4MHZ	BIT(3)
3088 #define S1G_CAP0_SGI_8MHZ	BIT(4)
3089 #define S1G_CAP0_SGI_16MHZ	BIT(5)
3090 #define S1G_CAP0_SUPP_CH_WIDTH	GENMASK(7, 6)
3091 
3092 #define S1G_SUPP_CH_WIDTH_2	0
3093 #define S1G_SUPP_CH_WIDTH_4	1
3094 #define S1G_SUPP_CH_WIDTH_8	2
3095 #define S1G_SUPP_CH_WIDTH_16	3
3096 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3097 						    cap[0])) << 1)
3098 
3099 #define S1G_CAP1_RX_LDPC	BIT(0)
3100 #define S1G_CAP1_TX_STBC	BIT(1)
3101 #define S1G_CAP1_RX_STBC	BIT(2)
3102 #define S1G_CAP1_SU_BFER	BIT(3)
3103 #define S1G_CAP1_SU_BFEE	BIT(4)
3104 #define S1G_CAP1_BFEE_STS	GENMASK(7, 5)
3105 
3106 #define S1G_CAP2_SOUNDING_DIMENSIONS	GENMASK(2, 0)
3107 #define S1G_CAP2_MU_BFER		BIT(3)
3108 #define S1G_CAP2_MU_BFEE		BIT(4)
3109 #define S1G_CAP2_PLUS_HTC_VHT		BIT(5)
3110 #define S1G_CAP2_TRAVELING_PILOT	GENMASK(7, 6)
3111 
3112 #define S1G_CAP3_RD_RESPONDER		BIT(0)
3113 #define S1G_CAP3_HT_DELAYED_BA		BIT(1)
3114 #define S1G_CAP3_MAX_MPDU_LEN		BIT(2)
3115 #define S1G_CAP3_MAX_AMPDU_LEN_EXP	GENMASK(4, 3)
3116 #define S1G_CAP3_MIN_MPDU_START		GENMASK(7, 5)
3117 
3118 #define S1G_CAP4_UPLINK_SYNC	BIT(0)
3119 #define S1G_CAP4_DYNAMIC_AID	BIT(1)
3120 #define S1G_CAP4_BAT		BIT(2)
3121 #define S1G_CAP4_TIME_ADE	BIT(3)
3122 #define S1G_CAP4_NON_TIM	BIT(4)
3123 #define S1G_CAP4_GROUP_AID	BIT(5)
3124 #define S1G_CAP4_STA_TYPE	GENMASK(7, 6)
3125 
3126 #define S1G_CAP5_CENT_AUTH_CONTROL	BIT(0)
3127 #define S1G_CAP5_DIST_AUTH_CONTROL	BIT(1)
3128 #define S1G_CAP5_AMSDU			BIT(2)
3129 #define S1G_CAP5_AMPDU			BIT(3)
3130 #define S1G_CAP5_ASYMMETRIC_BA		BIT(4)
3131 #define S1G_CAP5_FLOW_CONTROL		BIT(5)
3132 #define S1G_CAP5_SECTORIZED_BEAM	GENMASK(7, 6)
3133 
3134 #define S1G_CAP6_OBSS_MITIGATION	BIT(0)
3135 #define S1G_CAP6_FRAGMENT_BA		BIT(1)
3136 #define S1G_CAP6_NDP_PS_POLL		BIT(2)
3137 #define S1G_CAP6_RAW_OPERATION		BIT(3)
3138 #define S1G_CAP6_PAGE_SLICING		BIT(4)
3139 #define S1G_CAP6_TXOP_SHARING_IMP_ACK	BIT(5)
3140 #define S1G_CAP6_VHT_LINK_ADAPT		GENMASK(7, 6)
3141 
3142 #define S1G_CAP7_TACK_AS_PS_POLL		BIT(0)
3143 #define S1G_CAP7_DUP_1MHZ			BIT(1)
3144 #define S1G_CAP7_MCS_NEGOTIATION		BIT(2)
3145 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE	BIT(3)
3146 #define S1G_CAP7_NDP_BFING_REPORT_POLL		BIT(4)
3147 #define S1G_CAP7_UNSOLICITED_DYN_AID		BIT(5)
3148 #define S1G_CAP7_SECTOR_TRAINING_OPERATION	BIT(6)
3149 #define S1G_CAP7_TEMP_PS_MODE_SWITCH		BIT(7)
3150 
3151 #define S1G_CAP8_TWT_GROUPING	BIT(0)
3152 #define S1G_CAP8_BDT		BIT(1)
3153 #define S1G_CAP8_COLOR		GENMASK(4, 2)
3154 #define S1G_CAP8_TWT_REQUEST	BIT(5)
3155 #define S1G_CAP8_TWT_RESPOND	BIT(6)
3156 #define S1G_CAP8_PV1_FRAME	BIT(7)
3157 
3158 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3159 
3160 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ	BIT(0)
3161 #define S1G_OPER_CH_WIDTH_OPER		GENMASK(4, 1)
3162 
3163 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3164 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS			0x01
3165 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL			0x02
3166 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1		0x04
3167 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2		0x08
3168 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT			0x10
3169 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC			0x20
3170 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK		0xc0
3171 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895	        0
3172 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991	        1
3173 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454	        2
3174 
3175 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK		0x01
3176 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS				0x02
3177 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET				0x04
3178 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS				0x08
3179 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK		0x30
3180 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS		0x40
3181 
3182 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3183 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ			0x02
3184 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ		0x04
3185 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI		0x08
3186 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO		0x10
3187 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER			0x20
3188 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE			0x40
3189 
3190 /* EHT beamformee number of spatial streams <= 80MHz is split */
3191 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK		0x80
3192 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK		0x03
3193 
3194 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK	0x1c
3195 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK	0xe0
3196 
3197 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK		0x07
3198 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK		0x38
3199 
3200 /* EHT number of sounding dimensions for 320MHz is split */
3201 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK		0xc0
3202 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK		0x01
3203 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK		0x02
3204 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK		0x04
3205 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK		0x08
3206 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK		0x10
3207 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK			0x20
3208 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK		0x40
3209 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK			0x80
3210 
3211 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO		0x01
3212 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP			0x02
3213 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP		0x04
3214 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI	0x08
3215 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK			0xf0
3216 
3217 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK		0x01
3218 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP		0x02
3219 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP		0x04
3220 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT		0x08
3221 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK	0x30
3222 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US	0
3223 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US	1
3224 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US	2
3225 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US	3
3226 
3227 /* Maximum number of supported EHT LTF is split */
3228 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK	0xc0
3229 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF		0x40
3230 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK	0x07
3231 
3232 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ			0x08
3233 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ		0x30
3234 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ		0x40
3235 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK			0x78
3236 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP		0x80
3237 
3238 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW	0x01
3239 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ	0x02
3240 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ	0x04
3241 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ	0x08
3242 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ		0x10
3243 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ		0x20
3244 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ		0x40
3245 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT	0x80
3246 
3247 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA	0x01
3248 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA	0x02
3249 
3250 /*
3251  * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3252  */
3253 #define IEEE80211_EHT_OPER_CHAN_WIDTH		0x7
3254 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ	0
3255 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ	1
3256 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ	2
3257 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ	3
3258 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ	4
3259 
3260 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3261 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3262 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3263 			   const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3264 			   bool from_ap)
3265 {
3266 	u8 count = 0;
3267 
3268 	/* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3269 	if (he_cap->phy_cap_info[0] &
3270 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3271 		return 3;
3272 
3273 	/* on 2.4 GHz, these three bits are reserved, so should be 0 */
3274 	if (he_cap->phy_cap_info[0] &
3275 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3276 		count += 3;
3277 
3278 	if (he_cap->phy_cap_info[0] &
3279 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3280 		count += 3;
3281 
3282 	if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3283 		count += 3;
3284 
3285 	if (count)
3286 		return count;
3287 
3288 	return from_ap ? 3 : 4;
3289 }
3290 
3291 /* 802.11be EHT PPE Thresholds */
3292 #define IEEE80211_EHT_PPE_THRES_NSS_POS			0
3293 #define IEEE80211_EHT_PPE_THRES_NSS_MASK		0xf
3294 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK	0x1f0
3295 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE		3
3296 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE	9
3297 
3298 /*
3299  * Calculate 802.11be EHT capabilities IE EHT field size
3300  */
3301 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3302 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3303 {
3304 	u32 n;
3305 
3306 	if (!(phy_cap_info[5] &
3307 	      IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3308 		return 0;
3309 
3310 	n = hweight16(ppe_thres_hdr &
3311 		      IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3312 	n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3313 
3314 	/*
3315 	 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3316 	 * total size.
3317 	 */
3318 	n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3319 	    IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3320 	return DIV_ROUND_UP(n, 8);
3321 }
3322 
3323 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3324 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3325 			   bool from_ap)
3326 {
3327 	const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3328 	u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3329 
3330 	if (len < needed || !he_capa)
3331 		return false;
3332 
3333 	needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3334 					     (const void *)data,
3335 					     from_ap);
3336 	if (len < needed)
3337 		return false;
3338 
3339 	if (elem->phy_cap_info[5] &
3340 			IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3341 		u16 ppe_thres_hdr;
3342 
3343 		if (len < needed + sizeof(ppe_thres_hdr))
3344 			return false;
3345 
3346 		ppe_thres_hdr = get_unaligned_le16(data + needed);
3347 		needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3348 						 elem->phy_cap_info);
3349 	}
3350 
3351 	return len >= needed;
3352 }
3353 
3354 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3355 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3356 {
3357 	const struct ieee80211_eht_operation *elem = (const void *)data;
3358 	u8 needed = sizeof(*elem);
3359 
3360 	if (len < needed)
3361 		return false;
3362 
3363 	if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3364 		needed += 3;
3365 
3366 		if (elem->params &
3367 		    IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3368 			needed += 2;
3369 	}
3370 
3371 	return len >= needed;
3372 }
3373 
3374 /* must validate ieee80211_eht_oper_size_ok() first */
3375 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3376 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3377 {
3378 	const struct ieee80211_eht_operation_info *info =
3379 		(const void *)eht_oper->optional;
3380 
3381 	if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3382 		return 0;
3383 
3384 	if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3385 		return 0;
3386 
3387 	return get_unaligned_le16(info->optional);
3388 }
3389 
3390 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT	BIT(1)
3391 
3392 struct ieee80211_bandwidth_indication {
3393 	u8 params;
3394 	struct ieee80211_eht_operation_info info;
3395 } __packed;
3396 
3397 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3398 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3399 {
3400 	const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3401 
3402 	if (len < sizeof(*bwi))
3403 		return false;
3404 
3405 	if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3406 	    len < sizeof(*bwi) + 2)
3407 		return false;
3408 
3409 	return true;
3410 }
3411 
3412 #define LISTEN_INT_USF	GENMASK(15, 14)
3413 #define LISTEN_INT_UI	GENMASK(13, 0)
3414 
3415 #define IEEE80211_MAX_USF	FIELD_MAX(LISTEN_INT_USF)
3416 #define IEEE80211_MAX_UI	FIELD_MAX(LISTEN_INT_UI)
3417 
3418 /* Authentication algorithms */
3419 #define WLAN_AUTH_OPEN 0
3420 #define WLAN_AUTH_SHARED_KEY 1
3421 #define WLAN_AUTH_FT 2
3422 #define WLAN_AUTH_SAE 3
3423 #define WLAN_AUTH_FILS_SK 4
3424 #define WLAN_AUTH_FILS_SK_PFS 5
3425 #define WLAN_AUTH_FILS_PK 6
3426 #define WLAN_AUTH_LEAP 128
3427 
3428 #define WLAN_AUTH_CHALLENGE_LEN 128
3429 
3430 #define WLAN_CAPABILITY_ESS		(1<<0)
3431 #define WLAN_CAPABILITY_IBSS		(1<<1)
3432 
3433 /*
3434  * A mesh STA sets the ESS and IBSS capability bits to zero.
