1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveRange and LiveInterval classes. Given some 10 // numbering of each the machine instructions an interval [i, j) is said to be a 11 // live range for register v if there is no instruction with number j' >= j 12 // such that v is live at j' and there is no instruction with number i' < i such 13 // that v is live at i'. In this implementation ranges can have holes, 14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 15 // individual segment is represented as an instance of LiveRange::Segment, 16 // and the whole range is represented as an instance of LiveRange. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H 21 #define LLVM_CODEGEN_LIVEINTERVAL_H 22 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/IntEqClasses.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/CodeGen/Register.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/MC/LaneBitmask.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <functional> 37 #include <memory> 38 #include <set> 39 #include <tuple> 40 #include <utility> 41 42 namespace llvm { 43 44 class CoalescerPair; 45 class LiveIntervals; 46 class MachineRegisterInfo; 47 class raw_ostream; 48 49 /// VNInfo - Value Number Information. 50 /// This class holds information about a machine level values, including 51 /// definition and use points. 52 /// 53 class VNInfo { 54 public: 55 using Allocator = BumpPtrAllocator; 56 57 /// The ID number of this value. 58 unsigned id; 59 60 /// The index of the defining instruction. 61 SlotIndex def; 62 63 /// VNInfo constructor. VNInfo(unsigned i,SlotIndex d)64 VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {} 65 66 /// VNInfo constructor, copies values from orig, except for the value number. VNInfo(unsigned i,const VNInfo & orig)67 VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {} 68 69 /// Copy from the parameter into this VNInfo. copyFrom(VNInfo & src)70 void copyFrom(VNInfo &src) { 71 def = src.def; 72 } 73 74 /// Returns true if this value is defined by a PHI instruction (or was, 75 /// PHI instructions may have been eliminated). 76 /// PHI-defs begin at a block boundary, all other defs begin at register or 77 /// EC slots. isPHIDef()78 bool isPHIDef() const { return def.isBlock(); } 79 80 /// Returns true if this value is unused. isUnused()81 bool isUnused() const { return !def.isValid(); } 82 83 /// Mark this value as unused. markUnused()84 void markUnused() { def = SlotIndex(); } 85 }; 86 87 /// Result of a LiveRange query. This class hides the implementation details 88 /// of live ranges, and it should be used as the primary interface for 89 /// examining live ranges around instructions. 90 class LiveQueryResult { 91 VNInfo *const EarlyVal; 92 VNInfo *const LateVal; 93 const SlotIndex EndPoint; 94 const bool Kill; 95 96 public: LiveQueryResult(VNInfo * EarlyVal,VNInfo * LateVal,SlotIndex EndPoint,bool Kill)97 LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, 98 bool Kill) 99 : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) 100 {} 101 102 /// Return the value that is live-in to the instruction. This is the value 103 /// that will be read by the instruction's use operands. Return NULL if no 104 /// value is live-in. valueIn()105 VNInfo *valueIn() const { 106 return EarlyVal; 107 } 108 109 /// Return true if the live-in value is killed by this instruction. This 110 /// means that either the live range ends at the instruction, or it changes 111 /// value. isKill()112 bool isKill() const { 113 return Kill; 114 } 115 116 /// Return true if this instruction has a dead def. isDeadDef()117 bool isDeadDef() const { 118 return EndPoint.isDead(); 119 } 120 121 /// Return the value leaving the instruction, if any. This can be a 122 /// live-through value, or a live def. A dead def returns NULL. valueOut()123 VNInfo *valueOut() const { 124 return isDeadDef() ? nullptr : LateVal; 125 } 126 127 /// Returns the value alive at the end of the instruction, if any. This can 128 /// be a live-through value, a live def or a dead def. valueOutOrDead()129 VNInfo *valueOutOrDead() const { 130 return LateVal; 131 } 132 133 /// Return the value defined by this instruction, if any. This includes 134 /// dead defs, it is the value created by the instruction's def operands. valueDefined()135 VNInfo *valueDefined() const { 136 return EarlyVal == LateVal ? nullptr : LateVal; 137 } 138 139 /// Return the end point of the last live range segment to interact with 140 /// the instruction, if any. 141 /// 142 /// The end point is an invalid SlotIndex only if the live range doesn't 143 /// intersect the instruction at all. 144 /// 145 /// The end point may be at or past the end of the instruction's basic 146 /// block. That means the value was live out of the block. endPoint()147 SlotIndex endPoint() const { 148 return EndPoint; 149 } 150 }; 151 152 /// This class represents the liveness of a register, stack slot, etc. 153 /// It manages an ordered list of Segment objects. 