1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Stack.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Overload.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/SemaCUDA.h"
37 #include "clang/Sema/SemaInternal.h"
38 #include "clang/Sema/Template.h"
39 #include "clang/Sema/TemplateDeduction.h"
40 #include "llvm/ADT/BitVector.h"
41 #include "llvm/ADT/SmallBitVector.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/StringExtras.h"
44
45 #include <iterator>
46 #include <optional>
47 using namespace clang;
48 using namespace sema;
49
50 // Exported for use by Parser.
51 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)52 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
53 unsigned N) {
54 if (!N) return SourceRange();
55 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
56 }
57
getTemplateDepth(Scope * S) const58 unsigned Sema::getTemplateDepth(Scope *S) const {
59 unsigned Depth = 0;
60
61 // Each template parameter scope represents one level of template parameter
62 // depth.
63 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
64 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
65 ++Depth;
66 }
67
68 // Note that there are template parameters with the given depth.
69 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
70
71 // Look for parameters of an enclosing generic lambda. We don't create a
72 // template parameter scope for these.
73 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
74 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
75 if (!LSI->TemplateParams.empty()) {
76 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
77 break;
78 }
79 if (LSI->GLTemplateParameterList) {
80 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
81 break;
82 }
83 }
84 }
85
86 // Look for parameters of an enclosing terse function template. We don't
87 // create a template parameter scope for these either.
88 for (const InventedTemplateParameterInfo &Info :
89 getInventedParameterInfos()) {
90 if (!Info.TemplateParams.empty()) {
91 ParamsAtDepth(Info.AutoTemplateParameterDepth);
92 break;
93 }
94 }
95
96 return Depth;
97 }
98
99 /// \brief Determine whether the declaration found is acceptable as the name
100 /// of a template and, if so, return that template declaration. Otherwise,
101 /// returns null.
102 ///
103 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
104 /// is true. In all other cases it will return a TemplateDecl (or null).
getAsTemplateNameDecl(NamedDecl * D,bool AllowFunctionTemplates,bool AllowDependent)105 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
106 bool AllowFunctionTemplates,
107 bool AllowDependent) {
108 D = D->getUnderlyingDecl();
109
110 if (isa<TemplateDecl>(D)) {
111 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
112 return nullptr;
113
114 return D;
115 }
116
117 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
118 // C++ [temp.local]p1:
119 // Like normal (non-template) classes, class templates have an
120 // injected-class-name (Clause 9). The injected-class-name
121 // can be used with or without a template-argument-list. When
122 // it is used without a template-argument-list, it is
123 // equivalent to the injected-class-name followed by the
124 // template-parameters of the class template enclosed in
125 // <>. When it is used with a template-argument-list, it
126 // refers to the specified class template specialization,
127 // which could be the current specialization or another
128 // specialization.
129 if (Record->isInjectedClassName()) {
130 Record = cast<CXXRecordDecl>(Record->getDeclContext());
131 if (Record->getDescribedClassTemplate())
132 return Record->getDescribedClassTemplate();
133
134 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
135 return Spec->getSpecializedTemplate();
136 }
137
138 return nullptr;
139 }
140
141 // 'using Dependent::foo;' can resolve to a template name.
142 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
143 // injected-class-name).
144 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
145 return D;
146
147 return nullptr;
148 }
149
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent)150 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
151 bool AllowFunctionTemplates,
152 bool AllowDependent) {
153 LookupResult::Filter filter = R.makeFilter();
154 while (filter.hasNext()) {
155 NamedDecl *Orig = filter.next();
156 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
157 filter.erase();
158 }
159 filter.done();
160 }
161
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent,bool AllowNonTemplateFunctions)162 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
163 bool AllowFunctionTemplates,
164 bool AllowDependent,
165 bool AllowNonTemplateFunctions) {
166 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
167 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
168 return true;
169 if (AllowNonTemplateFunctions &&
170 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
171 return true;
172 }
173
174 return false;
175 }
176
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,const UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization,bool Disambiguation)177 TemplateNameKind Sema::isTemplateName(Scope *S,
178 CXXScopeSpec &SS,
179 bool hasTemplateKeyword,
180 const UnqualifiedId &Name,
181 ParsedType ObjectTypePtr,
182 bool EnteringContext,
183 TemplateTy &TemplateResult,
184 bool &MemberOfUnknownSpecialization,
185 bool Disambiguation) {
186 assert(getLangOpts().CPlusPlus && "No template names in C!");
187
188 DeclarationName TName;
189 MemberOfUnknownSpecialization = false;
190
191 switch (Name.getKind()) {
192 case UnqualifiedIdKind::IK_Identifier:
193 TName = DeclarationName(Name.Identifier);
194 break;
195
196 case UnqualifiedIdKind::IK_OperatorFunctionId:
197 TName = Context.DeclarationNames.getCXXOperatorName(
198 Name.OperatorFunctionId.Operator);
199 break;
200
201 case UnqualifiedIdKind::IK_LiteralOperatorId:
202 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
203 break;
204
205 default:
206 return TNK_Non_template;
207 }
208
209 QualType ObjectType = ObjectTypePtr.get();
210
211 AssumedTemplateKind AssumedTemplate;
212 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
213 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
214 /*RequiredTemplate=*/SourceLocation(),
215 &AssumedTemplate,
216 /*AllowTypoCorrection=*/!Disambiguation))
217 return TNK_Non_template;
218 MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation();
219
220 if (AssumedTemplate != AssumedTemplateKind::None) {
221 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
222 // Let the parser know whether we found nothing or found functions; if we
223 // found nothing, we want to more carefully check whether this is actually
224 // a function template name versus some other kind of undeclared identifier.
225 return AssumedTemplate == AssumedTemplateKind::FoundNothing
226 ? TNK_Undeclared_template
227 : TNK_Function_template;
228 }
229
230 if (R.empty())
231 return TNK_Non_template;
232
233 NamedDecl *D = nullptr;
234 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
235 if (R.isAmbiguous()) {
236 // If we got an ambiguity involving a non-function template, treat this
237 // as a template name, and pick an arbitrary template for error recovery.
238 bool AnyFunctionTemplates = false;
239 for (NamedDecl *FoundD : R) {
240 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
241 if (isa<FunctionTemplateDecl>(FoundTemplate))
242 AnyFunctionTemplates = true;
243 else {
244 D = FoundTemplate;
245 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
246 break;
247 }
248 }
249 }
250
251 // If we didn't find any templates at all, this isn't a template name.
252 // Leave the ambiguity for a later lookup to diagnose.
253 if (!D && !AnyFunctionTemplates) {
254 R.suppressDiagnostics();
255 return TNK_Non_template;
256 }
257
258 // If the only templates were function templates, filter out the rest.
259 // We'll diagnose the ambiguity later.
260 if (!D)
261 FilterAcceptableTemplateNames(R);
262 }
263
264 // At this point, we have either picked a single template name declaration D
265 // or we have a non-empty set of results R containing either one template name
266 // declaration or a set of function templates.
267
268 TemplateName Template;
269 TemplateNameKind TemplateKind;
270
271 unsigned ResultCount = R.end() - R.begin();
272 if (!D && ResultCount > 1) {
273 // We assume that we'll preserve the qualifier from a function
274 // template name in other ways.
275 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
276 TemplateKind = TNK_Function_template;
277
278 // We'll do this lookup again later.
279 R.suppressDiagnostics();
280 } else {
281 if (!D) {
282 D = getAsTemplateNameDecl(*R.begin());
283 assert(D && "unambiguous result is not a template name");
284 }
285
286 if (isa<UnresolvedUsingValueDecl>(D)) {
287 // We don't yet know whether this is a template-name or not.
288 MemberOfUnknownSpecialization = true;
289 return TNK_Non_template;
290 }
291
292 TemplateDecl *TD = cast<TemplateDecl>(D);
293 Template =
294 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
295 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
296 if (!SS.isInvalid()) {
297 NestedNameSpecifier *Qualifier = SS.getScopeRep();
298 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
299 Template);
300 }
301
302 if (isa<FunctionTemplateDecl>(TD)) {
303 TemplateKind = TNK_Function_template;
304
305 // We'll do this lookup again later.
306 R.suppressDiagnostics();
307 } else {
308 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
309 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
310 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
311 TemplateKind =
312 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
313 isa<ConceptDecl>(TD) ? TNK_Concept_template :
314 TNK_Type_template;
315 }
316 }
317
318 TemplateResult = TemplateTy::make(Template);
319 return TemplateKind;
320 }
321
isDeductionGuideName(Scope * S,const IdentifierInfo & Name,SourceLocation NameLoc,CXXScopeSpec & SS,ParsedTemplateTy * Template)322 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
323 SourceLocation NameLoc, CXXScopeSpec &SS,
324 ParsedTemplateTy *Template /*=nullptr*/) {
325 // We could use redeclaration lookup here, but we don't need to: the
326 // syntactic form of a deduction guide is enough to identify it even
327 // if we can't look up the template name at all.
328 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
329 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
330 /*EnteringContext*/ false))
331 return false;
332
333 if (R.empty()) return false;
334 if (R.isAmbiguous()) {
335 // FIXME: Diagnose an ambiguity if we find at least one template.
336 R.suppressDiagnostics();
337 return false;
338 }
339
340 // We only treat template-names that name type templates as valid deduction
341 // guide names.
342 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343 if (!TD || !getAsTypeTemplateDecl(TD))
344 return false;
345
346 if (Template) {
347 TemplateName Name = Context.getQualifiedTemplateName(
348 SS.getScopeRep(), /*TemplateKeyword=*/false, TemplateName(TD));
349 *Template = TemplateTy::make(Name);
350 }
351 return true;
352 }
353
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)354 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
355 SourceLocation IILoc,
356 Scope *S,
357 const CXXScopeSpec *SS,
358 TemplateTy &SuggestedTemplate,
359 TemplateNameKind &SuggestedKind) {
360 // We can't recover unless there's a dependent scope specifier preceding the
361 // template name.
362 // FIXME: Typo correction?
363 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
364 computeDeclContext(*SS))
365 return false;
366
367 // The code is missing a 'template' keyword prior to the dependent template
368 // name.
369 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
370 Diag(IILoc, diag::err_template_kw_missing)
371 << Qualifier << II.getName()
372 << FixItHint::CreateInsertion(IILoc, "template ");
373 SuggestedTemplate
374 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
375 SuggestedKind = TNK_Dependent_template_name;
376 return true;
377 }
378
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,RequiredTemplateKind RequiredTemplate,AssumedTemplateKind * ATK,bool AllowTypoCorrection)379 bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS,
380 QualType ObjectType, bool EnteringContext,
381 RequiredTemplateKind RequiredTemplate,
382 AssumedTemplateKind *ATK,
383 bool AllowTypoCorrection) {
384 if (ATK)
385 *ATK = AssumedTemplateKind::None;
386
387 if (SS.isInvalid())
388 return true;
389
390 Found.setTemplateNameLookup(true);
391
392 // Determine where to perform name lookup
393 DeclContext *LookupCtx = nullptr;
394 bool IsDependent = false;
395 if (!ObjectType.isNull()) {
396 // This nested-name-specifier occurs in a member access expression, e.g.,
397 // x->B::f, and we are looking into the type of the object.
398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
399 LookupCtx = computeDeclContext(ObjectType);
400 IsDependent = !LookupCtx && ObjectType->isDependentType();
401 assert((IsDependent || !ObjectType->isIncompleteType() ||
402 !ObjectType->getAs<TagType>() ||
403 ObjectType->castAs<TagType>()->isBeingDefined()) &&
404 "Caller should have completed object type");
405
406 // Template names cannot appear inside an Objective-C class or object type
407 // or a vector type.
408 //
409 // FIXME: This is wrong. For example:
410 //
411 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
412 // Vec<int> vi;
413 // vi.Vec<int>::~Vec<int>();
414 //
415 // ... should be accepted but we will not treat 'Vec' as a template name
416 // here. The right thing to do would be to check if the name is a valid
417 // vector component name, and look up a template name if not. And similarly
418 // for lookups into Objective-C class and object types, where the same
419 // problem can arise.
420 if (ObjectType->isObjCObjectOrInterfaceType() ||
421 ObjectType->isVectorType()) {
422 Found.clear();
423 return false;
424 }
425 } else if (SS.isNotEmpty()) {
426 // This nested-name-specifier occurs after another nested-name-specifier,
427 // so long into the context associated with the prior nested-name-specifier.
428 LookupCtx = computeDeclContext(SS, EnteringContext);
429 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
430
431 // The declaration context must be complete.
432 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
433 return true;
434 }
435
436 bool ObjectTypeSearchedInScope = false;
437 bool AllowFunctionTemplatesInLookup = true;
438 if (LookupCtx) {
439 // Perform "qualified" name lookup into the declaration context we
440 // computed, which is either the type of the base of a member access
441 // expression or the declaration context associated with a prior
442 // nested-name-specifier.
443 LookupQualifiedName(Found, LookupCtx);
444
445 // FIXME: The C++ standard does not clearly specify what happens in the
446 // case where the object type is dependent, and implementations vary. In
447 // Clang, we treat a name after a . or -> as a template-name if lookup
448 // finds a non-dependent member or member of the current instantiation that
449 // is a type template, or finds no such members and lookup in the context
450 // of the postfix-expression finds a type template. In the latter case, the
451 // name is nonetheless dependent, and we may resolve it to a member of an
452 // unknown specialization when we come to instantiate the template.
453 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
454 }
455
456 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
457 // C++ [basic.lookup.classref]p1:
458 // In a class member access expression (5.2.5), if the . or -> token is
459 // immediately followed by an identifier followed by a <, the
460 // identifier must be looked up to determine whether the < is the
461 // beginning of a template argument list (14.2) or a less-than operator.
462 // The identifier is first looked up in the class of the object
463 // expression. If the identifier is not found, it is then looked up in
464 // the context of the entire postfix-expression and shall name a class
465 // template.
466 if (S)
467 LookupName(Found, S);
468
469 if (!ObjectType.isNull()) {
470 // FIXME: We should filter out all non-type templates here, particularly
471 // variable templates and concepts. But the exclusion of alias templates
472 // and template template parameters is a wording defect.
473 AllowFunctionTemplatesInLookup = false;
474 ObjectTypeSearchedInScope = true;
475 }
476
477 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
478 }
479
480 if (Found.isAmbiguous())
481 return false;
482
483 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
484 !RequiredTemplate.hasTemplateKeyword()) {
485 // C++2a [temp.names]p2:
486 // A name is also considered to refer to a template if it is an
487 // unqualified-id followed by a < and name lookup finds either one or more
488 // functions or finds nothing.
489 //
490 // To keep our behavior consistent, we apply the "finds nothing" part in
491 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
492 // successfully form a call to an undeclared template-id.
493 bool AllFunctions =
494 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
495 return isa<FunctionDecl>(ND->getUnderlyingDecl());
496 });
497 if (AllFunctions || (Found.empty() && !IsDependent)) {
498 // If lookup found any functions, or if this is a name that can only be
499 // used for a function, then strongly assume this is a function
500 // template-id.
501 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
502 ? AssumedTemplateKind::FoundNothing
503 : AssumedTemplateKind::FoundFunctions;
504 Found.clear();
505 return false;
506 }
507 }
508
509 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
510 // If we did not find any names, and this is not a disambiguation, attempt
511 // to correct any typos.
512 DeclarationName Name = Found.getLookupName();
513 Found.clear();
514 // Simple filter callback that, for keywords, only accepts the C++ *_cast
515 DefaultFilterCCC FilterCCC{};
516 FilterCCC.WantTypeSpecifiers = false;
517 FilterCCC.WantExpressionKeywords = false;
518 FilterCCC.WantRemainingKeywords = false;
519 FilterCCC.WantCXXNamedCasts = true;
520 if (TypoCorrection Corrected =
521 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
522 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
523 if (auto *ND = Corrected.getFoundDecl())
524 Found.addDecl(ND);
525 FilterAcceptableTemplateNames(Found);
526 if (Found.isAmbiguous()) {
527 Found.clear();
528 } else if (!Found.empty()) {
529 Found.setLookupName(Corrected.getCorrection());
530 if (LookupCtx) {
531 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
532 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
533 Name.getAsString() == CorrectedStr;
534 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
535 << Name << LookupCtx << DroppedSpecifier
536 << SS.getRange());
537 } else {
538 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
539 }
540 }
541 }
542 }
543
544 NamedDecl *ExampleLookupResult =
545 Found.empty() ? nullptr : Found.getRepresentativeDecl();
546 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
547 if (Found.empty()) {
548 if (IsDependent) {
549 Found.setNotFoundInCurrentInstantiation();
550 return false;
551 }
552
553 // If a 'template' keyword was used, a lookup that finds only non-template
554 // names is an error.
555 if (ExampleLookupResult && RequiredTemplate) {
556 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
557 << Found.getLookupName() << SS.getRange()
558 << RequiredTemplate.hasTemplateKeyword()
559 << RequiredTemplate.getTemplateKeywordLoc();
560 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
561 diag::note_template_kw_refers_to_non_template)
562 << Found.getLookupName();
563 return true;
564 }
565
566 return false;
567 }
568
569 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
570 !getLangOpts().CPlusPlus11) {
571 // C++03 [basic.lookup.classref]p1:
572 // [...] If the lookup in the class of the object expression finds a
573 // template, the name is also looked up in the context of the entire
574 // postfix-expression and [...]
575 //
576 // Note: C++11 does not perform this second lookup.
577 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
578 LookupOrdinaryName);
579 FoundOuter.setTemplateNameLookup(true);
580 LookupName(FoundOuter, S);
581 // FIXME: We silently accept an ambiguous lookup here, in violation of
582 // [basic.lookup]/1.
583 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
584
585 NamedDecl *OuterTemplate;
586 if (FoundOuter.empty()) {
587 // - if the name is not found, the name found in the class of the
588 // object expression is used, otherwise
589 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
590 !(OuterTemplate =
591 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
592 // - if the name is found in the context of the entire
593 // postfix-expression and does not name a class template, the name
594 // found in the class of the object expression is used, otherwise
595 FoundOuter.clear();
596 } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
597 // - if the name found is a class template, it must refer to the same
598 // entity as the one found in the class of the object expression,
599 // otherwise the program is ill-formed.
600 if (!Found.isSingleResult() ||
601 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
602 OuterTemplate->getCanonicalDecl()) {
603 Diag(Found.getNameLoc(),
604 diag::ext_nested_name_member_ref_lookup_ambiguous)
605 << Found.getLookupName()
606 << ObjectType;
607 Diag(Found.getRepresentativeDecl()->getLocation(),
608 diag::note_ambig_member_ref_object_type)
609 << ObjectType;
610 Diag(FoundOuter.getFoundDecl()->getLocation(),
611 diag::note_ambig_member_ref_scope);
612
613 // Recover by taking the template that we found in the object
614 // expression's type.
615 }
616 }
617 }
618
619 return false;
620 }
621
diagnoseExprIntendedAsTemplateName(Scope * S,ExprResult TemplateName,SourceLocation Less,SourceLocation Greater)622 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
623 SourceLocation Less,
624 SourceLocation Greater) {
625 if (TemplateName.isInvalid())
626 return;
627
628 DeclarationNameInfo NameInfo;
629 CXXScopeSpec SS;
630 LookupNameKind LookupKind;
631
632 DeclContext *LookupCtx = nullptr;
633 NamedDecl *Found = nullptr;
634 bool MissingTemplateKeyword = false;
635
636 // Figure out what name we looked up.
637 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
638 NameInfo = DRE->getNameInfo();
639 SS.Adopt(DRE->getQualifierLoc());
640 LookupKind = LookupOrdinaryName;
641 Found = DRE->getFoundDecl();
642 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
643 NameInfo = ME->getMemberNameInfo();
644 SS.Adopt(ME->getQualifierLoc());
645 LookupKind = LookupMemberName;
646 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
647 Found = ME->getMemberDecl();
648 } else if (auto *DSDRE =
649 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
650 NameInfo = DSDRE->getNameInfo();
651 SS.Adopt(DSDRE->getQualifierLoc());
652 MissingTemplateKeyword = true;
653 } else if (auto *DSME =
654 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
655 NameInfo = DSME->getMemberNameInfo();
656 SS.Adopt(DSME->getQualifierLoc());
657 MissingTemplateKeyword = true;
658 } else {
659 llvm_unreachable("unexpected kind of potential template name");
660 }
661
662 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
663 // was missing.
664 if (MissingTemplateKeyword) {
665 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
666 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
667 return;
668 }
669
670 // Try to correct the name by looking for templates and C++ named casts.
671 struct TemplateCandidateFilter : CorrectionCandidateCallback {
672 Sema &S;
673 TemplateCandidateFilter(Sema &S) : S(S) {
674 WantTypeSpecifiers = false;
675 WantExpressionKeywords = false;
676 WantRemainingKeywords = false;
677 WantCXXNamedCasts = true;
678 };
679 bool ValidateCandidate(const TypoCorrection &Candidate) override {
680 if (auto *ND = Candidate.getCorrectionDecl())
681 return S.getAsTemplateNameDecl(ND);
682 return Candidate.isKeyword();
683 }
684
685 std::unique_ptr<CorrectionCandidateCallback> clone() override {
686 return std::make_unique<TemplateCandidateFilter>(*this);
687 }
688 };
689
690 DeclarationName Name = NameInfo.getName();
691 TemplateCandidateFilter CCC(*this);
692 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
693 CTK_ErrorRecovery, LookupCtx)) {
694 auto *ND = Corrected.getFoundDecl();
695 if (ND)
696 ND = getAsTemplateNameDecl(ND);
697 if (ND || Corrected.isKeyword()) {
698 if (LookupCtx) {
699 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
700 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
701 Name.getAsString() == CorrectedStr;
702 diagnoseTypo(Corrected,
703 PDiag(diag::err_non_template_in_member_template_id_suggest)
704 << Name << LookupCtx << DroppedSpecifier
705 << SS.getRange(), false);
706 } else {
707 diagnoseTypo(Corrected,
708 PDiag(diag::err_non_template_in_template_id_suggest)
709 << Name, false);
710 }
711 if (Found)
712 Diag(Found->getLocation(),
713 diag::note_non_template_in_template_id_found);
714 return;
715 }
716 }
717
718 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
719 << Name << SourceRange(Less, Greater);
720 if (Found)
721 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
722 }
723
724 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)725 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
726 SourceLocation TemplateKWLoc,
727 const DeclarationNameInfo &NameInfo,
728 bool isAddressOfOperand,
729 const TemplateArgumentListInfo *TemplateArgs) {
730 if (SS.isEmpty()) {
731 // FIXME: This codepath is only used by dependent unqualified names
732 // (e.g. a dependent conversion-function-id, or operator= once we support
733 // it). It doesn't quite do the right thing, and it will silently fail if
734 // getCurrentThisType() returns null.
735 QualType ThisType = getCurrentThisType();
736 if (ThisType.isNull())
737 return ExprError();
738
739 return CXXDependentScopeMemberExpr::Create(
740 Context, /*Base=*/nullptr, ThisType,
741 /*IsArrow=*/!Context.getLangOpts().HLSL,
742 /*OperatorLoc=*/SourceLocation(),
743 /*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc,
744 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
745 }
746 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
747 }
748
749 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)750 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
751 SourceLocation TemplateKWLoc,
752 const DeclarationNameInfo &NameInfo,
753 const TemplateArgumentListInfo *TemplateArgs) {
754 // DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc
755 if (!SS.isValid())
756 return CreateRecoveryExpr(
757 SS.getBeginLoc(),
758 TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), {});
759
760 return DependentScopeDeclRefExpr::Create(
761 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
762 TemplateArgs);
763 }
764
DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,NamedDecl * Instantiation,bool InstantiatedFromMember,const NamedDecl * Pattern,const NamedDecl * PatternDef,TemplateSpecializationKind TSK,bool Complain)765 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
766 NamedDecl *Instantiation,
767 bool InstantiatedFromMember,
768 const NamedDecl *Pattern,
769 const NamedDecl *PatternDef,
770 TemplateSpecializationKind TSK,
771 bool Complain /*= true*/) {
772 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
773 isa<VarDecl>(Instantiation));
774
775 bool IsEntityBeingDefined = false;
776 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
777 IsEntityBeingDefined = TD->isBeingDefined();
778
779 if (PatternDef && !IsEntityBeingDefined) {
780 NamedDecl *SuggestedDef = nullptr;
781 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
782 &SuggestedDef,
783 /*OnlyNeedComplete*/ false)) {
784 // If we're allowed to diagnose this and recover, do so.
785 bool Recover = Complain && !isSFINAEContext();
786 if (Complain)
787 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
788 Sema::MissingImportKind::Definition, Recover);
789 return !Recover;
790 }
791 return false;
792 }
793
794 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
795 return true;
796
797 QualType InstantiationTy;
798 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
799 InstantiationTy = Context.getTypeDeclType(TD);
800 if (PatternDef) {
801 Diag(PointOfInstantiation,
802 diag::err_template_instantiate_within_definition)
803 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
804 << InstantiationTy;
805 // Not much point in noting the template declaration here, since
806 // we're lexically inside it.
807 Instantiation->setInvalidDecl();
808 } else if (InstantiatedFromMember) {
809 if (isa<FunctionDecl>(Instantiation)) {
810 Diag(PointOfInstantiation,
811 diag::err_explicit_instantiation_undefined_member)
812 << /*member function*/ 1 << Instantiation->getDeclName()
813 << Instantiation->getDeclContext();
814 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
815 } else {
816 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
817 Diag(PointOfInstantiation,
818 diag::err_implicit_instantiate_member_undefined)
819 << InstantiationTy;
820 Diag(Pattern->getLocation(), diag::note_member_declared_at);
821 }
822 } else {
823 if (isa<FunctionDecl>(Instantiation)) {
824 Diag(PointOfInstantiation,
825 diag::err_explicit_instantiation_undefined_func_template)
826 << Pattern;
827 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
828 } else if (isa<TagDecl>(Instantiation)) {
829 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
830 << (TSK != TSK_ImplicitInstantiation)
831 << InstantiationTy;
832 NoteTemplateLocation(*Pattern);
833 } else {
834 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
835 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
836 Diag(PointOfInstantiation,
837 diag::err_explicit_instantiation_undefined_var_template)
838 << Instantiation;
839 Instantiation->setInvalidDecl();
840 } else
841 Diag(PointOfInstantiation,
842 diag::err_explicit_instantiation_undefined_member)
843 << /*static data member*/ 2 << Instantiation->getDeclName()
844 << Instantiation->getDeclContext();
845 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
846 }
847 }
848
849 // In general, Instantiation isn't marked invalid to get more than one
850 // error for multiple undefined instantiations. But the code that does
851 // explicit declaration -> explicit definition conversion can't handle
852 // invalid declarations, so mark as invalid in that case.
853 if (TSK == TSK_ExplicitInstantiationDeclaration)
854 Instantiation->setInvalidDecl();
855 return true;
856 }
857
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl,bool SupportedForCompatibility)858 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl,
859 bool SupportedForCompatibility) {
860 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
861
862 // C++23 [temp.local]p6:
863 // The name of a template-parameter shall not be bound to any following.
864 // declaration whose locus is contained by the scope to which the
865 // template-parameter belongs.
866 //
867 // When MSVC compatibility is enabled, the diagnostic is always a warning
868 // by default. Otherwise, it an error unless SupportedForCompatibility is
869 // true, in which case it is a default-to-error warning.
870 unsigned DiagId =
871 getLangOpts().MSVCCompat
872 ? diag::ext_template_param_shadow
873 : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow
874 : diag::err_template_param_shadow);
875 const auto *ND = cast<NamedDecl>(PrevDecl);
876 Diag(Loc, DiagId) << ND->getDeclName();
877 NoteTemplateParameterLocation(*ND);
878 }
879
AdjustDeclIfTemplate(Decl * & D)880 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
881 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
882 D = Temp->getTemplatedDecl();
883 return Temp;
884 }
885 return nullptr;
886 }
887
getTemplatePackExpansion(SourceLocation EllipsisLoc) const888 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
889 SourceLocation EllipsisLoc) const {
890 assert(Kind == Template &&
891 "Only template template arguments can be pack expansions here");
892 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
893 "Template template argument pack expansion without packs");
894 ParsedTemplateArgument Result(*this);
895 Result.EllipsisLoc = EllipsisLoc;
896 return Result;
897 }
898
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)899 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
900 const ParsedTemplateArgument &Arg) {
901
902 switch (Arg.getKind()) {
903 case ParsedTemplateArgument::Type: {
904 TypeSourceInfo *DI;
905 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
906 if (!DI)
907 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
908 return TemplateArgumentLoc(TemplateArgument(T), DI);
909 }
910
911 case ParsedTemplateArgument::NonType: {
912 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
913 return TemplateArgumentLoc(TemplateArgument(E), E);
914 }
915
916 case ParsedTemplateArgument::Template: {
917 TemplateName Template = Arg.getAsTemplate().get();
918 TemplateArgument TArg;
919 if (Arg.getEllipsisLoc().isValid())
920 TArg = TemplateArgument(Template, std::optional<unsigned int>());
921 else
922 TArg = Template;
923 return TemplateArgumentLoc(
924 SemaRef.Context, TArg,
925 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
926 Arg.getLocation(), Arg.getEllipsisLoc());
927 }
928 }
929
930 llvm_unreachable("Unhandled parsed template argument");
931 }
932
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)933 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
934 TemplateArgumentListInfo &TemplateArgs) {
935 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
936 TemplateArgs.addArgument(translateTemplateArgument(*this,
937 TemplateArgsIn[I]));
938 }
939
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,const IdentifierInfo * Name)940 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
941 SourceLocation Loc,
942 const IdentifierInfo *Name) {
943 NamedDecl *PrevDecl =
944 SemaRef.LookupSingleName(S, Name, Loc, Sema::LookupOrdinaryName,
945 RedeclarationKind::ForVisibleRedeclaration);
946 if (PrevDecl && PrevDecl->isTemplateParameter())
947 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
948 }
949
ActOnTemplateTypeArgument(TypeResult ParsedType)950 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
951 TypeSourceInfo *TInfo;
952 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
953 if (T.isNull())
954 return ParsedTemplateArgument();
955 assert(TInfo && "template argument with no location");
956
957 // If we might have formed a deduced template specialization type, convert
958 // it to a template template argument.
959 if (getLangOpts().CPlusPlus17) {
960 TypeLoc TL = TInfo->getTypeLoc();
961 SourceLocation EllipsisLoc;
962 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
963 EllipsisLoc = PET.getEllipsisLoc();
964 TL = PET.getPatternLoc();
965 }
966
967 CXXScopeSpec SS;
968 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
969 SS.Adopt(ET.getQualifierLoc());
970 TL = ET.getNamedTypeLoc();
971 }
972
973 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
974 TemplateName Name = DTST.getTypePtr()->getTemplateName();
975 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
976 DTST.getTemplateNameLoc());
977 if (EllipsisLoc.isValid())
978 Result = Result.getTemplatePackExpansion(EllipsisLoc);
979 return Result;
980 }
981 }
982
983 // This is a normal type template argument. Note, if the type template
984 // argument is an injected-class-name for a template, it has a dual nature
985 // and can be used as either a type or a template. We handle that in
986 // convertTypeTemplateArgumentToTemplate.
987 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
988 ParsedType.get().getAsOpaquePtr(),
989 TInfo->getTypeLoc().getBeginLoc());
990 }
991
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg,bool HasTypeConstraint)992 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
993 SourceLocation EllipsisLoc,
994 SourceLocation KeyLoc,
995 IdentifierInfo *ParamName,
996 SourceLocation ParamNameLoc,
997 unsigned Depth, unsigned Position,
998 SourceLocation EqualLoc,
999 ParsedType DefaultArg,
1000 bool HasTypeConstraint) {
1001 assert(S->isTemplateParamScope() &&
1002 "Template type parameter not in template parameter scope!");
1003
1004 bool IsParameterPack = EllipsisLoc.isValid();
1005 TemplateTypeParmDecl *Param
1006 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1007 KeyLoc, ParamNameLoc, Depth, Position,
1008 ParamName, Typename, IsParameterPack,
1009 HasTypeConstraint);
1010 Param->setAccess(AS_public);
1011
1012 if (Param->isParameterPack())
1013 if (auto *LSI = getEnclosingLambda())
1014 LSI->LocalPacks.push_back(Param);
1015
1016 if (ParamName) {
1017 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1018
1019 // Add the template parameter into the current scope.
1020 S->AddDecl(Param);
1021 IdResolver.AddDecl(Param);
1022 }
1023
1024 // C++0x [temp.param]p9:
1025 // A default template-argument may be specified for any kind of
1026 // template-parameter that is not a template parameter pack.
1027 if (DefaultArg && IsParameterPack) {
1028 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1029 DefaultArg = nullptr;
1030 }
1031
1032 // Handle the default argument, if provided.
1033 if (DefaultArg) {
1034 TypeSourceInfo *DefaultTInfo;
1035 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1036
1037 assert(DefaultTInfo && "expected source information for type");
1038
1039 // Check for unexpanded parameter packs.
1040 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1041 UPPC_DefaultArgument))
1042 return Param;
1043
1044 // Check the template argument itself.
1045 if (CheckTemplateArgument(DefaultTInfo)) {
1046 Param->setInvalidDecl();
1047 return Param;
1048 }
1049
1050 Param->setDefaultArgument(
1051 Context, TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo));
1052 }
1053
1054 return Param;
1055 }
1056
1057 /// Convert the parser's template argument list representation into our form.
1058 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)1059 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1060 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1061 TemplateId.RAngleLoc);
1062 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1063 TemplateId.NumArgs);
1064 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1065 return TemplateArgs;
1066 }
1067
CheckTypeConstraint(TemplateIdAnnotation * TypeConstr)1068 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1069
1070 TemplateName TN = TypeConstr->Template.get();
1071 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1072
1073 // C++2a [temp.param]p4:
1074 // [...] The concept designated by a type-constraint shall be a type
1075 // concept ([temp.concept]).
1076 if (!CD->isTypeConcept()) {
1077 Diag(TypeConstr->TemplateNameLoc,
1078 diag::err_type_constraint_non_type_concept);
1079 return true;
1080 }
1081
1082 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1083
1084 if (!WereArgsSpecified &&
1085 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1086 Diag(TypeConstr->TemplateNameLoc,
1087 diag::err_type_constraint_missing_arguments)
1088 << CD;
1089 return true;
1090 }
1091 return false;
1092 }
1093
ActOnTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1094 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1095 TemplateIdAnnotation *TypeConstr,
1096 TemplateTypeParmDecl *ConstrainedParameter,
1097 SourceLocation EllipsisLoc) {
1098 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1099 false);
1100 }
1101
BuildTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc,bool AllowUnexpandedPack)1102 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1103 TemplateIdAnnotation *TypeConstr,
1104 TemplateTypeParmDecl *ConstrainedParameter,
1105 SourceLocation EllipsisLoc,
1106 bool AllowUnexpandedPack) {
1107
1108 if (CheckTypeConstraint(TypeConstr))
1109 return true;
1110
1111 TemplateName TN = TypeConstr->Template.get();
1112 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1113 UsingShadowDecl *USD = TN.getAsUsingShadowDecl();
1114
1115 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1116 TypeConstr->TemplateNameLoc);
1117
1118 TemplateArgumentListInfo TemplateArgs;
1119 if (TypeConstr->LAngleLoc.isValid()) {
1120 TemplateArgs =
1121 makeTemplateArgumentListInfo(*this, *TypeConstr);
1122
1123 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1124 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1125 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1126 return true;
1127 }
1128 }
1129 }
1130 return AttachTypeConstraint(
1131 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1132 ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(USD) : CD,
1133 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1134 ConstrainedParameter, EllipsisLoc);
1135 }
1136
1137 template <typename ArgumentLocAppender>
formImmediatelyDeclaredConstraint(Sema & S,NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,NamedDecl * FoundDecl,SourceLocation LAngleLoc,SourceLocation RAngleLoc,QualType ConstrainedType,SourceLocation ParamNameLoc,ArgumentLocAppender Appender,SourceLocation EllipsisLoc)1138 static ExprResult formImmediatelyDeclaredConstraint(
1139 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1140 ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc,
1141 SourceLocation RAngleLoc, QualType ConstrainedType,
1142 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1143 SourceLocation EllipsisLoc) {
1144
1145 TemplateArgumentListInfo ConstraintArgs;
1146 ConstraintArgs.addArgument(
1147 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1148 /*NTTPType=*/QualType(), ParamNameLoc));
1149
1150 ConstraintArgs.setRAngleLoc(RAngleLoc);
1151 ConstraintArgs.setLAngleLoc(LAngleLoc);
1152 Appender(ConstraintArgs);
1153
1154 // C++2a [temp.param]p4:
1155 // [...] This constraint-expression E is called the immediately-declared
1156 // constraint of T. [...]
1157 CXXScopeSpec SS;
1158 SS.Adopt(NS);
1159 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1160 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1161 /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept,
1162 &ConstraintArgs);
1163 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1164 return ImmediatelyDeclaredConstraint;
1165
1166 // C++2a [temp.param]p4:
1167 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1168 //
1169 // We have the following case:
1170 //
1171 // template<typename T> concept C1 = true;
1172 // template<C1... T> struct s1;
1173 //
1174 // The constraint: (C1<T> && ...)
1175 //
1176 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1177 // any unqualified lookups for 'operator&&' here.
1178 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1179 /*LParenLoc=*/SourceLocation(),
1180 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1181 EllipsisLoc, /*RHS=*/nullptr,
1182 /*RParenLoc=*/SourceLocation(),
1183 /*NumExpansions=*/std::nullopt);
1184 }
1185
AttachTypeConstraint(NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,NamedDecl * FoundDecl,const TemplateArgumentListInfo * TemplateArgs,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1186 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1187 DeclarationNameInfo NameInfo,
1188 ConceptDecl *NamedConcept, NamedDecl *FoundDecl,
1189 const TemplateArgumentListInfo *TemplateArgs,
1190 TemplateTypeParmDecl *ConstrainedParameter,
1191 SourceLocation EllipsisLoc) {
1192 // C++2a [temp.param]p4:
1193 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1194 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1195 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1196 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1197 *TemplateArgs) : nullptr;
1198
1199 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1200
1201 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1202 *this, NS, NameInfo, NamedConcept, FoundDecl,
1203 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1204 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1205 ParamAsArgument, ConstrainedParameter->getLocation(),
1206 [&](TemplateArgumentListInfo &ConstraintArgs) {
1207 if (TemplateArgs)
1208 for (const auto &ArgLoc : TemplateArgs->arguments())
1209 ConstraintArgs.addArgument(ArgLoc);
1210 },
1211 EllipsisLoc);
1212 if (ImmediatelyDeclaredConstraint.isInvalid())
1213 return true;
1214
1215 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1216 /*TemplateKWLoc=*/SourceLocation{},
1217 /*ConceptNameInfo=*/NameInfo,
1218 /*FoundDecl=*/FoundDecl,
1219 /*NamedConcept=*/NamedConcept,
1220 /*ArgsWritten=*/ArgsAsWritten);
1221 ConstrainedParameter->setTypeConstraint(CL,
1222 ImmediatelyDeclaredConstraint.get());
1223 return false;
1224 }
1225
AttachTypeConstraint(AutoTypeLoc TL,NonTypeTemplateParmDecl * NewConstrainedParm,NonTypeTemplateParmDecl * OrigConstrainedParm,SourceLocation EllipsisLoc)1226 bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1227 NonTypeTemplateParmDecl *NewConstrainedParm,
1228 NonTypeTemplateParmDecl *OrigConstrainedParm,
1229 SourceLocation EllipsisLoc) {
1230 if (NewConstrainedParm->getType() != TL.getType() ||
1231 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1232 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1233 diag::err_unsupported_placeholder_constraint)
1234 << NewConstrainedParm->getTypeSourceInfo()
1235 ->getTypeLoc()
1236 .getSourceRange();
1237 return true;
1238 }
1239 // FIXME: Concepts: This should be the type of the placeholder, but this is
1240 // unclear in the wording right now.
1241 DeclRefExpr *Ref =
1242 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1243 VK_PRValue, OrigConstrainedParm->getLocation());
1244 if (!Ref)
1245 return true;
1246 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1247 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1248 TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(),
1249 TL.getRAngleLoc(), BuildDecltypeType(Ref),
1250 OrigConstrainedParm->getLocation(),
1251 [&](TemplateArgumentListInfo &ConstraintArgs) {
1252 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1253 ConstraintArgs.addArgument(TL.getArgLoc(I));
1254 },
1255 EllipsisLoc);
1256 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1257 !ImmediatelyDeclaredConstraint.isUsable())
1258 return true;
1259
1260 NewConstrainedParm->setPlaceholderTypeConstraint(
1261 ImmediatelyDeclaredConstraint.get());
1262 return false;
1263 }
1264
CheckNonTypeTemplateParameterType(TypeSourceInfo * & TSI,SourceLocation Loc)1265 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1266 SourceLocation Loc) {
1267 if (TSI->getType()->isUndeducedType()) {
1268 // C++17 [temp.dep.expr]p3:
1269 // An id-expression is type-dependent if it contains
1270 // - an identifier associated by name lookup with a non-type
1271 // template-parameter declared with a type that contains a
1272 // placeholder type (7.1.7.4),
1273 TSI = SubstAutoTypeSourceInfoDependent(TSI);
1274 }
1275
1276 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1277 }
1278
RequireStructuralType(QualType T,SourceLocation Loc)1279 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1280 if (T->isDependentType())
1281 return false;
1282
1283 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1284 return true;
1285
1286 if (T->isStructuralType())
1287 return false;
1288
1289 // Structural types are required to be object types or lvalue references.
1290 if (T->isRValueReferenceType()) {
1291 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1292 return true;
1293 }
1294
1295 // Don't mention structural types in our diagnostic prior to C++20. Also,
1296 // there's not much more we can say about non-scalar non-class types --
1297 // because we can't see functions or arrays here, those can only be language
1298 // extensions.
1299 if (!getLangOpts().CPlusPlus20 ||
1300 (!T->isScalarType() && !T->isRecordType())) {
1301 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1302 return true;
1303 }
1304
1305 // Structural types are required to be literal types.
1306 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1307 return true;
1308
1309 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1310
1311 // Drill down into the reason why the class is non-structural.
1312 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1313 // All members are required to be public and non-mutable, and can't be of
1314 // rvalue reference type. Check these conditions first to prefer a "local"
1315 // reason over a more distant one.
1316 for (const FieldDecl *FD : RD->fields()) {
1317 if (FD->getAccess() != AS_public) {
1318 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1319 return true;
1320 }
1321 if (FD->isMutable()) {
1322 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1323 return true;
1324 }
1325 if (FD->getType()->isRValueReferenceType()) {
1326 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1327 << T;
1328 return true;
1329 }
1330 }
1331
1332 // All bases are required to be public.
1333 for (const auto &BaseSpec : RD->bases()) {
1334 if (BaseSpec.getAccessSpecifier() != AS_public) {
1335 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1336 << T << 1;
1337 return true;
1338 }
1339 }
1340
1341 // All subobjects are required to be of structural types.
1342 SourceLocation SubLoc;
1343 QualType SubType;
1344 int Kind = -1;
1345
1346 for (const FieldDecl *FD : RD->fields()) {
1347 QualType T = Context.getBaseElementType(FD->getType());
1348 if (!T->isStructuralType()) {
1349 SubLoc = FD->getLocation();
1350 SubType = T;
1351 Kind = 0;
1352 break;
1353 }
1354 }
1355
1356 if (Kind == -1) {
1357 for (const auto &BaseSpec : RD->bases()) {
1358 QualType T = BaseSpec.getType();
1359 if (!T->isStructuralType()) {
1360 SubLoc = BaseSpec.getBaseTypeLoc();
1361 SubType = T;
1362 Kind = 1;
1363 break;
1364 }
1365 }
1366 }
1367
1368 assert(Kind != -1 && "couldn't find reason why type is not structural");
1369 Diag(SubLoc, diag::note_not_structural_subobject)
1370 << T << Kind << SubType;
1371 T = SubType;
1372 RD = T->getAsCXXRecordDecl();
1373 }
1374
1375 return true;
1376 }
1377
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)1378 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1379 SourceLocation Loc) {
1380 // We don't allow variably-modified types as the type of non-type template
1381 // parameters.
1382 if (T->isVariablyModifiedType()) {
1383 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1384 << T;
1385 return QualType();
1386 }
1387
1388 // C++ [temp.param]p4:
1389 //
1390 // A non-type template-parameter shall have one of the following
1391 // (optionally cv-qualified) types:
1392 //
1393 // -- integral or enumeration type,
1394 if (T->isIntegralOrEnumerationType() ||
1395 // -- pointer to object or pointer to function,
1396 T->isPointerType() ||
1397 // -- lvalue reference to object or lvalue reference to function,
1398 T->isLValueReferenceType() ||
1399 // -- pointer to member,
1400 T->isMemberPointerType() ||
1401 // -- std::nullptr_t, or
1402 T->isNullPtrType() ||
1403 // -- a type that contains a placeholder type.
1404 T->isUndeducedType()) {
1405 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1406 // are ignored when determining its type.
1407 return T.getUnqualifiedType();
1408 }
1409
1410 // C++ [temp.param]p8:
1411 //
1412 // A non-type template-parameter of type "array of T" or
1413 // "function returning T" is adjusted to be of type "pointer to
1414 // T" or "pointer to function returning T", respectively.
1415 if (T->isArrayType() || T->isFunctionType())
1416 return Context.getDecayedType(T);
1417
1418 // If T is a dependent type, we can't do the check now, so we
1419 // assume that it is well-formed. Note that stripping off the
1420 // qualifiers here is not really correct if T turns out to be
1421 // an array type, but we'll recompute the type everywhere it's
1422 // used during instantiation, so that should be OK. (Using the
1423 // qualified type is equally wrong.)
1424 if (T->isDependentType())
1425 return T.getUnqualifiedType();
1426
1427 // C++20 [temp.param]p6:
1428 // -- a structural type
1429 if (RequireStructuralType(T, Loc))
1430 return QualType();
1431
1432 if (!getLangOpts().CPlusPlus20) {
1433 // FIXME: Consider allowing structural types as an extension in C++17. (In
1434 // earlier language modes, the template argument evaluation rules are too
1435 // inflexible.)
1436 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1437 return QualType();
1438 }
1439
1440 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1441 return T.getUnqualifiedType();
1442 }
1443
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)1444 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1445 unsigned Depth,
1446 unsigned Position,
1447 SourceLocation EqualLoc,
1448 Expr *Default) {
1449 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1450
1451 // Check that we have valid decl-specifiers specified.
1452 auto CheckValidDeclSpecifiers = [this, &D] {
1453 // C++ [temp.param]
1454 // p1
1455 // template-parameter:
1456 // ...
