1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
30 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
31 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/SwitchLoweringUtils.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/CodeGenTypes/LowLevelType.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/DiagnosticInfo.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GetElementPtrTypeIterator.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/IntrinsicsAMDGPU.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetIntrinsicInfo.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
87 #include <algorithm>
88 #include <cassert>
89 #include <cstdint>
90 #include <iterator>
91 #include <optional>
92 #include <string>
93 #include <utility>
94 #include <vector>
95
96 #define DEBUG_TYPE "irtranslator"
97
98 using namespace llvm;
99
100 static cl::opt<bool>
101 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
102 cl::desc("Should enable CSE in irtranslator"),
103 cl::Optional, cl::init(false));
104 char IRTranslator::ID = 0;
105
106 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
107 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)108 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
109 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
111 INITIALIZE_PASS_DEPENDENCY(StackProtector)
112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
113 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
114 false, false)
115
116 static void reportTranslationError(MachineFunction &MF,
117 const TargetPassConfig &TPC,
118 OptimizationRemarkEmitter &ORE,
119 OptimizationRemarkMissed &R) {
120 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
121
122 // Print the function name explicitly if we don't have a debug location (which
123 // makes the diagnostic less useful) or if we're going to emit a raw error.
124 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
125 R << (" (in function: " + MF.getName() + ")").str();
126
127 if (TPC.isGlobalISelAbortEnabled())
128 report_fatal_error(Twine(R.getMsg()));
129 else
130 ORE.emit(R);
131 }
132
IRTranslator(CodeGenOptLevel optlevel)133 IRTranslator::IRTranslator(CodeGenOptLevel optlevel)
134 : MachineFunctionPass(ID), OptLevel(optlevel) {}
135
136 #ifndef NDEBUG
137 namespace {
138 /// Verify that every instruction created has the same DILocation as the
139 /// instruction being translated.
140 class DILocationVerifier : public GISelChangeObserver {
141 const Instruction *CurrInst = nullptr;
142
143 public:
144 DILocationVerifier() = default;
145 ~DILocationVerifier() = default;
146
getCurrentInst() const147 const Instruction *getCurrentInst() const { return CurrInst; }
setCurrentInst(const Instruction * Inst)148 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
149
erasingInstr(MachineInstr & MI)150 void erasingInstr(MachineInstr &MI) override {}
changingInstr(MachineInstr & MI)151 void changingInstr(MachineInstr &MI) override {}
changedInstr(MachineInstr & MI)152 void changedInstr(MachineInstr &MI) override {}
153
createdInstr(MachineInstr & MI)154 void createdInstr(MachineInstr &MI) override {
155 assert(getCurrentInst() && "Inserted instruction without a current MI");
156
157 // Only print the check message if we're actually checking it.
158 #ifndef NDEBUG
159 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
160 << " was copied to " << MI);
161 #endif
162 // We allow insts in the entry block to have no debug loc because
163 // they could have originated from constants, and we don't want a jumpy
164 // debug experience.
165 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
166 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) ||
167 (MI.isDebugInstr())) &&
168 "Line info was not transferred to all instructions");
169 }
170 };
171 } // namespace
172 #endif // ifndef NDEBUG
173
174
getAnalysisUsage(AnalysisUsage & AU) const175 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
176 AU.addRequired<StackProtector>();
177 AU.addRequired<TargetPassConfig>();
178 AU.addRequired<GISelCSEAnalysisWrapperPass>();
179 AU.addRequired<AssumptionCacheTracker>();
180 if (OptLevel != CodeGenOptLevel::None) {
181 AU.addRequired<BranchProbabilityInfoWrapperPass>();
182 AU.addRequired<AAResultsWrapperPass>();
183 }
184 AU.addRequired<TargetLibraryInfoWrapperPass>();
185 AU.addPreserved<TargetLibraryInfoWrapperPass>();
186 getSelectionDAGFallbackAnalysisUsage(AU);
187 MachineFunctionPass::getAnalysisUsage(AU);
188 }
189
190 IRTranslator::ValueToVRegInfo::VRegListT &
allocateVRegs(const Value & Val)191 IRTranslator::allocateVRegs(const Value &Val) {
192 auto VRegsIt = VMap.findVRegs(Val);
193 if (VRegsIt != VMap.vregs_end())
194 return *VRegsIt->second;
195 auto *Regs = VMap.getVRegs(Val);
196 auto *Offsets = VMap.getOffsets(Val);
197 SmallVector<LLT, 4> SplitTys;
198 computeValueLLTs(*DL, *Val.getType(), SplitTys,
199 Offsets->empty() ? Offsets : nullptr);
200 for (unsigned i = 0; i < SplitTys.size(); ++i)
201 Regs->push_back(0);
202 return *Regs;
203 }
204
getOrCreateVRegs(const Value & Val)205 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
206 auto VRegsIt = VMap.findVRegs(Val);
207 if (VRegsIt != VMap.vregs_end())
208 return *VRegsIt->second;
209
210 if (Val.getType()->isVoidTy())
211 return *VMap.getVRegs(Val);
212
213 // Create entry for this type.
214 auto *VRegs = VMap.getVRegs(Val);
215 auto *Offsets = VMap.getOffsets(Val);
216
217 if (!Val.getType()->isTokenTy())
218 assert(Val.getType()->isSized() &&
219 "Don't know how to create an empty vreg");
220
221 SmallVector<LLT, 4> SplitTys;
222 computeValueLLTs(*DL, *Val.getType(), SplitTys,
223 Offsets->empty() ? Offsets : nullptr);
224
225 if (!isa<Constant>(Val)) {
226 for (auto Ty : SplitTys)
227 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
228 return *VRegs;
229 }
230
231 if (Val.getType()->isAggregateType()) {
232 // UndefValue, ConstantAggregateZero
233 auto &C = cast<Constant>(Val);
234 unsigned Idx = 0;
235 while (auto Elt = C.getAggregateElement(Idx++)) {
236 auto EltRegs = getOrCreateVRegs(*Elt);
237 llvm::copy(EltRegs, std::back_inserter(*VRegs));
238 }
239 } else {
240 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
241 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
242 bool Success = translate(cast<Constant>(Val), VRegs->front());
243 if (!Success) {
244 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
245 MF->getFunction().getSubprogram(),
246 &MF->getFunction().getEntryBlock());
247 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
248 reportTranslationError(*MF, *TPC, *ORE, R);
249 return *VRegs;
250 }
251 }
252
253 return *VRegs;
254 }
255
getOrCreateFrameIndex(const AllocaInst & AI)256 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
257 auto MapEntry = FrameIndices.find(&AI);
258 if (MapEntry != FrameIndices.end())
259 return MapEntry->second;
260
261 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
262 uint64_t Size =
263 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
264
265 // Always allocate at least one byte.
266 Size = std::max<uint64_t>(Size, 1u);
267
268 int &FI = FrameIndices[&AI];
269 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
270 return FI;
271 }
272
getMemOpAlign(const Instruction & I)273 Align IRTranslator::getMemOpAlign(const Instruction &I) {
274 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
275 return SI->getAlign();
276 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
277 return LI->getAlign();
278 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
279 return AI->getAlign();
280 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
281 return AI->getAlign();
282
283 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
284 R << "unable to translate memop: " << ore::NV("Opcode", &I);
285 reportTranslationError(*MF, *TPC, *ORE, R);
286 return Align(1);
287 }
288
getMBB(const BasicBlock & BB)289 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
290 MachineBasicBlock *&MBB = BBToMBB[&BB];
291 assert(MBB && "BasicBlock was not encountered before");
292 return *MBB;
293 }
294
addMachineCFGPred(CFGEdge Edge,MachineBasicBlock * NewPred)295 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
296 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
297 MachinePreds[Edge].push_back(NewPred);
298 }
299
translateBinaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)300 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
301 MachineIRBuilder &MIRBuilder) {
302 // Get or create a virtual register for each value.
303 // Unless the value is a Constant => loadimm cst?
304 // or inline constant each time?
305 // Creation of a virtual register needs to have a size.
306 Register Op0 = getOrCreateVReg(*U.getOperand(0));
307 Register Op1 = getOrCreateVReg(*U.getOperand(1));
308 Register Res = getOrCreateVReg(U);
309 uint32_t Flags = 0;
310 if (isa<Instruction>(U)) {
311 const Instruction &I = cast<Instruction>(U);
312 Flags = MachineInstr::copyFlagsFromInstruction(I);
313 }
314
315 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
316 return true;
317 }
318
translateUnaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)319 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
320 MachineIRBuilder &MIRBuilder) {
321 Register Op0 = getOrCreateVReg(*U.getOperand(0));
322 Register Res = getOrCreateVReg(U);
323 uint32_t Flags = 0;
324 if (isa<Instruction>(U)) {
325 const Instruction &I = cast<Instruction>(U);
326 Flags = MachineInstr::copyFlagsFromInstruction(I);
327 }
328 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
329 return true;
330 }
331
translateFNeg(const User & U,MachineIRBuilder & MIRBuilder)332 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
333 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
334 }
335
translateCompare(const User & U,MachineIRBuilder & MIRBuilder)336 bool IRTranslator::translateCompare(const User &U,
337 MachineIRBuilder &MIRBuilder) {
338 auto *CI = cast<CmpInst>(&U);
339 Register Op0 = getOrCreateVReg(*U.getOperand(0));
340 Register Op1 = getOrCreateVReg(*U.getOperand(1));
341 Register Res = getOrCreateVReg(U);
342 CmpInst::Predicate Pred = CI->getPredicate();
343 if (CmpInst::isIntPredicate(Pred))
344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
345 else if (Pred == CmpInst::FCMP_FALSE)
346 MIRBuilder.buildCopy(
347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348 else if (Pred == CmpInst::FCMP_TRUE)
349 MIRBuilder.buildCopy(
350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351 else {
352 uint32_t Flags = 0;
353 if (CI)
354 Flags = MachineInstr::copyFlagsFromInstruction(*CI);
355 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
356 }
357
358 return true;
359 }
360
translateRet(const User & U,MachineIRBuilder & MIRBuilder)361 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
362 const ReturnInst &RI = cast<ReturnInst>(U);
363 const Value *Ret = RI.getReturnValue();
364 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero())
365 Ret = nullptr;
366
367 ArrayRef<Register> VRegs;
368 if (Ret)
369 VRegs = getOrCreateVRegs(*Ret);
370
371 Register SwiftErrorVReg = 0;
372 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
373 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
374 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
375 }
376
377 // The target may mess up with the insertion point, but
378 // this is not important as a return is the last instruction
379 // of the block anyway.
380 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
381 }
382
emitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)383 void IRTranslator::emitBranchForMergedCondition(
384 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
385 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
386 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
387 // If the leaf of the tree is a comparison, merge the condition into
388 // the caseblock.
389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
390 CmpInst::Predicate Condition;
391 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
392 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
393 } else {
394 const FCmpInst *FC = cast<FCmpInst>(Cond);
395 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
396 }
397
398 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
399 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
400 CurBuilder->getDebugLoc(), TProb, FProb);
401 SL->SwitchCases.push_back(CB);
402 return;
403 }
404
405 // Create a CaseBlock record representing this branch.
406 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
407 SwitchCG::CaseBlock CB(
408 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
409 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
410 SL->SwitchCases.push_back(CB);
411 }
412
isValInBlock(const Value * V,const BasicBlock * BB)413 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
414 if (const Instruction *I = dyn_cast<Instruction>(V))
415 return I->getParent() == BB;
416 return true;
417 }
418
findMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)419 void IRTranslator::findMergedConditions(
420 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
421 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
422 Instruction::BinaryOps Opc, BranchProbability TProb,
423 BranchProbability FProb, bool InvertCond) {
424 using namespace PatternMatch;
425 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
426 "Expected Opc to be AND/OR");
427 // Skip over not part of the tree and remember to invert op and operands at
428 // next level.
429 Value *NotCond;
430 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
431 isValInBlock(NotCond, CurBB->getBasicBlock())) {
432 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
433 !InvertCond);
434 return;
435 }
436
437 const Instruction *BOp = dyn_cast<Instruction>(Cond);
438 const Value *BOpOp0, *BOpOp1;
439 // Compute the effective opcode for Cond, taking into account whether it needs
440 // to be inverted, e.g.