154 /// The Segments are organized in a static single assignment form: At places 155 /// where a new value is defined or different values reach a CFG join a new 156 /// segment with a new value number is used. 157 class LiveRange { 158 public: 159 /// This represents a simple continuous liveness interval for a value. 160 /// The start point is inclusive, the end point exclusive. These intervals 161 /// are rendered as [start,end). 162 struct Segment { 163 SlotIndex start; // Start point of the interval (inclusive) 164 SlotIndex end; // End point of the interval (exclusive) 165 VNInfo *valno = nullptr; // identifier for the value contained in this 166 // segment. 167 168 Segment() = default; 169 SegmentSegment170 Segment(SlotIndex S, SlotIndex E, VNInfo *V) 171 : start(S), end(E), valno(V) { 172 assert(S < E && "Cannot create empty or backwards segment"); 173 } 174 175 /// Return true if the index is covered by this segment. containsSegment176 bool contains(SlotIndex I) const { 177 return start <= I && I < end; 178 } 179 180 /// Return true if the given interval, [S, E), is covered by this segment. containsIntervalSegment181 bool containsInterval(SlotIndex S, SlotIndex E) const { 182 assert((S < E) && "Backwards interval?"); 183 return (start <= S && S < end) && (start < E && E <= end); 184 } 185 186 bool operator<(const Segment &Other) const { 187 return std::tie(start, end) < std::tie(Other.start, Other.end); 188 } 189 bool operator==(const Segment &Other) const { 190 return start == Other.start && end == Other.end; 191 } 192 193 bool operator!=(const Segment &Other) const { 194 return !(*this == Other); 195 } 196 197 void dump() const; 198 }; 199 200 using Segments = SmallVector<Segment, 2>; 201 using VNInfoList = SmallVector<VNInfo *, 2>; 202 203 Segments segments; // the liveness segments 204 VNInfoList valnos; // value#'s 205 206 // The segment set is used temporarily to accelerate initial computation 207 // of live ranges of physical registers in computeRegUnitRange. 208 // After that the set is flushed to the segment vector and deleted. 209 using SegmentSet = std::set<Segment>; 210 std::unique_ptr<SegmentSet> segmentSet; 211 212 using iterator = Segments::iterator; 213 using const_iterator = Segments::const_iterator; 214 begin()215 iterator begin() { return segments.begin(); } end()216 iterator end() { return segments.end(); } 217 begin()218 const_iterator begin() const { return segments.begin(); } end()219 const_iterator end() const { return segments.end(); } 220 221 using vni_iterator = VNInfoList::iterator; 222 using const_vni_iterator = VNInfoList::const_iterator; 223 vni_begin()224 vni_iterator vni_begin() { return valnos.begin(); } vni_end()225 vni_iterator vni_end() { return valnos.end(); } 226 vni_begin()227 const_vni_iterator vni_begin() const { return valnos.begin(); } vni_end()228 const_vni_iterator vni_end() const { return valnos.end(); } 229 vnis()230 iterator_range<vni_iterator> vnis() { 231 return make_range(vni_begin(), vni_end()); 232 } 233 vnis()234 iterator_range<const_vni_iterator> vnis() const { 235 return make_range(vni_begin(), vni_end()); 236 } 237 238 /// Constructs a new LiveRange object. 239 LiveRange(bool UseSegmentSet = false) 240 : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>() 241 : nullptr) {} 242 243 /// Constructs a new LiveRange object by copying segments and valnos from 244 /// another LiveRange. LiveRange(const LiveRange & Other,BumpPtrAllocator & Allocator)245 LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { 246 assert(Other.segmentSet == nullptr && 247 "Copying of LiveRanges with active SegmentSets is not supported"); 248 assign(Other, Allocator); 249 } 250 251 /// Copies values numbers and live segments from \p Other into this range. assign(const LiveRange & Other,BumpPtrAllocator & Allocator)252 void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { 253 if (this == &Other) 254 return; 255 256 assert(Other.segmentSet == nullptr && 257 "Copying of LiveRanges with active SegmentSets is not supported"); 258 // Duplicate valnos. 259 for (const VNInfo *VNI : Other.valnos) 260 createValueCopy(VNI, Allocator); 261 // Now we can copy segments and remap their valnos. 262 for (const Segment &S : Other.segments) 263 segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); 264 } 265 266 /// advanceTo - Advance the specified iterator to point to the Segment 267 /// containing the specified position, or end() if the position is past the 268 /// end of the range. If no Segment contains this position, but the 269 /// position is in a hole, this method returns an iterator pointing to the 270 /// Segment immediately after the hole. advanceTo(iterator I,SlotIndex Pos)271 iterator advanceTo(iterator I, SlotIndex Pos) { 272 assert(I != end()); 273 if (Pos >= endIndex()) 274 return end(); 275 while (I->end <= Pos) ++I; 276 return I; 277 } 278 advanceTo(const_iterator I,SlotIndex Pos)279 const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { 280 assert(I != end()); 281 if (Pos >= endIndex()) 282 return end(); 283 while (I->end <= Pos) ++I; 284 return I; 285 } 286 287 /// find - Return an iterator pointing to the first segment that ends after 288 /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster 289 /// when searching large ranges. 