1 //===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that Hexagon uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 15 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 16 17 #include "Hexagon.h" 18 #include "MCTargetDesc/HexagonMCTargetDesc.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/CodeGen/ISDOpcodes.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/ValueTypes.h" 24 #include "llvm/CodeGenTypes/MachineValueType.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include <cstdint> 28 #include <utility> 29 30 namespace llvm { 31 32 namespace HexagonISD { 33 34 enum NodeType : unsigned { 35 OP_BEGIN = ISD::BUILTIN_OP_END, 36 37 CONST32 = OP_BEGIN, 38 CONST32_GP, // For marking data present in GP. 39 ADDC, // Add with carry: (X, Y, Cin) -> (X+Y, Cout). 40 SUBC, // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout). 41 ALLOCA, 42 43 AT_GOT, // Index in GOT. 44 AT_PCREL, // Offset relative to PC. 45 46 CALL, // Function call. 47 CALLnr, // Function call that does not return. 48 CALLR, 49 50 RET_GLUE, // Return with a glue operand. 51 BARRIER, // Memory barrier. 52 JT, // Jump table. 53 CP, // Constant pool. 54 55 COMBINE, 56 VASL, // Vector shifts by a scalar value 57 VASR, 58 VLSR, 59 MFSHL, // Funnel shifts with the shift amount guaranteed to be 60 MFSHR, // within the range of the bit width of the element. 61 62 SSAT, // Signed saturate. 63 USAT, // Unsigned saturate. 64 SMUL_LOHI, // Same as ISD::SMUL_LOHI, but opaque to the combiner. 65 UMUL_LOHI, // Same as ISD::UMUL_LOHI, but opaque to the combiner. 66 // We want to legalize MULH[SU] to [SU]MUL_LOHI, but the 67 // combiner will keep rewriting it back to MULH[SU]. 68 USMUL_LOHI, // Like SMUL_LOHI, but unsigned*signed. 69 70 TSTBIT, 71 INSERT, 72 EXTRACTU, 73 VEXTRACTW, 74 VINSERTW0, 75 VROR, 76 TC_RETURN, 77 EH_RETURN, 78 DCFETCH, 79 READCYCLE, 80 READTIMER, 81 PTRUE, 82 PFALSE, 83 D2P, // Convert 8-byte value to 8-bit predicate register. [*] 84 P2D, // Convert 8-bit predicate register to 8-byte value. [*] 85 V2Q, // Convert HVX vector to a vector predicate reg. [*] 86 Q2V, // Convert vector predicate to an HVX vector. [*] 87 // [*] The equivalence is defined as "Q <=> (V != 0)", 88 // where the != operation compares bytes. 89 // Note: V != 0 is implemented as V >u 0. 90 QCAT, 91 QTRUE, 92 QFALSE, 93 94 TL_EXTEND, // Wrappers for ISD::*_EXTEND and ISD::TRUNCATE to prevent DAG 95 TL_TRUNCATE, // from auto-folding operations, e.g. 96 // (i32 ext (i16 ext i8)) would be folded to (i32 ext i8). 97 // To simplify the type legalization, we want to keep these 98 // single steps separate during type legalization. 99 // TL_[EXTEND|TRUNCATE] Inp, i128 _, i32 Opc 100 // * Inp is the original input to extend/truncate, 101 // * _ is a dummy operand with an illegal type (can be undef), 102 // * Opc is the original opcode. 103 // The legalization process (in Hexagon lowering code) will 104 // first deal with the "real" types (i.e. Inp and the result), 105 // and once all of them are processed, the wrapper node will 106 // be replaced with the original ISD node. The dummy illegal 107 // operand is there to make sure that the legalization hooks 108 // are called again after everything else is legal, giving 109 // us the opportunity to undo the wrapping. 110 111 TYPECAST, // No-op that's used to convert between different legal 112 // types in a register. 113 VALIGN, // Align two vectors (in Op0, Op1) to one that would have 114 // been loaded from address in Op2. 115 VALIGNADDR, // Align vector address: Op0 & -Op1, except when it is 116 // an address in a vector load, then it's a no-op. 117 ISEL, // Marker for nodes that were created during ISel, and 118 // which need explicit selection (would have been left 119 // unselected otherwise). 120 OP_END 121 }; 122 123 } // end namespace HexagonISD 124 125 class HexagonSubtarget; 126 127 class HexagonTargetLowering : public TargetLowering { 128 int VarArgsFrameOffset; // Frame offset to start of varargs area. 129 const HexagonTargetMachine &HTM; 130 const HexagonSubtarget &Subtarget; 131 132 public: 133 explicit HexagonTargetLowering(const TargetMachine &TM, 134 const HexagonSubtarget &ST); 135 136 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 137 /// for tail call optimization. Targets which want to do tail call 138 /// optimization should implement this function. 139 bool IsEligibleForTailCallOptimization(SDValue Callee, 140 CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, 141 bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, 142 const SmallVectorImpl<SDValue> &OutVals, 143 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const; 144 145 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, 146 MachineFunction &MF, 147 unsigned Intrinsic) const override; 148 149 bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 150 bool isTruncateFree(EVT VT1, EVT VT2) const override; 151 isCheapToSpeculateCttz(Type *)152 bool isCheapToSpeculateCttz(Type *) const override { return true; } isCheapToSpeculateCtlz(Type *)153 bool isCheapToSpeculateCtlz(Type *) const override { return true; } isCtlzFast()154 bool isCtlzFast() const override { return true; } 155 156 bool hasBitTest(SDValue X, SDValue Y) const override; 157 158 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; 159 160 /// Return true if an FMA operation is faster than a pair of mul and add 161 /// instructions. fmuladd intrinsics will be expanded to FMAs when this 162 /// method returns true (and FMAs are legal), otherwise fmuladd is 163 /// expanded to mul + add. 164 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &, 165 EVT) const override; 166 167 // Should we expand the build vector with shuffles? 