xref: /linux/drivers/net/wireless/microchip/wilc1000/spi.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4  * All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/spi/spi.h>
9 #include <linux/crc7.h>
10 #include <linux/crc-itu-t.h>
11 #include <linux/gpio/consumer.h>
12 
13 #include "netdev.h"
14 #include "cfg80211.h"
15 
16 #define SPI_MODALIAS		"wilc1000_spi"
17 
18 static bool enable_crc7;	/* protect SPI commands with CRC7 */
19 module_param(enable_crc7, bool, 0644);
20 MODULE_PARM_DESC(enable_crc7,
21 		 "Enable CRC7 checksum to protect command transfers\n"
22 		 "\t\t\tagainst corruption during the SPI transfer.\n"
23 		 "\t\t\tCommand transfers are short and the CPU-cycle cost\n"
24 		 "\t\t\tof enabling this is small.");
25 
26 static bool enable_crc16;	/* protect SPI data with CRC16 */
27 module_param(enable_crc16, bool, 0644);
28 MODULE_PARM_DESC(enable_crc16,
29 		 "Enable CRC16 checksum to protect data transfers\n"
30 		 "\t\t\tagainst corruption during the SPI transfer.\n"
31 		 "\t\t\tData transfers can be large and the CPU-cycle cost\n"
32 		 "\t\t\tof enabling this may be substantial.");
33 
34 /*
35  * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
36  * more zero bytes between the command response and the DATA Start tag
37  * (0xf3).  This behavior appears to be undocumented in "ATWILC1000
38  * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
39  * zero bytes when the SPI bus operates at 48MHz and none when it
40  * operates at 1MHz.
41  */
42 #define WILC_SPI_RSP_HDR_EXTRA_DATA	8
43 
44 struct wilc_spi {
45 	bool isinit;		/* true if wilc_spi_init was successful */
46 	bool probing_crc;	/* true if we're probing chip's CRC config */
47 	bool crc7_enabled;	/* true if crc7 is currently enabled */
48 	bool crc16_enabled;	/* true if crc16 is currently enabled */
49 	struct wilc_gpios {
50 		struct gpio_desc *enable;	/* ENABLE GPIO or NULL */
51 		struct gpio_desc *reset;	/* RESET GPIO or NULL */
52 	} gpios;
53 };
54 
55 static const struct wilc_hif_func wilc_hif_spi;
56 
57 static int wilc_spi_reset(struct wilc *wilc);
58 static int wilc_spi_configure_bus_protocol(struct wilc *wilc);
59 static int wilc_validate_chipid(struct wilc *wilc);
60 
61 /********************************************
62  *
63  *      Spi protocol Function
64  *
65  ********************************************/
66 
67 #define CMD_DMA_WRITE				0xc1
68 #define CMD_DMA_READ				0xc2
69 #define CMD_INTERNAL_WRITE			0xc3
70 #define CMD_INTERNAL_READ			0xc4
71 #define CMD_TERMINATE				0xc5
72 #define CMD_REPEAT				0xc6
73 #define CMD_DMA_EXT_WRITE			0xc7
74 #define CMD_DMA_EXT_READ			0xc8
75 #define CMD_SINGLE_WRITE			0xc9
76 #define CMD_SINGLE_READ				0xca
77 #define CMD_RESET				0xcf
78 
79 #define SPI_RETRY_MAX_LIMIT			10
80 #define SPI_ENABLE_VMM_RETRY_LIMIT		2
81 
82 /* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
83 #define RSP_START_FIELD				GENMASK(7, 4)
84 #define RSP_TYPE_FIELD				GENMASK(3, 0)
85 
86 /* SPI response values for the response fields: */
87 #define RSP_START_TAG				0xc
88 #define RSP_TYPE_FIRST_PACKET			0x1
89 #define RSP_TYPE_INNER_PACKET			0x2
90 #define RSP_TYPE_LAST_PACKET			0x3
91 #define RSP_STATE_NO_ERROR			0x00
92 
93 #define PROTOCOL_REG_PKT_SZ_MASK		GENMASK(6, 4)
94 #define PROTOCOL_REG_CRC16_MASK			GENMASK(3, 3)
95 #define PROTOCOL_REG_CRC7_MASK			GENMASK(2, 2)
96 
97 /*
98  * The SPI data packet size may be any integer power of two in the
99  * range from 256 to 8192 bytes.
100  */
101 #define DATA_PKT_LOG_SZ_MIN			8	/* 256 B */
102 #define DATA_PKT_LOG_SZ_MAX			13	/* 8 KiB */
103 
104 /*
105  * Select the data packet size (log2 of number of bytes): Use the
106  * maximum data packet size.  We only retransmit complete packets, so
107  * there is no benefit from using smaller data packets.