290 /// 291 /// If Pos is contained in a Segment, that segment is returned. 292 /// If Pos is in a hole, the following Segment is returned. 293 /// If Pos is beyond endIndex, end() is returned. 294 iterator find(SlotIndex Pos); 295 find(SlotIndex Pos)296 const_iterator find(SlotIndex Pos) const { 297 return const_cast<LiveRange*>(this)->find(Pos); 298 } 299 clear()300 void clear() { 301 valnos.clear(); 302 segments.clear(); 303 } 304 size()305 size_t size() const { 306 return segments.size(); 307 } 308 hasAtLeastOneValue()309 bool hasAtLeastOneValue() const { return !valnos.empty(); } 310 containsOneValue()311 bool containsOneValue() const { return valnos.size() == 1; } 312 getNumValNums()313 unsigned getNumValNums() const { return (unsigned)valnos.size(); } 314 315 /// getValNumInfo - Returns pointer to the specified val#. 316 /// getValNumInfo(unsigned ValNo)317 inline VNInfo *getValNumInfo(unsigned ValNo) { 318 return valnos[ValNo]; 319 } getValNumInfo(unsigned ValNo)320 inline const VNInfo *getValNumInfo(unsigned ValNo) const { 321 return valnos[ValNo]; 322 } 323 324 /// containsValue - Returns true if VNI belongs to this range. containsValue(const VNInfo * VNI)325 bool containsValue(const VNInfo *VNI) const { 326 return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); 327 } 328 329 /// getNextValue - Create a new value number and return it. 330 /// @p Def is the index of instruction that defines the value number. getNextValue(SlotIndex Def,VNInfo::Allocator & VNInfoAllocator)331 VNInfo *getNextValue(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { 332 VNInfo *VNI = 333 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), Def); 334 valnos.push_back(VNI); 335 return VNI; 336 } 337 338 /// createDeadDef - Make sure the range has a value defined at Def. 339 /// If one already exists, return it. Otherwise allocate a new value and 340 /// add liveness for a dead def. 341 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc); 342 343 /// Create a def of value @p VNI. Return @p VNI. If there already exists 344 /// a definition at VNI->def, the value defined there must be @p VNI. 345 VNInfo *createDeadDef(VNInfo *VNI); 346 347 /// Create a copy of the given value. The new value will be identical except 348 /// for the Value number. createValueCopy(const VNInfo * orig,VNInfo::Allocator & VNInfoAllocator)349 VNInfo *createValueCopy(const VNInfo *orig, 350 VNInfo::Allocator &VNInfoAllocator) { 351 VNInfo *VNI = 352 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); 353 valnos.push_back(VNI); 354 return VNI; 355 } 356 357 /// RenumberValues - Renumber all values in order of appearance and remove 358 /// unused values. 359 void RenumberValues(); 360 361 /// MergeValueNumberInto - This method is called when two value numbers 362 /// are found to be equivalent. This eliminates V1, replacing all 363 /// segments with the V1 value number with the V2 value number. This can 364 /// cause merging of V1/V2 values numbers and compaction of the value space. 365 VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); 366 367 /// Merge all of the live segments of a specific val# in RHS into this live 368 /// range as the specified value number. The segments in RHS are allowed 369 /// to overlap with segments in the current range, it will replace the 370 /// value numbers of the overlaped live segments with the specified value 371 /// number. 372 void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo); 373 374 /// MergeValueInAsValue - Merge all of the segments of a specific val# 375 /// in RHS into this live range as the specified value number. 376 /// The segments in RHS are allowed to overlap with segments in the 377 /// current range, but only if the overlapping segments have the 378 /// specified value number. 