1457 // parameter-declaration
1458 // p2
1459 // ... A storage class shall not be specified in a template-parameter
1460 // declaration.
1461 // [dcl.typedef]p1:
1462 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1463 // of a parameter-declaration
1464 const DeclSpec &DS = D.getDeclSpec();
1465 auto EmitDiag = [this](SourceLocation Loc) {
1466 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1467 << FixItHint::CreateRemoval(Loc);
1468 };
1469 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1470 EmitDiag(DS.getStorageClassSpecLoc());
1471
1472 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1473 EmitDiag(DS.getThreadStorageClassSpecLoc());
1474
1475 // [dcl.inline]p1:
1476 // The inline specifier can be applied only to the declaration or
1477 // definition of a variable or function.
1478
1479 if (DS.isInlineSpecified())
1480 EmitDiag(DS.getInlineSpecLoc());
1481
1482 // [dcl.constexpr]p1:
1483 // The constexpr specifier shall be applied only to the definition of a
1484 // variable or variable template or the declaration of a function or
1485 // function template.
1486
1487 if (DS.hasConstexprSpecifier())
1488 EmitDiag(DS.getConstexprSpecLoc());
1489
1490 // [dcl.fct.spec]p1:
1491 // Function-specifiers can be used only in function declarations.
1492
1493 if (DS.isVirtualSpecified())
1494 EmitDiag(DS.getVirtualSpecLoc());
1495
1496 if (DS.hasExplicitSpecifier())
1497 EmitDiag(DS.getExplicitSpecLoc());
1498
1499 if (DS.isNoreturnSpecified())
1500 EmitDiag(DS.getNoreturnSpecLoc());
1501 };
1502
1503 CheckValidDeclSpecifiers();
1504
1505 if (const auto *T = TInfo->getType()->getContainedDeducedType())
1506 if (isa<AutoType>(T))
1507 Diag(D.getIdentifierLoc(),
1508 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1509 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1510
1511 assert(S->isTemplateParamScope() &&
1512 "Non-type template parameter not in template parameter scope!");
1513 bool Invalid = false;
1514
1515 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1516 if (T.isNull()) {
1517 T = Context.IntTy; // Recover with an 'int' type.
1518 Invalid = true;
1519 }
1520
1521 CheckFunctionOrTemplateParamDeclarator(S, D);
1522
1523 const IdentifierInfo *ParamName = D.getIdentifier();
1524 bool IsParameterPack = D.hasEllipsis();
1525 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1526 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1527 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1528 TInfo);
1529 Param->setAccess(AS_public);
1530
1531 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1532 if (TL.isConstrained())
1533 if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1534 Invalid = true;
1535
1536 if (Invalid)
1537 Param->setInvalidDecl();
1538
1539 if (Param->isParameterPack())
1540 if (auto *LSI = getEnclosingLambda())
1541 LSI->LocalPacks.push_back(Param);
1542
1543 if (ParamName) {
1544 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1545 ParamName);
1546
1547 // Add the template parameter into the current scope.
1548 S->AddDecl(Param);
1549 IdResolver.AddDecl(Param);
1550 }
1551
1552 // C++0x [temp.param]p9:
1553 // A default template-argument may be specified for any kind of
1554 // template-parameter that is not a template parameter pack.
1555 if (Default && IsParameterPack) {
1556 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1557 Default = nullptr;
1558 }
1559
1560 // Check the well-formedness of the default template argument, if provided.
1561 if (Default) {
1562 // Check for unexpanded parameter packs.
1563 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1564 return Param;
1565
1566 Param->setDefaultArgument(
1567 Context, getTrivialTemplateArgumentLoc(TemplateArgument(Default),
1568 QualType(), SourceLocation()));
1569 }
1570
1571 return Param;
1572 }
1573
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,bool Typename,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)1574 NamedDecl *Sema::ActOnTemplateTemplateParameter(
1575 Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params,
1576 bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name,
1577 SourceLocation NameLoc, unsigned Depth, unsigned Position,
1578 SourceLocation EqualLoc, ParsedTemplateArgument Default) {
1579 assert(S->isTemplateParamScope() &&
1580 "Template template parameter not in template parameter scope!");
1581
1582 // Construct the parameter object.
1583 bool IsParameterPack = EllipsisLoc.isValid();
1584 TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create(
1585 Context, Context.getTranslationUnitDecl(),
1586 NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack,
1587 Name, Typename, Params);
1588 Param->setAccess(AS_public);
1589
1590 if (Param->isParameterPack())
1591 if (auto *LSI = getEnclosingLambda())
1592 LSI->LocalPacks.push_back(Param);
1593
1594 // If the template template parameter has a name, then link the identifier
1595 // into the scope and lookup mechanisms.
1596 if (Name) {
1597 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1598
1599 S->AddDecl(Param);
1600 IdResolver.AddDecl(Param);
1601 }
1602
1603 if (Params->size() == 0) {
1604 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1605 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1606 Param->setInvalidDecl();
1607 }
1608
1609 // C++0x [temp.param]p9:
1610 // A default template-argument may be specified for any kind of
1611 // template-parameter that is not a template parameter pack.
1612 if (IsParameterPack && !Default.isInvalid()) {
1613 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1614 Default = ParsedTemplateArgument();
1615 }
1616
1617 if (!Default.isInvalid()) {
1618 // Check only that we have a template template argument. We don't want to
1619 // try to check well-formedness now, because our template template parameter
1620 // might have dependent types in its template parameters, which we wouldn't
1621 // be able to match now.
1622 //
1623 // If none of the template template parameter's template arguments mention
1624 // other template parameters, we could actually perform more checking here.
1625 // However, it isn't worth doing.
1626 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1627 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1628 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1629 << DefaultArg.getSourceRange();
1630 return Param;
1631 }
1632
1633 // Check for unexpanded parameter packs.
1634 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1635 DefaultArg.getArgument().getAsTemplate(),
1636 UPPC_DefaultArgument))
1637 return Param;
1638
1639 Param->setDefaultArgument(Context, DefaultArg);
1640 }
1641
1642 return Param;
1643 }
1644
1645 namespace {
1646 class ConstraintRefersToContainingTemplateChecker
1647 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1648 bool Result = false;
1649 const FunctionDecl *Friend = nullptr;
1650 unsigned TemplateDepth = 0;
1651
1652 // Check a record-decl that we've seen to see if it is a lexical parent of the
1653 // Friend, likely because it was referred to without its template arguments.
CheckIfContainingRecord(const CXXRecordDecl * CheckingRD)1654 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1655 CheckingRD = CheckingRD->getMostRecentDecl();
1656 if (!CheckingRD->isTemplated())
1657 return;
1658
1659 for (const DeclContext *DC = Friend->getLexicalDeclContext();
1660 DC && !DC->isFileContext(); DC = DC->getParent())
1661 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1662 if (CheckingRD == RD->getMostRecentDecl())
1663 Result = true;
1664 }
1665
CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl * D)1666 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1667 assert(D->getDepth() <= TemplateDepth &&
1668 "Nothing should reference a value below the actual template depth, "
1669 "depth is likely wrong");
1670 if (D->getDepth() != TemplateDepth)
1671 Result = true;
1672
1673 // Necessary because the type of the NTTP might be what refers to the parent
1674 // constriant.
1675 TransformType(D->getType());
1676 }
1677
1678 public:
1679 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1680
ConstraintRefersToContainingTemplateChecker(Sema & SemaRef,const FunctionDecl * Friend,unsigned TemplateDepth)1681 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1682 const FunctionDecl *Friend,
1683 unsigned TemplateDepth)
1684 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
getResult() const1685 bool getResult() const { return Result; }
1686
1687 // This should be the only template parm type that we have to deal with.
1688 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1689 // FunctionParmPackExpr are all partially substituted, which cannot happen
1690 // with concepts at this point in translation.
1691 using inherited::TransformTemplateTypeParmType;
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL,bool)1692 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1693 TemplateTypeParmTypeLoc TL, bool) {
1694 assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1695 "Nothing should reference a value below the actual template depth, "
1696 "depth is likely wrong");
1697 if (TL.getDecl()->getDepth() != TemplateDepth)
1698 Result = true;
1699 return inherited::TransformTemplateTypeParmType(
1700 TLB, TL,
1701 /*SuppressObjCLifetime=*/false);
1702 }
1703
TransformDecl(SourceLocation Loc,Decl * D)1704 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1705 if (!D)
1706 return D;
1707 // FIXME : This is possibly an incomplete list, but it is unclear what other
1708 // Decl kinds could be used to refer to the template parameters. This is a
1709 // best guess so far based on examples currently available, but the
1710 // unreachable should catch future instances/cases.
1711 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1712 TransformType(TD->getUnderlyingType());
1713 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1714 CheckNonTypeTemplateParmDecl(NTTPD);
1715 else if (auto *VD = dyn_cast<ValueDecl>(D))
1716 TransformType(VD->getType());
1717 else if (auto *TD = dyn_cast<TemplateDecl>(D))
1718 TransformTemplateParameterList(TD->getTemplateParameters());
1719 else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1720 CheckIfContainingRecord(RD);
1721 else if (isa<NamedDecl>(D)) {
1722 // No direct types to visit here I believe.
1723 } else
1724 llvm_unreachable("Don't know how to handle this declaration type yet");
1725 return D;
1726 }
1727 };
1728 } // namespace
1729
ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl * Friend,unsigned TemplateDepth,const Expr * Constraint)1730 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1731 const FunctionDecl *Friend, unsigned TemplateDepth,
1732 const Expr *Constraint) {
1733 assert(Friend->getFriendObjectKind() && "Only works on a friend");
1734 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1735 TemplateDepth);
1736 Checker.TransformExpr(const_cast<Expr *>(Constraint));
1737 return Checker.getResult();
1738 }
1739
1740 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ArrayRef<NamedDecl * > Params,SourceLocation RAngleLoc,Expr * RequiresClause)1741 Sema::ActOnTemplateParameterList(unsigned Depth,
1742 SourceLocation ExportLoc,
1743 SourceLocation TemplateLoc,
1744 SourceLocation LAngleLoc,
1745 ArrayRef<NamedDecl *> Params,
1746 SourceLocation RAngleLoc,
1747 Expr *RequiresClause) {
1748 if (ExportLoc.isValid())
1749 Diag(ExportLoc, diag::warn_template_export_unsupported);
1750
1751 for (NamedDecl *P : Params)
1752 warnOnReservedIdentifier(P);
1753
1754 return TemplateParameterList::Create(
1755 Context, TemplateLoc, LAngleLoc,
1756 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1757 }
1758
SetNestedNameSpecifier(Sema & S,TagDecl * T,const CXXScopeSpec & SS)1759 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1760 const CXXScopeSpec &SS) {
1761 if (SS.isSet())
1762 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1763 }
1764
1765 // Returns the template parameter list with all default template argument
1766 // information.
GetTemplateParameterList(TemplateDecl * TD)1767 TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) {
1768 // Make sure we get the template parameter list from the most
1769 // recent declaration, since that is the only one that is guaranteed to
1770 // have all the default template argument information.
1771 Decl *D = TD->getMostRecentDecl();
1772 // C++11 N3337 [temp.param]p12:
1773 // A default template argument shall not be specified in a friend class
1774 // template declaration.
1775 //
1776 // Skip past friend *declarations* because they are not supposed to contain
1777 // default template arguments. Moreover, these declarations may introduce
1778 // template parameters living in different template depths than the
1779 // corresponding template parameters in TD, causing unmatched constraint
1780 // substitution.
1781 //
1782 // FIXME: Diagnose such cases within a class template:
1783 // template <class T>
1784 // struct S {
1785 // template <class = void> friend struct C;
1786 // };
1787 // template struct S<int>;
1788 while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None &&
1789 D->getPreviousDecl())
1790 D = D->getPreviousDecl();
1791 return cast<TemplateDecl>(D)->getTemplateParameters();
1792 }
1793
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)1794 DeclResult Sema::CheckClassTemplate(
1795 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1796 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1797 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1798 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1799 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1800 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1801 assert(TemplateParams && TemplateParams->size() > 0 &&
1802 "No template parameters");
1803 assert(TUK != TagUseKind::Reference &&
1804 "Can only declare or define class templates");
1805 bool Invalid = false;
1806
1807 // Check that we can declare a template here.
1808 if (CheckTemplateDeclScope(S, TemplateParams))
1809 return true;
1810
1811 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1812 assert(Kind != TagTypeKind::Enum &&
1813 "can't build template of enumerated type");
1814
1815 // There is no such thing as an unnamed class template.
1816 if (!Name) {
1817 Diag(KWLoc, diag::err_template_unnamed_class);
1818 return true;
1819 }
1820
1821 // Find any previous declaration with this name. For a friend with no
1822 // scope explicitly specified, we only look for tag declarations (per
1823 // C++11 [basic.lookup.elab]p2).
1824 DeclContext *SemanticContext;
1825 LookupResult Previous(*this, Name, NameLoc,
1826 (SS.isEmpty() && TUK == TagUseKind::Friend)
1827 ? LookupTagName
1828 : LookupOrdinaryName,
1829 forRedeclarationInCurContext());
1830 if (SS.isNotEmpty() && !SS.isInvalid()) {
1831 SemanticContext = computeDeclContext(SS, true);
1832 if (!SemanticContext) {
1833 // FIXME: Horrible, horrible hack! We can't currently represent this
1834 // in the AST, and historically we have just ignored such friend
1835 // class templates, so don't complain here.
1836 Diag(NameLoc, TUK == TagUseKind::Friend
1837 ? diag::warn_template_qualified_friend_ignored
1838 : diag::err_template_qualified_declarator_no_match)
1839 << SS.getScopeRep() << SS.getRange();
1840 return TUK != TagUseKind::Friend;
1841 }
1842
1843 if (RequireCompleteDeclContext(SS, SemanticContext))
1844 return true;
1845
1846 // If we're adding a template to a dependent context, we may need to
1847 // rebuilding some of the types used within the template parameter list,
1848 // now that we know what the current instantiation is.
1849 if (SemanticContext->isDependentContext()) {
1850 ContextRAII SavedContext(*this, SemanticContext);
1851 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1852 Invalid = true;
1853 }
1854
1855 if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference)
1856 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc,
1857 /*TemplateId-*/ nullptr,
1858 /*IsMemberSpecialization*/ false);
1859
1860 LookupQualifiedName(Previous, SemanticContext);
1861 } else {
1862 SemanticContext = CurContext;
1863
1864 // C++14 [class.mem]p14:
1865 // If T is the name of a class, then each of the following shall have a
1866 // name different from T:
1867 // -- every member template of class T
1868 if (TUK != TagUseKind::Friend &&
1869 DiagnoseClassNameShadow(SemanticContext,
1870 DeclarationNameInfo(Name, NameLoc)))
1871 return true;
1872
1873 LookupName(Previous, S);
1874 }
1875
1876 if (Previous.isAmbiguous())
1877 return true;
1878
1879 NamedDecl *PrevDecl = nullptr;
1880 if (Previous.begin() != Previous.end())
1881 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1882
1883 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1884 // Maybe we will complain about the shadowed template parameter.
1885 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1886 // Just pretend that we didn't see the previous declaration.
1887 PrevDecl = nullptr;
1888 }
1889
1890 // If there is a previous declaration with the same name, check
1891 // whether this is a valid redeclaration.
1892 ClassTemplateDecl *PrevClassTemplate =
1893 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1894
1895 // We may have found the injected-class-name of a class template,
1896 // class template partial specialization, or class template specialization.
1897 // In these cases, grab the template that is being defined or specialized.
1898 if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(PrevDecl) &&
1899 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1900 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1901 PrevClassTemplate
1902 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1903 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1904 PrevClassTemplate
1905 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1906 ->getSpecializedTemplate();
1907 }
1908 }
1909
1910 if (TUK == TagUseKind::Friend) {
1911 // C++ [namespace.memdef]p3:
1912 // [...] When looking for a prior declaration of a class or a function
1913 // declared as a friend, and when the name of the friend class or
1914 // function is neither a qualified name nor a template-id, scopes outside
1915 // the innermost enclosing namespace scope are not considered.
1916 if (!SS.isSet()) {
1917 DeclContext *OutermostContext = CurContext;
1918 while (!OutermostContext->isFileContext())
1919 OutermostContext = OutermostContext->getLookupParent();
1920
1921 if (PrevDecl &&
1922 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1923 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1924 SemanticContext = PrevDecl->getDeclContext();
1925 } else {
1926 // Declarations in outer scopes don't matter. However, the outermost
1927 // context we computed is the semantic context for our new
1928 // declaration.
1929 PrevDecl = PrevClassTemplate = nullptr;
1930 SemanticContext = OutermostContext;
1931
1932 // Check that the chosen semantic context doesn't already contain a
1933 // declaration of this name as a non-tag type.
1934 Previous.clear(LookupOrdinaryName);
1935 DeclContext *LookupContext = SemanticContext;
1936 while (LookupContext->isTransparentContext())
1937 LookupContext = LookupContext->getLookupParent();
1938 LookupQualifiedName(Previous, LookupContext);
1939
1940 if (Previous.isAmbiguous())
1941 return true;
1942
1943 if (Previous.begin() != Previous.end())
1944 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1945 }
1946 }
1947 } else if (PrevDecl && !isDeclInScope(Previous.getRepresentativeDecl(),
1948 SemanticContext, S, SS.isValid()))
1949 PrevDecl = PrevClassTemplate = nullptr;
1950
1951 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1952 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1953 if (SS.isEmpty() &&
1954 !(PrevClassTemplate &&
1955 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1956 SemanticContext->getRedeclContext()))) {
1957 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1958 Diag(Shadow->getTargetDecl()->getLocation(),
1959 diag::note_using_decl_target);
1960 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1961 // Recover by ignoring the old declaration.
1962 PrevDecl = PrevClassTemplate = nullptr;
1963 }
1964 }
1965
1966 if (PrevClassTemplate) {
1967 // Ensure that the template parameter lists are compatible. Skip this check
1968 // for a friend in a dependent context: the template parameter list itself
1969 // could be dependent.
1970 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) &&
1971 !TemplateParameterListsAreEqual(
1972 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
1973 : CurContext,
1974 CurContext, KWLoc),
1975 TemplateParams, PrevClassTemplate,
1976 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
1977 TPL_TemplateMatch))
1978 return true;
1979
1980 // C++ [temp.class]p4:
1981 // In a redeclaration, partial specialization, explicit
1982 // specialization or explicit instantiation of a class template,
1983 // the class-key shall agree in kind with the original class
1984 // template declaration (7.1.5.3).
1985 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1986 if (!isAcceptableTagRedeclaration(
1987 PrevRecordDecl, Kind, TUK == TagUseKind::Definition, KWLoc, Name)) {
1988 Diag(KWLoc, diag::err_use_with_wrong_tag)
1989 << Name
1990 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1991 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1992 Kind = PrevRecordDecl->getTagKind();
1993 }
1994
1995 // Check for redefinition of this class template.
1996 if (TUK == TagUseKind::Definition) {
1997 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1998 // If we have a prior definition that is not visible, treat this as
1999 // simply making that previous definition visible.
2000 NamedDecl *Hidden = nullptr;
2001 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2002 SkipBody->ShouldSkip = true;
2003 SkipBody->Previous = Def;
2004 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2005 assert(Tmpl && "original definition of a class template is not a "
2006 "class template?");
2007 makeMergedDefinitionVisible(Hidden);
2008 makeMergedDefinitionVisible(Tmpl);
2009 } else {
2010 Diag(NameLoc, diag::err_redefinition) << Name;
2011 Diag(Def->getLocation(), diag::note_previous_definition);
2012 // FIXME: Would it make sense to try to "forget" the previous
2013 // definition, as part of error recovery?
2014 return true;
2015 }
2016 }
2017 }
2018 } else if (PrevDecl) {
2019 // C++ [temp]p5:
2020 // A class template shall not have the same name as any other
2021 // template, class, function, object, enumeration, enumerator,
2022 // namespace, or type in the same scope (3.3), except as specified
2023 // in (14.5.4).
2024 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2025 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2026 return true;
2027 }
2028
2029 // Check the template parameter list of this declaration, possibly
2030 // merging in the template parameter list from the previous class
2031 // template declaration. Skip this check for a friend in a dependent
2032 // context, because the template parameter list might be dependent.
2033 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) &&
2034 CheckTemplateParameterList(
2035 TemplateParams,
2036 PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate)
2037 : nullptr,
2038 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2039 SemanticContext->isDependentContext())
2040 ? TPC_ClassTemplateMember
2041 : TUK == TagUseKind::Friend ? TPC_FriendClassTemplate
2042 : TPC_ClassTemplate,
2043 SkipBody))
2044 Invalid = true;
2045
2046 if (SS.isSet()) {
2047 // If the name of the template was qualified, we must be defining the
2048 // template out-of-line.
2049 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2050 Diag(NameLoc, TUK == TagUseKind::Friend
2051 ? diag::err_friend_decl_does_not_match
2052 : diag::err_member_decl_does_not_match)
2053 << Name << SemanticContext << /*IsDefinition*/ true << SS.getRange();
2054 Invalid = true;
2055 }
2056 }
2057
2058 // If this is a templated friend in a dependent context we should not put it
2059 // on the redecl chain. In some cases, the templated friend can be the most
2060 // recent declaration tricking the template instantiator to make substitutions
2061 // there.
2062 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2063 bool ShouldAddRedecl =
2064 !(TUK == TagUseKind::Friend && CurContext->isDependentContext());
2065
2066 CXXRecordDecl *NewClass =
2067 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2068 PrevClassTemplate && ShouldAddRedecl ?
2069 PrevClassTemplate->getTemplatedDecl() : nullptr,
2070 /*DelayTypeCreation=*/true);
2071 SetNestedNameSpecifier(*this, NewClass, SS);
2072 if (NumOuterTemplateParamLists > 0)
2073 NewClass->setTemplateParameterListsInfo(
2074 Context,
2075 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2076
2077 // Add alignment attributes if necessary; these attributes are checked when
2078 // the ASTContext lays out the structure.
2079 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2080 AddAlignmentAttributesForRecord(NewClass);
2081 AddMsStructLayoutForRecord(NewClass);
2082 }
2083
2084 ClassTemplateDecl *NewTemplate
2085 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2086 DeclarationName(Name), TemplateParams,
2087 NewClass);
2088
2089 if (ShouldAddRedecl)
2090 NewTemplate->setPreviousDecl(PrevClassTemplate);
2091
2092 NewClass->setDescribedClassTemplate(NewTemplate);
2093
2094 if (ModulePrivateLoc.isValid())
2095 NewTemplate->setModulePrivate();
2096
2097 // Build the type for the class template declaration now.
2098 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2099 T = Context.getInjectedClassNameType(NewClass, T);
2100 assert(T->isDependentType() && "Class template type is not dependent?");
2101 (void)T;
2102
2103 // If we are providing an explicit specialization of a member that is a
2104 // class template, make a note of that.
2105 if (PrevClassTemplate &&
2106 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2107 PrevClassTemplate->setMemberSpecialization();
2108
2109 // Set the access specifier.
2110 if (!Invalid && TUK != TagUseKind::Friend &&
2111 NewTemplate->getDeclContext()->isRecord())
2112 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2113
2114 // Set the lexical context of these templates
2115 NewClass->setLexicalDeclContext(CurContext);
2116 NewTemplate->setLexicalDeclContext(CurContext);
2117
2118 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip))
2119 NewClass->startDefinition();
2120
2121 ProcessDeclAttributeList(S, NewClass, Attr);
2122 ProcessAPINotes(NewClass);
2123
2124 if (PrevClassTemplate)
2125 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2126
2127 AddPushedVisibilityAttribute(NewClass);
2128 inferGslOwnerPointerAttribute(NewClass);
2129 inferNullableClassAttribute(NewClass);
2130
2131 if (TUK != TagUseKind::Friend) {
2132 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2133 Scope *Outer = S;
2134 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2135 Outer = Outer->getParent();
2136 PushOnScopeChains(NewTemplate, Outer);
2137 } else {
2138 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2139 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2140 NewClass->setAccess(PrevClassTemplate->getAccess());
2141 }
2142
2143 NewTemplate->setObjectOfFriendDecl();
2144
2145 // Friend templates are visible in fairly strange ways.
2146 if (!CurContext->isDependentContext()) {
2147 DeclContext *DC = SemanticContext->getRedeclContext();
2148 DC->makeDeclVisibleInContext(NewTemplate);
2149 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2150 PushOnScopeChains(NewTemplate, EnclosingScope,
2151 /* AddToContext = */ false);
2152 }
2153
2154 FriendDecl *Friend = FriendDecl::Create(
2155 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2156 Friend->setAccess(AS_public);
2157 CurContext->addDecl(Friend);
2158 }
2159
2160 if (PrevClassTemplate)
2161 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2162
2163 if (Invalid) {
2164 NewTemplate->setInvalidDecl();
2165 NewClass->setInvalidDecl();
2166 }
2167
2168 ActOnDocumentableDecl(NewTemplate);
2169
2170 if (SkipBody && SkipBody->ShouldSkip)
2171 return SkipBody->Previous;
2172
2173 return NewTemplate;
2174 }
2175
2176 /// Diagnose the presence of a default template argument on a
2177 /// template parameter, which is ill-formed in certain contexts.
2178 ///
2179 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)2180 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2181 Sema::TemplateParamListContext TPC,
2182 SourceLocation ParamLoc,
2183 SourceRange DefArgRange) {
2184 switch (TPC) {
2185 case Sema::TPC_ClassTemplate:
2186 case Sema::TPC_VarTemplate:
2187 case Sema::TPC_TypeAliasTemplate:
2188 return false;
2189
2190 case Sema::TPC_FunctionTemplate:
2191 case Sema::TPC_FriendFunctionTemplateDefinition:
2192 // C++ [temp.param]p9:
2193 // A default template-argument shall not be specified in a
2194 // function template declaration or a function template
2195 // definition [...]
2196 // If a friend function template declaration specifies a default
2197 // template-argument, that declaration shall be a definition and shall be
2198 // the only declaration of the function template in the translation unit.
2199 // (C++98/03 doesn't have this wording; see DR226).
2200 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2201 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2202 : diag::ext_template_parameter_default_in_function_template)
2203 << DefArgRange;
2204 return false;
2205
2206 case Sema::TPC_ClassTemplateMember:
2207 // C++0x [temp.param]p9:
2208 // A default template-argument shall not be specified in the
2209 // template-parameter-lists of the definition of a member of a
2210 // class template that appears outside of the member's class.
2211 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2212 << DefArgRange;
2213 return true;
2214
2215 case Sema::TPC_FriendClassTemplate:
2216 case Sema::TPC_FriendFunctionTemplate:
2217 // C++ [temp.param]p9:
2218 // A default template-argument shall not be specified in a
2219 // friend template declaration.
2220 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2221 << DefArgRange;
2222 return true;
2223
2224 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2225 // for friend function templates if there is only a single
2226 // declaration (and it is a definition). Strange!
2227 }
2228
2229 llvm_unreachable("Invalid TemplateParamListContext!");
2230 }
2231
2232 /// Check for unexpanded parameter packs within the template parameters
2233 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)2234 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2235 TemplateTemplateParmDecl *TTP) {
2236 // A template template parameter which is a parameter pack is also a pack
2237 // expansion.
2238 if (TTP->isParameterPack())
2239 return false;
2240
2241 TemplateParameterList *Params = TTP->getTemplateParameters();
2242 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2243 NamedDecl *P = Params->getParam(I);
2244 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2245 if (!TTP->isParameterPack())
2246 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2247 if (TC->hasExplicitTemplateArgs())
2248 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2249 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2250 Sema::UPPC_TypeConstraint))
2251 return true;
2252 continue;
2253 }
2254
2255 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2256 if (!NTTP->isParameterPack() &&
2257 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2258 NTTP->getTypeSourceInfo(),
2259 Sema::UPPC_NonTypeTemplateParameterType))
2260 return true;
2261
2262 continue;
2263 }
2264
2265 if (TemplateTemplateParmDecl *InnerTTP
2266 = dyn_cast<TemplateTemplateParmDecl>(P))
2267 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC,SkipBodyInfo * SkipBody)2274 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2275 TemplateParameterList *OldParams,
2276 TemplateParamListContext TPC,
2277 SkipBodyInfo *SkipBody) {
2278 bool Invalid = false;
2279
2280 // C++ [temp.param]p10:
2281 // The set of default template-arguments available for use with a
2282 // template declaration or definition is obtained by merging the
2283 // default arguments from the definition (if in scope) and all
2284 // declarations in scope in the same way default function
2285 // arguments are (8.3.6).
2286 bool SawDefaultArgument = false;
2287 SourceLocation PreviousDefaultArgLoc;
2288
2289 // Dummy initialization to avoid warnings.
2290 TemplateParameterList::iterator OldParam = NewParams->end();
2291 if (OldParams)
2292 OldParam = OldParams->begin();
2293
2294 bool RemoveDefaultArguments = false;
2295 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2296 NewParamEnd = NewParams->end();
2297 NewParam != NewParamEnd; ++NewParam) {
2298 // Whether we've seen a duplicate default argument in the same translation
2299 // unit.
2300 bool RedundantDefaultArg = false;
2301 // Whether we've found inconsis inconsitent default arguments in different
2302 // translation unit.
2303 bool InconsistentDefaultArg = false;
2304 // The name of the module which contains the inconsistent default argument.
2305 std::string PrevModuleName;
2306
2307 SourceLocation OldDefaultLoc;
2308 SourceLocation NewDefaultLoc;
2309
2310 // Variable used to diagnose missing default arguments
2311 bool MissingDefaultArg = false;
2312
2313 // Variable used to diagnose non-final parameter packs
2314 bool SawParameterPack = false;
2315
2316 if (TemplateTypeParmDecl *NewTypeParm
2317 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2318 // Check the presence of a default argument here.
2319 if (NewTypeParm->hasDefaultArgument() &&
2320 DiagnoseDefaultTemplateArgument(
2321 *this, TPC, NewTypeParm->getLocation(),
2322 NewTypeParm->getDefaultArgument().getSourceRange()))
2323 NewTypeParm->removeDefaultArgument();
2324
2325 // Merge default arguments for template type parameters.
2326 TemplateTypeParmDecl *OldTypeParm
2327 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2328 if (NewTypeParm->isParameterPack()) {
2329 assert(!NewTypeParm->hasDefaultArgument() &&
2330 "Parameter packs can't have a default argument!");
2331 SawParameterPack = true;
2332 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2333 NewTypeParm->hasDefaultArgument() &&
2334 (!SkipBody || !SkipBody->ShouldSkip)) {
2335 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2336 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2337 SawDefaultArgument = true;
2338
2339 if (!OldTypeParm->getOwningModule())
2340 RedundantDefaultArg = true;
2341 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2342 NewTypeParm)) {
2343 InconsistentDefaultArg = true;
2344 PrevModuleName =
2345 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2346 }
2347 PreviousDefaultArgLoc = NewDefaultLoc;
2348 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2349 // Merge the default argument from the old declaration to the
2350 // new declaration.
2351 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2352 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2353 } else if (NewTypeParm->hasDefaultArgument()) {
2354 SawDefaultArgument = true;
2355 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2356 } else if (SawDefaultArgument)
2357 MissingDefaultArg = true;
2358 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2359 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2360 // Check for unexpanded parameter packs.
2361 if (!NewNonTypeParm->isParameterPack() &&
2362 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2363 NewNonTypeParm->getTypeSourceInfo(),
2364 UPPC_NonTypeTemplateParameterType)) {
2365 Invalid = true;
2366 continue;
2367 }
2368
2369 // Check the presence of a default argument here.
2370 if (NewNonTypeParm->hasDefaultArgument() &&
2371 DiagnoseDefaultTemplateArgument(
2372 *this, TPC, NewNonTypeParm->getLocation(),
2373 NewNonTypeParm->getDefaultArgument().getSourceRange())) {
2374 NewNonTypeParm->removeDefaultArgument();
2375 }
2376
2377 // Merge default arguments for non-type template parameters
2378 NonTypeTemplateParmDecl *OldNonTypeParm
2379 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2380 if (NewNonTypeParm->isParameterPack()) {
2381 assert(!NewNonTypeParm->hasDefaultArgument() &&
2382 "Parameter packs can't have a default argument!");
2383 if (!NewNonTypeParm->isPackExpansion())
2384 SawParameterPack = true;
2385 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2386 NewNonTypeParm->hasDefaultArgument() &&
2387 (!SkipBody || !SkipBody->ShouldSkip)) {
2388 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2389 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2390 SawDefaultArgument = true;
2391 if (!OldNonTypeParm->getOwningModule())
2392 RedundantDefaultArg = true;
2393 else if (!getASTContext().isSameDefaultTemplateArgument(
2394 OldNonTypeParm, NewNonTypeParm)) {
2395 InconsistentDefaultArg = true;
2396 PrevModuleName =
2397 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2398 }
2399 PreviousDefaultArgLoc = NewDefaultLoc;
2400 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2401 // Merge the default argument from the old declaration to the
2402 // new declaration.
2403 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2404 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2405 } else if (NewNonTypeParm->hasDefaultArgument()) {
2406 SawDefaultArgument = true;
2407 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2408 } else if (SawDefaultArgument)
2409 MissingDefaultArg = true;
2410 } else {
2411 TemplateTemplateParmDecl *NewTemplateParm
2412 = cast<TemplateTemplateParmDecl>(*NewParam);
2413
2414 // Check for unexpanded parameter packs, recursively.
2415 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2416 Invalid = true;
2417 continue;
2418 }
2419
2420 // Check the presence of a default argument here.
2421 if (NewTemplateParm->hasDefaultArgument() &&
2422 DiagnoseDefaultTemplateArgument(*this, TPC,
2423 NewTemplateParm->getLocation(),
2424 NewTemplateParm->getDefaultArgument().getSourceRange()))
2425 NewTemplateParm->removeDefaultArgument();
2426
2427 // Merge default arguments for template template parameters
2428 TemplateTemplateParmDecl *OldTemplateParm
2429 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2430 if (NewTemplateParm->isParameterPack()) {
2431 assert(!NewTemplateParm->hasDefaultArgument() &&
2432 "Parameter packs can't have a default argument!");
2433 if (!NewTemplateParm->isPackExpansion())
2434 SawParameterPack = true;
2435 } else if (OldTemplateParm &&
2436 hasVisibleDefaultArgument(OldTemplateParm) &&
2437 NewTemplateParm->hasDefaultArgument() &&
2438 (!SkipBody || !SkipBody->ShouldSkip)) {
2439 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2440 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2441 SawDefaultArgument = true;
2442 if (!OldTemplateParm->getOwningModule())
2443 RedundantDefaultArg = true;
2444 else if (!getASTContext().isSameDefaultTemplateArgument(
2445 OldTemplateParm, NewTemplateParm)) {
2446 InconsistentDefaultArg = true;
2447 PrevModuleName =
2448 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
2449 }
2450 PreviousDefaultArgLoc = NewDefaultLoc;
2451 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2452 // Merge the default argument from the old declaration to the
2453 // new declaration.
2454 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2455 PreviousDefaultArgLoc
2456 = OldTemplateParm->getDefaultArgument().getLocation();
2457 } else if (NewTemplateParm->hasDefaultArgument()) {
2458 SawDefaultArgument = true;
2459 PreviousDefaultArgLoc
2460 = NewTemplateParm->getDefaultArgument().getLocation();
2461 } else if (SawDefaultArgument)
2462 MissingDefaultArg = true;
2463 }
2464
2465 // C++11 [temp.param]p11:
2466 // If a template parameter of a primary class template or alias template
2467 // is a template parameter pack, it shall be the last template parameter.
2468 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2469 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2470 TPC == TPC_TypeAliasTemplate)) {
2471 Diag((*NewParam)->getLocation(),
2472 diag::err_template_param_pack_must_be_last_template_parameter);
2473 Invalid = true;
2474 }
2475
2476 // [basic.def.odr]/13:
2477 // There can be more than one definition of a
2478 // ...
2479 // default template argument
2480 // ...
2481 // in a program provided that each definition appears in a different
2482 // translation unit and the definitions satisfy the [same-meaning
2483 // criteria of the ODR].
2484 //
2485 // Simply, the design of modules allows the definition of template default
2486 // argument to be repeated across translation unit. Note that the ODR is
2487 // checked elsewhere. But it is still not allowed to repeat template default
2488 // argument in the same translation unit.
2489 if (RedundantDefaultArg) {
2490 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2491 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2492 Invalid = true;
2493 } else if (InconsistentDefaultArg) {
2494 // We could only diagnose about the case that the OldParam is imported.
2495 // The case NewParam is imported should be handled in ASTReader.
2496 Diag(NewDefaultLoc,
2497 diag::err_template_param_default_arg_inconsistent_redefinition);
2498 Diag(OldDefaultLoc,
2499 diag::note_template_param_prev_default_arg_in_other_module)
2500 << PrevModuleName;
2501 Invalid = true;
2502 } else if (MissingDefaultArg &&
2503 (TPC == TPC_ClassTemplate || TPC == TPC_FriendClassTemplate ||
2504 TPC == TPC_VarTemplate || TPC == TPC_TypeAliasTemplate)) {
2505 // C++ 23[temp.param]p14:
2506 // If a template-parameter of a class template, variable template, or
2507 // alias template has a default template argument, each subsequent
2508 // template-parameter shall either have a default template argument
2509 // supplied or be a template parameter pack.
2510 Diag((*NewParam)->getLocation(),
2511 diag::err_template_param_default_arg_missing);
2512 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2513 Invalid = true;
2514 RemoveDefaultArguments = true;
2515 }
2516
2517 // If we have an old template parameter list that we're merging
2518 // in, move on to the next parameter.
2519 if (OldParams)
2520 ++OldParam;
2521 }
2522
2523 // We were missing some default arguments at the end of the list, so remove
2524 // all of the default arguments.
2525 if (RemoveDefaultArguments) {
2526 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2527 NewParamEnd = NewParams->end();
2528 NewParam != NewParamEnd; ++NewParam) {
2529 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2530 TTP->removeDefaultArgument();
2531 else if (NonTypeTemplateParmDecl *NTTP
2532 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2533 NTTP->removeDefaultArgument();
2534 else
2535 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2536 }
2537 }
2538
2539 return Invalid;
2540 }
2541
2542 namespace {
2543
2544 /// A class which looks for a use of a certain level of template
2545 /// parameter.
2546 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2547 typedef RecursiveASTVisitor<DependencyChecker> super;
2548
2549 unsigned Depth;
2550
2551 // Whether we're looking for a use of a template parameter that makes the
2552 // overall construct type-dependent / a dependent type. This is strictly
2553 // best-effort for now; we may fail to match at all for a dependent type
2554 // in some cases if this is set.
2555 bool IgnoreNonTypeDependent;
2556
2557 bool Match;
2558 SourceLocation MatchLoc;
2559
DependencyChecker__anon75c807110811::DependencyChecker2560 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2561 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2562 Match(false) {}
2563
DependencyChecker__anon75c807110811::DependencyChecker2564 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2565 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2566 NamedDecl *ND = Params->getParam(0);
2567 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2568 Depth = PD->getDepth();
2569 } else if (NonTypeTemplateParmDecl *PD =
2570 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2571 Depth = PD->getDepth();
2572 } else {
2573 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2574 }
2575 }
2576
Matches__anon75c807110811::DependencyChecker2577 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2578 if (ParmDepth >= Depth) {
2579 Match = true;
2580 MatchLoc = Loc;
2581 return true;
2582 }
2583 return false;
2584 }
2585
TraverseStmt__anon75c807110811::DependencyChecker2586 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2587 // Prune out non-type-dependent expressions if requested. This can
2588 // sometimes result in us failing to find a template parameter reference
2589 // (if a value-dependent expression creates a dependent type), but this
2590 // mode is best-effort only.
2591 if (auto *E = dyn_cast_or_null<Expr>(S))
2592 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2593 return true;
2594 return super::TraverseStmt(S, Q);
2595 }
2596
TraverseTypeLoc__anon75c807110811::DependencyChecker2597 bool TraverseTypeLoc(TypeLoc TL) {
2598 if (IgnoreNonTypeDependent && !TL.isNull() &&
2599 !TL.getType()->isDependentType())
2600 return true;
2601 return super::TraverseTypeLoc(TL);
2602 }
2603
VisitTemplateTypeParmTypeLoc__anon75c807110811::DependencyChecker2604 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2605 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2606 }
2607
VisitTemplateTypeParmType__anon75c807110811::DependencyChecker2608 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2609 // For a best-effort search, keep looking until we find a location.
2610 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2611 }
2612
TraverseTemplateName__anon75c807110811::DependencyChecker2613 bool TraverseTemplateName(TemplateName N) {
2614 if (TemplateTemplateParmDecl *PD =
2615 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2616 if (Matches(PD->getDepth()))
2617 return false;
2618 return super::TraverseTemplateName(N);
2619 }
2620
VisitDeclRefExpr__anon75c807110811::DependencyChecker2621 bool VisitDeclRefExpr(DeclRefExpr *E) {
2622 if (NonTypeTemplateParmDecl *PD =
2623 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2624 if (Matches(PD->getDepth(), E->getExprLoc()))
2625 return false;
2626 return super::VisitDeclRefExpr(E);
2627 }
2628
VisitSubstTemplateTypeParmType__anon75c807110811::DependencyChecker2629 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2630 return TraverseType(T->getReplacementType());
2631 }
2632
2633 bool
VisitSubstTemplateTypeParmPackType__anon75c807110811::DependencyChecker2634 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2635 return TraverseTemplateArgument(T->getArgumentPack());
2636 }
2637
TraverseInjectedClassNameType__anon75c807110811::DependencyChecker2638 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2639 return TraverseType(T->getInjectedSpecializationType());
2640 }
2641 };
2642 } // end anonymous namespace
2643
2644 /// Determines whether a given type depends on the given parameter
2645 /// list.
2646 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)2647 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2648 if (!Params->size())
2649 return false;
2650
2651 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2652 Checker.TraverseType(T);
2653 return Checker.Match;
2654 }
2655
2656 // Find the source range corresponding to the named type in the given
2657 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)2658 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2659 QualType T,
2660 const CXXScopeSpec &SS) {
2661 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2662 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2663 if (const Type *CurType = NNS->getAsType()) {
2664 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2665 return NNSLoc.getTypeLoc().getSourceRange();
2666 } else
2667 break;
2668
2669 NNSLoc = NNSLoc.getPrefix();
2670 }
2671
2672 return SourceRange();
2673 }
2674
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsMemberSpecialization,bool & Invalid,bool SuppressDiagnostic)2675 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2676 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2677 TemplateIdAnnotation *TemplateId,
2678 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2679 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
2680 IsMemberSpecialization = false;
2681 Invalid = false;
2682
2683 // The sequence of nested types to which we will match up the template
2684 // parameter lists. We first build this list by starting with the type named
2685 // by the nested-name-specifier and walking out until we run out of types.
2686 SmallVector<QualType, 4> NestedTypes;
2687 QualType T;
2688 if (SS.getScopeRep()) {
2689 if (CXXRecordDecl *Record
2690 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2691 T = Context.getTypeDeclType(Record);
2692 else
2693 T = QualType(SS.getScopeRep()->getAsType(), 0);
2694 }
2695
2696 // If we found an explicit specialization that prevents us from needing
2697 // 'template<>' headers, this will be set to the location of that
2698 // explicit specialization.
2699 SourceLocation ExplicitSpecLoc;
2700
2701 while (!T.isNull()) {
2702 NestedTypes.push_back(T);
2703
2704 // Retrieve the parent of a record type.
2705 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2706 // If this type is an explicit specialization, we're done.
2707 if (ClassTemplateSpecializationDecl *Spec
2708 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2709 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2710 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2711 ExplicitSpecLoc = Spec->getLocation();
2712 break;
2713 }
2714 } else if (Record->getTemplateSpecializationKind()
2715 == TSK_ExplicitSpecialization) {
2716 ExplicitSpecLoc = Record->getLocation();
2717 break;
2718 }
2719
2720 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2721 T = Context.getTypeDeclType(Parent);
2722 else
2723 T = QualType();
2724 continue;
2725 }
2726
2727 if (const TemplateSpecializationType *TST
2728 = T->getAs<TemplateSpecializationType>()) {
2729 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2730 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2731 T = Context.getTypeDeclType(Parent);
2732 else
2733 T = QualType();
2734 continue;
2735 }
2736 }
2737
2738 // Look one step prior in a dependent template specialization type.
2739 if (const DependentTemplateSpecializationType *DependentTST
2740 = T->getAs<DependentTemplateSpecializationType>()) {
2741 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2742 T = QualType(NNS->getAsType(), 0);
2743 else
2744 T = QualType();
2745 continue;
2746 }
2747
2748 // Look one step prior in a dependent name type.
2749 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2750 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2751 T = QualType(NNS->getAsType(), 0);
2752 else
2753 T = QualType();
2754 continue;
2755 }
2756
2757 // Retrieve the parent of an enumeration type.
2758 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2759 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2760 // check here.
2761 EnumDecl *Enum = EnumT->getDecl();
2762
2763 // Get to the parent type.
2764 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2765 T = Context.getTypeDeclType(Parent);
2766 else
2767 T = QualType();
2768 continue;
2769 }
2770
2771 T = QualType();
2772 }
2773 // Reverse the nested types list, since we want to traverse from the outermost
2774 // to the innermost while checking template-parameter-lists.
2775 std::reverse(NestedTypes.begin(), NestedTypes.end());
2776
2777 // C++0x [temp.expl.spec]p17:
2778 // A member or a member template may be nested within many
2779 // enclosing class templates. In an explicit specialization for
2780 // such a member, the member declaration shall be preceded by a
2781 // template<> for each enclosing class template that is
2782 // explicitly specialized.
2783 bool SawNonEmptyTemplateParameterList = false;
2784
2785 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2786 if (SawNonEmptyTemplateParameterList) {
2787 if (!SuppressDiagnostic)
2788 Diag(DeclLoc, diag::err_specialize_member_of_template)
2789 << !Recovery << Range;
2790 Invalid = true;
2791 IsMemberSpecialization = false;
2792 return true;
2793 }
2794
2795 return false;
2796 };
2797
2798 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2799 // Check that we can have an explicit specialization here.
2800 if (CheckExplicitSpecialization(Range, true))
2801 return true;
2802
2803 // We don't have a template header, but we should.
2804 SourceLocation ExpectedTemplateLoc;
2805 if (!ParamLists.empty())
2806 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2807 else
2808 ExpectedTemplateLoc = DeclStartLoc;
2809
2810 if (!SuppressDiagnostic)
2811 Diag(DeclLoc, diag::err_template_spec_needs_header)
2812 << Range
2813 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2814 return false;
2815 };
2816
2817 unsigned ParamIdx = 0;
2818 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2819 ++TypeIdx) {
2820 T = NestedTypes[TypeIdx];
2821
2822 // Whether we expect a 'template<>' header.