3435  * however, this holds true for p2p probe responses (in the p2p_find
3436  * phase) as well.
3437  */
3438 #define WLAN_CAPABILITY_IS_STA_BSS(cap)	\
3439 	(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3440 
3441 #define WLAN_CAPABILITY_CF_POLLABLE	(1<<2)
3442 #define WLAN_CAPABILITY_CF_POLL_REQUEST	(1<<3)
3443 #define WLAN_CAPABILITY_PRIVACY		(1<<4)
3444 #define WLAN_CAPABILITY_SHORT_PREAMBLE	(1<<5)
3445 #define WLAN_CAPABILITY_PBCC		(1<<6)
3446 #define WLAN_CAPABILITY_CHANNEL_AGILITY	(1<<7)
3447 
3448 /* 802.11h */
3449 #define WLAN_CAPABILITY_SPECTRUM_MGMT	(1<<8)
3450 #define WLAN_CAPABILITY_QOS		(1<<9)
3451 #define WLAN_CAPABILITY_SHORT_SLOT_TIME	(1<<10)
3452 #define WLAN_CAPABILITY_APSD		(1<<11)
3453 #define WLAN_CAPABILITY_RADIO_MEASURE	(1<<12)
3454 #define WLAN_CAPABILITY_DSSS_OFDM	(1<<13)
3455 #define WLAN_CAPABILITY_DEL_BACK	(1<<14)
3456 #define WLAN_CAPABILITY_IMM_BACK	(1<<15)
3457 
3458 /* DMG (60gHz) 802.11ad */
3459 /* type - bits 0..1 */
3460 #define WLAN_CAPABILITY_DMG_TYPE_MASK		(3<<0)
3461 #define WLAN_CAPABILITY_DMG_TYPE_IBSS		(1<<0) /* Tx by: STA */
3462 #define WLAN_CAPABILITY_DMG_TYPE_PBSS		(2<<0) /* Tx by: PCP */
3463 #define WLAN_CAPABILITY_DMG_TYPE_AP		(3<<0) /* Tx by: AP */
3464 
3465 #define WLAN_CAPABILITY_DMG_CBAP_ONLY		(1<<2)
3466 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE		(1<<3)
3467 #define WLAN_CAPABILITY_DMG_PRIVACY		(1<<4)
3468 #define WLAN_CAPABILITY_DMG_ECPAC		(1<<5)
3469 
3470 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT	(1<<8)
3471 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE	(1<<12)
3472 
3473 /* measurement */
3474 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE	(1<<0)
3475 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE	(1<<1)
3476 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED	(1<<2)
3477 
3478 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC	0
3479 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA	1
3480 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI	2
3481 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI	8
3482 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC	11
3483 
3484 /* 802.11g ERP information element */
3485 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3486 #define WLAN_ERP_USE_PROTECTION (1<<1)
3487 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3488 
3489 /* WLAN_ERP_BARKER_PREAMBLE values */
3490 enum {
3491 	WLAN_ERP_PREAMBLE_SHORT = 0,
3492 	WLAN_ERP_PREAMBLE_LONG = 1,
3493 };
3494 
3495 /* Band ID, 802.11ad #8.4.1.45 */
3496 enum {
3497 	IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3498 	IEEE80211_BANDID_SUB1  = 1, /* Sub-1 GHz (excluding TV white spaces) */
3499 	IEEE80211_BANDID_2G    = 2, /* 2.4 GHz */
3500 	IEEE80211_BANDID_3G    = 3, /* 3.6 GHz */
3501 	IEEE80211_BANDID_5G    = 4, /* 4.9 and 5 GHz */
3502 	IEEE80211_BANDID_60G   = 5, /* 60 GHz */
3503 };
3504 
3505 /* Status codes */
3506 enum ieee80211_statuscode {
3507 	WLAN_STATUS_SUCCESS = 0,
3508 	WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3509 	WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3510 	WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3511 	WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3512 	WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3513 	WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3514 	WLAN_STATUS_CHALLENGE_FAIL = 15,
3515 	WLAN_STATUS_AUTH_TIMEOUT = 16,
3516 	WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3517 	WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3518 	/* 802.11b */
3519 	WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3520 	WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3521 	WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3522 	/* 802.11h */
3523 	WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3524 	WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3525 	WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3526 	/* 802.11g */
3527 	WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3528 	WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3529 	/* 802.11w */
3530 	WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3531 	WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3532 	/* 802.11i */
3533 	WLAN_STATUS_INVALID_IE = 40,
3534 	WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3535 	WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3536 	WLAN_STATUS_INVALID_AKMP = 43,
3537 	WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3538 	WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3539 	WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3540 	/* 802.11e */
3541 	WLAN_STATUS_UNSPECIFIED_QOS = 32,
3542 	WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3543 	WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3544 	WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3545 	WLAN_STATUS_REQUEST_DECLINED = 37,
3546 	WLAN_STATUS_INVALID_QOS_PARAM = 38,
3547 	WLAN_STATUS_CHANGE_TSPEC = 39,
3548 	WLAN_STATUS_WAIT_TS_DELAY = 47,
3549 	WLAN_STATUS_NO_DIRECT_LINK = 48,
3550 	WLAN_STATUS_STA_NOT_PRESENT = 49,
3551 	WLAN_STATUS_STA_NOT_QSTA = 50,
3552 	/* 802.11s */
3553 	WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3554 	WLAN_STATUS_FCG_NOT_SUPP = 78,
3555 	WLAN_STATUS_STA_NO_TBTT = 78,
3556 	/* 802.11ad */
3557 	WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3558 	WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3559 	WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3560 	WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3561 	WLAN_STATUS_PERFORMING_FST_NOW = 87,
3562 	WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3563 	WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3564 	WLAN_STATUS_REJECT_DSE_BAND = 96,
3565 	WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3566 	WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3567 	/* 802.11ai */
3568 	WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3569 	WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3570 	WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3571 	WLAN_STATUS_SAE_PK = 127,
3572 	WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3573 	WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3574 };
3575 
3576 
3577 /* Reason codes */
3578 enum ieee80211_reasoncode {
3579 	WLAN_REASON_UNSPECIFIED = 1,
3580 	WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3581 	WLAN_REASON_DEAUTH_LEAVING = 3,
3582 	WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3583 	WLAN_REASON_DISASSOC_AP_BUSY = 5,
3584 	WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3585 	WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3586 	WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3587 	WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3588 	/* 802.11h */
3589 	WLAN_REASON_DISASSOC_BAD_POWER = 10,
3590 	WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3591 	/* 802.11i */
3592 	WLAN_REASON_INVALID_IE = 13,
3593 	WLAN_REASON_MIC_FAILURE = 14,
3594 	WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3595 	WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3596 	WLAN_REASON_IE_DIFFERENT = 17,
3597 	WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3598 	WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3599 	WLAN_REASON_INVALID_AKMP = 20,
3600 	WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3601 	WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3602 	WLAN_REASON_IEEE8021X_FAILED = 23,
3603 	WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3604 	/* TDLS (802.11z) */
3605 	WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3606 	WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3607 	/* 802.11e */
3608 	WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3609 	WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3610 	WLAN_REASON_DISASSOC_LOW_ACK = 34,
3611 	WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3612 	WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3613 	WLAN_REASON_QSTA_NOT_USE = 37,
3614 	WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3615 	WLAN_REASON_QSTA_TIMEOUT = 39,
3616 	WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3617 	/* 802.11s */
3618 	WLAN_REASON_MESH_PEER_CANCELED = 52,
3619 	WLAN_REASON_MESH_MAX_PEERS = 53,
3620 	WLAN_REASON_MESH_CONFIG = 54,
3621 	WLAN_REASON_MESH_CLOSE = 55,
3622 	WLAN_REASON_MESH_MAX_RETRIES = 56,
3623 	WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3624 	WLAN_REASON_MESH_INVALID_GTK = 58,
3625 	WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3626 	WLAN_REASON_MESH_INVALID_SECURITY = 60,
3627 	WLAN_REASON_MESH_PATH_ERROR = 61,
3628 	WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3629 	WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3630 	WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3631 	WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3632 	WLAN_REASON_MESH_CHAN = 66,
3633 };
3634 
3635 
3636 /* Information Element IDs */
3637 enum ieee80211_eid {
3638 	WLAN_EID_SSID = 0,
3639 	WLAN_EID_SUPP_RATES = 1,
3640 	WLAN_EID_FH_PARAMS = 2, /* reserved now */
3641 	WLAN_EID_DS_PARAMS = 3,
3642 	WLAN_EID_CF_PARAMS = 4,
3643 	WLAN_EID_TIM = 5,
3644 	WLAN_EID_IBSS_PARAMS = 6,
3645 	WLAN_EID_COUNTRY = 7,
3646 	/* 8, 9 reserved */
3647 	WLAN_EID_REQUEST = 10,
3648 	WLAN_EID_QBSS_LOAD = 11,
3649 	WLAN_EID_EDCA_PARAM_SET = 12,
3650 	WLAN_EID_TSPEC = 13,
3651 	WLAN_EID_TCLAS = 14,
3652 	WLAN_EID_SCHEDULE = 15,
3653 	WLAN_EID_CHALLENGE = 16,
3654 	/* 17-31 reserved for challenge text extension */
3655 	WLAN_EID_PWR_CONSTRAINT = 32,
3656 	WLAN_EID_PWR_CAPABILITY = 33,
3657 	WLAN_EID_TPC_REQUEST = 34,
3658 	WLAN_EID_TPC_REPORT = 35,
3659 	WLAN_EID_SUPPORTED_CHANNELS = 36,
3660 	WLAN_EID_CHANNEL_SWITCH = 37,
3661 	WLAN_EID_MEASURE_REQUEST = 38,
3662 	WLAN_EID_MEASURE_REPORT = 39,
3663 	WLAN_EID_QUIET = 40,
3664 	WLAN_EID_IBSS_DFS = 41,
3665 	WLAN_EID_ERP_INFO = 42,
3666 	WLAN_EID_TS_DELAY = 43,
3667 	WLAN_EID_TCLAS_PROCESSING = 44,
3668 	WLAN_EID_HT_CAPABILITY = 45,
3669 	WLAN_EID_QOS_CAPA = 46,
3670 	/* 47 reserved for Broadcom */
3671 	WLAN_EID_RSN = 48,
3672 	WLAN_EID_802_15_COEX = 49,
3673 	WLAN_EID_EXT_SUPP_RATES = 50,
3674 	WLAN_EID_AP_CHAN_REPORT = 51,
3675 	WLAN_EID_NEIGHBOR_REPORT = 52,
3676 	WLAN_EID_RCPI = 53,
3677 	WLAN_EID_MOBILITY_DOMAIN = 54,
3678 	WLAN_EID_FAST_BSS_TRANSITION = 55,
3679 	WLAN_EID_TIMEOUT_INTERVAL = 56,
3680 	WLAN_EID_RIC_DATA = 57,
3681 	WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3682 	WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3683 	WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3684 	WLAN_EID_HT_OPERATION = 61,
3685 	WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3686 	WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3687 	WLAN_EID_ANTENNA_INFO = 64,
3688 	WLAN_EID_RSNI = 65,
3689 	WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3690 	WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3691 	WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3692 	WLAN_EID_TIME_ADVERTISEMENT = 69,
3693 	WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3694 	WLAN_EID_MULTIPLE_BSSID = 71,
3695 	WLAN_EID_BSS_COEX_2040 = 72,
3696 	WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3697 	WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3698 	WLAN_EID_RIC_DESCRIPTOR = 75,
3699 	WLAN_EID_MMIE = 76,