108  */
109 #define DATA_PKT_LOG_SZ				DATA_PKT_LOG_SZ_MAX
110 #define DATA_PKT_SZ				(1 << DATA_PKT_LOG_SZ)
111 
112 #define WILC_SPI_COMMAND_STAT_SUCCESS		0
113 #define WILC_GET_RESP_HDR_START(h)		(((h) >> 4) & 0xf)
114 
115 struct wilc_spi_cmd {
116 	u8 cmd_type;
117 	union {
118 		struct {
119 			u8 addr[3];
120 			u8 crc[];
121 		} __packed simple_cmd;
122 		struct {
123 			u8 addr[3];
124 			u8 size[2];
125 			u8 crc[];
126 		} __packed dma_cmd;
127 		struct {
128 			u8 addr[3];
129 			u8 size[3];
130 			u8 crc[];
131 		} __packed dma_cmd_ext;
132 		struct {
133 			u8 addr[2];
134 			__be32 data;
135 			u8 crc[];
136 		} __packed internal_w_cmd;
137 		struct {
138 			u8 addr[3];
139 			__be32 data;
140 			u8 crc[];
141 		} __packed w_cmd;
142 	} u;
143 } __packed;
144 
145 struct wilc_spi_read_rsp_data {
146 	u8 header;
147 	u8 data[4];
148 	u8 crc[];
149 } __packed;
150 
151 struct wilc_spi_rsp_data {
152 	u8 rsp_cmd_type;
153 	u8 status;
154 	u8 data[];
155 } __packed;
156 
157 struct wilc_spi_special_cmd_rsp {
158 	u8 skip_byte;
159 	u8 rsp_cmd_type;
160 	u8 status;
161 } __packed;
162 
wilc_parse_gpios(struct wilc * wilc)163 static int wilc_parse_gpios(struct wilc *wilc)
164 {
165 	struct spi_device *spi = to_spi_device(wilc->dev);
166 	struct wilc_spi *spi_priv = wilc->bus_data;
167 	struct wilc_gpios *gpios = &spi_priv->gpios;
168 
169 	/* get ENABLE pin and deassert it (if it is defined): */
170 	gpios->enable = devm_gpiod_get_optional(&spi->dev,
171 						"enable", GPIOD_OUT_LOW);
172 	/* get RESET pin and assert it (if it is defined): */
173 	if (gpios->enable) {
174 		/* if enable pin exists, reset must exist as well */
175 		gpios->reset = devm_gpiod_get(&spi->dev,
176 					      "reset", GPIOD_OUT_HIGH);
177 		if (IS_ERR(gpios->reset)) {
178 			dev_err(&spi->dev, "missing reset gpio.\n");
179 			return PTR_ERR(gpios->reset);
180 		}
181 	} else {
182 		gpios->reset = devm_gpiod_get_optional(&spi->dev,
183 						       "reset", GPIOD_OUT_HIGH);
184 	}
185 	return 0;
186 }
187 
wilc_wlan_power(struct wilc * wilc,bool on)188 static void wilc_wlan_power(struct wilc *wilc, bool on)
189 {
190 	struct wilc_spi *spi_priv = wilc->bus_data;
191 	struct wilc_gpios *gpios = &spi_priv->gpios;
192 
193 	if (on) {
194 		/* assert ENABLE: */
195 		gpiod_set_value(gpios->enable, 1);
196 		mdelay(5);
197 		/* deassert RESET: */
198 		gpiod_set_value(gpios->reset, 0);
199 	} else {
200 		/* assert RESET: */
201 		gpiod_set_value(gpios->reset, 1);
202 		/* deassert ENABLE: */
203 		gpiod_set_value(gpios->enable, 0);
204 	}
205 }
206 
wilc_bus_probe(struct spi_device * spi)207 static int wilc_bus_probe(struct spi_device *spi)
208 {
209 	struct wilc_spi *spi_priv;
210 	struct wilc_vif *vif;
211 	struct wilc *wilc;
212 	int ret;
213 
214 	spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
215 	if (!spi_priv)
216 		return -ENOMEM;
217 
218 	ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
219 	if (ret)
220 		goto free;
221 
222 	spi_set_drvdata(spi, wilc);
223 	wilc->dev = &spi->dev;
224 	wilc->bus_data = spi_priv;
225 	wilc->dev_irq_num = spi->irq;
226 
227 	ret = wilc_parse_gpios(wilc);
228 	if (ret < 0)
229 		goto netdev_cleanup;
230 
231 	wilc->rtc_clk = devm_clk_get_optional_enabled(&spi->dev, "rtc");
232 	if (IS_ERR(wilc->rtc_clk)) {
233 		ret = PTR_ERR(wilc->rtc_clk);
234 		goto netdev_cleanup;
235 	}
236 
237 	dev_info(&spi->dev, "Selected CRC config: crc7=%s, crc16=%s\n",
238 		 enable_crc7 ? "on" : "off", enable_crc16 ? "on" : "off");
239 
240 	/* we need power to configure the bus protocol and to read the chip id: */
241 
242 	wilc_wlan_power(wilc, true);
243 
244 	ret = wilc_spi_configure_bus_protocol(wilc);
245 	if (ret)
246 		goto power_down;
247 
248 	ret = wilc_get_chipid(wilc);
249 	if (ret)
250 		goto power_down;
251 
252 	ret = wilc_cfg80211_register(wilc);
253 	if (ret)
254 		goto power_down;
255 
256 	ret = wilc_load_mac_from_nv(wilc);
257 	if (ret) {
258 		pr_err("Can not retrieve MAC address from chip\n");
259 		goto power_down;
260 	}
261 
262 	wilc_wlan_power(wilc, false);
263 	vif = wilc_netdev_ifc_init(wilc, "wlan%d", WILC_STATION_MODE,
264 				   NL80211_IFTYPE_STATION, false);
265 	if (IS_ERR(vif)) {
266 		ret = PTR_ERR(vif);
267 		goto power_down;
268 	}
269 	return 0;
270 
271 power_down:
272 	wilc_wlan_power(wilc, false);
273 netdev_cleanup:
274 	wilc_netdev_cleanup(wilc);
275 free:
276 	kfree(spi_priv);
277 	return ret;
278 }
279 
wilc_bus_remove(struct spi_device * spi)280 static void wilc_bus_remove(struct spi_device *spi)
281 {
282 	struct wilc *wilc = spi_get_drvdata(spi);
283 	struct wilc_spi *spi_priv = wilc->bus_data;
284 
285 	wilc_netdev_cleanup(wilc);
286 	kfree(spi_priv);
287 }
288 
289 static const struct of_device_id wilc_of_match[] = {
290 	{ .compatible = "microchip,wilc1000", },
291 	{ /* sentinel */ }
292 };
293 MODULE_DEVICE_TABLE(of, wilc_of_match);
294 
295 static const struct spi_device_id wilc_spi_id[] = {
296 	{ "wilc1000", 0 },
297 	{ /* sentinel */ }
298 };
299 MODULE_DEVICE_TABLE(spi, wilc_spi_id);