2823 bool NeedEmptyTemplateHeader = false;
2824
2825 // Whether we expect a template header with parameters.
2826 bool NeedNonemptyTemplateHeader = false;
2827
2828 // For a dependent type, the set of template parameters that we
2829 // expect to see.
2830 TemplateParameterList *ExpectedTemplateParams = nullptr;
2831
2832 // C++0x [temp.expl.spec]p15:
2833 // A member or a member template may be nested within many enclosing
2834 // class templates. In an explicit specialization for such a member, the
2835 // member declaration shall be preceded by a template<> for each
2836 // enclosing class template that is explicitly specialized.
2837 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2838 if (ClassTemplatePartialSpecializationDecl *Partial
2839 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2840 ExpectedTemplateParams = Partial->getTemplateParameters();
2841 NeedNonemptyTemplateHeader = true;
2842 } else if (Record->isDependentType()) {
2843 if (Record->getDescribedClassTemplate()) {
2844 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2845 ->getTemplateParameters();
2846 NeedNonemptyTemplateHeader = true;
2847 }
2848 } else if (ClassTemplateSpecializationDecl *Spec
2849 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2850 // C++0x [temp.expl.spec]p4:
2851 // Members of an explicitly specialized class template are defined
2852 // in the same manner as members of normal classes, and not using
2853 // the template<> syntax.
2854 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2855 NeedEmptyTemplateHeader = true;
2856 else
2857 continue;
2858 } else if (Record->getTemplateSpecializationKind()) {
2859 if (Record->getTemplateSpecializationKind()
2860 != TSK_ExplicitSpecialization &&
2861 TypeIdx == NumTypes - 1)
2862 IsMemberSpecialization = true;
2863
2864 continue;
2865 }
2866 } else if (const TemplateSpecializationType *TST
2867 = T->getAs<TemplateSpecializationType>()) {
2868 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2869 ExpectedTemplateParams = Template->getTemplateParameters();
2870 NeedNonemptyTemplateHeader = true;
2871 }
2872 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2873 // FIXME: We actually could/should check the template arguments here
2874 // against the corresponding template parameter list.
2875 NeedNonemptyTemplateHeader = false;
2876 }
2877
2878 // C++ [temp.expl.spec]p16:
2879 // In an explicit specialization declaration for a member of a class
2880 // template or a member template that appears in namespace scope, the
2881 // member template and some of its enclosing class templates may remain
2882 // unspecialized, except that the declaration shall not explicitly
2883 // specialize a class member template if its enclosing class templates
2884 // are not explicitly specialized as well.
2885 if (ParamIdx < ParamLists.size()) {
2886 if (ParamLists[ParamIdx]->size() == 0) {
2887 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2888 false))
2889 return nullptr;
2890 } else
2891 SawNonEmptyTemplateParameterList = true;
2892 }
2893
2894 if (NeedEmptyTemplateHeader) {
2895 // If we're on the last of the types, and we need a 'template<>' header
2896 // here, then it's a member specialization.
2897 if (TypeIdx == NumTypes - 1)
2898 IsMemberSpecialization = true;
2899
2900 if (ParamIdx < ParamLists.size()) {
2901 if (ParamLists[ParamIdx]->size() > 0) {
2902 // The header has template parameters when it shouldn't. Complain.
2903 if (!SuppressDiagnostic)
2904 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2905 diag::err_template_param_list_matches_nontemplate)
2906 << T
2907 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2908 ParamLists[ParamIdx]->getRAngleLoc())
2909 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2910 Invalid = true;
2911 return nullptr;
2912 }
2913
2914 // Consume this template header.
2915 ++ParamIdx;
2916 continue;
2917 }
2918
2919 if (!IsFriend)
2920 if (DiagnoseMissingExplicitSpecialization(
2921 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2922 return nullptr;
2923
2924 continue;
2925 }
2926
2927 if (NeedNonemptyTemplateHeader) {
2928 // In friend declarations we can have template-ids which don't
2929 // depend on the corresponding template parameter lists. But
2930 // assume that empty parameter lists are supposed to match this
2931 // template-id.
2932 if (IsFriend && T->isDependentType()) {
2933 if (ParamIdx < ParamLists.size() &&
2934 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2935 ExpectedTemplateParams = nullptr;
2936 else
2937 continue;
2938 }
2939
2940 if (ParamIdx < ParamLists.size()) {
2941 // Check the template parameter list, if we can.
2942 if (ExpectedTemplateParams &&
2943 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2944 ExpectedTemplateParams,
2945 !SuppressDiagnostic, TPL_TemplateMatch))
2946 Invalid = true;
2947
2948 if (!Invalid &&
2949 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2950 TPC_ClassTemplateMember))
2951 Invalid = true;
2952
2953 ++ParamIdx;
2954 continue;
2955 }
2956
2957 if (!SuppressDiagnostic)
2958 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2959 << T
2960 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2961 Invalid = true;
2962 continue;
2963 }
2964 }
2965
2966 // If there were at least as many template-ids as there were template
2967 // parameter lists, then there are no template parameter lists remaining for
2968 // the declaration itself.
2969 if (ParamIdx >= ParamLists.size()) {
2970 if (TemplateId && !IsFriend) {
2971 // We don't have a template header for the declaration itself, but we
2972 // should.
2973 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2974 TemplateId->RAngleLoc));
2975
2976 // Fabricate an empty template parameter list for the invented header.
2977 return TemplateParameterList::Create(Context, SourceLocation(),
2978 SourceLocation(), std::nullopt,
2979 SourceLocation(), nullptr);
2980 }
2981
2982 return nullptr;
2983 }
2984
2985 // If there were too many template parameter lists, complain about that now.
2986 if (ParamIdx < ParamLists.size() - 1) {
2987 bool HasAnyExplicitSpecHeader = false;
2988 bool AllExplicitSpecHeaders = true;
2989 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2990 if (ParamLists[I]->size() == 0)
2991 HasAnyExplicitSpecHeader = true;
2992 else
2993 AllExplicitSpecHeaders = false;
2994 }
2995
2996 if (!SuppressDiagnostic)
2997 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2998 AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers
2999 : diag::err_template_spec_extra_headers)
3000 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3001 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3002
3003 // If there was a specialization somewhere, such that 'template<>' is
3004 // not required, and there were any 'template<>' headers, note where the
3005 // specialization occurred.
3006 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3007 !SuppressDiagnostic)
3008 Diag(ExplicitSpecLoc,
3009 diag::note_explicit_template_spec_does_not_need_header)
3010 << NestedTypes.back();
3011
3012 // We have a template parameter list with no corresponding scope, which
3013 // means that the resulting template declaration can't be instantiated
3014 // properly (we'll end up with dependent nodes when we shouldn't).
3015 if (!AllExplicitSpecHeaders)
3016 Invalid = true;
3017 }
3018
3019 // C++ [temp.expl.spec]p16:
3020 // In an explicit specialization declaration for a member of a class
3021 // template or a member template that ap- pears in namespace scope, the
3022 // member template and some of its enclosing class templates may remain
3023 // unspecialized, except that the declaration shall not explicitly
3024 // specialize a class member template if its en- closing class templates
3025 // are not explicitly specialized as well.
3026 if (ParamLists.back()->size() == 0 &&
3027 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3028 false))
3029 return nullptr;
3030
3031 // Return the last template parameter list, which corresponds to the
3032 // entity being declared.
3033 return ParamLists.back();
3034 }
3035
NoteAllFoundTemplates(TemplateName Name)3036 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3037 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3038 Diag(Template->getLocation(), diag::note_template_declared_here)
3039 << (isa<FunctionTemplateDecl>(Template)
3040 ? 0
3041 : isa<ClassTemplateDecl>(Template)
3042 ? 1
3043 : isa<VarTemplateDecl>(Template)
3044 ? 2
3045 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3046 << Template->getDeclName();
3047 return;
3048 }
3049
3050 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3051 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3052 IEnd = OST->end();
3053 I != IEnd; ++I)
3054 Diag((*I)->getLocation(), diag::note_template_declared_here)
3055 << 0 << (*I)->getDeclName();
3056
3057 return;
3058 }
3059 }
3060
3061 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,ArrayRef<TemplateArgument> Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3062 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3063 ArrayRef<TemplateArgument> Converted,
3064 SourceLocation TemplateLoc,
3065 TemplateArgumentListInfo &TemplateArgs) {
3066 ASTContext &Context = SemaRef.getASTContext();
3067
3068 switch (BTD->getBuiltinTemplateKind()) {
3069 case BTK__make_integer_seq: {
3070 // Specializations of __make_integer_seq<S, T, N> are treated like
3071 // S<T, 0, ..., N-1>.
3072
3073 QualType OrigType = Converted[1].getAsType();
3074 // C++14 [inteseq.intseq]p1:
3075 // T shall be an integer type.
3076 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3077 SemaRef.Diag(TemplateArgs[1].getLocation(),
3078 diag::err_integer_sequence_integral_element_type);
3079 return QualType();
3080 }
3081
3082 TemplateArgument NumArgsArg = Converted[2];
3083 if (NumArgsArg.isDependent())
3084 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3085 Converted);
3086
3087 TemplateArgumentListInfo SyntheticTemplateArgs;
3088 // The type argument, wrapped in substitution sugar, gets reused as the
3089 // first template argument in the synthetic template argument list.
3090 SyntheticTemplateArgs.addArgument(
3091 TemplateArgumentLoc(TemplateArgument(OrigType),
3092 SemaRef.Context.getTrivialTypeSourceInfo(
3093 OrigType, TemplateArgs[1].getLocation())));
3094
3095 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3096 // Expand N into 0 ... N-1.
3097 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3098 I < NumArgs; ++I) {
3099 TemplateArgument TA(Context, I, OrigType);
3100 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3101 TA, OrigType, TemplateArgs[2].getLocation()));
3102 }
3103 } else {
3104 // C++14 [inteseq.make]p1:
3105 // If N is negative the program is ill-formed.
3106 SemaRef.Diag(TemplateArgs[2].getLocation(),
3107 diag::err_integer_sequence_negative_length);
3108 return QualType();
3109 }
3110
3111 // The first template argument will be reused as the template decl that
3112 // our synthetic template arguments will be applied to.
3113 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3114 TemplateLoc, SyntheticTemplateArgs);
3115 }
3116
3117 case BTK__type_pack_element:
3118 // Specializations of
3119 // __type_pack_element<Index, T_1, ..., T_N>
3120 // are treated like T_Index.
3121 assert(Converted.size() == 2 &&
3122 "__type_pack_element should be given an index and a parameter pack");
3123
3124 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3125 if (IndexArg.isDependent() || Ts.isDependent())
3126 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3127 Converted);
3128
3129 llvm::APSInt Index = IndexArg.getAsIntegral();
3130 assert(Index >= 0 && "the index used with __type_pack_element should be of "
3131 "type std::size_t, and hence be non-negative");
3132 // If the Index is out of bounds, the program is ill-formed.
3133 if (Index >= Ts.pack_size()) {
3134 SemaRef.Diag(TemplateArgs[0].getLocation(),
3135 diag::err_type_pack_element_out_of_bounds);
3136 return QualType();
3137 }
3138
3139 // We simply return the type at index `Index`.
3140 int64_t N = Index.getExtValue();
3141 return Ts.getPackAsArray()[N].getAsType();
3142 }
3143 llvm_unreachable("unexpected BuiltinTemplateDecl!");
3144 }
3145
3146 /// Determine whether this alias template is "enable_if_t".
3147 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
isEnableIfAliasTemplate(TypeAliasTemplateDecl * AliasTemplate)3148 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3149 return AliasTemplate->getName() == "enable_if_t" ||
3150 AliasTemplate->getName() == "__enable_if_t";
3151 }
3152
3153 /// Collect all of the separable terms in the given condition, which
3154 /// might be a conjunction.
3155 ///
3156 /// FIXME: The right answer is to convert the logical expression into
3157 /// disjunctive normal form, so we can find the first failed term
3158 /// within each possible clause.
collectConjunctionTerms(Expr * Clause,SmallVectorImpl<Expr * > & Terms)3159 static void collectConjunctionTerms(Expr *Clause,
3160 SmallVectorImpl<Expr *> &Terms) {
3161 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3162 if (BinOp->getOpcode() == BO_LAnd) {
3163 collectConjunctionTerms(BinOp->getLHS(), Terms);
3164 collectConjunctionTerms(BinOp->getRHS(), Terms);
3165 return;
3166 }
3167 }
3168
3169 Terms.push_back(Clause);
3170 }
3171
3172 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3173 // a left-hand side that is value-dependent but never true. Identify
3174 // the idiom and ignore that term.
lookThroughRangesV3Condition(Preprocessor & PP,Expr * Cond)3175 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3176 // Top-level '||'.
3177 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3178 if (!BinOp) return Cond;
3179
3180 if (BinOp->getOpcode() != BO_LOr) return Cond;
3181
3182 // With an inner '==' that has a literal on the right-hand side.
3183 Expr *LHS = BinOp->getLHS();
3184 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3185 if (!InnerBinOp) return Cond;
3186
3187 if (InnerBinOp->getOpcode() != BO_EQ ||
3188 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3189 return Cond;
3190
3191 // If the inner binary operation came from a macro expansion named
3192 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3193 // of the '||', which is the real, user-provided condition.
3194 SourceLocation Loc = InnerBinOp->getExprLoc();
3195 if (!Loc.isMacroID()) return Cond;
3196
3197 StringRef MacroName = PP.getImmediateMacroName(Loc);
3198 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3199 return BinOp->getRHS();
3200
3201 return Cond;
3202 }
3203
3204 namespace {
3205
3206 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3207 // within failing boolean expression, such as substituting template parameters
3208 // for actual types.
3209 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3210 public:
FailedBooleanConditionPrinterHelper(const PrintingPolicy & P)3211 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3212 : Policy(P) {}
3213
handledStmt(Stmt * E,raw_ostream & OS)3214 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3215 const auto *DR = dyn_cast<DeclRefExpr>(E);
3216 if (DR && DR->getQualifier()) {
3217 // If this is a qualified name, expand the template arguments in nested
3218 // qualifiers.
3219 DR->getQualifier()->print(OS, Policy, true);
3220 // Then print the decl itself.
3221 const ValueDecl *VD = DR->getDecl();
3222 OS << VD->getName();
3223 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3224 // This is a template variable, print the expanded template arguments.
3225 printTemplateArgumentList(
3226 OS, IV->getTemplateArgs().asArray(), Policy,
3227 IV->getSpecializedTemplate()->getTemplateParameters());
3228 }
3229 return true;
3230 }
3231 return false;
3232 }
3233
3234 private:
3235 const PrintingPolicy Policy;
3236 };
3237
3238 } // end anonymous namespace
3239
3240 std::pair<Expr *, std::string>
findFailedBooleanCondition(Expr * Cond)3241 Sema::findFailedBooleanCondition(Expr *Cond) {
3242 Cond = lookThroughRangesV3Condition(PP, Cond);
3243
3244 // Separate out all of the terms in a conjunction.
3245 SmallVector<Expr *, 4> Terms;
3246 collectConjunctionTerms(Cond, Terms);
3247
3248 // Determine which term failed.
3249 Expr *FailedCond = nullptr;
3250 for (Expr *Term : Terms) {
3251 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3252
3253 // Literals are uninteresting.
3254 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3255 isa<IntegerLiteral>(TermAsWritten))
3256 continue;
3257
3258 // The initialization of the parameter from the argument is
3259 // a constant-evaluated context.
3260 EnterExpressionEvaluationContext ConstantEvaluated(
3261 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3262
3263 bool Succeeded;
3264 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3265 !Succeeded) {
3266 FailedCond = TermAsWritten;
3267 break;
3268 }
3269 }
3270 if (!FailedCond)
3271 FailedCond = Cond->IgnoreParenImpCasts();
3272
3273 std::string Description;
3274 {
3275 llvm::raw_string_ostream Out(Description);
3276 PrintingPolicy Policy = getPrintingPolicy();
3277 Policy.PrintCanonicalTypes = true;
3278 FailedBooleanConditionPrinterHelper Helper(Policy);
3279 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3280 }
3281 return { FailedCond, Description };
3282 }
3283
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3284 QualType Sema::CheckTemplateIdType(TemplateName Name,
3285 SourceLocation TemplateLoc,
3286 TemplateArgumentListInfo &TemplateArgs) {
3287 DependentTemplateName *DTN
3288 = Name.getUnderlying().getAsDependentTemplateName();
3289 if (DTN && DTN->isIdentifier())
3290 // When building a template-id where the template-name is dependent,
3291 // assume the template is a type template. Either our assumption is
3292 // correct, or the code is ill-formed and will be diagnosed when the
3293 // dependent name is substituted.
3294 return Context.getDependentTemplateSpecializationType(
3295 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3296 TemplateArgs.arguments());
3297
3298 if (Name.getAsAssumedTemplateName() &&
3299 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3300 return QualType();
3301
3302 TemplateDecl *Template = Name.getAsTemplateDecl();
3303 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3304 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3305 // We might have a substituted template template parameter pack. If so,
3306 // build a template specialization type for it.
3307 if (Name.getAsSubstTemplateTemplateParmPack())
3308 return Context.getTemplateSpecializationType(Name,
3309 TemplateArgs.arguments());
3310
3311 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3312 << Name;
3313 NoteAllFoundTemplates(Name);
3314 return QualType();
3315 }
3316
3317 // Check that the template argument list is well-formed for this
3318 // template.
3319 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3320 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3321 SugaredConverted, CanonicalConverted,
3322 /*UpdateArgsWithConversions=*/true))
3323 return QualType();
3324
3325 QualType CanonType;
3326
3327 if (TypeAliasTemplateDecl *AliasTemplate =
3328 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3329
3330 // Find the canonical type for this type alias template specialization.
3331 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3332 if (Pattern->isInvalidDecl())
3333 return QualType();
3334
3335 // Only substitute for the innermost template argument list.
3336 MultiLevelTemplateArgumentList TemplateArgLists;
3337 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3338 /*Final=*/false);
3339 TemplateArgLists.addOuterRetainedLevels(
3340 AliasTemplate->getTemplateParameters()->getDepth());
3341
3342 LocalInstantiationScope Scope(*this);
3343 InstantiatingTemplate Inst(
3344 *this, /*PointOfInstantiation=*/TemplateLoc,
3345 /*Entity=*/AliasTemplate,
3346 /*TemplateArgs=*/TemplateArgLists.getInnermost());
3347
3348 // Diagnose uses of this alias.
3349 (void)DiagnoseUseOfDecl(AliasTemplate, TemplateLoc);
3350
3351 if (Inst.isInvalid())
3352 return QualType();
3353
3354 std::optional<ContextRAII> SavedContext;
3355 if (!AliasTemplate->getDeclContext()->isFileContext())
3356 SavedContext.emplace(*this, AliasTemplate->getDeclContext());
3357
3358 CanonType =
3359 SubstType(Pattern->getUnderlyingType(), TemplateArgLists,
3360 AliasTemplate->getLocation(), AliasTemplate->getDeclName());
3361 if (CanonType.isNull()) {
3362 // If this was enable_if and we failed to find the nested type
3363 // within enable_if in a SFINAE context, dig out the specific
3364 // enable_if condition that failed and present that instead.
3365 if (isEnableIfAliasTemplate(AliasTemplate)) {
3366 if (auto DeductionInfo = isSFINAEContext()) {
3367 if (*DeductionInfo &&
3368 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3369 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3370 diag::err_typename_nested_not_found_enable_if &&
3371 TemplateArgs[0].getArgument().getKind()
3372 == TemplateArgument::Expression) {
3373 Expr *FailedCond;
3374 std::string FailedDescription;
3375 std::tie(FailedCond, FailedDescription) =
3376 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3377
3378 // Remove the old SFINAE diagnostic.
3379 PartialDiagnosticAt OldDiag =
3380 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3381 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3382
3383 // Add a new SFINAE diagnostic specifying which condition
3384 // failed.
3385 (*DeductionInfo)->addSFINAEDiagnostic(
3386 OldDiag.first,
3387 PDiag(diag::err_typename_nested_not_found_requirement)
3388 << FailedDescription
3389 << FailedCond->getSourceRange());
3390 }
3391 }
3392 }
3393
3394 return QualType();
3395 }
3396 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3397 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
3398 TemplateLoc, TemplateArgs);
3399 } else if (Name.isDependent() ||
3400 TemplateSpecializationType::anyDependentTemplateArguments(
3401 TemplateArgs, CanonicalConverted)) {
3402 // This class template specialization is a dependent
3403 // type. Therefore, its canonical type is another class template
3404 // specialization type that contains all of the converted
3405 // arguments in canonical form. This ensures that, e.g., A<T> and
3406 // A<T, T> have identical types when A is declared as:
3407 //
3408 // template<typename T, typename U = T> struct A;
3409 CanonType = Context.getCanonicalTemplateSpecializationType(
3410 Name, CanonicalConverted);
3411
3412 // This might work out to be a current instantiation, in which
3413 // case the canonical type needs to be the InjectedClassNameType.
3414 //
3415 // TODO: in theory this could be a simple hashtable lookup; most
3416 // changes to CurContext don't change the set of current
3417 // instantiations.
3418 if (isa<ClassTemplateDecl>(Template)) {
3419 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3420 // If we get out to a namespace, we're done.
3421 if (Ctx->isFileContext()) break;
3422
3423 // If this isn't a record, keep looking.
3424 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3425 if (!Record) continue;
3426
3427 // Look for one of the two cases with InjectedClassNameTypes
3428 // and check whether it's the same template.
3429 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3430 !Record->getDescribedClassTemplate())
3431 continue;
3432
3433 // Fetch the injected class name type and check whether its
3434 // injected type is equal to the type we just built.
3435 QualType ICNT = Context.getTypeDeclType(Record);
3436 QualType Injected = cast<InjectedClassNameType>(ICNT)
3437 ->getInjectedSpecializationType();
3438
3439 if (CanonType != Injected->getCanonicalTypeInternal())
3440 continue;
3441
3442 // If so, the canonical type of this TST is the injected
3443 // class name type of the record we just found.
3444 assert(ICNT.isCanonical());
3445 CanonType = ICNT;
3446 break;
3447 }
3448 }
3449 } else if (ClassTemplateDecl *ClassTemplate =
3450 dyn_cast<ClassTemplateDecl>(Template)) {
3451 // Find the class template specialization declaration that
3452 // corresponds to these arguments.
3453 void *InsertPos = nullptr;
3454 ClassTemplateSpecializationDecl *Decl =
3455 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3456 if (!Decl) {
3457 // This is the first time we have referenced this class template
3458 // specialization. Create the canonical declaration and add it to
3459 // the set of specializations.
3460 Decl = ClassTemplateSpecializationDecl::Create(
3461 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3462 ClassTemplate->getDeclContext(),
3463 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3464 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
3465 nullptr);
3466 ClassTemplate->AddSpecialization(Decl, InsertPos);
3467 if (ClassTemplate->isOutOfLine())
3468 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3469 }
3470
3471 if (Decl->getSpecializationKind() == TSK_Undeclared &&
3472 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3473 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3474 if (!Inst.isInvalid()) {
3475 MultiLevelTemplateArgumentList TemplateArgLists(Template,
3476 CanonicalConverted,
3477 /*Final=*/false);
3478 InstantiateAttrsForDecl(TemplateArgLists,
3479 ClassTemplate->getTemplatedDecl(), Decl);
3480 }
3481 }
3482
3483 // Diagnose uses of this specialization.
3484 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3485
3486 CanonType = Context.getTypeDeclType(Decl);
3487 assert(isa<RecordType>(CanonType) &&
3488 "type of non-dependent specialization is not a RecordType");
3489 } else {
3490 llvm_unreachable("Unhandled template kind");
3491 }
3492
3493 // Build the fully-sugared type for this class template
3494 // specialization, which refers back to the class template
3495 // specialization we created or found.
3496 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
3497 CanonType);
3498 }
3499
ActOnUndeclaredTypeTemplateName(Scope * S,TemplateTy & ParsedName,TemplateNameKind & TNK,SourceLocation NameLoc,IdentifierInfo * & II)3500 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3501 TemplateNameKind &TNK,
3502 SourceLocation NameLoc,
3503 IdentifierInfo *&II) {
3504 assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3505
3506 TemplateName Name = ParsedName.get();
3507 auto *ATN = Name.getAsAssumedTemplateName();
3508 assert(ATN && "not an assumed template name");
3509 II = ATN->getDeclName().getAsIdentifierInfo();
3510
3511 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3512 // Resolved to a type template name.
3513 ParsedName = TemplateTy::make(Name);
3514 TNK = TNK_Type_template;
3515 }
3516 }
3517
resolveAssumedTemplateNameAsType(Scope * S,TemplateName & Name,SourceLocation NameLoc,bool Diagnose)3518 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3519 SourceLocation NameLoc,
3520 bool Diagnose) {
3521 // We assumed this undeclared identifier to be an (ADL-only) function
3522 // template name, but it was used in a context where a type was required.
3523 // Try to typo-correct it now.
3524 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3525 assert(ATN && "not an assumed template name");
3526
3527 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3528 struct CandidateCallback : CorrectionCandidateCallback {
3529 bool ValidateCandidate(const TypoCorrection &TC) override {
3530 return TC.getCorrectionDecl() &&
3531 getAsTypeTemplateDecl(TC.getCorrectionDecl());
3532 }
3533 std::unique_ptr<CorrectionCandidateCallback> clone() override {
3534 return std::make_unique<CandidateCallback>(*this);
3535 }
3536 } FilterCCC;
3537
3538 TypoCorrection Corrected =
3539 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3540 FilterCCC, CTK_ErrorRecovery);
3541 if (Corrected && Corrected.getFoundDecl()) {
3542 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3543 << ATN->getDeclName());
3544 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3545 return false;
3546 }
3547
3548 if (Diagnose)
3549 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3550 return true;
3551 }
3552
ActOnTemplateIdType(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,const IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName,bool IsClassName,ImplicitTypenameContext AllowImplicitTypename)3553 TypeResult Sema::ActOnTemplateIdType(
3554 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3555 TemplateTy TemplateD, const IdentifierInfo *TemplateII,
3556 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3557 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3558 bool IsCtorOrDtorName, bool IsClassName,
3559 ImplicitTypenameContext AllowImplicitTypename) {
3560 if (SS.isInvalid())
3561 return true;
3562
3563 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3564 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3565
3566 // C++ [temp.res]p3:
3567 // A qualified-id that refers to a type and in which the
3568 // nested-name-specifier depends on a template-parameter (14.6.2)
3569 // shall be prefixed by the keyword typename to indicate that the
3570 // qualified-id denotes a type, forming an
3571 // elaborated-type-specifier (7.1.5.3).
3572 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3573 // C++2a relaxes some of those restrictions in [temp.res]p5.
3574 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
3575 if (getLangOpts().CPlusPlus20)
3576 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
3577 else
3578 Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
3579 << SS.getScopeRep() << TemplateII->getName()
3580 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
3581 } else
3582 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3583 << SS.getScopeRep() << TemplateII->getName();
3584
3585 // FIXME: This is not quite correct recovery as we don't transform SS
3586 // into the corresponding dependent form (and we don't diagnose missing
3587 // 'template' keywords within SS as a result).
3588 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3589 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3590 TemplateArgsIn, RAngleLoc);
3591 }
3592
3593 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3594 // it's not actually allowed to be used as a type in most cases. Because
3595 // we annotate it before we know whether it's valid, we have to check for
3596 // this case here.
3597 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3598 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3599 Diag(TemplateIILoc,
3600 TemplateKWLoc.isInvalid()
3601 ? diag::err_out_of_line_qualified_id_type_names_constructor
3602 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3603 << TemplateII << 0 /*injected-class-name used as template name*/
3604 << 1 /*if any keyword was present, it was 'template'*/;
3605 }
3606 }
3607
3608 TemplateName Template = TemplateD.get();
3609 if (Template.getAsAssumedTemplateName() &&
3610 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3611 return true;
3612
3613 // Translate the parser's template argument list in our AST format.
3614 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3615 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3616
3617 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3618 assert(SS.getScopeRep() == DTN->getQualifier());
3619 QualType T = Context.getDependentTemplateSpecializationType(
3620 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3621 TemplateArgs.arguments());
3622 // Build type-source information.
3623 TypeLocBuilder TLB;
3624 DependentTemplateSpecializationTypeLoc SpecTL
3625 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3626 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3627 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3628 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3629 SpecTL.setTemplateNameLoc(TemplateIILoc);
3630 SpecTL.setLAngleLoc(LAngleLoc);
3631 SpecTL.setRAngleLoc(RAngleLoc);
3632 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3633 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3634 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3635 }
3636
3637 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3638 if (SpecTy.isNull())
3639 return true;
3640
3641 // Build type-source information.
3642 TypeLocBuilder TLB;
3643 TemplateSpecializationTypeLoc SpecTL =
3644 TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
3645 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3646 SpecTL.setTemplateNameLoc(TemplateIILoc);
3647 SpecTL.setLAngleLoc(LAngleLoc);
3648 SpecTL.setRAngleLoc(RAngleLoc);
3649 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3650 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3651
3652 // Create an elaborated-type-specifier containing the nested-name-specifier.
3653 QualType ElTy =
3654 getElaboratedType(ElaboratedTypeKeyword::None,
3655 !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
3656 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
3657 ElabTL.setElaboratedKeywordLoc(SourceLocation());
3658 if (!ElabTL.isEmpty())
3659 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3660 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
3661 }
3662
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)3663 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3664 TypeSpecifierType TagSpec,
3665 SourceLocation TagLoc,
3666 CXXScopeSpec &SS,
3667 SourceLocation TemplateKWLoc,
3668 TemplateTy TemplateD,
3669 SourceLocation TemplateLoc,
3670 SourceLocation LAngleLoc,
3671 ASTTemplateArgsPtr TemplateArgsIn,
3672 SourceLocation RAngleLoc) {
3673 if (SS.isInvalid())
3674 return TypeResult(true);
3675
3676 TemplateName Template = TemplateD.get();
3677
3678 // Translate the parser's template argument list in our AST format.
3679 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3680 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3681
3682 // Determine the tag kind
3683 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3684 ElaboratedTypeKeyword Keyword
3685 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3686
3687 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3688 assert(SS.getScopeRep() == DTN->getQualifier());
3689 QualType T = Context.getDependentTemplateSpecializationType(
3690 Keyword, DTN->getQualifier(), DTN->getIdentifier(),
3691 TemplateArgs.arguments());
3692
3693 // Build type-source information.
3694 TypeLocBuilder TLB;
3695 DependentTemplateSpecializationTypeLoc SpecTL
3696 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3697 SpecTL.setElaboratedKeywordLoc(TagLoc);
3698 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3699 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3700 SpecTL.setTemplateNameLoc(TemplateLoc);
3701 SpecTL.setLAngleLoc(LAngleLoc);
3702 SpecTL.setRAngleLoc(RAngleLoc);
3703 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3704 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3705 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3706 }
3707
3708 if (TypeAliasTemplateDecl *TAT =
3709 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3710 // C++0x [dcl.type.elab]p2:
3711 // If the identifier resolves to a typedef-name or the simple-template-id
3712 // resolves to an alias template specialization, the
3713 // elaborated-type-specifier is ill-formed.
3714 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3715 << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
3716 Diag(TAT->getLocation(), diag::note_declared_at);
3717 }
3718
3719 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3720 if (Result.isNull())
3721 return TypeResult(true);
3722
3723 // Check the tag kind
3724 if (const RecordType *RT = Result->getAs<RecordType>()) {
3725 RecordDecl *D = RT->getDecl();
3726
3727 IdentifierInfo *Id = D->getIdentifier();
3728 assert(Id && "templated class must have an identifier");
3729
3730 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TagUseKind::Definition,
3731 TagLoc, Id)) {
3732 Diag(TagLoc, diag::err_use_with_wrong_tag)
3733 << Result
3734 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3735 Diag(D->getLocation(), diag::note_previous_use);
3736 }
3737 }
3738
3739 // Provide source-location information for the template specialization.
3740 TypeLocBuilder TLB;
3741 TemplateSpecializationTypeLoc SpecTL
3742 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3743 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3744 SpecTL.setTemplateNameLoc(TemplateLoc);
3745 SpecTL.setLAngleLoc(LAngleLoc);
3746 SpecTL.setRAngleLoc(RAngleLoc);
3747 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3748 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3749
3750 // Construct an elaborated type containing the nested-name-specifier (if any)
3751 // and tag keyword.
3752 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3753 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3754 ElabTL.setElaboratedKeywordLoc(TagLoc);
3755 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3756 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3757 }
3758
3759 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3760 NamedDecl *PrevDecl,
3761 SourceLocation Loc,
3762 bool IsPartialSpecialization);
3763
3764 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3765
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)3766 static bool isTemplateArgumentTemplateParameter(
3767 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3768 switch (Arg.getKind()) {
3769 case TemplateArgument::Null:
3770 case TemplateArgument::NullPtr:
3771 case TemplateArgument::Integral:
3772 case TemplateArgument::Declaration:
3773 case TemplateArgument::StructuralValue:
3774 case TemplateArgument::Pack:
3775 case TemplateArgument::TemplateExpansion:
3776 return false;
3777
3778 case TemplateArgument::Type: {
3779 QualType Type = Arg.getAsType();
3780 const TemplateTypeParmType *TPT =
3781 Arg.getAsType()->getAs<TemplateTypeParmType>();
3782 return TPT && !Type.hasQualifiers() &&
3783 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3784 }
3785
3786 case TemplateArgument::Expression: {
3787 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3788 if (!DRE || !DRE->getDecl())
3789 return false;
3790 const NonTypeTemplateParmDecl *NTTP =
3791 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3792 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3793 }
3794
3795 case TemplateArgument::Template:
3796 const TemplateTemplateParmDecl *TTP =
3797 dyn_cast_or_null<TemplateTemplateParmDecl>(
3798 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3799 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3800 }
3801 llvm_unreachable("unexpected kind of template argument");
3802 }
3803
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)3804 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3805 ArrayRef<TemplateArgument> Args) {
3806 if (Params->size() != Args.size())
3807 return false;
3808
3809 unsigned Depth = Params->getDepth();
3810
3811 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3812 TemplateArgument Arg = Args[I];
3813
3814 // If the parameter is a pack expansion, the argument must be a pack
3815 // whose only element is a pack expansion.
3816 if (Params->getParam(I)->isParameterPack()) {
3817 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3818 !Arg.pack_begin()->isPackExpansion())
3819 return false;
3820 Arg = Arg.pack_begin()->getPackExpansionPattern();
3821 }
3822
3823 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3824 return false;
3825 }
3826
3827 return true;
3828 }
3829
3830 template<typename PartialSpecDecl>
checkMoreSpecializedThanPrimary(Sema & S,PartialSpecDecl * Partial)3831 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3832 if (Partial->getDeclContext()->isDependentContext())
3833 return;
3834
3835 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3836 // for non-substitution-failure issues?
3837 TemplateDeductionInfo Info(Partial->getLocation());
3838 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3839 return;
3840
3841 auto *Template = Partial->getSpecializedTemplate();
3842 S.Diag(Partial->getLocation(),
3843 diag::ext_partial_spec_not_more_specialized_than_primary)
3844 << isa<VarTemplateDecl>(Template);
3845
3846 if (Info.hasSFINAEDiagnostic()) {
3847 PartialDiagnosticAt Diag = {SourceLocation(),
3848 PartialDiagnostic::NullDiagnostic()};
3849 Info.takeSFINAEDiagnostic(Diag);
3850 SmallString<128> SFINAEArgString;
3851 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3852 S.Diag(Diag.first,
3853 diag::note_partial_spec_not_more_specialized_than_primary)
3854 << SFINAEArgString;
3855 }
3856
3857 S.NoteTemplateLocation(*Template);
3858 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
3859 Template->getAssociatedConstraints(TemplateAC);
3860 Partial->getAssociatedConstraints(PartialAC);
3861 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
3862 TemplateAC);
3863 }
3864
3865 static void
noteNonDeducibleParameters(Sema & S,TemplateParameterList * TemplateParams,const llvm::SmallBitVector & DeducibleParams)3866 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3867 const llvm::SmallBitVector &DeducibleParams) {
3868 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3869 if (!DeducibleParams[I]) {
3870 NamedDecl *Param = TemplateParams->getParam(I);
3871 if (Param->getDeclName())
3872 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3873 << Param->getDeclName();
3874 else
3875 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3876 << "(anonymous)";
3877 }
3878 }
3879 }
3880
3881
3882 template<typename PartialSpecDecl>
checkTemplatePartialSpecialization(Sema & S,PartialSpecDecl * Partial)3883 static void checkTemplatePartialSpecialization(Sema &S,
3884 PartialSpecDecl *Partial) {
3885 // C++1z [temp.class.spec]p8: (DR1495)
3886 // - The specialization shall be more specialized than the primary
3887 // template (14.5.5.2).
3888 checkMoreSpecializedThanPrimary(S, Partial);
3889
3890 // C++ [temp.class.spec]p8: (DR1315)
3891 // - Each template-parameter shall appear at least once in the
3892 // template-id outside a non-deduced context.
3893 // C++1z [temp.class.spec.match]p3 (P0127R2)
3894 // If the template arguments of a partial specialization cannot be
3895 // deduced because of the structure of its template-parameter-list
3896 // and the template-id, the program is ill-formed.
3897 auto *TemplateParams = Partial->getTemplateParameters();
3898 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3899 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3900 TemplateParams->getDepth(), DeducibleParams);
3901
3902 if (!DeducibleParams.all()) {
3903 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3904 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3905 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3906 << (NumNonDeducible > 1)
3907 << SourceRange(Partial->getLocation(),
3908 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3909 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3910 }
3911 }
3912
CheckTemplatePartialSpecialization(ClassTemplatePartialSpecializationDecl * Partial)3913 void Sema::CheckTemplatePartialSpecialization(
3914 ClassTemplatePartialSpecializationDecl *Partial) {
3915 checkTemplatePartialSpecialization(*this, Partial);
3916 }
3917
CheckTemplatePartialSpecialization(VarTemplatePartialSpecializationDecl * Partial)3918 void Sema::CheckTemplatePartialSpecialization(
3919 VarTemplatePartialSpecializationDecl *Partial) {
3920 checkTemplatePartialSpecialization(*this, Partial);
3921 }
3922
CheckDeductionGuideTemplate(FunctionTemplateDecl * TD)3923 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3924 // C++1z [temp.param]p11:
3925 // A template parameter of a deduction guide template that does not have a
3926 // default-argument shall be deducible from the parameter-type-list of the
3927 // deduction guide template.
3928 auto *TemplateParams = TD->getTemplateParameters();
3929 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3930 MarkDeducedTemplateParameters(TD, DeducibleParams);
3931 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3932 // A parameter pack is deducible (to an empty pack).
3933 auto *Param = TemplateParams->getParam(I);
3934 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3935 DeducibleParams[I] = true;
3936 }
3937
3938 if (!DeducibleParams.all()) {
3939 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3940 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3941 << (NumNonDeducible > 1);
3942 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3943 }
3944 }
3945
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,LookupResult & Previous,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)3946 DeclResult Sema::ActOnVarTemplateSpecialization(
3947 Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous,
3948 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
3949 StorageClass SC, bool IsPartialSpecialization) {
3950 // D must be variable template id.
3951 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
3952 "Variable template specialization is declared with a template id.");
3953
3954 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3955 TemplateArgumentListInfo TemplateArgs =
3956 makeTemplateArgumentListInfo(*this, *TemplateId);
3957 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3958 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3959 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3960
3961 TemplateName Name = TemplateId->Template.get();
3962
3963 // The template-id must name a variable template.
3964 VarTemplateDecl *VarTemplate =
3965 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3966 if (!VarTemplate) {
3967 NamedDecl *FnTemplate;
3968 if (auto *OTS = Name.getAsOverloadedTemplate())
3969 FnTemplate = *OTS->begin();
3970 else
3971 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3972 if (FnTemplate)
3973 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3974 << FnTemplate->getDeclName();
3975 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3976 << IsPartialSpecialization;
3977 }
3978
3979 // Check for unexpanded parameter packs in any of the template arguments.
3980 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3981 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3982 IsPartialSpecialization
3983 ? UPPC_PartialSpecialization
3984 : UPPC_ExplicitSpecialization))
3985 return true;
3986
3987 // Check that the template argument list is well-formed for this
3988 // template.
3989 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3990 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3991 false, SugaredConverted, CanonicalConverted,
3992 /*UpdateArgsWithConversions=*/true))
3993 return true;
3994
3995 // Find the variable template (partial) specialization declaration that
3996 // corresponds to these arguments.
3997 if (IsPartialSpecialization) {
3998 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3999 TemplateArgs.size(),
4000 CanonicalConverted))
4001 return true;
4002
4003 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4004 // also do them during instantiation.
4005 if (!Name.isDependent() &&
4006 !TemplateSpecializationType::anyDependentTemplateArguments(
4007 TemplateArgs, CanonicalConverted)) {
4008 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4009 << VarTemplate->getDeclName();
4010 IsPartialSpecialization = false;
4011 }
4012
4013 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4014 CanonicalConverted) &&
4015 (!Context.getLangOpts().CPlusPlus20 ||
4016 !TemplateParams->hasAssociatedConstraints())) {
4017 // C++ [temp.class.spec]p9b3:
4018 //
4019 // -- The argument list of the specialization shall not be identical
4020 // to the implicit argument list of the primary template.
4021 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4022 << /*variable template*/ 1
4023 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4024 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4025 // FIXME: Recover from this by treating the declaration as a redeclaration
4026 // of the primary template.
4027 return true;
4028 }
4029 }
4030
4031 void *InsertPos = nullptr;
4032 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4033
4034 if (IsPartialSpecialization)
4035 PrevDecl = VarTemplate->findPartialSpecialization(
4036 CanonicalConverted, TemplateParams, InsertPos);
4037 else
4038 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4039
4040 VarTemplateSpecializationDecl *Specialization = nullptr;
4041
4042 // Check whether we can declare a variable template specialization in
4043 // the current scope.
4044 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4045 TemplateNameLoc,
4046 IsPartialSpecialization))
4047 return true;
4048
4049 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4050 // Since the only prior variable template specialization with these
4051 // arguments was referenced but not declared, reuse that
4052 // declaration node as our own, updating its source location and
4053 // the list of outer template parameters to reflect our new declaration.
4054 Specialization = PrevDecl;
4055 Specialization->setLocation(TemplateNameLoc);
4056 PrevDecl = nullptr;
4057 } else if (IsPartialSpecialization) {
4058 // Create a new class template partial specialization declaration node.
4059 VarTemplatePartialSpecializationDecl *PrevPartial =
4060 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4061 VarTemplatePartialSpecializationDecl *Partial =
4062 VarTemplatePartialSpecializationDecl::Create(
4063 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4064 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4065 CanonicalConverted);
4066 Partial->setTemplateArgsAsWritten(TemplateArgs);
4067
4068 if (!PrevPartial)
4069 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4070 Specialization = Partial;
4071
4072 // If we are providing an explicit specialization of a member variable
4073 // template specialization, make a note of that.
4074 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4075 PrevPartial->setMemberSpecialization();
4076
4077 CheckTemplatePartialSpecialization(Partial);
4078 } else {
4079 // Create a new class template specialization declaration node for
4080 // this explicit specialization or friend declaration.
4081 Specialization = VarTemplateSpecializationDecl::Create(
4082 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4083 VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4084 Specialization->setTemplateArgsAsWritten(TemplateArgs);
4085
4086 if (!PrevDecl)
4087 VarTemplate->AddSpecialization(Specialization, InsertPos);
4088 }
4089
4090 // C++ [temp.expl.spec]p6:
4091 // If a template, a member template or the member of a class template is
4092 // explicitly specialized then that specialization shall be declared
4093 // before the first use of that specialization that would cause an implicit
4094 // instantiation to take place, in every translation unit in which such a
4095 // use occurs; no diagnostic is required.
4096 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4097 bool Okay = false;
4098 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4099 // Is there any previous explicit specialization declaration?
4100 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4101 Okay = true;
4102 break;
4103 }
4104 }
4105
4106 if (!Okay) {
4107 SourceRange Range(TemplateNameLoc, RAngleLoc);
4108 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4109 << Name << Range;
4110
4111 Diag(PrevDecl->getPointOfInstantiation(),
4112 diag::note_instantiation_required_here)
4113 << (PrevDecl->getTemplateSpecializationKind() !=
4114 TSK_ImplicitInstantiation);
4115 return true;
4116 }
4117 }
4118
4119 Specialization->setLexicalDeclContext(CurContext);
4120
4121 // Add the specialization into its lexical context, so that it can
4122 // be seen when iterating through the list of declarations in that
4123 // context. However, specializations are not found by name lookup.
4124 CurContext->addDecl(Specialization);
4125
4126 // Note that this is an explicit specialization.
4127 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4128
4129 Previous.clear();
4130 if (PrevDecl)
4131 Previous.addDecl(PrevDecl);
4132 else if (Specialization->isStaticDataMember() &&
4133 Specialization->isOutOfLine())
4134 Specialization->setAccess(VarTemplate->getAccess());
4135
4136 return Specialization;
4137 }
4138
4139 namespace {
4140 /// A partial specialization whose template arguments have matched
4141 /// a given template-id.
4142 struct PartialSpecMatchResult {
4143 VarTemplatePartialSpecializationDecl *Partial;
4144 TemplateArgumentList *Args;
4145 };
4146 } // end anonymous namespace
4147
4148 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)4149 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4150 SourceLocation TemplateNameLoc,
4151 const TemplateArgumentListInfo &TemplateArgs) {
4152 assert(Template && "A variable template id without template?");
4153
4154 // Check that the template argument list is well-formed for this template.
4155 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4156 if (CheckTemplateArgumentList(
4157 Template, TemplateNameLoc,
4158 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4159 SugaredConverted, CanonicalConverted,
4160 /*UpdateArgsWithConversions=*/true))
4161 return true;
4162
4163 // Produce a placeholder value if the specialization is dependent.
4164 if (Template->getDeclContext()->isDependentContext() ||
4165 TemplateSpecializationType::anyDependentTemplateArguments(
4166 TemplateArgs, CanonicalConverted))
4167 return DeclResult();
4168
4169 // Find the variable template specialization declaration that
4170 // corresponds to these arguments.
4171 void *InsertPos = nullptr;
4172 if (VarTemplateSpecializationDecl *Spec =
4173 Template->findSpecialization(CanonicalConverted, InsertPos)) {
4174 checkSpecializationReachability(TemplateNameLoc, Spec);
4175 // If we already have a variable template specialization, return it.