3700 	WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3701 	WLAN_EID_EVENT_REQUEST = 78,
3702 	WLAN_EID_EVENT_REPORT = 79,
3703 	WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3704 	WLAN_EID_DIAGNOSTIC_REPORT = 81,
3705 	WLAN_EID_LOCATION_PARAMS = 82,
3706 	WLAN_EID_NON_TX_BSSID_CAP =  83,
3707 	WLAN_EID_SSID_LIST = 84,
3708 	WLAN_EID_MULTI_BSSID_IDX = 85,
3709 	WLAN_EID_FMS_DESCRIPTOR = 86,
3710 	WLAN_EID_FMS_REQUEST = 87,
3711 	WLAN_EID_FMS_RESPONSE = 88,
3712 	WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3713 	WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3714 	WLAN_EID_TSF_REQUEST = 91,
3715 	WLAN_EID_TSF_RESPOSNE = 92,
3716 	WLAN_EID_WNM_SLEEP_MODE = 93,
3717 	WLAN_EID_TIM_BCAST_REQ = 94,
3718 	WLAN_EID_TIM_BCAST_RESP = 95,
3719 	WLAN_EID_COLL_IF_REPORT = 96,
3720 	WLAN_EID_CHANNEL_USAGE = 97,
3721 	WLAN_EID_TIME_ZONE = 98,
3722 	WLAN_EID_DMS_REQUEST = 99,
3723 	WLAN_EID_DMS_RESPONSE = 100,
3724 	WLAN_EID_LINK_ID = 101,
3725 	WLAN_EID_WAKEUP_SCHEDUL = 102,
3726 	/* 103 reserved */
3727 	WLAN_EID_CHAN_SWITCH_TIMING = 104,
3728 	WLAN_EID_PTI_CONTROL = 105,
3729 	WLAN_EID_PU_BUFFER_STATUS = 106,
3730 	WLAN_EID_INTERWORKING = 107,
3731 	WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3732 	WLAN_EID_EXPEDITED_BW_REQ = 109,
3733 	WLAN_EID_QOS_MAP_SET = 110,
3734 	WLAN_EID_ROAMING_CONSORTIUM = 111,
3735 	WLAN_EID_EMERGENCY_ALERT = 112,
3736 	WLAN_EID_MESH_CONFIG = 113,
3737 	WLAN_EID_MESH_ID = 114,
3738 	WLAN_EID_LINK_METRIC_REPORT = 115,
3739 	WLAN_EID_CONGESTION_NOTIFICATION = 116,
3740 	WLAN_EID_PEER_MGMT = 117,
3741 	WLAN_EID_CHAN_SWITCH_PARAM = 118,
3742 	WLAN_EID_MESH_AWAKE_WINDOW = 119,
3743 	WLAN_EID_BEACON_TIMING = 120,
3744 	WLAN_EID_MCCAOP_SETUP_REQ = 121,
3745 	WLAN_EID_MCCAOP_SETUP_RESP = 122,
3746 	WLAN_EID_MCCAOP_ADVERT = 123,
3747 	WLAN_EID_MCCAOP_TEARDOWN = 124,
3748 	WLAN_EID_GANN = 125,
3749 	WLAN_EID_RANN = 126,
3750 	WLAN_EID_EXT_CAPABILITY = 127,
3751 	/* 128, 129 reserved for Agere */
3752 	WLAN_EID_PREQ = 130,
3753 	WLAN_EID_PREP = 131,
3754 	WLAN_EID_PERR = 132,
3755 	/* 133-136 reserved for Cisco */
3756 	WLAN_EID_PXU = 137,
3757 	WLAN_EID_PXUC = 138,
3758 	WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3759 	WLAN_EID_MIC = 140,
3760 	WLAN_EID_DESTINATION_URI = 141,
3761 	WLAN_EID_UAPSD_COEX = 142,
3762 	WLAN_EID_WAKEUP_SCHEDULE = 143,
3763 	WLAN_EID_EXT_SCHEDULE = 144,
3764 	WLAN_EID_STA_AVAILABILITY = 145,
3765 	WLAN_EID_DMG_TSPEC = 146,
3766 	WLAN_EID_DMG_AT = 147,
3767 	WLAN_EID_DMG_CAP = 148,
3768 	/* 149 reserved for Cisco */
3769 	WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3770 	WLAN_EID_DMG_OPERATION = 151,
3771 	WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3772 	WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3773 	WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3774 	/* 155-156 reserved for Cisco */
3775 	WLAN_EID_AWAKE_WINDOW = 157,
3776 	WLAN_EID_MULTI_BAND = 158,
3777 	WLAN_EID_ADDBA_EXT = 159,
3778 	WLAN_EID_NEXT_PCP_LIST = 160,
3779 	WLAN_EID_PCP_HANDOVER = 161,
3780 	WLAN_EID_DMG_LINK_MARGIN = 162,
3781 	WLAN_EID_SWITCHING_STREAM = 163,
3782 	WLAN_EID_SESSION_TRANSITION = 164,
3783 	WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3784 	WLAN_EID_CLUSTER_REPORT = 166,
3785 	WLAN_EID_RELAY_CAP = 167,
3786 	WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3787 	WLAN_EID_BEAM_LINK_MAINT = 169,
3788 	WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3789 	WLAN_EID_U_PID = 171,
3790 	WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3791 	/* 173 reserved for Symbol */
3792 	WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3793 	WLAN_EID_QUIET_PERIOD_REQ = 175,
3794 	/* 176 reserved for Symbol */
3795 	WLAN_EID_QUIET_PERIOD_RESP = 177,
3796 	/* 178-179 reserved for Symbol */
3797 	/* 180 reserved for ISO/IEC 20011 */
3798 	WLAN_EID_EPAC_POLICY = 182,
3799 	WLAN_EID_CLISTER_TIME_OFF = 183,
3800 	WLAN_EID_INTER_AC_PRIO = 184,
3801 	WLAN_EID_SCS_DESCRIPTOR = 185,
3802 	WLAN_EID_QLOAD_REPORT = 186,
3803 	WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3804 	WLAN_EID_HL_STREAM_ID = 188,
3805 	WLAN_EID_GCR_GROUP_ADDR = 189,
3806 	WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3807 	WLAN_EID_VHT_CAPABILITY = 191,
3808 	WLAN_EID_VHT_OPERATION = 192,
3809 	WLAN_EID_EXTENDED_BSS_LOAD = 193,
3810 	WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3811 	WLAN_EID_TX_POWER_ENVELOPE = 195,
3812 	WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3813 	WLAN_EID_AID = 197,
3814 	WLAN_EID_QUIET_CHANNEL = 198,
3815 	WLAN_EID_OPMODE_NOTIF = 199,
3816 
3817 	WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3818 
3819 	WLAN_EID_AID_REQUEST = 210,
3820 	WLAN_EID_AID_RESPONSE = 211,
3821 	WLAN_EID_S1G_BCN_COMPAT = 213,
3822 	WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3823 	WLAN_EID_S1G_TWT = 216,
3824 	WLAN_EID_S1G_CAPABILITIES = 217,
3825 	WLAN_EID_VENDOR_SPECIFIC = 221,
3826 	WLAN_EID_QOS_PARAMETER = 222,
3827 	WLAN_EID_S1G_OPERATION = 232,
3828 	WLAN_EID_CAG_NUMBER = 237,
3829 	WLAN_EID_AP_CSN = 239,
3830 	WLAN_EID_FILS_INDICATION = 240,
3831 	WLAN_EID_DILS = 241,
3832 	WLAN_EID_FRAGMENT = 242,
3833 	WLAN_EID_RSNX = 244,
3834 	WLAN_EID_EXTENSION = 255
3835 };
3836 
3837 /* Element ID Extensions for Element ID 255 */
3838 enum ieee80211_eid_ext {
3839 	WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3840 	WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3841 	WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3842 	WLAN_EID_EXT_FILS_SESSION = 4,
3843 	WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3844 	WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3845 	WLAN_EID_EXT_KEY_DELIVERY = 7,
3846 	WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3847 	WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3848 	WLAN_EID_EXT_FILS_NONCE = 13,
3849 	WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3850 	WLAN_EID_EXT_HE_CAPABILITY = 35,
3851 	WLAN_EID_EXT_HE_OPERATION = 36,
3852 	WLAN_EID_EXT_UORA = 37,
3853 	WLAN_EID_EXT_HE_MU_EDCA = 38,
3854 	WLAN_EID_EXT_HE_SPR = 39,
3855 	WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3856 	WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3857 	WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3858 	WLAN_EID_EXT_ESS_REPORT = 45,
3859 	WLAN_EID_EXT_OPS = 46,
3860 	WLAN_EID_EXT_HE_BSS_LOAD = 47,
3861 	WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3862 	WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3863 	WLAN_EID_EXT_NON_INHERITANCE = 56,
3864 	WLAN_EID_EXT_KNOWN_BSSID = 57,
3865 	WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3866 	WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3867 	WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3868 	WLAN_EID_EXT_EHT_OPERATION = 106,
3869 	WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3870 	WLAN_EID_EXT_EHT_CAPABILITY = 108,
3871 	WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3872 	WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3873 };
3874 
3875 /* Action category code */
3876 enum ieee80211_category {
3877 	WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3878 	WLAN_CATEGORY_QOS = 1,
3879 	WLAN_CATEGORY_DLS = 2,
3880 	WLAN_CATEGORY_BACK = 3,
3881 	WLAN_CATEGORY_PUBLIC = 4,
3882 	WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3883 	WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3884 	WLAN_CATEGORY_HT = 7,
3885 	WLAN_CATEGORY_SA_QUERY = 8,
3886 	WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3887 	WLAN_CATEGORY_WNM = 10,
3888 	WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3889 	WLAN_CATEGORY_TDLS = 12,
3890 	WLAN_CATEGORY_MESH_ACTION = 13,
3891 	WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3892 	WLAN_CATEGORY_SELF_PROTECTED = 15,
3893 	WLAN_CATEGORY_DMG = 16,
3894 	WLAN_CATEGORY_WMM = 17,
3895 	WLAN_CATEGORY_FST = 18,
3896 	WLAN_CATEGORY_UNPROT_DMG = 20,
3897 	WLAN_CATEGORY_VHT = 21,
3898 	WLAN_CATEGORY_S1G = 22,
3899 	WLAN_CATEGORY_PROTECTED_EHT = 37,
3900 	WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3901 	WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3902 };
3903 
3904 /* SPECTRUM_MGMT action code */
3905 enum ieee80211_spectrum_mgmt_actioncode {
3906 	WLAN_ACTION_SPCT_MSR_REQ = 0,
3907 	WLAN_ACTION_SPCT_MSR_RPRT = 1,
3908 	WLAN_ACTION_SPCT_TPC_REQ = 2,
3909 	WLAN_ACTION_SPCT_TPC_RPRT = 3,
3910 	WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3911 };
3912 
3913 /* HT action codes */
3914 enum ieee80211_ht_actioncode {
3915 	WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3916 	WLAN_HT_ACTION_SMPS = 1,
3917 	WLAN_HT_ACTION_PSMP = 2,
3918 	WLAN_HT_ACTION_PCO_PHASE = 3,
3919 	WLAN_HT_ACTION_CSI = 4,
3920 	WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3921 	WLAN_HT_ACTION_COMPRESSED_BF = 6,
3922 	WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3923 };
3924 
3925 /* VHT action codes */
3926 enum ieee80211_vht_actioncode {
3927 	WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3928 	WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3929 	WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3930 };
3931 
3932 /* Self Protected Action codes */
3933 enum ieee80211_self_protected_actioncode {
3934 	WLAN_SP_RESERVED = 0,
3935 	WLAN_SP_MESH_PEERING_OPEN = 1,
3936 	WLAN_SP_MESH_PEERING_CONFIRM = 2,
3937 	WLAN_SP_MESH_PEERING_CLOSE = 3,
3938 	WLAN_SP_MGK_INFORM = 4,
3939 	WLAN_SP_MGK_ACK = 5,
3940 };
3941 
3942 /* Mesh action codes */
3943 enum ieee80211_mesh_actioncode {
3944 	WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3945 	WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3946 	WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3947 	WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3948 	WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3949 	WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3950 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3951 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3952 	WLAN_MESH_ACTION_MCCA_TEARDOWN,
3953 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3954 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3955 };
3956 
3957 /* Unprotected WNM action codes */
3958 enum ieee80211_unprotected_wnm_actioncode {
3959 	WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3960 	WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3961 };
3962 
3963 /* Protected EHT action codes */
3964 enum ieee80211_protected_eht_actioncode {
3965 	WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3966 	WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3967 	WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3968 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
3969 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
3970 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
3971 	WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
3972 	WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
3973 	WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
3974 	WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
3975 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
3976 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
3977 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
3978 };
3979 
3980 /* Security key length */
3981 enum ieee80211_key_len {
3982 	WLAN_KEY_LEN_WEP40 = 5,
3983 	WLAN_KEY_LEN_WEP104 = 13,
3984 	WLAN_KEY_LEN_CCMP = 16,
3985 	WLAN_KEY_LEN_CCMP_256 = 32,