379 void MergeValueInAsValue(const LiveRange &RHS, 380 const VNInfo *RHSValNo, VNInfo *LHSValNo); 381 empty()382 bool empty() const { return segments.empty(); } 383 384 /// beginIndex - Return the lowest numbered slot covered. beginIndex()385 SlotIndex beginIndex() const { 386 assert(!empty() && "Call to beginIndex() on empty range."); 387 return segments.front().start; 388 } 389 390 /// endNumber - return the maximum point of the range of the whole, 391 /// exclusive. endIndex()392 SlotIndex endIndex() const { 393 assert(!empty() && "Call to endIndex() on empty range."); 394 return segments.back().end; 395 } 396 expiredAt(SlotIndex index)397 bool expiredAt(SlotIndex index) const { 398 return index >= endIndex(); 399 } 400 liveAt(SlotIndex index)401 bool liveAt(SlotIndex index) const { 402 const_iterator r = find(index); 403 return r != end() && r->start <= index; 404 } 405 406 /// Return the segment that contains the specified index, or null if there 407 /// is none. getSegmentContaining(SlotIndex Idx)408 const Segment *getSegmentContaining(SlotIndex Idx) const { 409 const_iterator I = FindSegmentContaining(Idx); 410 return I == end() ? nullptr : &*I; 411 } 412 413 /// Return the live segment that contains the specified index, or null if 414 /// there is none. getSegmentContaining(SlotIndex Idx)415 Segment *getSegmentContaining(SlotIndex Idx) { 416 iterator I = FindSegmentContaining(Idx); 417 return I == end() ? nullptr : &*I; 418 } 419 420 /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. getVNInfoAt(SlotIndex Idx)421 VNInfo *getVNInfoAt(SlotIndex Idx) const { 422 const_iterator I = FindSegmentContaining(Idx); 423 return I == end() ? nullptr : I->valno; 424 } 425 426 /// getVNInfoBefore - Return the VNInfo that is live up to but not 427 /// necessarilly including Idx, or NULL. Use this to find the reaching def 428 /// used by an instruction at this SlotIndex position. getVNInfoBefore(SlotIndex Idx)429 VNInfo *getVNInfoBefore(SlotIndex Idx) const { 430 const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); 431 return I == end() ? nullptr : I->valno; 432 } 433 434 /// Return an iterator to the segment that contains the specified index, or 435 /// end() if there is none. FindSegmentContaining(SlotIndex Idx)436 iterator FindSegmentContaining(SlotIndex Idx) { 437 iterator I = find(Idx); 438 return I != end() && I->start <= Idx ? I : end(); 439 } 440 FindSegmentContaining(SlotIndex Idx)441 const_iterator FindSegmentContaining(SlotIndex Idx) const { 442 const_iterator I = find(Idx); 443 return I != end() && I->start <= Idx ? I : end(); 444 } 445 446 /// overlaps - Return true if the intersection of the two live ranges is 447 /// not empty. overlaps(const LiveRange & other)448 bool overlaps(const LiveRange &other) const { 449 if (other.empty()) 450 return false; 451 return overlapsFrom(other, other.begin()); 452 } 453 454 /// overlaps - Return true if the two ranges have overlapping segments 455 /// that are not coalescable according to CP. 456 /// 457 /// Overlapping segments where one range is defined by a coalescable 458 /// copy are allowed. 459 bool overlaps(const LiveRange &Other, const CoalescerPair &CP, 460 const SlotIndexes&) const; 461 462 /// overlaps - Return true if the live range overlaps an interval specified 463 /// by [Start, End). 464 bool overlaps(SlotIndex Start, SlotIndex End) const; 465 466 /// overlapsFrom - Return true if the intersection of the two live ranges 467 /// is not empty. The specified iterator is a hint that we can begin 468 /// scanning the Other range starting at I. 469 bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const; 470 471 /// Returns true if all segments of the @p Other live range are completely 472 /// covered by this live range. 473 /// Adjacent live ranges do not affect the covering:the liverange 474 /// [1,5](5,10] covers (3,7]. 475 bool covers(const LiveRange &Other) const; 476 477 /// Add the specified Segment to this range, merging segments as 478 /// appropriate. This returns an iterator to the inserted segment (which 479 /// may have grown since it was inserted). 480 iterator addSegment(Segment S); 481 482 /// Attempt to extend a value defined after @p StartIdx to include @p Use. 483 /// Both @p StartIdx and @p Use should be in the same basic block. In case 484 /// of subranges, an extension could be prevented by an explicit "undef" 485 /// caused by a <def,read-undef> on a non-overlapping lane. The list of 486 /// location of such "undefs" should be provided in @p Undefs. 487 /// The return value is a pair: the first element is VNInfo of the value 488 /// that was extended (possibly nullptr), the second is a boolean value 489 /// indicating whether an "undef" was encountered. 490 /// If this range is live before @p Use in the basic block that starts at 491 /// @p StartIdx, and there is no intervening "undef", extend it to be live 492 /// up to @p Use, and return the pair {value, false}. If there is no 493 /// segment before @p Use and there is no "undef" between @p StartIdx and 494 /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, 495 /// return {nullptr, true}. 496 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 497 SlotIndex StartIdx, SlotIndex Kill); 498 499 /// Simplified version of the above "extendInBlock", which assumes that 500 /// no register lanes are undefined by <def,read-undef> operands. 501 /// If this range is live before @p Use in the basic block that starts 502 /// at @p StartIdx, extend it to be live up to @p Use, and return the 503 /// value. If there is no segment before @p Use, return nullptr. 