441 // and (not (or A, B)), C
442 // gets lowered as
443 // and (and (not A, not B), C)
444 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
445 if (BOp) {
446 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
447 ? Instruction::And
448 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
449 ? Instruction::Or
450 : (Instruction::BinaryOps)0);
451 if (InvertCond) {
452 if (BOpc == Instruction::And)
453 BOpc = Instruction::Or;
454 else if (BOpc == Instruction::Or)
455 BOpc = Instruction::And;
456 }
457 }
458
459 // If this node is not part of the or/and tree, emit it as a branch.
460 // Note that all nodes in the tree should have same opcode.
461 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
462 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
463 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
464 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
465 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
466 InvertCond);
467 return;
468 }
469
470 // Create TmpBB after CurBB.
471 MachineFunction::iterator BBI(CurBB);
472 MachineBasicBlock *TmpBB =
473 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
474 CurBB->getParent()->insert(++BBI, TmpBB);
475
476 if (Opc == Instruction::Or) {
477 // Codegen X | Y as:
478 // BB1:
479 // jmp_if_X TBB
480 // jmp TmpBB
481 // TmpBB:
482 // jmp_if_Y TBB
483 // jmp FBB
484 //
485
486 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
487 // The requirement is that
488 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
489 // = TrueProb for original BB.
490 // Assuming the original probabilities are A and B, one choice is to set
491 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
492 // A/(1+B) and 2B/(1+B). This choice assumes that
493 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
494 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
495 // TmpBB, but the math is more complicated.
496
497 auto NewTrueProb = TProb / 2;
498 auto NewFalseProb = TProb / 2 + FProb;
499 // Emit the LHS condition.
500 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
501 NewFalseProb, InvertCond);
502
503 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
504 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
505 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
506 // Emit the RHS condition into TmpBB.
507 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
508 Probs[1], InvertCond);
509 } else {
510 assert(Opc == Instruction::And && "Unknown merge op!");
511 // Codegen X & Y as:
512 // BB1:
513 // jmp_if_X TmpBB
514 // jmp FBB
515 // TmpBB:
516 // jmp_if_Y TBB
517 // jmp FBB
518 //
519 // This requires creation of TmpBB after CurBB.
520
521 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
522 // The requirement is that
523 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
524 // = FalseProb for original BB.
525 // Assuming the original probabilities are A and B, one choice is to set
526 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
527 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
528 // TrueProb for BB1 * FalseProb for TmpBB.
529
530 auto NewTrueProb = TProb + FProb / 2;
531 auto NewFalseProb = FProb / 2;
532 // Emit the LHS condition.
533 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
534 NewFalseProb, InvertCond);
535
536 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
537 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
538 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
539 // Emit the RHS condition into TmpBB.
540 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
541 Probs[1], InvertCond);
542 }
543 }
544
shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> & Cases)545 bool IRTranslator::shouldEmitAsBranches(
546 const std::vector<SwitchCG::CaseBlock> &Cases) {
547 // For multiple cases, it's better to emit as branches.
548 if (Cases.size() != 2)
549 return true;
550
551 // If this is two comparisons of the same values or'd or and'd together, they
552 // will get folded into a single comparison, so don't emit two blocks.
553 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
554 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
555 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
556 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
557 return false;
558 }
559
560 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
561 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
562 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
563 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
564 isa<Constant>(Cases[0].CmpRHS) &&
565 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
566 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
567 Cases[0].TrueBB == Cases[1].ThisBB)
568 return false;
569 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
570 Cases[0].FalseBB == Cases[1].ThisBB)
571 return false;
572 }
573
574 return true;
575 }
576
translateBr(const User & U,MachineIRBuilder & MIRBuilder)577 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
578 const BranchInst &BrInst = cast<BranchInst>(U);
579 auto &CurMBB = MIRBuilder.getMBB();
580 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
581
582 if (BrInst.isUnconditional()) {
583 // If the unconditional target is the layout successor, fallthrough.
584 if (OptLevel == CodeGenOptLevel::None ||
585 !CurMBB.isLayoutSuccessor(Succ0MBB))
586 MIRBuilder.buildBr(*Succ0MBB);
587
588 // Link successors.
589 for (const BasicBlock *Succ : successors(&BrInst))
590 CurMBB.addSuccessor(&getMBB(*Succ));
591 return true;
592 }
593
594 // If this condition is one of the special cases we handle, do special stuff
595 // now.
596 const Value *CondVal = BrInst.getCondition();
597 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
598
599 // If this is a series of conditions that are or'd or and'd together, emit
600 // this as a sequence of branches instead of setcc's with and/or operations.
601 // As long as jumps are not expensive (exceptions for multi-use logic ops,
602 // unpredictable branches, and vector extracts because those jumps are likely
603 // expensive for any target), this should improve performance.
604 // For example, instead of something like:
605 // cmp A, B
606 // C = seteq
607 // cmp D, E
608 // F = setle
609 // or C, F
610 // jnz foo
611 // Emit:
612 // cmp A, B
613 // je foo
614 // cmp D, E
615 // jle foo
616 using namespace PatternMatch;
617 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
618 if (!TLI->isJumpExpensive() && CondI && CondI->hasOneUse() &&
619 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
620 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
621 Value *Vec;
622 const Value *BOp0, *BOp1;
623 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
624 Opcode = Instruction::And;
625 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
626 Opcode = Instruction::Or;
627
628 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
629 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
630 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
631 getEdgeProbability(&CurMBB, Succ0MBB),
632 getEdgeProbability(&CurMBB, Succ1MBB),
633 /*InvertCond=*/false);
634 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
635
636 // Allow some cases to be rejected.
637 if (shouldEmitAsBranches(SL->SwitchCases)) {
638 // Emit the branch for this block.
639 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
640 SL->SwitchCases.erase(SL->SwitchCases.begin());
641 return true;
642 }
643
644 // Okay, we decided not to do this, remove any inserted MBB's and clear
645 // SwitchCases.
646 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
647 MF->erase(SL->SwitchCases[I].ThisBB);
648
649 SL->SwitchCases.clear();
650 }
651 }
652
653 // Create a CaseBlock record representing this branch.
654 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
655 ConstantInt::getTrue(MF->getFunction().getContext()),
656 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
657 CurBuilder->getDebugLoc());
658
659 // Use emitSwitchCase to actually insert the fast branch sequence for this
660 // cond branch.
661 emitSwitchCase(CB, &CurMBB, *CurBuilder);
662 return true;
663 }
664
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)665 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
666 MachineBasicBlock *Dst,
667 BranchProbability Prob) {
668 if (!FuncInfo.BPI) {
669 Src->addSuccessorWithoutProb(Dst);
670 return;
671 }
672 if (Prob.isUnknown())
673 Prob = getEdgeProbability(Src, Dst);
674 Src->addSuccessor(Dst, Prob);
675 }
676
677 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const678 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
679 const MachineBasicBlock *Dst) const {
680 const BasicBlock *SrcBB = Src->getBasicBlock();
681 const BasicBlock *DstBB = Dst->getBasicBlock();
682 if (!FuncInfo.BPI) {
683 // If BPI is not available, set the default probability as 1 / N, where N is
684 // the number of successors.
685 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
686 return BranchProbability(1, SuccSize);
687 }
688 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
689 }
690
translateSwitch(const User & U,MachineIRBuilder & MIB)691 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
692 using namespace SwitchCG;
693 // Extract cases from the switch.
694 const SwitchInst &SI = cast<SwitchInst>(U);
695 BranchProbabilityInfo *BPI = FuncInfo.BPI;
696 CaseClusterVector Clusters;
697 Clusters.reserve(SI.getNumCases());
698 for (const auto &I : SI.cases()) {
699 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
700 assert(Succ && "Could not find successor mbb in mapping");
701 const ConstantInt *CaseVal = I.getCaseValue();
702 BranchProbability Prob =
703 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
704 : BranchProbability(1, SI.getNumCases() + 1);
705 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
706 }
707
708 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
709
710 // Cluster adjacent cases with the same destination. We do this at all
711 // optimization levels because it's cheap to do and will make codegen faster
712 // if there are many clusters.
713 sortAndRangeify(Clusters);
714
715 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
716
717 // If there is only the default destination, jump there directly.
718 if (Clusters.empty()) {
719 SwitchMBB->addSuccessor(DefaultMBB);
720 if (DefaultMBB != SwitchMBB->getNextNode())
721 MIB.buildBr(*DefaultMBB);
722 return true;
723 }
724
725 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr);
726 SL->findBitTestClusters(Clusters, &SI);
727
728 LLVM_DEBUG({
729 dbgs() << "Case clusters: ";
730 for (const CaseCluster &C : Clusters) {
731 if (C.Kind == CC_JumpTable)
732 dbgs() << "JT:";
733 if (C.Kind == CC_BitTests)
734 dbgs() << "BT:";
735
736 C.Low->getValue().print(dbgs(), true);
737 if (C.Low != C.High) {
738 dbgs() << '-';
739 C.High->getValue().print(dbgs(), true);
740 }
741 dbgs() << ' ';
742 }
743 dbgs() << '\n';
744 });
745
746 assert(!Clusters.empty());
747 SwitchWorkList WorkList;
748 CaseClusterIt First = Clusters.begin();
749 CaseClusterIt Last = Clusters.end() - 1;
750 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
751 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
752
753 while (!WorkList.empty()) {
754 SwitchWorkListItem W = WorkList.pop_back_val();
755
756 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
757 // For optimized builds, lower large range as a balanced binary tree.
758 if (NumClusters > 3 &&
759 MF->getTarget().getOptLevel() != CodeGenOptLevel::None &&
760 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
761 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB);
762 continue;
763 }
764
765 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
766 return false;
767 }
768 return true;
769 }
770
splitWorkItem(SwitchCG::SwitchWorkList & WorkList,const SwitchCG::SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineIRBuilder & MIB)771 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
772 const SwitchCG::SwitchWorkListItem &W,
773 Value *Cond, MachineBasicBlock *SwitchMBB,
774 MachineIRBuilder &MIB) {
775 using namespace SwitchCG;
776 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
777 "Clusters not sorted?");
778 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
779
780 auto [LastLeft, FirstRight, LeftProb, RightProb] =
781 SL->computeSplitWorkItemInfo(W);
782
783 // Use the first element on the right as pivot since we will make less-than
784 // comparisons against it.
785 CaseClusterIt PivotCluster = FirstRight;
786 assert(PivotCluster > W.FirstCluster);
787 assert(PivotCluster <= W.LastCluster);
788
789 CaseClusterIt FirstLeft = W.FirstCluster;
790 CaseClusterIt LastRight = W.LastCluster;
791
792 const ConstantInt *Pivot = PivotCluster->Low;
793
794 // New blocks will be inserted immediately after the current one.
795 MachineFunction::iterator BBI(W.MBB);
796 ++BBI;
797
798 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
799 // we can branch to its destination directly if it's squeezed exactly in
800 // between the known lower bound and Pivot - 1.
801 MachineBasicBlock *LeftMBB;
802 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
803 FirstLeft->Low == W.GE &&
804 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
805 LeftMBB = FirstLeft->MBB;
806 } else {
807 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
808 FuncInfo.MF->insert(BBI, LeftMBB);
809 WorkList.push_back(
810 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
811 }
812
813 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
814 // single cluster, RHS.Low == Pivot, and we can branch to its destination
815 // directly if RHS.High equals the current upper bound.
816 MachineBasicBlock *RightMBB;
817 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT &&
818 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
819 RightMBB = FirstRight->MBB;
820 } else {
821 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
822 FuncInfo.MF->insert(BBI, RightMBB);
823 WorkList.push_back(
824 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
825 }
826
827 // Create the CaseBlock record that will be used to lower the branch.