3986 	WLAN_KEY_LEN_TKIP = 32,
3987 	WLAN_KEY_LEN_AES_CMAC = 16,
3988 	WLAN_KEY_LEN_SMS4 = 32,
3989 	WLAN_KEY_LEN_GCMP = 16,
3990 	WLAN_KEY_LEN_GCMP_256 = 32,
3991 	WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3992 	WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3993 	WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3994 };
3995 
3996 enum ieee80211_s1g_actioncode {
3997 	WLAN_S1G_AID_SWITCH_REQUEST,
3998 	WLAN_S1G_AID_SWITCH_RESPONSE,
3999 	WLAN_S1G_SYNC_CONTROL,
4000 	WLAN_S1G_STA_INFO_ANNOUNCE,
4001 	WLAN_S1G_EDCA_PARAM_SET,
4002 	WLAN_S1G_EL_OPERATION,
4003 	WLAN_S1G_TWT_SETUP,
4004 	WLAN_S1G_TWT_TEARDOWN,
4005 	WLAN_S1G_SECT_GROUP_ID_LIST,
4006 	WLAN_S1G_SECT_ID_FEEDBACK,
4007 	WLAN_S1G_TWT_INFORMATION = 11,
4008 };
4009 
4010 #define IEEE80211_WEP_IV_LEN		4
4011 #define IEEE80211_WEP_ICV_LEN		4
4012 #define IEEE80211_CCMP_HDR_LEN		8
4013 #define IEEE80211_CCMP_MIC_LEN		8
4014 #define IEEE80211_CCMP_PN_LEN		6
4015 #define IEEE80211_CCMP_256_HDR_LEN	8
4016 #define IEEE80211_CCMP_256_MIC_LEN	16
4017 #define IEEE80211_CCMP_256_PN_LEN	6
4018 #define IEEE80211_TKIP_IV_LEN		8
4019 #define IEEE80211_TKIP_ICV_LEN		4
4020 #define IEEE80211_CMAC_PN_LEN		6
4021 #define IEEE80211_GMAC_PN_LEN		6
4022 #define IEEE80211_GCMP_HDR_LEN		8
4023 #define IEEE80211_GCMP_MIC_LEN		16
4024 #define IEEE80211_GCMP_PN_LEN		6
4025 
4026 #define FILS_NONCE_LEN			16
4027 #define FILS_MAX_KEK_LEN		64
4028 
4029 #define FILS_ERP_MAX_USERNAME_LEN	16
4030 #define FILS_ERP_MAX_REALM_LEN		253
4031 #define FILS_ERP_MAX_RRK_LEN		64
4032 
4033 #define PMK_MAX_LEN			64
4034 #define SAE_PASSWORD_MAX_LEN		128
4035 
4036 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
4037 enum ieee80211_pub_actioncode {
4038 	WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
4039 	WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
4040 	WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
4041 	WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
4042 	WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
4043 	WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
4044 	WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
4045 	WLAN_PUB_ACTION_MSMT_PILOT = 7,
4046 	WLAN_PUB_ACTION_DSE_PC = 8,
4047 	WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4048 	WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4049 	WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4050 	WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4051 	WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4052 	WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4053 	WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4054 	WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4055 	WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4056 	WLAN_PUB_ACTION_QMF_POLICY = 18,
4057 	WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4058 	WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4059 	WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4060 	WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4061 	WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4062 	WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4063 	WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4064 	WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4065 	WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4066 	WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4067 	WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4068 	WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4069 	WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4070 	WLAN_PUB_ACTION_FTM_REQUEST = 32,
4071 	WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4072 	WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4073 };
4074 
4075 /* TDLS action codes */
4076 enum ieee80211_tdls_actioncode {
4077 	WLAN_TDLS_SETUP_REQUEST = 0,
4078 	WLAN_TDLS_SETUP_RESPONSE = 1,
4079 	WLAN_TDLS_SETUP_CONFIRM = 2,
4080 	WLAN_TDLS_TEARDOWN = 3,
4081 	WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4082 	WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4083 	WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4084 	WLAN_TDLS_PEER_PSM_REQUEST = 7,
4085 	WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4086 	WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4087 	WLAN_TDLS_DISCOVERY_REQUEST = 10,
4088 };
4089 
4090 /* Extended Channel Switching capability to be set in the 1st byte of
4091  * the @WLAN_EID_EXT_CAPABILITY information element
4092  */
4093 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING	BIT(2)
4094 
4095 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4096  * @WLAN_EID_EXT_CAPABILITY information element
4097  */
4098 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT	BIT(6)
4099 
4100 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4101  * of the @WLAN_EID_EXT_CAPABILITY information element
4102  */
4103 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT	BIT(7)
4104 
4105 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4106 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA		BIT(4)
4107 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM		BIT(5)
4108 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH		BIT(6)
4109 
4110 /* Interworking capabilities are set in 7th bit of 4th byte of the
4111  * @WLAN_EID_EXT_CAPABILITY information element
4112  */
4113 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED	BIT(7)
4114 
4115 /*
4116  * TDLS capabililites to be enabled in the 5th byte of the
4117  * @WLAN_EID_EXT_CAPABILITY information element
4118  */
4119 #define WLAN_EXT_CAPA5_TDLS_ENABLED	BIT(5)
4120 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED	BIT(6)
4121 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED	BIT(7)
4122 
4123 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED	BIT(5)
4124 #define WLAN_EXT_CAPA8_OPMODE_NOTIF	BIT(6)
4125 
4126 /* Defines the maximal number of MSDUs in an A-MSDU. */
4127 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB	BIT(7)
4128 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB	BIT(0)
4129 
4130 /*
4131  * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4132  * information element
4133  */
4134 #define WLAN_EXT_CAPA9_FTM_INITIATOR	BIT(7)
4135 
4136 /* Defines support for TWT Requester and TWT Responder */
4137 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT	BIT(5)
4138 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT	BIT(6)
4139 
4140 /*
4141  * When set, indicates that the AP is able to tolerate 26-tone RU UL
4142  * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4143  * 26-tone RU UL OFDMA transmissions as radar pulses).
4144  */
4145 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4146 
4147 /* Defines support for enhanced multi-bssid advertisement*/
4148 #define WLAN_EXT_CAPA11_EMA_SUPPORT	BIT(3)
4149 
4150 /* Enable Beacon Protection */
4151 #define WLAN_EXT_CAPA11_BCN_PROTECT	BIT(4)
4152 
4153 /* TDLS specific payload type in the LLC/SNAP header */
4154 #define WLAN_TDLS_SNAP_RFTYPE	0x2
4155 
4156 /* BSS Coex IE information field bits */
4157 #define WLAN_BSS_COEX_INFORMATION_REQUEST	BIT(0)
4158 
4159 /**
4160  * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4161  *
4162  * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4163  * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4164  *	that will be specified in a vendor specific information element
4165  */
4166 enum ieee80211_mesh_sync_method {
4167 	IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4168 	IEEE80211_SYNC_METHOD_VENDOR = 255,
4169 };
4170 
4171 /**
4172  * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4173  *
4174  * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4175  * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4176  *	be specified in a vendor specific information element
4177  */
4178 enum ieee80211_mesh_path_protocol {
4179 	IEEE80211_PATH_PROTOCOL_HWMP = 1,
4180 	IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4181 };
4182 
4183 /**
4184  * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4185  *
4186  * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4187  * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4188  *	specified in a vendor specific information element
4189  */
4190 enum ieee80211_mesh_path_metric {
4191 	IEEE80211_PATH_METRIC_AIRTIME = 1,
4192 	IEEE80211_PATH_METRIC_VENDOR = 255,
4193 };
4194 
4195 /**
4196  * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4197  *
4198  * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4199  *
4200  * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4201  * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4202  *	this value
4203  * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4204  *	the proactive PREQ with proactive PREP subfield set to 0
4205  * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4206  *	supports the proactive PREQ with proactive PREP subfield set to 1
4207  * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4208  *	the proactive RANN
4209  */
4210 enum ieee80211_root_mode_identifier {
4211 	IEEE80211_ROOTMODE_NO_ROOT = 0,
4212 	IEEE80211_ROOTMODE_ROOT = 1,
4213 	IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4214 	IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4215 	IEEE80211_PROACTIVE_RANN = 4,
4216 };
4217 
4218 /*
4219  * IEEE 802.11-2007 7.3.2.9 Country information element
4220  *
4221  * Minimum length is 8 octets, ie len must be evenly
4222  * divisible by 2
4223  */
4224 
4225 /* Although the spec says 8 I'm seeing 6 in practice */
4226 #define IEEE80211_COUNTRY_IE_MIN_LEN	6
4227 
4228 /* The Country String field of the element shall be 3 octets in length */
4229 #define IEEE80211_COUNTRY_STRING_LEN	3
4230 
4231 /*
4232  * For regulatory extension stuff see IEEE 802.11-2007
4233  * Annex I (page 1141) and Annex J (page 1147). Also
4234  * review 7.3.2.9.
4235  *
4236  * When dot11RegulatoryClassesRequired is true and the
4237  * first_channel/reg_extension_id is >= 201 then the IE
4238  * compromises of the 'ext' struct represented below:
4239  *
4240  *  - Regulatory extension ID - when generating IE this just needs
4241  *    to be monotonically increasing for each triplet passed in
4242  *    the IE
4243  *  - Regulatory class - index into set of rules
4244  *  - Coverage class - index into air propagation time (Table 7-27),
4245  *    in microseconds, you can compute the air propagation time from
4246  *    the index by multiplying by 3, so index 10 yields a propagation
4247  *    of 10 us. Valid values are 0-31, values 32-255 are not defined
4248  *    yet. A value of 0 inicates air propagation of <= 1 us.
4249  *
4250  *  See also Table I.2 for Emission limit sets and table
4251  *  I.3 for Behavior limit sets. Table J.1 indicates how to map
4252  *  a reg_class to an emission limit set and behavior limit set.
4253  */
4254 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4255 
4256 /*
4257  *  Channels numbers in the IE must be monotonically increasing
4258  *  if dot11RegulatoryClassesRequired is not true.
4259  *
4260  *  If dot11RegulatoryClassesRequired is true consecutive
4261  *  subband triplets following a regulatory triplet shall
4262  *  have monotonically increasing first_channel number fields.
4263  *
4264  *  Channel numbers shall not overlap.
4265  *
4266  *  Note that max_power is signed.