300 
301 static struct spi_driver wilc_spi_driver = {
302 	.driver = {
303 		.name = SPI_MODALIAS,
304 		.of_match_table = wilc_of_match,
305 	},
306 	.id_table = wilc_spi_id,
307 	.probe =  wilc_bus_probe,
308 	.remove = wilc_bus_remove,
309 };
310 module_spi_driver(wilc_spi_driver);
311 MODULE_DESCRIPTION("Atmel WILC1000 SPI wireless driver");
312 MODULE_LICENSE("GPL");
313 
wilc_spi_tx(struct wilc * wilc,u8 * b,u32 len)314 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
315 {
316 	struct spi_device *spi = to_spi_device(wilc->dev);
317 	int ret;
318 	struct spi_message msg;
319 
320 	if (len > 0 && b) {
321 		struct spi_transfer tr = {
322 			.tx_buf = b,
323 			.len = len,
324 			.delay = {
325 				.value = 0,
326 				.unit = SPI_DELAY_UNIT_USECS
327 			},
328 		};
329 		char *r_buffer = kzalloc(len, GFP_KERNEL);
330 
331 		if (!r_buffer)
332 			return -ENOMEM;
333 
334 		tr.rx_buf = r_buffer;
335 		dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
336 
337 		memset(&msg, 0, sizeof(msg));
338 		spi_message_init(&msg);
339 		spi_message_add_tail(&tr, &msg);
340 
341 		ret = spi_sync(spi, &msg);
342 		if (ret < 0)
343 			dev_err(&spi->dev, "SPI transaction failed\n");
344 
345 		kfree(r_buffer);
346 	} else {
347 		dev_err(&spi->dev,
348 			"can't write data with the following length: %d\n",
349 			len);
350 		ret = -EINVAL;
351 	}
352 
353 	return ret;
354 }
355 
wilc_spi_rx(struct wilc * wilc,u8 * rb,u32 rlen)356 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
357 {
358 	struct spi_device *spi = to_spi_device(wilc->dev);
359 	int ret;
360 
361 	if (rlen > 0) {
362 		struct spi_message msg;
363 		struct spi_transfer tr = {
364 			.rx_buf = rb,
365 			.len = rlen,
366 			.delay = {
367 				.value = 0,
368 				.unit = SPI_DELAY_UNIT_USECS
369 			},
370 
371 		};
372 		char *t_buffer = kzalloc(rlen, GFP_KERNEL);
373 
374 		if (!t_buffer)
375 			return -ENOMEM;
376 
377 		tr.tx_buf = t_buffer;
378 
379 		memset(&msg, 0, sizeof(msg));
380 		spi_message_init(&msg);
381 		spi_message_add_tail(&tr, &msg);
382 
383 		ret = spi_sync(spi, &msg);
384 		if (ret < 0)
385 			dev_err(&spi->dev, "SPI transaction failed\n");
386 		kfree(t_buffer);
387 	} else {
388 		dev_err(&spi->dev,
389 			"can't read data with the following length: %u\n",
390 			rlen);
391 		ret = -EINVAL;
392 	}
393 
394 	return ret;
395 }
396 
wilc_spi_tx_rx(struct wilc * wilc,u8 * wb,u8 * rb,u32 rlen)397 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
398 {
399 	struct spi_device *spi = to_spi_device(wilc->dev);
400 	int ret;
401 
402 	if (rlen > 0) {
403 		struct spi_message msg;
404 		struct spi_transfer tr = {
405 			.rx_buf = rb,
406 			.tx_buf = wb,
407 			.len = rlen,
408 			.bits_per_word = 8,
409 			.delay = {
410 				.value = 0,
411 				.unit = SPI_DELAY_UNIT_USECS
412 			},
413 
414 		};
415 
416 		memset(&msg, 0, sizeof(msg));
417 		spi_message_init(&msg);
418 		spi_message_add_tail(&tr, &msg);
419 		ret = spi_sync(spi, &msg);
420 		if (ret < 0)
421 			dev_err(&spi->dev, "SPI transaction failed\n");
422 	} else {
423 		dev_err(&spi->dev,
424 			"can't read data with the following length: %u\n",
425 			rlen);
426 		ret = -EINVAL;
427 	}
428 
429 	return ret;
430 }
431 
spi_data_write(struct wilc * wilc,u8 * b,u32 sz)432 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
433 {
434 	struct spi_device *spi = to_spi_device(wilc->dev);
435 	struct wilc_spi *spi_priv = wilc->bus_data;
436 	int ix, nbytes;
437 	int result = 0;
438 	u8 cmd, order, crc[2];
439 	u16 crc_calc;
440 
441 	/*
442 	 * Data
443 	 */
444 	ix = 0;
445 	do {
446 		if (sz <= DATA_PKT_SZ) {
447 			nbytes = sz;
448 			order = 0x3;
449 		} else {
450 			nbytes = DATA_PKT_SZ;
451 			if (ix == 0)
452 				order = 0x1;
453 			else
454 				order = 0x02;
455 		}
456 
457 		/*
458 		 * Write command
459 		 */
460 		cmd = 0xf0;
461 		cmd |= order;
462 
463 		if (wilc_spi_tx(wilc, &cmd, 1)) {
464 			dev_err(&spi->dev,
465 				"Failed data block cmd write, bus error...\n");
466 			result = -EINVAL;
467 			break;
468 		}
469 
470 		/*
471 		 * Write data
472 		 */
473 		if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
474 			dev_err(&spi->dev,
475 				"Failed data block write, bus error...\n");
476 			result = -EINVAL;
477 			break;
478 		}
479 
480 		/*
481 		 * Write CRC
482 		 */
483 		if (spi_priv->crc16_enabled) {
484 			crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
485 			crc[0] = crc_calc >> 8;
486 			crc[1] = crc_calc;
487 			if (wilc_spi_tx(wilc, crc, 2)) {
488 				dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
489 				result = -EINVAL;
490 				break;
491 			}
492 		}
493 
494 		/*
495 		 * No need to wait for response
496 		 */
497 		ix += nbytes;
498 		sz -= nbytes;
499 	} while (sz);
500 
501 	return result;
502 }
503 
504 /********************************************
505  *
506  *      Spi Internal Read/Write Function
507  *
508  ********************************************/
wilc_get_crc7(u8 * buffer,u32 len)509 static u8 wilc_get_crc7(u8 *buffer, u32 len)
510 {