4176 return Spec;
4177 }
4178
4179 // This is the first time we have referenced this variable template
4180 // specialization. Create the canonical declaration and add it to
4181 // the set of specializations, based on the closest partial specialization
4182 // that it represents. That is,
4183 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4184 const TemplateArgumentList *PartialSpecArgs = nullptr;
4185 bool AmbiguousPartialSpec = false;
4186 typedef PartialSpecMatchResult MatchResult;
4187 SmallVector<MatchResult, 4> Matched;
4188 SourceLocation PointOfInstantiation = TemplateNameLoc;
4189 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4190 /*ForTakingAddress=*/false);
4191
4192 // 1. Attempt to find the closest partial specialization that this
4193 // specializes, if any.
4194 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4195 // Perhaps better after unification of DeduceTemplateArguments() and
4196 // getMoreSpecializedPartialSpecialization().
4197 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4198 Template->getPartialSpecializations(PartialSpecs);
4199
4200 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4201 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4202 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4203
4204 if (TemplateDeductionResult Result =
4205 DeduceTemplateArguments(Partial, CanonicalConverted, Info);
4206 Result != TemplateDeductionResult::Success) {
4207 // Store the failed-deduction information for use in diagnostics, later.
4208 // TODO: Actually use the failed-deduction info?
4209 FailedCandidates.addCandidate().set(
4210 DeclAccessPair::make(Template, AS_public), Partial,
4211 MakeDeductionFailureInfo(Context, Result, Info));
4212 (void)Result;
4213 } else {
4214 Matched.push_back(PartialSpecMatchResult());
4215 Matched.back().Partial = Partial;
4216 Matched.back().Args = Info.takeCanonical();
4217 }
4218 }
4219
4220 if (Matched.size() >= 1) {
4221 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4222 if (Matched.size() == 1) {
4223 // -- If exactly one matching specialization is found, the
4224 // instantiation is generated from that specialization.
4225 // We don't need to do anything for this.
4226 } else {
4227 // -- If more than one matching specialization is found, the
4228 // partial order rules (14.5.4.2) are used to determine
4229 // whether one of the specializations is more specialized
4230 // than the others. If none of the specializations is more
4231 // specialized than all of the other matching
4232 // specializations, then the use of the variable template is
4233 // ambiguous and the program is ill-formed.
4234 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4235 PEnd = Matched.end();
4236 P != PEnd; ++P) {
4237 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4238 PointOfInstantiation) ==
4239 P->Partial)
4240 Best = P;
4241 }
4242
4243 // Determine if the best partial specialization is more specialized than
4244 // the others.
4245 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4246 PEnd = Matched.end();
4247 P != PEnd; ++P) {
4248 if (P != Best && getMoreSpecializedPartialSpecialization(
4249 P->Partial, Best->Partial,
4250 PointOfInstantiation) != Best->Partial) {
4251 AmbiguousPartialSpec = true;
4252 break;
4253 }
4254 }
4255 }
4256
4257 // Instantiate using the best variable template partial specialization.
4258 InstantiationPattern = Best->Partial;
4259 PartialSpecArgs = Best->Args;
4260 } else {
4261 // -- If no match is found, the instantiation is generated
4262 // from the primary template.
4263 // InstantiationPattern = Template->getTemplatedDecl();
4264 }
4265
4266 // 2. Create the canonical declaration.
4267 // Note that we do not instantiate a definition until we see an odr-use
4268 // in DoMarkVarDeclReferenced().
4269 // FIXME: LateAttrs et al.?
4270 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4271 Template, InstantiationPattern, PartialSpecArgs, TemplateArgs,
4272 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4273 if (!Decl)
4274 return true;
4275
4276 if (AmbiguousPartialSpec) {
4277 // Partial ordering did not produce a clear winner. Complain.
4278 Decl->setInvalidDecl();
4279 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4280 << Decl;
4281
4282 // Print the matching partial specializations.
4283 for (MatchResult P : Matched)
4284 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4285 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4286 *P.Args);
4287 return true;
4288 }
4289
4290 if (VarTemplatePartialSpecializationDecl *D =
4291 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4292 Decl->setInstantiationOf(D, PartialSpecArgs);
4293
4294 checkSpecializationReachability(TemplateNameLoc, Decl);
4295
4296 assert(Decl && "No variable template specialization?");
4297 return Decl;
4298 }
4299
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,NamedDecl * FoundD,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)4300 ExprResult Sema::CheckVarTemplateId(
4301 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
4302 VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc,
4303 const TemplateArgumentListInfo *TemplateArgs) {
4304
4305 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4306 *TemplateArgs);
4307 if (Decl.isInvalid())
4308 return ExprError();
4309
4310 if (!Decl.get())
4311 return ExprResult();
4312
4313 VarDecl *Var = cast<VarDecl>(Decl.get());
4314 if (!Var->getTemplateSpecializationKind())
4315 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4316 NameInfo.getLoc());
4317
4318 // Build an ordinary singleton decl ref.
4319 return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs);
4320 }
4321
diagnoseMissingTemplateArguments(TemplateName Name,SourceLocation Loc)4322 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4323 SourceLocation Loc) {
4324 Diag(Loc, diag::err_template_missing_args)
4325 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4326 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4327 NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
4328 }
4329 }
4330
diagnoseMissingTemplateArguments(const CXXScopeSpec & SS,bool TemplateKeyword,TemplateDecl * TD,SourceLocation Loc)4331 void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS,
4332 bool TemplateKeyword,
4333 TemplateDecl *TD,
4334 SourceLocation Loc) {
4335 TemplateName Name = Context.getQualifiedTemplateName(
4336 SS.getScopeRep(), TemplateKeyword, TemplateName(TD));
4337 diagnoseMissingTemplateArguments(Name, Loc);
4338 }
4339
4340 ExprResult
CheckConceptTemplateId(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs)4341 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4342 SourceLocation TemplateKWLoc,
4343 const DeclarationNameInfo &ConceptNameInfo,
4344 NamedDecl *FoundDecl,
4345 ConceptDecl *NamedConcept,
4346 const TemplateArgumentListInfo *TemplateArgs) {
4347 assert(NamedConcept && "A concept template id without a template?");
4348
4349 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4350 if (CheckTemplateArgumentList(
4351 NamedConcept, ConceptNameInfo.getLoc(),
4352 const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4353 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4354 /*UpdateArgsWithConversions=*/false))
4355 return ExprError();
4356
4357 DiagnoseUseOfDecl(NamedConcept, ConceptNameInfo.getLoc());
4358
4359 auto *CSD = ImplicitConceptSpecializationDecl::Create(
4360 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
4361 CanonicalConverted);
4362 ConstraintSatisfaction Satisfaction;
4363 bool AreArgsDependent =
4364 TemplateSpecializationType::anyDependentTemplateArguments(
4365 *TemplateArgs, CanonicalConverted);
4366 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
4367 /*Final=*/false);
4368 LocalInstantiationScope Scope(*this);
4369
4370 EnterExpressionEvaluationContext EECtx{
4371 *this, ExpressionEvaluationContext::Unevaluated, CSD};
4372
4373 if (!AreArgsDependent &&
4374 CheckConstraintSatisfaction(
4375 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
4376 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4377 TemplateArgs->getRAngleLoc()),
4378 Satisfaction))
4379 return ExprError();
4380 auto *CL = ConceptReference::Create(
4381 Context,
4382 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4383 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4384 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
4385 return ConceptSpecializationExpr::Create(
4386 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
4387 }
4388
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)4389 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4390 SourceLocation TemplateKWLoc,
4391 LookupResult &R,
4392 bool RequiresADL,
4393 const TemplateArgumentListInfo *TemplateArgs) {
4394 // FIXME: Can we do any checking at this point? I guess we could check the
4395 // template arguments that we have against the template name, if the template
4396 // name refers to a single template. That's not a terribly common case,
4397 // though.
4398 // foo<int> could identify a single function unambiguously
4399 // This approach does NOT work, since f<int>(1);
4400 // gets resolved prior to resorting to overload resolution
4401 // i.e., template<class T> void f(double);
4402 // vs template<class T, class U> void f(U);
4403
4404 // These should be filtered out by our callers.
4405 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4406
4407 // Non-function templates require a template argument list.
4408 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4409 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4410 diagnoseMissingTemplateArguments(
4411 SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, R.getNameLoc());
4412 return ExprError();
4413 }
4414 }
4415 bool KnownDependent = false;
4416 // In C++1y, check variable template ids.
4417 if (R.getAsSingle<VarTemplateDecl>()) {
4418 ExprResult Res = CheckVarTemplateId(
4419 SS, R.getLookupNameInfo(), R.getAsSingle<VarTemplateDecl>(),
4420 R.getRepresentativeDecl(), TemplateKWLoc, TemplateArgs);
4421 if (Res.isInvalid() || Res.isUsable())
4422 return Res;
4423 // Result is dependent. Carry on to build an UnresolvedLookupExpr.
4424 KnownDependent = true;
4425 }
4426
4427 if (R.getAsSingle<ConceptDecl>()) {
4428 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4429 R.getRepresentativeDecl(),
4430 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4431 }
4432
4433 // We don't want lookup warnings at this point.
4434 R.suppressDiagnostics();
4435
4436 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
4437 Context, R.getNamingClass(), SS.getWithLocInContext(Context),
4438 TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
4439 R.begin(), R.end(), KnownDependent,
4440 /*KnownInstantiationDependent=*/false);
4441
4442 // Model the templates with UnresolvedTemplateTy. The expression should then
4443 // either be transformed in an instantiation or be diagnosed in
4444 // CheckPlaceholderExpr.
4445 if (ULE->getType() == Context.OverloadTy && R.isSingleResult() &&
4446 !R.getFoundDecl()->getAsFunction())
4447 ULE->setType(Context.UnresolvedTemplateTy);
4448
4449 return ULE;
4450 }
4451
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand)4452 ExprResult Sema::BuildQualifiedTemplateIdExpr(
4453 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4454 const DeclarationNameInfo &NameInfo,
4455 const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) {
4456 assert(TemplateArgs || TemplateKWLoc.isValid());
4457
4458 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4459 if (LookupTemplateName(R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(),
4460 /*EnteringContext=*/false, TemplateKWLoc))
4461 return ExprError();
4462
4463 if (R.isAmbiguous())
4464 return ExprError();
4465
4466 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
4467 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4468
4469 if (R.empty()) {
4470 DeclContext *DC = computeDeclContext(SS);
4471 Diag(NameInfo.getLoc(), diag::err_no_member)
4472 << NameInfo.getName() << DC << SS.getRange();
4473 return ExprError();
4474 }
4475
4476 // If necessary, build an implicit class member access.
4477 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
4478 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
4479 /*S=*/nullptr);
4480
4481 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/false, TemplateArgs);
4482 }
4483
ActOnTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result,bool AllowInjectedClassName)4484 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4485 CXXScopeSpec &SS,
4486 SourceLocation TemplateKWLoc,
4487 const UnqualifiedId &Name,
4488 ParsedType ObjectType,
4489 bool EnteringContext,
4490 TemplateTy &Result,
4491 bool AllowInjectedClassName) {
4492 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4493 Diag(TemplateKWLoc,
4494 getLangOpts().CPlusPlus11 ?
4495 diag::warn_cxx98_compat_template_outside_of_template :
4496 diag::ext_template_outside_of_template)
4497 << FixItHint::CreateRemoval(TemplateKWLoc);
4498
4499 if (SS.isInvalid())
4500 return TNK_Non_template;
4501
4502 // Figure out where isTemplateName is going to look.
4503 DeclContext *LookupCtx = nullptr;
4504 if (SS.isNotEmpty())
4505 LookupCtx = computeDeclContext(SS, EnteringContext);
4506 else if (ObjectType)
4507 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4508
4509 // C++0x [temp.names]p5:
4510 // If a name prefixed by the keyword template is not the name of
4511 // a template, the program is ill-formed. [Note: the keyword
4512 // template may not be applied to non-template members of class
4513 // templates. -end note ] [ Note: as is the case with the
4514 // typename prefix, the template prefix is allowed in cases
4515 // where it is not strictly necessary; i.e., when the
4516 // nested-name-specifier or the expression on the left of the ->
4517 // or . is not dependent on a template-parameter, or the use
4518 // does not appear in the scope of a template. -end note]
4519 //
4520 // Note: C++03 was more strict here, because it banned the use of
4521 // the "template" keyword prior to a template-name that was not a
4522 // dependent name. C++ DR468 relaxed this requirement (the
4523 // "template" keyword is now permitted). We follow the C++0x
4524 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4525 bool MemberOfUnknownSpecialization;
4526 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4527 ObjectType, EnteringContext, Result,
4528 MemberOfUnknownSpecialization);
4529 if (TNK != TNK_Non_template) {
4530 // We resolved this to a (non-dependent) template name. Return it.
4531 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4532 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4533 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4534 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4535 // C++14 [class.qual]p2:
4536 // In a lookup in which function names are not ignored and the
4537 // nested-name-specifier nominates a class C, if the name specified
4538 // [...] is the injected-class-name of C, [...] the name is instead
4539 // considered to name the constructor
4540 //
4541 // We don't get here if naming the constructor would be valid, so we
4542 // just reject immediately and recover by treating the
4543 // injected-class-name as naming the template.
4544 Diag(Name.getBeginLoc(),
4545 diag::ext_out_of_line_qualified_id_type_names_constructor)
4546 << Name.Identifier
4547 << 0 /*injected-class-name used as template name*/
4548 << TemplateKWLoc.isValid();
4549 }
4550 return TNK;
4551 }
4552
4553 if (!MemberOfUnknownSpecialization) {
4554 // Didn't find a template name, and the lookup wasn't dependent.
4555 // Do the lookup again to determine if this is a "nothing found" case or
4556 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4557 // need to do this.
4558 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4559 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4560 LookupOrdinaryName);
4561 // Tell LookupTemplateName that we require a template so that it diagnoses
4562 // cases where it finds a non-template.
4563 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4564 ? RequiredTemplateKind(TemplateKWLoc)
4565 : TemplateNameIsRequired;
4566 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, RTK,
4567 /*ATK=*/nullptr, /*AllowTypoCorrection=*/false) &&
4568 !R.isAmbiguous()) {
4569 if (LookupCtx)
4570 Diag(Name.getBeginLoc(), diag::err_no_member)
4571 << DNI.getName() << LookupCtx << SS.getRange();
4572 else
4573 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4574 << DNI.getName() << SS.getRange();
4575 }
4576 return TNK_Non_template;
4577 }
4578
4579 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4580
4581 switch (Name.getKind()) {
4582 case UnqualifiedIdKind::IK_Identifier:
4583 Result = TemplateTy::make(
4584 Context.getDependentTemplateName(Qualifier, Name.Identifier));
4585 return TNK_Dependent_template_name;
4586
4587 case UnqualifiedIdKind::IK_OperatorFunctionId:
4588 Result = TemplateTy::make(Context.getDependentTemplateName(
4589 Qualifier, Name.OperatorFunctionId.Operator));
4590 return TNK_Function_template;
4591
4592 case UnqualifiedIdKind::IK_LiteralOperatorId:
4593 // This is a kind of template name, but can never occur in a dependent
4594 // scope (literal operators can only be declared at namespace scope).
4595 break;
4596
4597 default:
4598 break;
4599 }
4600
4601 // This name cannot possibly name a dependent template. Diagnose this now
4602 // rather than building a dependent template name that can never be valid.
4603 Diag(Name.getBeginLoc(),
4604 diag::err_template_kw_refers_to_dependent_non_template)
4605 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4606 << TemplateKWLoc.isValid() << TemplateKWLoc;
4607 return TNK_Non_template;
4608 }
4609
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted)4610 bool Sema::CheckTemplateTypeArgument(
4611 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
4612 SmallVectorImpl<TemplateArgument> &SugaredConverted,
4613 SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
4614 const TemplateArgument &Arg = AL.getArgument();
4615 QualType ArgType;
4616 TypeSourceInfo *TSI = nullptr;
4617
4618 // Check template type parameter.
4619 switch(Arg.getKind()) {
4620 case TemplateArgument::Type:
4621 // C++ [temp.arg.type]p1:
4622 // A template-argument for a template-parameter which is a
4623 // type shall be a type-id.
4624 ArgType = Arg.getAsType();
4625 TSI = AL.getTypeSourceInfo();
4626 break;
4627 case TemplateArgument::Template:
4628 case TemplateArgument::TemplateExpansion: {
4629 // We have a template type parameter but the template argument
4630 // is a template without any arguments.
4631 SourceRange SR = AL.getSourceRange();
4632 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4633 diagnoseMissingTemplateArguments(Name, SR.getEnd());
4634 return true;
4635 }
4636 case TemplateArgument::Expression: {
4637 // We have a template type parameter but the template argument is an
4638 // expression; see if maybe it is missing the "typename" keyword.
4639 CXXScopeSpec SS;
4640 DeclarationNameInfo NameInfo;
4641
4642 if (DependentScopeDeclRefExpr *ArgExpr =
4643 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4644 SS.Adopt(ArgExpr->getQualifierLoc());
4645 NameInfo = ArgExpr->getNameInfo();
4646 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4647 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4648 if (ArgExpr->isImplicitAccess()) {
4649 SS.Adopt(ArgExpr->getQualifierLoc());
4650 NameInfo = ArgExpr->getMemberNameInfo();
4651 }
4652 }
4653
4654 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4655 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4656 LookupParsedName(Result, CurScope, &SS, /*ObjectType=*/QualType());
4657
4658 if (Result.getAsSingle<TypeDecl>() ||
4659 Result.wasNotFoundInCurrentInstantiation()) {
4660 assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
4661 // Suggest that the user add 'typename' before the NNS.
4662 SourceLocation Loc = AL.getSourceRange().getBegin();
4663 Diag(Loc, getLangOpts().MSVCCompat
4664 ? diag::ext_ms_template_type_arg_missing_typename
4665 : diag::err_template_arg_must_be_type_suggest)
4666 << FixItHint::CreateInsertion(Loc, "typename ");
4667 NoteTemplateParameterLocation(*Param);
4668
4669 // Recover by synthesizing a type using the location information that we
4670 // already have.
4671 ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
4672 SS.getScopeRep(), II);
4673 TypeLocBuilder TLB;
4674 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4675 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4676 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4677 TL.setNameLoc(NameInfo.getLoc());
4678 TSI = TLB.getTypeSourceInfo(Context, ArgType);
4679
4680 // Overwrite our input TemplateArgumentLoc so that we can recover
4681 // properly.
4682 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4683 TemplateArgumentLocInfo(TSI));
4684
4685 break;
4686 }
4687 }
4688 // fallthrough
4689 [[fallthrough]];
4690 }
4691 default: {
4692 // We allow instantiateing a template with template argument packs when
4693 // building deduction guides.
4694 if (Arg.getKind() == TemplateArgument::Pack &&
4695 CodeSynthesisContexts.back().Kind ==
4696 Sema::CodeSynthesisContext::BuildingDeductionGuides) {
4697 SugaredConverted.push_back(Arg);
4698 CanonicalConverted.push_back(Arg);
4699 return false;
4700 }
4701 // We have a template type parameter but the template argument
4702 // is not a type.
4703 SourceRange SR = AL.getSourceRange();
4704 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4705 NoteTemplateParameterLocation(*Param);
4706
4707 return true;
4708 }
4709 }
4710
4711 if (CheckTemplateArgument(TSI))
4712 return true;
4713
4714 // Objective-C ARC:
4715 // If an explicitly-specified template argument type is a lifetime type
4716 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4717 if (getLangOpts().ObjCAutoRefCount &&
4718 ArgType->isObjCLifetimeType() &&
4719 !ArgType.getObjCLifetime()) {
4720 Qualifiers Qs;
4721 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4722 ArgType = Context.getQualifiedType(ArgType, Qs);
4723 }
4724
4725 SugaredConverted.push_back(TemplateArgument(ArgType));
4726 CanonicalConverted.push_back(
4727 TemplateArgument(Context.getCanonicalType(ArgType)));
4728 return false;
4729 }
4730
4731 /// Substitute template arguments into the default template argument for
4732 /// the given template type parameter.
4733 ///
4734 /// \param SemaRef the semantic analysis object for which we are performing
4735 /// the substitution.
4736 ///
4737 /// \param Template the template that we are synthesizing template arguments
4738 /// for.
4739 ///
4740 /// \param TemplateLoc the location of the template name that started the
4741 /// template-id we are checking.
4742 ///
4743 /// \param RAngleLoc the location of the right angle bracket ('>') that
4744 /// terminates the template-id.
4745 ///
4746 /// \param Param the template template parameter whose default we are
4747 /// substituting into.
4748 ///
4749 /// \param Converted the list of template arguments provided for template
4750 /// parameters that precede \p Param in the template parameter list.
4751 ///
4752 /// \param Output the resulting substituted template argument.
4753 ///
4754 /// \returns true if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,TemplateArgumentLoc & Output)4755 static bool SubstDefaultTemplateArgument(
4756 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
4757 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
4758 ArrayRef<TemplateArgument> SugaredConverted,
4759 ArrayRef<TemplateArgument> CanonicalConverted,
4760 TemplateArgumentLoc &Output) {
4761 Output = Param->getDefaultArgument();
4762
4763 // If the argument type is dependent, instantiate it now based
4764 // on the previously-computed template arguments.
4765 if (Output.getArgument().isInstantiationDependent()) {
4766 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
4767 SugaredConverted,
4768 SourceRange(TemplateLoc, RAngleLoc));
4769 if (Inst.isInvalid())
4770 return true;
4771
4772 // Only substitute for the innermost template argument list.
4773 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
4774 /*Final=*/true);
4775 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4776 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
4777
4778 bool ForLambdaCallOperator = false;
4779 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
4780 ForLambdaCallOperator = Rec->isLambda();
4781 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
4782 !ForLambdaCallOperator);
4783
4784 if (SemaRef.SubstTemplateArgument(Output, TemplateArgLists, Output,
4785 Param->getDefaultArgumentLoc(),
4786 Param->getDeclName()))
4787 return true;
4788 }
4789
4790 return false;
4791 }
4792
4793 /// Substitute template arguments into the default template argument for
4794 /// the given non-type template parameter.
4795 ///
4796 /// \param SemaRef the semantic analysis object for which we are performing
4797 /// the substitution.
4798 ///
4799 /// \param Template the template that we are synthesizing template arguments
4800 /// for.
4801 ///
4802 /// \param TemplateLoc the location of the template name that started the
4803 /// template-id we are checking.
4804 ///
4805 /// \param RAngleLoc the location of the right angle bracket ('>') that
4806 /// terminates the template-id.
4807 ///
4808 /// \param Param the non-type template parameter whose default we are
4809 /// substituting into.
4810 ///
4811 /// \param Converted the list of template arguments provided for template
4812 /// parameters that precede \p Param in the template parameter list.
4813 ///
4814 /// \returns the substituted template argument, or NULL if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,TemplateArgumentLoc & Output)4815 static bool SubstDefaultTemplateArgument(
4816 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
4817 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
4818 ArrayRef<TemplateArgument> SugaredConverted,
4819 ArrayRef<TemplateArgument> CanonicalConverted,
4820 TemplateArgumentLoc &Output) {
4821 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
4822 SugaredConverted,
4823 SourceRange(TemplateLoc, RAngleLoc));
4824 if (Inst.isInvalid())
4825 return true;
4826
4827 // Only substitute for the innermost template argument list.
4828 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
4829 /*Final=*/true);
4830 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4831 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
4832
4833 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4834 EnterExpressionEvaluationContext ConstantEvaluated(
4835 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4836 return SemaRef.SubstTemplateArgument(Param->getDefaultArgument(),
4837 TemplateArgLists, Output);
4838 }
4839
4840 /// Substitute template arguments into the default template argument for
4841 /// the given template template parameter.
4842 ///
4843 /// \param SemaRef the semantic analysis object for which we are performing
4844 /// the substitution.
4845 ///
4846 /// \param Template the template that we are synthesizing template arguments
4847 /// for.
4848 ///
4849 /// \param TemplateLoc the location of the template name that started the
4850 /// template-id we are checking.
4851 ///
4852 /// \param RAngleLoc the location of the right angle bracket ('>') that
4853 /// terminates the template-id.
4854 ///
4855 /// \param Param the template template parameter whose default we are
4856 /// substituting into.
4857 ///
4858 /// \param Converted the list of template arguments provided for template
4859 /// parameters that precede \p Param in the template parameter list.
4860 ///
4861 /// \param QualifierLoc Will be set to the nested-name-specifier (with
4862 /// source-location information) that precedes the template name.
4863 ///
4864 /// \returns the substituted template argument, or NULL if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,NestedNameSpecifierLoc & QualifierLoc)4865 static TemplateName SubstDefaultTemplateArgument(
4866 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
4867 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
4868 ArrayRef<TemplateArgument> SugaredConverted,
4869 ArrayRef<TemplateArgument> CanonicalConverted,
4870 NestedNameSpecifierLoc &QualifierLoc) {
4871 Sema::InstantiatingTemplate Inst(
4872 SemaRef, TemplateLoc, TemplateParameter(Param), Template,
4873 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
4874 if (Inst.isInvalid())
4875 return TemplateName();
4876
4877 // Only substitute for the innermost template argument list.
4878 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
4879 /*Final=*/true);
4880 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4881 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
4882
4883 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4884 // Substitute into the nested-name-specifier first,
4885 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4886 if (QualifierLoc) {
4887 QualifierLoc =
4888 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4889 if (!QualifierLoc)
4890 return TemplateName();
4891 }
4892
4893 return SemaRef.SubstTemplateName(
4894 QualifierLoc,
4895 Param->getDefaultArgument().getArgument().getAsTemplate(),
4896 Param->getDefaultArgument().getTemplateNameLoc(),
4897 TemplateArgLists);
4898 }
4899
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,bool & HasDefaultArg)4900 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
4901 TemplateDecl *Template, SourceLocation TemplateLoc,
4902 SourceLocation RAngleLoc, Decl *Param,
4903 ArrayRef<TemplateArgument> SugaredConverted,
4904 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
4905 HasDefaultArg = false;
4906
4907 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4908 if (!hasReachableDefaultArgument(TypeParm))
4909 return TemplateArgumentLoc();
4910
4911 HasDefaultArg = true;
4912 TemplateArgumentLoc Output;
4913 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
4914 TypeParm, SugaredConverted,
4915 CanonicalConverted, Output))
4916 return TemplateArgumentLoc();
4917 return Output;
4918 }
4919
4920 if (NonTypeTemplateParmDecl *NonTypeParm
4921 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4922 if (!hasReachableDefaultArgument(NonTypeParm))
4923 return TemplateArgumentLoc();
4924
4925 HasDefaultArg = true;
4926 TemplateArgumentLoc Output;
4927 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
4928 NonTypeParm, SugaredConverted,
4929 CanonicalConverted, Output))
4930 return TemplateArgumentLoc();
4931 return Output;
4932 }
4933
4934 TemplateTemplateParmDecl *TempTempParm
4935 = cast<TemplateTemplateParmDecl>(Param);
4936 if (!hasReachableDefaultArgument(TempTempParm))
4937 return TemplateArgumentLoc();
4938
4939 HasDefaultArg = true;
4940 NestedNameSpecifierLoc QualifierLoc;
4941 TemplateName TName = SubstDefaultTemplateArgument(
4942 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
4943 CanonicalConverted, QualifierLoc);
4944 if (TName.isNull())
4945 return TemplateArgumentLoc();
4946
4947 return TemplateArgumentLoc(
4948 Context, TemplateArgument(TName),
4949 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4950 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4951 }
4952
4953 /// Convert a template-argument that we parsed as a type into a template, if
4954 /// possible. C++ permits injected-class-names to perform dual service as
4955 /// template template arguments and as template type arguments.
4956 static TemplateArgumentLoc
convertTypeTemplateArgumentToTemplate(ASTContext & Context,TypeLoc TLoc)4957 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
4958 // Extract and step over any surrounding nested-name-specifier.
4959 NestedNameSpecifierLoc QualLoc;
4960 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4961 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
4962 return TemplateArgumentLoc();
4963
4964 QualLoc = ETLoc.getQualifierLoc();
4965 TLoc = ETLoc.getNamedTypeLoc();
4966 }
4967 // If this type was written as an injected-class-name, it can be used as a
4968 // template template argument.
4969 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4970 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
4971 QualLoc, InjLoc.getNameLoc());
4972
4973 // If this type was written as an injected-class-name, it may have been
4974 // converted to a RecordType during instantiation. If the RecordType is
4975 // *not* wrapped in a TemplateSpecializationType and denotes a class
4976 // template specialization, it must have come from an injected-class-name.
4977 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4978 if (auto *CTSD =
4979 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4980 return TemplateArgumentLoc(Context,
4981 TemplateName(CTSD->getSpecializedTemplate()),
4982 QualLoc, RecLoc.getNameLoc());
4983
4984 return TemplateArgumentLoc();
4985 }
4986
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted,CheckTemplateArgumentKind CTAK)4987 bool Sema::CheckTemplateArgument(
4988 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
4989 SourceLocation TemplateLoc, SourceLocation RAngleLoc,
4990 unsigned ArgumentPackIndex,
4991 SmallVectorImpl<TemplateArgument> &SugaredConverted,
4992 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
4993 CheckTemplateArgumentKind CTAK) {
4994 // Check template type parameters.
4995 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4996 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
4997 CanonicalConverted);
4998
4999 // Check non-type template parameters.
5000 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5001 // Do substitution on the type of the non-type template parameter
5002 // with the template arguments we've seen thus far. But if the
5003 // template has a dependent context then we cannot substitute yet.
5004 QualType NTTPType = NTTP->getType();
5005 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5006 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5007
5008 if (NTTPType->isInstantiationDependentType() &&
5009 !isa<TemplateTemplateParmDecl>(Template) &&
5010 !Template->getDeclContext()->isDependentContext()) {
5011 // Do substitution on the type of the non-type template parameter.
5012 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5013 SugaredConverted,
5014 SourceRange(TemplateLoc, RAngleLoc));
5015 if (Inst.isInvalid())
5016 return true;
5017
5018 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5019 /*Final=*/true);
5020 // If the parameter is a pack expansion, expand this slice of the pack.
5021 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5022 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5023 ArgumentPackIndex);
5024 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5025 NTTP->getDeclName());
5026 } else {
5027 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5028 NTTP->getDeclName());
5029 }
5030
5031 // If that worked, check the non-type template parameter type
5032 // for validity.
5033 if (!NTTPType.isNull())
5034 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5035 NTTP->getLocation());
5036 if (NTTPType.isNull())
5037 return true;
5038 }
5039
5040 switch (Arg.getArgument().getKind()) {
5041 case TemplateArgument::Null:
5042 llvm_unreachable("Should never see a NULL template argument here");
5043
5044 case TemplateArgument::Expression: {
5045 Expr *E = Arg.getArgument().getAsExpr();
5046 TemplateArgument SugaredResult, CanonicalResult;
5047 unsigned CurSFINAEErrors = NumSFINAEErrors;
5048 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5049 CanonicalResult, CTAK);
5050 if (Res.isInvalid())
5051 return true;
5052 // If the current template argument causes an error, give up now.
5053 if (CurSFINAEErrors < NumSFINAEErrors)
5054 return true;
5055
5056 // If the resulting expression is new, then use it in place of the
5057 // old expression in the template argument.
5058 if (Res.get() != E) {
5059 TemplateArgument TA(Res.get());
5060 Arg = TemplateArgumentLoc(TA, Res.get());
5061 }
5062
5063 SugaredConverted.push_back(SugaredResult);
5064 CanonicalConverted.push_back(CanonicalResult);
5065 break;
5066 }
5067
5068 case TemplateArgument::Declaration:
5069 case TemplateArgument::Integral:
5070 case TemplateArgument::StructuralValue:
5071 case TemplateArgument::NullPtr:
5072 // We've already checked this template argument, so just copy
5073 // it to the list of converted arguments.
5074 SugaredConverted.push_back(Arg.getArgument());
5075 CanonicalConverted.push_back(
5076 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5077 break;
5078
5079 case TemplateArgument::Template:
5080 case TemplateArgument::TemplateExpansion:
5081 // We were given a template template argument. It may not be ill-formed;
5082 // see below.
5083 if (DependentTemplateName *DTN
5084 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5085 .getAsDependentTemplateName()) {
5086 // We have a template argument such as \c T::template X, which we
5087 // parsed as a template template argument. However, since we now
5088 // know that we need a non-type template argument, convert this
5089 // template name into an expression.
5090
5091 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5092 Arg.getTemplateNameLoc());
5093
5094 CXXScopeSpec SS;
5095 SS.Adopt(Arg.getTemplateQualifierLoc());
5096 // FIXME: the template-template arg was a DependentTemplateName,
5097 // so it was provided with a template keyword. However, its source
5098 // location is not stored in the template argument structure.
5099 SourceLocation TemplateKWLoc;
5100 ExprResult E = DependentScopeDeclRefExpr::Create(
5101 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5102 nullptr);
5103
5104 // If we parsed the template argument as a pack expansion, create a
5105 // pack expansion expression.
5106 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5107 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5108 if (E.isInvalid())
5109 return true;
5110 }
5111
5112 TemplateArgument SugaredResult, CanonicalResult;
5113 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5114 CanonicalResult, CTAK_Specified);
5115 if (E.isInvalid())
5116 return true;
5117
5118 SugaredConverted.push_back(SugaredResult);
5119 CanonicalConverted.push_back(CanonicalResult);
5120 break;
5121 }
5122
5123 // We have a template argument that actually does refer to a class
5124 // template, alias template, or template template parameter, and
5125 // therefore cannot be a non-type template argument.
5126 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5127 << Arg.getSourceRange();
5128 NoteTemplateParameterLocation(*Param);
5129
5130 return true;
5131
5132 case TemplateArgument::Type: {
5133 // We have a non-type template parameter but the template
5134 // argument is a type.
5135
5136 // C++ [temp.arg]p2:
5137 // In a template-argument, an ambiguity between a type-id and
5138 // an expression is resolved to a type-id, regardless of the
5139 // form of the corresponding template-parameter.
5140 //
5141 // We warn specifically about this case, since it can be rather
5142 // confusing for users.
5143 QualType T = Arg.getArgument().getAsType();
5144 SourceRange SR = Arg.getSourceRange();
5145 if (T->isFunctionType())
5146 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5147 else
5148 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5149 NoteTemplateParameterLocation(*Param);
5150 return true;
5151 }
5152
5153 case TemplateArgument::Pack:
5154 llvm_unreachable("Caller must expand template argument packs");
5155 }
5156
5157 return false;
5158 }
5159
5160
5161 // Check template template parameters.
5162 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5163
5164 TemplateParameterList *Params = TempParm->getTemplateParameters();
5165 if (TempParm->isExpandedParameterPack())
5166 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5167
5168 // Substitute into the template parameter list of the template
5169 // template parameter, since previously-supplied template arguments
5170 // may appear within the template template parameter.
5171 //
5172 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5173 {
5174 // Set up a template instantiation context.
5175 LocalInstantiationScope Scope(*this);
5176 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5177 SugaredConverted,
5178 SourceRange(TemplateLoc, RAngleLoc));
5179 if (Inst.isInvalid())
5180 return true;
5181
5182 Params =
5183 SubstTemplateParams(Params, CurContext,
5184 MultiLevelTemplateArgumentList(
5185 Template, SugaredConverted, /*Final=*/true),
5186 /*EvaluateConstraints=*/false);
5187 if (!Params)
5188 return true;
5189 }
5190
5191 // C++1z [temp.local]p1: (DR1004)
5192 // When [the injected-class-name] is used [...] as a template-argument for
5193 // a template template-parameter [...] it refers to the class template
5194 // itself.
5195 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5196 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5197 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5198 if (!ConvertedArg.getArgument().isNull())
5199 Arg = ConvertedArg;
5200 }
5201
5202 switch (Arg.getArgument().getKind()) {
5203 case TemplateArgument::Null:
5204 llvm_unreachable("Should never see a NULL template argument here");
5205
5206 case TemplateArgument::Template:
5207 case TemplateArgument::TemplateExpansion:
5208 if (CheckTemplateTemplateArgument(TempParm, Params, Arg,
5209 /*IsDeduced=*/CTAK != CTAK_Specified))
5210 return true;
5211
5212 SugaredConverted.push_back(Arg.getArgument());
5213 CanonicalConverted.push_back(
5214 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5215 break;
5216
5217 case TemplateArgument::Expression:
5218 case TemplateArgument::Type:
5219 // We have a template template parameter but the template
5220 // argument does not refer to a template.
5221 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5222 << getLangOpts().CPlusPlus11;
5223 return true;
5224
5225 case TemplateArgument::Declaration:
5226 case TemplateArgument::Integral:
5227 case TemplateArgument::StructuralValue:
5228 case TemplateArgument::NullPtr:
5229 llvm_unreachable("non-type argument with template template parameter");
5230
5231 case TemplateArgument::Pack:
5232 llvm_unreachable("Caller must expand template argument packs");
5233 }
5234
5235 return false;
5236 }
5237
5238 /// Diagnose a missing template argument.
5239 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)5240 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5241 TemplateDecl *TD,
5242 const TemplateParmDecl *D,
5243 TemplateArgumentListInfo &Args) {
5244 // Dig out the most recent declaration of the template parameter; there may be
5245 // declarations of the template that are more recent than TD.
5246 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5247 ->getTemplateParameters()
5248 ->getParam(D->getIndex()));
5249
5250 // If there's a default argument that's not reachable, diagnose that we're
5251 // missing a module import.
5252 llvm::SmallVector<Module*, 8> Modules;
5253 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5254 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5255 D->getDefaultArgumentLoc(), Modules,
5256 Sema::MissingImportKind::DefaultArgument,
5257 /*Recover*/true);
5258 return true;
5259 }
5260
5261 // FIXME: If there's a more recent default argument that *is* visible,
5262 // diagnose that it was declared too late.
5263
5264 TemplateParameterList *Params = TD->getTemplateParameters();
5265
5266 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5267 << /*not enough args*/0
5268 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5269 << TD;
5270 S.NoteTemplateLocation(*TD, Params->getSourceRange());
5271 return true;
5272 }
5273
5274 /// Check that the given template argument list is well-formed
5275 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted,bool UpdateArgsWithConversions,bool * ConstraintsNotSatisfied,bool PartialOrderingTTP)5276 bool Sema::CheckTemplateArgumentList(
5277 TemplateDecl *Template, SourceLocation TemplateLoc,
5278 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5279 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5280 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5281 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied,
5282 bool PartialOrderingTTP) {
5283
5284 if (ConstraintsNotSatisfied)
5285 *ConstraintsNotSatisfied = false;
5286
5287 // Make a copy of the template arguments for processing. Only make the
5288 // changes at the end when successful in matching the arguments to the
5289 // template.
5290 TemplateArgumentListInfo NewArgs = TemplateArgs;
5291
5292 TemplateParameterList *Params = GetTemplateParameterList(Template);
5293
5294 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5295
5296 // C++ [temp.arg]p1:
5297 // [...] The type and form of each template-argument specified in
5298 // a template-id shall match the type and form specified for the
5299 // corresponding parameter declared by the template in its
5300 // template-parameter-list.
5301 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5302 SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5303 SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5304 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5305 LocalInstantiationScope InstScope(*this, true);
5306 for (TemplateParameterList::iterator Param = Params->begin(),
5307 ParamEnd = Params->end();
5308 Param != ParamEnd; /* increment in loop */) {
5309 // If we have an expanded parameter pack, make sure we don't have too
5310 // many arguments.
5311 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5312 if (*Expansions == SugaredArgumentPack.size()) {
5313 // We're done with this parameter pack. Pack up its arguments and add
5314 // them to the list.
5315 SugaredConverted.push_back(
5316 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5317 SugaredArgumentPack.clear();
5318
5319 CanonicalConverted.push_back(
5320 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5321 CanonicalArgumentPack.clear();
5322
5323 // This argument is assigned to the next parameter.
5324 ++Param;
5325 continue;
5326 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5327 // Not enough arguments for this parameter pack.
5328 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5329 << /*not enough args*/0
5330 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5331 << Template;
5332 NoteTemplateLocation(*Template, Params->getSourceRange());
5333 return true;
5334 }
5335 }
5336
5337 if (ArgIdx < NumArgs) {
5338 // Check the template argument we were given.
5339 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
5340 RAngleLoc, SugaredArgumentPack.size(),
5341 SugaredConverted, CanonicalConverted,
5342 CTAK_Specified))
5343 return true;
5344
5345 CanonicalConverted.back().setIsDefaulted(
5346 clang::isSubstitutedDefaultArgument(
5347 Context, NewArgs[ArgIdx].getArgument(), *Param,
5348 CanonicalConverted, Params->getDepth()));
5349
5350 bool PackExpansionIntoNonPack =
5351 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5352 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5353 // CWG1430: Don't diagnose this pack expansion when partial
5354 // ordering template template parameters. Some uses of the template could
5355 // be valid, and invalid uses will be diagnosed later during
5356 // instantiation.
5357 if (PackExpansionIntoNonPack && !PartialOrderingTTP &&
5358 (isa<TypeAliasTemplateDecl>(Template) ||
5359 isa<ConceptDecl>(Template))) {
5360 // CWG1430: we have a pack expansion as an argument to an
5361 // alias template, and it's not part of a parameter pack. This
5362 // can't be canonicalized, so reject it now.
5363 // As for concepts - we cannot normalize constraints where this
5364 // situation exists.
5365 Diag(NewArgs[ArgIdx].getLocation(),
5366 diag::err_template_expansion_into_fixed_list)
5367 << (isa<ConceptDecl>(Template) ? 1 : 0)
5368 << NewArgs[ArgIdx].getSourceRange();
5369 NoteTemplateParameterLocation(**Param);
5370 return true;
5371 }
5372
5373 // We're now done with this argument.
5374 ++ArgIdx;
5375
5376 if ((*Param)->isTemplateParameterPack()) {
5377 // The template parameter was a template parameter pack, so take the
5378 // deduced argument and place it on the argument pack. Note that we
5379 // stay on the same template parameter so that we can deduce more
5380 // arguments.
5381 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
5382 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
5383 } else {
5384 // Move to the next template parameter.
5385 ++Param;
5386 }
5387
5388 // If we just saw a pack expansion into a non-pack, then directly convert
5389 // the remaining arguments, because we don't know what parameters they'll
5390 // match up with.
5391 if (PackExpansionIntoNonPack) {
5392 if (!SugaredArgumentPack.empty()) {
5393 // If we were part way through filling in an expanded parameter pack,
5394 // fall back to just producing individual arguments.
5395 SugaredConverted.insert(SugaredConverted.end(),
5396 SugaredArgumentPack.begin(),
5397 SugaredArgumentPack.end());
5398 SugaredArgumentPack.clear();
5399
5400 CanonicalConverted.insert(CanonicalConverted.end(),
5401 CanonicalArgumentPack.begin(),
5402 CanonicalArgumentPack.end());
5403 CanonicalArgumentPack.clear();
5404 }
5405
5406 while (ArgIdx < NumArgs) {
5407 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
5408 SugaredConverted.push_back(Arg);
5409 CanonicalConverted.push_back(
5410 Context.getCanonicalTemplateArgument(Arg));
5411 ++ArgIdx;
5412 }
5413
5414 return false;
5415 }
5416
5417 continue;
5418 }
5419
5420 // If we're checking a partial template argument list, we're done.
5421 if (PartialTemplateArgs) {
5422 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
5423 SugaredConverted.push_back(
5424 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5425 CanonicalConverted.push_back(
5426 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5427 }
5428 return false;
5429 }
5430
5431 // If we have a template parameter pack with no more corresponding
5432 // arguments, just break out now and we'll fill in the argument pack below.
5433 if ((*Param)->isTemplateParameterPack()) {
5434 assert(!getExpandedPackSize(*Param) &&
5435 "Should have dealt with this already");
5436
5437 // A non-expanded parameter pack before the end of the parameter list
5438 // only occurs for an ill-formed template parameter list, unless we've
5439 // got a partial argument list for a function template, so just bail out.
5440 if (Param + 1 != ParamEnd) {
5441 assert(
5442 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
5443 "Concept templates must have parameter packs at the end.");
5444 return true;
5445 }
5446
5447 SugaredConverted.push_back(
5448 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5449 SugaredArgumentPack.clear();
5450
5451 CanonicalConverted.push_back(
5452 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5453 CanonicalArgumentPack.clear();
5454
5455 ++Param;
5456 continue;
5457 }
5458
5459 // Check whether we have a default argument.
5460 TemplateArgumentLoc Arg;
5461
5462 // Retrieve the default template argument from the template
5463 // parameter. For each kind of template parameter, we substitute the
5464 // template arguments provided thus far and any "outer" template arguments
5465 // (when the template parameter was part of a nested template) into
5466 // the default argument.
5467 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5468 if (!hasReachableDefaultArgument(TTP))
5469 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5470 NewArgs);
5471
5472 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
5473 TTP, SugaredConverted,
5474 CanonicalConverted, Arg))
5475 return true;
5476 } else if (NonTypeTemplateParmDecl *NTTP
5477 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5478 if (!hasReachableDefaultArgument(NTTP))
5479 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5480 NewArgs);
5481
5482 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
5483 NTTP, SugaredConverted,
5484 CanonicalConverted, Arg))
5485 return true;
5486 } else {
5487 TemplateTemplateParmDecl *TempParm
5488 = cast<TemplateTemplateParmDecl>(*Param);
5489
5490 if (!hasReachableDefaultArgument(TempParm))
5491 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5492 NewArgs);
5493
5494 NestedNameSpecifierLoc QualifierLoc;
5495 TemplateName Name = SubstDefaultTemplateArgument(
5496 *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
5497 CanonicalConverted, QualifierLoc);
5498 if (Name.isNull())
5499 return true;
5500
5501 Arg = TemplateArgumentLoc(
5502 Context, TemplateArgument(Name), QualifierLoc,
5503 TempParm->getDefaultArgument().getTemplateNameLoc());
5504 }
5505
5506 // Introduce an instantiation record that describes where we are using
5507 // the default template argument. We're not actually instantiating a
5508 // template here, we just create this object to put a note into the
5509 // context stack.
5510 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
5511 SugaredConverted,
5512 SourceRange(TemplateLoc, RAngleLoc));
5513 if (Inst.isInvalid())
5514 return true;
5515
5516 // Check the default template argument.
5517 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
5518 SugaredConverted, CanonicalConverted,
5519 CTAK_Specified))
5520 return true;
5521
5522 CanonicalConverted.back().setIsDefaulted(true);
5523
5524 // Core issue 150 (assumed resolution): if this is a template template
5525 // parameter, keep track of the default template arguments from the
5526 // template definition.
5527 if (isTemplateTemplateParameter)
5528 NewArgs.addArgument(Arg);
5529
5530 // Move to the next template parameter and argument.