4267  */
4268 struct ieee80211_country_ie_triplet {
4269 	union {
4270 		struct {
4271 			u8 first_channel;
4272 			u8 num_channels;
4273 			s8 max_power;
4274 		} __packed chans;
4275 		struct {
4276 			u8 reg_extension_id;
4277 			u8 reg_class;
4278 			u8 coverage_class;
4279 		} __packed ext;
4280 	};
4281 } __packed;
4282 
4283 enum ieee80211_timeout_interval_type {
4284 	WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4285 	WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4286 	WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4287 };
4288 
4289 /**
4290  * struct ieee80211_timeout_interval_ie - Timeout Interval element
4291  * @type: type, see &enum ieee80211_timeout_interval_type
4292  * @value: timeout interval value
4293  */
4294 struct ieee80211_timeout_interval_ie {
4295 	u8 type;
4296 	__le32 value;
4297 } __packed;
4298 
4299 /**
4300  * enum ieee80211_idle_options - BSS idle options
4301  * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4302  *	protected frame to the AP to reset the idle timer at the AP for
4303  *	the station.
4304  */
4305 enum ieee80211_idle_options {
4306 	WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4307 };
4308 
4309 /**
4310  * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4311  *
4312  * This structure refers to "BSS Max idle period element"
4313  *
4314  * @max_idle_period: indicates the time period during which a station can
4315  *	refrain from transmitting frames to its associated AP without being
4316  *	disassociated. In units of 1000 TUs.
4317  * @idle_options: indicates the options associated with the BSS idle capability
4318  *	as specified in &enum ieee80211_idle_options.
4319  */
4320 struct ieee80211_bss_max_idle_period_ie {
4321 	__le16 max_idle_period;
4322 	u8 idle_options;
4323 } __packed;
4324 
4325 /* BACK action code */
4326 enum ieee80211_back_actioncode {
4327 	WLAN_ACTION_ADDBA_REQ = 0,
4328 	WLAN_ACTION_ADDBA_RESP = 1,
4329 	WLAN_ACTION_DELBA = 2,
4330 };
4331 
4332 /* BACK (block-ack) parties */
4333 enum ieee80211_back_parties {
4334 	WLAN_BACK_RECIPIENT = 0,
4335 	WLAN_BACK_INITIATOR = 1,
4336 };
4337 
4338 /* SA Query action */
4339 enum ieee80211_sa_query_action {
4340 	WLAN_ACTION_SA_QUERY_REQUEST = 0,
4341 	WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4342 };
4343 
4344 /**
4345  * struct ieee80211_bssid_index - multiple BSSID index element structure
4346  *
4347  * This structure refers to "Multiple BSSID-index element"
4348  *
4349  * @bssid_index: BSSID index
4350  * @dtim_period: optional, overrides transmitted BSS dtim period
4351  * @dtim_count: optional, overrides transmitted BSS dtim count
4352  */
4353 struct ieee80211_bssid_index {
4354 	u8 bssid_index;
4355 	u8 dtim_period;
4356 	u8 dtim_count;
4357 };
4358 
4359 /**
4360  * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4361  *	element structure
4362  *
4363  * This structure refers to "Multiple BSSID Configuration element"
4364  *
4365  * @bssid_count: total number of active BSSIDs in the set
4366  * @profile_periodicity: the least number of beacon frames need to be received
4367  *	in order to discover all the nontransmitted BSSIDs in the set.
4368  */
4369 struct ieee80211_multiple_bssid_configuration {
4370 	u8 bssid_count;
4371 	u8 profile_periodicity;
4372 };
4373 
4374 #define SUITE(oui, id)	(((oui) << 8) | (id))
4375 
4376 /* cipher suite selectors */
4377 #define WLAN_CIPHER_SUITE_USE_GROUP	SUITE(0x000FAC, 0)
4378 #define WLAN_CIPHER_SUITE_WEP40		SUITE(0x000FAC, 1)
4379 #define WLAN_CIPHER_SUITE_TKIP		SUITE(0x000FAC, 2)
4380 /* reserved: 				SUITE(0x000FAC, 3) */
4381 #define WLAN_CIPHER_SUITE_CCMP		SUITE(0x000FAC, 4)
4382 #define WLAN_CIPHER_SUITE_WEP104	SUITE(0x000FAC, 5)
4383 #define WLAN_CIPHER_SUITE_AES_CMAC	SUITE(0x000FAC, 6)
4384 #define WLAN_CIPHER_SUITE_GCMP		SUITE(0x000FAC, 8)
4385 #define WLAN_CIPHER_SUITE_GCMP_256	SUITE(0x000FAC, 9)
4386 #define WLAN_CIPHER_SUITE_CCMP_256	SUITE(0x000FAC, 10)
4387 #define WLAN_CIPHER_SUITE_BIP_GMAC_128	SUITE(0x000FAC, 11)
4388 #define WLAN_CIPHER_SUITE_BIP_GMAC_256	SUITE(0x000FAC, 12)
4389 #define WLAN_CIPHER_SUITE_BIP_CMAC_256	SUITE(0x000FAC, 13)
4390 
4391 #define WLAN_CIPHER_SUITE_SMS4		SUITE(0x001472, 1)
4392 
4393 /* AKM suite selectors */
4394 #define WLAN_AKM_SUITE_8021X			SUITE(0x000FAC, 1)
4395 #define WLAN_AKM_SUITE_PSK			SUITE(0x000FAC, 2)
4396 #define WLAN_AKM_SUITE_FT_8021X			SUITE(0x000FAC, 3)
4397 #define WLAN_AKM_SUITE_FT_PSK			SUITE(0x000FAC, 4)
4398 #define WLAN_AKM_SUITE_8021X_SHA256		SUITE(0x000FAC, 5)
4399 #define WLAN_AKM_SUITE_PSK_SHA256		SUITE(0x000FAC, 6)
4400 #define WLAN_AKM_SUITE_TDLS			SUITE(0x000FAC, 7)
4401 #define WLAN_AKM_SUITE_SAE			SUITE(0x000FAC, 8)
4402 #define WLAN_AKM_SUITE_FT_OVER_SAE		SUITE(0x000FAC, 9)
4403 #define WLAN_AKM_SUITE_AP_PEER_KEY		SUITE(0x000FAC, 10)
4404 #define WLAN_AKM_SUITE_8021X_SUITE_B		SUITE(0x000FAC, 11)
4405 #define WLAN_AKM_SUITE_8021X_SUITE_B_192	SUITE(0x000FAC, 12)
4406 #define WLAN_AKM_SUITE_FT_8021X_SHA384		SUITE(0x000FAC, 13)
4407 #define WLAN_AKM_SUITE_FILS_SHA256		SUITE(0x000FAC, 14)
4408 #define WLAN_AKM_SUITE_FILS_SHA384		SUITE(0x000FAC, 15)
4409 #define WLAN_AKM_SUITE_FT_FILS_SHA256		SUITE(0x000FAC, 16)
4410 #define WLAN_AKM_SUITE_FT_FILS_SHA384		SUITE(0x000FAC, 17)
4411 #define WLAN_AKM_SUITE_OWE			SUITE(0x000FAC, 18)
4412 #define WLAN_AKM_SUITE_FT_PSK_SHA384		SUITE(0x000FAC, 19)
4413 #define WLAN_AKM_SUITE_PSK_SHA384		SUITE(0x000FAC, 20)
4414 
4415 #define WLAN_AKM_SUITE_WFA_DPP			SUITE(WLAN_OUI_WFA, 2)
4416 
4417 #define WLAN_MAX_KEY_LEN		32
4418 
4419 #define WLAN_PMK_NAME_LEN		16
4420 #define WLAN_PMKID_LEN			16
4421 #define WLAN_PMK_LEN_EAP_LEAP		16
4422 #define WLAN_PMK_LEN			32
4423 #define WLAN_PMK_LEN_SUITE_B_192	48
4424 
4425 #define WLAN_OUI_WFA			0x506f9a
4426 #define WLAN_OUI_TYPE_WFA_P2P		9
4427 #define WLAN_OUI_TYPE_WFA_DPP		0x1A
4428 #define WLAN_OUI_MICROSOFT		0x0050f2
4429 #define WLAN_OUI_TYPE_MICROSOFT_WPA	1
4430 #define WLAN_OUI_TYPE_MICROSOFT_WMM	2
4431 #define WLAN_OUI_TYPE_MICROSOFT_WPS	4
4432 #define WLAN_OUI_TYPE_MICROSOFT_TPC	8
4433 
4434 /*
4435  * WMM/802.11e Tspec Element
4436  */
4437 #define IEEE80211_WMM_IE_TSPEC_TID_MASK		0x0F
4438 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT	1
4439 
4440 enum ieee80211_tspec_status_code {
4441 	IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4442 	IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4443 };
4444 
4445 struct ieee80211_tspec_ie {
4446 	u8 element_id;
4447 	u8 len;
4448 	u8 oui[3];
4449 	u8 oui_type;
4450 	u8 oui_subtype;
4451 	u8 version;
4452 	__le16 tsinfo;
4453 	u8 tsinfo_resvd;
4454 	__le16 nominal_msdu;
4455 	__le16 max_msdu;
4456 	__le32 min_service_int;
4457 	__le32 max_service_int;
4458 	__le32 inactivity_int;
4459 	__le32 suspension_int;
4460 	__le32 service_start_time;
4461 	__le32 min_data_rate;
4462 	__le32 mean_data_rate;
4463 	__le32 peak_data_rate;
4464 	__le32 max_burst_size;
4465 	__le32 delay_bound;
4466 	__le32 min_phy_rate;
4467 	__le16 sba;
4468 	__le16 medium_time;
4469 } __packed;
4470 
4471 struct ieee80211_he_6ghz_capa {
4472 	/* uses IEEE80211_HE_6GHZ_CAP_* below */
4473 	__le16 capa;
4474 } __packed;
4475 
4476 /* HE 6 GHz band capabilities */
4477 /* uses enum ieee80211_min_mpdu_spacing values */
4478 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START	0x0007
4479 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4480 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP	0x0038
4481 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4482 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN	0x00c0
4483 /* WLAN_HT_CAP_SM_PS_* values */
4484 #define IEEE80211_HE_6GHZ_CAP_SM_PS		0x0600
4485 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER	0x0800
4486 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS	0x1000
4487 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS	0x2000
4488 
4489 /**
4490  * ieee80211_get_qos_ctl - get pointer to qos control bytes
4491  * @hdr: the frame
4492  * Return: a pointer to the QoS control field in the frame header
4493  *
4494  * The qos ctrl bytes come after the frame_control, duration, seq_num
4495  * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4496  * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4497  */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4498 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4499 {
4500 	union {
4501 		struct ieee80211_qos_hdr	addr3;
4502 		struct ieee80211_qos_hdr_4addr	addr4;
4503 	} *qos;
4504 
4505 	qos = (void *)hdr;
4506 	if (ieee80211_has_a4(qos->addr3.frame_control))
4507 		return (u8 *)&qos->addr4.qos_ctrl;
4508 	else
4509 		return (u8 *)&qos->addr3.qos_ctrl;
4510 }
4511 
4512 /**
4513  * ieee80211_get_tid - get qos TID
4514  * @hdr: the frame
4515  * Return: the TID from the QoS control field
4516  */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4517 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4518 {
4519 	u8 *qc = ieee80211_get_qos_ctl(hdr);
4520 
4521 	return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4522 }
4523 
4524 /**
4525  * ieee80211_get_SA - get pointer to SA
4526  * @hdr: the frame
4527  * Return: a pointer to the source address (SA)
4528  *
4529  * Given an 802.11 frame, this function returns the offset
4530  * to the source address (SA). It does not verify that the
4531  * header is long enough to contain the address, and the
4532  * header must be long enough to contain the frame control
4533  * field.
4534  */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4535 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4536 {
4537 	if (ieee80211_has_a4(hdr->frame_control))
4538 		return hdr->addr4;
4539 	if (ieee80211_has_fromds(hdr->frame_control))
4540 		return hdr->addr3;
4541 	return hdr->addr2;
4542 }
4543 
4544 /**
4545  * ieee80211_get_DA - get pointer to DA
4546  * @hdr: the frame
4547  * Return: a pointer to the destination address (DA)
4548  *
4549  * Given an 802.11 frame, this function returns the offset
4550  * to the destination address (DA). It does not verify that
4551  * the header is long enough to contain the address, and the
4552  * header must be long enough to contain the frame control
4553  * field.