511 	return crc7_be(0xfe, buffer, len) | 0x01;
512 }
513 
wilc_spi_single_read(struct wilc * wilc,u8 cmd,u32 adr,void * b,u8 clockless)514 static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
515 				u8 clockless)
516 {
517 	struct spi_device *spi = to_spi_device(wilc->dev);
518 	struct wilc_spi *spi_priv = wilc->bus_data;
519 	u8 wb[32], rb[32];
520 	int cmd_len, resp_len, i;
521 	u16 crc_calc, crc_recv;
522 	struct wilc_spi_cmd *c;
523 	struct wilc_spi_rsp_data *r;
524 	struct wilc_spi_read_rsp_data *r_data;
525 
526 	memset(wb, 0x0, sizeof(wb));
527 	memset(rb, 0x0, sizeof(rb));
528 	c = (struct wilc_spi_cmd *)wb;
529 	c->cmd_type = cmd;
530 	if (cmd == CMD_SINGLE_READ) {
531 		c->u.simple_cmd.addr[0] = adr >> 16;
532 		c->u.simple_cmd.addr[1] = adr >> 8;
533 		c->u.simple_cmd.addr[2] = adr;
534 	} else if (cmd == CMD_INTERNAL_READ) {
535 		c->u.simple_cmd.addr[0] = adr >> 8;
536 		if (clockless == 1)
537 			c->u.simple_cmd.addr[0] |= BIT(7);
538 		c->u.simple_cmd.addr[1] = adr;
539 		c->u.simple_cmd.addr[2] = 0x0;
540 	} else {
541 		dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
542 		return -EINVAL;
543 	}
544 
545 	cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
546 	resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
547 
548 	if (spi_priv->crc7_enabled) {
549 		c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
550 		cmd_len += 1;
551 		resp_len += 2;
552 	}
553 
554 	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
555 		dev_err(&spi->dev,
556 			"spi buffer size too small (%d) (%d) (%zu)\n",
557 			cmd_len, resp_len, ARRAY_SIZE(wb));
558 		return -EINVAL;
559 	}
560 
561 	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
562 		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
563 		return -EINVAL;
564 	}
565 
566 	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
567 	if (r->rsp_cmd_type != cmd && !clockless) {
568 		if (!spi_priv->probing_crc)
569 			dev_err(&spi->dev,
570 				"Failed cmd, cmd (%02x), resp (%02x)\n",
571 				cmd, r->rsp_cmd_type);
572 		return -EINVAL;
573 	}
574 
575 	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
576 		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
577 			r->status);
578 		return -EINVAL;
579 	}
580 
581 	for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
582 		if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
583 			break;
584 
585 	if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
586 		dev_err(&spi->dev, "Error, data start missing\n");
587 		return -EINVAL;
588 	}
589 
590 	r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
591 
592 	if (b)
593 		memcpy(b, r_data->data, 4);
594 
595 	if (!clockless && spi_priv->crc16_enabled) {
596 		crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
597 		crc_calc = crc_itu_t(0xffff, r_data->data, 4);
598 		if (crc_recv != crc_calc) {
599 			dev_err(&spi->dev, "%s: bad CRC 0x%04x "
600 				"(calculated 0x%04x)\n", __func__,
601 				crc_recv, crc_calc);
602 			return -EINVAL;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
wilc_spi_write_cmd(struct wilc * wilc,u8 cmd,u32 adr,u32 data,u8 clockless)609 static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
610 			      u8 clockless)
611 {
612 	struct spi_device *spi = to_spi_device(wilc->dev);
613 	struct wilc_spi *spi_priv = wilc->bus_data;
614 	u8 wb[32], rb[32];
615 	int cmd_len, resp_len;
616 	struct wilc_spi_cmd *c;
617 	struct wilc_spi_rsp_data *r;
618 
619 	memset(wb, 0x0, sizeof(wb));
620 	memset(rb, 0x0, sizeof(rb));
621 	c = (struct wilc_spi_cmd *)wb;
622 	c->cmd_type = cmd;
623 	if (cmd == CMD_INTERNAL_WRITE) {
624 		c->u.internal_w_cmd.addr[0] = adr >> 8;
625 		if (clockless == 1)
626 			c->u.internal_w_cmd.addr[0] |= BIT(7);
627 
628 		c->u.internal_w_cmd.addr[1] = adr;
629 		c->u.internal_w_cmd.data = cpu_to_be32(data);
630 		cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
631 		if (spi_priv->crc7_enabled)
632 			c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
633 	} else if (cmd == CMD_SINGLE_WRITE) {
634 		c->u.w_cmd.addr[0] = adr >> 16;
635 		c->u.w_cmd.addr[1] = adr >> 8;
636 		c->u.w_cmd.addr[2] = adr;
637 		c->u.w_cmd.data = cpu_to_be32(data);
638 		cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
639 		if (spi_priv->crc7_enabled)
640 			c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
641 	} else {
642 		dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
643 		return -EINVAL;
644 	}
645 
646 	if (spi_priv->crc7_enabled)
647 		cmd_len += 1;
648 
649 	resp_len = sizeof(*r);
650 
651 	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
652 		dev_err(&spi->dev,
653 			"spi buffer size too small (%d) (%d) (%zu)\n",
654 			cmd_len, resp_len, ARRAY_SIZE(wb));
655 		return -EINVAL;
656 	}
657 
658 	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
659 		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
660 		return -EINVAL;
661 	}
662 
663 	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
664 	/*
665 	 * Clockless registers operations might return unexptected responses,
666 	 * even if successful.