504 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill); 505 506 /// join - Join two live ranges (this, and other) together. This applies 507 /// mappings to the value numbers in the LHS/RHS ranges as specified. If 508 /// the ranges are not joinable, this aborts. 509 void join(LiveRange &Other, 510 const int *ValNoAssignments, 511 const int *RHSValNoAssignments, 512 SmallVectorImpl<VNInfo *> &NewVNInfo); 513 514 /// True iff this segment is a single segment that lies between the 515 /// specified boundaries, exclusively. Vregs live across a backedge are not 516 /// considered local. The boundaries are expected to lie within an extended 517 /// basic block, so vregs that are not live out should contain no holes. isLocal(SlotIndex Start,SlotIndex End)518 bool isLocal(SlotIndex Start, SlotIndex End) const { 519 return beginIndex() > Start.getBaseIndex() && 520 endIndex() < End.getBoundaryIndex(); 521 } 522 523 /// Remove the specified interval from this live range. 524 /// Does nothing if interval is not part of this live range. 525 /// Note that the interval must be within a single Segment in its entirety. 526 void removeSegment(SlotIndex Start, SlotIndex End, 527 bool RemoveDeadValNo = false); 528 529 void removeSegment(Segment S, bool RemoveDeadValNo = false) { 530 removeSegment(S.start, S.end, RemoveDeadValNo); 531 } 532 533 /// Remove segment pointed to by iterator @p I from this range. 534 iterator removeSegment(iterator I, bool RemoveDeadValNo = false); 535 536 /// Mark \p ValNo for deletion if no segments in this range use it. 537 void removeValNoIfDead(VNInfo *ValNo); 538 539 /// Query Liveness at Idx. 540 /// The sub-instruction slot of Idx doesn't matter, only the instruction 541 /// it refers to is considered. Query(SlotIndex Idx)542 LiveQueryResult Query(SlotIndex Idx) const { 543 // Find the segment that enters the instruction. 544 const_iterator I = find(Idx.getBaseIndex()); 545 const_iterator E = end(); 546 if (I == E) 547 return LiveQueryResult(nullptr, nullptr, SlotIndex(), false); 548 549 // Is this an instruction live-in segment? 550 // If Idx is the start index of a basic block, include live-in segments 551 // that start at Idx.getBaseIndex(). 552 VNInfo *EarlyVal = nullptr; 553 VNInfo *LateVal = nullptr; 554 SlotIndex EndPoint; 555 bool Kill = false; 556 if (I->start <= Idx.getBaseIndex()) { 557 EarlyVal = I->valno; 558 EndPoint = I->end; 559 // Move to the potentially live-out segment. 560 if (SlotIndex::isSameInstr(Idx, I->end)) { 561 Kill = true; 562 if (++I == E) 563 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 564 } 565 // Special case: A PHIDef value can have its def in the middle of a 566 // segment if the value happens to be live out of the layout 567 // predecessor. 568 // Such a value is not live-in. 569 if (EarlyVal->def == Idx.getBaseIndex()) 570 EarlyVal = nullptr; 571 } 572 // I now points to the segment that may be live-through, or defined by 573 // this instr. Ignore segments starting after the current instr. 574 if (!SlotIndex::isEarlierInstr(Idx, I->start)) { 575 LateVal = I->valno; 576 EndPoint = I->end; 577 } 578 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 579 } 580 581 /// removeValNo - Remove all the segments defined by the specified value#. 582 /// Also remove the value# from value# list. 583 void removeValNo(VNInfo *ValNo); 584 585 /// Returns true if the live range is zero length, i.e. no live segments 586 /// span instructions. It doesn't pay to spill such a range. isZeroLength(SlotIndexes * Indexes)587 bool isZeroLength(SlotIndexes *Indexes) const { 588 for (const Segment &S : segments) 589 if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < 590 S.end.getBaseIndex()) 591 return false; 592 return true; 593 } 594 595 // Returns true if any segment in the live range contains any of the 596 // provided slot indexes. Slots which occur in holes between 597 // segments will not cause the function to return true. 598 bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const; 599 600 bool operator<(const LiveRange& other) const { 601 const SlotIndex &thisIndex = beginIndex(); 602 const SlotIndex &otherIndex = other.beginIndex(); 603 return thisIndex < otherIndex; 604 } 605 606 /// Returns true if there is an explicit "undef" between @p Begin 607 /// @p End. isUndefIn(ArrayRef<SlotIndex> Undefs,SlotIndex Begin,SlotIndex End)608 bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, 609 SlotIndex End) const { 610 return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool { 611 return Begin <= Idx && Idx < End; 612 }); 613 } 614 615 /// Flush segment set into the regular segment vector. 616 /// The method is to be called after the live range 617 /// has been created, if use of the segment set was 618 /// activated in the constructor of the live range. 619 void flushSegmentSet(); 620 621 /// Stores indexes from the input index sequence R at which this LiveRange 622 /// is live to the output O iterator. 