168 bool shouldExpandBuildVectorWithShuffles(EVT VT, 169 unsigned DefinedValues) const override; 170 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 171 unsigned Index) const override; 172 173 bool isTargetCanonicalConstantNode(SDValue Op) const override; 174 175 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 176 LegalizeTypeAction getPreferredVectorAction(MVT VT) const override; 177 LegalizeAction getCustomOperationAction(SDNode &Op) const override; 178 179 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; 180 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, 181 SelectionDAG &DAG) const override; 182 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 183 SelectionDAG &DAG) const override; 184 185 const char *getTargetNodeName(unsigned Opcode) const override; 186 187 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 188 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; 189 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 190 SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 191 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 192 SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 193 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; 194 SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const; 195 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const; 196 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; 197 SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const; 198 SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const; 199 SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const; 200 SDValue LowerLoad(SDValue Op, SelectionDAG &DAG) const; 201 SDValue LowerStore(SDValue Op, SelectionDAG &DAG) const; 202 SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const; 203 SDValue LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const; 204 SDValue LowerUAddSubOCarry(SDValue Op, SelectionDAG &DAG) const; 205 206 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; 207 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const; 208 SDValue LowerFDIV(SDValue Op, SelectionDAG &DAG) const; 209 SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; 210 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const; 211 SDValue LowerREADSTEADYCOUNTER(SDValue Op, SelectionDAG &DAG) const; 212 SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const; 213 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; 214 SDValue 215 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 216 const SmallVectorImpl<ISD::InputArg> &Ins, 217 const SDLoc &dl, SelectionDAG &DAG, 218 SmallVectorImpl<SDValue> &InVals) const override; 219 SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const; 220 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 221 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 222 SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 223 SelectionDAG &DAG) const; 224 SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 225 SelectionDAG &DAG) const; 226 SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 227 SelectionDAG &DAG) const; 228 SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 229 GlobalAddressSDNode *GA, SDValue InGlue, EVT PtrVT, 230 unsigned ReturnReg, unsigned char OperandGlues) const; 231 SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const; 232 233 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, 234 SmallVectorImpl<SDValue> &InVals) const override; 235 SDValue LowerCallResult(SDValue Chain, SDValue InGlue, 236 CallingConv::ID CallConv, bool isVarArg, 237 const SmallVectorImpl<ISD::InputArg> &Ins, 238 const SDLoc &dl, SelectionDAG &DAG, 239 SmallVectorImpl<SDValue> &InVals, 240 const SmallVectorImpl<SDValue> &OutVals, 241 SDValue Callee) const; 242 243 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 244 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const; 245 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 246 SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const; 247 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 248 249 bool CanLowerReturn(CallingConv::ID CallConv, 250 MachineFunction &MF, bool isVarArg, 251 const SmallVectorImpl<ISD::OutputArg> &Outs, 252 LLVMContext &Context) const override; 253 254 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 255 const SmallVectorImpl<ISD::OutputArg> &Outs, 256 const SmallVectorImpl<SDValue> &OutVals, 257 const SDLoc &dl, SelectionDAG &DAG) const override; 258 259 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; 260 261 bool mayBeEmittedAsTailCall(const CallInst *CI) const override; 262 263 Register getRegisterByName(const char* RegName, LLT