4554  */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4555 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4556 {
4557 	if (ieee80211_has_tods(hdr->frame_control))
4558 		return hdr->addr3;
4559 	else
4560 		return hdr->addr1;
4561 }
4562 
4563 /**
4564  * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4565  * @skb: the skb to check, starting with the 802.11 header
4566  * Return: whether or not the MMPDU is bufferable
4567  */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4568 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4569 {
4570 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4571 	__le16 fc = mgmt->frame_control;
4572 
4573 	/*
4574 	 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4575 	 * note that this ignores the IBSS special case.
4576 	 */
4577 	if (!ieee80211_is_mgmt(fc))
4578 		return false;
4579 
4580 	if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4581 		return true;
4582 
4583 	if (!ieee80211_is_action(fc))
4584 		return false;
4585 
4586 	if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4587 		return true;
4588 
4589 	/* action frame - additionally check for non-bufferable FTM */
4590 
4591 	if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4592 	    mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4593 		return true;
4594 
4595 	if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4596 	    mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4597 		return false;
4598 
4599 	return true;
4600 }
4601 
4602 /**
4603  * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4604  * @hdr: the frame (buffer must include at least the first octet of payload)
4605  * Return: whether or not the frame is a robust management frame
4606  */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4607 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4608 {
4609 	if (ieee80211_is_disassoc(hdr->frame_control) ||
4610 	    ieee80211_is_deauth(hdr->frame_control))
4611 		return true;
4612 
4613 	if (ieee80211_is_action(hdr->frame_control)) {
4614 		u8 *category;
4615 
4616 		/*
4617 		 * Action frames, excluding Public Action frames, are Robust
4618 		 * Management Frames. However, if we are looking at a Protected
4619 		 * frame, skip the check since the data may be encrypted and
4620 		 * the frame has already been found to be a Robust Management
4621 		 * Frame (by the other end).
4622 		 */
4623 		if (ieee80211_has_protected(hdr->frame_control))
4624 			return true;
4625 		category = ((u8 *) hdr) + 24;
4626 		return *category != WLAN_CATEGORY_PUBLIC &&
4627 			*category != WLAN_CATEGORY_HT &&
4628 			*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4629 			*category != WLAN_CATEGORY_SELF_PROTECTED &&
4630 			*category != WLAN_CATEGORY_UNPROT_DMG &&
4631 			*category != WLAN_CATEGORY_VHT &&
4632 			*category != WLAN_CATEGORY_S1G &&
4633 			*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4634 	}
4635 
4636 	return false;
4637 }
4638 
4639 /**
4640  * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4641  * @skb: the skb containing the frame, length will be checked
4642  * Return: whether or not the frame is a robust management frame
4643  */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4644 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4645 {
4646 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4647 		return false;
4648 	return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4649 }
4650 
4651 /**
4652  * ieee80211_is_public_action - check if frame is a public action frame
4653  * @hdr: the frame
4654  * @len: length of the frame
4655  * Return: whether or not the frame is a public action frame
4656  */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4657 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4658 					      size_t len)
4659 {
4660 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4661 
4662 	if (len < IEEE80211_MIN_ACTION_SIZE)
4663 		return false;
4664 	if (!ieee80211_is_action(hdr->frame_control))
4665 		return false;
4666 	return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4667 }
4668 
4669 /**
4670  * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4671  * protected dual of public action management frame
4672  * @skb: the skb containing the frame, length will be checked
4673  *
4674  * Return: true if the skb contains a protected dual of public action
4675  * management frame, false otherwise.
4676  */
4677 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4678 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4679 {
4680 	u8 action;
4681 
4682 	if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4683 	    skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4684 		return false;
4685 
4686 	action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4687 
4688 	return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4689 		action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4690 		action != WLAN_PUB_ACTION_MSMT_PILOT &&
4691 		action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4692 		action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4693 		action != WLAN_PUB_ACTION_FTM_REQUEST &&
4694 		action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4695 		action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4696 		action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4697 }
4698 
4699 /**
4700  * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4701  *	privacy action frame
4702  * @hdr: the frame
4703  * Return: whether or not the frame is a group addressed privacy action frame
4704  */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4705 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4706 {
4707 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4708 
4709 	if (!ieee80211_is_action(hdr->frame_control) ||
4710 	    !is_multicast_ether_addr(hdr->addr1))
4711 		return false;
4712 
4713 	return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4714 	       mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4715 }
4716 
4717 /**
4718  * ieee80211_is_group_privacy_action - check if frame is a group addressed
4719  *	privacy action frame
4720  * @skb: the skb containing the frame, length will be checked
4721  * Return: whether or not the frame is a group addressed privacy action frame
4722  */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4723 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4724 {
4725 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4726 		return false;
4727 	return _ieee80211_is_group_privacy_action((void *)skb->data);
4728 }
4729 
4730 /**
4731  * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4732  * @tu: the TUs
4733  * Return: the time value converted to microseconds
4734  */
ieee80211_tu_to_usec(unsigned long tu)4735 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4736 {
4737 	return 1024 * tu;
4738 }
4739 
4740 /**
4741  * ieee80211_check_tim - check if AID bit is set in TIM
4742  * @tim: the TIM IE
4743  * @tim_len: length of the TIM IE
4744  * @aid: the AID to look for
4745  * Return: whether or not traffic is indicated in the TIM for the given AID
4746  */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4747 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4748 				       u8 tim_len, u16 aid)
4749 {
4750 	u8 mask;
4751 	u8 index, indexn1, indexn2;
4752 
4753 	if (unlikely(!tim || tim_len < sizeof(*tim)))
4754 		return false;
4755 
4756 	aid &= 0x3fff;
4757 	index = aid / 8;
4758 	mask  = 1 << (aid & 7);
4759 
4760 	indexn1 = tim->bitmap_ctrl & 0xfe;
4761 	indexn2 = tim_len + indexn1 - 4;
4762 
4763 	if (index < indexn1 || index > indexn2)
4764 		return false;
4765 
4766 	index -= indexn1;
4767 
4768 	return !!(tim->virtual_map[index] & mask);
4769 }
4770 
4771 /**
4772  * ieee80211_get_tdls_action - get TDLS action code
4773  * @skb: the skb containing the frame, length will not be checked
4774  * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4775  *	frame
4776  *
4777  * This function assumes the frame is a data frame, and that the network header
4778  * is in the correct place.
4779  */
ieee80211_get_tdls_action(struct sk_buff * skb)4780 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4781 {
4782 	if (!skb_is_nonlinear(skb) &&
4783 	    skb->len > (skb_network_offset(skb) + 2)) {
4784 		/* Point to where the indication of TDLS should start */
4785 		const u8 *tdls_data = skb_network_header(skb) - 2;
4786 
4787 		if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4788 		    tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4789 		    tdls_data[3] == WLAN_CATEGORY_TDLS)
4790 			return tdls_data[4];
4791 	}
4792 
4793 	return -1;
4794 }
4795 
4796 /* convert time units */
4797 #define TU_TO_JIFFIES(x)	(usecs_to_jiffies((x) * 1024))
4798 #define TU_TO_EXP_TIME(x)	(jiffies + TU_TO_JIFFIES(x))
4799 
4800 /* convert frequencies */
4801 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4802 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4803 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4804 #define KHZ_F "%d.%03d"
4805 
4806 /* convert powers */
4807 #define DBI_TO_MBI(gain) ((gain) * 100)
4808 #define MBI_TO_DBI(gain) ((gain) / 100)
4809 #define DBM_TO_MBM(gain) ((gain) * 100)
4810 #define MBM_TO_DBM(gain) ((gain) / 100)
4811 
4812 /**
4813  * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4814  * @skb: the skb containing the frame, length will be checked
4815  * Return: %true if the frame contains a TPC element, %false otherwise
4816  *
4817  * This function checks if it's either TPC report action frame or Link
4818  * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4819  * and 8.5.7.5 accordingly.
4820  */
ieee80211_action_contains_tpc(struct sk_buff * skb)4821 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4822 {
4823 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4824 
4825 	if (!ieee80211_is_action(mgmt->frame_control))
4826 		return false;
4827 
4828 	if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4829 		       sizeof(mgmt->u.action.u.tpc_report))
4830 		return false;
4831 
4832 	/*
4833 	 * TPC report - check that:
4834 	 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4835 	 * spectrum management action = 3 (TPC/Link Measurement report)
4836 	 * TPC report EID = 35
4837 	 * TPC report element length = 2
4838 	 *
4839 	 * The spectrum management's tpc_report struct is used here both for
4840 	 * parsing tpc_report and radio measurement's link measurement report
4841 	 * frame, since the relevant part is identical in both frames.
4842 	 */
4843 	if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4844 	    mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4845 		return false;
4846 
4847 	/* both spectrum mgmt and link measurement have same action code */
4848 	if (mgmt->u.action.u.tpc_report.action_code !=
4849 	    WLAN_ACTION_SPCT_TPC_RPRT)
4850 		return false;
4851 
4852 	if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4853 	    mgmt->u.action.u.tpc_report.tpc_elem_length !=
4854 	    sizeof(struct ieee80211_tpc_report_ie))
4855 		return false;
4856 
4857 	return true;
4858 }
4859 
4860 /**
4861  * ieee80211_is_timing_measurement - check if frame is timing measurement response
4862  * @skb: the SKB to check
4863  * Return: whether or not the frame is a valid timing measurement response
4864  */
ieee80211_is_timing_measurement(struct sk_buff * skb)4865 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4866 {
4867 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4868 
4869 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4870 		return false;
4871 
4872 	if (!ieee80211_is_action(mgmt->frame_control))
4873 		return false;
4874 
4875 	if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4876 	    mgmt->u.action.u.wnm_timing_msr.action_code ==
4877 		WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4878 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4879 		return true;
4880 
4881 	return false;
4882 }
4883 
4884 /**
4885  * ieee80211_is_ftm - check if frame is FTM response
4886  * @skb: the SKB to check
4887  * Return: whether or not the frame is a valid FTM response action frame
4888  */
ieee80211_is_ftm(struct sk_buff * skb)4889 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4890 {
4891 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4892 
4893 	if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4894 		return false;
4895 
4896 	if (mgmt->u.action.u.ftm.action_code ==
4897 		WLAN_PUB_ACTION_FTM_RESPONSE &&
4898 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4899 		return true;
4900 
4901 	return false;
4902 }
4903 
4904 struct element {
4905 	u8 id;
4906 	u8 datalen;
4907 	u8 data[];
4908 } __packed;
4909 
4910 /* element iteration helpers */
4911 #define for_each_element(_elem, _data, _datalen)			\
4912 	for (_elem = (const struct element *)(_data);			\
4913 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4914 		(int)sizeof(*_elem) &&					\
4915 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4916 		(int)sizeof(*_elem) + _elem->datalen;			\
4917 	     _elem = (const struct element *)(_elem->data + _elem->datalen))
4918 
4919 #define for_each_element_id(element, _id, data, datalen)		\
4920 	for_each_element(element, data, datalen)			\
4921 		if (element->id == (_id))
4922 
4923 #define for_each_element_extid(element, extid, _data, _datalen)		\
4924 	for_each_element(element, _data, _datalen)			\
4925 		if (element->id == WLAN_EID_EXTENSION &&		\
4926 		    element->datalen > 0 &&				\
4927 		    element->data[0] == (extid))
4928 
4929 #define for_each_subelement(sub, element)				\
4930 	for_each_element(sub, (element)->data, (element)->datalen)
4931 
4932 #define for_each_subelement_id(sub, id, element)			\
4933 	for_each_element_id(sub, id, (element)->data, (element)->datalen)
4934 
4935 #define for_each_subelement_extid(sub, extid, element)			\
4936 	for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4937 
4938 /**
4939  * for_each_element_completed - determine if element parsing consumed all data
4940  * @element: element pointer after for_each_element() or friends
4941  * @data: same data pointer as passed to for_each_element() or friends
4942  * @datalen: same data length as passed to for_each_element() or friends
4943  * Return: %true if all elements were iterated, %false otherwise; see notes
4944  *
4945  * This function returns %true if all the data was parsed or considered
4946  * while walking the elements. Only use this if your for_each_element()
4947  * loop cannot be broken out of, otherwise it always returns %false.