623 /// R is a range of _ascending sorted_ _random_ access iterators 624 /// to the input indexes. Indexes stored at O are ascending sorted so it 625 /// can be used directly in the subsequent search (for example for 626 /// subranges). Returns true if found at least one index. 627 template <typename Range, typename OutputIt> findIndexesLiveAt(Range && R,OutputIt O)628 bool findIndexesLiveAt(Range &&R, OutputIt O) const { 629 assert(llvm::is_sorted(R)); 630 auto Idx = R.begin(), EndIdx = R.end(); 631 auto Seg = segments.begin(), EndSeg = segments.end(); 632 bool Found = false; 633 while (Idx != EndIdx && Seg != EndSeg) { 634 // if the Seg is lower find first segment that is above Idx using binary 635 // search 636 if (Seg->end <= *Idx) { 637 Seg = 638 std::upper_bound(++Seg, EndSeg, *Idx, [=](auto V, const auto &S) { 639 return V < S.end; 640 }); 641 if (Seg == EndSeg) 642 break; 643 } 644 auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start); 645 if (NotLessStart == EndIdx) 646 break; 647 auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end); 648 if (NotLessEnd != NotLessStart) { 649 Found = true; 650 O = std::copy(NotLessStart, NotLessEnd, O); 651 } 652 Idx = NotLessEnd; 653 ++Seg; 654 } 655 return Found; 656 } 657 658 void print(raw_ostream &OS) const; 659 void dump() const; 660 661 /// Walk the range and assert if any invariants fail to hold. 662 /// 663 /// Note that this is a no-op when asserts are disabled. 664 #ifdef NDEBUG verify()665 void verify() const {} 666 #else 667 void verify() const; 668 #endif 669 670 protected: 671 /// Append a segment to the list of segments. 672 void append(const LiveRange::Segment S); 673 674 private: 675 friend class LiveRangeUpdater; 676 void addSegmentToSet(Segment S); 677 void markValNoForDeletion(VNInfo *V); 678 }; 679 680 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { 681 LR.print(OS); 682 return OS; 683 } 684 685 /// LiveInterval - This class represents the liveness of a register, 686 /// or stack slot. 687 class LiveInterval : public LiveRange { 688 public: 689 using super = LiveRange; 690 691 /// A live range for subregisters. The LaneMask specifies which parts of the 692 /// super register are covered by the interval. 693 /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). 694 class SubRange : public LiveRange { 695 public: 696 SubRange *Next = nullptr; 697 LaneBitmask LaneMask; 698 699 /// Constructs a new SubRange object. SubRange(LaneBitmask LaneMask)700 SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {} 701 702 /// Constructs a new SubRange object by copying liveness from @p Other. SubRange(LaneBitmask LaneMask,const LiveRange & Other,BumpPtrAllocator & Allocator)703 SubRange(LaneBitmask LaneMask, const LiveRange &Other, 704 BumpPtrAllocator &Allocator) 705 : LiveRange(Other, Allocator), LaneMask(LaneMask) {} 706 707 void print(raw_ostream &OS) const; 708 void dump() const; 709 }; 710 711 private: 712 SubRange *SubRanges = nullptr; ///< Single linked list of subregister live 713 /// ranges. 714 const Register Reg; // the register or stack slot of this interval. 715 float Weight = 0.0; // weight of this interval 716 717 public: reg()718 Register reg() const { return Reg; } weight()719 float weight() const { return Weight; } incrementWeight(float Inc)720 void incrementWeight(float Inc) { Weight += Inc; } setWeight(float Value)721 void setWeight(float Value) { Weight = Value; } 722 LiveInterval(unsigned Reg,float Weight)723 LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {} 724 ~LiveInterval()725 ~LiveInterval() { 726 clearSubRanges(); 727 } 728 729 template<typename T> 730 class SingleLinkedListIterator { 731 T *P; 732 733 public: 734 using difference_type = ptrdiff_t; 735 using value_type = T; 736 using pointer = T *; 737 using reference = T &; 738 using iterator_category = std::forward_iterator_tag; 739 SingleLinkedListIterator(T * P)740 SingleLinkedListIterator(T *P) : P(P) {} 741 742 SingleLinkedListIterator<T> &operator++() { 743 P = P->Next; 744 return *this; 745 } 746 SingleLinkedListIterator<T> operator++(int) { 747 SingleLinkedListIterator res = *this; 748 ++*this; 749 return res; 750 } 751 bool operator!