5531 ++Param;
5532 ++ArgIdx;
5533 }
5534
5535 // If we're performing a partial argument substitution, allow any trailing
5536 // pack expansions; they might be empty. This can happen even if
5537 // PartialTemplateArgs is false (the list of arguments is complete but
5538 // still dependent).
5539 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5540 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5541 while (ArgIdx < NumArgs &&
5542 NewArgs[ArgIdx].getArgument().isPackExpansion()) {
5543 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
5544 SugaredConverted.push_back(Arg);
5545 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
5546 }
5547 }
5548
5549 // If we have any leftover arguments, then there were too many arguments.
5550 // Complain and fail.
5551 if (ArgIdx < NumArgs) {
5552 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5553 << /*too many args*/1
5554 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5555 << Template
5556 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5557 NoteTemplateLocation(*Template, Params->getSourceRange());
5558 return true;
5559 }
5560
5561 // No problems found with the new argument list, propagate changes back
5562 // to caller.
5563 if (UpdateArgsWithConversions)
5564 TemplateArgs = std::move(NewArgs);
5565
5566 if (!PartialTemplateArgs) {
5567 // Setup the context/ThisScope for the case where we are needing to
5568 // re-instantiate constraints outside of normal instantiation.
5569 DeclContext *NewContext = Template->getDeclContext();
5570
5571 // If this template is in a template, make sure we extract the templated
5572 // decl.
5573 if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
5574 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
5575 auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
5576
5577 Qualifiers ThisQuals;
5578 if (const auto *Method =
5579 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
5580 ThisQuals = Method->getMethodQualifiers();
5581
5582 ContextRAII Context(*this, NewContext);
5583 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
5584
5585 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
5586 Template, NewContext, /*Final=*/false, CanonicalConverted,
5587 /*RelativeToPrimary=*/true,
5588 /*Pattern=*/nullptr,
5589 /*ForConceptInstantiation=*/true);
5590 if (EnsureTemplateArgumentListConstraints(
5591 Template, MLTAL,
5592 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
5593 if (ConstraintsNotSatisfied)
5594 *ConstraintsNotSatisfied = true;
5595 return true;
5596 }
5597 }
5598
5599 return false;
5600 }
5601
5602 namespace {
5603 class UnnamedLocalNoLinkageFinder
5604 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5605 {
5606 Sema &S;
5607 SourceRange SR;
5608
5609 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5610
5611 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)5612 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5613
Visit(QualType T)5614 bool Visit(QualType T) {
5615 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5616 }
5617
5618 #define TYPE(Class, Parent) \
5619 bool Visit##Class##Type(const Class##Type *);
5620 #define ABSTRACT_TYPE(Class, Parent) \
5621 bool Visit##Class##Type(const Class##Type *) { return false; }
5622 #define NON_CANONICAL_TYPE(Class, Parent) \
5623 bool Visit##Class##Type(const Class##Type *) { return false; }
5624 #include "clang/AST/TypeNodes.inc"
5625
5626 bool VisitTagDecl(const TagDecl *Tag);
5627 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5628 };
5629 } // end anonymous namespace
5630
VisitBuiltinType(const BuiltinType *)5631 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5632 return false;
5633 }
5634
VisitComplexType(const ComplexType * T)5635 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5636 return Visit(T->getElementType());
5637 }
5638
VisitPointerType(const PointerType * T)5639 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5640 return Visit(T->getPointeeType());
5641 }
5642
VisitBlockPointerType(const BlockPointerType * T)5643 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5644 const BlockPointerType* T) {
5645 return Visit(T->getPointeeType());
5646 }
5647
VisitLValueReferenceType(const LValueReferenceType * T)5648 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5649 const LValueReferenceType* T) {
5650 return Visit(T->getPointeeType());
5651 }
5652
VisitRValueReferenceType(const RValueReferenceType * T)5653 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5654 const RValueReferenceType* T) {
5655 return Visit(T->getPointeeType());
5656 }
5657
VisitMemberPointerType(const MemberPointerType * T)5658 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5659 const MemberPointerType* T) {
5660 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5661 }
5662
VisitConstantArrayType(const ConstantArrayType * T)5663 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5664 const ConstantArrayType* T) {
5665 return Visit(T->getElementType());
5666 }
5667
VisitIncompleteArrayType(const IncompleteArrayType * T)5668 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5669 const IncompleteArrayType* T) {
5670 return Visit(T->getElementType());
5671 }
5672
VisitVariableArrayType(const VariableArrayType * T)5673 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5674 const VariableArrayType* T) {
5675 return Visit(T->getElementType());
5676 }
5677
VisitDependentSizedArrayType(const DependentSizedArrayType * T)5678 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5679 const DependentSizedArrayType* T) {
5680 return Visit(T->getElementType());
5681 }
5682
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)5683 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5684 const DependentSizedExtVectorType* T) {
5685 return Visit(T->getElementType());
5686 }
5687
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)5688 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
5689 const DependentSizedMatrixType *T) {
5690 return Visit(T->getElementType());
5691 }
5692
VisitDependentAddressSpaceType(const DependentAddressSpaceType * T)5693 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5694 const DependentAddressSpaceType *T) {
5695 return Visit(T->getPointeeType());
5696 }
5697
VisitVectorType(const VectorType * T)5698 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5699 return Visit(T->getElementType());
5700 }
5701
VisitDependentVectorType(const DependentVectorType * T)5702 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5703 const DependentVectorType *T) {
5704 return Visit(T->getElementType());
5705 }
5706
VisitExtVectorType(const ExtVectorType * T)5707 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5708 return Visit(T->getElementType());
5709 }
5710
VisitConstantMatrixType(const ConstantMatrixType * T)5711 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
5712 const ConstantMatrixType *T) {
5713 return Visit(T->getElementType());
5714 }
5715
VisitFunctionProtoType(const FunctionProtoType * T)5716 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5717 const FunctionProtoType* T) {
5718 for (const auto &A : T->param_types()) {
5719 if (Visit(A))
5720 return true;
5721 }
5722
5723 return Visit(T->getReturnType());
5724 }
5725
VisitFunctionNoProtoType(const FunctionNoProtoType * T)5726 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5727 const FunctionNoProtoType* T) {
5728 return Visit(T->getReturnType());
5729 }
5730
VisitUnresolvedUsingType(const UnresolvedUsingType *)5731 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5732 const UnresolvedUsingType*) {
5733 return false;
5734 }
5735
VisitTypeOfExprType(const TypeOfExprType *)5736 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5737 return false;
5738 }
5739
VisitTypeOfType(const TypeOfType * T)5740 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5741 return Visit(T->getUnmodifiedType());
5742 }
5743
VisitDecltypeType(const DecltypeType *)5744 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5745 return false;
5746 }
5747
VisitPackIndexingType(const PackIndexingType *)5748 bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType(
5749 const PackIndexingType *) {
5750 return false;
5751 }
5752
VisitUnaryTransformType(const UnaryTransformType *)5753 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5754 const UnaryTransformType*) {
5755 return false;
5756 }
5757
VisitAutoType(const AutoType * T)5758 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5759 return Visit(T->getDeducedType());
5760 }
5761
VisitDeducedTemplateSpecializationType(const DeducedTemplateSpecializationType * T)5762 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5763 const DeducedTemplateSpecializationType *T) {
5764 return Visit(T->getDeducedType());
5765 }
5766
VisitRecordType(const RecordType * T)5767 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5768 return VisitTagDecl(T->getDecl());
5769 }
5770
VisitEnumType(const EnumType * T)5771 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5772 return VisitTagDecl(T->getDecl());
5773 }
5774
VisitTemplateTypeParmType(const TemplateTypeParmType *)5775 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5776 const TemplateTypeParmType*) {
5777 return false;
5778 }
5779
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)5780 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5781 const SubstTemplateTypeParmPackType *) {
5782 return false;
5783 }
5784
VisitTemplateSpecializationType(const TemplateSpecializationType *)5785 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5786 const TemplateSpecializationType*) {
5787 return false;
5788 }
5789
VisitInjectedClassNameType(const InjectedClassNameType * T)5790 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5791 const InjectedClassNameType* T) {
5792 return VisitTagDecl(T->getDecl());
5793 }
5794
VisitDependentNameType(const DependentNameType * T)5795 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5796 const DependentNameType* T) {
5797 return VisitNestedNameSpecifier(T->getQualifier());
5798 }
5799
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)5800 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5801 const DependentTemplateSpecializationType* T) {
5802 if (auto *Q = T->getQualifier())
5803 return VisitNestedNameSpecifier(Q);
5804 return false;
5805 }
5806
VisitPackExpansionType(const PackExpansionType * T)5807 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5808 const PackExpansionType* T) {
5809 return Visit(T->getPattern());
5810 }
5811
VisitObjCObjectType(const ObjCObjectType *)5812 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5813 return false;
5814 }
5815
VisitObjCInterfaceType(const ObjCInterfaceType *)5816 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5817 const ObjCInterfaceType *) {
5818 return false;
5819 }
5820
VisitObjCObjectPointerType(const ObjCObjectPointerType *)5821 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5822 const ObjCObjectPointerType *) {
5823 return false;
5824 }
5825
VisitAtomicType(const AtomicType * T)5826 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5827 return Visit(T->getValueType());
5828 }
5829
VisitPipeType(const PipeType * T)5830 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5831 return false;
5832 }
5833
VisitBitIntType(const BitIntType * T)5834 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
5835 return false;
5836 }
5837
VisitArrayParameterType(const ArrayParameterType * T)5838 bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType(
5839 const ArrayParameterType *T) {
5840 return VisitConstantArrayType(T);
5841 }
5842
VisitDependentBitIntType(const DependentBitIntType * T)5843 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
5844 const DependentBitIntType *T) {
5845 return false;
5846 }
5847
VisitTagDecl(const TagDecl * Tag)5848 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5849 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5850 S.Diag(SR.getBegin(),
5851 S.getLangOpts().CPlusPlus11 ?
5852 diag::warn_cxx98_compat_template_arg_local_type :
5853 diag::ext_template_arg_local_type)
5854 << S.Context.getTypeDeclType(Tag) << SR;
5855 return true;
5856 }
5857
5858 if (!Tag->hasNameForLinkage()) {
5859 S.Diag(SR.getBegin(),
5860 S.getLangOpts().CPlusPlus11 ?
5861 diag::warn_cxx98_compat_template_arg_unnamed_type :
5862 diag::ext_template_arg_unnamed_type) << SR;
5863 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5864 return true;
5865 }
5866
5867 return false;
5868 }
5869
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)5870 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5871 NestedNameSpecifier *NNS) {
5872 assert(NNS);
5873 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5874 return true;
5875
5876 switch (NNS->getKind()) {
5877 case NestedNameSpecifier::Identifier:
5878 case NestedNameSpecifier::Namespace:
5879 case NestedNameSpecifier::NamespaceAlias:
5880 case NestedNameSpecifier::Global:
5881 case NestedNameSpecifier::Super:
5882 return false;
5883
5884 case NestedNameSpecifier::TypeSpec:
5885 case NestedNameSpecifier::TypeSpecWithTemplate:
5886 return Visit(QualType(NNS->getAsType(), 0));
5887 }
5888 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5889 }
5890
CheckTemplateArgument(TypeSourceInfo * ArgInfo)5891 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
5892 assert(ArgInfo && "invalid TypeSourceInfo");
5893 QualType Arg = ArgInfo->getType();
5894 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5895 QualType CanonArg = Context.getCanonicalType(Arg);
5896
5897 if (CanonArg->isVariablyModifiedType()) {
5898 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5899 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5900 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5901 }
5902
5903 // C++03 [temp.arg.type]p2:
5904 // A local type, a type with no linkage, an unnamed type or a type
5905 // compounded from any of these types shall not be used as a
5906 // template-argument for a template type-parameter.
5907 //
5908 // C++11 allows these, and even in C++03 we allow them as an extension with
5909 // a warning.
5910 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
5911 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5912 (void)Finder.Visit(CanonArg);
5913 }
5914
5915 return false;
5916 }
5917
5918 enum NullPointerValueKind {
5919 NPV_NotNullPointer,
5920 NPV_NullPointer,
5921 NPV_Error
5922 };
5923
5924 /// Determine whether the given template argument is a null pointer
5925 /// value of the appropriate type.
5926 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,Decl * Entity=nullptr)5927 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5928 QualType ParamType, Expr *Arg,
5929 Decl *Entity = nullptr) {
5930 if (Arg->isValueDependent() || Arg->isTypeDependent())
5931 return NPV_NotNullPointer;
5932
5933 // dllimport'd entities aren't constant but are available inside of template
5934 // arguments.
5935 if (Entity && Entity->hasAttr<DLLImportAttr>())
5936 return NPV_NotNullPointer;
5937
5938 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5939 llvm_unreachable(
5940 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
5941
5942 if (!S.getLangOpts().CPlusPlus11)
5943 return NPV_NotNullPointer;
5944
5945 // Determine whether we have a constant expression.
5946 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5947 if (ArgRV.isInvalid())
5948 return NPV_Error;
5949 Arg = ArgRV.get();
5950
5951 Expr::EvalResult EvalResult;
5952 SmallVector<PartialDiagnosticAt, 8> Notes;
5953 EvalResult.Diag = &Notes;
5954 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5955 EvalResult.HasSideEffects) {
5956 SourceLocation DiagLoc = Arg->getExprLoc();
5957
5958 // If our only note is the usual "invalid subexpression" note, just point
5959 // the caret at its location rather than producing an essentially
5960 // redundant note.
5961 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5962 diag::note_invalid_subexpr_in_const_expr) {
5963 DiagLoc = Notes[0].first;
5964 Notes.clear();
5965 }
5966
5967 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5968 << Arg->getType() << Arg->getSourceRange();
5969 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5970 S.Diag(Notes[I].first, Notes[I].second);
5971
5972 S.NoteTemplateParameterLocation(*Param);
5973 return NPV_Error;
5974 }
5975
5976 // C++11 [temp.arg.nontype]p1:
5977 // - an address constant expression of type std::nullptr_t
5978 if (Arg->getType()->isNullPtrType())
5979 return NPV_NullPointer;
5980
5981 // - a constant expression that evaluates to a null pointer value (4.10); or
5982 // - a constant expression that evaluates to a null member pointer value
5983 // (4.11); or
5984 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
5985 (EvalResult.Val.isMemberPointer() &&
5986 !EvalResult.Val.getMemberPointerDecl())) {
5987 // If our expression has an appropriate type, we've succeeded.
5988 bool ObjCLifetimeConversion;
5989 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5990 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5991 ObjCLifetimeConversion))
5992 return NPV_NullPointer;
5993
5994 // The types didn't match, but we know we got a null pointer; complain,
5995 // then recover as if the types were correct.
5996 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5997 << Arg->getType() << ParamType << Arg->getSourceRange();
5998 S.NoteTemplateParameterLocation(*Param);
5999 return NPV_NullPointer;
6000 }
6001
6002 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6003 // We found a pointer that isn't null, but doesn't refer to an object.
6004 // We could just return NPV_NotNullPointer, but we can print a better
6005 // message with the information we have here.
6006 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6007 << EvalResult.Val.getAsString(S.Context, ParamType);
6008 S.NoteTemplateParameterLocation(*Param);
6009 return NPV_Error;
6010 }
6011
6012 // If we don't have a null pointer value, but we do have a NULL pointer
6013 // constant, suggest a cast to the appropriate type.
6014 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6015 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6016 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6017 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6018 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6019 ")");
6020 S.NoteTemplateParameterLocation(*Param);
6021 return NPV_NullPointer;
6022 }
6023
6024 // FIXME: If we ever want to support general, address-constant expressions
6025 // as non-type template arguments, we should return the ExprResult here to
6026 // be interpreted by the caller.
6027 return NPV_NotNullPointer;
6028 }
6029
6030 /// Checks whether the given template argument is compatible with its
6031 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)6032 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6033 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6034 Expr *Arg, QualType ArgType) {
6035 bool ObjCLifetimeConversion;
6036 if (ParamType->isPointerType() &&
6037 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6038 S.IsQualificationConversion(ArgType, ParamType, false,
6039 ObjCLifetimeConversion)) {
6040 // For pointer-to-object types, qualification conversions are
6041 // permitted.
6042 } else {
6043 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6044 if (!ParamRef->getPointeeType()->isFunctionType()) {
6045 // C++ [temp.arg.nontype]p5b3:
6046 // For a non-type template-parameter of type reference to
6047 // object, no conversions apply. The type referred to by the
6048 // reference may be more cv-qualified than the (otherwise
6049 // identical) type of the template- argument. The
6050 // template-parameter is bound directly to the
6051 // template-argument, which shall be an lvalue.
6052
6053 // FIXME: Other qualifiers?
6054 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6055 unsigned ArgQuals = ArgType.getCVRQualifiers();
6056
6057 if ((ParamQuals | ArgQuals) != ParamQuals) {
6058 S.Diag(Arg->getBeginLoc(),
6059 diag::err_template_arg_ref_bind_ignores_quals)
6060 << ParamType << Arg->getType() << Arg->getSourceRange();
6061 S.NoteTemplateParameterLocation(*Param);
6062 return true;
6063 }
6064 }
6065 }
6066
6067 // At this point, the template argument refers to an object or
6068 // function with external linkage. We now need to check whether the
6069 // argument and parameter types are compatible.
6070 if (!S.Context.hasSameUnqualifiedType(ArgType,
6071 ParamType.getNonReferenceType())) {
6072 // We can't perform this conversion or binding.
6073 if (ParamType->isReferenceType())
6074 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6075 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6076 else
6077 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6078 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6079 S.NoteTemplateParameterLocation(*Param);
6080 return true;
6081 }
6082 }
6083
6084 return false;
6085 }
6086
6087 /// Checks whether the given template argument is the address
6088 /// of an object or function according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted)6089 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6090 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6091 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6092 bool Invalid = false;
6093 Expr *Arg = ArgIn;
6094 QualType ArgType = Arg->getType();
6095
6096 bool AddressTaken = false;
6097 SourceLocation AddrOpLoc;
6098 if (S.getLangOpts().MicrosoftExt) {
6099 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6100 // dereference and address-of operators.
6101 Arg = Arg->IgnoreParenCasts();
6102
6103 bool ExtWarnMSTemplateArg = false;
6104 UnaryOperatorKind FirstOpKind;
6105 SourceLocation FirstOpLoc;
6106 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6107 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6108 if (UnOpKind == UO_Deref)
6109 ExtWarnMSTemplateArg = true;
6110 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6111 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6112 if (!AddrOpLoc.isValid()) {
6113 FirstOpKind = UnOpKind;
6114 FirstOpLoc = UnOp->getOperatorLoc();
6115 }
6116 } else
6117 break;
6118 }
6119 if (FirstOpLoc.isValid()) {
6120 if (ExtWarnMSTemplateArg)
6121 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6122 << ArgIn->getSourceRange();
6123
6124 if (FirstOpKind == UO_AddrOf)
6125 AddressTaken = true;
6126 else if (Arg->getType()->isPointerType()) {
6127 // We cannot let pointers get dereferenced here, that is obviously not a
6128 // constant expression.
6129 assert(FirstOpKind == UO_Deref);
6130 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6131 << Arg->getSourceRange();
6132 }
6133 }
6134 } else {
6135 // See through any implicit casts we added to fix the type.
6136 Arg = Arg->IgnoreImpCasts();
6137
6138 // C++ [temp.arg.nontype]p1:
6139 //
6140 // A template-argument for a non-type, non-template
6141 // template-parameter shall be one of: [...]
6142 //
6143 // -- the address of an object or function with external
6144 // linkage, including function templates and function
6145 // template-ids but excluding non-static class members,
6146 // expressed as & id-expression where the & is optional if
6147 // the name refers to a function or array, or if the
6148 // corresponding template-parameter is a reference; or
6149
6150 // In C++98/03 mode, give an extension warning on any extra parentheses.
6151 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6152 bool ExtraParens = false;
6153 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6154 if (!Invalid && !ExtraParens) {
6155 S.Diag(Arg->getBeginLoc(),
6156 S.getLangOpts().CPlusPlus11
6157 ? diag::warn_cxx98_compat_template_arg_extra_parens
6158 : diag::ext_template_arg_extra_parens)
6159 << Arg->getSourceRange();
6160 ExtraParens = true;
6161 }
6162
6163 Arg = Parens->getSubExpr();
6164 }
6165
6166 while (SubstNonTypeTemplateParmExpr *subst =
6167 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6168 Arg = subst->getReplacement()->IgnoreImpCasts();
6169
6170 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6171 if (UnOp->getOpcode() == UO_AddrOf) {
6172 Arg = UnOp->getSubExpr();
6173 AddressTaken = true;
6174 AddrOpLoc = UnOp->getOperatorLoc();
6175 }
6176 }
6177
6178 while (SubstNonTypeTemplateParmExpr *subst =
6179 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6180 Arg = subst->getReplacement()->IgnoreImpCasts();
6181 }
6182
6183 ValueDecl *Entity = nullptr;
6184 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6185 Entity = DRE->getDecl();
6186 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6187 Entity = CUE->getGuidDecl();
6188
6189 // If our parameter has pointer type, check for a null template value.
6190 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6191 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6192 Entity)) {
6193 case NPV_NullPointer:
6194 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6195 SugaredConverted = TemplateArgument(ParamType,
6196 /*isNullPtr=*/true);
6197 CanonicalConverted =
6198 TemplateArgument(S.Context.getCanonicalType(ParamType),
6199 /*isNullPtr=*/true);
6200 return false;
6201
6202 case NPV_Error:
6203 return true;
6204
6205 case NPV_NotNullPointer:
6206 break;
6207 }
6208 }
6209
6210 // Stop checking the precise nature of the argument if it is value dependent,
6211 // it should be checked when instantiated.
6212 if (Arg->isValueDependent()) {
6213 SugaredConverted = TemplateArgument(ArgIn);
6214 CanonicalConverted =
6215 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6216 return false;
6217 }
6218
6219 if (!Entity) {
6220 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6221 << Arg->getSourceRange();
6222 S.NoteTemplateParameterLocation(*Param);
6223 return true;
6224 }
6225
6226 // Cannot refer to non-static data members
6227 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6228 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6229 << Entity << Arg->getSourceRange();
6230 S.NoteTemplateParameterLocation(*Param);
6231 return true;
6232 }
6233
6234 // Cannot refer to non-static member functions
6235 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6236 if (!Method->isStatic()) {
6237 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6238 << Method << Arg->getSourceRange();
6239 S.NoteTemplateParameterLocation(*Param);
6240 return true;
6241 }
6242 }
6243
6244 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6245 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6246 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6247
6248 // A non-type template argument must refer to an object or function.
6249 if (!Func && !Var && !Guid) {
6250 // We found something, but we don't know specifically what it is.
6251 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6252 << Arg->getSourceRange();
6253 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6254 return true;
6255 }
6256
6257 // Address / reference template args must have external linkage in C++98.
6258 if (Entity->getFormalLinkage() == Linkage::Internal) {
6259 S.Diag(Arg->getBeginLoc(),
6260 S.getLangOpts().CPlusPlus11
6261 ? diag::warn_cxx98_compat_template_arg_object_internal
6262 : diag::ext_template_arg_object_internal)
6263 << !Func << Entity << Arg->getSourceRange();
6264 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6265 << !Func;
6266 } else if (!Entity->hasLinkage()) {
6267 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6268 << !Func << Entity << Arg->getSourceRange();
6269 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6270 << !Func;
6271 return true;
6272 }
6273
6274 if (Var) {
6275 // A value of reference type is not an object.
6276 if (Var->getType()->isReferenceType()) {
6277 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6278 << Var->getType() << Arg->getSourceRange();
6279 S.NoteTemplateParameterLocation(*Param);
6280 return true;
6281 }
6282
6283 // A template argument must have static storage duration.
6284 if (Var->getTLSKind()) {
6285 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6286 << Arg->getSourceRange();
6287 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6288 return true;
6289 }
6290 }
6291
6292 if (AddressTaken && ParamType->isReferenceType()) {
6293 // If we originally had an address-of operator, but the
6294 // parameter has reference type, complain and (if things look
6295 // like they will work) drop the address-of operator.
6296 if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6297 ParamType.getNonReferenceType())) {
6298 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6299 << ParamType;
6300 S.NoteTemplateParameterLocation(*Param);
6301 return true;
6302 }
6303
6304 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6305 << ParamType
6306 << FixItHint::CreateRemoval(AddrOpLoc);
6307 S.NoteTemplateParameterLocation(*Param);
6308
6309 ArgType = Entity->getType();
6310 }
6311
6312 // If the template parameter has pointer type, either we must have taken the
6313 // address or the argument must decay to a pointer.
6314 if (!AddressTaken && ParamType->isPointerType()) {
6315 if (Func) {
6316 // Function-to-pointer decay.
6317 ArgType = S.Context.getPointerType(Func->getType());
6318 } else if (Entity->getType()->isArrayType()) {
6319 // Array-to-pointer decay.
6320 ArgType = S.Context.getArrayDecayedType(Entity->getType());
6321 } else {
6322 // If the template parameter has pointer type but the address of
6323 // this object was not taken, complain and (possibly) recover by
6324 // taking the address of the entity.
6325 ArgType = S.Context.getPointerType(Entity->getType());
6326 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6327 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6328 << ParamType;
6329 S.NoteTemplateParameterLocation(*Param);
6330 return true;
6331 }
6332
6333 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6334 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6335
6336 S.NoteTemplateParameterLocation(*Param);
6337 }
6338 }
6339
6340 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6341 Arg, ArgType))
6342 return true;
6343
6344 // Create the template argument.
6345 SugaredConverted = TemplateArgument(Entity, ParamType);
6346 CanonicalConverted =
6347 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6348 S.Context.getCanonicalType(ParamType));
6349 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6350 return false;
6351 }
6352
6353 /// Checks whether the given template argument is a pointer to
6354 /// member constant according to C++ [temp.arg.nontype]p1.
6355 static bool
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted)6356 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
6357 QualType ParamType, Expr *&ResultArg,
6358 TemplateArgument &SugaredConverted,
6359 TemplateArgument &CanonicalConverted) {
6360 bool Invalid = false;
6361
6362 Expr *Arg = ResultArg;
6363 bool ObjCLifetimeConversion;
6364
6365 // C++ [temp.arg.nontype]p1:
6366 //
6367 // A template-argument for a non-type, non-template
6368 // template-parameter shall be one of: [...]
6369 //
6370 // -- a pointer to member expressed as described in 5.3.1.
6371 DeclRefExpr *DRE = nullptr;
6372
6373 // In C++98/03 mode, give an extension warning on any extra parentheses.
6374 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6375 bool ExtraParens = false;
6376 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6377 if (!Invalid && !ExtraParens) {
6378 S.Diag(Arg->getBeginLoc(),
6379 S.getLangOpts().CPlusPlus11
6380 ? diag::warn_cxx98_compat_template_arg_extra_parens
6381 : diag::ext_template_arg_extra_parens)
6382 << Arg->getSourceRange();
6383 ExtraParens = true;
6384 }
6385
6386 Arg = Parens->getSubExpr();
6387 }
6388
6389 while (SubstNonTypeTemplateParmExpr *subst =
6390 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6391 Arg = subst->getReplacement()->IgnoreImpCasts();
6392
6393 // A pointer-to-member constant written &Class::member.
6394 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6395 if (UnOp->getOpcode() == UO_AddrOf) {
6396 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6397 if (DRE && !DRE->getQualifier())
6398 DRE = nullptr;
6399 }
6400 }
6401 // A constant of pointer-to-member type.
6402 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6403 ValueDecl *VD = DRE->getDecl();
6404 if (VD->getType()->isMemberPointerType()) {
6405 if (isa<NonTypeTemplateParmDecl>(VD)) {
6406 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6407 SugaredConverted = TemplateArgument(Arg);
6408 CanonicalConverted =
6409 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6410 } else {
6411 SugaredConverted = TemplateArgument(VD, ParamType);
6412 CanonicalConverted =
6413 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
6414 S.Context.getCanonicalType(ParamType));
6415 }
6416 return Invalid;
6417 }
6418 }
6419
6420 DRE = nullptr;
6421 }
6422
6423 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6424
6425 // Check for a null pointer value.
6426 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6427 Entity)) {
6428 case NPV_Error:
6429 return true;
6430 case NPV_NullPointer:
6431 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6432 SugaredConverted = TemplateArgument(ParamType,
6433 /*isNullPtr*/ true);
6434 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6435 /*isNullPtr*/ true);
6436 return false;
6437 case NPV_NotNullPointer:
6438 break;
6439 }
6440
6441 if (S.IsQualificationConversion(ResultArg->getType(),
6442 ParamType.getNonReferenceType(), false,
6443 ObjCLifetimeConversion)) {
6444 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6445 ResultArg->getValueKind())
6446 .get();
6447 } else if (!S.Context.hasSameUnqualifiedType(
6448 ResultArg->getType(), ParamType.getNonReferenceType())) {
6449 // We can't perform this conversion.
6450 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6451 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6452 S.NoteTemplateParameterLocation(*Param);
6453 return true;
6454 }
6455
6456 if (!DRE)
6457 return S.Diag(Arg->getBeginLoc(),
6458 diag::err_template_arg_not_pointer_to_member_form)
6459 << Arg->getSourceRange();
6460
6461 if (isa<FieldDecl>(DRE->getDecl()) ||
6462 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6463 isa<CXXMethodDecl>(DRE->getDecl())) {
6464 assert((isa<FieldDecl>(DRE->getDecl()) ||
6465 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6466 cast<CXXMethodDecl>(DRE->getDecl())
6467 ->isImplicitObjectMemberFunction()) &&
6468 "Only non-static member pointers can make it here");
6469
6470 // Okay: this is the address of a non-static member, and therefore
6471 // a member pointer constant.
6472 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6473 SugaredConverted = TemplateArgument(Arg);
6474 CanonicalConverted =
6475 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6476 } else {
6477 ValueDecl *D = DRE->getDecl();
6478 SugaredConverted = TemplateArgument(D, ParamType);
6479 CanonicalConverted =
6480 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
6481 S.Context.getCanonicalType(ParamType));
6482 }
6483 return Invalid;
6484 }
6485
6486 // We found something else, but we don't know specifically what it is.
6487 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6488 << Arg->getSourceRange();
6489 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6490 return true;
6491 }
6492
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted,CheckTemplateArgumentKind CTAK)6493 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6494 QualType ParamType, Expr *Arg,
6495 TemplateArgument &SugaredConverted,
6496 TemplateArgument &CanonicalConverted,
6497 CheckTemplateArgumentKind CTAK) {
6498 SourceLocation StartLoc = Arg->getBeginLoc();
6499
6500 // If the parameter type somehow involves auto, deduce the type now.
6501 DeducedType *DeducedT = ParamType->getContainedDeducedType();
6502 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6503 // During template argument deduction, we allow 'decltype(auto)' to
6504 // match an arbitrary dependent argument.
6505 // FIXME: The language rules don't say what happens in this case.
6506 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6507 // expression is merely instantiation-dependent; is this enough?
6508 if (Arg->isTypeDependent()) {
6509 auto *AT = dyn_cast<AutoType>(DeducedT);
6510 if (AT && AT->isDecltypeAuto()) {
6511 SugaredConverted = TemplateArgument(Arg);
6512 CanonicalConverted = TemplateArgument(
6513 Context.getCanonicalTemplateArgument(SugaredConverted));
6514 return Arg;
6515 }
6516 }
6517
6518 // When checking a deduced template argument, deduce from its type even if
6519 // the type is dependent, in order to check the types of non-type template
6520 // arguments line up properly in partial ordering.
6521 Expr *DeductionArg = Arg;
6522 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6523 DeductionArg = PE->getPattern();
6524 TypeSourceInfo *TSI =
6525 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6526 if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6527 InitializedEntity Entity =
6528 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6529 InitializationKind Kind = InitializationKind::CreateForInit(
6530 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6531 Expr *Inits[1] = {DeductionArg};
6532 ParamType =
6533 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6534 if (ParamType.isNull())
6535 return ExprError();
6536 } else {
6537 TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
6538 Param->getDepth() + 1);
6539 ParamType = QualType();
6540 TemplateDeductionResult Result =
6541 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
6542 /*DependentDeduction=*/true,
6543 // We do not check constraints right now because the
6544 // immediately-declared constraint of the auto type is
6545 // also an associated constraint, and will be checked
6546 // along with the other associated constraints after
6547 // checking the template argument list.
6548 /*IgnoreConstraints=*/true);
6549 if (Result == TemplateDeductionResult::AlreadyDiagnosed) {
6550 if (ParamType.isNull())
6551 return ExprError();
6552 } else if (Result != TemplateDeductionResult::Success) {
6553 Diag(Arg->getExprLoc(),
6554 diag::err_non_type_template_parm_type_deduction_failure)
6555 << Param->getDeclName() << Param->getType() << Arg->getType()
6556 << Arg->getSourceRange();
6557 NoteTemplateParameterLocation(*Param);
6558 return ExprError();
6559 }
6560 }
6561 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6562 // an error. The error message normally references the parameter
6563 // declaration, but here we'll pass the argument location because that's
6564 // where the parameter type is deduced.
6565 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6566 if (ParamType.isNull()) {
6567 NoteTemplateParameterLocation(*Param);
6568 return ExprError();
6569 }
6570 }
6571
6572 // We should have already dropped all cv-qualifiers by now.
6573 assert(!ParamType.hasQualifiers() &&
6574 "non-type template parameter type cannot be qualified");
6575
6576 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6577 if (CTAK == CTAK_Deduced &&
6578 (ParamType->isReferenceType()
6579 ? !Context.hasSameType(ParamType.getNonReferenceType(),
6580 Arg->getType())
6581 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6582 // FIXME: If either type is dependent, we skip the check. This isn't
6583 // correct, since during deduction we're supposed to have replaced each
6584 // template parameter with some unique (non-dependent) placeholder.
6585 // FIXME: If the argument type contains 'auto', we carry on and fail the
6586 // type check in order to force specific types to be more specialized than
6587 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6588 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6589 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6590 !Arg->getType()->getContainedDeducedType()) {
6591 SugaredConverted = TemplateArgument(Arg);
6592 CanonicalConverted = TemplateArgument(
6593 Context.getCanonicalTemplateArgument(SugaredConverted));
6594 return Arg;
6595 }
6596 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6597 // we should actually be checking the type of the template argument in P,
6598 // not the type of the template argument deduced from A, against the
6599 // template parameter type.
6600 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6601 << Arg->getType()
6602 << ParamType.getUnqualifiedType();
6603 NoteTemplateParameterLocation(*Param);
6604 return ExprError();
6605 }
6606
6607 // If either the parameter has a dependent type or the argument is
6608 // type-dependent, there's nothing we can check now.
6609 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
6610 // Force the argument to the type of the parameter to maintain invariants.
6611 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6612 if (PE)
6613 Arg = PE->getPattern();
6614 ExprResult E = ImpCastExprToType(
6615 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6616 ParamType->isLValueReferenceType() ? VK_LValue
6617 : ParamType->isRValueReferenceType() ? VK_XValue
6618 : VK_PRValue);
6619 if (E.isInvalid())
6620 return ExprError();
6621 if (PE) {
6622 // Recreate a pack expansion if we unwrapped one.
6623 E = new (Context)
6624 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6625 PE->getNumExpansions());
6626 }
6627 SugaredConverted = TemplateArgument(E.get());
6628 CanonicalConverted = TemplateArgument(
6629 Context.getCanonicalTemplateArgument(SugaredConverted));
6630 return E;
6631 }
6632
6633 QualType CanonParamType = Context.getCanonicalType(ParamType);
6634 // Avoid making a copy when initializing a template parameter of class type
6635 // from a template parameter object of the same type. This is going beyond
6636 // the standard, but is required for soundness: in
6637 // template<A a> struct X { X *p; X<a> *q; };
6638 // ... we need p and q to have the same type.
6639 //
6640 // Similarly, don't inject a call to a copy constructor when initializing
6641 // from a template parameter of the same type.
6642 Expr *InnerArg = Arg->IgnoreParenImpCasts();
6643 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
6644 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
6645 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
6646 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
6647
6648 SugaredConverted = TemplateArgument(TPO, ParamType);
6649 CanonicalConverted =
6650 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
6651 return Arg;
6652 }
6653 if (isa<NonTypeTemplateParmDecl>(ND)) {
6654 SugaredConverted = TemplateArgument(Arg);
6655 CanonicalConverted =
6656 Context.getCanonicalTemplateArgument(SugaredConverted);
6657 return Arg;
6658 }
6659 }
6660
6661 // The initialization of the parameter from the argument is
6662 // a constant-evaluated context.
6663 EnterExpressionEvaluationContext ConstantEvaluated(
6664 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6665
6666 bool IsConvertedConstantExpression = true;
6667 if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) {
6668 InitializationKind Kind = InitializationKind::CreateForInit(
6669 Arg->getBeginLoc(), /*DirectInit=*/false, Arg);
6670 Expr *Inits[1] = {Arg};
6671 InitializedEntity Entity =
6672 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6673 InitializationSequence InitSeq(*this, Entity, Kind, Inits);
6674 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits);
6675 if (Result.isInvalid() || !Result.get())
6676 return ExprError();
6677 Result = ActOnConstantExpression(Result.get());
6678 if (Result.isInvalid() || !Result.get())
6679 return ExprError();
6680 Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
6681 /*DiscardedValue=*/false,
6682 /*IsConstexpr=*/true, /*IsTemplateArgument=*/true)
6683 .get();
6684 IsConvertedConstantExpression = false;
6685 }
6686
6687 if (getLangOpts().CPlusPlus17) {
6688 // C++17 [temp.arg.nontype]p1:
6689 // A template-argument for a non-type template parameter shall be
6690 // a converted constant expression of the type of the template-parameter.
6691 APValue Value;
6692 ExprResult ArgResult;
6693 if (IsConvertedConstantExpression) {
6694 ArgResult = BuildConvertedConstantExpression(Arg, ParamType,
6695 CCEK_TemplateArg, Param);
6696 if (ArgResult.isInvalid())
6697 return ExprError();
6698 } else {
6699 ArgResult = Arg;
6700 }
6701
6702 // For a value-dependent argument, CheckConvertedConstantExpression is
6703 // permitted (and expected) to be unable to determine a value.
6704 if (ArgResult.get()->isValueDependent()) {
6705 SugaredConverted = TemplateArgument(ArgResult.get());
6706 CanonicalConverted =
6707 Context.getCanonicalTemplateArgument(SugaredConverted);
6708 return ArgResult;
6709 }
6710
6711 APValue PreNarrowingValue;
6712 ArgResult = EvaluateConvertedConstantExpression(
6713 ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/
6714 false, PreNarrowingValue);
6715 if (ArgResult.isInvalid())
6716 return ExprError();
6717
6718 if (Value.isLValue()) {
6719 APValue::LValueBase Base = Value.getLValueBase();
6720 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6721 // For a non-type template-parameter of pointer or reference type,
6722 // the value of the constant expression shall not refer to
6723 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
6724 ParamType->isNullPtrType());
6725 // -- a temporary object
6726 // -- a string literal
6727 // -- the result of a typeid expression, or
6728 // -- a predefined __func__ variable
6729 if (Base &&
6730 (!VD ||
6731 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
6732 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6733 << Arg->getSourceRange();
6734 return ExprError();
6735 }
6736
6737 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD &&
6738 VD->getType()->isArrayType() &&
6739 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6740 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6741 SugaredConverted = TemplateArgument(VD, ParamType);
6742 CanonicalConverted = TemplateArgument(
6743 cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType);
6744 return ArgResult.get();
6745 }
6746
6747 // -- a subobject [until C++20]
6748 if (!getLangOpts().CPlusPlus20) {
6749 if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6750 Value.isLValueOnePastTheEnd()) {
6751 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6752 << Value.getAsString(Context, ParamType);
6753 return ExprError();
6754 }
6755 assert((VD || !ParamType->isReferenceType()) &&
6756 "null reference should not be a constant expression");
6757 assert((!VD || !ParamType->isNullPtrType()) &&
6758 "non-null value of type nullptr_t?");
6759 }
6760 }
6761
6762 if (Value.isAddrLabelDiff())
6763 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6764
6765 SugaredConverted = TemplateArgument(Context, ParamType, Value);
6766 CanonicalConverted = TemplateArgument(Context, CanonParamType, Value);
6767 return ArgResult.get();
6768 }
6769
6770 // C++ [temp.arg.nontype]p5:
6771 // The following conversions are performed on each expression used
6772 // as a non-type template-argument. If a non-type
6773 // template-argument cannot be converted to the type of the
6774 // corresponding template-parameter then the program is
6775 // ill-formed.
6776 if (ParamType->isIntegralOrEnumerationType()) {
6777 // C++11:
6778 // -- for a non-type template-parameter of integral or
6779 // enumeration type, conversions permitted in a converted
6780 // constant expression are applied.
6781 //
6782 // C++98:
6783 // -- for a non-type template-parameter of integral or
6784 // enumeration type, integral promotions (4.5) and integral
6785 // conversions (4.7) are applied.
6786
6787 if (getLangOpts().CPlusPlus11) {
6788 // C++ [temp.arg.nontype]p1:
6789 // A template-argument for a non-type, non-template template-parameter
6790 // shall be one of:
6791 //
6792 // -- for a non-type template-parameter of integral or enumeration
6793 // type, a converted constant expression of the type of the
6794 // template-parameter; or
6795 llvm::APSInt Value;
6796 ExprResult ArgResult =
6797 CheckConvertedConstantExpression(Arg, ParamType, Value,
6798 CCEK_TemplateArg);
6799 if (ArgResult.isInvalid())
6800 return ExprError();
6801
6802 // We can't check arbitrary value-dependent arguments.
6803 if (ArgResult.get()->isValueDependent()) {
6804 SugaredConverted = TemplateArgument(ArgResult.get());
6805 CanonicalConverted =
6806 Context.getCanonicalTemplateArgument(SugaredConverted);
6807 return ArgResult;
6808 }
6809
6810 // Widen the argument value to sizeof(parameter type). This is almost
6811 // always a no-op, except when the parameter type is bool. In
6812 // that case, this may extend the argument from 1 bit to 8 bits.
6813 QualType IntegerType = ParamType;
6814 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6815 IntegerType = Enum->getDecl()->getIntegerType();
6816 Value = Value.extOrTrunc(IntegerType->isBitIntType()
6817 ? Context.getIntWidth(IntegerType)
6818 : Context.getTypeSize(IntegerType));
6819
6820 SugaredConverted = TemplateArgument(Context, Value, ParamType);
6821 CanonicalConverted =
6822 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
6823 return ArgResult;
6824 }
6825
6826 ExprResult ArgResult = DefaultLvalueConversion(Arg);
6827 if (ArgResult.isInvalid())
6828 return ExprError();
6829 Arg = ArgResult.get();
6830
6831 QualType ArgType = Arg->getType();
6832
6833 // C++ [temp.arg.nontype]p1:
6834 // A template-argument for a non-type, non-template
6835 // template-parameter shall be one of:
6836 //
6837 // -- an integral constant-expression of integral or enumeration
6838 // type; or
6839 // -- the name of a non-type template-parameter; or
6840 llvm::APSInt Value;
6841 if (!ArgType->isIntegralOrEnumerationType()) {
6842 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
6843 << ArgType << Arg->getSourceRange();
6844 NoteTemplateParameterLocation(*Param);
6845 return ExprError();
6846 } else if (!Arg->isValueDependent()) {
6847 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6848 QualType T;
6849
6850 public:
6851 TmplArgICEDiagnoser(QualType T) : T(T) { }
6852
6853 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
6854 SourceLocation Loc) override {
6855 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
6856 }
6857 } Diagnoser(ArgType);
6858
6859 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
6860 if (!Arg)
6861 return ExprError();
6862 }
6863
6864 // From here on out, all we care about is the unqualified form
6865 // of the argument type.
6866 ArgType = ArgType.getUnqualifiedType();
6867
6868 // Try to convert the argument to the parameter's type.
6869 if (Context.hasSameType(ParamType, ArgType)) {
6870 // Okay: no conversion necessary
6871 } else if (ParamType->isBooleanType()) {
6872 // This is an integral-to-boolean conversion.
6873 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6874 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6875 !ParamType->isEnumeralType()) {
6876 // This is an integral promotion or conversion.
6877 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6878 } else {
6879 // We can't perform this conversion.
6880 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6881 << Arg->getType() << ParamType << Arg->getSourceRange();
6882 NoteTemplateParameterLocation(*Param);
6883 return ExprError();
6884 }
6885
6886 // Add the value of this argument to the list of converted
6887 // arguments. We use the bitwidth and signedness of the template
6888 // parameter.
6889 if (Arg->isValueDependent()) {
6890 // The argument is value-dependent. Create a new
6891 // TemplateArgument with the converted expression.
6892 SugaredConverted = TemplateArgument(Arg);
6893 CanonicalConverted =
6894 Context.getCanonicalTemplateArgument(SugaredConverted);
6895 return Arg;
6896 }
6897
6898 QualType IntegerType = ParamType;
6899 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
6900 IntegerType = Enum->getDecl()->getIntegerType();
6901 }
6902
6903 if (ParamType->isBooleanType()) {
6904 // Value must be zero or one.
6905 Value = Value != 0;
6906 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6907 if (Value.getBitWidth() != AllowedBits)
6908 Value = Value.extOrTrunc(AllowedBits);
6909 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6910 } else {
6911 llvm::APSInt OldValue = Value;
6912
6913 // Coerce the template argument's value to the value it will have
6914 // based on the template parameter's type.
6915 unsigned AllowedBits = IntegerType->isBitIntType()
6916 ? Context.getIntWidth(IntegerType)
6917 : Context.getTypeSize(IntegerType);
6918 if (Value.getBitWidth() != AllowedBits)
6919 Value = Value.extOrTrunc(AllowedBits);
6920 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6921
6922 // Complain if an unsigned parameter received a negative value.
6923 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
6924 (OldValue.isSigned() && OldValue.isNegative())) {
6925 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
6926 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
6927 << Arg->getSourceRange();
6928 NoteTemplateParameterLocation(*Param);
6929 }
6930
6931 // Complain if we overflowed the template parameter's type.
6932 unsigned RequiredBits;
6933 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6934 RequiredBits = OldValue.getActiveBits();
6935 else if (OldValue.isUnsigned())
6936 RequiredBits = OldValue.getActiveBits() + 1;
6937 else
6938 RequiredBits = OldValue.getSignificantBits();
6939 if (RequiredBits > AllowedBits) {
6940 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
6941 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
6942 << Arg->getSourceRange();
6943 NoteTemplateParameterLocation(*Param);
6944 }
6945 }
6946
6947 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
6948 SugaredConverted = TemplateArgument(Context, Value, T);
6949 CanonicalConverted =
6950 TemplateArgument(Context, Value, Context.getCanonicalType(T));
6951 return Arg;
6952 }
6953
6954 QualType ArgType = Arg->getType();
6955 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6956
6957 // Handle pointer-to-function, reference-to-function, and
6958 // pointer-to-member-function all in (roughly) the same way.