828 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr,
829 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb,
830 RightProb);
831
832 if (W.MBB == SwitchMBB)
833 emitSwitchCase(CB, SwitchMBB, MIB);
834 else
835 SL->SwitchCases.push_back(CB);
836 }
837
emitJumpTable(SwitchCG::JumpTable & JT,MachineBasicBlock * MBB)838 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
839 MachineBasicBlock *MBB) {
840 // Emit the code for the jump table
841 assert(JT.Reg != -1U && "Should lower JT Header first!");
842 MachineIRBuilder MIB(*MBB->getParent());
843 MIB.setMBB(*MBB);
844 MIB.setDebugLoc(CurBuilder->getDebugLoc());
845
846 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
847 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
848
849 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
850 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
851 }
852
emitJumpTableHeader(SwitchCG::JumpTable & JT,SwitchCG::JumpTableHeader & JTH,MachineBasicBlock * HeaderBB)853 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
854 SwitchCG::JumpTableHeader &JTH,
855 MachineBasicBlock *HeaderBB) {
856 MachineIRBuilder MIB(*HeaderBB->getParent());
857 MIB.setMBB(*HeaderBB);
858 MIB.setDebugLoc(CurBuilder->getDebugLoc());
859
860 const Value &SValue = *JTH.SValue;
861 // Subtract the lowest switch case value from the value being switched on.
862 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
863 Register SwitchOpReg = getOrCreateVReg(SValue);
864 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
865 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
866
867 // This value may be smaller or larger than the target's pointer type, and
868 // therefore require extension or truncating.
869 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext());
870 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
871 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
872
873 JT.Reg = Sub.getReg(0);
874
875 if (JTH.FallthroughUnreachable) {
876 if (JT.MBB != HeaderBB->getNextNode())
877 MIB.buildBr(*JT.MBB);
878 return true;
879 }
880
881 // Emit the range check for the jump table, and branch to the default block
882 // for the switch statement if the value being switched on exceeds the
883 // largest case in the switch.
884 auto Cst = getOrCreateVReg(
885 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
886 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
887 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
888
889 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
890
891 // Avoid emitting unnecessary branches to the next block.
892 if (JT.MBB != HeaderBB->getNextNode())
893 BrCond = MIB.buildBr(*JT.MBB);
894 return true;
895 }
896
emitSwitchCase(SwitchCG::CaseBlock & CB,MachineBasicBlock * SwitchBB,MachineIRBuilder & MIB)897 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
898 MachineBasicBlock *SwitchBB,
899 MachineIRBuilder &MIB) {
900 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
901 Register Cond;
902 DebugLoc OldDbgLoc = MIB.getDebugLoc();
903 MIB.setDebugLoc(CB.DbgLoc);
904 MIB.setMBB(*CB.ThisBB);
905
906 if (CB.PredInfo.NoCmp) {
907 // Branch or fall through to TrueBB.
908 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
909 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
910 CB.ThisBB);
911 CB.ThisBB->normalizeSuccProbs();
912 if (CB.TrueBB != CB.ThisBB->getNextNode())
913 MIB.buildBr(*CB.TrueBB);
914 MIB.setDebugLoc(OldDbgLoc);
915 return;
916 }
917
918 const LLT i1Ty = LLT::scalar(1);
919 // Build the compare.
920 if (!CB.CmpMHS) {
921 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
922 // For conditional branch lowering, we might try to do something silly like
923 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
924 // just re-use the existing condition vreg.
925 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
926 CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
927 Cond = CondLHS;
928 } else {
929 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
930 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
931 Cond =
932 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
933 else
934 Cond =
935 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
936 }
937 } else {
938 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
939 "Can only handle SLE ranges");
940
941 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
942 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
943
944 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
945 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
946 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
947 Cond =
948 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
949 } else {
950 const LLT CmpTy = MRI->getType(CmpOpReg);
951 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
952 auto Diff = MIB.buildConstant(CmpTy, High - Low);
953 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
954 }
955 }
956
957 // Update successor info
958 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
959
960 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
961 CB.ThisBB);
962
963 // TrueBB and FalseBB are always different unless the incoming IR is
964 // degenerate. This only happens when running llc on weird IR.
965 if (CB.TrueBB != CB.FalseBB)
966 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
967 CB.ThisBB->normalizeSuccProbs();
968
969 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
970 CB.ThisBB);
971
972 MIB.buildBrCond(Cond, *CB.TrueBB);
973 MIB.buildBr(*CB.FalseBB);
974 MIB.setDebugLoc(OldDbgLoc);
975 }
976
lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)977 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
978 MachineBasicBlock *SwitchMBB,
979 MachineBasicBlock *CurMBB,
980 MachineBasicBlock *DefaultMBB,
981 MachineIRBuilder &MIB,
982 MachineFunction::iterator BBI,
983 BranchProbability UnhandledProbs,
984 SwitchCG::CaseClusterIt I,
985 MachineBasicBlock *Fallthrough,
986 bool FallthroughUnreachable) {
987 using namespace SwitchCG;
988 MachineFunction *CurMF = SwitchMBB->getParent();
989 // FIXME: Optimize away range check based on pivot comparisons.
990 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
991 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
992 BranchProbability DefaultProb = W.DefaultProb;
993
994 // The jump block hasn't been inserted yet; insert it here.
995 MachineBasicBlock *JumpMBB = JT->MBB;
996 CurMF->insert(BBI, JumpMBB);
997
998 // Since the jump table block is separate from the switch block, we need
999 // to keep track of it as a machine predecessor to the default block,
1000 // otherwise we lose the phi edges.
1001 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1002 CurMBB);
1003 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1004 JumpMBB);
1005
1006 auto JumpProb = I->Prob;
1007 auto FallthroughProb = UnhandledProbs;
1008
1009 // If the default statement is a target of the jump table, we evenly
1010 // distribute the default probability to successors of CurMBB. Also
1011 // update the probability on the edge from JumpMBB to Fallthrough.
1012 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
1013 SE = JumpMBB->succ_end();
1014 SI != SE; ++SI) {
1015 if (*SI == DefaultMBB) {
1016 JumpProb += DefaultProb / 2;
1017 FallthroughProb -= DefaultProb / 2;
1018 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
1019 JumpMBB->normalizeSuccProbs();
1020 } else {
1021 // Also record edges from the jump table block to it's successors.
1022 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
1023 JumpMBB);
1024 }
1025 }
1026
1027 if (FallthroughUnreachable)
1028 JTH->FallthroughUnreachable = true;
1029
1030 if (!JTH->FallthroughUnreachable)
1031 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
1032 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
1033 CurMBB->normalizeSuccProbs();
1034
1035 // The jump table header will be inserted in our current block, do the
1036 // range check, and fall through to our fallthrough block.
1037 JTH->HeaderBB = CurMBB;
1038 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
1039
1040 // If we're in the right place, emit the jump table header right now.
1041 if (CurMBB == SwitchMBB) {
1042 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
1043 return false;
1044 JTH->Emitted = true;
1045 }
1046 return true;
1047 }
lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,Value * Cond,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable,BranchProbability UnhandledProbs,MachineBasicBlock * CurMBB,MachineIRBuilder & MIB,MachineBasicBlock * SwitchMBB)1048 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
1049 Value *Cond,
1050 MachineBasicBlock *Fallthrough,
1051 bool FallthroughUnreachable,
1052 BranchProbability UnhandledProbs,
1053 MachineBasicBlock *CurMBB,
1054 MachineIRBuilder &MIB,
1055 MachineBasicBlock *SwitchMBB) {
1056 using namespace SwitchCG;
1057 const Value *RHS, *LHS, *MHS;
1058 CmpInst::Predicate Pred;
1059 if (I->Low == I->High) {
1060 // Check Cond == I->Low.
1061 Pred = CmpInst::ICMP_EQ;
1062 LHS = Cond;
1063 RHS = I->Low;
1064 MHS = nullptr;
1065 } else {
1066 // Check I->Low <= Cond <= I->High.
1067 Pred = CmpInst::ICMP_SLE;
1068 LHS = I->Low;
1069 MHS = Cond;
1070 RHS = I->High;
1071 }
1072
1073 // If Fallthrough is unreachable, fold away the comparison.
1074 // The false probability is the sum of all unhandled cases.
1075 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
1076 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1077
1078 emitSwitchCase(CB, SwitchMBB, MIB);
1079 return true;
1080 }
1081
emitBitTestHeader(SwitchCG::BitTestBlock & B,MachineBasicBlock * SwitchBB)1082 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1083 MachineBasicBlock *SwitchBB) {
1084 MachineIRBuilder &MIB = *CurBuilder;
1085 MIB.setMBB(*SwitchBB);
1086
1087 // Subtract the minimum value.
1088 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1089
1090 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1091 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1092 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1093
1094 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
1095 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1096
1097 LLT MaskTy = SwitchOpTy;
1098 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1099 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1100 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1101 else {
1102 // Ensure that the type will fit the mask value.
1103 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1104 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1105 // Switch table case range are encoded into series of masks.
1106 // Just use pointer type, it's guaranteed to fit.
1107 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1108 break;
1109 }
1110 }
1111 }
1112 Register SubReg = RangeSub.getReg(0);
1113 if (SwitchOpTy != MaskTy)
1114 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1115
1116 B.RegVT = getMVTForLLT(MaskTy);
1117 B.Reg = SubReg;
1118
1119 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1120
1121 if (!B.FallthroughUnreachable)
1122 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1123 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1124
1125 SwitchBB->normalizeSuccProbs();
1126
1127 if (!B.FallthroughUnreachable) {
1128 // Conditional branch to the default block.
1129 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1130 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1131 RangeSub, RangeCst);
1132 MIB.buildBrCond(RangeCmp, *B.Default);
1133 }
1134
1135 // Avoid emitting unnecessary branches to the next block.
1136 if (MBB != SwitchBB->getNextNode())
1137 MIB.buildBr(*MBB);
1138 }
1139
emitBitTestCase(SwitchCG::BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,Register Reg,SwitchCG::BitTestCase & B,MachineBasicBlock * SwitchBB)1140 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1141 MachineBasicBlock *NextMBB,
1142 BranchProbability BranchProbToNext,
1143 Register Reg, SwitchCG::BitTestCase &B,
1144 MachineBasicBlock *SwitchBB) {
1145 MachineIRBuilder &MIB = *CurBuilder;
1146 MIB.setMBB(*SwitchBB);
1147
1148 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1149 Register Cmp;
1150 unsigned PopCount = llvm::popcount(B.Mask);
1151 if (PopCount == 1) {
1152 // Testing for a single bit; just compare the shift count with what it
1153 // would need to be to shift a 1 bit in that position.
1154 auto MaskTrailingZeros =
1155 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1156 Cmp =
1157 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1158 .getReg(0);
1159 } else if (PopCount == BB.Range) {
1160 // There is only one zero bit in the range, test for it directly.
1161 auto MaskTrailingOnes =
1162 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1163 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1164 .getReg(0);
1165 } else {
1166 // Make desired shift.
1167 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1168 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1169
1170 // Emit bit tests and jumps.
1171 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1172 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1173 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1174 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1175 .getReg(0);
1176 }
1177
1178 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1179 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1180 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1181 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1182 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1183 // one as they are relative probabilities (and thus work more like weights),
1184 // and hence we need to normalize them to let the sum of them become one.
1185 SwitchBB->normalizeSuccProbs();
1186
1187 // Record the fact that the IR edge from the header to the bit test target
1188 // will go through our new block. Neeeded for PHIs to have nodes added.
1189 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1190 SwitchBB);
1191
1192 MIB.buildBrCond(Cmp, *B.TargetBB);
1193
1194 // Avoid emitting unnecessary branches to the next block.
1195 if (NextMBB != SwitchBB->getNextNode())
1196 MIB.buildBr(*NextMBB);
1197 }
1198
lowerBitTestWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability DefaultProb,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)1199 bool IRTranslator::lowerBitTestWorkItem(
1200 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1201 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1202 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1203 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1204 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1205 bool FallthroughUnreachable) {
1206 using namespace SwitchCG;
1207 MachineFunction *CurMF = SwitchMBB->getParent();
1208 // FIXME: Optimize away range check based on pivot comparisons.
1209 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1210 // The bit test blocks haven't been inserted yet; insert them here.
1211 for (BitTestCase &BTC : BTB->Cases)
1212 CurMF->insert(BBI, BTC.ThisBB);
1213
1214 // Fill in fields of the BitTestBlock.