667 	 */
668 	if (r->rsp_cmd_type != cmd && !clockless) {
669 		dev_err(&spi->dev,
670 			"Failed cmd response, cmd (%02x), resp (%02x)\n",
671 			cmd, r->rsp_cmd_type);
672 		return -EINVAL;
673 	}
674 
675 	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
676 		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
677 			r->status);
678 		return -EINVAL;
679 	}
680 
681 	return 0;
682 }
683 
wilc_spi_dma_rw(struct wilc * wilc,u8 cmd,u32 adr,u8 * b,u32 sz)684 static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
685 {
686 	struct spi_device *spi = to_spi_device(wilc->dev);
687 	struct wilc_spi *spi_priv = wilc->bus_data;
688 	u16 crc_recv, crc_calc;
689 	u8 wb[32], rb[32];
690 	int cmd_len, resp_len;
691 	int retry, ix = 0;
692 	u8 crc[2];
693 	struct wilc_spi_cmd *c;
694 	struct wilc_spi_rsp_data *r;
695 
696 	memset(wb, 0x0, sizeof(wb));
697 	memset(rb, 0x0, sizeof(rb));
698 	c = (struct wilc_spi_cmd *)wb;
699 	c->cmd_type = cmd;
700 	if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
701 		c->u.dma_cmd.addr[0] = adr >> 16;
702 		c->u.dma_cmd.addr[1] = adr >> 8;
703 		c->u.dma_cmd.addr[2] = adr;
704 		c->u.dma_cmd.size[0] = sz >> 8;
705 		c->u.dma_cmd.size[1] = sz;
706 		cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
707 		if (spi_priv->crc7_enabled)
708 			c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
709 	} else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
710 		c->u.dma_cmd_ext.addr[0] = adr >> 16;
711 		c->u.dma_cmd_ext.addr[1] = adr >> 8;
712 		c->u.dma_cmd_ext.addr[2] = adr;
713 		c->u.dma_cmd_ext.size[0] = sz >> 16;
714 		c->u.dma_cmd_ext.size[1] = sz >> 8;
715 		c->u.dma_cmd_ext.size[2] = sz;
716 		cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
717 		if (spi_priv->crc7_enabled)
718 			c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
719 	} else {
720 		dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
721 			cmd);
722 		return -EINVAL;
723 	}
724 	if (spi_priv->crc7_enabled)
725 		cmd_len += 1;
726 
727 	resp_len = sizeof(*r);
728 
729 	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
730 		dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
731 			cmd_len, resp_len, ARRAY_SIZE(wb));
732 		return -EINVAL;
733 	}
734 
735 	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
736 		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
737 		return -EINVAL;
738 	}
739 
740 	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
741 	if (r->rsp_cmd_type != cmd) {
742 		dev_err(&spi->dev,
743 			"Failed cmd response, cmd (%02x), resp (%02x)\n",
744 			cmd, r->rsp_cmd_type);
745 		return -EINVAL;
746 	}
747 
748 	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
749 		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
750 			r->status);
751 		return -EINVAL;
752 	}
753 
754 	if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
755 		return 0;
756 
757 	while (sz > 0) {
758 		int nbytes;
759 		u8 rsp;
760 
761 		nbytes = min_t(u32, sz, DATA_PKT_SZ);
762 
763 		/*
764 		 * Data Response header
765 		 */
766 		retry = 100;
767 		do {
768 			if (wilc_spi_rx(wilc, &rsp, 1)) {
769 				dev_err(&spi->dev,
770 					"Failed resp read, bus err\n");
771 				return -EINVAL;
772 			}
773 			if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
774 				break;
775 		} while (retry--);
776 
777 		/*
778 		 * Read bytes
779 		 */
780 		if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
781 			dev_err(&spi->dev,
782 				"Failed block read, bus err\n");
783 			return -EINVAL;
784 		}
785 
786 		/*
787 		 * Read CRC
788 		 */
789 		if (spi_priv->crc16_enabled) {
790 			if (wilc_spi_rx(wilc, crc, 2)) {
791 				dev_err(&spi->dev,
792 					"Failed block CRC read, bus err\n");
793 				return -EINVAL;
794 			}
795 			crc_recv = (crc[0] << 8) | crc[1];
796 			crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
797 			if (crc_recv != crc_calc) {
798 				dev_err(&spi->dev, "%s: bad CRC 0x%04x "
799 					"(calculated 0x%04x)\n", __func__,
800 					crc_recv, crc_calc);
801 				return -EINVAL;
802 			}
803 		}
804 
805 		ix += nbytes;
806 		sz -= nbytes;
807 	}
808 	return 0;
809 }
810 
wilc_spi_special_cmd(struct wilc * wilc,u8 cmd)811 static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
812 {
813 	struct spi_device *spi = to_spi_device(wilc->dev);
814 	struct wilc_spi *spi_priv = wilc->bus_data;
815 	u8 wb[32], rb[32];
816 	int cmd_len, resp_len = 0;
817 	struct wilc_spi_cmd *c;
818 	struct wilc_spi_special_cmd_rsp *r;
819 
820 	if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
821 		return -EINVAL;
822 
823 	memset(wb, 0x0, sizeof(wb));
824 	memset(rb, 0x0, sizeof(rb));
825 	c = (struct wilc_spi_cmd *)wb;
826 	c->cmd_type = cmd;
827 
828 	if (cmd == CMD_RESET)
829 		memset(c->u.simple_cmd.addr, 0xFF, 3);
830 
831 	cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
832 	resp_len = sizeof(*r);
833 
834 	if (spi_priv->crc7_enabled) {
835 		c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
836 		cmd_len += 1;
837 	}
838 	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
839 		dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
840 			cmd_len, resp_len, ARRAY_SIZE(wb));
841 		return -EINVAL;
842 	}
843 
844 	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