6959 if (// -- For a non-type template-parameter of type pointer to
6960 // function, only the function-to-pointer conversion (4.3) is
6961 // applied. If the template-argument represents a set of
6962 // overloaded functions (or a pointer to such), the matching
6963 // function is selected from the set (13.4).
6964 (ParamType->isPointerType() &&
6965 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6966 // -- For a non-type template-parameter of type reference to
6967 // function, no conversions apply. If the template-argument
6968 // represents a set of overloaded functions, the matching
6969 // function is selected from the set (13.4).
6970 (ParamType->isReferenceType() &&
6971 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6972 // -- For a non-type template-parameter of type pointer to
6973 // member function, no conversions apply. If the
6974 // template-argument represents a set of overloaded member
6975 // functions, the matching member function is selected from
6976 // the set (13.4).
6977 (ParamType->isMemberPointerType() &&
6978 ParamType->castAs<MemberPointerType>()->getPointeeType()
6979 ->isFunctionType())) {
6980
6981 if (Arg->getType() == Context.OverloadTy) {
6982 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6983 true,
6984 FoundResult)) {
6985 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
6986 return ExprError();
6987
6988 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6989 if (Res.isInvalid())
6990 return ExprError();
6991 Arg = Res.get();
6992 ArgType = Arg->getType();
6993 } else
6994 return ExprError();
6995 }
6996
6997 if (!ParamType->isMemberPointerType()) {
6998 if (CheckTemplateArgumentAddressOfObjectOrFunction(
6999 *this, Param, ParamType, Arg, SugaredConverted,
7000 CanonicalConverted))
7001 return ExprError();
7002 return Arg;
7003 }
7004
7005 if (CheckTemplateArgumentPointerToMember(
7006 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7007 return ExprError();
7008 return Arg;
7009 }
7010
7011 if (ParamType->isPointerType()) {
7012 // -- for a non-type template-parameter of type pointer to
7013 // object, qualification conversions (4.4) and the
7014 // array-to-pointer conversion (4.2) are applied.
7015 // C++0x also allows a value of std::nullptr_t.
7016 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7017 "Only object pointers allowed here");
7018
7019 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7020 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7021 return ExprError();
7022 return Arg;
7023 }
7024
7025 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7026 // -- For a non-type template-parameter of type reference to
7027 // object, no conversions apply. The type referred to by the
7028 // reference may be more cv-qualified than the (otherwise
7029 // identical) type of the template-argument. The
7030 // template-parameter is bound directly to the
7031 // template-argument, which must be an lvalue.
7032 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7033 "Only object references allowed here");
7034
7035 if (Arg->getType() == Context.OverloadTy) {
7036 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7037 ParamRefType->getPointeeType(),
7038 true,
7039 FoundResult)) {
7040 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7041 return ExprError();
7042 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7043 if (Res.isInvalid())
7044 return ExprError();
7045 Arg = Res.get();
7046 ArgType = Arg->getType();
7047 } else
7048 return ExprError();
7049 }
7050
7051 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7052 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7053 return ExprError();
7054 return Arg;
7055 }
7056
7057 // Deal with parameters of type std::nullptr_t.
7058 if (ParamType->isNullPtrType()) {
7059 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7060 SugaredConverted = TemplateArgument(Arg);
7061 CanonicalConverted =
7062 Context.getCanonicalTemplateArgument(SugaredConverted);
7063 return Arg;
7064 }
7065
7066 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7067 case NPV_NotNullPointer:
7068 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7069 << Arg->getType() << ParamType;
7070 NoteTemplateParameterLocation(*Param);
7071 return ExprError();
7072
7073 case NPV_Error:
7074 return ExprError();
7075
7076 case NPV_NullPointer:
7077 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7078 SugaredConverted = TemplateArgument(ParamType,
7079 /*isNullPtr=*/true);
7080 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7081 /*isNullPtr=*/true);
7082 return Arg;
7083 }
7084 }
7085
7086 // -- For a non-type template-parameter of type pointer to data
7087 // member, qualification conversions (4.4) are applied.
7088 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7089
7090 if (CheckTemplateArgumentPointerToMember(
7091 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7092 return ExprError();
7093 return Arg;
7094 }
7095
7096 static void DiagnoseTemplateParameterListArityMismatch(
7097 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7098 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7099
CheckTemplateTemplateArgument(TemplateTemplateParmDecl * Param,TemplateParameterList * Params,TemplateArgumentLoc & Arg,bool IsDeduced)7100 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7101 TemplateParameterList *Params,
7102 TemplateArgumentLoc &Arg,
7103 bool IsDeduced) {
7104 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7105 TemplateDecl *Template = Name.getAsTemplateDecl();
7106 if (!Template) {
7107 // Any dependent template name is fine.
7108 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7109 return false;
7110 }
7111
7112 if (Template->isInvalidDecl())
7113 return true;
7114
7115 // C++0x [temp.arg.template]p1:
7116 // A template-argument for a template template-parameter shall be
7117 // the name of a class template or an alias template, expressed as an
7118 // id-expression. When the template-argument names a class template, only
7119 // primary class templates are considered when matching the
7120 // template template argument with the corresponding parameter;
7121 // partial specializations are not considered even if their
7122 // parameter lists match that of the template template parameter.
7123 //
7124 // Note that we also allow template template parameters here, which
7125 // will happen when we are dealing with, e.g., class template
7126 // partial specializations.
7127 if (!isa<ClassTemplateDecl>(Template) &&
7128 !isa<TemplateTemplateParmDecl>(Template) &&
7129 !isa<TypeAliasTemplateDecl>(Template) &&
7130 !isa<BuiltinTemplateDecl>(Template)) {
7131 assert(isa<FunctionTemplateDecl>(Template) &&
7132 "Only function templates are possible here");
7133 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7134 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7135 << Template;
7136 }
7137
7138 // C++1z [temp.arg.template]p3: (DR 150)
7139 // A template-argument matches a template template-parameter P when P
7140 // is at least as specialized as the template-argument A.
7141 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7142 // Quick check for the common case:
7143 // If P contains a parameter pack, then A [...] matches P if each of A's
7144 // template parameters matches the corresponding template parameter in
7145 // the template-parameter-list of P.
7146 if (TemplateParameterListsAreEqual(
7147 Template->getTemplateParameters(), Params, false,
7148 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7149 // If the argument has no associated constraints, then the parameter is
7150 // definitely at least as specialized as the argument.
7151 // Otherwise - we need a more thorough check.
7152 !Template->hasAssociatedConstraints())
7153 return false;
7154
7155 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(
7156 Params, Template, Arg.getLocation(), IsDeduced)) {
7157 // P2113
7158 // C++20[temp.func.order]p2
7159 // [...] If both deductions succeed, the partial ordering selects the
7160 // more constrained template (if one exists) as determined below.
7161 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7162 Params->getAssociatedConstraints(ParamsAC);
7163 // C++2a[temp.arg.template]p3
7164 // [...] In this comparison, if P is unconstrained, the constraints on A
7165 // are not considered.
7166 if (ParamsAC.empty())
7167 return false;
7168
7169 Template->getAssociatedConstraints(TemplateAC);
7170
7171 bool IsParamAtLeastAsConstrained;
7172 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7173 IsParamAtLeastAsConstrained))
7174 return true;
7175 if (!IsParamAtLeastAsConstrained) {
7176 Diag(Arg.getLocation(),
7177 diag::err_template_template_parameter_not_at_least_as_constrained)
7178 << Template << Param << Arg.getSourceRange();
7179 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7180 Diag(Template->getLocation(), diag::note_entity_declared_at)
7181 << Template;
7182 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7183 TemplateAC);
7184 return true;
7185 }
7186 return false;
7187 }
7188 // FIXME: Produce better diagnostics for deduction failures.
7189 }
7190
7191 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7192 Params,
7193 true,
7194 TPL_TemplateTemplateArgumentMatch,
7195 Arg.getLocation());
7196 }
7197
noteLocation(Sema & S,const NamedDecl & Decl,unsigned HereDiagID,unsigned ExternalDiagID)7198 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
7199 unsigned HereDiagID,
7200 unsigned ExternalDiagID) {
7201 if (Decl.getLocation().isValid())
7202 return S.Diag(Decl.getLocation(), HereDiagID);
7203
7204 SmallString<128> Str;
7205 llvm::raw_svector_ostream Out(Str);
7206 PrintingPolicy PP = S.getPrintingPolicy();
7207 PP.TerseOutput = 1;
7208 Decl.print(Out, PP);
7209 return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
7210 }
7211
NoteTemplateLocation(const NamedDecl & Decl,std::optional<SourceRange> ParamRange)7212 void Sema::NoteTemplateLocation(const NamedDecl &Decl,
7213 std::optional<SourceRange> ParamRange) {
7214 SemaDiagnosticBuilder DB =
7215 noteLocation(*this, Decl, diag::note_template_decl_here,
7216 diag::note_template_decl_external);
7217 if (ParamRange && ParamRange->isValid()) {
7218 assert(Decl.getLocation().isValid() &&
7219 "Parameter range has location when Decl does not");
7220 DB << *ParamRange;
7221 }
7222 }
7223
NoteTemplateParameterLocation(const NamedDecl & Decl)7224 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
7225 noteLocation(*this, Decl, diag::note_template_param_here,
7226 diag::note_template_param_external);
7227 }
7228
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc,NamedDecl * TemplateParam)7229 ExprResult Sema::BuildExpressionFromDeclTemplateArgument(
7230 const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc,
7231 NamedDecl *TemplateParam) {
7232 // C++ [temp.param]p8:
7233 //
7234 // A non-type template-parameter of type "array of T" or
7235 // "function returning T" is adjusted to be of type "pointer to
7236 // T" or "pointer to function returning T", respectively.
7237 if (ParamType->isArrayType())
7238 ParamType = Context.getArrayDecayedType(ParamType);
7239 else if (ParamType->isFunctionType())
7240 ParamType = Context.getPointerType(ParamType);
7241
7242 // For a NULL non-type template argument, return nullptr casted to the
7243 // parameter's type.
7244 if (Arg.getKind() == TemplateArgument::NullPtr) {
7245 return ImpCastExprToType(
7246 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7247 ParamType,
7248 ParamType->getAs<MemberPointerType>()
7249 ? CK_NullToMemberPointer
7250 : CK_NullToPointer);
7251 }
7252 assert(Arg.getKind() == TemplateArgument::Declaration &&
7253 "Only declaration template arguments permitted here");
7254
7255 ValueDecl *VD = Arg.getAsDecl();
7256
7257 CXXScopeSpec SS;
7258 if (ParamType->isMemberPointerType()) {
7259 // If this is a pointer to member, we need to use a qualified name to
7260 // form a suitable pointer-to-member constant.
7261 assert(VD->getDeclContext()->isRecord() &&
7262 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7263 isa<IndirectFieldDecl>(VD)));
7264 QualType ClassType
7265 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7266 NestedNameSpecifier *Qualifier
7267 = NestedNameSpecifier::Create(Context, nullptr, false,
7268 ClassType.getTypePtr());
7269 SS.MakeTrivial(Context, Qualifier, Loc);
7270 }
7271
7272 ExprResult RefExpr = BuildDeclarationNameExpr(
7273 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7274 if (RefExpr.isInvalid())
7275 return ExprError();
7276
7277 // For a pointer, the argument declaration is the pointee. Take its address.
7278 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7279 if (ParamType->isPointerType() && !ElemT.isNull() &&
7280 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7281 // Decay an array argument if we want a pointer to its first element.
7282 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7283 if (RefExpr.isInvalid())
7284 return ExprError();
7285 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7286 // For any other pointer, take the address (or form a pointer-to-member).
7287 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7288 if (RefExpr.isInvalid())
7289 return ExprError();
7290 } else if (ParamType->isRecordType()) {
7291 assert(isa<TemplateParamObjectDecl>(VD) &&
7292 "arg for class template param not a template parameter object");
7293 // No conversions apply in this case.
7294 return RefExpr;
7295 } else {
7296 assert(ParamType->isReferenceType() &&
7297 "unexpected type for decl template argument");
7298 if (NonTypeTemplateParmDecl *NTTP =
7299 dyn_cast_if_present<NonTypeTemplateParmDecl>(TemplateParam)) {
7300 QualType TemplateParamType = NTTP->getType();
7301 const AutoType *AT = TemplateParamType->getAs<AutoType>();
7302 if (AT && AT->isDecltypeAuto()) {
7303 RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr(
7304 ParamType->getPointeeType(), RefExpr.get()->getValueKind(),
7305 RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(),
7306 /*PackIndex=*/std::nullopt,
7307 /*RefParam=*/true);
7308 }
7309 }
7310 }
7311
7312 // At this point we should have the right value category.
7313 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7314 "value kind mismatch for non-type template argument");
7315
7316 // The type of the template parameter can differ from the type of the
7317 // argument in various ways; convert it now if necessary.
7318 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7319 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7320 CastKind CK;
7321 QualType Ignored;
7322 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7323 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7324 CK = CK_NoOp;
7325 } else if (ParamType->isVoidPointerType() &&
7326 RefExpr.get()->getType()->isPointerType()) {
7327 CK = CK_BitCast;
7328 } else {
7329 // FIXME: Pointers to members can need conversion derived-to-base or
7330 // base-to-derived conversions. We currently don't retain enough
7331 // information to convert properly (we need to track a cast path or
7332 // subobject number in the template argument).
7333 llvm_unreachable(
7334 "unexpected conversion required for non-type template argument");
7335 }
7336 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7337 RefExpr.get()->getValueKind());
7338 }
7339
7340 return RefExpr;
7341 }
7342
7343 /// Construct a new expression that refers to the given
7344 /// integral template argument with the given source-location
7345 /// information.
7346 ///
7347 /// This routine takes care of the mapping from an integral template
7348 /// argument (which may have any integral type) to the appropriate
7349 /// literal value.
BuildExpressionFromIntegralTemplateArgumentValue(Sema & S,QualType OrigT,const llvm::APSInt & Int,SourceLocation Loc)7350 static Expr *BuildExpressionFromIntegralTemplateArgumentValue(
7351 Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) {
7352 assert(OrigT->isIntegralOrEnumerationType());
7353
7354 // If this is an enum type that we're instantiating, we need to use an integer
7355 // type the same size as the enumerator. We don't want to build an
7356 // IntegerLiteral with enum type. The integer type of an enum type can be of
7357 // any integral type with C++11 enum classes, make sure we create the right
7358 // type of literal for it.
7359 QualType T = OrigT;
7360 if (const EnumType *ET = OrigT->getAs<EnumType>())
7361 T = ET->getDecl()->getIntegerType();
7362
7363 Expr *E;
7364 if (T->isAnyCharacterType()) {
7365 CharacterLiteralKind Kind;
7366 if (T->isWideCharType())
7367 Kind = CharacterLiteralKind::Wide;
7368 else if (T->isChar8Type() && S.getLangOpts().Char8)
7369 Kind = CharacterLiteralKind::UTF8;
7370 else if (T->isChar16Type())
7371 Kind = CharacterLiteralKind::UTF16;
7372 else if (T->isChar32Type())
7373 Kind = CharacterLiteralKind::UTF32;
7374 else
7375 Kind = CharacterLiteralKind::Ascii;
7376
7377 E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc);
7378 } else if (T->isBooleanType()) {
7379 E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc);
7380 } else {
7381 E = IntegerLiteral::Create(S.Context, Int, T, Loc);
7382 }
7383
7384 if (OrigT->isEnumeralType()) {
7385 // FIXME: This is a hack. We need a better way to handle substituted
7386 // non-type template parameters.
7387 E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E,
7388 nullptr, S.CurFPFeatureOverrides(),
7389 S.Context.getTrivialTypeSourceInfo(OrigT, Loc),
7390 Loc, Loc);
7391 }
7392
7393 return E;
7394 }
7395
BuildExpressionFromNonTypeTemplateArgumentValue(Sema & S,QualType T,const APValue & Val,SourceLocation Loc)7396 static Expr *BuildExpressionFromNonTypeTemplateArgumentValue(
7397 Sema &S, QualType T, const APValue &Val, SourceLocation Loc) {
7398 auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * {
7399 auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc);
7400 ILE->setType(T);
7401 return ILE;
7402 };
7403
7404 switch (Val.getKind()) {
7405 case APValue::AddrLabelDiff:
7406 // This cannot occur in a template argument at all.
7407 case APValue::Array:
7408 case APValue::Struct:
7409 case APValue::Union:
7410 // These can only occur within a template parameter object, which is
7411 // represented as a TemplateArgument::Declaration.
7412 llvm_unreachable("unexpected template argument value");
7413
7414 case APValue::Int:
7415 return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(),
7416 Loc);
7417
7418 case APValue::Float:
7419 return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true,
7420 T, Loc);
7421
7422 case APValue::FixedPoint:
7423 return FixedPointLiteral::CreateFromRawInt(
7424 S.Context, Val.getFixedPoint().getValue(), T, Loc,
7425 Val.getFixedPoint().getScale());
7426
7427 case APValue::ComplexInt: {
7428 QualType ElemT = T->castAs<ComplexType>()->getElementType();
7429 return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue(
7430 S, ElemT, Val.getComplexIntReal(), Loc),
7431 BuildExpressionFromIntegralTemplateArgumentValue(
7432 S, ElemT, Val.getComplexIntImag(), Loc)});
7433 }
7434
7435 case APValue::ComplexFloat: {
7436 QualType ElemT = T->castAs<ComplexType>()->getElementType();
7437 return MakeInitList(
7438 {FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true,
7439 ElemT, Loc),
7440 FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true,
7441 ElemT, Loc)});
7442 }
7443
7444 case APValue::Vector: {
7445 QualType ElemT = T->castAs<VectorType>()->getElementType();
7446 llvm::SmallVector<Expr *, 8> Elts;
7447 for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I)
7448 Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue(
7449 S, ElemT, Val.getVectorElt(I), Loc));
7450 return MakeInitList(Elts);
7451 }
7452
7453 case APValue::None:
7454 case APValue::Indeterminate:
7455 llvm_unreachable("Unexpected APValue kind.");
7456 case APValue::LValue:
7457 case APValue::MemberPointer:
7458 // There isn't necessarily a valid equivalent source-level syntax for
7459 // these; in particular, a naive lowering might violate access control.
7460 // So for now we lower to a ConstantExpr holding the value, wrapped around
7461 // an OpaqueValueExpr.
7462 // FIXME: We should have a better representation for this.
7463 ExprValueKind VK = VK_PRValue;
7464 if (T->isReferenceType()) {
7465 T = T->getPointeeType();
7466 VK = VK_LValue;
7467 }
7468 auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK);
7469 return ConstantExpr::Create(S.Context, OVE, Val);
7470 }
7471 llvm_unreachable("Unhandled APValue::ValueKind enum");
7472 }
7473
7474 ExprResult
BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)7475 Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
7476 SourceLocation Loc) {
7477 switch (Arg.getKind()) {
7478 case TemplateArgument::Null:
7479 case TemplateArgument::Type:
7480 case TemplateArgument::Template:
7481 case TemplateArgument::TemplateExpansion:
7482 case TemplateArgument::Pack:
7483 llvm_unreachable("not a non-type template argument");
7484
7485 case TemplateArgument::Expression:
7486 return Arg.getAsExpr();
7487
7488 case TemplateArgument::NullPtr:
7489 case TemplateArgument::Declaration:
7490 return BuildExpressionFromDeclTemplateArgument(
7491 Arg, Arg.getNonTypeTemplateArgumentType(), Loc);
7492
7493 case TemplateArgument::Integral:
7494 return BuildExpressionFromIntegralTemplateArgumentValue(
7495 *this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc);
7496
7497 case TemplateArgument::StructuralValue:
7498 return BuildExpressionFromNonTypeTemplateArgumentValue(
7499 *this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc);
7500 }
7501 llvm_unreachable("Unhandled TemplateArgument::ArgKind enum");
7502 }
7503
7504 /// Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,const Sema::TemplateCompareNewDeclInfo & NewInstFrom,NamedDecl * Old,const NamedDecl * OldInstFrom,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7505 static bool MatchTemplateParameterKind(
7506 Sema &S, NamedDecl *New,
7507 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
7508 const NamedDecl *OldInstFrom, bool Complain,
7509 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
7510 // Check the actual kind (type, non-type, template).
7511 if (Old->getKind() != New->getKind()) {
7512 if (Complain) {
7513 unsigned NextDiag = diag::err_template_param_different_kind;
7514 if (TemplateArgLoc.isValid()) {
7515 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7516 NextDiag = diag::note_template_param_different_kind;
7517 }
7518 S.Diag(New->getLocation(), NextDiag)
7519 << (Kind != Sema::TPL_TemplateMatch);
7520 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7521 << (Kind != Sema::TPL_TemplateMatch);
7522 }
7523
7524 return false;
7525 }
7526
7527 // Check that both are parameter packs or neither are parameter packs.
7528 // However, if we are matching a template template argument to a
7529 // template template parameter, the template template parameter can have
7530 // a parameter pack where the template template argument does not.
7531 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7532 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7533 Old->isTemplateParameterPack())) {
7534 if (Complain) {
7535 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7536 if (TemplateArgLoc.isValid()) {
7537 S.Diag(TemplateArgLoc,
7538 diag::err_template_arg_template_params_mismatch);
7539 NextDiag = diag::note_template_parameter_pack_non_pack;
7540 }
7541
7542 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7543 : isa<NonTypeTemplateParmDecl>(New)? 1
7544 : 2;
7545 S.Diag(New->getLocation(), NextDiag)
7546 << ParamKind << New->isParameterPack();
7547 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7548 << ParamKind << Old->isParameterPack();
7549 }
7550
7551 return false;
7552 }
7553
7554 // For non-type template parameters, check the type of the parameter.
7555 if (NonTypeTemplateParmDecl *OldNTTP
7556 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7557 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7558
7559 // If we are matching a template template argument to a template
7560 // template parameter and one of the non-type template parameter types
7561 // is dependent, then we must wait until template instantiation time
7562 // to actually compare the arguments.
7563 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7564 (!OldNTTP->getType()->isDependentType() &&
7565 !NewNTTP->getType()->isDependentType())) {
7566 // C++20 [temp.over.link]p6:
7567 // Two [non-type] template-parameters are equivalent [if] they have
7568 // equivalent types ignoring the use of type-constraints for
7569 // placeholder types
7570 QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
7571 QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
7572 if (!S.Context.hasSameType(OldType, NewType)) {
7573 if (Complain) {
7574 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7575 if (TemplateArgLoc.isValid()) {
7576 S.Diag(TemplateArgLoc,
7577 diag::err_template_arg_template_params_mismatch);
7578 NextDiag = diag::note_template_nontype_parm_different_type;
7579 }
7580 S.Diag(NewNTTP->getLocation(), NextDiag)
7581 << NewNTTP->getType()
7582 << (Kind != Sema::TPL_TemplateMatch);
7583 S.Diag(OldNTTP->getLocation(),
7584 diag::note_template_nontype_parm_prev_declaration)
7585 << OldNTTP->getType();
7586 }
7587
7588 return false;
7589 }
7590 }
7591 }
7592 // For template template parameters, check the template parameter types.
7593 // The template parameter lists of template template
7594 // parameters must agree.
7595 else if (TemplateTemplateParmDecl *OldTTP =
7596 dyn_cast<TemplateTemplateParmDecl>(Old)) {
7597 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7598 if (!S.TemplateParameterListsAreEqual(
7599 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
7600 OldTTP->getTemplateParameters(), Complain,
7601 (Kind == Sema::TPL_TemplateMatch
7602 ? Sema::TPL_TemplateTemplateParmMatch
7603 : Kind),
7604 TemplateArgLoc))
7605 return false;
7606 }
7607
7608 if (Kind != Sema::TPL_TemplateParamsEquivalent &&
7609 Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
7610 !isa<TemplateTemplateParmDecl>(Old)) {
7611 const Expr *NewC = nullptr, *OldC = nullptr;
7612
7613 if (isa<TemplateTypeParmDecl>(New)) {
7614 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7615 NewC = TC->getImmediatelyDeclaredConstraint();
7616 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7617 OldC = TC->getImmediatelyDeclaredConstraint();
7618 } else if (isa<NonTypeTemplateParmDecl>(New)) {
7619 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
7620 ->getPlaceholderTypeConstraint())
7621 NewC = E;
7622 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
7623 ->getPlaceholderTypeConstraint())
7624 OldC = E;
7625 } else
7626 llvm_unreachable("unexpected template parameter type");
7627
7628 auto Diagnose = [&] {
7629 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7630 diag::err_template_different_type_constraint);
7631 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7632 diag::note_template_prev_declaration) << /*declaration*/0;
7633 };
7634
7635 if (!NewC != !OldC) {
7636 if (Complain)
7637 Diagnose();
7638 return false;
7639 }
7640
7641 if (NewC) {
7642 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
7643 NewC)) {
7644 if (Complain)
7645 Diagnose();
7646 return false;
7647 }
7648 }
7649 }
7650
7651 return true;
7652 }
7653
7654 /// Diagnose a known arity mismatch when comparing template argument
7655 /// lists.
7656 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7657 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7658 TemplateParameterList *New,
7659 TemplateParameterList *Old,
7660 Sema::TemplateParameterListEqualKind Kind,
7661 SourceLocation TemplateArgLoc) {
7662 unsigned NextDiag = diag::err_template_param_list_different_arity;
7663 if (TemplateArgLoc.isValid()) {
7664 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7665 NextDiag = diag::note_template_param_list_different_arity;
7666 }
7667 S.Diag(New->getTemplateLoc(), NextDiag)
7668 << (New->size() > Old->size())
7669 << (Kind != Sema::TPL_TemplateMatch)
7670 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7671 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7672 << (Kind != Sema::TPL_TemplateMatch)
7673 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7674 }
7675
TemplateParameterListsAreEqual(const TemplateCompareNewDeclInfo & NewInstFrom,TemplateParameterList * New,const NamedDecl * OldInstFrom,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7676 bool Sema::TemplateParameterListsAreEqual(
7677 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
7678 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
7679 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
7680 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7681 if (Complain)
7682 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7683 TemplateArgLoc);
7684
7685 return false;
7686 }
7687
7688 // C++0x [temp.arg.template]p3:
7689 // A template-argument matches a template template-parameter (call it P)
7690 // when each of the template parameters in the template-parameter-list of
7691 // the template-argument's corresponding class template or alias template
7692 // (call it A) matches the corresponding template parameter in the
7693 // template-parameter-list of P. [...]
7694 TemplateParameterList::iterator NewParm = New->begin();
7695 TemplateParameterList::iterator NewParmEnd = New->end();
7696 for (TemplateParameterList::iterator OldParm = Old->begin(),
7697 OldParmEnd = Old->end();
7698 OldParm != OldParmEnd; ++OldParm) {
7699 if (Kind != TPL_TemplateTemplateArgumentMatch ||
7700 !(*OldParm)->isTemplateParameterPack()) {
7701 if (NewParm == NewParmEnd) {
7702 if (Complain)
7703 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7704 TemplateArgLoc);
7705
7706 return false;
7707 }
7708
7709 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
7710 OldInstFrom, Complain, Kind,
7711 TemplateArgLoc))
7712 return false;
7713
7714 ++NewParm;
7715 continue;
7716 }
7717
7718 // C++0x [temp.arg.template]p3:
7719 // [...] When P's template- parameter-list contains a template parameter
7720 // pack (14.5.3), the template parameter pack will match zero or more
7721 // template parameters or template parameter packs in the
7722 // template-parameter-list of A with the same type and form as the
7723 // template parameter pack in P (ignoring whether those template
7724 // parameters are template parameter packs).
7725 for (; NewParm != NewParmEnd; ++NewParm) {
7726 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
7727 OldInstFrom, Complain, Kind,
7728 TemplateArgLoc))
7729 return false;
7730 }
7731 }
7732
7733 // Make sure we exhausted all of the arguments.
7734 if (NewParm != NewParmEnd) {
7735 if (Complain)
7736 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7737 TemplateArgLoc);
7738
7739 return false;
7740 }
7741
7742 if (Kind != TPL_TemplateTemplateArgumentMatch &&
7743 Kind != TPL_TemplateParamsEquivalent) {
7744 const Expr *NewRC = New->getRequiresClause();
7745 const Expr *OldRC = Old->getRequiresClause();
7746
7747 auto Diagnose = [&] {
7748 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7749 diag::err_template_different_requires_clause);
7750 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7751 diag::note_template_prev_declaration) << /*declaration*/0;
7752 };
7753
7754 if (!NewRC != !OldRC) {
7755 if (Complain)
7756 Diagnose();
7757 return false;
7758 }
7759
7760 if (NewRC) {
7761 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
7762 NewRC)) {
7763 if (Complain)
7764 Diagnose();
7765 return false;
7766 }
7767 }
7768 }
7769
7770 return true;
7771 }
7772
7773 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)7774 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7775 if (!S)
7776 return false;
7777
7778 // Find the nearest enclosing declaration scope.
7779 S = S->getDeclParent();
7780
7781 // C++ [temp.pre]p6: [P2096]
7782 // A template, explicit specialization, or partial specialization shall not
7783 // have C linkage.
7784 DeclContext *Ctx = S->getEntity();
7785 if (Ctx && Ctx->isExternCContext()) {
7786 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7787 << TemplateParams->getSourceRange();
7788 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7789 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7790 return true;
7791 }
7792 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
7793
7794 // C++ [temp]p2:
7795 // A template-declaration can appear only as a namespace scope or
7796 // class scope declaration.
7797 // C++ [temp.expl.spec]p3:
7798 // An explicit specialization may be declared in any scope in which the
7799 // corresponding primary template may be defined.
7800 // C++ [temp.class.spec]p6: [P2096]
7801 // A partial specialization may be declared in any scope in which the
7802 // corresponding primary template may be defined.
7803 if (Ctx) {
7804 if (Ctx->isFileContext())
7805 return false;
7806 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7807 // C++ [temp.mem]p2:
7808 // A local class shall not have member templates.
7809 if (RD->isLocalClass())
7810 return Diag(TemplateParams->getTemplateLoc(),
7811 diag::err_template_inside_local_class)
7812 << TemplateParams->getSourceRange();
7813 else
7814 return false;
7815 }
7816 }
7817
7818 return Diag(TemplateParams->getTemplateLoc(),
7819 diag::err_template_outside_namespace_or_class_scope)
7820 << TemplateParams->getSourceRange();
7821 }
7822
7823 /// Determine what kind of template specialization the given declaration
7824 /// is.
getTemplateSpecializationKind(Decl * D)7825 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7826 if (!D)
7827 return TSK_Undeclared;
7828
7829 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7830 return Record->getTemplateSpecializationKind();
7831 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7832 return Function->getTemplateSpecializationKind();
7833 if (VarDecl *Var = dyn_cast<VarDecl>(D))
7834 return Var->getTemplateSpecializationKind();
7835
7836 return TSK_Undeclared;
7837 }
7838
7839 /// Check whether a specialization is well-formed in the current
7840 /// context.
7841 ///
7842 /// This routine determines whether a template specialization can be declared
7843 /// in the current context (C++ [temp.expl.spec]p2).
7844 ///
7845 /// \param S the semantic analysis object for which this check is being
7846 /// performed.
7847 ///
7848 /// \param Specialized the entity being specialized or instantiated, which
7849 /// may be a kind of template (class template, function template, etc.) or
7850 /// a member of a class template (member function, static data member,
7851 /// member class).
7852 ///
7853 /// \param PrevDecl the previous declaration of this entity, if any.
7854 ///
7855 /// \param Loc the location of the explicit specialization or instantiation of
7856 /// this entity.
7857 ///
7858 /// \param IsPartialSpecialization whether this is a partial specialization of
7859 /// a class template.
7860 ///
7861 /// \returns true if there was an error that we cannot recover from, false
7862 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)7863 static bool CheckTemplateSpecializationScope(Sema &S,
7864 NamedDecl *Specialized,
7865 NamedDecl *PrevDecl,
7866 SourceLocation Loc,
7867 bool IsPartialSpecialization) {
7868 // Keep these "kind" numbers in sync with the %select statements in the
7869 // various diagnostics emitted by this routine.
7870 int EntityKind = 0;
7871 if (isa<ClassTemplateDecl>(Specialized))
7872 EntityKind = IsPartialSpecialization? 1 : 0;
7873 else if (isa<VarTemplateDecl>(Specialized))
7874 EntityKind = IsPartialSpecialization ? 3 : 2;
7875 else if (isa<FunctionTemplateDecl>(Specialized))
7876 EntityKind = 4;
7877 else if (isa<CXXMethodDecl>(Specialized))
7878 EntityKind = 5;
7879 else if (isa<VarDecl>(Specialized))
7880 EntityKind = 6;
7881 else if (isa<RecordDecl>(Specialized))
7882 EntityKind = 7;
7883 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7884 EntityKind = 8;
7885 else {
7886 S.Diag(Loc, diag::err_template_spec_unknown_kind)
7887 << S.getLangOpts().CPlusPlus11;
7888 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7889 return true;
7890 }
7891
7892 // C++ [temp.expl.spec]p2:
7893 // An explicit specialization may be declared in any scope in which
7894 // the corresponding primary template may be defined.
7895 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7896 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7897 << Specialized;
7898 return true;
7899 }
7900
7901 // C++ [temp.class.spec]p6:
7902 // A class template partial specialization may be declared in any
7903 // scope in which the primary template may be defined.
7904 DeclContext *SpecializedContext =
7905 Specialized->getDeclContext()->getRedeclContext();
7906 DeclContext *DC = S.CurContext->getRedeclContext();
7907
7908 // Make sure that this redeclaration (or definition) occurs in the same
7909 // scope or an enclosing namespace.
7910 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7911 : DC->Equals(SpecializedContext))) {
7912 if (isa<TranslationUnitDecl>(SpecializedContext))
7913 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7914 << EntityKind << Specialized;
7915 else {
7916 auto *ND = cast<NamedDecl>(SpecializedContext);
7917 int Diag = diag::err_template_spec_redecl_out_of_scope;
7918 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7919 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7920 S.Diag(Loc, Diag) << EntityKind << Specialized
7921 << ND << isa<CXXRecordDecl>(ND);
7922 }
7923
7924 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7925
7926 // Don't allow specializing in the wrong class during error recovery.
7927 // Otherwise, things can go horribly wrong.
7928 if (DC->isRecord())
7929 return true;
7930 }
7931
7932 return false;
7933 }
7934
findTemplateParameterInType(unsigned Depth,Expr * E)7935 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7936 if (!E->isTypeDependent())
7937 return SourceLocation();
7938 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7939 Checker.TraverseStmt(E);
7940 if (Checker.MatchLoc.isInvalid())
7941 return E->getSourceRange();
7942 return Checker.MatchLoc;
7943 }
7944
findTemplateParameter(unsigned Depth,TypeLoc TL)7945 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7946 if (!TL.getType()->isDependentType())
7947 return SourceLocation();
7948 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7949 Checker.TraverseTypeLoc(TL);
7950 if (Checker.MatchLoc.isInvalid())
7951 return TL.getSourceRange();
7952 return Checker.MatchLoc;
7953 }
7954
7955 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7956 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)7957 static bool CheckNonTypeTemplatePartialSpecializationArgs(
7958 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7959 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7960 for (unsigned I = 0; I != NumArgs; ++I) {
7961 if (Args[I].getKind() == TemplateArgument::Pack) {
7962 if (CheckNonTypeTemplatePartialSpecializationArgs(
7963 S, TemplateNameLoc, Param, Args[I].pack_begin(),
7964 Args[I].pack_size(), IsDefaultArgument))
7965 return true;
7966
7967 continue;
7968 }
7969
7970 if (Args[I].getKind() != TemplateArgument::Expression)
7971 continue;
7972
7973 Expr *ArgExpr = Args[I].getAsExpr();
7974
7975 // We can have a pack expansion of any of the bullets below.
7976 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7977 ArgExpr = Expansion->getPattern();
7978
7979 // Strip off any implicit casts we added as part of type checking.
7980 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7981 ArgExpr = ICE->getSubExpr();
7982
7983 // C++ [temp.class.spec]p8:
7984 // A non-type argument is non-specialized if it is the name of a
7985 // non-type parameter. All other non-type arguments are
7986 // specialized.
7987 //
7988 // Below, we check the two conditions that only apply to
7989 // specialized non-type arguments, so skip any non-specialized
7990 // arguments.
7991 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7992 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7993 continue;
7994
7995 // C++ [temp.class.spec]p9:
7996 // Within the argument list of a class template partial
7997 // specialization, the following restrictions apply:
7998 // -- A partially specialized non-type argument expression
7999 // shall not involve a template parameter of the partial
8000 // specialization except when the argument expression is a
8001 // simple identifier.
8002 // -- The type of a template parameter corresponding to a
8003 // specialized non-type argument shall not be dependent on a
8004 // parameter of the specialization.
8005 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8006 // We implement a compromise between the original rules and DR1315:
8007 // -- A specialized non-type template argument shall not be
8008 // type-dependent and the corresponding template parameter
8009 // shall have a non-dependent type.
8010 SourceRange ParamUseRange =
8011 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8012 if (ParamUseRange.isValid()) {
8013 if (IsDefaultArgument) {
8014 S.Diag(TemplateNameLoc,
8015 diag::err_dependent_non_type_arg_in_partial_spec);
8016 S.Diag(ParamUseRange.getBegin(),
8017 diag::note_dependent_non_type_default_arg_in_partial_spec)
8018 << ParamUseRange;
8019 } else {
8020 S.Diag(ParamUseRange.getBegin(),
8021 diag::err_dependent_non_type_arg_in_partial_spec)
8022 << ParamUseRange;
8023 }
8024 return true;
8025 }
8026
8027 ParamUseRange = findTemplateParameter(
8028 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8029 if (ParamUseRange.isValid()) {
8030 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8031 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8032 << Param->getType();
8033 S.NoteTemplateParameterLocation(*Param);
8034 return true;
8035 }
8036 }
8037
8038 return false;
8039 }
8040
CheckTemplatePartialSpecializationArgs(SourceLocation TemplateNameLoc,TemplateDecl * PrimaryTemplate,unsigned NumExplicit,ArrayRef<TemplateArgument> TemplateArgs)8041 bool Sema::CheckTemplatePartialSpecializationArgs(
8042 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8043 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8044 // We have to be conservative when checking a template in a dependent
8045 // context.
8046 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8047 return false;
8048
8049 TemplateParameterList *TemplateParams =
8050 PrimaryTemplate->getTemplateParameters();
8051 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8052 NonTypeTemplateParmDecl *Param
8053 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8054 if (!Param)
8055 continue;
8056
8057 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8058 Param, &TemplateArgs[I],
8059 1, I >= NumExplicit))
8060 return true;
8061 }
8062
8063 return false;
8064 }
8065
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateIdAnnotation & TemplateId,const ParsedAttributesView & Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)8066 DeclResult Sema::ActOnClassTemplateSpecialization(
8067 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8068 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8069 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8070 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8071 assert(TUK != TagUseKind::Reference && "References are not specializations");
8072
8073 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8074 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8075 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8076
8077 // Find the class template we're specializing
8078 TemplateName Name = TemplateId.Template.get();
8079 ClassTemplateDecl *ClassTemplate
8080 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8081
8082 if (!ClassTemplate) {
8083 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8084 << (Name.getAsTemplateDecl() &&
8085 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8086 return true;
8087 }
8088
8089 bool isMemberSpecialization = false;
8090 bool isPartialSpecialization = false;
8091
8092 if (SS.isSet()) {
8093 if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend &&
8094 diagnoseQualifiedDeclaration(SS, ClassTemplate->getDeclContext(),
8095 ClassTemplate->getDeclName(),
8096 TemplateNameLoc, &TemplateId,
8097 /*IsMemberSpecialization=*/false))
8098 return true;
8099 }
8100
8101 // Check the validity of the template headers that introduce this
8102 // template.
8103 // FIXME: We probably shouldn't complain about these headers for
8104 // friend declarations.
8105 bool Invalid = false;
8106 TemplateParameterList *TemplateParams =
8107 MatchTemplateParametersToScopeSpecifier(
8108 KWLoc, TemplateNameLoc, SS, &TemplateId, TemplateParameterLists,
8109 TUK == TagUseKind::Friend, isMemberSpecialization, Invalid);
8110 if (Invalid)
8111 return true;
8112
8113 // Check that we can declare a template specialization here.
8114 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8115 return true;
8116
8117 if (TemplateParams && TemplateParams->size() > 0) {
8118 isPartialSpecialization = true;
8119
8120 if (TUK == TagUseKind::Friend) {
8121 Diag(KWLoc, diag::err_partial_specialization_friend)
8122 << SourceRange(LAngleLoc, RAngleLoc);
8123 return true;
8124 }
8125
8126 // C++ [temp.class.spec]p10:
8127 // The template parameter list of a specialization shall not
8128 // contain default template argument values.
8129 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8130 Decl *Param = TemplateParams->getParam(I);
8131 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8132 if (TTP->hasDefaultArgument()) {
8133 Diag(TTP->getDefaultArgumentLoc(),
8134 diag::err_default_arg_in_partial_spec);
8135 TTP->removeDefaultArgument();
8136 }
8137 } else if (NonTypeTemplateParmDecl *NTTP
8138 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8139 if (NTTP->hasDefaultArgument()) {
8140 Diag(NTTP->getDefaultArgumentLoc(),
8141 diag::err_default_arg_in_partial_spec)
8142 << NTTP->getDefaultArgument().getSourceRange();
8143 NTTP->removeDefaultArgument();
8144 }
8145 } else {
8146 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8147 if (TTP->hasDefaultArgument()) {
8148 Diag(TTP->getDefaultArgument().getLocation(),
8149 diag::err_default_arg_in_partial_spec)
8150 << TTP->getDefaultArgument().getSourceRange();
8151 TTP->removeDefaultArgument();
8152 }
8153 }
8154 }
8155 } else if (TemplateParams) {
8156 if (TUK == TagUseKind::Friend)
8157 Diag(KWLoc, diag::err_template_spec_friend)
8158 << FixItHint::CreateRemoval(
8159 SourceRange(TemplateParams->getTemplateLoc(),
8160 TemplateParams->getRAngleLoc()))
8161 << SourceRange(LAngleLoc, RAngleLoc);
8162 } else {
8163 assert(TUK == TagUseKind::Friend &&
8164 "should have a 'template<>' for this decl");
8165 }
8166
8167 // Check that the specialization uses the same tag kind as the
8168 // original template.
8169 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8170 assert(Kind != TagTypeKind::Enum &&
8171 "Invalid enum tag in class template spec!");
8172 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), Kind,
8173 TUK == TagUseKind::Definition, KWLoc,
8174 ClassTemplate->getIdentifier())) {
8175 Diag(KWLoc, diag::err_use_with_wrong_tag)
8176 << ClassTemplate
8177 << FixItHint::CreateReplacement(KWLoc,
8178 ClassTemplate->getTemplatedDecl()->getKindName());
8179 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8180 diag::note_previous_use);
8181 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8182 }
8183
8184 // Translate the parser's template argument list in our AST format.
8185 TemplateArgumentListInfo TemplateArgs =
8186 makeTemplateArgumentListInfo(*this, TemplateId);
8187
8188 // Check for unexpanded parameter packs in any of the template arguments.
8189 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8190 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8191 isPartialSpecialization
8192 ? UPPC_PartialSpecialization
8193 : UPPC_ExplicitSpecialization))
8194 return true;
8195
8196 // Check that the template argument list is well-formed for this
8197 // template.
8198 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8199 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8200 false, SugaredConverted, CanonicalConverted,
8201 /*UpdateArgsWithConversions=*/true))
8202 return true;
8203
8204 // Find the class template (partial) specialization declaration that
8205 // corresponds to these arguments.
8206 if (isPartialSpecialization) {
8207 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8208 TemplateArgs.size(),
8209 CanonicalConverted))
8210 return true;
8211
8212 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8213 // also do it during instantiation.
8214 if (!Name.isDependent() &&
8215 !TemplateSpecializationType::anyDependentTemplateArguments(
8216 TemplateArgs, CanonicalConverted)) {
8217 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8218 << ClassTemplate->getDeclName();
8219 isPartialSpecialization = false;
8220 Invalid = true;
8221 }
8222 }
8223
8224 void *InsertPos = nullptr;
8225 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8226
8227 if (isPartialSpecialization)
8228 PrevDecl = ClassTemplate->findPartialSpecialization(
8229 CanonicalConverted, TemplateParams, InsertPos);
8230 else
8231 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8232
8233 ClassTemplateSpecializationDecl *Specialization = nullptr;
8234
8235 // Check whether we can declare a class template specialization in
8236 // the current scope.
8237 if (TUK != TagUseKind::Friend &&
8238 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8239 TemplateNameLoc,
8240 isPartialSpecialization))
8241 return true;
8242
8243 // The canonical type
8244 QualType CanonType;
8245 if (isPartialSpecialization) {
8246 // Build the canonical type that describes the converted template
8247 // arguments of the class template partial specialization.
8248 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8249 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8250 CanonicalConverted);
8251
8252 if (Context.hasSameType(CanonType,
8253 ClassTemplate->getInjectedClassNameSpecialization()) &&
8254 (!Context.getLangOpts().CPlusPlus20 ||
8255 !TemplateParams->hasAssociatedConstraints())) {
8256 // C++ [temp.class.spec]p9b3:
8257 //
8258 // -- The argument list of the specialization shall not be identical
8259 // to the implicit argument list of the primary template.
8260 //
8261 // This rule has since been removed, because it's redundant given DR1495,
8262 // but we keep it because it produces better diagnostics and recovery.
8263 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8264 << /*class template*/ 0 << (TUK == TagUseKind::Definition)
8265 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8266 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8267 ClassTemplate->getIdentifier(),
8268 TemplateNameLoc,
8269 Attr,
8270 TemplateParams,
8271 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8272 /*FriendLoc*/SourceLocation(),
8273 TemplateParameterLists.size() - 1,
8274 TemplateParameterLists.data());
8275 }
8276
8277 // Create a new class template partial specialization declaration node.
8278 ClassTemplatePartialSpecializationDecl *PrevPartial
8279 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8280 ClassTemplatePartialSpecializationDecl *Partial =
8281 ClassTemplatePartialSpecializationDecl::Create(
8282 Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
8283 TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
8284 CanonType, PrevPartial);
8285 Partial->setTemplateArgsAsWritten(TemplateArgs);
8286 SetNestedNameSpecifier(*this, Partial, SS);
8287 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8288 Partial->setTemplateParameterListsInfo(
8289 Context, TemplateParameterLists.drop_back(1));
8290 }
8291
8292 if (!PrevPartial)
8293 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8294 Specialization = Partial;
8295
8296 // If we are providing an explicit specialization of a member class
8297 // template specialization, make a note of that.