1215 BTB->Parent = CurMBB;
1216 BTB->Default = Fallthrough;
1217
1218 BTB->DefaultProb = UnhandledProbs;
1219 // If the cases in bit test don't form a contiguous range, we evenly
1220 // distribute the probability on the edge to Fallthrough to two
1221 // successors of CurMBB.
1222 if (!BTB->ContiguousRange) {
1223 BTB->Prob += DefaultProb / 2;
1224 BTB->DefaultProb -= DefaultProb / 2;
1225 }
1226
1227 if (FallthroughUnreachable)
1228 BTB->FallthroughUnreachable = true;
1229
1230 // If we're in the right place, emit the bit test header right now.
1231 if (CurMBB == SwitchMBB) {
1232 emitBitTestHeader(*BTB, SwitchMBB);
1233 BTB->Emitted = true;
1234 }
1235 return true;
1236 }
1237
lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB)1238 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1239 Value *Cond,
1240 MachineBasicBlock *SwitchMBB,
1241 MachineBasicBlock *DefaultMBB,
1242 MachineIRBuilder &MIB) {
1243 using namespace SwitchCG;
1244 MachineFunction *CurMF = FuncInfo.MF;
1245 MachineBasicBlock *NextMBB = nullptr;
1246 MachineFunction::iterator BBI(W.MBB);
1247 if (++BBI != FuncInfo.MF->end())
1248 NextMBB = &*BBI;
1249
1250 if (EnableOpts) {
1251 // Here, we order cases by probability so the most likely case will be
1252 // checked first. However, two clusters can have the same probability in
1253 // which case their relative ordering is non-deterministic. So we use Low
1254 // as a tie-breaker as clusters are guaranteed to never overlap.
1255 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1256 [](const CaseCluster &a, const CaseCluster &b) {
1257 return a.Prob != b.Prob
1258 ? a.Prob > b.Prob
1259 : a.Low->getValue().slt(b.Low->getValue());
1260 });
1261
1262 // Rearrange the case blocks so that the last one falls through if possible
1263 // without changing the order of probabilities.
1264 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1265 --I;
1266 if (I->Prob > W.LastCluster->Prob)
1267 break;
1268 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1269 std::swap(*I, *W.LastCluster);
1270 break;
1271 }
1272 }
1273 }
1274
1275 // Compute total probability.
1276 BranchProbability DefaultProb = W.DefaultProb;
1277 BranchProbability UnhandledProbs = DefaultProb;
1278 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1279 UnhandledProbs += I->Prob;
1280
1281 MachineBasicBlock *CurMBB = W.MBB;
1282 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1283 bool FallthroughUnreachable = false;
1284 MachineBasicBlock *Fallthrough;
1285 if (I == W.LastCluster) {
1286 // For the last cluster, fall through to the default destination.
1287 Fallthrough = DefaultMBB;
1288 FallthroughUnreachable = isa<UnreachableInst>(
1289 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1290 } else {
1291 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1292 CurMF->insert(BBI, Fallthrough);
1293 }
1294 UnhandledProbs -= I->Prob;
1295
1296 switch (I->Kind) {
1297 case CC_BitTests: {
1298 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1299 DefaultProb, UnhandledProbs, I, Fallthrough,
1300 FallthroughUnreachable)) {
1301 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1302 return false;
1303 }
1304 break;
1305 }
1306
1307 case CC_JumpTable: {
1308 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1309 UnhandledProbs, I, Fallthrough,
1310 FallthroughUnreachable)) {
1311 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1312 return false;
1313 }
1314 break;
1315 }
1316 case CC_Range: {
1317 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1318 FallthroughUnreachable, UnhandledProbs,
1319 CurMBB, MIB, SwitchMBB)) {
1320 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1321 return false;
1322 }
1323 break;
1324 }
1325 }
1326 CurMBB = Fallthrough;
1327 }
1328
1329 return true;
1330 }
1331
translateIndirectBr(const User & U,MachineIRBuilder & MIRBuilder)1332 bool IRTranslator::translateIndirectBr(const User &U,
1333 MachineIRBuilder &MIRBuilder) {
1334 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1335
1336 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1337 MIRBuilder.buildBrIndirect(Tgt);
1338
1339 // Link successors.
1340 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1341 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1342 for (const BasicBlock *Succ : successors(&BrInst)) {
1343 // It's legal for indirectbr instructions to have duplicate blocks in the
1344 // destination list. We don't allow this in MIR. Skip anything that's
1345 // already a successor.
1346 if (!AddedSuccessors.insert(Succ).second)
1347 continue;
1348 CurBB.addSuccessor(&getMBB(*Succ));
1349 }
1350
1351 return true;
1352 }
1353
isSwiftError(const Value * V)1354 static bool isSwiftError(const Value *V) {
1355 if (auto Arg = dyn_cast<Argument>(V))
1356 return Arg->hasSwiftErrorAttr();
1357 if (auto AI = dyn_cast<AllocaInst>(V))
1358 return AI->isSwiftError();
1359 return false;
1360 }
1361
translateLoad(const User & U,MachineIRBuilder & MIRBuilder)1362 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1363 const LoadInst &LI = cast<LoadInst>(U);
1364 TypeSize StoreSize = DL->getTypeStoreSize(LI.getType());
1365 if (StoreSize.isZero())
1366 return true;
1367
1368 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1369 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1370 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1371 AAMDNodes AAInfo = LI.getAAMetadata();
1372
1373 const Value *Ptr = LI.getPointerOperand();
1374 Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1375 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1376
1377 if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1378 assert(Regs.size() == 1 && "swifterror should be single pointer");
1379 Register VReg =
1380 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1381 MIRBuilder.buildCopy(Regs[0], VReg);
1382 return true;
1383 }
1384
1385 MachineMemOperand::Flags Flags =
1386 TLI->getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1387 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1388 if (AA->pointsToConstantMemory(
1389 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1390 Flags |= MachineMemOperand::MOInvariant;
1391 }
1392 }
1393
1394 const MDNode *Ranges =
1395 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1396 for (unsigned i = 0; i < Regs.size(); ++i) {
1397 Register Addr;
1398 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1399
1400 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1401 Align BaseAlign = getMemOpAlign(LI);
1402 auto MMO = MF->getMachineMemOperand(
1403 Ptr, Flags, MRI->getType(Regs[i]),
1404 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1405 LI.getSyncScopeID(), LI.getOrdering());
1406 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1407 }
1408
1409 return true;
1410 }
1411
translateStore(const User & U,MachineIRBuilder & MIRBuilder)1412 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1413 const StoreInst &SI = cast<StoreInst>(U);
1414 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()).isZero())
1415 return true;
1416
1417 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1418 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1419 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1420
1421 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1422 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1423
1424 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1425 assert(Vals.size() == 1 && "swifterror should be single pointer");
1426
1427 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1428 SI.getPointerOperand());
1429 MIRBuilder.buildCopy(VReg, Vals[0]);
1430 return true;
1431 }
1432
1433 MachineMemOperand::Flags Flags = TLI->getStoreMemOperandFlags(SI, *DL);
1434
1435 for (unsigned i = 0; i < Vals.size(); ++i) {
1436 Register Addr;
1437 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1438
1439 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1440 Align BaseAlign = getMemOpAlign(SI);
1441 auto MMO = MF->getMachineMemOperand(
1442 Ptr, Flags, MRI->getType(Vals[i]),
1443 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1444 SI.getSyncScopeID(), SI.getOrdering());
1445 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1446 }
1447 return true;
1448 }
1449
getOffsetFromIndices(const User & U,const DataLayout & DL)1450 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1451 const Value *Src = U.getOperand(0);
1452 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1453
1454 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1455 // usual array element rather than looking into the actual aggregate.
1456 SmallVector<Value *, 1> Indices;
1457 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1458
1459 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1460 for (auto Idx : EVI->indices())
1461 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1462 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1463 for (auto Idx : IVI->indices())
1464 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1465 } else {
1466 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1467 Indices.push_back(U.getOperand(i));
1468 }
1469
1470 return 8 * static_cast<uint64_t>(
1471 DL.getIndexedOffsetInType(Src->getType(), Indices));
1472 }
1473
translateExtractValue(const User & U,MachineIRBuilder & MIRBuilder)1474 bool IRTranslator::translateExtractValue(const User &U,
1475 MachineIRBuilder &MIRBuilder) {
1476 const Value *Src = U.getOperand(0);
1477 uint64_t Offset = getOffsetFromIndices(U, *DL);
1478 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1479 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1480 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1481 auto &DstRegs = allocateVRegs(U);
1482
1483 for (unsigned i = 0; i < DstRegs.size(); ++i)
1484 DstRegs[i] = SrcRegs[Idx++];
1485
1486 return true;
1487 }
1488
translateInsertValue(const User & U,MachineIRBuilder & MIRBuilder)1489 bool IRTranslator::translateInsertValue(const User &U,
1490 MachineIRBuilder &MIRBuilder) {
1491 const Value *Src = U.getOperand(0);
1492 uint64_t Offset = getOffsetFromIndices(U, *DL);
1493 auto &DstRegs = allocateVRegs(U);
1494 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1495 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1496 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1497 auto *InsertedIt = InsertedRegs.begin();
1498
1499 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1500 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1501 DstRegs[i] = *InsertedIt++;
1502 else
1503 DstRegs[i] = SrcRegs[i];
1504 }
1505
1506 return true;
1507 }
1508
translateSelect(const User & U,MachineIRBuilder & MIRBuilder)1509 bool IRTranslator::translateSelect(const User &U,
1510 MachineIRBuilder &MIRBuilder) {
1511 Register Tst = getOrCreateVReg(*U.getOperand(0));
1512 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1513 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1514 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1515
1516 uint32_t Flags = 0;
1517 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1518 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1519
1520 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1521 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1522 }
1523
1524 return true;
1525 }
1526
translateCopy(const User & U,const Value & V,MachineIRBuilder & MIRBuilder)1527 bool IRTranslator::translateCopy(const User &U, const Value &V,
1528 MachineIRBuilder &MIRBuilder) {
1529 Register Src = getOrCreateVReg(V);
1530 auto &Regs = *VMap.getVRegs(U);
1531 if (Regs.empty()) {
1532 Regs.push_back(Src);
1533 VMap.getOffsets(U)->push_back(0);
1534 } else {
1535 // If we already assigned a vreg for this instruction, we can't change that.
1536 // Emit a copy to satisfy the users we already emitted.
1537 MIRBuilder.buildCopy(Regs[0], Src);
1538 }
1539 return true;
1540 }
1541
translateBitCast(const User & U,MachineIRBuilder & MIRBuilder)1542 bool IRTranslator::translateBitCast(const User &U,
1543 MachineIRBuilder &MIRBuilder) {
1544 // If we're bitcasting to the source type, we can reuse the source vreg.
1545 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1546 getLLTForType(*U.getType(), *DL)) {
1547 // If the source is a ConstantInt then it was probably created by
1548 // ConstantHoisting and we should leave it alone.
1549 if (isa<ConstantInt>(U.getOperand(0)))
1550 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1551 MIRBuilder);
1552 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1553 }
1554
1555 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1556 }
1557
translateCast(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)1558 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1559 MachineIRBuilder &MIRBuilder) {
1560 if (U.getType()->getScalarType()->isBFloatTy() ||
1561 U.getOperand(0)->getType()->getScalarType()->isBFloatTy())
1562 return false;
1563
1564 uint32_t Flags = 0;
1565 if (const Instruction *I = dyn_cast<Instruction>(&U))
1566 Flags = MachineInstr::copyFlagsFromInstruction(*I);
1567
1568 Register Op = getOrCreateVReg(*U.getOperand(0));
1569 Register Res = getOrCreateVReg(U);
1570 MIRBuilder.buildInstr(Opcode, {Res}, {Op}, Flags);
1571 return true;
1572 }
1573
translateGetElementPtr(const User & U,MachineIRBuilder & MIRBuilder)1574 bool IRTranslator::translateGetElementPtr(const User &U,
1575 MachineIRBuilder &MIRBuilder) {
1576 Value &Op0 = *U.getOperand(0);
1577 Register BaseReg = getOrCreateVReg(Op0);
1578 Type *PtrIRTy = Op0.getType();
1579 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1580 Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1581 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1582
1583 uint32_t Flags = 0;
1584 if (const Instruction *I = dyn_cast<Instruction>(&U))
1585 Flags = MachineInstr::copyFlagsFromInstruction(*I);
1586
1587 // Normalize Vector GEP - all scalar operands should be converted to the
1588 // splat vector.