=(const SingleLinkedListIterator<T> &Other) const { 752 return P != Other.operator->(); 753 } 754 bool operator==(const SingleLinkedListIterator<T> &Other) const { 755 return P == Other.operator->(); 756 } 757 T &operator*() const { 758 return *P; 759 } 760 T *operator->() const { 761 return P; 762 } 763 }; 764 765 using subrange_iterator = SingleLinkedListIterator<SubRange>; 766 using const_subrange_iterator = SingleLinkedListIterator<const SubRange>; 767 subrange_begin()768 subrange_iterator subrange_begin() { 769 return subrange_iterator(SubRanges); 770 } subrange_end()771 subrange_iterator subrange_end() { 772 return subrange_iterator(nullptr); 773 } 774 subrange_begin()775 const_subrange_iterator subrange_begin() const { 776 return const_subrange_iterator(SubRanges); 777 } subrange_end()778 const_subrange_iterator subrange_end() const { 779 return const_subrange_iterator(nullptr); 780 } 781 subranges()782 iterator_range<subrange_iterator> subranges() { 783 return make_range(subrange_begin(), subrange_end()); 784 } 785 subranges()786 iterator_range<const_subrange_iterator> subranges() const { 787 return make_range(subrange_begin(), subrange_end()); 788 } 789 790 /// Creates a new empty subregister live range. The range is added at the 791 /// beginning of the subrange list; subrange iterators stay valid. createSubRange(BumpPtrAllocator & Allocator,LaneBitmask LaneMask)792 SubRange *createSubRange(BumpPtrAllocator &Allocator, 793 LaneBitmask LaneMask) { 794 SubRange *Range = new (Allocator) SubRange(LaneMask); 795 appendSubRange(Range); 796 return Range; 797 } 798 799 /// Like createSubRange() but the new range is filled with a copy of the 800 /// liveness information in @p CopyFrom. createSubRangeFrom(BumpPtrAllocator & Allocator,LaneBitmask LaneMask,const LiveRange & CopyFrom)801 SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, 802 LaneBitmask LaneMask, 803 const LiveRange &CopyFrom) { 804 SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); 805 appendSubRange(Range); 806 return Range; 807 } 808 809 /// Returns true if subregister liveness information is available. hasSubRanges()810 bool hasSubRanges() const { 811 return SubRanges != nullptr; 812 } 813 814 /// Removes all subregister liveness information. 815 void clearSubRanges(); 816 817 /// Removes all subranges without any segments (subranges without segments 818 /// are not considered valid and should only exist temporarily). 819 void removeEmptySubRanges(); 820 821 /// getSize - Returns the sum of sizes of all the LiveRange's. 822 /// 823 unsigned getSize() const; 824 825 /// isSpillable - Can this interval be spilled? isSpillable()826 bool isSpillable() const { return Weight != huge_valf; } 827 828 /// markNotSpillable - Mark interval as not spillable markNotSpillable()829 void markNotSpillable() { Weight = huge_valf; } 830 831 /// For a given lane mask @p LaneMask, compute indexes at which the 832 /// lane is marked undefined by subregister <def,read-undef> definitions. 833 void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 834 LaneBitmask LaneMask, 835 const MachineRegisterInfo &MRI, 836 const SlotIndexes &Indexes) const; 837 838 /// Refines the subranges to support \p LaneMask. This may only be called 839 /// for LI.hasSubrange()==true. Subregister ranges are split or created 840 /// until \p LaneMask can be matched exactly. \p Mod is executed on the 841 /// matching subranges. 842 /// 843 /// Example: 844 /// Given an interval with subranges with lanemasks L0F00, L00F0 and 845 /// L000F, refining for mask L0018. Will split the L00F0 lane into 846 /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod 847 /// function will be applied to the L0010 and L0008 subranges. 848 /// 849 /// \p Indexes and \p TRI are required to clean up the VNIs that 850 /// don't define the related lane masks after they get shrunk. E.g., 851 /// when L000F gets split into L0007 and L0008 maybe only a subset 852 /// of the VNIs that defined L000F defines L0007. 853 /// 854 /// The clean up of the VNIs need to look at the actual instructions 855 /// to decide what is or is not live at a definition point. If the 856 /// update of the subranges occurs while the IR does not reflect these 857 /// changes, \p ComposeSubRegIdx can be used to specify how the 858 /// definition are going to be rewritten. 859 /// E.g., let say we want to merge: 860 /// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32> 861 /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32> 862 /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3". 863 /// Put differently we align V2's sub3 with V1's sub1: 864 /// V2: sub0 sub1 sub2 sub3 865 /// V1: <offset> sub0 sub1 866 /// 867 /// This offset will look like a composed subregidx in the class: 868 /// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> 869 /// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> 870 /// 871 /// Now if we didn't rewrite the uses and def of V1, all the checks for V1 872 /// need to account for this offset. 873 /// This happens during coalescing where we update the live-ranges while 874 /// still having the old IR around because updating the IR on-the-fly 875 /// would actually clobber some information on how the live-ranges that 876 /// are being updated look like. 877 void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 878 std::function<void(LiveInterval::SubRange &)> Apply, 879 const SlotIndexes &Indexes, 880 const TargetRegisterInfo &TRI, 881 unsigned ComposeSubRegIdx = 0); 882 883 bool operator<(const LiveInterval& other) const { 884 const SlotIndex &thisIndex = beginIndex(); 885 const SlotIndex &otherIndex = other.beginIndex(); 886 return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg); 887 } 888 889 void print(raw_ostream &OS) const; 890 void dump() const; 891 892 /// Walks the interval and assert if any invariants fail to hold. 893 /// 894 /// Note that this is a no-op when asserts are disabled. 