8298 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8299 PrevPartial->setMemberSpecialization();
8300
8301 CheckTemplatePartialSpecialization(Partial);
8302 } else {
8303 // Create a new class template specialization declaration node for
8304 // this explicit specialization or friend declaration.
8305 Specialization = ClassTemplateSpecializationDecl::Create(
8306 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
8307 ClassTemplate, CanonicalConverted, PrevDecl);
8308 Specialization->setTemplateArgsAsWritten(TemplateArgs);
8309 SetNestedNameSpecifier(*this, Specialization, SS);
8310 if (TemplateParameterLists.size() > 0) {
8311 Specialization->setTemplateParameterListsInfo(Context,
8312 TemplateParameterLists);
8313 }
8314
8315 if (!PrevDecl)
8316 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8317
8318 if (CurContext->isDependentContext()) {
8319 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8320 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8321 CanonicalConverted);
8322 } else {
8323 CanonType = Context.getTypeDeclType(Specialization);
8324 }
8325 }
8326
8327 // C++ [temp.expl.spec]p6:
8328 // If a template, a member template or the member of a class template is
8329 // explicitly specialized then that specialization shall be declared
8330 // before the first use of that specialization that would cause an implicit
8331 // instantiation to take place, in every translation unit in which such a
8332 // use occurs; no diagnostic is required.
8333 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8334 bool Okay = false;
8335 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8336 // Is there any previous explicit specialization declaration?
8337 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8338 Okay = true;
8339 break;
8340 }
8341 }
8342
8343 if (!Okay) {
8344 SourceRange Range(TemplateNameLoc, RAngleLoc);
8345 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8346 << Context.getTypeDeclType(Specialization) << Range;
8347
8348 Diag(PrevDecl->getPointOfInstantiation(),
8349 diag::note_instantiation_required_here)
8350 << (PrevDecl->getTemplateSpecializationKind()
8351 != TSK_ImplicitInstantiation);
8352 return true;
8353 }
8354 }
8355
8356 // If this is not a friend, note that this is an explicit specialization.
8357 if (TUK != TagUseKind::Friend)
8358 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8359
8360 // Check that this isn't a redefinition of this specialization.
8361 if (TUK == TagUseKind::Definition) {
8362 RecordDecl *Def = Specialization->getDefinition();
8363 NamedDecl *Hidden = nullptr;
8364 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8365 SkipBody->ShouldSkip = true;
8366 SkipBody->Previous = Def;
8367 makeMergedDefinitionVisible(Hidden);
8368 } else if (Def) {
8369 SourceRange Range(TemplateNameLoc, RAngleLoc);
8370 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8371 Diag(Def->getLocation(), diag::note_previous_definition);
8372 Specialization->setInvalidDecl();
8373 return true;
8374 }
8375 }
8376
8377 ProcessDeclAttributeList(S, Specialization, Attr);
8378 ProcessAPINotes(Specialization);
8379
8380 // Add alignment attributes if necessary; these attributes are checked when
8381 // the ASTContext lays out the structure.
8382 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8383 AddAlignmentAttributesForRecord(Specialization);
8384 AddMsStructLayoutForRecord(Specialization);
8385 }
8386
8387 if (ModulePrivateLoc.isValid())
8388 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8389 << (isPartialSpecialization? 1 : 0)
8390 << FixItHint::CreateRemoval(ModulePrivateLoc);
8391
8392 // C++ [temp.expl.spec]p9:
8393 // A template explicit specialization is in the scope of the
8394 // namespace in which the template was defined.
8395 //
8396 // We actually implement this paragraph where we set the semantic
8397 // context (in the creation of the ClassTemplateSpecializationDecl),
8398 // but we also maintain the lexical context where the actual
8399 // definition occurs.
8400 Specialization->setLexicalDeclContext(CurContext);
8401
8402 // We may be starting the definition of this specialization.
8403 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip))
8404 Specialization->startDefinition();
8405
8406 if (TUK == TagUseKind::Friend) {
8407 // Build the fully-sugared type for this class template
8408 // specialization as the user wrote in the specialization
8409 // itself. This means that we'll pretty-print the type retrieved
8410 // from the specialization's declaration the way that the user
8411 // actually wrote the specialization, rather than formatting the
8412 // name based on the "canonical" representation used to store the
8413 // template arguments in the specialization.
8414 TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo(
8415 Name, TemplateNameLoc, TemplateArgs, CanonType);
8416 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8417 TemplateNameLoc,
8418 WrittenTy,
8419 /*FIXME:*/KWLoc);
8420 Friend->setAccess(AS_public);
8421 CurContext->addDecl(Friend);
8422 } else {
8423 // Add the specialization into its lexical context, so that it can
8424 // be seen when iterating through the list of declarations in that
8425 // context. However, specializations are not found by name lookup.
8426 CurContext->addDecl(Specialization);
8427 }
8428
8429 if (SkipBody && SkipBody->ShouldSkip)
8430 return SkipBody->Previous;
8431
8432 Specialization->setInvalidDecl(Invalid);
8433 return Specialization;
8434 }
8435
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)8436 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8437 MultiTemplateParamsArg TemplateParameterLists,
8438 Declarator &D) {
8439 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8440 ActOnDocumentableDecl(NewDecl);
8441 return NewDecl;
8442 }
8443
ActOnConceptDefinition(Scope * S,MultiTemplateParamsArg TemplateParameterLists,const IdentifierInfo * Name,SourceLocation NameLoc,Expr * ConstraintExpr,const ParsedAttributesView & Attrs)8444 Decl *Sema::ActOnConceptDefinition(
8445 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
8446 const IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr,
8447 const ParsedAttributesView &Attrs) {
8448 DeclContext *DC = CurContext;
8449
8450 if (!DC->getRedeclContext()->isFileContext()) {
8451 Diag(NameLoc,
8452 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8453 return nullptr;
8454 }
8455
8456 if (TemplateParameterLists.size() > 1) {
8457 Diag(NameLoc, diag::err_concept_extra_headers);
8458 return nullptr;
8459 }
8460
8461 TemplateParameterList *Params = TemplateParameterLists.front();
8462
8463 if (Params->size() == 0) {
8464 Diag(NameLoc, diag::err_concept_no_parameters);
8465 return nullptr;
8466 }
8467
8468 // Ensure that the parameter pack, if present, is the last parameter in the
8469 // template.
8470 for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
8471 ParamEnd = Params->end();
8472 ParamIt != ParamEnd; ++ParamIt) {
8473 Decl const *Param = *ParamIt;
8474 if (Param->isParameterPack()) {
8475 if (++ParamIt == ParamEnd)
8476 break;
8477 Diag(Param->getLocation(),
8478 diag::err_template_param_pack_must_be_last_template_parameter);
8479 return nullptr;
8480 }
8481 }
8482
8483 if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8484 return nullptr;
8485
8486 ConceptDecl *NewDecl =
8487 ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
8488
8489 if (NewDecl->hasAssociatedConstraints()) {
8490 // C++2a [temp.concept]p4:
8491 // A concept shall not have associated constraints.
8492 Diag(NameLoc, diag::err_concept_no_associated_constraints);
8493 NewDecl->setInvalidDecl();
8494 }
8495
8496 // Check for conflicting previous declaration.
8497 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8498 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8499 forRedeclarationInCurContext());
8500 LookupName(Previous, S);
8501 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8502 /*AllowInlineNamespace*/false);
8503 bool AddToScope = true;
8504 CheckConceptRedefinition(NewDecl, Previous, AddToScope);
8505
8506 ActOnDocumentableDecl(NewDecl);
8507 if (AddToScope)
8508 PushOnScopeChains(NewDecl, S);
8509
8510 ProcessDeclAttributeList(S, NewDecl, Attrs);
8511
8512 return NewDecl;
8513 }
8514
CheckConceptRedefinition(ConceptDecl * NewDecl,LookupResult & Previous,bool & AddToScope)8515 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
8516 LookupResult &Previous, bool &AddToScope) {
8517 AddToScope = true;
8518
8519 if (Previous.empty())
8520 return;
8521
8522 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
8523 if (!OldConcept) {
8524 auto *Old = Previous.getRepresentativeDecl();
8525 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
8526 << NewDecl->getDeclName();
8527 notePreviousDefinition(Old, NewDecl->getLocation());
8528 AddToScope = false;
8529 return;
8530 }
8531 // Check if we can merge with a concept declaration.
8532 bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
8533 if (!IsSame) {
8534 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
8535 << NewDecl->getDeclName();
8536 notePreviousDefinition(OldConcept, NewDecl->getLocation());
8537 AddToScope = false;
8538 return;
8539 }
8540 if (hasReachableDefinition(OldConcept) &&
8541 IsRedefinitionInModule(NewDecl, OldConcept)) {
8542 Diag(NewDecl->getLocation(), diag::err_redefinition)
8543 << NewDecl->getDeclName();
8544 notePreviousDefinition(OldConcept, NewDecl->getLocation());
8545 AddToScope = false;
8546 return;
8547 }
8548 if (!Previous.isSingleResult()) {
8549 // FIXME: we should produce an error in case of ambig and failed lookups.
8550 // Other decls (e.g. namespaces) also have this shortcoming.
8551 return;
8552 }
8553 // We unwrap canonical decl late to check for module visibility.
8554 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
8555 }
8556
8557 /// \brief Strips various properties off an implicit instantiation
8558 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D,bool MinGW)8559 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
8560 if (MinGW || (isa<FunctionDecl>(D) &&
8561 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()))
8562 D->dropAttrs<DLLImportAttr, DLLExportAttr>();
8563
8564 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8565 FD->setInlineSpecified(false);
8566 }
8567
8568 /// Compute the diagnostic location for an explicit instantiation
8569 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)8570 static SourceLocation DiagLocForExplicitInstantiation(
8571 NamedDecl* D, SourceLocation PointOfInstantiation) {
8572 // Explicit instantiations following a specialization have no effect and
8573 // hence no PointOfInstantiation. In that case, walk decl backwards
8574 // until a valid name loc is found.
8575 SourceLocation PrevDiagLoc = PointOfInstantiation;
8576 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8577 Prev = Prev->getPreviousDecl()) {
8578 PrevDiagLoc = Prev->getLocation();
8579 }
8580 assert(PrevDiagLoc.isValid() &&
8581 "Explicit instantiation without point of instantiation?");
8582 return PrevDiagLoc;
8583 }
8584
8585 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)8586 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8587 TemplateSpecializationKind NewTSK,
8588 NamedDecl *PrevDecl,
8589 TemplateSpecializationKind PrevTSK,
8590 SourceLocation PrevPointOfInstantiation,
8591 bool &HasNoEffect) {
8592 HasNoEffect = false;
8593
8594 switch (NewTSK) {
8595 case TSK_Undeclared:
8596 case TSK_ImplicitInstantiation:
8597 assert(
8598 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8599 "previous declaration must be implicit!");
8600 return false;
8601
8602 case TSK_ExplicitSpecialization:
8603 switch (PrevTSK) {
8604 case TSK_Undeclared:
8605 case TSK_ExplicitSpecialization:
8606 // Okay, we're just specializing something that is either already
8607 // explicitly specialized or has merely been mentioned without any
8608 // instantiation.
8609 return false;
8610
8611 case TSK_ImplicitInstantiation:
8612 if (PrevPointOfInstantiation.isInvalid()) {
8613 // The declaration itself has not actually been instantiated, so it is
8614 // still okay to specialize it.
8615 StripImplicitInstantiation(
8616 PrevDecl,
8617 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
8618 return false;
8619 }
8620 // Fall through
8621 [[fallthrough]];
8622
8623 case TSK_ExplicitInstantiationDeclaration:
8624 case TSK_ExplicitInstantiationDefinition:
8625 assert((PrevTSK == TSK_ImplicitInstantiation ||
8626 PrevPointOfInstantiation.isValid()) &&
8627 "Explicit instantiation without point of instantiation?");
8628
8629 // C++ [temp.expl.spec]p6:
8630 // If a template, a member template or the member of a class template
8631 // is explicitly specialized then that specialization shall be declared
8632 // before the first use of that specialization that would cause an
8633 // implicit instantiation to take place, in every translation unit in
8634 // which such a use occurs; no diagnostic is required.
8635 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8636 // Is there any previous explicit specialization declaration?
8637 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8638 return false;
8639 }
8640
8641 Diag(NewLoc, diag::err_specialization_after_instantiation)
8642 << PrevDecl;
8643 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8644 << (PrevTSK != TSK_ImplicitInstantiation);
8645
8646 return true;
8647 }
8648 llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8649
8650 case TSK_ExplicitInstantiationDeclaration:
8651 switch (PrevTSK) {
8652 case TSK_ExplicitInstantiationDeclaration:
8653 // This explicit instantiation declaration is redundant (that's okay).
8654 HasNoEffect = true;
8655 return false;
8656
8657 case TSK_Undeclared:
8658 case TSK_ImplicitInstantiation:
8659 // We're explicitly instantiating something that may have already been
8660 // implicitly instantiated; that's fine.
8661 return false;
8662
8663 case TSK_ExplicitSpecialization:
8664 // C++0x [temp.explicit]p4:
8665 // For a given set of template parameters, if an explicit instantiation
8666 // of a template appears after a declaration of an explicit
8667 // specialization for that template, the explicit instantiation has no
8668 // effect.
8669 HasNoEffect = true;
8670 return false;
8671
8672 case TSK_ExplicitInstantiationDefinition:
8673 // C++0x [temp.explicit]p10:
8674 // If an entity is the subject of both an explicit instantiation
8675 // declaration and an explicit instantiation definition in the same
8676 // translation unit, the definition shall follow the declaration.
8677 Diag(NewLoc,
8678 diag::err_explicit_instantiation_declaration_after_definition);
8679
8680 // Explicit instantiations following a specialization have no effect and
8681 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8682 // until a valid name loc is found.
8683 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8684 diag::note_explicit_instantiation_definition_here);
8685 HasNoEffect = true;
8686 return false;
8687 }
8688 llvm_unreachable("Unexpected TemplateSpecializationKind!");
8689
8690 case TSK_ExplicitInstantiationDefinition:
8691 switch (PrevTSK) {
8692 case TSK_Undeclared:
8693 case TSK_ImplicitInstantiation:
8694 // We're explicitly instantiating something that may have already been
8695 // implicitly instantiated; that's fine.
8696 return false;
8697
8698 case TSK_ExplicitSpecialization:
8699 // C++ DR 259, C++0x [temp.explicit]p4:
8700 // For a given set of template parameters, if an explicit
8701 // instantiation of a template appears after a declaration of
8702 // an explicit specialization for that template, the explicit
8703 // instantiation has no effect.
8704 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8705 << PrevDecl;
8706 Diag(PrevDecl->getLocation(),
8707 diag::note_previous_template_specialization);
8708 HasNoEffect = true;
8709 return false;
8710
8711 case TSK_ExplicitInstantiationDeclaration:
8712 // We're explicitly instantiating a definition for something for which we
8713 // were previously asked to suppress instantiations. That's fine.
8714
8715 // C++0x [temp.explicit]p4:
8716 // For a given set of template parameters, if an explicit instantiation
8717 // of a template appears after a declaration of an explicit
8718 // specialization for that template, the explicit instantiation has no
8719 // effect.
8720 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8721 // Is there any previous explicit specialization declaration?
8722 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8723 HasNoEffect = true;
8724 break;
8725 }
8726 }
8727
8728 return false;
8729
8730 case TSK_ExplicitInstantiationDefinition:
8731 // C++0x [temp.spec]p5:
8732 // For a given template and a given set of template-arguments,
8733 // - an explicit instantiation definition shall appear at most once
8734 // in a program,
8735
8736 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8737 Diag(NewLoc, (getLangOpts().MSVCCompat)
8738 ? diag::ext_explicit_instantiation_duplicate
8739 : diag::err_explicit_instantiation_duplicate)
8740 << PrevDecl;
8741 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8742 diag::note_previous_explicit_instantiation);
8743 HasNoEffect = true;
8744 return false;
8745 }
8746 }
8747
8748 llvm_unreachable("Missing specialization/instantiation case?");
8749 }
8750
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)8751 bool Sema::CheckDependentFunctionTemplateSpecialization(
8752 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
8753 LookupResult &Previous) {
8754 // Remove anything from Previous that isn't a function template in
8755 // the correct context.
8756 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8757 LookupResult::Filter F = Previous.makeFilter();
8758 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8759 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8760 while (F.hasNext()) {
8761 NamedDecl *D = F.next()->getUnderlyingDecl();
8762 if (!isa<FunctionTemplateDecl>(D)) {
8763 F.erase();
8764 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8765 continue;
8766 }
8767
8768 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8769 D->getDeclContext()->getRedeclContext())) {
8770 F.erase();
8771 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8772 continue;
8773 }
8774 }
8775 F.done();
8776
8777 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
8778 if (Previous.empty()) {
8779 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
8780 << IsFriend;
8781 for (auto &P : DiscardedCandidates)
8782 Diag(P.second->getLocation(),
8783 diag::note_dependent_function_template_spec_discard_reason)
8784 << P.first << IsFriend;
8785 return true;
8786 }
8787
8788 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8789 ExplicitTemplateArgs);
8790 return false;
8791 }
8792
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous,bool QualifiedFriend)8793 bool Sema::CheckFunctionTemplateSpecialization(
8794 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8795 LookupResult &Previous, bool QualifiedFriend) {
8796 // The set of function template specializations that could match this
8797 // explicit function template specialization.
8798 UnresolvedSet<8> Candidates;
8799 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8800 /*ForTakingAddress=*/false);
8801
8802 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8803 ConvertedTemplateArgs;
8804
8805 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8806 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8807 I != E; ++I) {
8808 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8809 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8810 // Only consider templates found within the same semantic lookup scope as
8811 // FD.
8812 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8813 Ovl->getDeclContext()->getRedeclContext()))
8814 continue;
8815
8816 QualType FT = FD->getType();
8817 // C++11 [dcl.constexpr]p8:
8818 // A constexpr specifier for a non-static member function that is not
8819 // a constructor declares that member function to be const.
8820 //
8821 // When matching a constexpr member function template specialization
8822 // against the primary template, we don't yet know whether the
8823 // specialization has an implicit 'const' (because we don't know whether
8824 // it will be a static member function until we know which template it
8825 // specializes). This rule was removed in C++14.
8826 if (auto *NewMD = dyn_cast<CXXMethodDecl>(FD);
8827 !getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() &&
8828 !isa<CXXConstructorDecl, CXXDestructorDecl>(NewMD)) {
8829 auto *OldMD = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8830 if (OldMD && OldMD->isConst()) {
8831 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8832 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8833 EPI.TypeQuals.addConst();
8834 FT = Context.getFunctionType(FPT->getReturnType(),
8835 FPT->getParamTypes(), EPI);
8836 }
8837 }
8838
8839 TemplateArgumentListInfo Args;
8840 if (ExplicitTemplateArgs)
8841 Args = *ExplicitTemplateArgs;
8842
8843 // C++ [temp.expl.spec]p11:
8844 // A trailing template-argument can be left unspecified in the
8845 // template-id naming an explicit function template specialization
8846 // provided it can be deduced from the function argument type.
8847 // Perform template argument deduction to determine whether we may be
8848 // specializing this template.
8849 // FIXME: It is somewhat wasteful to build
8850 TemplateDeductionInfo Info(FailedCandidates.getLocation());
8851 FunctionDecl *Specialization = nullptr;
8852 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8853 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8854 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info);
8855 TDK != TemplateDeductionResult::Success) {
8856 // Template argument deduction failed; record why it failed, so
8857 // that we can provide nifty diagnostics.
8858 FailedCandidates.addCandidate().set(
8859 I.getPair(), FunTmpl->getTemplatedDecl(),
8860 MakeDeductionFailureInfo(Context, TDK, Info));
8861 (void)TDK;
8862 continue;
8863 }
8864
8865 // Target attributes are part of the cuda function signature, so
8866 // the deduced template's cuda target must match that of the
8867 // specialization. Given that C++ template deduction does not
8868 // take target attributes into account, we reject candidates
8869 // here that have a different target.
8870 if (LangOpts.CUDA &&
8871 CUDA().IdentifyTarget(Specialization,
8872 /* IgnoreImplicitHDAttr = */ true) !=
8873 CUDA().IdentifyTarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
8874 FailedCandidates.addCandidate().set(
8875 I.getPair(), FunTmpl->getTemplatedDecl(),
8876 MakeDeductionFailureInfo(
8877 Context, TemplateDeductionResult::CUDATargetMismatch, Info));
8878 continue;
8879 }
8880
8881 // Record this candidate.
8882 if (ExplicitTemplateArgs)
8883 ConvertedTemplateArgs[Specialization] = std::move(Args);
8884 Candidates.addDecl(Specialization, I.getAccess());
8885 }
8886 }
8887
8888 // For a qualified friend declaration (with no explicit marker to indicate
8889 // that a template specialization was intended), note all (template and
8890 // non-template) candidates.
8891 if (QualifiedFriend && Candidates.empty()) {
8892 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
8893 << FD->getDeclName() << FDLookupContext;
8894 // FIXME: We should form a single candidate list and diagnose all
8895 // candidates at once, to get proper sorting and limiting.
8896 for (auto *OldND : Previous) {
8897 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
8898 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
8899 }
8900 FailedCandidates.NoteCandidates(*this, FD->getLocation());
8901 return true;
8902 }
8903
8904 // Find the most specialized function template.
8905 UnresolvedSetIterator Result = getMostSpecialized(
8906 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
8907 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
8908 PDiag(diag::err_function_template_spec_ambiguous)
8909 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8910 PDiag(diag::note_function_template_spec_matched));
8911
8912 if (Result == Candidates.end())
8913 return true;
8914
8915 // Ignore access information; it doesn't figure into redeclaration checking.
8916 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8917
8918 // C++23 [except.spec]p13:
8919 // An exception specification is considered to be needed when:
8920 // - [...]
8921 // - the exception specification is compared to that of another declaration
8922 // (e.g., an explicit specialization or an overriding virtual function);
8923 // - [...]
8924 //
8925 // The exception specification of a defaulted function is evaluated as
8926 // described above only when needed; similarly, the noexcept-specifier of a
8927 // specialization of a function template or member function of a class
8928 // template is instantiated only when needed.
8929 //
8930 // The standard doesn't specify what the "comparison with another declaration"
8931 // entails, nor the exact circumstances in which it occurs. Moreover, it does
8932 // not state which properties of an explicit specialization must match the
8933 // primary template.
8934 //
8935 // We assume that an explicit specialization must correspond with (per
8936 // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8)
8937 // the declaration produced by substitution into the function template.
8938 //
8939 // Since the determination whether two function declarations correspond does
8940 // not consider exception specification, we only need to instantiate it once
8941 // we determine the primary template when comparing types per
8942 // [basic.link]p11.1.
8943 auto *SpecializationFPT =
8944 Specialization->getType()->castAs<FunctionProtoType>();
8945 // If the function has a dependent exception specification, resolve it after
8946 // we have selected the primary template so we can check whether it matches.
8947 if (getLangOpts().CPlusPlus17 &&
8948 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
8949 !ResolveExceptionSpec(FD->getLocation(), SpecializationFPT))
8950 return true;
8951
8952 FunctionTemplateSpecializationInfo *SpecInfo
8953 = Specialization->getTemplateSpecializationInfo();
8954 assert(SpecInfo && "Function template specialization info missing?");
8955
8956 // Note: do not overwrite location info if previous template
8957 // specialization kind was explicit.
8958 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8959 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8960 Specialization->setLocation(FD->getLocation());
8961 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8962 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8963 // function can differ from the template declaration with respect to
8964 // the constexpr specifier.
8965 // FIXME: We need an update record for this AST mutation.
8966 // FIXME: What if there are multiple such prior declarations (for instance,
8967 // from different modules)?
8968 Specialization->setConstexprKind(FD->getConstexprKind());
8969 }
8970
8971 // FIXME: Check if the prior specialization has a point of instantiation.
8972 // If so, we have run afoul of .
8973
8974 // If this is a friend declaration, then we're not really declaring
8975 // an explicit specialization.
8976 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8977
8978 // Check the scope of this explicit specialization.
8979 if (!isFriend &&
8980 CheckTemplateSpecializationScope(*this,
8981 Specialization->getPrimaryTemplate(),
8982 Specialization, FD->getLocation(),
8983 false))
8984 return true;
8985
8986 // C++ [temp.expl.spec]p6:
8987 // If a template, a member template or the member of a class template is
8988 // explicitly specialized then that specialization shall be declared
8989 // before the first use of that specialization that would cause an implicit
8990 // instantiation to take place, in every translation unit in which such a
8991 // use occurs; no diagnostic is required.
8992 bool HasNoEffect = false;
8993 if (!isFriend &&
8994 CheckSpecializationInstantiationRedecl(FD->getLocation(),
8995 TSK_ExplicitSpecialization,
8996 Specialization,
8997 SpecInfo->getTemplateSpecializationKind(),
8998 SpecInfo->getPointOfInstantiation(),
8999 HasNoEffect))
9000 return true;
9001
9002 // Mark the prior declaration as an explicit specialization, so that later
9003 // clients know that this is an explicit specialization.
9004 if (!isFriend) {
9005 // Since explicit specializations do not inherit '=delete' from their
9006 // primary function template - check if the 'specialization' that was
9007 // implicitly generated (during template argument deduction for partial
9008 // ordering) from the most specialized of all the function templates that
9009 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9010 // first check that it was implicitly generated during template argument
9011 // deduction by making sure it wasn't referenced, and then reset the deleted
9012 // flag to not-deleted, so that we can inherit that information from 'FD'.
9013 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9014 !Specialization->getCanonicalDecl()->isReferenced()) {
9015 // FIXME: This assert will not hold in the presence of modules.
9016 assert(
9017 Specialization->getCanonicalDecl() == Specialization &&
9018 "This must be the only existing declaration of this specialization");
9019 // FIXME: We need an update record for this AST mutation.
9020 Specialization->setDeletedAsWritten(false);
9021 }
9022 // FIXME: We need an update record for this AST mutation.
9023 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9024 MarkUnusedFileScopedDecl(Specialization);
9025 }
9026
9027 // Turn the given function declaration into a function template
9028 // specialization, with the template arguments from the previous
9029 // specialization.
9030 // Take copies of (semantic and syntactic) template argument lists.
9031 TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy(
9032 Context, Specialization->getTemplateSpecializationArgs()->asArray());
9033 FD->setFunctionTemplateSpecialization(
9034 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9035 SpecInfo->getTemplateSpecializationKind(),
9036 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9037
9038 // A function template specialization inherits the target attributes
9039 // of its template. (We require the attributes explicitly in the
9040 // code to match, but a template may have implicit attributes by
9041 // virtue e.g. of being constexpr, and it passes these implicit
9042 // attributes on to its specializations.)
9043 if (LangOpts.CUDA)
9044 CUDA().inheritTargetAttrs(FD, *Specialization->getPrimaryTemplate());
9045
9046 // The "previous declaration" for this function template specialization is
9047 // the prior function template specialization.
9048 Previous.clear();
9049 Previous.addDecl(Specialization);
9050 return false;
9051 }
9052
9053 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9054 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9055 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9056
9057 // Try to find the member we are instantiating.
9058 NamedDecl *FoundInstantiation = nullptr;
9059 NamedDecl *Instantiation = nullptr;
9060 NamedDecl *InstantiatedFrom = nullptr;
9061 MemberSpecializationInfo *MSInfo = nullptr;
9062
9063 if (Previous.empty()) {
9064 // Nowhere to look anyway.
9065 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9066 SmallVector<FunctionDecl *> Candidates;
9067 bool Ambiguous = false;
9068 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9069 I != E; ++I) {
9070 CXXMethodDecl *Method =
9071 dyn_cast<CXXMethodDecl>((*I)->getUnderlyingDecl());
9072 if (!Method)
9073 continue;
9074 QualType Adjusted = Function->getType();
9075 if (!hasExplicitCallingConv(Adjusted))
9076 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9077 // This doesn't handle deduced return types, but both function
9078 // declarations should be undeduced at this point.
9079 if (!Context.hasSameType(Adjusted, Method->getType()))
9080 continue;
9081 if (ConstraintSatisfaction Satisfaction;
9082 Method->getTrailingRequiresClause() &&
9083 (CheckFunctionConstraints(Method, Satisfaction,
9084 /*UsageLoc=*/Member->getLocation(),
9085 /*ForOverloadResolution=*/true) ||
9086 !Satisfaction.IsSatisfied))
9087 continue;
9088 Candidates.push_back(Method);
9089 FunctionDecl *MoreConstrained =
9090 Instantiation ? getMoreConstrainedFunction(
9091 Method, cast<FunctionDecl>(Instantiation))
9092 : Method;
9093 if (!MoreConstrained) {
9094 Ambiguous = true;
9095 continue;
9096 }
9097 if (MoreConstrained == Method) {
9098 Ambiguous = false;
9099 FoundInstantiation = *I;
9100 Instantiation = Method;
9101 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9102 MSInfo = Method->getMemberSpecializationInfo();
9103 }
9104 }
9105 if (Ambiguous) {
9106 Diag(Member->getLocation(), diag::err_function_member_spec_ambiguous)
9107 << Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation);
9108 for (FunctionDecl *Candidate : Candidates)
9109 Diag(Candidate->getLocation(), diag::note_function_member_spec_matched)
9110 << Candidate;
9111 return true;
9112 }
9113 } else if (isa<VarDecl>(Member)) {
9114 VarDecl *PrevVar;
9115 if (Previous.isSingleResult() &&
9116 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9117 if (PrevVar->isStaticDataMember()) {
9118 FoundInstantiation = Previous.getRepresentativeDecl();
9119 Instantiation = PrevVar;
9120 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9121 MSInfo = PrevVar->getMemberSpecializationInfo();
9122 }
9123 } else if (isa<RecordDecl>(Member)) {
9124 CXXRecordDecl *PrevRecord;
9125 if (Previous.isSingleResult() &&
9126 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9127 FoundInstantiation = Previous.getRepresentativeDecl();
9128 Instantiation = PrevRecord;
9129 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9130 MSInfo = PrevRecord->getMemberSpecializationInfo();
9131 }
9132 } else if (isa<EnumDecl>(Member)) {
9133 EnumDecl *PrevEnum;
9134 if (Previous.isSingleResult() &&
9135 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9136 FoundInstantiation = Previous.getRepresentativeDecl();
9137 Instantiation = PrevEnum;
9138 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9139 MSInfo = PrevEnum->getMemberSpecializationInfo();
9140 }
9141 }
9142
9143 if (!Instantiation) {
9144 // There is no previous declaration that matches. Since member
9145 // specializations are always out-of-line, the caller will complain about
9146 // this mismatch later.
9147 return false;
9148 }
9149
9150 // A member specialization in a friend declaration isn't really declaring
9151 // an explicit specialization, just identifying a specific (possibly implicit)
9152 // specialization. Don't change the template specialization kind.
9153 //
9154 // FIXME: Is this really valid? Other compilers reject.
9155 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9156 // Preserve instantiation information.
9157 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9158 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9159 cast<CXXMethodDecl>(InstantiatedFrom),
9160 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9161 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9162 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9163 cast<CXXRecordDecl>(InstantiatedFrom),
9164 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9165 }
9166
9167 Previous.clear();
9168 Previous.addDecl(FoundInstantiation);
9169 return false;
9170 }
9171
9172 // Make sure that this is a specialization of a member.
9173 if (!InstantiatedFrom) {
9174 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9175 << Member;
9176 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9177 return true;
9178 }
9179
9180 // C++ [temp.expl.spec]p6:
9181 // If a template, a member template or the member of a class template is
9182 // explicitly specialized then that specialization shall be declared
9183 // before the first use of that specialization that would cause an implicit
9184 // instantiation to take place, in every translation unit in which such a
9185 // use occurs; no diagnostic is required.
9186 assert(MSInfo && "Member specialization info missing?");
9187
9188 bool HasNoEffect = false;
9189 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9190 TSK_ExplicitSpecialization,
9191 Instantiation,
9192 MSInfo->getTemplateSpecializationKind(),
9193 MSInfo->getPointOfInstantiation(),
9194 HasNoEffect))
9195 return true;
9196
9197 // Check the scope of this explicit specialization.
9198 if (CheckTemplateSpecializationScope(*this,
9199 InstantiatedFrom,
9200 Instantiation, Member->getLocation(),
9201 false))
9202 return true;
9203
9204 // Note that this member specialization is an "instantiation of" the
9205 // corresponding member of the original template.
9206 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9207 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9208 if (InstantiationFunction->getTemplateSpecializationKind() ==
9209 TSK_ImplicitInstantiation) {
9210 // Explicit specializations of member functions of class templates do not
9211 // inherit '=delete' from the member function they are specializing.
9212 if (InstantiationFunction->isDeleted()) {
9213 // FIXME: This assert will not hold in the presence of modules.
9214 assert(InstantiationFunction->getCanonicalDecl() ==
9215 InstantiationFunction);
9216 // FIXME: We need an update record for this AST mutation.
9217 InstantiationFunction->setDeletedAsWritten(false);
9218 }
9219 }
9220
9221 MemberFunction->setInstantiationOfMemberFunction(
9222 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9223 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9224 MemberVar->setInstantiationOfStaticDataMember(
9225 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9226 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9227 MemberClass->setInstantiationOfMemberClass(
9228 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9229 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9230 MemberEnum->setInstantiationOfMemberEnum(
9231 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9232 } else {
9233 llvm_unreachable("unknown member specialization kind");
9234 }
9235
9236 // Save the caller the trouble of having to figure out which declaration
9237 // this specialization matches.
9238 Previous.clear();
9239 Previous.addDecl(FoundInstantiation);
9240 return false;
9241 }
9242
9243 /// Complete the explicit specialization of a member of a class template by
9244 /// updating the instantiated member to be marked as an explicit specialization.
9245 ///
9246 /// \param OrigD The member declaration instantiated from the template.
9247 /// \param Loc The location of the explicit specialization of the member.
9248 template<typename DeclT>
completeMemberSpecializationImpl(Sema & S,DeclT * OrigD,SourceLocation Loc)9249 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9250 SourceLocation Loc) {
9251 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9252 return;
9253
9254 // FIXME: Inform AST mutation listeners of this AST mutation.
9255 // FIXME: If there are multiple in-class declarations of the member (from
9256 // multiple modules, or a declaration and later definition of a member type),
9257 // should we update all of them?
9258 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9259 OrigD->setLocation(Loc);
9260 }
9261
CompleteMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9262 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9263 LookupResult &Previous) {
9264 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9265 if (Instantiation == Member)
9266 return;
9267
9268 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9269 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9270 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9271 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9272 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9273 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9274 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9275 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9276 else
9277 llvm_unreachable("unknown member specialization kind");
9278 }
9279
9280 /// Check the scope of an explicit instantiation.
9281 ///
9282 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)9283 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9284 SourceLocation InstLoc,
9285 bool WasQualifiedName) {
9286 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9287 DeclContext *CurContext = S.CurContext->getRedeclContext();
9288
9289 if (CurContext->isRecord()) {
9290 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9291 << D;
9292 return true;
9293 }
9294
9295 // C++11 [temp.explicit]p3:
9296 // An explicit instantiation shall appear in an enclosing namespace of its
9297 // template. If the name declared in the explicit instantiation is an
9298 // unqualified name, the explicit instantiation shall appear in the
9299 // namespace where its template is declared or, if that namespace is inline
9300 // (7.3.1), any namespace from its enclosing namespace set.
9301 //
9302 // This is DR275, which we do not retroactively apply to C++98/03.
9303 if (WasQualifiedName) {
9304 if (CurContext->Encloses(OrigContext))
9305 return false;
9306 } else {
9307 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9308 return false;
9309 }
9310
9311 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9312 if (WasQualifiedName)
9313 S.Diag(InstLoc,
9314 S.getLangOpts().CPlusPlus11?
9315 diag::err_explicit_instantiation_out_of_scope :
9316 diag::warn_explicit_instantiation_out_of_scope_0x)
9317 << D << NS;
9318 else
9319 S.Diag(InstLoc,
9320 S.getLangOpts().CPlusPlus11?
9321 diag::err_explicit_instantiation_unqualified_wrong_namespace :
9322 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9323 << D << NS;
9324 } else
9325 S.Diag(InstLoc,
9326 S.getLangOpts().CPlusPlus11?
9327 diag::err_explicit_instantiation_must_be_global :
9328 diag::warn_explicit_instantiation_must_be_global_0x)
9329 << D;
9330 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9331 return false;
9332 }
9333
9334 /// Common checks for whether an explicit instantiation of \p D is valid.
CheckExplicitInstantiation(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName,TemplateSpecializationKind TSK)9335 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9336 SourceLocation InstLoc,
9337 bool WasQualifiedName,
9338 TemplateSpecializationKind TSK) {
9339 // C++ [temp.explicit]p13:
9340 // An explicit instantiation declaration shall not name a specialization of
9341 // a template with internal linkage.
9342 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9343 D->getFormalLinkage() == Linkage::Internal) {
9344 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9345 return true;
9346 }
9347
9348 // C++11 [temp.explicit]p3: [DR 275]
9349 // An explicit instantiation shall appear in an enclosing namespace of its
9350 // template.
9351 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9352 return true;
9353
9354 return false;
9355 }
9356
9357 /// Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)9358 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9359 if (!SS.isSet())
9360 return false;
9361
9362 // C++11 [temp.explicit]p3:
9363 // If the explicit instantiation is for a member function, a member class
9364 // or a static data member of a class template specialization, the name of
9365 // the class template specialization in the qualified-id for the member
9366 // name shall be a simple-template-id.
9367 //
9368 // C++98 has the same restriction, just worded differently.
9369 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9370 NNS = NNS->getPrefix())
9371 if (const Type *T = NNS->getAsType())
9372 if (isa<TemplateSpecializationType>(T))
9373 return true;
9374
9375 return false;
9376 }
9377
9378 /// Make a dllexport or dllimport attr on a class template specialization take
9379 /// effect.
dllExportImportClassTemplateSpecialization(Sema & S,ClassTemplateSpecializationDecl * Def)9380 static void dllExportImportClassTemplateSpecialization(
9381 Sema &S, ClassTemplateSpecializationDecl *Def) {
9382 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9383 assert(A && "dllExportImportClassTemplateSpecialization called "
9384 "on Def without dllexport or dllimport");
9385
9386 // We reject explicit instantiations in class scope, so there should
9387 // never be any delayed exported classes to worry about.
9388 assert(S.DelayedDllExportClasses.empty() &&
9389 "delayed exports present at explicit instantiation");
9390 S.checkClassLevelDLLAttribute(Def);
9391
9392 // Propagate attribute to base class templates.
9393 for (auto &B : Def->bases()) {
9394 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9395 B.getType()->getAsCXXRecordDecl()))
9396 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9397 }
9398
9399 S.referenceDLLExportedClassMethods();
9400 }
9401
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,const ParsedAttributesView & Attr)9402 DeclResult Sema::ActOnExplicitInstantiation(
9403 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9404 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9405 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9406 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9407 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9408 // Find the class template we're specializing
9409 TemplateName Name = TemplateD.get();
9410 TemplateDecl *TD = Name.getAsTemplateDecl();
9411 // Check that the specialization uses the same tag kind as the
9412 // original template.
9413 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9414 assert(Kind != TagTypeKind::Enum &&
9415 "Invalid enum tag in class template explicit instantiation!");
9416
9417 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9418
9419 if (!ClassTemplate) {
9420 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9421 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
9422 << TD << NTK << llvm::to_underlying(Kind);
9423 Diag(TD->getLocation(), diag::note_previous_use);
9424 return true;
9425 }
9426
9427 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9428 Kind, /*isDefinition*/false, KWLoc,
9429 ClassTemplate->getIdentifier())) {
9430 Diag(KWLoc, diag::err_use_with_wrong_tag)
9431 << ClassTemplate
9432 << FixItHint::CreateReplacement(KWLoc,
9433 ClassTemplate->getTemplatedDecl()->getKindName());
9434 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9435 diag::note_previous_use);
9436 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9437 }
9438
9439 // C++0x [temp.explicit]p2:
9440 // There are two forms of explicit instantiation: an explicit instantiation
9441 // definition and an explicit instantiation declaration. An explicit
9442 // instantiation declaration begins with the extern keyword. [...]
9443 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9444 ? TSK_ExplicitInstantiationDefinition
9445 : TSK_ExplicitInstantiationDeclaration;
9446
9447 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9448 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9449 // Check for dllexport class template instantiation declarations,
9450 // except for MinGW mode.
9451 for (const ParsedAttr &AL : Attr) {
9452 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9453 Diag(ExternLoc,
9454 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9455 Diag(AL.getLoc(), diag::note_attribute);
9456 break;
9457 }
9458 }
9459
9460 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9461 Diag(ExternLoc,
9462 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9463 Diag(A->getLocation(), diag::note_attribute);
9464 }
9465 }
9466
9467 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9468 // instantiation declarations for most purposes.
9469 bool DLLImportExplicitInstantiationDef = false;
9470 if (TSK == TSK_ExplicitInstantiationDefinition &&
9471 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9472 // Check for dllimport class template instantiation definitions.
9473 bool DLLImport =
9474 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9475 for (const ParsedAttr &AL : Attr) {
9476 if (AL.getKind() == ParsedAttr::AT_DLLImport)
9477 DLLImport = true;
9478 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9479 // dllexport trumps dllimport here.
9480 DLLImport = false;
9481 break;
9482 }
9483 }
9484 if (DLLImport) {
9485 TSK = TSK_ExplicitInstantiationDeclaration;
9486 DLLImportExplicitInstantiationDef = true;
9487 }
9488 }
9489
9490 // Translate the parser's template argument list in our AST format.
9491 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9492 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9493
9494 // Check that the template argument list is well-formed for this
9495 // template.
9496 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
9497 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
9498 false, SugaredConverted, CanonicalConverted,
9499 /*UpdateArgsWithConversions=*/true))
9500 return true;
9501
9502 // Find the class template specialization declaration that
9503 // corresponds to these arguments.
9504 void *InsertPos = nullptr;
9505 ClassTemplateSpecializationDecl *PrevDecl =
9506 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
9507
9508 TemplateSpecializationKind PrevDecl_TSK
9509 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9510
9511 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9512 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9513 // Check for dllexport class template instantiation definitions in MinGW
9514 // mode, if a previous declaration of the instantiation was seen.
9515 for (const ParsedAttr &AL : Attr) {
9516 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9517 Diag(AL.getLoc(),
9518 diag::warn_attribute_dllexport_explicit_instantiation_def);
9519 break;
9520 }
9521 }
9522 }
9523
9524 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9525 SS.isSet(), TSK))
9526 return true;
9527
9528 ClassTemplateSpecializationDecl *Specialization = nullptr;
9529
9530 bool HasNoEffect = false;
9531 if (PrevDecl) {
9532 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9533 PrevDecl, PrevDecl_TSK,
9534 PrevDecl->getPointOfInstantiation(),
9535 HasNoEffect))
9536 return PrevDecl;
9537
9538 // Even though HasNoEffect == true means that this explicit instantiation
9539 // has no effect on semantics, we go on to put its syntax in the AST.
9540
9541 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9542 PrevDecl_TSK == TSK_Undeclared) {
9543 // Since the only prior class template specialization with these
9544 // arguments was referenced but not declared, reuse that
9545 // declaration node as our own, updating the source location
9546 // for the template name to reflect our new declaration.
9547 // (Other source locations will be updated later.)
9548 Specialization = PrevDecl;
9549 Specialization->setLocation(TemplateNameLoc);
9550 PrevDecl = nullptr;
9551 }
9552
9553 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9554 DLLImportExplicitInstantiationDef) {
9555 // The new specialization might add a dllimport attribute.
9556 HasNoEffect = false;
9557 }
9558 }
9559
9560 if (!Specialization) {
9561 // Create a new class template specialization declaration node for
9562 // this explicit specialization.
9563 Specialization = ClassTemplateSpecializationDecl::Create(
9564 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
9565 ClassTemplate, CanonicalConverted, PrevDecl);
9566 SetNestedNameSpecifier(*this, Specialization, SS);
9567
9568 // A MSInheritanceAttr attached to the previous declaration must be
9569 // propagated to the new node prior to instantiation.
9570 if (PrevDecl) {
9571 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
9572 auto *Clone = A->clone(getASTContext());
9573 Clone->setInherited(true);
9574 Specialization->addAttr(Clone);
9575 Consumer.AssignInheritanceModel(Specialization);
9576 }
9577 }
9578
9579 if (!HasNoEffect && !PrevDecl) {
9580 // Insert the new specialization.
9581 ClassTemplate->AddSpecialization(Specialization, InsertPos);
9582 }
9583 }
9584
9585 Specialization->setTemplateArgsAsWritten(TemplateArgs);
9586
9587 // Set source locations for keywords.
9588 Specialization->setExternKeywordLoc(ExternLoc);
9589 Specialization->setTemplateKeywordLoc(TemplateLoc);
9590 Specialization->setBraceRange(SourceRange());
9591
9592 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9593 ProcessDeclAttributeList(S, Specialization, Attr);
9594 ProcessAPINotes(Specialization);
9595
9596 // Add the explicit instantiation into its lexical context. However,
9597 // since explicit instantiations are never found by name lookup, we
9598 // just put it into the declaration context directly.
9599 Specialization->setLexicalDeclContext(CurContext);
9600 CurContext->addDecl(Specialization);
9601
9602 // Syntax is now OK, so return if it has no other effect on semantics.
9603 if (HasNoEffect) {
9604 // Set the template specialization kind.
9605 Specialization->setTemplateSpecializationKind(TSK);
9606 return Specialization;
9607 }
9608
9609 // C++ [temp.explicit]p3:
9610 // A definition of a class template or class member template
9611 // shall be in scope at the point of the explicit instantiation of
9612 // the class template or class member template.
9613 //
9614 // This check comes when we actually try to perform the
9615 // instantiation.
9616 ClassTemplateSpecializationDecl *Def
9617 = cast_or_null<ClassTemplateSpecializationDecl>(
9618 Specialization->getDefinition());
9619 if (!Def)
9620 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9621 else if (TSK == TSK_ExplicitInstantiationDefinition) {
9622 MarkVTableUsed(TemplateNameLoc, Specialization, true);
9623 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9624 }
9625
9626 // Instantiate the members of this class template specialization.
9627 Def = cast_or_null<ClassTemplateSpecializationDecl>(
9628 Specialization->getDefinition());
9629 if (Def) {
9630 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9631 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9632 // TSK_ExplicitInstantiationDefinition
9633 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9634 (TSK == TSK_ExplicitInstantiationDefinition ||
9635 DLLImportExplicitInstantiationDef)) {
9636 // FIXME: Need to notify the ASTMutationListener that we did this.