845 		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
846 		return -EINVAL;
847 	}
848 
849 	r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
850 	if (r->rsp_cmd_type != cmd) {
851 		if (!spi_priv->probing_crc)
852 			dev_err(&spi->dev,
853 				"Failed cmd response, cmd (%02x), resp (%02x)\n",
854 				cmd, r->rsp_cmd_type);
855 		return -EINVAL;
856 	}
857 
858 	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
859 		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
860 			r->status);
861 		return -EINVAL;
862 	}
863 	return 0;
864 }
865 
wilc_spi_reset_cmd_sequence(struct wilc * wl,u8 attempt,u32 addr)866 static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr)
867 {
868 	struct spi_device *spi = to_spi_device(wl->dev);
869 	struct wilc_spi *spi_priv = wl->bus_data;
870 
871 	if (!spi_priv->probing_crc)
872 		dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr);
873 
874 	usleep_range(1000, 1100);
875 	wilc_spi_reset(wl);
876 	usleep_range(1000, 1100);
877 }
878 
wilc_spi_read_reg(struct wilc * wilc,u32 addr,u32 * data)879 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
880 {
881 	struct spi_device *spi = to_spi_device(wilc->dev);
882 	int result;
883 	u8 cmd = CMD_SINGLE_READ;
884 	u8 clockless = 0;
885 	u8 i;
886 
887 	if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
888 		/* Clockless register */
889 		cmd = CMD_INTERNAL_READ;
890 		clockless = 1;
891 	}
892 
893 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
894 		result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
895 		if (!result) {
896 			le32_to_cpus(data);
897 			return 0;
898 		}
899 
900 		/* retry is not applicable for clockless registers */
901 		if (clockless)
902 			break;
903 
904 		dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
905 		wilc_spi_reset_cmd_sequence(wilc, i, addr);
906 	}
907 
908 	return result;
909 }
910 
wilc_spi_read(struct wilc * wilc,u32 addr,u8 * buf,u32 size)911 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
912 {
913 	struct spi_device *spi = to_spi_device(wilc->dev);
914 	int result;
915 	u8 i;
916 
917 	if (size <= 4)
918 		return -EINVAL;
919 
920 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
921 		result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr,
922 					 buf, size);
923 		if (!result)
924 			return 0;
925 
926 		dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
927 
928 		wilc_spi_reset_cmd_sequence(wilc, i, addr);
929 	}
930 
931 	return result;
932 }
933 
spi_internal_write(struct wilc * wilc,u32 adr,u32 dat)934 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
935 {
936 	struct spi_device *spi = to_spi_device(wilc->dev);
937 	int result;
938 	u8 i;
939 
940 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
941 		result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr,
942 					    dat, 0);
943 		if (!result)
944 			return 0;
945 		dev_err(&spi->dev, "Failed internal write cmd...\n");
946 
947 		wilc_spi_reset_cmd_sequence(wilc, i, adr);
948 	}
949 
950 	return result;
951 }
952 
spi_internal_read(struct wilc * wilc,u32 adr,u32 * data)953 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
954 {
955 	struct spi_device *spi = to_spi_device(wilc->dev);
956 	struct wilc_spi *spi_priv = wilc->bus_data;
957 	int result;
958 	u8 i;
959 
960 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
961 		result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr,
962 					      data, 0);
963 		if (!result) {
964 			le32_to_cpus(data);
965 			return 0;
966 		}
967 		if (!spi_priv->probing_crc)
968 			dev_err(&spi->dev, "Failed internal read cmd...\n");
969 
970 		wilc_spi_reset_cmd_sequence(wilc, i, adr);
971 	}
972 
973 	return result;
974 }
975 
976 /********************************************
977  *
978  *      Spi interfaces
979  *
980  ********************************************/
981 
wilc_spi_write_reg(struct wilc * wilc,u32 addr,u32 data)982 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
983 {
984 	struct spi_device *spi = to_spi_device(wilc->dev);
985 	int result;
986 	u8 cmd = CMD_SINGLE_WRITE;
987 	u8 clockless = 0;
988 	u8 i;
989 
990 	if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
991 		/* Clockless register */
992 		cmd = CMD_INTERNAL_WRITE;
993 		clockless = 1;
994 	}
995 
996 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
997 		result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
998 		if (!result)
999 			return 0;
1000 
1001 		dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
1002 
1003 		if (clockless)
1004 			break;
1005 
1006 		wilc_spi_reset_cmd_sequence(wilc, i, addr);
1007 	}
1008 	return result;
1009 }
1010 
spi_data_rsp(struct wilc * wilc,u8 cmd)1011 static int spi_data_rsp(struct wilc *wilc, u8 cmd)
1012 {
1013 	struct spi_device *spi = to_spi_device(wilc->dev);
1014 	int result, i;
1015 	u8 rsp[4];
1016 
1017 	/*
1018 	 * The response to data packets is two bytes long.  For
1019 	 * efficiency's sake, wilc_spi_write() wisely ignores the
1020 	 * responses for all packets but the final one.  The downside
1021 	 * of that optimization is that when the final data packet is
1022 	 * short, we may receive (part of) the response to the
1023 	 * second-to-last packet before the one for the final packet.