1589 unsigned VectorWidth = 0;
1590
1591 // True if we should use a splat vector; using VectorWidth alone is not
1592 // sufficient.
1593 bool WantSplatVector = false;
1594 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1595 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1596 // We don't produce 1 x N vectors; those are treated as scalars.
1597 WantSplatVector = VectorWidth > 1;
1598 }
1599
1600 // We might need to splat the base pointer into a vector if the offsets
1601 // are vectors.
1602 if (WantSplatVector && !PtrTy.isVector()) {
1603 BaseReg = MIRBuilder
1604 .buildSplatBuildVector(LLT::fixed_vector(VectorWidth, PtrTy),
1605 BaseReg)
1606 .getReg(0);
1607 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1608 PtrTy = getLLTForType(*PtrIRTy, *DL);
1609 OffsetIRTy = DL->getIndexType(PtrIRTy);
1610 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1611 }
1612
1613 int64_t Offset = 0;
1614 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1615 GTI != E; ++GTI) {
1616 const Value *Idx = GTI.getOperand();
1617 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1618 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1619 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1620 continue;
1621 } else {
1622 uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
1623
1624 // If this is a scalar constant or a splat vector of constants,
1625 // handle it quickly.
1626 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1627 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1628 Offset += ElementSize * *Val;
1629 continue;
1630 }
1631 }
1632
1633 if (Offset != 0) {
1634 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1635 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1636 .getReg(0);
1637 Offset = 0;
1638 }
1639
1640 Register IdxReg = getOrCreateVReg(*Idx);
1641 LLT IdxTy = MRI->getType(IdxReg);
1642 if (IdxTy != OffsetTy) {
1643 if (!IdxTy.isVector() && WantSplatVector) {
1644 IdxReg = MIRBuilder
1645 .buildSplatBuildVector(OffsetTy.changeElementType(IdxTy),
1646 IdxReg)
1647 .getReg(0);
1648 }
1649
1650 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1651 }
1652
1653 // N = N + Idx * ElementSize;
1654 // Avoid doing it for ElementSize of 1.
1655 Register GepOffsetReg;
1656 if (ElementSize != 1) {
1657 auto ElementSizeMIB = MIRBuilder.buildConstant(
1658 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1659 GepOffsetReg =
1660 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1661 } else
1662 GepOffsetReg = IdxReg;
1663
1664 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1665 }
1666 }
1667
1668 if (Offset != 0) {
1669 auto OffsetMIB =
1670 MIRBuilder.buildConstant(OffsetTy, Offset);
1671
1672 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds())
1673 Flags |= MachineInstr::MIFlag::NoUWrap;
1674
1675 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0),
1676 Flags);
1677 return true;
1678 }
1679
1680 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1681 return true;
1682 }
1683
translateMemFunc(const CallInst & CI,MachineIRBuilder & MIRBuilder,unsigned Opcode)1684 bool IRTranslator::translateMemFunc(const CallInst &CI,
1685 MachineIRBuilder &MIRBuilder,
1686 unsigned Opcode) {
1687 const Value *SrcPtr = CI.getArgOperand(1);
1688 // If the source is undef, then just emit a nop.
1689 if (isa<UndefValue>(SrcPtr))
1690 return true;
1691
1692 SmallVector<Register, 3> SrcRegs;
1693
1694 unsigned MinPtrSize = UINT_MAX;
1695 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1696 Register SrcReg = getOrCreateVReg(**AI);
1697 LLT SrcTy = MRI->getType(SrcReg);
1698 if (SrcTy.isPointer())
1699 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1700 SrcRegs.push_back(SrcReg);
1701 }
1702
1703 LLT SizeTy = LLT::scalar(MinPtrSize);
1704
1705 // The size operand should be the minimum of the pointer sizes.
1706 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1707 if (MRI->getType(SizeOpReg) != SizeTy)
1708 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1709
1710 auto ICall = MIRBuilder.buildInstr(Opcode);
1711 for (Register SrcReg : SrcRegs)
1712 ICall.addUse(SrcReg);
1713
1714 Align DstAlign;
1715 Align SrcAlign;
1716 unsigned IsVol =
1717 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1718
1719 ConstantInt *CopySize = nullptr;
1720
1721 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1722 DstAlign = MCI->getDestAlign().valueOrOne();
1723 SrcAlign = MCI->getSourceAlign().valueOrOne();
1724 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1725 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1726 DstAlign = MCI->getDestAlign().valueOrOne();
1727 SrcAlign = MCI->getSourceAlign().valueOrOne();
1728 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1729 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1730 DstAlign = MMI->getDestAlign().valueOrOne();
1731 SrcAlign = MMI->getSourceAlign().valueOrOne();
1732 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1733 } else {
1734 auto *MSI = cast<MemSetInst>(&CI);
1735 DstAlign = MSI->getDestAlign().valueOrOne();
1736 }
1737
1738 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1739 // We need to propagate the tail call flag from the IR inst as an argument.
1740 // Otherwise, we have to pessimize and assume later that we cannot tail call
1741 // any memory intrinsics.
1742 ICall.addImm(CI.isTailCall() ? 1 : 0);
1743 }
1744
1745 // Create mem operands to store the alignment and volatile info.
1746 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1747 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1748 if (IsVol) {
1749 LoadFlags |= MachineMemOperand::MOVolatile;
1750 StoreFlags |= MachineMemOperand::MOVolatile;
1751 }
1752
1753 AAMDNodes AAInfo = CI.getAAMetadata();
1754 if (AA && CopySize &&
1755 AA->pointsToConstantMemory(MemoryLocation(
1756 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1757 LoadFlags |= MachineMemOperand::MOInvariant;
1758
1759 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1760 // but the previous usage implied it did. Probably should check
1761 // isDereferenceableAndAlignedPointer.
1762 LoadFlags |= MachineMemOperand::MODereferenceable;
1763 }
1764
1765 ICall.addMemOperand(
1766 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1767 StoreFlags, 1, DstAlign, AAInfo));
1768 if (Opcode != TargetOpcode::G_MEMSET)
1769 ICall.addMemOperand(MF->getMachineMemOperand(
1770 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1771
1772 return true;
1773 }
1774
translateTrap(const CallInst & CI,MachineIRBuilder & MIRBuilder,unsigned Opcode)1775 bool IRTranslator::translateTrap(const CallInst &CI,
1776 MachineIRBuilder &MIRBuilder,
1777 unsigned Opcode) {
1778 StringRef TrapFuncName =
1779 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
1780 if (TrapFuncName.empty()) {
1781 if (Opcode == TargetOpcode::G_UBSANTRAP) {
1782 uint64_t Code = cast<ConstantInt>(CI.getOperand(0))->getZExtValue();
1783 MIRBuilder.buildInstr(Opcode, {}, ArrayRef<llvm::SrcOp>{Code});
1784 } else {
1785 MIRBuilder.buildInstr(Opcode);
1786 }
1787 return true;
1788 }
1789
1790 CallLowering::CallLoweringInfo Info;
1791 if (Opcode == TargetOpcode::G_UBSANTRAP)
1792 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
1793 CI.getArgOperand(0)->getType(), 0});
1794
1795 Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
1796 Info.CB = &CI;
1797 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
1798 return CLI->lowerCall(MIRBuilder, Info);
1799 }
1800
translateVectorInterleave2Intrinsic(const CallInst & CI,MachineIRBuilder & MIRBuilder)1801 bool IRTranslator::translateVectorInterleave2Intrinsic(
1802 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1803 assert(CI.getIntrinsicID() == Intrinsic::vector_interleave2 &&
1804 "This function can only be called on the interleave2 intrinsic!");
1805 // Canonicalize interleave2 to G_SHUFFLE_VECTOR (similar to SelectionDAG).
1806 Register Op0 = getOrCreateVReg(*CI.getOperand(0));
1807 Register Op1 = getOrCreateVReg(*CI.getOperand(1));
1808 Register Res = getOrCreateVReg(CI);
1809
1810 LLT OpTy = MRI->getType(Op0);
1811 MIRBuilder.buildShuffleVector(Res, Op0, Op1,
1812 createInterleaveMask(OpTy.getNumElements(), 2));
1813
1814 return true;
1815 }
1816
translateVectorDeinterleave2Intrinsic(const CallInst & CI,MachineIRBuilder & MIRBuilder)1817 bool IRTranslator::translateVectorDeinterleave2Intrinsic(
1818 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1819 assert(CI.getIntrinsicID() == Intrinsic::vector_deinterleave2 &&
1820 "This function can only be called on the deinterleave2 intrinsic!");
1821 // Canonicalize deinterleave2 to shuffles that extract sub-vectors (similar to
1822 // SelectionDAG).