VT, 264 const MachineFunction &MF) const override; 265 266 /// If a physical register, this returns the register that receives the 267 /// exception address on entry to an EH pad. 268 Register getExceptionPointerRegister(const Constant * PersonalityFn)269 getExceptionPointerRegister(const Constant *PersonalityFn) const override { 270 return Hexagon::R0; 271 } 272 273 /// If a physical register, this returns the register that receives the 274 /// exception typeid on entry to a landing pad. 275 Register getExceptionSelectorRegister(const Constant * PersonalityFn)276 getExceptionSelectorRegister(const Constant *PersonalityFn) const override { 277 return Hexagon::R1; 278 } 279 280 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; 281 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; 282 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 283 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 284 getSetCCResultType(const DataLayout &,LLVMContext & C,EVT VT)285 EVT getSetCCResultType(const DataLayout &, LLVMContext &C, 286 EVT VT) const override { 287 if (!VT.isVector()) 288 return MVT::i1; 289 else 290 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 291 } 292 293 bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, 294 SDValue &Base, SDValue &Offset, 295 ISD::MemIndexedMode &AM, 296 SelectionDAG &DAG) const override; 297 298 ConstraintType getConstraintType(StringRef Constraint) const override; 299 300 std::pair<unsigned, const TargetRegisterClass *> 301 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 302 StringRef Constraint, MVT VT) const override; 303 304 // Intrinsics 305 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 306 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; 307 /// isLegalAddressingMode - Return true if the addressing mode represented 308 /// by AM is legal for this target, for a load/store of the specified type. 309 /// The type may be VoidTy, in which case only return true if the addressing 310 /// mode is legal for a load/store of any legal type. 311 /// TODO: Handle pre/postinc as well. 312 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 313 Type *Ty, unsigned AS, 314 Instruction *I = nullptr) const override; 315 /// Return true if folding a constant offset with the given GlobalAddress 316 /// is legal. It is frequently not legal in PIC relocation models. 317 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; 318 319 bool isFPImmLegal(const APFloat &Imm, EVT VT, 320 bool ForCodeSize) const override; 321 322 /// isLegalICmpImmediate - Return true if the specified immediate is legal 323 /// icmp immediate, that is the target has icmp instructions which can 324 /// compare a register against the immediate without having to materialize 325 /// the immediate into a register. 326 bool isLegalICmpImmediate(int64_t Imm) const override; 327 328 EVT getOptimalMemOpType(const MemOp &Op, 329 const AttributeList &FuncAttributes) const override; 330 331 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, 332 unsigned AddrSpace, Align Alignment, 333 MachineMemOperand::Flags Flags, 334 unsigned *Fast) const override; 335 336 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, 337 Align Alignment, 338 MachineMemOperand::Flags Flags, 339 unsigned *Fast) const override; 340 341 /// Returns relocation base for the given PIC jumptable. 342 SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) 343 const override; 344 345 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, 346 EVT NewVT) const override; 347 348 void AdjustInstrPostInstrSelection(MachineInstr &MI, 349 SDNode *Node) const override; 350 351 // Handling of atomic RMW instructions. 352 Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, 353 AtomicOrdering Ord) const override; 354 Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, 355 AtomicOrdering Ord) const override; 356 AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override; 357 AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override; 358 AtomicExpansionKind 359 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; 360 361 AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst * AI)362 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override { 363 return AtomicExpansionKind::LLSC; 364 } 365 366 private: 367 void initializeHVXLowering(); 368 unsigned getPreferredHvxVectorAction(MVT VecTy) const; 369 unsigned getCustomHvxOperationAction(SDNode &Op) const; 370 371 bool validateConstPtrAlignment(SDValue Ptr, Align NeedAlign, const SDLoc &dl, 372 SelectionDAG &DAG) const; 373 SDValue replaceMemWithUndef(SDValue Op, SelectionDAG &DAG) const; 374 375 std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const; 376 377 bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy, 378 SelectionDAG &DAG, 379 MutableArrayRef<ConstantInt*> Consts) const; 380 SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy, 381 SelectionDAG &DAG) const; 382 SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy, 383 SelectionDAG &DAG) const; 384 SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl, 385 MVT ValTy, MVT ResTy, SelectionDAG &DAG) const; 386 SDValue extractVectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, 387 MVT ValTy, MVT ResTy, SelectionDAG &DAG) const; 388 SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, 389 const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const; 390 SDValue insertVectorPred(SDValue VecV, SDValue ValV, SDValue IdxV, 391 const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const; 392 SDValue expandPredicate(SDValue Vec32, const SDLoc &dl, 393 SelectionDAG &DAG) const; 394 SDValue contractPredicate(SDValue Vec64, const SDLoc &dl, 395 SelectionDAG &DAG) const; 396 SDValue getSplatValue(SDValue Op, SelectionDAG &DAG) const; 397 SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const; 398 SDValue appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG) const; 399 SDValue getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl, MVT ResTy, 400 SelectionDAG &DAG) const; 401 isUndef(SDValue Op)402 bool isUndef(SDValue Op) const { 403 if (Op.isMachineOpcode()) 404 return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF; 405 return Op.getOpcode() == ISD::UNDEF; 406 } getInstr(unsigned MachineOpc,const SDLoc & dl,MVT Ty,ArrayRef<SDValue> Ops,SelectionDAG & DAG)407 SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty, 408 ArrayRef<SDValue> Ops, SelectionDAG &DAG) const { 409 SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops); 410 return SDValue(N, 0); 411 } 412 SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const; 413 414 using VectorPair = std::pair<SDValue, SDValue>; 415 using TypePair = std::pair<MVT, MVT>; 416 417 SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, 418 const SDLoc &dl, SelectionDAG &DAG) const; 419 ty(SDValue Op)420 MVT ty(SDValue Op) const { 421 return Op.getValueType().getSimpleVT(); 422 } ty(const VectorPair & Ops)423 TypePair ty(const VectorPair &Ops) const { 424 return { Ops.first.getValueType().getSimpleVT(), 425 Ops.second.getValueType().getSimpleVT() }; 426 } tyScalar(MVT Ty)427 MVT tyScalar(MVT Ty) const { 428 if (!Ty.isVector()) 429 return Ty; 430 return MVT::getIntegerVT(Ty.getSizeInBits()); 431 } tyVector(MVT Ty,MVT ElemTy)432 MVT tyVector(MVT Ty, MVT ElemTy) const { 433 if (Ty.isVector() && Ty.getVectorElementType() == ElemTy) 434 return Ty; 435 unsigned TyWidth = Ty.getSizeInBits(); 436 unsigned ElemWidth = ElemTy.getSizeInBits(); 437 assert((TyWidth % ElemWidth) == 0); 438 return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth); 439 } 440 441 MVT typeJoin(const TypePair &Tys) const; 442 TypePair typeSplit(MVT Ty) const; 443 MVT typeExtElem(MVT VecTy, unsigned Factor) const; 444 MVT typeTruncElem(MVT VecTy, unsigned Factor) const; 445 TypePair typeExtendToWider(MVT Ty0, MVT Ty1) const; 446 TypePair typeWidenToWider(MVT Ty0, MVT Ty1) const; 447 MVT typeLegalize(MVT Ty, SelectionDAG &DAG) const; 448 MVT typeWidenToHvx(MVT Ty) const; 449 450 SDValue opJoin(const VectorPair &Ops, const SDLoc &dl, 451 SelectionDAG &DAG) const; 452 VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const; 453 SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const; 454 LoHalf(SDValue V,SelectionDAG & DAG)455 SDValue LoHalf(SDValue V, SelectionDAG &DAG) const { 456 MVT Ty = ty(V); 457 const SDLoc &dl(V); 458 if (!Ty.isVector()) { 459 assert(Ty.getSizeInBits() == 64); 460 return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V); 461 } 462 MVT HalfTy = typeSplit(Ty).first; 463 SDValue Idx = getZero(dl, MVT::i32, DAG); 464 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfTy, V, Idx); 465 } HiHalf(SDValue V,SelectionDAG & DAG)466 SDValue HiHalf(SDValue V, SelectionDAG &DAG) const { 467 MVT Ty = ty(V); 468 const SDLoc &dl(V); 469 if (!Ty.isVector()) { 470 assert(Ty.getSizeInBits() == 64); 471 return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V); 472 } 473 MVT HalfTy = typeSplit(Ty).first; 474 SDValue Idx = DAG.getConstant(HalfTy.getVectorNumElements(), dl, MVT::i32); 475 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfTy, V, Idx); 476 } 477 478 bool allowsHvxMemoryAccess(MVT VecTy, MachineMemOperand::Flags Flags, 479 unsigned *Fast) const; 480 bool allowsHvxMisalignedMemoryAccesses(MVT VecTy, 481 MachineMemOperand::Flags Flags, 482 unsigned *Fast) const; 483 void AdjustHvxInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const; 484 485 bool isHvxSingleTy(MVT Ty) const; 486 bool isHvxPairTy(MVT Ty) const; 487 bool isHvxBoolTy(MVT Ty) const; 488 SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy, 489 SelectionDAG &DAG) const; 490 SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const; 491 SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1, 492 ArrayRef<int> Mask, SelectionDAG &DAG) const; 493 494 SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl, 495 MVT VecTy, SelectionDAG &DAG) const; 496 SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl, 497 MVT VecTy, SelectionDAG &DAG) const; 498 SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl, 499 unsigned BitBytes, bool ZeroFill, 500 SelectionDAG &DAG) const; 501 SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl, 502 MVT ResTy, SelectionDAG &DAG) const; 503 SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, 504 MVT ResTy, SelectionDAG &DAG) const; 