4948  *
4949  * If some data was malformed, this returns %false since the last parsed
4950  * element will not fill the whole remaining data.
4951  */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4952 static inline bool for_each_element_completed(const struct element *element,
4953 					      const void *data, size_t datalen)
4954 {
4955 	return (const u8 *)element == (const u8 *)data + datalen;
4956 }
4957 
4958 /*
4959  * RSNX Capabilities:
4960  * bits 0-3: Field length (n-1)
4961  */
4962 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4963 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4964 
4965 /*
4966  * reduced neighbor report, based on Draft P802.11ax_D6.1,
4967  * section 9.4.2.170 and accepted contributions.
4968  */
4969 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE				0x03
4970 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED			0x04
4971 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC			0x08
4972 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT			0xF0
4973 #define IEEE80211_TBTT_INFO_TYPE_TBTT				0
4974 #define IEEE80211_TBTT_INFO_TYPE_MLD				1
4975 
4976 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED		0x01
4977 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID			0x02
4978 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID			0x04
4979 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID		0x08
4980 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS			0x10
4981 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE			0x20
4982 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP			0x40
4983 
4984 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT			127
4985 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED			-128
4986 
4987 struct ieee80211_neighbor_ap_info {
4988 	u8 tbtt_info_hdr;
4989 	u8 tbtt_info_len;
4990 	u8 op_class;
4991 	u8 channel;
4992 } __packed;
4993 
4994 enum ieee80211_range_params_max_total_ltf {
4995 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4996 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4997 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4998 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4999 };
5000 
5001 /*
5002  * reduced neighbor report, based on Draft P802.11be_D3.0,
5003  * section 9.4.2.170.2.
5004  */
5005 struct ieee80211_rnr_mld_params {
5006 	u8 mld_id;
5007 	__le16 params;
5008 } __packed;
5009 
5010 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID			0x000F
5011 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT		0x0FF0
5012 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED		0x1000
5013 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK			0x2000
5014 
5015 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
5016 struct ieee80211_tbtt_info_7_8_9 {
5017 	u8 tbtt_offset;
5018 	u8 bssid[ETH_ALEN];
5019 
5020 	/* The following element is optional, structure may not grow */
5021 	u8 bss_params;
5022 	s8 psd_20;
5023 } __packed;
5024 
5025 /* Format of the TBTT information element if it has >= 11 bytes */
5026 struct ieee80211_tbtt_info_ge_11 {
5027 	u8 tbtt_offset;
5028 	u8 bssid[ETH_ALEN];
5029 	__le32 short_ssid;
5030 
5031 	/* The following elements are optional, structure may grow */
5032 	u8 bss_params;
5033 	s8 psd_20;
5034 	struct ieee80211_rnr_mld_params mld_params;
5035 } __packed;
5036 
5037 /* multi-link device */
5038 #define IEEE80211_MLD_MAX_NUM_LINKS	15
5039 
5040 #define IEEE80211_ML_CONTROL_TYPE			0x0007
5041 #define IEEE80211_ML_CONTROL_TYPE_BASIC			0
5042 #define IEEE80211_ML_CONTROL_TYPE_PREQ			1
5043 #define IEEE80211_ML_CONTROL_TYPE_RECONF		2
5044 #define IEEE80211_ML_CONTROL_TYPE_TDLS			3
5045 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS		4
5046 #define IEEE80211_ML_CONTROL_PRESENCE_MASK		0xfff0
5047 
5048 struct ieee80211_multi_link_elem {
5049 	__le16 control;
5050 	u8 variable[];
5051 } __packed;
5052 
5053 #define IEEE80211_MLC_BASIC_PRES_LINK_ID		0x0010
5054 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT	0x0020
5055 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY		0x0040
5056 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA		0x0080
5057 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP		0x0100
5058 #define IEEE80211_MLC_BASIC_PRES_MLD_ID			0x0200
5059 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP	0x0400
5060 
5061 #define IEEE80211_MED_SYNC_DELAY_DURATION		0x00ff
5062 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH	0x0f00
5063 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS	0xf000
5064 
5065 /*
5066  * Described in P802.11be_D3.0
5067  * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5068  * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5069  * dot11MSDTXOPMAX defaults to 1
5070  */
5071 #define IEEE80211_MED_SYNC_DELAY_DEFAULT		0x10ac
5072 
5073 #define IEEE80211_EML_CAP_EMLSR_SUPP			0x0001
5074 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY		0x000e
5075 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US		0
5076 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US		1
5077 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US		2
5078 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US		3
5079 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US		4
5080 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY	0x0070
5081 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US		0
5082 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US		1
5083 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US		2
5084 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US		3
5085 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US		4
5086 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US		5
5087 #define IEEE80211_EML_CAP_EMLMR_SUPPORT			0x0080
5088 #define IEEE80211_EML_CAP_EMLMR_DELAY			0x0700
5089 #define  IEEE80211_EML_CAP_EMLMR_DELAY_0US			0
5090 #define  IEEE80211_EML_CAP_EMLMR_DELAY_32US			1
5091 #define  IEEE80211_EML_CAP_EMLMR_DELAY_64US			2
5092 #define  IEEE80211_EML_CAP_EMLMR_DELAY_128US			3
5093 #define  IEEE80211_EML_CAP_EMLMR_DELAY_256US			4
5094 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT		0x7800
5095 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0			0
5096 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US		1
5097 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US		2
5098 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US		3
5099 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU		4
5100 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU		5
5101 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU		6
5102 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU		7
5103 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU		8
5104 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU		9
5105 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU		10
5106 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU		11
5107 
5108 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS		0x000f
5109 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT		0x0010
5110 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP	0x0060
5111 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP	0
5112 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME	1
5113 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED	2
5114 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF	3
5115 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND		0x0f80
5116 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT		0x1000
5117 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT	0x2000
5118 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT	0x4000
5119 
5120 struct ieee80211_mle_basic_common_info {
5121 	u8 len;
5122 	u8 mld_mac_addr[ETH_ALEN];
5123 	u8 variable[];
5124 } __packed;
5125 
5126 #define IEEE80211_MLC_PREQ_PRES_MLD_ID			0x0010
5127 
5128 struct ieee80211_mle_preq_common_info {
5129 	u8 len;
5130 	u8 variable[];
5131 } __packed;
5132 
5133 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR		0x0010
5134 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA		0x0020
5135 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP		0x0040
5136 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP	0x0080
5137 
5138 /* no fixed fields in RECONF */
5139 
5140 struct ieee80211_mle_tdls_common_info {
5141 	u8 len;
5142 	u8 ap_mld_mac_addr[ETH_ALEN];
5143 } __packed;
5144 
5145 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR	0x0010
5146 
5147 /* no fixed fields in PRIO_ACCESS */
5148 
5149 /**
5150  * ieee80211_mle_common_size - check multi-link element common size
5151  * @data: multi-link element, must already be checked for size using
5152  *	ieee80211_mle_size_ok()
5153  * Return: the size of the multi-link element's "common" subfield
5154  */
ieee80211_mle_common_size(const u8 * data)5155 static inline u8 ieee80211_mle_common_size(const u8 *data)
5156 {
5157 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5158 	u16 control = le16_to_cpu(mle->control);
5159 
5160 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5161 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5162 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5163 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5164 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5165 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5166 		/*
5167 		 * The length is the first octet pointed by mle->variable so no
5168 		 * need to add anything
5169 		 */
5170 		break;
5171 	default:
5172 		WARN_ON(1);
5173 		return 0;
5174 	}
5175 
5176 	return sizeof(*mle) + mle->variable[0];
5177 }
5178 
5179 /**
5180  * ieee80211_mle_get_link_id - returns the link ID
5181  * @data: the basic multi link element
5182  * Return: the link ID, or -1 if not present
5183  *
5184  * The element is assumed to be of the correct type (BASIC) and big enough,
5185  * this must be checked using ieee80211_mle_type_ok().
5186  */
ieee80211_mle_get_link_id(const u8 * data)5187 static inline int ieee80211_mle_get_link_id(const u8 *data)
5188 {
5189 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5190 	u16 control = le16_to_cpu(mle->control);
5191 	const u8 *common = mle->variable;
5192 
5193 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5194 	common += sizeof(struct ieee80211_mle_basic_common_info);
5195 
5196 	if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5197 		return -1;
5198 
5199 	return *common;
5200 }
5201 
5202 /**
5203  * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5204  * @data: pointer to the basic multi link element
5205  * Return: the BSS Parameter Change Count field value, or -1 if not present
5206  *
5207  * The element is assumed to be of the correct type (BASIC) and big enough,
5208  * this must be checked using ieee80211_mle_type_ok().
5209  */
5210 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5211 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5212 {
5213 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5214 	u16 control = le16_to_cpu(mle->control);
5215 	const u8 *common = mle->variable;
5216 
5217 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5218 	common += sizeof(struct ieee80211_mle_basic_common_info);
5219 
5220 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5221 		return -1;
5222 
5223 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5224 		common += 1;
5225 
5226 	return *common;
5227 }
5228 
5229 /**
5230  * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5231  * @data: pointer to the multi-link element
5232  * Return: the medium synchronization delay field value from the multi-link
5233  *	element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5234  *	if not present
5235  *
5236  * The element is assumed to be of the correct type (BASIC) and big enough,
5237  * this must be checked using ieee80211_mle_type_ok().
5238  */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5239 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5240 {
5241 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5242 	u16 control = le16_to_cpu(mle->control);
5243 	const u8 *common = mle->variable;
5244 
5245 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5246 	common += sizeof(struct ieee80211_mle_basic_common_info);
5247 
5248 	if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5249 		return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5250 
5251 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5252 		common += 1;
5253 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5254 		common += 1;
5255 
5256 	return get_unaligned_le16(common);
5257 }
5258 
5259 /**
5260  * ieee80211_mle_get_eml_cap - returns the EML capability
5261  * @data: pointer to the multi-link element
5262  * Return: the EML capability field value from the multi-link element,
5263  *	or 0 if not present
5264  *
5265  * The element is assumed to be of the correct type (BASIC) and big enough,
5266  * this must be checked using ieee80211_mle_type_ok().
5267  */
ieee80211_mle_get_eml_cap(const u8 * data)5268 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5269 {
5270 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5271 	u16 control = le16_to_cpu(mle->control);
5272 	const u8 *common = mle->variable;
5273 
5274 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5275 	common += sizeof(struct ieee80211_mle_basic_common_info);
5276 
5277 	if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5278 		return 0;
5279 
5280 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5281 		common += 1;
5282 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5283 		common += 1;
5284 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5285 		common += 2;
5286 
5287 	return get_unaligned_le16(common);
5288 }
5289 
5290 /**
5291  * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5292  * @data: pointer to the multi-link element
5293  * Return: the MLD capabilities and operations field value from the multi-link
5294  *	element, or 0 if not present
5295  *
5296  * The element is assumed to be of the correct type (BASIC) and big enough,
5297  * this must be checked using ieee80211_mle_type_ok().
5298  */
ieee80211_mle_get_mld_capa_op(const u8 * data)5299 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5300 {
5301 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5302 	u16 control = le16_to_cpu(mle->control);
5303 	const u8 *common = mle->variable;
5304 
5305 	/*
5306 	 * common points now at the beginning of
5307 	 * ieee80211_mle_basic_common_info
5308 	 */
5309 	common += sizeof(struct ieee80211_mle_basic_common_info);
5310 
5311 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5312 		return 0;
5313 
5314 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5315 		common += 1;
5316 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5317 		common += 1;
5318 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5319 		common += 2;
5320 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5321 		common += 2;
5322 
5323 	return get_unaligned_le16(common);
5324 }
5325 
5326 /**
5327  * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5328  *	and operations.