1024 	 * To handle this, we always read 4 bytes and then search for
1025 	 * the last byte that contains the "Response Start" code (0xc
1026 	 * in the top 4 bits).  We then know that this byte is the
1027 	 * first response byte of the final data packet.
1028 	 */
1029 	result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
1030 	if (result) {
1031 		dev_err(&spi->dev, "Failed bus error...\n");
1032 		return result;
1033 	}
1034 
1035 	for (i = sizeof(rsp) - 2; i >= 0; --i)
1036 		if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
1037 			break;
1038 
1039 	if (i < 0) {
1040 		dev_err(&spi->dev,
1041 			"Data packet response missing (%02x %02x %02x %02x)\n",
1042 			rsp[0], rsp[1], rsp[2], rsp[3]);
1043 		return -1;
1044 	}
1045 
1046 	/* rsp[i] is the last response start byte */
1047 
1048 	if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
1049 	    || rsp[i + 1] != RSP_STATE_NO_ERROR) {
1050 		dev_err(&spi->dev, "Data response error (%02x %02x)\n",
1051 			rsp[i], rsp[i + 1]);
1052 		return -1;
1053 	}
1054 	return 0;
1055 }
1056 
wilc_spi_write(struct wilc * wilc,u32 addr,u8 * buf,u32 size)1057 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
1058 {
1059 	struct spi_device *spi = to_spi_device(wilc->dev);
1060 	int result;
1061 	u8 i;
1062 
1063 	/*
1064 	 * has to be greated than 4
1065 	 */
1066 	if (size <= 4)
1067 		return -EINVAL;
1068 
1069 	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
1070 		result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr,
1071 					 NULL, size);
1072 		if (result) {
1073 			dev_err(&spi->dev,
1074 				"Failed cmd, write block (%08x)...\n", addr);
1075 			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1076 			continue;
1077 		}
1078 
1079 		/*
1080 		 * Data
1081 		 */
1082 		result = spi_data_write(wilc, buf, size);
1083 		if (result) {
1084 			dev_err(&spi->dev, "Failed block data write...\n");
1085 			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1086 			continue;
1087 		}
1088 
1089 		/*
1090 		 * Data response
1091 		 */
1092 		result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
1093 		if (result) {
1094 			dev_err(&spi->dev, "Failed block data rsp...\n");
1095 			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1096 			continue;
1097 		}
1098 		break;
1099 	}
1100 	return result;
1101 }
1102 
1103 /********************************************
1104  *
1105  *      Bus interfaces
1106  *
1107  ********************************************/
1108 
wilc_spi_reset(struct wilc * wilc)1109 static int wilc_spi_reset(struct wilc *wilc)
1110 {
1111 	struct spi_device *spi = to_spi_device(wilc->dev);
1112 	struct wilc_spi *spi_priv = wilc->bus_data;
1113 	int result;
1114 
1115 	result = wilc_spi_special_cmd(wilc, CMD_RESET);
1116 	if (result && !spi_priv->probing_crc)
1117 		dev_err(&spi->dev, "Failed cmd reset\n");
1118 
1119 	return result;
1120 }
1121 
wilc_spi_is_init(struct wilc * wilc)1122 static bool wilc_spi_is_init(struct wilc *wilc)
1123 {
1124 	struct wilc_spi *spi_priv = wilc->bus_data;
1125 
1126 	return spi_priv->isinit;
1127 }
1128 
wilc_spi_deinit(struct wilc * wilc)1129 static int wilc_spi_deinit(struct wilc *wilc)
1130 {
1131 	struct wilc_spi *spi_priv = wilc->bus_data;
1132 
1133 	spi_priv->isinit = false;
1134 	wilc_wlan_power(wilc, false);
1135 	return 0;
1136 }
1137 
wilc_spi_init(struct wilc * wilc,bool resume)1138 static int wilc_spi_init(struct wilc *wilc, bool resume)
1139 {
1140 	struct wilc_spi *spi_priv = wilc->bus_data;
1141 	int ret;
1142 
1143 	if (spi_priv->isinit) {
1144 		/* Confirm we can read chipid register without error: */
1145 		if (wilc_validate_chipid(wilc) == 0)
1146 			return 0;
1147 	}
1148 
1149 	wilc_wlan_power(wilc, true);
1150 
1151 	ret = wilc_spi_configure_bus_protocol(wilc);
1152 	if (ret) {
1153 		wilc_wlan_power(wilc, false);
1154 		return ret;
1155 	}
1156 
1157 	spi_priv->isinit = true;
1158 
1159 	return 0;
1160 }
1161 
wilc_spi_configure_bus_protocol(struct wilc * wilc)1162 static int wilc_spi_configure_bus_protocol(struct wilc *wilc)
1163 {
1164 	struct spi_device *spi = to_spi_device(wilc->dev);
1165 	struct wilc_spi *spi_priv = wilc->bus_data;
1166 	u32 reg;
1167 	int ret, i;
1168 
1169 	/*
1170 	 * Infer the CRC settings that are currently in effect.  This
1171 	 * is necessary because we can't be sure that the chip has
1172 	 * been RESET (e.g, after module unload and reload).