895 #ifdef NDEBUG 896 void verify(const MachineRegisterInfo *MRI = nullptr) const {} 897 #else 898 void verify(const MachineRegisterInfo *MRI = nullptr) const; 899 #endif 900 901 private: 902 /// Appends @p Range to SubRanges list. appendSubRange(SubRange * Range)903 void appendSubRange(SubRange *Range) { 904 Range->Next = SubRanges; 905 SubRanges = Range; 906 } 907 908 /// Free memory held by SubRange. 909 void freeSubRange(SubRange *S); 910 }; 911 912 inline raw_ostream &operator<<(raw_ostream &OS, 913 const LiveInterval::SubRange &SR) { 914 SR.print(OS); 915 return OS; 916 } 917 918 inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { 919 LI.print(OS); 920 return OS; 921 } 922 923 raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S); 924 925 inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { 926 return V < S.start; 927 } 928 929 inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { 930 return S.start < V; 931 } 932 933 /// Helper class for performant LiveRange bulk updates. 934 /// 935 /// Calling LiveRange::addSegment() repeatedly can be expensive on large 936 /// live ranges because segments after the insertion point may need to be 937 /// shifted. The LiveRangeUpdater class can defer the shifting when adding 938 /// many segments in order. 939 /// 940 /// The LiveRange will be in an invalid state until flush() is called. 941 class LiveRangeUpdater { 942 LiveRange *LR; 943 SlotIndex LastStart; 944 LiveRange::iterator WriteI; 945 LiveRange::iterator ReadI; 946 SmallVector<LiveRange::Segment, 16> Spills; 947 void mergeSpills(); 948 949 public: 950 /// Create a LiveRangeUpdater for adding segments to LR. 951 /// LR will temporarily be in an invalid state until flush() is called. LR(lr)952 LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {} 953 ~LiveRangeUpdater()954 ~LiveRangeUpdater() { flush(); } 955 956 /// Add a segment to LR and coalesce when possible, just like 957 /// LR.addSegment(). Segments should be added in increasing start order for 958 /// best performance. 959 void add(LiveRange::Segment); 960 add(SlotIndex Start,SlotIndex End,VNInfo * VNI)961 void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 962 add(LiveRange::Segment(Start, End, VNI)); 963 } 964 965 /// Return true if the LR is currently in an invalid state, and flush() 966 /// needs to be called. isDirty()967 bool isDirty() const { return LastStart.isValid(); } 968 969 /// Flush the updater state to LR so it is valid and contains all added 970 /// segments. 971 void flush(); 972 973 /// Select a different destination live range. setDest(LiveRange * lr)974 void setDest(LiveRange *lr) { 975 if (LR != lr && isDirty()) 976 flush(); 977 LR = lr; 978 } 979 980 /// Get the current destination live range. getDest()981 LiveRange *getDest() const { return LR; } 982 983 void dump() const; 984 void print(raw_ostream&) const; 985 }; 986 987 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { 988 X.print(OS); 989 return OS; 990 } 991 992 /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a 993 /// LiveInterval into equivalence clases of connected components. A 994 /// LiveInterval that has multiple connected components can be broken into 995 /// multiple LiveIntervals. 996 /// 997 /// Given a LiveInterval that may have multiple connected components, run: 998 /// 999 /// unsigned numComps = ConEQ.Classify(LI); 1000 /// if (numComps > 1) { 1001 /// // allocate numComps-1 new LiveIntervals into LIS[1..] 1002 /// ConEQ.Distribute(LIS); 1003 /// } 1004 1005 class ConnectedVNInfoEqClasses { 1006 LiveIntervals &LIS; 1007 IntEqClasses EqClass; 1008 1009 public: ConnectedVNInfoEqClasses(LiveIntervals & lis)1010 explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {} 1011 1012 /// Classify the values in \p LR into connected components. 1013 /// Returns the number of connected components. 1014 unsigned Classify(const LiveRange &LR); 1015 1016 /// getEqClass - Classify creates equivalence classes numbered 0..N. Return 1017 /// the equivalence class assigned the VNI. getEqClass(const VNInfo * VNI)1018 unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; } 1019 1020 /// Distribute values in \p LI into a separate LiveIntervals 1021 /// for each connected component. LIV must have an empty LiveInterval for 1022 /// each additional connected component. The first connected component is 1023 /// left in \p LI. 1024 void Distribute(LiveInterval &LI, LiveInterval *LIV[], 1025 MachineRegisterInfo &MRI); 1026 }; 1027 1028 } // end namespace llvm 1029 1030 #endif // LLVM_CODEGEN_LIVEINTERVAL_H 1031