5329  * @data: pointer to the multi-link element
5330  * Return: the extended MLD capabilities and operations field value from
5331  *	the multi-link element, or 0 if not present
5332  *
5333  * The element is assumed to be of the correct type (BASIC) and big enough,
5334  * this must be checked using ieee80211_mle_type_ok().
5335  */
ieee80211_mle_get_ext_mld_capa_op(const u8 * data)5336 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5337 {
5338 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5339 	u16 control = le16_to_cpu(mle->control);
5340 	const u8 *common = mle->variable;
5341 
5342 	/*
5343 	 * common points now at the beginning of
5344 	 * ieee80211_mle_basic_common_info
5345 	 */
5346 	common += sizeof(struct ieee80211_mle_basic_common_info);
5347 
5348 	if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5349 		return 0;
5350 
5351 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5352 		common += 1;
5353 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5354 		common += 1;
5355 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5356 		common += 2;
5357 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5358 		common += 2;
5359 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5360 		common += 2;
5361 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5362 		common += 1;
5363 
5364 	return get_unaligned_le16(common);
5365 }
5366 
5367 /**
5368  * ieee80211_mle_get_mld_id - returns the MLD ID
5369  * @data: pointer to the multi-link element
5370  * Return: The MLD ID in the given multi-link element, or 0 if not present
5371  *
5372  * The element is assumed to be of the correct type (BASIC) and big enough,
5373  * this must be checked using ieee80211_mle_type_ok().
5374  */
ieee80211_mle_get_mld_id(const u8 * data)5375 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5376 {
5377 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5378 	u16 control = le16_to_cpu(mle->control);
5379 	const u8 *common = mle->variable;
5380 
5381 	/*
5382 	 * common points now at the beginning of
5383 	 * ieee80211_mle_basic_common_info
5384 	 */
5385 	common += sizeof(struct ieee80211_mle_basic_common_info);
5386 
5387 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5388 		return 0;
5389 
5390 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5391 		common += 1;
5392 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5393 		common += 1;
5394 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5395 		common += 2;
5396 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5397 		common += 2;
5398 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5399 		common += 2;
5400 
5401 	return *common;
5402 }
5403 
5404 /**
5405  * ieee80211_mle_size_ok - validate multi-link element size
5406  * @data: pointer to the element data
5407  * @len: length of the containing element
5408  * Return: whether or not the multi-link element size is OK
5409  */
ieee80211_mle_size_ok(const u8 * data,size_t len)5410 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5411 {
5412 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5413 	u8 fixed = sizeof(*mle);
5414 	u8 common = 0;
5415 	bool check_common_len = false;
5416 	u16 control;
5417 
5418 	if (!data || len < fixed)
5419 		return false;
5420 
5421 	control = le16_to_cpu(mle->control);
5422 
5423 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5424 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5425 		common += sizeof(struct ieee80211_mle_basic_common_info);
5426 		check_common_len = true;
5427 		if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5428 			common += 1;
5429 		if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5430 			common += 1;
5431 		if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5432 			common += 2;
5433 		if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5434 			common += 2;
5435 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5436 			common += 2;
5437 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5438 			common += 1;
5439 		if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5440 			common += 2;
5441 		break;
5442 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5443 		common += sizeof(struct ieee80211_mle_preq_common_info);
5444 		if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5445 			common += 1;
5446 		check_common_len = true;
5447 		break;
5448 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5449 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5450 			common += ETH_ALEN;
5451 		if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5452 			common += 2;
5453 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5454 			common += 2;
5455 		if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5456 			common += 2;
5457 		break;
5458 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5459 		common += sizeof(struct ieee80211_mle_tdls_common_info);
5460 		check_common_len = true;
5461 		break;
5462 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5463 		common = ETH_ALEN + 1;
5464 		break;
5465 	default:
5466 		/* we don't know this type */
5467 		return true;
5468 	}
5469 
5470 	if (len < fixed + common)
5471 		return false;
5472 
5473 	if (!check_common_len)
5474 		return true;
5475 
5476 	/* if present, common length is the first octet there */
5477 	return mle->variable[0] >= common;
5478 }
5479 
5480 /**
5481  * ieee80211_mle_type_ok - validate multi-link element type and size
5482  * @data: pointer to the element data
5483  * @type: expected type of the element
5484  * @len: length of the containing element
5485  * Return: whether or not the multi-link element type matches and size is OK
5486  */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5487 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5488 {
5489 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5490 	u16 control;
5491 
5492 	if (!ieee80211_mle_size_ok(data, len))
5493 		return false;
5494 
5495 	control = le16_to_cpu(mle->control);
5496 
5497 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5498 		return true;
5499 
5500 	return false;
5501 }
5502 
5503 enum ieee80211_mle_subelems {
5504 	IEEE80211_MLE_SUBELEM_PER_STA_PROFILE		= 0,
5505 	IEEE80211_MLE_SUBELEM_FRAGMENT		        = 254,
5506 };
5507 
5508 #define IEEE80211_MLE_STA_CONTROL_LINK_ID			0x000f
5509 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE		0x0010
5510 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5511 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT		0x0040
5512 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT		0x0080
5513 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT		0x0100
5514 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT	0x0200
5515 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE		0x0400
5516 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT	0x0800
5517 
5518 struct ieee80211_mle_per_sta_profile {
5519 	__le16 control;
5520 	u8 sta_info_len;
5521 	u8 variable[];
5522 } __packed;
5523 
5524 /**
5525  * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5526  *	profile size
5527  * @data: pointer to the sub element data
5528  * @len: length of the containing sub element
5529  * Return: %true if the STA profile is large enough, %false otherwise
5530  */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5531 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5532 							size_t len)
5533 {
5534 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5535 	u16 control;
5536 	u8 fixed = sizeof(*prof);
5537 	u8 info_len = 1;
5538 
5539 	if (len < fixed)
5540 		return false;
5541 
5542 	control = le16_to_cpu(prof->control);
5543 
5544 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5545 		info_len += 6;
5546 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5547 		info_len += 2;
5548 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5549 		info_len += 8;
5550 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5551 		info_len += 2;
5552 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5553 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5554 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5555 			info_len += 2;
5556 		else
5557 			info_len += 1;
5558 	}
5559 	if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5560 		info_len += 1;
5561 
5562 	return prof->sta_info_len >= info_len &&
5563 	       fixed + prof->sta_info_len - 1 <= len;
5564 }
5565 
5566 /**
5567  * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5568  *	parameter change count
5569  * @prof: the per-STA profile, having been checked with
5570  *	ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5571  *
5572  * Return: The BSS parameter change count value if present, 0 otherwise.
5573  */
5574 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5575 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5576 {
5577 	u16 control = le16_to_cpu(prof->control);
5578 	const u8 *pos = prof->variable;
5579 
5580 	if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5581 		return 0;
5582 
5583 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5584 		pos += 6;
5585 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5586 		pos += 2;
5587 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5588 		pos += 8;
5589 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5590 		pos += 2;
5591 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5592 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5593 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5594 			pos += 2;
5595 		else
5596 			pos += 1;
5597 	}
5598 
5599 	return *pos;
5600 }
5601 
5602 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID			0x000f
5603 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE		0x0010
5604 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5605 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT		0x0040
5606 #define	IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE                 0x0780
5607 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM          0
5608 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5609 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK        2
5610 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK        3
5611 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS     4
5612 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT       0x0800
5613 
5614 /**
5615  * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5616  *	element sta profile size.
5617  * @data: pointer to the sub element data
5618  * @len: length of the containing sub element
5619  * Return: %true if the STA profile is large enough, %false otherwise
5620  */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5621 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5622 							 size_t len)
5623 {
5624 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5625 	u16 control;
5626 	u8 fixed = sizeof(*prof);
5627 	u8 info_len = 1;
5628 
5629 	if (len < fixed)
5630 		return false;
5631 
5632 	control = le16_to_cpu(prof->control);
5633 
5634 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5635 		info_len += ETH_ALEN;
5636 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5637 		info_len += 2;
5638 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5639 		info_len += 2;
5640 
5641 	return prof->sta_info_len >= info_len &&
5642 	       fixed + prof->sta_info_len - 1 <= len;
5643 }
5644 
5645 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID			0x000f
5646 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN                        3
5647 
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5648 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5649 {
5650 	const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5651 	u8 control, fixed = sizeof(*t2l), elem_len = 0;
5652 
5653 	if (len < fixed)
5654 		return false;
5655 
5656 	control = t2l->control;
5657 
5658 	if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5659 		elem_len += 2;
5660 	if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5661 		elem_len += 3;
5662 
5663 	if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5664 		u8 bm_size;
5665 
5666 		elem_len += 1;
5667 		if (len < fixed + elem_len)
5668 			return false;
5669 
5670 		if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5671 			bm_size = 1;
5672 		else
5673 			bm_size = 2;
5674 
5675 		elem_len += hweight8(t2l->optional[0]) * bm_size;
5676 	}
5677 
5678 	return len >= fixed + elem_len;
5679 }
5680 
5681 /**
5682  * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay
5683  *	in microseconds
5684  * @eml_cap: EML capabilities field value from common info field of
5685  *	the Multi-link element
5686  * Return: the EMLSR Padding delay (in microseconds) encoded in the
5687  *	EML Capabilities field
5688  */
5689 
ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)5690 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)
5691 {
5692 	/* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR
5693 	 * Padding Delay subfield.
5694 	 */
5695 	u32 pad_delay = u16_get_bits(eml_cap,
5696 				     IEEE80211_EML_CAP_EMLSR_PADDING_DELAY);
5697 
5698 	if (!pad_delay ||
5699 	    pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US)
5700 		return 0;
5701 
5702 	return 32 * (1 << (pad_delay - 1));
5703 }
5704 
5705 /**
5706  * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition
5707  *	delay in microseconds
5708  * @eml_cap: EML capabilities field value from common info field of
5709  *	the Multi-link element
5710  * Return: the EMLSR Transition delay (in microseconds) encoded in the
5711  *	EML Capabilities field
5712  */
5713 
ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)5714 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)
5715 {
5716 	/* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR
5717 	 * Transition Delay subfield.
5718 	 */
5719 	u32 trans_delay =
5720 		u16_get_bits(eml_cap,
5721 			     IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY);
5722 
5723 	/* invalid values also just use 0 */
5724 	if (!trans_delay ||
5725 	    trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US)
5726 		return 0;
5727 
5728 	return 16 * (1 << (trans_delay - 1));
5729 }
5730 
5731 /**
5732  * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition
5733  *	timeout value in microseconds
5734  * @eml_cap: EML capabilities field value from common info field of
5735  *	the Multi-link element
5736  * Return: the EMLSR Transition timeout (in microseconds) encoded in
5737  *	the EML Capabilities field
5738  */
5739 
ieee80211_eml_trans_timeout_in_us(u16 eml_cap)5740 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap)
5741 {
5742 	/* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the
5743 	 * Transition Timeout subfield.
5744 	 */
5745 	u8 timeout = u16_get_bits(eml_cap,
5746 				  IEEE80211_EML_CAP_TRANSITION_TIMEOUT);
5747 
5748 	/* invalid values also just use 0 */
5749 	if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU)
5750 		return 0;
5751 
5752 	return 128 * (1 << (timeout - 1));
5753 }
5754 
5755 #define for_each_mle_subelement(_elem, _data, _len)			\
5756 	if (ieee80211_mle_size_ok(_data, _len))				\
5757 		for_each_element(_elem,					\
5758 				 _data + ieee80211_mle_common_size(_data),\
5759 				 _len - ieee80211_mle_common_size(_data))
5760 
5761 #endif /* LINUX_IEEE80211_H */
5762