1173 	 */
1174 	spi_priv->probing_crc = true;
1175 	spi_priv->crc7_enabled = enable_crc7;
1176 	spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
1177 	for (i = 0; i < 2; ++i) {
1178 		ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1179 		if (ret == 0)
1180 			break;
1181 		spi_priv->crc7_enabled = !enable_crc7;
1182 	}
1183 	if (ret) {
1184 		dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
1185 		return ret;
1186 	}
1187 
1188 	/* set up the desired CRC configuration: */
1189 	reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
1190 	if (enable_crc7)
1191 		reg |= PROTOCOL_REG_CRC7_MASK;
1192 	if (enable_crc16)
1193 		reg |= PROTOCOL_REG_CRC16_MASK;
1194 
1195 	/* set up the data packet size: */
1196 	BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
1197 		     || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
1198 	reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
1199 	reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
1200 			  DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
1201 
1202 	/* establish the new setup: */
1203 	ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
1204 	if (ret) {
1205 		dev_err(&spi->dev,
1206 			"[wilc spi %d]: Failed internal write reg\n",
1207 			__LINE__);
1208 		return ret;
1209 	}
1210 	/* update our state to match new protocol settings: */
1211 	spi_priv->crc7_enabled = enable_crc7;
1212 	spi_priv->crc16_enabled = enable_crc16;
1213 
1214 	/* re-read to make sure new settings are in effect: */
1215 	spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1216 
1217 	spi_priv->probing_crc = false;
1218 
1219 	return 0;
1220 }
1221 
wilc_validate_chipid(struct wilc * wilc)1222 static int wilc_validate_chipid(struct wilc *wilc)
1223 {
1224 	struct spi_device *spi = to_spi_device(wilc->dev);
1225 	u32 chipid;
1226 	int ret;
1227 
1228 	/*
1229 	 * make sure can read chip id without protocol error
1230 	 */
1231 	ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1232 	if (ret) {
1233 		dev_err(&spi->dev, "Fail cmd read chip id...\n");
1234 		return ret;
1235 	}
1236 	if (!is_wilc1000(chipid) && !is_wilc3000(chipid)) {
1237 		dev_err(&spi->dev, "Unknown chip id 0x%x\n", chipid);
1238 		return -ENODEV;
1239 	}
1240 	return 0;
1241 }
1242 
wilc_spi_read_size(struct wilc * wilc,u32 * size)1243 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
1244 {
1245 	int ret;
1246 
1247 	ret = spi_internal_read(wilc,
1248 				WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
1249 	*size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
1250 
1251 	return ret;
1252 }
1253 
wilc_spi_read_int(struct wilc * wilc,u32 * int_status)1254 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
1255 {
1256 	return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
1257 				 int_status);
1258 }
1259 
wilc_spi_clear_int_ext(struct wilc * wilc,u32 val)1260 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
1261 {
1262 	int ret;
1263 	int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
1264 	u32 check;
1265 
1266 	while (retry) {
1267 		ret = spi_internal_write(wilc,
1268 					 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1269 					 val);
1270 		if (ret)
1271 			break;
1272 
1273 		ret = spi_internal_read(wilc,
1274 					WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1275 					&check);
1276 		if (ret || ((check & EN_VMM) == (val & EN_VMM)))
1277 			break;
1278 
1279 		retry--;
1280 	}
1281 	return ret;
1282 }
1283 
wilc_spi_sync_ext(struct wilc * wilc,int nint)1284 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1285 {
1286 	struct spi_device *spi = to_spi_device(wilc->dev);
1287 	u32 reg;
1288 	int ret, i;
1289 
1290 	if (nint > MAX_NUM_INT) {
1291 		dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1292 		return -EINVAL;
1293 	}
1294 
1295 	/*
1296 	 * interrupt pin mux select
1297 	 */
1298 	ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1299 	if (ret) {
1300 		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1301 			WILC_PIN_MUX_0);
1302 		return ret;
1303 	}
1304 	reg |= BIT(8);
1305 	ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1306 	if (ret) {
1307 		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1308 			WILC_PIN_MUX_0);
1309 		return ret;
1310 	}
1311 
1312 	/*
1313 	 * interrupt enable
1314 	 */
1315 	ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1316 	if (ret) {
1317 		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1318 			WILC_INTR_ENABLE);
1319 		return ret;
1320 	}
1321 
1322 	for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1323 		reg |= (BIT((27 + i)));
1324 
1325 	ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1326 	if (ret) {
1327 		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1328 			WILC_INTR_ENABLE);
1329 		return ret;
1330 	}
1331 	if (nint) {
1332 		ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1333 		if (ret) {
1334 			dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1335 				WILC_INTR2_ENABLE);
1336 			return ret;
1337 		}
1338 
1339 		for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1340 			reg |= BIT(i);
1341 
1342 		ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
1343 		if (ret) {
1344 			dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1345 				WILC_INTR2_ENABLE);
1346 			return ret;
1347 		}
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 /* Global spi HIF function table */
1354 static const struct wilc_hif_func wilc_hif_spi = {
1355 	.hif_init = wilc_spi_init,
1356 	.hif_deinit = wilc_spi_deinit,
1357 	.hif_read_reg = wilc_spi_read_reg,
1358 	.hif_write_reg = wilc_spi_write_reg,
1359 	.hif_block_rx = wilc_spi_read,
1360 	.hif_block_tx = wilc_spi_write,
1361 	.hif_read_int = wilc_spi_read_int,
1362 	.hif_clear_int_ext = wilc_spi_clear_int_ext,
1363 	.hif_read_size = wilc_spi_read_size,
1364 	.hif_block_tx_ext = wilc_spi_write,
1365 	.hif_block_rx_ext = wilc_spi_read,
1366 	.hif_sync_ext = wilc_spi_sync_ext,
1367 	.hif_reset = wilc_spi_reset,
1368 	.hif_is_init = wilc_spi_is_init,
1369 };
1370