505 SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV, 506 const SDLoc &dl, SelectionDAG &DAG) const; 507 SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV, 508 const SDLoc &dl, SelectionDAG &DAG) const; 509 SDValue extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, SDValue IdxV, 510 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) 511 const; 512 SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, 513 MVT ResTy, SelectionDAG &DAG) const; 514 SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV, 515 const SDLoc &dl, SelectionDAG &DAG) const; 516 SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV, 517 const SDLoc &dl, SelectionDAG &DAG) const; 518 SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy, 519 bool ZeroExt, SelectionDAG &DAG) const; 520 SDValue compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy, 521 SelectionDAG &DAG) const; 522 SDValue resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, const SDLoc &dl, 523 SelectionDAG &DAG) const; 524 SDValue extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, 525 SelectionDAG &DAG) const; 526 VectorPair emitHvxAddWithOverflow(SDValue A, SDValue B, const SDLoc &dl, 527 bool Signed, SelectionDAG &DAG) const; 528 VectorPair emitHvxShiftRightRnd(SDValue Val, unsigned Amt, bool Signed, 529 SelectionDAG &DAG) const; 530 SDValue emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, 531 SelectionDAG &DAG) const; 532 SDValue emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, bool SignedB, 533 const SDLoc &dl, SelectionDAG &DAG) const; 534 SDValue emitHvxMulLoHiV62(SDValue A, bool SignedA, SDValue B, bool SignedB, 535 const SDLoc &dl, SelectionDAG &DAG) const; 536 537 SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const; 538 SDValue LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) const; 539 SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const; 540 SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const; 541 SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const; 542 SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const; 543 SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const; 544 SDValue LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const; 545 SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const; 546 SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const; 547 SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const; 548 SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const; 549 SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const; 550 SDValue LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const; 551 SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const; 552 SDValue LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const; 553 SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const; 554 SDValue LowerHvxFunnelShift(SDValue Op, SelectionDAG &DAG) const; 555 SDValue LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const; 556 SDValue LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const; 557 SDValue LowerHvxFpExtend(SDValue Op, SelectionDAG &DAG) const; 558 SDValue LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const; 559 SDValue LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const; 560 SDValue ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const; 561 SDValue ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const; 562 563 VectorPair SplitVectorOp(SDValue Op, SelectionDAG &DAG) const; 564 565 SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const; 566 SDValue WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const; 567 SDValue WidenHvxStore(SDValue Op, SelectionDAG &DAG) const; 568 SDValue WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const; 569 SDValue LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const; 570 SDValue ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) const; 571 SDValue EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) const; 572 573 SDValue CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const; 574 SDValue RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const; 575 576 std::pair<const TargetRegisterClass*, uint8_t> 577 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) 578 const override; 579 580 bool shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const; 581 bool shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const; 582 bool isHvxOperation(SDNode *N, SelectionDAG &DAG) const; 583 SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const; 584 void LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, 585 SelectionDAG &DAG) const; 586 void ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 587 SelectionDAG &DAG) const; 588 589 SDValue combineTruncateBeforeLegal(SDValue Op, DAGCombinerInfo &DCI) const; 590 SDValue combineConcatVectorsBeforeLegal(SDValue Op, DAGCombinerInfo & DCI) 591 const; 592 SDValue combineVectorShuffleBeforeLegal(SDValue Op, DAGCombinerInfo & DCI) 593 const; 594 595 SDValue PerformHvxDAGCombine(SDNode * N, DAGCombinerInfo & DCI) const; 596 }; 597 598 } // end namespace llvm 599 600 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 601