1823 Register Op = getOrCreateVReg(*CI.getOperand(0));
1824 auto Undef = MIRBuilder.buildUndef(MRI->getType(Op));
1825 ArrayRef<Register> Res = getOrCreateVRegs(CI);
1826
1827 LLT ResTy = MRI->getType(Res[0]);
1828 MIRBuilder.buildShuffleVector(Res[0], Op, Undef,
1829 createStrideMask(0, 2, ResTy.getNumElements()));
1830 MIRBuilder.buildShuffleVector(Res[1], Op, Undef,
1831 createStrideMask(1, 2, ResTy.getNumElements()));
1832
1833 return true;
1834 }
1835
getStackGuard(Register DstReg,MachineIRBuilder & MIRBuilder)1836 void IRTranslator::getStackGuard(Register DstReg,
1837 MachineIRBuilder &MIRBuilder) {
1838 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1839 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1840 auto MIB =
1841 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1842
1843 Value *Global = TLI->getSDagStackGuard(*MF->getFunction().getParent());
1844 if (!Global)
1845 return;
1846
1847 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1848 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1849
1850 MachinePointerInfo MPInfo(Global);
1851 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1852 MachineMemOperand::MODereferenceable;
1853 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1854 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1855 MIB.setMemRefs({MemRef});
1856 }
1857
translateOverflowIntrinsic(const CallInst & CI,unsigned Op,MachineIRBuilder & MIRBuilder)1858 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1859 MachineIRBuilder &MIRBuilder) {
1860 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1861 MIRBuilder.buildInstr(
1862 Op, {ResRegs[0], ResRegs[1]},
1863 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1864
1865 return true;
1866 }
1867
translateFixedPointIntrinsic(unsigned Op,const CallInst & CI,MachineIRBuilder & MIRBuilder)1868 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1869 MachineIRBuilder &MIRBuilder) {
1870 Register Dst = getOrCreateVReg(CI);
1871 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1872 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1873 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1874 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1875 return true;
1876 }
1877
getSimpleIntrinsicOpcode(Intrinsic::ID ID)1878 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1879 switch (ID) {
1880 default:
1881 break;
1882 case Intrinsic::acos:
1883 return TargetOpcode::G_FACOS;
1884 case Intrinsic::asin:
1885 return TargetOpcode::G_FASIN;
1886 case Intrinsic::atan:
1887 return TargetOpcode::G_FATAN;
1888 case Intrinsic::bswap:
1889 return TargetOpcode::G_BSWAP;
1890 case Intrinsic::bitreverse:
1891 return TargetOpcode::G_BITREVERSE;
1892 case Intrinsic::fshl:
1893 return TargetOpcode::G_FSHL;
1894 case Intrinsic::fshr:
1895 return TargetOpcode::G_FSHR;
1896 case Intrinsic::ceil:
1897 return TargetOpcode::G_FCEIL;
1898 case Intrinsic::cos:
1899 return TargetOpcode::G_FCOS;
1900 case Intrinsic::cosh:
1901 return TargetOpcode::G_FCOSH;
1902 case Intrinsic::ctpop:
1903 return TargetOpcode::G_CTPOP;
1904 case Intrinsic::exp:
1905 return TargetOpcode::G_FEXP;
1906 case Intrinsic::exp2:
1907 return TargetOpcode::G_FEXP2;
1908 case Intrinsic::exp10:
1909 return TargetOpcode::G_FEXP10;
1910 case Intrinsic::fabs:
1911 return TargetOpcode::G_FABS;
1912 case Intrinsic::copysign:
1913 return TargetOpcode::G_FCOPYSIGN;
1914 case Intrinsic::minnum:
1915 return TargetOpcode::G_FMINNUM;
1916 case Intrinsic::maxnum:
1917 return TargetOpcode::G_FMAXNUM;
1918 case Intrinsic::minimum:
1919 return TargetOpcode::G_FMINIMUM;
1920 case Intrinsic::maximum:
1921 return TargetOpcode::G_FMAXIMUM;
1922 case Intrinsic::canonicalize:
1923 return TargetOpcode::G_FCANONICALIZE;
1924 case Intrinsic::floor:
1925 return TargetOpcode::G_FFLOOR;
1926 case Intrinsic::fma:
1927 return TargetOpcode::G_FMA;
1928 case Intrinsic::log:
1929 return TargetOpcode::G_FLOG;
1930 case Intrinsic::log2:
1931 return TargetOpcode::G_FLOG2;
1932 case Intrinsic::log10:
1933 return TargetOpcode::G_FLOG10;
1934 case Intrinsic::ldexp:
1935 return TargetOpcode::G_FLDEXP;
1936 case Intrinsic::nearbyint:
1937 return TargetOpcode::G_FNEARBYINT;
1938 case Intrinsic::pow:
1939 return TargetOpcode::G_FPOW;
1940 case Intrinsic::powi:
1941 return TargetOpcode::G_FPOWI;
1942 case Intrinsic::rint:
1943 return TargetOpcode::G_FRINT;
1944 case Intrinsic::round:
1945 return TargetOpcode::G_INTRINSIC_ROUND;
1946 case Intrinsic::roundeven:
1947 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1948 case Intrinsic::sin:
1949 return TargetOpcode::G_FSIN;
1950 case Intrinsic::sinh:
1951 return TargetOpcode::G_FSINH;
1952 case Intrinsic::sqrt:
1953 return TargetOpcode::G_FSQRT;
1954 case Intrinsic::tan:
1955 return TargetOpcode::G_FTAN;
1956 case Intrinsic::tanh:
1957 return TargetOpcode::G_FTANH;
1958 case Intrinsic::trunc:
1959 return TargetOpcode::G_INTRINSIC_TRUNC;
1960 case Intrinsic::readcyclecounter:
1961 return TargetOpcode::G_READCYCLECOUNTER;
1962 case Intrinsic::readsteadycounter:
1963 return TargetOpcode::G_READSTEADYCOUNTER;
1964 case Intrinsic::ptrmask:
1965 return TargetOpcode::G_PTRMASK;
1966 case Intrinsic::lrint:
1967 return TargetOpcode::G_INTRINSIC_LRINT;
1968 case Intrinsic::llrint:
1969 return TargetOpcode::G_INTRINSIC_LLRINT;
1970 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1971 case Intrinsic::vector_reduce_fmin:
1972 return TargetOpcode::G_VECREDUCE_FMIN;
1973 case Intrinsic::vector_reduce_fmax:
1974 return TargetOpcode::G_VECREDUCE_FMAX;
1975 case Intrinsic::vector_reduce_fminimum:
1976 return TargetOpcode::G_VECREDUCE_FMINIMUM;
1977 case Intrinsic::vector_reduce_fmaximum:
1978 return TargetOpcode::G_VECREDUCE_FMAXIMUM;
1979 case Intrinsic::vector_reduce_add:
1980 return TargetOpcode::G_VECREDUCE_ADD;
1981 case Intrinsic::vector_reduce_mul:
1982 return TargetOpcode::G_VECREDUCE_MUL;
1983 case Intrinsic::vector_reduce_and:
1984 return TargetOpcode::G_VECREDUCE_AND;
1985 case Intrinsic::vector_reduce_or:
1986 return TargetOpcode::G_VECREDUCE_OR;
1987 case Intrinsic::vector_reduce_xor:
1988 return TargetOpcode::G_VECREDUCE_XOR;
1989 case Intrinsic::vector_reduce_smax:
1990 return TargetOpcode::G_VECREDUCE_SMAX;
1991 case Intrinsic::vector_reduce_smin:
1992 return TargetOpcode::G_VECREDUCE_SMIN;
1993 case Intrinsic::vector_reduce_umax:
1994 return TargetOpcode::G_VECREDUCE_UMAX;
1995 case Intrinsic::vector_reduce_umin:
1996 return TargetOpcode::G_VECREDUCE_UMIN;
1997 case Intrinsic::experimental_vector_compress:
1998 return TargetOpcode::G_VECTOR_COMPRESS;
1999 case Intrinsic::lround:
2000 return TargetOpcode::G_LROUND;
2001 case Intrinsic::llround:
2002 return TargetOpcode::G_LLROUND;
2003 case Intrinsic::get_fpenv:
2004 return TargetOpcode::G_GET_FPENV;
2005 case Intrinsic::get_fpmode:
2006 return TargetOpcode::G_GET_FPMODE;
2007 }
2008 return Intrinsic::not_intrinsic;
2009 }
2010
translateSimpleIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)2011 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
2012 Intrinsic::ID ID,
2013 MachineIRBuilder &MIRBuilder) {
2014
2015 unsigned Op = getSimpleIntrinsicOpcode(ID);
2016
2017 // Is this a simple intrinsic?
2018 if (Op == Intrinsic::not_intrinsic)
2019 return false;
2020
2021 // Yes. Let's translate it.
2022 SmallVector<llvm::SrcOp, 4> VRegs;
2023 for (const auto &Arg : CI.args())
2024 VRegs.push_back(getOrCreateVReg(*Arg));
2025
2026 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
2027 MachineInstr::copyFlagsFromInstruction(CI));
2028 return true;
2029 }
2030
2031 // TODO: Include ConstainedOps.def when all strict instructions are defined.
getConstrainedOpcode(Intrinsic::ID ID)2032 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
2033 switch (ID) {
2034 case Intrinsic::experimental_constrained_fadd:
2035 return TargetOpcode::G_STRICT_FADD;
2036 case Intrinsic::experimental_constrained_fsub:
2037 return TargetOpcode::G_STRICT_FSUB;
2038 case Intrinsic::experimental_constrained_fmul:
2039 return TargetOpcode::G_STRICT_FMUL;
2040 case Intrinsic::experimental_constrained_fdiv:
2041 return TargetOpcode::G_STRICT_FDIV;
2042 case Intrinsic::experimental_constrained_frem:
2043 return TargetOpcode::G_STRICT_FREM;
2044 case Intrinsic::experimental_constrained_fma:
2045 return TargetOpcode::G_STRICT_FMA;
2046 case Intrinsic::experimental_constrained_sqrt:
2047 return TargetOpcode::G_STRICT_FSQRT;
2048 case Intrinsic::experimental_constrained_ldexp:
2049 return TargetOpcode::G_STRICT_FLDEXP;
2050 default:
2051 return 0;
2052 }
2053 }
2054
translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI,MachineIRBuilder & MIRBuilder)2055 bool IRTranslator::translateConstrainedFPIntrinsic(
2056 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
2057 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
2058
2059 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
2060 if (!Opcode)
2061 return false;
2062
2063 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
2064 if (EB == fp::ExceptionBehavior::ebIgnore)
2065 Flags |= MachineInstr::NoFPExcept;
2066
2067 SmallVector<llvm::SrcOp, 4> VRegs;
2068 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
2069 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(I)));
2070
2071 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
2072 return true;
2073 }
2074
getArgPhysReg(Argument & Arg)2075 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
2076 auto VRegs = getOrCreateVRegs(Arg);
2077 if (VRegs.size() != 1)
2078 return std::nullopt;
2079
2080 // Arguments are lowered as a copy of a livein physical register.
2081 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
2082 if (!VRegDef || !VRegDef->isCopy())
2083 return std::nullopt;
2084 return VRegDef->getOperand(1).getReg().asMCReg();
2085 }
2086
translateIfEntryValueArgument(bool isDeclare,Value * Val,const DILocalVariable * Var,const DIExpression * Expr,const DebugLoc & DL,MachineIRBuilder & MIRBuilder)2087 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val,
2088 const DILocalVariable *Var,
2089 const DIExpression *Expr,
2090 const DebugLoc &DL,
2091 MachineIRBuilder &MIRBuilder) {
2092 auto *Arg = dyn_cast<Argument>(Val);
2093 if (!Arg)
2094 return false;
2095
2096 if (!Expr->isEntryValue())
2097 return false;
2098
2099 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
2100 if (!PhysReg) {
2101 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value")
2102 << ": expression is entry_value but "
2103 << "couldn't find a physical register\n");
2104 LLVM_DEBUG(dbgs() << *Var << "\n");
2105 return true;
2106 }
2107
2108 if (isDeclare) {
2109 // Append an op deref to account for the fact that this is a dbg_declare.
2110 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
2111 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL);
2112 } else {
2113 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr);
2114 }
2115
2116 return true;
2117 }
2118
getConvOpcode(Intrinsic::ID ID)2119 static unsigned getConvOpcode(Intrinsic::ID ID) {
2120 switch (ID) {
2121 default:
2122 llvm_unreachable("Unexpected intrinsic");
2123 case Intrinsic::experimental_convergence_anchor:
2124 return TargetOpcode::CONVERGENCECTRL_ANCHOR;
2125 case Intrinsic::experimental_convergence_entry:
2126 return TargetOpcode::CONVERGENCECTRL_ENTRY;
2127 case Intrinsic::experimental_convergence_loop:
2128 return TargetOpcode::CONVERGENCECTRL_LOOP;
2129 }
2130 }
2131
translateConvergenceControlIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)2132 bool IRTranslator::translateConvergenceControlIntrinsic(
2133 const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) {
2134 MachineInstrBuilder MIB = MIRBuilder.buildInstr(getConvOpcode(ID));
2135 Register OutputReg = getOrCreateConvergenceTokenVReg(CI);
2136 MIB.addDef(OutputReg);
2137
2138 if (ID == Intrinsic::experimental_convergence_loop) {
2139 auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl);
2140 assert(Bundle && "Expected a convergence control token.");
2141 Register InputReg =
2142 getOrCreateConvergenceTokenVReg(*Bundle->Inputs[0].get());
2143 MIB.addUse(InputReg);
2144 }
2145
2146 return true;
2147 }
2148
translateKnownIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)2149 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
2150 MachineIRBuilder &MIRBuilder) {
2151 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
2152 if (ORE->enabled()) {
2153 if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
2154 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2155 R.visit(MI);
2156 }
2157 }
2158 }
2159
2160 // If this is a simple intrinsic (that is, we just need to add a def of
2161 // a vreg, and uses for each arg operand, then translate it.
2162 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
2163 return true;
2164
2165 switch (ID) {
2166 default:
2167 break;
2168 case Intrinsic::lifetime_start:
2169 case Intrinsic::lifetime_end: {
2170 // No stack colouring in O0, discard region information.
2171 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None)
2172 return true;
2173
2174 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2175 : TargetOpcode::LIFETIME_END;
2176
2177 // Get the underlying objects for the location passed on the lifetime
2178 // marker.
2179 SmallVector<const Value *, 4> Allocas;
2180 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
2181
2182 // Iterate over each underlying object, creating lifetime markers for each
2183 // static alloca. Quit if we find a non-static alloca.
2184 for (const Value *V : Allocas) {
2185 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
2186 if (!AI)
2187 continue;
2188
2189 if (!AI->isStaticAlloca())
2190 return true;
2191
2192 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
2193 }
2194 return true;
2195 }
2196 case Intrinsic::dbg_declare: {
2197 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
2198 assert(DI.getVariable() && "Missing variable");
2199 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(),
2200 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2201 return true;
2202 }
2203 case Intrinsic::dbg_label: {
2204 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2205 assert(DI.getLabel() && "Missing label");
2206
2207 assert(DI.getLabel()->isValidLocationForIntrinsic(
2208 MIRBuilder.getDebugLoc()) &&
2209 "Expected inlined-at fields to agree");
2210
2211 MIRBuilder.buildDbgLabel(DI.getLabel());
2212 return true;
2213 }
2214 case Intrinsic::vaend:
2215 // No target I know of cares about va_end. Certainly no in-tree target
2216 // does. Simplest intrinsic ever!