9637 Def->setTemplateSpecializationKind(TSK);
9638
9639 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9640 Context.getTargetInfo().shouldDLLImportComdatSymbols()) {
9641 // An explicit instantiation definition can add a dll attribute to a
9642 // template with a previous instantiation declaration. MinGW doesn't
9643 // allow this.
9644 auto *A = cast<InheritableAttr>(
9645 getDLLAttr(Specialization)->clone(getASTContext()));
9646 A->setInherited(true);
9647 Def->addAttr(A);
9648 dllExportImportClassTemplateSpecialization(*this, Def);
9649 }
9650 }
9651
9652 // Fix a TSK_ImplicitInstantiation followed by a
9653 // TSK_ExplicitInstantiationDefinition
9654 bool NewlyDLLExported =
9655 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9656 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9657 Context.getTargetInfo().shouldDLLImportComdatSymbols()) {
9658 // An explicit instantiation definition can add a dll attribute to a
9659 // template with a previous implicit instantiation. MinGW doesn't allow
9660 // this. We limit clang to only adding dllexport, to avoid potentially
9661 // strange codegen behavior. For example, if we extend this conditional
9662 // to dllimport, and we have a source file calling a method on an
9663 // implicitly instantiated template class instance and then declaring a
9664 // dllimport explicit instantiation definition for the same template
9665 // class, the codegen for the method call will not respect the dllimport,
9666 // while it will with cl. The Def will already have the DLL attribute,
9667 // since the Def and Specialization will be the same in the case of
9668 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9669 // attribute to the Specialization; we just need to make it take effect.
9670 assert(Def == Specialization &&
9671 "Def and Specialization should match for implicit instantiation");
9672 dllExportImportClassTemplateSpecialization(*this, Def);
9673 }
9674
9675 // In MinGW mode, export the template instantiation if the declaration
9676 // was marked dllexport.
9677 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9678 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9679 PrevDecl->hasAttr<DLLExportAttr>()) {
9680 dllExportImportClassTemplateSpecialization(*this, Def);
9681 }
9682
9683 // Set the template specialization kind. Make sure it is set before
9684 // instantiating the members which will trigger ASTConsumer callbacks.
9685 Specialization->setTemplateSpecializationKind(TSK);
9686 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9687 } else {
9688
9689 // Set the template specialization kind.
9690 Specialization->setTemplateSpecializationKind(TSK);
9691 }
9692
9693 return Specialization;
9694 }
9695
9696 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr)9697 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9698 SourceLocation TemplateLoc, unsigned TagSpec,
9699 SourceLocation KWLoc, CXXScopeSpec &SS,
9700 IdentifierInfo *Name, SourceLocation NameLoc,
9701 const ParsedAttributesView &Attr) {
9702
9703 bool Owned = false;
9704 bool IsDependent = false;
9705 Decl *TagD =
9706 ActOnTag(S, TagSpec, TagUseKind::Reference, KWLoc, SS, Name, NameLoc,
9707 Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
9708 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
9709 false, TypeResult(), /*IsTypeSpecifier*/ false,
9710 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside)
9711 .get();
9712 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9713
9714 if (!TagD)
9715 return true;
9716
9717 TagDecl *Tag = cast<TagDecl>(TagD);
9718 assert(!Tag->isEnum() && "shouldn't see enumerations here");
9719
9720 if (Tag->isInvalidDecl())
9721 return true;
9722
9723 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9724 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9725 if (!Pattern) {
9726 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9727 << Context.getTypeDeclType(Record);
9728 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9729 return true;
9730 }
9731
9732 // C++0x [temp.explicit]p2:
9733 // If the explicit instantiation is for a class or member class, the
9734 // elaborated-type-specifier in the declaration shall include a
9735 // simple-template-id.
9736 //
9737 // C++98 has the same restriction, just worded differently.
9738 if (!ScopeSpecifierHasTemplateId(SS))
9739 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9740 << Record << SS.getRange();
9741
9742 // C++0x [temp.explicit]p2:
9743 // There are two forms of explicit instantiation: an explicit instantiation
9744 // definition and an explicit instantiation declaration. An explicit
9745 // instantiation declaration begins with the extern keyword. [...]
9746 TemplateSpecializationKind TSK
9747 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9748 : TSK_ExplicitInstantiationDeclaration;
9749
9750 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9751
9752 // Verify that it is okay to explicitly instantiate here.
9753 CXXRecordDecl *PrevDecl
9754 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9755 if (!PrevDecl && Record->getDefinition())
9756 PrevDecl = Record;
9757 if (PrevDecl) {
9758 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9759 bool HasNoEffect = false;
9760 assert(MSInfo && "No member specialization information?");
9761 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9762 PrevDecl,
9763 MSInfo->getTemplateSpecializationKind(),
9764 MSInfo->getPointOfInstantiation(),
9765 HasNoEffect))
9766 return true;
9767 if (HasNoEffect)
9768 return TagD;
9769 }
9770
9771 CXXRecordDecl *RecordDef
9772 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9773 if (!RecordDef) {
9774 // C++ [temp.explicit]p3:
9775 // A definition of a member class of a class template shall be in scope
9776 // at the point of an explicit instantiation of the member class.
9777 CXXRecordDecl *Def
9778 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9779 if (!Def) {
9780 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9781 << 0 << Record->getDeclName() << Record->getDeclContext();
9782 Diag(Pattern->getLocation(), diag::note_forward_declaration)
9783 << Pattern;
9784 return true;
9785 } else {
9786 if (InstantiateClass(NameLoc, Record, Def,
9787 getTemplateInstantiationArgs(Record),
9788 TSK))
9789 return true;
9790
9791 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9792 if (!RecordDef)
9793 return true;
9794 }
9795 }
9796
9797 // Instantiate all of the members of the class.
9798 InstantiateClassMembers(NameLoc, RecordDef,
9799 getTemplateInstantiationArgs(Record), TSK);
9800
9801 if (TSK == TSK_ExplicitInstantiationDefinition)
9802 MarkVTableUsed(NameLoc, RecordDef, true);
9803
9804 // FIXME: We don't have any representation for explicit instantiations of
9805 // member classes. Such a representation is not needed for compilation, but it
9806 // should be available for clients that want to see all of the declarations in
9807 // the source code.
9808 return TagD;
9809 }
9810
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)9811 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9812 SourceLocation ExternLoc,
9813 SourceLocation TemplateLoc,
9814 Declarator &D) {
9815 // Explicit instantiations always require a name.
9816 // TODO: check if/when DNInfo should replace Name.
9817 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9818 DeclarationName Name = NameInfo.getName();
9819 if (!Name) {
9820 if (!D.isInvalidType())
9821 Diag(D.getDeclSpec().getBeginLoc(),
9822 diag::err_explicit_instantiation_requires_name)
9823 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9824
9825 return true;
9826 }
9827
9828 // Get the innermost enclosing declaration scope.
9829 S = S->getDeclParent();
9830
9831 // Determine the type of the declaration.
9832 TypeSourceInfo *T = GetTypeForDeclarator(D);
9833 QualType R = T->getType();
9834 if (R.isNull())
9835 return true;
9836
9837 // C++ [dcl.stc]p1:
9838 // A storage-class-specifier shall not be specified in [...] an explicit
9839 // instantiation (14.7.2) directive.
9840 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9841 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9842 << Name;
9843 return true;
9844 } else if (D.getDeclSpec().getStorageClassSpec()
9845 != DeclSpec::SCS_unspecified) {
9846 // Complain about then remove the storage class specifier.
9847 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9848 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9849
9850 D.getMutableDeclSpec().ClearStorageClassSpecs();
9851 }
9852
9853 // C++0x [temp.explicit]p1:
9854 // [...] An explicit instantiation of a function template shall not use the
9855 // inline or constexpr specifiers.
9856 // Presumably, this also applies to member functions of class templates as
9857 // well.
9858 if (D.getDeclSpec().isInlineSpecified())
9859 Diag(D.getDeclSpec().getInlineSpecLoc(),
9860 getLangOpts().CPlusPlus11 ?
9861 diag::err_explicit_instantiation_inline :
9862 diag::warn_explicit_instantiation_inline_0x)
9863 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9864 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9865 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9866 // not already specified.
9867 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9868 diag::err_explicit_instantiation_constexpr);
9869
9870 // A deduction guide is not on the list of entities that can be explicitly
9871 // instantiated.
9872 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9873 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9874 << /*explicit instantiation*/ 0;
9875 return true;
9876 }
9877
9878 // C++0x [temp.explicit]p2:
9879 // There are two forms of explicit instantiation: an explicit instantiation
9880 // definition and an explicit instantiation declaration. An explicit
9881 // instantiation declaration begins with the extern keyword. [...]
9882 TemplateSpecializationKind TSK
9883 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9884 : TSK_ExplicitInstantiationDeclaration;
9885
9886 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9887 LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
9888 /*ObjectType=*/QualType());
9889
9890 if (!R->isFunctionType()) {
9891 // C++ [temp.explicit]p1:
9892 // A [...] static data member of a class template can be explicitly
9893 // instantiated from the member definition associated with its class
9894 // template.
9895 // C++1y [temp.explicit]p1:
9896 // A [...] variable [...] template specialization can be explicitly
9897 // instantiated from its template.
9898 if (Previous.isAmbiguous())
9899 return true;
9900
9901 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9902 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9903
9904 if (!PrevTemplate) {
9905 if (!Prev || !Prev->isStaticDataMember()) {
9906 // We expect to see a static data member here.
9907 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
9908 << Name;
9909 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9910 P != PEnd; ++P)
9911 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
9912 return true;
9913 }
9914
9915 if (!Prev->getInstantiatedFromStaticDataMember()) {
9916 // FIXME: Check for explicit specialization?
9917 Diag(D.getIdentifierLoc(),
9918 diag::err_explicit_instantiation_data_member_not_instantiated)
9919 << Prev;
9920 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9921 // FIXME: Can we provide a note showing where this was declared?
9922 return true;
9923 }
9924 } else {
9925 // Explicitly instantiate a variable template.
9926
9927 // C++1y [dcl.spec.auto]p6:
9928 // ... A program that uses auto or decltype(auto) in a context not
9929 // explicitly allowed in this section is ill-formed.
9930 //
9931 // This includes auto-typed variable template instantiations.
9932 if (R->isUndeducedType()) {
9933 Diag(T->getTypeLoc().getBeginLoc(),
9934 diag::err_auto_not_allowed_var_inst);
9935 return true;
9936 }
9937
9938 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9939 // C++1y [temp.explicit]p3:
9940 // If the explicit instantiation is for a variable, the unqualified-id
9941 // in the declaration shall be a template-id.
9942 Diag(D.getIdentifierLoc(),
9943 diag::err_explicit_instantiation_without_template_id)
9944 << PrevTemplate;
9945 Diag(PrevTemplate->getLocation(),
9946 diag::note_explicit_instantiation_here);
9947 return true;
9948 }
9949
9950 // Translate the parser's template argument list into our AST format.
9951 TemplateArgumentListInfo TemplateArgs =
9952 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9953
9954 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
9955 D.getIdentifierLoc(), TemplateArgs);
9956 if (Res.isInvalid())
9957 return true;
9958
9959 if (!Res.isUsable()) {
9960 // We somehow specified dependent template arguments in an explicit
9961 // instantiation. This should probably only happen during error
9962 // recovery.
9963 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
9964 return true;
9965 }
9966
9967 // Ignore access control bits, we don't need them for redeclaration
9968 // checking.
9969 Prev = cast<VarDecl>(Res.get());
9970 }
9971
9972 // C++0x [temp.explicit]p2:
9973 // If the explicit instantiation is for a member function, a member class
9974 // or a static data member of a class template specialization, the name of
9975 // the class template specialization in the qualified-id for the member
9976 // name shall be a simple-template-id.
9977 //
9978 // C++98 has the same restriction, just worded differently.
9979 //
9980 // This does not apply to variable template specializations, where the
9981 // template-id is in the unqualified-id instead.
9982 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9983 Diag(D.getIdentifierLoc(),
9984 diag::ext_explicit_instantiation_without_qualified_id)
9985 << Prev << D.getCXXScopeSpec().getRange();
9986
9987 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
9988
9989 // Verify that it is okay to explicitly instantiate here.
9990 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9991 SourceLocation POI = Prev->getPointOfInstantiation();
9992 bool HasNoEffect = false;
9993 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9994 PrevTSK, POI, HasNoEffect))
9995 return true;
9996
9997 if (!HasNoEffect) {
9998 // Instantiate static data member or variable template.
9999 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10000 if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Prev)) {
10001 VTSD->setExternKeywordLoc(ExternLoc);
10002 VTSD->setTemplateKeywordLoc(TemplateLoc);
10003 }
10004
10005 // Merge attributes.
10006 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10007 if (PrevTemplate)
10008 ProcessAPINotes(Prev);
10009
10010 if (TSK == TSK_ExplicitInstantiationDefinition)
10011 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10012 }
10013
10014 // Check the new variable specialization against the parsed input.
10015 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10016 Diag(T->getTypeLoc().getBeginLoc(),
10017 diag::err_invalid_var_template_spec_type)
10018 << 0 << PrevTemplate << R << Prev->getType();
10019 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10020 << 2 << PrevTemplate->getDeclName();
10021 return true;
10022 }
10023
10024 // FIXME: Create an ExplicitInstantiation node?
10025 return (Decl*) nullptr;
10026 }
10027
10028 // If the declarator is a template-id, translate the parser's template
10029 // argument list into our AST format.
10030 bool HasExplicitTemplateArgs = false;
10031 TemplateArgumentListInfo TemplateArgs;
10032 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10033 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10034 HasExplicitTemplateArgs = true;
10035 }
10036
10037 // C++ [temp.explicit]p1:
10038 // A [...] function [...] can be explicitly instantiated from its template.
10039 // A member function [...] of a class template can be explicitly
10040 // instantiated from the member definition associated with its class
10041 // template.
10042 UnresolvedSet<8> TemplateMatches;
10043 FunctionDecl *NonTemplateMatch = nullptr;
10044 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10045 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10046 P != PEnd; ++P) {
10047 NamedDecl *Prev = *P;
10048 if (!HasExplicitTemplateArgs) {
10049 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10050 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10051 /*AdjustExceptionSpec*/true);
10052 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10053 if (Method->getPrimaryTemplate()) {
10054 TemplateMatches.addDecl(Method, P.getAccess());
10055 } else {
10056 // FIXME: Can this assert ever happen? Needs a test.
10057 assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10058 NonTemplateMatch = Method;
10059 }
10060 }
10061 }
10062 }
10063
10064 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10065 if (!FunTmpl)
10066 continue;
10067
10068 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10069 FunctionDecl *Specialization = nullptr;
10070 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
10071 FunTmpl, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), R,
10072 Specialization, Info);
10073 TDK != TemplateDeductionResult::Success) {
10074 // Keep track of almost-matches.
10075 FailedCandidates.addCandidate()
10076 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10077 MakeDeductionFailureInfo(Context, TDK, Info));
10078 (void)TDK;
10079 continue;
10080 }
10081
10082 // Target attributes are part of the cuda function signature, so
10083 // the cuda target of the instantiated function must match that of its
10084 // template. Given that C++ template deduction does not take
10085 // target attributes into account, we reject candidates here that
10086 // have a different target.
10087 if (LangOpts.CUDA &&
10088 CUDA().IdentifyTarget(Specialization,
10089 /* IgnoreImplicitHDAttr = */ true) !=
10090 CUDA().IdentifyTarget(D.getDeclSpec().getAttributes())) {
10091 FailedCandidates.addCandidate().set(
10092 P.getPair(), FunTmpl->getTemplatedDecl(),
10093 MakeDeductionFailureInfo(
10094 Context, TemplateDeductionResult::CUDATargetMismatch, Info));
10095 continue;
10096 }
10097
10098 TemplateMatches.addDecl(Specialization, P.getAccess());
10099 }
10100
10101 FunctionDecl *Specialization = NonTemplateMatch;
10102 if (!Specialization) {
10103 // Find the most specialized function template specialization.
10104 UnresolvedSetIterator Result = getMostSpecialized(
10105 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10106 D.getIdentifierLoc(),
10107 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10108 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10109 PDiag(diag::note_explicit_instantiation_candidate));
10110
10111 if (Result == TemplateMatches.end())
10112 return true;
10113
10114 // Ignore access control bits, we don't need them for redeclaration checking.
10115 Specialization = cast<FunctionDecl>(*Result);
10116 }
10117
10118 // C++11 [except.spec]p4
10119 // In an explicit instantiation an exception-specification may be specified,
10120 // but is not required.
10121 // If an exception-specification is specified in an explicit instantiation
10122 // directive, it shall be compatible with the exception-specifications of
10123 // other declarations of that function.
10124 if (auto *FPT = R->getAs<FunctionProtoType>())
10125 if (FPT->hasExceptionSpec()) {
10126 unsigned DiagID =
10127 diag::err_mismatched_exception_spec_explicit_instantiation;
10128 if (getLangOpts().MicrosoftExt)
10129 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10130 bool Result = CheckEquivalentExceptionSpec(
10131 PDiag(DiagID) << Specialization->getType(),
10132 PDiag(diag::note_explicit_instantiation_here),
10133 Specialization->getType()->getAs<FunctionProtoType>(),
10134 Specialization->getLocation(), FPT, D.getBeginLoc());
10135 // In Microsoft mode, mismatching exception specifications just cause a
10136 // warning.
10137 if (!getLangOpts().MicrosoftExt && Result)
10138 return true;
10139 }
10140
10141 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10142 Diag(D.getIdentifierLoc(),
10143 diag::err_explicit_instantiation_member_function_not_instantiated)
10144 << Specialization
10145 << (Specialization->getTemplateSpecializationKind() ==
10146 TSK_ExplicitSpecialization);
10147 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10148 return true;
10149 }
10150
10151 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10152 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10153 PrevDecl = Specialization;
10154
10155 if (PrevDecl) {
10156 bool HasNoEffect = false;
10157 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10158 PrevDecl,
10159 PrevDecl->getTemplateSpecializationKind(),
10160 PrevDecl->getPointOfInstantiation(),
10161 HasNoEffect))
10162 return true;
10163
10164 // FIXME: We may still want to build some representation of this
10165 // explicit specialization.
10166 if (HasNoEffect)
10167 return (Decl*) nullptr;
10168 }
10169
10170 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10171 // functions
10172 // valarray<size_t>::valarray(size_t) and
10173 // valarray<size_t>::~valarray()
10174 // that it declared to have internal linkage with the internal_linkage
10175 // attribute. Ignore the explicit instantiation declaration in this case.
10176 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10177 TSK == TSK_ExplicitInstantiationDeclaration) {
10178 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10179 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10180 RD->isInStdNamespace())
10181 return (Decl*) nullptr;
10182 }
10183
10184 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10185 ProcessAPINotes(Specialization);
10186
10187 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10188 // instantiation declarations.
10189 if (TSK == TSK_ExplicitInstantiationDefinition &&
10190 Specialization->hasAttr<DLLImportAttr>() &&
10191 Context.getTargetInfo().getCXXABI().isMicrosoft())
10192 TSK = TSK_ExplicitInstantiationDeclaration;
10193
10194 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10195
10196 if (Specialization->isDefined()) {
10197 // Let the ASTConsumer know that this function has been explicitly
10198 // instantiated now, and its linkage might have changed.
10199 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10200 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10201 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10202
10203 // C++0x [temp.explicit]p2:
10204 // If the explicit instantiation is for a member function, a member class
10205 // or a static data member of a class template specialization, the name of
10206 // the class template specialization in the qualified-id for the member
10207 // name shall be a simple-template-id.
10208 //
10209 // C++98 has the same restriction, just worded differently.
10210 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10211 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10212 D.getCXXScopeSpec().isSet() &&
10213 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10214 Diag(D.getIdentifierLoc(),
10215 diag::ext_explicit_instantiation_without_qualified_id)
10216 << Specialization << D.getCXXScopeSpec().getRange();
10217
10218 CheckExplicitInstantiation(
10219 *this,
10220 FunTmpl ? (NamedDecl *)FunTmpl
10221 : Specialization->getInstantiatedFromMemberFunction(),
10222 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10223
10224 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10225 return (Decl*) nullptr;
10226 }
10227
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,const IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)10228 TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10229 const CXXScopeSpec &SS,
10230 const IdentifierInfo *Name,
10231 SourceLocation TagLoc,
10232 SourceLocation NameLoc) {
10233 // This has to hold, because SS is expected to be defined.
10234 assert(Name && "Expected a name in a dependent tag");
10235
10236 NestedNameSpecifier *NNS = SS.getScopeRep();
10237 if (!NNS)
10238 return true;
10239
10240 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10241
10242 if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) {
10243 Diag(NameLoc, diag::err_dependent_tag_decl)
10244 << (TUK == TagUseKind::Definition) << llvm::to_underlying(Kind)
10245 << SS.getRange();
10246 return true;
10247 }
10248
10249 // Create the resulting type.
10250 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10251 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10252
10253 // Create type-source location information for this type.
10254 TypeLocBuilder TLB;
10255 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10256 TL.setElaboratedKeywordLoc(TagLoc);
10257 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10258 TL.setNameLoc(NameLoc);
10259 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10260 }
10261
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc,ImplicitTypenameContext IsImplicitTypename)10262 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10263 const CXXScopeSpec &SS,
10264 const IdentifierInfo &II,
10265 SourceLocation IdLoc,
10266 ImplicitTypenameContext IsImplicitTypename) {
10267 if (SS.isInvalid())
10268 return true;
10269
10270 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10271 Diag(TypenameLoc,
10272 getLangOpts().CPlusPlus11 ?
10273 diag::warn_cxx98_compat_typename_outside_of_template :
10274 diag::ext_typename_outside_of_template)
10275 << FixItHint::CreateRemoval(TypenameLoc);
10276
10277 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10278 TypeSourceInfo *TSI = nullptr;
10279 QualType T =
10280 CheckTypenameType((TypenameLoc.isValid() ||
10281 IsImplicitTypename == ImplicitTypenameContext::Yes)
10282 ? ElaboratedTypeKeyword::Typename
10283 : ElaboratedTypeKeyword::None,
10284 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10285 /*DeducedTSTContext=*/true);
10286 if (T.isNull())
10287 return true;
10288 return CreateParsedType(T, TSI);
10289 }
10290
10291 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,const IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)10292 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10293 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
10294 TemplateTy TemplateIn, const IdentifierInfo *TemplateII,
10295 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
10296 ASTTemplateArgsPtr TemplateArgsIn,
10297 SourceLocation RAngleLoc) {
10298 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10299 Diag(TypenameLoc,
10300 getLangOpts().CPlusPlus11 ?
10301 diag::warn_cxx98_compat_typename_outside_of_template :
10302 diag::ext_typename_outside_of_template)
10303 << FixItHint::CreateRemoval(TypenameLoc);
10304
10305 // Strangely, non-type results are not ignored by this lookup, so the
10306 // program is ill-formed if it finds an injected-class-name.
10307 if (TypenameLoc.isValid()) {
10308 auto *LookupRD =
10309 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10310 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10311 Diag(TemplateIILoc,
10312 diag::ext_out_of_line_qualified_id_type_names_constructor)
10313 << TemplateII << 0 /*injected-class-name used as template name*/
10314 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10315 }
10316 }
10317
10318 // Translate the parser's template argument list in our AST format.
10319 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10320 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10321
10322 TemplateName Template = TemplateIn.get();
10323 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10324 // Construct a dependent template specialization type.
10325 assert(DTN && "dependent template has non-dependent name?");
10326 assert(DTN->getQualifier() == SS.getScopeRep());
10327
10328 if (!DTN->isIdentifier()) {
10329 Diag(TemplateIILoc, diag::err_template_id_not_a_type) << Template;
10330 NoteAllFoundTemplates(Template);
10331 return true;
10332 }
10333
10334 QualType T = Context.getDependentTemplateSpecializationType(
10335 ElaboratedTypeKeyword::Typename, DTN->getQualifier(),
10336 DTN->getIdentifier(), TemplateArgs.arguments());
10337
10338 // Create source-location information for this type.
10339 TypeLocBuilder Builder;
10340 DependentTemplateSpecializationTypeLoc SpecTL
10341 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10342 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10343 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10344 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10345 SpecTL.setTemplateNameLoc(TemplateIILoc);
10346 SpecTL.setLAngleLoc(LAngleLoc);
10347 SpecTL.setRAngleLoc(RAngleLoc);
10348 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10349 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10350 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10351 }
10352
10353 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10354 if (T.isNull())
10355 return true;
10356
10357 // Provide source-location information for the template specialization type.
10358 TypeLocBuilder Builder;
10359 TemplateSpecializationTypeLoc SpecTL
10360 = Builder.push<TemplateSpecializationTypeLoc>(T);
10361 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10362 SpecTL.setTemplateNameLoc(TemplateIILoc);
10363 SpecTL.setLAngleLoc(LAngleLoc);
10364 SpecTL.setRAngleLoc(RAngleLoc);
10365 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10366 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10367
10368 T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
10369 SS.getScopeRep(), T);
10370 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10371 TL.setElaboratedKeywordLoc(TypenameLoc);
10372 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10373
10374 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10375 return CreateParsedType(T, TSI);
10376 }
10377
10378 /// Determine whether this failed name lookup should be treated as being
10379 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange,Expr * & Cond)10380 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10381 SourceRange &CondRange, Expr *&Cond) {
10382 // We must be looking for a ::type...
10383 if (!II.isStr("type"))
10384 return false;
10385
10386 // ... within an explicitly-written template specialization...
10387 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10388 return false;
10389 TypeLoc EnableIfTy = NNS.getTypeLoc();
10390 TemplateSpecializationTypeLoc EnableIfTSTLoc =
10391 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10392 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10393 return false;
10394 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10395
10396 // ... which names a complete class template declaration...
10397 const TemplateDecl *EnableIfDecl =
10398 EnableIfTST->getTemplateName().getAsTemplateDecl();
10399 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10400 return false;
10401
10402 // ... called "enable_if".
10403 const IdentifierInfo *EnableIfII =
10404 EnableIfDecl->getDeclName().getAsIdentifierInfo();
10405 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10406 return false;
10407
10408 // Assume the first template argument is the condition.
10409 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10410
10411 // Dig out the condition.
10412 Cond = nullptr;
10413 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10414 != TemplateArgument::Expression)
10415 return true;
10416
10417 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10418
10419 // Ignore Boolean literals; they add no value.
10420 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10421 Cond = nullptr;
10422
10423 return true;
10424 }
10425
10426 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,TypeSourceInfo ** TSI,bool DeducedTSTContext)10427 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10428 SourceLocation KeywordLoc,
10429 NestedNameSpecifierLoc QualifierLoc,
10430 const IdentifierInfo &II,
10431 SourceLocation IILoc,
10432 TypeSourceInfo **TSI,
10433 bool DeducedTSTContext) {
10434 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10435 DeducedTSTContext);
10436 if (T.isNull())
10437 return QualType();
10438
10439 *TSI = Context.CreateTypeSourceInfo(T);
10440 if (isa<DependentNameType>(T)) {
10441 DependentNameTypeLoc TL =
10442 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10443 TL.setElaboratedKeywordLoc(KeywordLoc);
10444 TL.setQualifierLoc(QualifierLoc);
10445 TL.setNameLoc(IILoc);
10446 } else {
10447 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10448 TL.setElaboratedKeywordLoc(KeywordLoc);
10449 TL.setQualifierLoc(QualifierLoc);
10450 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10451 }
10452 return T;
10453 }
10454
10455 /// Build the type that describes a C++ typename specifier,
10456 /// e.g., "typename T::type".
10457 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,bool DeducedTSTContext)10458 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10459 SourceLocation KeywordLoc,
10460 NestedNameSpecifierLoc QualifierLoc,
10461 const IdentifierInfo &II,
10462 SourceLocation IILoc, bool DeducedTSTContext) {
10463 CXXScopeSpec SS;
10464 SS.Adopt(QualifierLoc);
10465
10466 DeclContext *Ctx = nullptr;
10467 if (QualifierLoc) {
10468 Ctx = computeDeclContext(SS);
10469 if (!Ctx) {
10470 // If the nested-name-specifier is dependent and couldn't be
10471 // resolved to a type, build a typename type.
10472 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10473 return Context.getDependentNameType(Keyword,
10474 QualifierLoc.getNestedNameSpecifier(),
10475 &II);
10476 }
10477
10478 // If the nested-name-specifier refers to the current instantiation,
10479 // the "typename" keyword itself is superfluous. In C++03, the
10480 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10481 // allows such extraneous "typename" keywords, and we retroactively
10482 // apply this DR to C++03 code with only a warning. In any case we continue.
10483
10484 if (RequireCompleteDeclContext(SS, Ctx))
10485 return QualType();
10486 }
10487
10488 DeclarationName Name(&II);
10489 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10490 if (Ctx)
10491 LookupQualifiedName(Result, Ctx, SS);
10492 else
10493 LookupName(Result, CurScope);
10494 unsigned DiagID = 0;
10495 Decl *Referenced = nullptr;
10496 switch (Result.getResultKind()) {
10497 case LookupResult::NotFound: {
10498 // If we're looking up 'type' within a template named 'enable_if', produce
10499 // a more specific diagnostic.
10500 SourceRange CondRange;
10501 Expr *Cond = nullptr;
10502 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10503 // If we have a condition, narrow it down to the specific failed
10504 // condition.
10505 if (Cond) {
10506 Expr *FailedCond;
10507 std::string FailedDescription;
10508 std::tie(FailedCond, FailedDescription) =
10509 findFailedBooleanCondition(Cond);
10510
10511 Diag(FailedCond->getExprLoc(),
10512 diag::err_typename_nested_not_found_requirement)
10513 << FailedDescription
10514 << FailedCond->getSourceRange();
10515 return QualType();
10516 }
10517
10518 Diag(CondRange.getBegin(),
10519 diag::err_typename_nested_not_found_enable_if)
10520 << Ctx << CondRange;
10521 return QualType();
10522 }
10523
10524 DiagID = Ctx ? diag::err_typename_nested_not_found
10525 : diag::err_unknown_typename;
10526 break;
10527 }
10528
10529 case LookupResult::FoundUnresolvedValue: {
10530 // We found a using declaration that is a value. Most likely, the using
10531 // declaration itself is meant to have the 'typename' keyword.
10532 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10533 IILoc);
10534 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10535 << Name << Ctx << FullRange;
10536 if (UnresolvedUsingValueDecl *Using
10537 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10538 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10539 Diag(Loc, diag::note_using_value_decl_missing_typename)
10540 << FixItHint::CreateInsertion(Loc, "typename ");
10541 }
10542 }
10543 // Fall through to create a dependent typename type, from which we can recover
10544 // better.
10545 [[fallthrough]];
10546
10547 case LookupResult::NotFoundInCurrentInstantiation:
10548 // Okay, it's a member of an unknown instantiation.
10549 return Context.getDependentNameType(Keyword,
10550 QualifierLoc.getNestedNameSpecifier(),
10551 &II);
10552
10553 case LookupResult::Found:
10554 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10555 // C++ [class.qual]p2:
10556 // In a lookup in which function names are not ignored and the
10557 // nested-name-specifier nominates a class C, if the name specified
10558 // after the nested-name-specifier, when looked up in C, is the
10559 // injected-class-name of C [...] then the name is instead considered
10560 // to name the constructor of class C.
10561 //
10562 // Unlike in an elaborated-type-specifier, function names are not ignored
10563 // in typename-specifier lookup. However, they are ignored in all the
10564 // contexts where we form a typename type with no keyword (that is, in
10565 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10566 //
10567 // FIXME: That's not strictly true: mem-initializer-id lookup does not
10568 // ignore functions, but that appears to be an oversight.
10569 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10570 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10571 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
10572 FoundRD->isInjectedClassName() &&
10573 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10574 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10575 << &II << 1 << 0 /*'typename' keyword used*/;
10576
10577 // We found a type. Build an ElaboratedType, since the
10578 // typename-specifier was just sugar.
10579 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10580 return Context.getElaboratedType(Keyword,
10581 QualifierLoc.getNestedNameSpecifier(),
10582 Context.getTypeDeclType(Type));
10583 }
10584
10585 // C++ [dcl.type.simple]p2:
10586 // A type-specifier of the form
10587 // typename[opt] nested-name-specifier[opt] template-name
10588 // is a placeholder for a deduced class type [...].
10589 if (getLangOpts().CPlusPlus17) {
10590 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10591 if (!DeducedTSTContext) {
10592 QualType T(QualifierLoc
10593 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10594 : nullptr, 0);
10595 if (!T.isNull())
10596 Diag(IILoc, diag::err_dependent_deduced_tst)
10597 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10598 else
10599 Diag(IILoc, diag::err_deduced_tst)
10600 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10601 NoteTemplateLocation(*TD);
10602 return QualType();
10603 }
10604 return Context.getElaboratedType(
10605 Keyword, QualifierLoc.getNestedNameSpecifier(),
10606 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10607 QualType(), false));
10608 }
10609 }
10610
10611 DiagID = Ctx ? diag::err_typename_nested_not_type
10612 : diag::err_typename_not_type;
10613 Referenced = Result.getFoundDecl();
10614 break;
10615
10616 case LookupResult::FoundOverloaded:
10617 DiagID = Ctx ? diag::err_typename_nested_not_type
10618 : diag::err_typename_not_type;
10619 Referenced = *Result.begin();
10620 break;
10621
10622 case LookupResult::Ambiguous:
10623 return QualType();
10624 }
10625
10626 // If we get here, it's because name lookup did not find a
10627 // type. Emit an appropriate diagnostic and return an error.
10628 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10629 IILoc);
10630 if (Ctx)
10631 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10632 else
10633 Diag(IILoc, DiagID) << FullRange << Name;
10634 if (Referenced)
10635 Diag(Referenced->getLocation(),
10636 Ctx ? diag::note_typename_member_refers_here
10637 : diag::note_typename_refers_here)
10638 << Name;
10639 return QualType();
10640 }
10641
10642 namespace {
10643 // See Sema::RebuildTypeInCurrentInstantiation
10644 class CurrentInstantiationRebuilder
10645 : public TreeTransform<CurrentInstantiationRebuilder> {
10646 SourceLocation Loc;
10647 DeclarationName Entity;
10648
10649 public:
10650 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10651
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)10652 CurrentInstantiationRebuilder(Sema &SemaRef,
10653 SourceLocation Loc,
10654 DeclarationName Entity)
10655 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10656 Loc(Loc), Entity(Entity) { }
10657
10658 /// Determine whether the given type \p T has already been
10659 /// transformed.
10660 ///
10661 /// For the purposes of type reconstruction, a type has already been
10662 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)10663 bool AlreadyTransformed(QualType T) {
10664 return T.isNull() || !T->isInstantiationDependentType();
10665 }
10666
10667 /// Returns the location of the entity whose type is being
10668 /// rebuilt.
getBaseLocation()10669 SourceLocation getBaseLocation() { return Loc; }
10670
10671 /// Returns the name of the entity whose type is being rebuilt.
getBaseEntity()10672 DeclarationName getBaseEntity() { return Entity; }
10673
10674 /// Sets the "base" location and entity when that
10675 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)10676 void setBase(SourceLocation Loc, DeclarationName Entity) {
10677 this->Loc = Loc;
10678 this->Entity = Entity;
10679 }
10680
TransformLambdaExpr(LambdaExpr * E)10681 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10682 // Lambdas never need to be transformed.
10683 return E;
10684 }
10685 };
10686 } // end anonymous namespace
10687
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)10688 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10689 SourceLocation Loc,
10690 DeclarationName Name) {
10691 if (!T || !T->getType()->isInstantiationDependentType())
10692 return T;
10693
10694 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10695 return Rebuilder.TransformType(T);
10696 }
10697
RebuildExprInCurrentInstantiation(Expr * E)10698 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10699 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10700 DeclarationName());
10701 return Rebuilder.TransformExpr(E);
10702 }
10703
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)10704 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10705 if (SS.isInvalid())
10706 return true;
10707
10708 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10709 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10710 DeclarationName());
10711 NestedNameSpecifierLoc Rebuilt
10712 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10713 if (!Rebuilt)
10714 return true;
10715
10716 SS.Adopt(Rebuilt);
10717 return false;
10718 }
10719
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)10720 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10721 TemplateParameterList *Params) {
10722 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10723 Decl *Param = Params->getParam(I);
10724
10725 // There is nothing to rebuild in a type parameter.
10726 if (isa<TemplateTypeParmDecl>(Param))
10727 continue;
10728
10729 // Rebuild the template parameter list of a template template parameter.
10730 if (TemplateTemplateParmDecl *TTP
10731 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10732 if (RebuildTemplateParamsInCurrentInstantiation(
10733 TTP->getTemplateParameters()))
10734 return true;
10735
10736 continue;
10737 }
10738
10739 // Rebuild the type of a non-type template parameter.
10740 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10741 TypeSourceInfo *NewTSI
10742 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10743 NTTP->getLocation(),
10744 NTTP->getDeclName());
10745 if (!NewTSI)
10746 return true;
10747
10748 if (NewTSI->getType()->isUndeducedType()) {
10749 // C++17 [temp.dep.expr]p3:
10750 // An id-expression is type-dependent if it contains
10751 // - an identifier associated by name lookup with a non-type
10752 // template-parameter declared with a type that contains a
10753 // placeholder type (7.1.7.4),
10754 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
10755 }
10756
10757 if (NewTSI != NTTP->getTypeSourceInfo()) {
10758 NTTP->setTypeSourceInfo(NewTSI);
10759 NTTP->setType(NewTSI->getType());
10760 }
10761 }
10762
10763 return false;
10764 }
10765
10766 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)10767 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10768 const TemplateArgumentList &Args) {
10769 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10770 }
10771
10772 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)10773 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10774 const TemplateArgument *Args,
10775 unsigned NumArgs) {
10776 SmallString<128> Str;
10777 llvm::raw_svector_ostream Out(Str);
10778
10779 if (!Params || Params->size() == 0 || NumArgs == 0)
10780 return std::string();
10781
10782 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10783 if (I >= NumArgs)
10784 break;
10785
10786 if (I == 0)
10787 Out << "[with ";
10788 else
10789 Out << ", ";
10790
10791 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10792 Out << Id->getName();
10793 } else {
10794 Out << '$' << I;
10795 }
10796
10797 Out << " = ";
10798 Args[I].print(getPrintingPolicy(), Out,
10799 TemplateParameterList::shouldIncludeTypeForArgument(
10800 getPrintingPolicy(), Params, I));
10801 }
10802
10803 Out << ']';
10804 return std::string(Out.str());
10805 }
10806
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)10807 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10808 CachedTokens &Toks) {
10809 if (!FD)
10810 return;
10811
10812 auto LPT = std::make_unique<LateParsedTemplate>();
10813
10814 // Take tokens to avoid allocations
10815 LPT->Toks.swap(Toks);
10816 LPT->D = FnD;
10817 LPT->FPO = getCurFPFeatures();
10818 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10819
10820 FD->setLateTemplateParsed(true);
10821 }
10822
UnmarkAsLateParsedTemplate(FunctionDecl * FD)10823 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10824 if (!FD)
10825 return;
10826 FD->setLateTemplateParsed(false);
10827 }
10828
IsInsideALocalClassWithinATemplateFunction()10829 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10830 DeclContext *DC = CurContext;
10831
10832 while (DC) {
10833 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10834 const FunctionDecl *FD = RD->isLocalClass();
10835 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10836 } else if (DC->isTranslationUnit() || DC->isNamespace())
10837 return false;
10838
10839 DC = DC->getParent();
10840 }
10841 return false;
10842 }
10843
10844 namespace {
10845 /// Walk the path from which a declaration was instantiated, and check
10846 /// that every explicit specialization along that path is visible. This enforces
10847 /// C++ [temp.expl.spec]/6:
10848 ///
10849 /// If a template, a member template or a member of a class template is
10850 /// explicitly specialized then that specialization shall be declared before
10851 /// the first use of that specialization that would cause an implicit
10852 /// instantiation to take place, in every translation unit in which such a
10853 /// use occurs; no diagnostic is required.
10854 ///
10855 /// and also C++ [temp.class.spec]/1:
10856 ///
10857 /// A partial specialization shall be declared before the first use of a
10858 /// class template specialization that would make use of the partial
10859 /// specialization as the result of an implicit or explicit instantiation
10860 /// in every translation unit in which such a use occurs; no diagnostic is
10861 /// required.
10862 class ExplicitSpecializationVisibilityChecker {
10863 Sema &S;
10864 SourceLocation Loc;
10865 llvm::SmallVector<Module *, 8> Modules;
10866 Sema::AcceptableKind Kind;
10867
10868 public:
ExplicitSpecializationVisibilityChecker(Sema & S,SourceLocation Loc,Sema::AcceptableKind Kind)10869 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
10870 Sema::AcceptableKind Kind)
10871 : S(S), Loc(Loc), Kind(Kind) {}
10872
check(NamedDecl * ND)10873 void check(NamedDecl *ND) {
10874 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10875 return checkImpl(FD);
10876 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10877 return checkImpl(RD);
10878 if (auto *VD = dyn_cast<VarDecl>(ND))
10879 return checkImpl(VD);
10880 if (auto *ED = dyn_cast<EnumDecl>(ND))
10881 return checkImpl(ED);
10882 }
10883
10884 private:
diagnose(NamedDecl * D,bool IsPartialSpec)10885 void diagnose(NamedDecl *D, bool IsPartialSpec) {
10886 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10887 : Sema::MissingImportKind::ExplicitSpecialization;
10888 const bool Recover = true;
10889
10890 // If we got a custom set of modules (because only a subset of the
10891 // declarations are interesting), use them, otherwise let
10892 // diagnoseMissingImport intelligently pick some.
10893 if (Modules.empty())
10894 S.diagnoseMissingImport(Loc, D, Kind, Recover);
10895 else
10896 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10897 }
10898
CheckMemberSpecialization(const NamedDecl * D)10899 bool CheckMemberSpecialization(const NamedDecl *D) {
10900 return Kind == Sema::AcceptableKind::Visible
10901 ? S.hasVisibleMemberSpecialization(D)
10902 : S.hasReachableMemberSpecialization(D);
10903 }
10904
CheckExplicitSpecialization(const NamedDecl * D)10905 bool CheckExplicitSpecialization(const NamedDecl *D) {
10906 return Kind == Sema::AcceptableKind::Visible
10907 ? S.hasVisibleExplicitSpecialization(D)
10908 : S.hasReachableExplicitSpecialization(D);
10909 }
10910
CheckDeclaration(const NamedDecl * D)10911 bool CheckDeclaration(const NamedDecl *D) {
10912 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
10913 : S.hasReachableDeclaration(D);
10914 }
10915
10916 // Check a specific declaration. There are three problematic cases:
10917 //
10918 // 1) The declaration is an explicit specialization of a template
10919 // specialization.
10920 // 2) The declaration is an explicit specialization of a member of an
10921 // templated class.
10922 // 3) The declaration is an instantiation of a template, and that template
10923 // is an explicit specialization of a member of a templated class.
10924 //
10925 // We don't need to go any deeper than that, as the instantiation of the
10926 // surrounding class / etc is not triggered by whatever triggered this
10927 // instantiation, and thus should be checked elsewhere.
10928 template<typename SpecDecl>
checkImpl(SpecDecl * Spec)10929 void checkImpl(SpecDecl *Spec) {
10930 bool IsHiddenExplicitSpecialization = false;
10931 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
10932 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
10933 ? !CheckMemberSpecialization(Spec)
10934 : !CheckExplicitSpecialization(Spec);
10935 } else {
10936 checkInstantiated(Spec);
10937 }
10938
10939 if (IsHiddenExplicitSpecialization)
10940 diagnose(Spec->getMostRecentDecl(), false);
10941 }
10942
checkInstantiated(FunctionDecl * FD)10943 void checkInstantiated(FunctionDecl *FD) {
10944 if (auto *TD = FD->getPrimaryTemplate())
10945 checkTemplate(TD);
10946 }
10947
checkInstantiated(CXXRecordDecl * RD)10948 void checkInstantiated(CXXRecordDecl *RD) {
10949 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
10950 if (!SD)
10951 return;
10952
10953 auto From = SD->getSpecializedTemplateOrPartial();
10954 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
10955 checkTemplate(TD);
10956 else if (auto *TD =
10957 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
10958 if (!CheckDeclaration(TD))
10959 diagnose(TD, true);
10960 checkTemplate(TD);
10961 }
10962 }
10963
checkInstantiated(VarDecl * RD)10964 void checkInstantiated(VarDecl *RD) {
10965 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
10966 if (!SD)
10967 return;
10968
10969 auto From = SD->getSpecializedTemplateOrPartial();
10970 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
10971 checkTemplate(TD);
10972 else if (auto *TD =
10973 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
10974 if (!CheckDeclaration(TD))
10975 diagnose(TD, true);
10976 checkTemplate(TD);
10977 }
10978 }
10979
checkInstantiated(EnumDecl * FD)10980 void checkInstantiated(EnumDecl *FD) {}
10981
10982 template<typename TemplDecl>
checkTemplate(TemplDecl * TD)10983 void checkTemplate(TemplDecl *TD) {
10984 if (TD->isMemberSpecialization()) {
10985 if (!CheckMemberSpecialization(TD))
10986 diagnose(TD->getMostRecentDecl(), false);
10987 }
10988 }
10989 };
10990 } // end anonymous namespace
10991
checkSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)10992 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
10993 if (!getLangOpts().Modules)
10994 return;
10995
10996 ExplicitSpecializationVisibilityChecker(*this, Loc,
10997 Sema::AcceptableKind::Visible)
10998 .check(Spec);
10999 }
11000
checkSpecializationReachability(SourceLocation Loc,NamedDecl * Spec)11001 void Sema::checkSpecializationReachability(SourceLocation Loc,
11002 NamedDecl *Spec) {
11003 if (!getLangOpts().CPlusPlusModules)
11004 return checkSpecializationVisibility(Loc, Spec);
11005
11006 ExplicitSpecializationVisibilityChecker(*this, Loc,
11007 Sema::AcceptableKind::Reachable)
11008 .check(Spec);
11009 }
11010
getTopMostPointOfInstantiation(const NamedDecl * N) const11011 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
11012 if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
11013 return N->getLocation();
11014 if (const auto *FD = dyn_cast<FunctionDecl>(N)) {
11015 if (!FD->isFunctionTemplateSpecialization())
11016 return FD->getLocation();
11017 } else if (!isa<ClassTemplateSpecializationDecl,
11018 VarTemplateSpecializationDecl>(N)) {
11019 return N->getLocation();
11020 }
11021 for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
11022 if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
11023 continue;
11024 return CSC.PointOfInstantiation;
11025 }
11026 return N->getLocation();
11027 }
11028