2217 return true;
2218 case Intrinsic::vastart: {
2219 Value *Ptr = CI.getArgOperand(0);
2220 unsigned ListSize = TLI->getVaListSizeInBits(*DL) / 8;
2221 Align Alignment = getKnownAlignment(Ptr, *DL);
2222
2223 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2224 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2225 MachineMemOperand::MOStore,
2226 ListSize, Alignment));
2227 return true;
2228 }
2229 case Intrinsic::dbg_assign:
2230 // A dbg.assign is a dbg.value with more information about stack locations,
2231 // typically produced during optimisation of variables with leaked
2232 // addresses. We can treat it like a normal dbg_value intrinsic here; to
2233 // benefit from the full analysis of stack/SSA locations, GlobalISel would
2234 // need to register for and use the AssignmentTrackingAnalysis pass.
2235 [[fallthrough]];
2236 case Intrinsic::dbg_value: {
2237 // This form of DBG_VALUE is target-independent.
2238 const DbgValueInst &DI = cast<DbgValueInst>(CI);
2239 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(),
2240 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2241 return true;
2242 }
2243 case Intrinsic::uadd_with_overflow:
2244 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2245 case Intrinsic::sadd_with_overflow:
2246 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2247 case Intrinsic::usub_with_overflow:
2248 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2249 case Intrinsic::ssub_with_overflow:
2250 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2251 case Intrinsic::umul_with_overflow:
2252 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2253 case Intrinsic::smul_with_overflow:
2254 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2255 case Intrinsic::uadd_sat:
2256 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2257 case Intrinsic::sadd_sat:
2258 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2259 case Intrinsic::usub_sat:
2260 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2261 case Intrinsic::ssub_sat:
2262 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2263 case Intrinsic::ushl_sat:
2264 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2265 case Intrinsic::sshl_sat:
2266 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2267 case Intrinsic::umin:
2268 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2269 case Intrinsic::umax:
2270 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2271 case Intrinsic::smin:
2272 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2273 case Intrinsic::smax:
2274 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2275 case Intrinsic::abs:
2276 // TODO: Preserve "int min is poison" arg in GMIR?
2277 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2278 case Intrinsic::smul_fix:
2279 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2280 case Intrinsic::umul_fix:
2281 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2282 case Intrinsic::smul_fix_sat:
2283 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2284 case Intrinsic::umul_fix_sat:
2285 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2286 case Intrinsic::sdiv_fix:
2287 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2288 case Intrinsic::udiv_fix:
2289 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2290 case Intrinsic::sdiv_fix_sat:
2291 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2292 case Intrinsic::udiv_fix_sat:
2293 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2294 case Intrinsic::fmuladd: {
2295 const TargetMachine &TM = MF->getTarget();
2296 Register Dst = getOrCreateVReg(CI);
2297 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2298 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2299 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2300 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2301 TLI->isFMAFasterThanFMulAndFAdd(*MF,
2302 TLI->getValueType(*DL, CI.getType()))) {
2303 // TODO: Revisit this to see if we should move this part of the
2304 // lowering to the combiner.
2305 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2306 MachineInstr::copyFlagsFromInstruction(CI));
2307 } else {
2308 LLT Ty = getLLTForType(*CI.getType(), *DL);
2309 auto FMul = MIRBuilder.buildFMul(
2310 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2311 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2312 MachineInstr::copyFlagsFromInstruction(CI));
2313 }
2314 return true;
2315 }
2316 case Intrinsic::convert_from_fp16:
2317 // FIXME: This intrinsic should probably be removed from the IR.
2318 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2319 getOrCreateVReg(*CI.getArgOperand(0)),
2320 MachineInstr::copyFlagsFromInstruction(CI));
2321 return true;
2322 case Intrinsic::convert_to_fp16:
2323 // FIXME: This intrinsic should probably be removed from the IR.
2324 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2325 getOrCreateVReg(*CI.getArgOperand(0)),
2326 MachineInstr::copyFlagsFromInstruction(CI));
2327 return true;
2328 case Intrinsic::frexp: {
2329 ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2330 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2331 getOrCreateVReg(*CI.getArgOperand(0)),
2332 MachineInstr::copyFlagsFromInstruction(CI));
2333 return true;
2334 }
2335 case Intrinsic::memcpy_inline:
2336 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2337 case Intrinsic::memcpy:
2338 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2339 case Intrinsic::memmove:
2340 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2341 case Intrinsic::memset:
2342 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2343 case Intrinsic::eh_typeid_for: {
2344 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2345 Register Reg = getOrCreateVReg(CI);
2346 unsigned TypeID = MF->getTypeIDFor(GV);
2347 MIRBuilder.buildConstant(Reg, TypeID);
2348 return true;
2349 }
2350 case Intrinsic::objectsize:
2351 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2352
2353 case Intrinsic::is_constant:
2354 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2355
2356 case Intrinsic::stackguard:
2357 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2358 return true;
2359 case Intrinsic::stackprotector: {
2360 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2361 Register GuardVal;
2362 if (TLI->useLoadStackGuardNode()) {
2363 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2364 getStackGuard(GuardVal, MIRBuilder);
2365 } else
2366 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2367
2368 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2369 int FI = getOrCreateFrameIndex(*Slot);
2370 MF->getFrameInfo().setStackProtectorIndex(FI);
2371
2372 MIRBuilder.buildStore(
2373 GuardVal, getOrCreateVReg(*Slot),
2374 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2375 MachineMemOperand::MOStore |
2376 MachineMemOperand::MOVolatile,
2377 PtrTy, Align(8)));
2378 return true;
2379 }
2380 case Intrinsic::stacksave: {
2381 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {});
2382 return true;
2383 }
2384 case Intrinsic::stackrestore: {
2385 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {},
2386 {getOrCreateVReg(*CI.getArgOperand(0))});
2387 return true;
2388 }
2389 case Intrinsic::cttz:
2390 case Intrinsic::ctlz: {
2391 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2392 bool isTrailing = ID == Intrinsic::cttz;
2393 unsigned Opcode = isTrailing
2394 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2395 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2396 : Cst->isZero() ? TargetOpcode::G_CTLZ
2397 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2398 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2399 {getOrCreateVReg(*CI.getArgOperand(0))});
2400 return true;
2401 }
2402 case Intrinsic::invariant_start: {
2403 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2404 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2405 MIRBuilder.buildUndef(Undef);
2406 return true;
2407 }
2408 case Intrinsic::invariant_end:
2409 return true;
2410 case Intrinsic::expect:
2411 case Intrinsic::annotation:
2412 case Intrinsic::ptr_annotation:
2413 case Intrinsic::launder_invariant_group:
2414 case Intrinsic::strip_invariant_group: {
2415 // Drop the intrinsic, but forward the value.
2416 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2417 getOrCreateVReg(*CI.getArgOperand(0)));
2418 return true;
2419 }
2420 case Intrinsic::assume:
2421 case Intrinsic::experimental_noalias_scope_decl:
2422 case Intrinsic::var_annotation:
2423 case Intrinsic::sideeffect:
2424 // Discard annotate attributes, assumptions, and artificial side-effects.
2425 return true;
2426 case Intrinsic::read_volatile_register:
2427 case Intrinsic::read_register: {
2428 Value *Arg = CI.getArgOperand(0);
2429 MIRBuilder
2430 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2431 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2432 return true;
2433 }
2434 case Intrinsic::write_register: {
2435 Value *Arg = CI.getArgOperand(0);
2436 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2437 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2438 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2439 return true;
2440 }
2441 case Intrinsic::localescape: {
2442 MachineBasicBlock &EntryMBB = MF->front();
2443 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2444
2445 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2446 // is the same on all targets.
2447 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2448 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2449 if (isa<ConstantPointerNull>(Arg))
2450 continue; // Skip null pointers. They represent a hole in index space.
2451
2452 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2453 MCSymbol *FrameAllocSym =
2454 MF->getContext().getOrCreateFrameAllocSymbol(EscapedName, Idx);
2455
2456 // This should be inserted at the start of the entry block.
2457 auto LocalEscape =
2458 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2459 .addSym(FrameAllocSym)
2460 .addFrameIndex(FI);
2461
2462 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2463 }
2464
2465 return true;
2466 }
2467 case Intrinsic::vector_reduce_fadd:
2468 case Intrinsic::vector_reduce_fmul: {
2469 // Need to check for the reassoc flag to decide whether we want a
2470 // sequential reduction opcode or not.
2471 Register Dst = getOrCreateVReg(CI);
2472 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2473 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2474 unsigned Opc = 0;
2475 if (!CI.hasAllowReassoc()) {
2476 // The sequential ordering case.
2477 Opc = ID == Intrinsic::vector_reduce_fadd
2478 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2479 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2480 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2481 MachineInstr::copyFlagsFromInstruction(CI));
2482 return true;
2483 }
2484 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2485 // since the associativity doesn't matter.
2486 unsigned ScalarOpc;
2487 if (ID == Intrinsic::vector_reduce_fadd) {
2488 Opc = TargetOpcode::G_VECREDUCE_FADD;
2489 ScalarOpc = TargetOpcode::G_FADD;
2490 } else {
2491 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2492 ScalarOpc = TargetOpcode::G_FMUL;
2493 }
2494 LLT DstTy = MRI->getType(Dst);
2495 auto Rdx = MIRBuilder.buildInstr(
2496 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2497 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2498 MachineInstr::copyFlagsFromInstruction(CI));
2499
2500 return true;
2501 }
2502 case Intrinsic::trap:
2503 return translateTrap(CI, MIRBuilder, TargetOpcode::G_TRAP);
2504 case Intrinsic::debugtrap:
2505 return translateTrap(CI, MIRBuilder, TargetOpcode::G_DEBUGTRAP);
2506 case Intrinsic::ubsantrap:
2507 return translateTrap(CI, MIRBuilder, TargetOpcode::G_UBSANTRAP);
2508 case Intrinsic::allow_runtime_check:
2509 case Intrinsic::allow_ubsan_check:
2510 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2511 getOrCreateVReg(*ConstantInt::getTrue(CI.getType())));
2512 return true;
2513 case Intrinsic::amdgcn_cs_chain:
2514 return translateCallBase(CI, MIRBuilder);
2515 case Intrinsic::fptrunc_round: {
2516 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2517
2518 // Convert the metadata argument to a constant integer
2519 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2520 std::optional<RoundingMode> RoundMode =
2521 convertStrToRoundingMode(cast<MDString>(MD)->getString());
2522
2523 // Add the Rounding mode as an integer
2524 MIRBuilder
2525 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2526 {getOrCreateVReg(CI)},
2527 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2528 .addImm((int)*RoundMode);
2529
2530 return true;
2531 }
2532 case Intrinsic::is_fpclass: {
2533 Value *FpValue = CI.getOperand(0);
2534 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2535
2536 MIRBuilder
2537 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2538 {getOrCreateVReg(*FpValue)})
2539 .addImm(TestMaskValue->getZExtValue());
2540
2541 return true;
2542 }
2543 case Intrinsic::set_fpenv: {
2544 Value *FPEnv = CI.getOperand(0);
2545 MIRBuilder.buildSetFPEnv(getOrCreateVReg(*FPEnv));
2546 return true;
2547 }
2548 case Intrinsic::reset_fpenv:
2549 MIRBuilder.buildResetFPEnv();
2550 return true;
2551 case Intrinsic::set_fpmode: {
2552 Value *FPState = CI.getOperand(0);
2553 MIRBuilder.buildSetFPMode(getOrCreateVReg(*FPState));
2554 return true;
2555 }
2556 case Intrinsic::reset_fpmode:
2557 MIRBuilder.buildResetFPMode();
2558 return true;
2559 case Intrinsic::vscale: {
2560 MIRBuilder.buildVScale(getOrCreateVReg(CI), 1);
2561 return true;
2562 }
2563 case Intrinsic::scmp:
2564 MIRBuilder.buildSCmp(getOrCreateVReg(CI),
2565 getOrCreateVReg(*CI.getOperand(0)),
2566 getOrCreateVReg(*CI.getOperand(1)));
2567 return true;
2568 case Intrinsic::ucmp:
2569 MIRBuilder.buildUCmp(getOrCreateVReg(CI),
2570 getOrCreateVReg(*CI.getOperand(0)),
2571 getOrCreateVReg(*CI.getOperand(1)));
2572 return true;
2573 case Intrinsic::prefetch: {
2574 Value *Addr = CI.getOperand(0);
2575 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue();
2576 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
2577 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue();
2578
2579 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
2580 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags,
2581 LLT(), Align());
2582
2583 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType,
2584 MMO);
2585
2586 return true;
2587 }
2588
2589 case Intrinsic::vector_interleave2:
2590 case Intrinsic::vector_deinterleave2: {
2591 // Both intrinsics have at least one operand.
2592 Value *Op0 = CI.getOperand(0);
2593 LLT ResTy = getLLTForType(*Op0->getType(), MIRBuilder.getDataLayout());
2594 if (!ResTy.isFixedVector())
2595 return false;
2596
2597 if (CI.getIntrinsicID() == Intrinsic::vector_interleave2)
2598 return translateVectorInterleave2Intrinsic(CI, MIRBuilder);
2599
2600 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder);
2601 }
2602
2603 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2604 case Intrinsic::INTRINSIC:
2605 #include "llvm/IR/ConstrainedOps.def"
2606 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2607 MIRBuilder);
2608 case Intrinsic::experimental_convergence_anchor:
2609 case Intrinsic::experimental_convergence_entry:
2610 case Intrinsic::experimental_convergence_loop:
2611 return translateConvergenceControlIntrinsic(CI, ID, MIRBuilder);
2612 }
2613 return false;
2614 }
2615
translateInlineAsm(const CallBase & CB,MachineIRBuilder & MIRBuilder)2616 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2617 MachineIRBuilder &MIRBuilder) {
2618
2619 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2620
2621 if (!ALI) {
2622 LLVM_DEBUG(
2623 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2624 return false;
2625 }
2626
2627 return ALI->lowerInlineAsm(
2628 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2629 }
2630
translateCallBase(const CallBase & CB,MachineIRBuilder & MIRBuilder)2631 bool IRTranslator::translateCallBase(const CallBase &CB,
2632 MachineIRBuilder &MIRBuilder) {
2633 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2634
2635 SmallVector<ArrayRef<Register>, 8> Args;
2636 Register SwiftInVReg = 0;
2637 Register SwiftErrorVReg = 0;
2638 for (const auto &Arg : CB.args()) {
2639 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2640 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2641 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2642 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2643 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2644 &CB, &MIRBuilder.getMBB(), Arg));
2645 Args.emplace_back(ArrayRef(SwiftInVReg));
2646 SwiftErrorVReg =
2647 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2648 continue;
2649 }
2650 Args.push_back(getOrCreateVRegs(*Arg));
2651 }
2652
2653 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2654 if (ORE->enabled()) {
2655 if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2656 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2657 R.visit(CI);
2658 }
2659 }
2660 }
2661
2662 std::optional<CallLowering::PtrAuthInfo> PAI;
2663 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
2664 // Functions should never be ptrauth-called directly.
2665 assert(!CB.getCalledFunction() && "invalid direct ptrauth call");
2666
2667 const Value *Key = Bundle->Inputs[0];
2668 const Value *Discriminator = Bundle->Inputs[1];
2669
2670 // Look through ptrauth constants to try to eliminate the matching bundle
2671 // and turn this into a direct call with no ptrauth.
2672 // CallLowering will use the raw pointer if it doesn't find the PAI.
2673 const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CB.getCalledOperand());
2674 if (!CalleeCPA || !isa<Function>(CalleeCPA->getPointer()) ||
2675 !CalleeCPA->isKnownCompatibleWith(Key, Discriminator, *DL)) {
2676 // If we can't make it direct, package the bundle into PAI.
2677 Register DiscReg = getOrCreateVReg(*Discriminator);
2678 PAI = CallLowering::PtrAuthInfo{cast<ConstantInt>(Key)->getZExtValue(),
2679 DiscReg};
2680 }
2681 }
2682
2683 Register ConvergenceCtrlToken = 0;
2684 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
2685 const auto &Token = *Bundle->Inputs[0].get();
2686 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token);
2687 }
2688
2689 // We don't set HasCalls on MFI here yet because call lowering may decide to
2690 // optimize into tail calls. Instead, we defer that to selection where a final
2691 // scan is done to check if any instructions are calls.
2692 bool Success = CLI->lowerCall(
2693 MIRBuilder, CB, Res, Args, SwiftErrorVReg, PAI, ConvergenceCtrlToken,
2694 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2695
2696 // Check if we just inserted a tail call.
2697 if (Success) {
2698 assert(!HasTailCall && "Can't tail call return twice from block?");
2699 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2700 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2701 }
2702
2703 return Success;
2704 }
2705
translateCall(const User & U,MachineIRBuilder & MIRBuilder)2706 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2707 const CallInst &CI = cast<CallInst>(U);
2708 auto TII = MF->getTarget().getIntrinsicInfo();
2709 const Function *F = CI.getCalledFunction();
2710
2711 // FIXME: support Windows dllimport function calls and calls through
2712 // weak symbols.
2713 if (F && (F->hasDLLImportStorageClass() ||
2714 (MF->getTarget().getTargetTriple().isOSWindows() &&
2715 F->hasExternalWeakLinkage())))
2716 return false;
2717
2718 // FIXME: support control flow guard targets.
2719 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2720 return false;
2721
2722 // FIXME: support statepoints and related.
2723 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2724 return false;
2725
2726 if (CI.isInlineAsm())
2727 return translateInlineAsm(CI, MIRBuilder);
2728
2729 diagnoseDontCall(CI);
2730
2731 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2732 if (F && F->isIntrinsic()) {
2733 ID = F->getIntrinsicID();
2734 if (TII && ID == Intrinsic::not_intrinsic)
2735 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2736 }
2737
2738 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2739 return translateCallBase(CI, MIRBuilder);
2740
2741 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2742
2743 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2744 return true;
2745
2746 ArrayRef<Register> ResultRegs;
2747 if (!CI.getType()->isVoidTy())
2748 ResultRegs = getOrCreateVRegs(CI);
2749
2750 // Ignore the callsite attributes. Backend code is most likely not expecting
2751 // an intrinsic to sometimes have side effects and sometimes not.
2752 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs);
2753 if (isa<FPMathOperator>(CI))
2754 MIB->copyIRFlags(CI);
2755
2756 for (const auto &Arg : enumerate(CI.args())) {
2757 // If this is required to be an immediate, don't materialize it in a
2758 // register.
2759 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2760 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2761 // imm arguments are more convenient than cimm (and realistically
2762 // probably sufficient), so use them.
2763 assert(CI->getBitWidth() <= 64 &&
2764 "large intrinsic immediates not handled");
2765 MIB.addImm(CI->getSExtValue());
2766 } else {
2767 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2768 }
2769 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2770 auto *MD = MDVal->getMetadata();
2771 auto *MDN = dyn_cast<MDNode>(MD);
2772 if (!MDN) {
2773 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2774 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2775 else // This was probably an MDString.
2776 return false;
2777 }
2778 MIB.addMetadata(MDN);
2779 } else {
2780 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2781 if (VRegs.size() > 1)
2782 return false;
2783 MIB.addUse(VRegs[0]);
2784 }
2785 }
2786
2787 // Add a MachineMemOperand if it is a target mem intrinsic.
2788 TargetLowering::IntrinsicInfo Info;
2789 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2790 if (TLI->getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2791 Align Alignment = Info.align.value_or(
2792 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2793 LLT MemTy = Info.memVT.isSimple()
2794 ? getLLTForMVT(Info.memVT.getSimpleVT())
2795 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2796
2797 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2798 // didn't yield anything useful.
2799 MachinePointerInfo MPI;
2800 if (Info.ptrVal)
2801 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2802 else if (Info.fallbackAddressSpace)
2803 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2804 MIB.addMemOperand(
2805 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2806 }
2807
2808 if (CI.isConvergent()) {
2809 if (auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl)) {
2810 auto *Token = Bundle->Inputs[0].get();
2811 Register TokenReg = getOrCreateVReg(*Token);
2812 MIB.addUse(TokenReg, RegState::Implicit);
2813 }
2814 }
2815
2816 return true;
2817 }
2818
findUnwindDestinations(const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2819 bool IRTranslator::findUnwindDestinations(
2820 const BasicBlock *EHPadBB,
2821 BranchProbability Prob,
2822 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2823 &UnwindDests) {
2824 EHPersonality Personality = classifyEHPersonality(
2825 EHPadBB->getParent()->getFunction().getPersonalityFn());
2826 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2827 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2828 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2829 bool IsSEH = isAsynchronousEHPersonality(Personality);
2830
2831 if (IsWasmCXX) {
2832 // Ignore this for now.
2833 return false;
2834 }
2835
2836 while (EHPadBB) {
2837 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2838 BasicBlock *NewEHPadBB = nullptr;
2839 if (isa<LandingPadInst>(Pad)) {
2840 // Stop on landingpads. They are not funclets.
2841 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2842 break;
2843 }
2844 if (isa<CleanupPadInst>(Pad)) {
2845 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2846 // personalities.
2847 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2848 UnwindDests.back().first->setIsEHScopeEntry();
2849 UnwindDests.back().first->setIsEHFuncletEntry();
2850 break;
2851 }
2852 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2853 // Add the catchpad handlers to the possible destinations.
2854 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2855 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2856 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2857 if (IsMSVCCXX || IsCoreCLR)
2858 UnwindDests.back().first->setIsEHFuncletEntry();
2859 if (!IsSEH)
2860 UnwindDests.back().first->setIsEHScopeEntry();
2861 }
2862 NewEHPadBB = CatchSwitch->getUnwindDest();
2863 } else {
2864 continue;
2865 }
2866
2867 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2868 if (BPI && NewEHPadBB)
2869 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2870 EHPadBB = NewEHPadBB;
2871 }
2872 return true;
2873 }
2874
translateInvoke(const User & U,MachineIRBuilder & MIRBuilder)2875 bool IRTranslator::translateInvoke(const User &U,
2876 MachineIRBuilder &MIRBuilder) {
2877 const InvokeInst &I = cast<InvokeInst>(U);
2878 MCContext &Context = MF->getContext();
2879
2880 const BasicBlock *ReturnBB = I.getSuccessor(0);
2881 const BasicBlock *EHPadBB = I.getSuccessor(1);
2882
2883 const Function *Fn = I.getCalledFunction();
2884
2885 // FIXME: support invoking patchpoint and statepoint intrinsics.
2886 if (Fn && Fn->isIntrinsic())
2887 return false;
2888
2889 // FIXME: support whatever these are.
2890 if (I.hasDeoptState())
2891 return false;
2892
2893 // FIXME: support control flow guard targets.
2894 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2895 return false;
2896
2897 // FIXME: support Windows exception handling.
2898 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2899 return false;
2900
2901 // FIXME: support Windows dllimport function calls and calls through
2902 // weak symbols.
2903 if (Fn && (Fn->hasDLLImportStorageClass() ||
2904 (MF->getTarget().getTargetTriple().isOSWindows() &&
2905 Fn->hasExternalWeakLinkage())))
2906 return false;
2907
2908 bool LowerInlineAsm = I.isInlineAsm();
2909 bool NeedEHLabel = true;
2910
2911 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2912 // the region covered by the try.
2913 MCSymbol *BeginSymbol = nullptr;
2914 if (NeedEHLabel) {
2915 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2916 BeginSymbol = Context.createTempSymbol();
2917 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2918 }
2919
2920 if (LowerInlineAsm) {
2921 if (!translateInlineAsm(I, MIRBuilder))
2922 return false;
2923 } else if (!translateCallBase(I, MIRBuilder))
2924 return false;
2925
2926 MCSymbol *EndSymbol = nullptr;
2927 if (NeedEHLabel) {
2928 EndSymbol = Context.createTempSymbol();
2929 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2930 }
2931
2932 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2933 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2934 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2935 BranchProbability EHPadBBProb =
2936 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2937 : BranchProbability::getZero();
2938
2939 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2940 return false;
2941
2942 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2943 &ReturnMBB = getMBB(*ReturnBB);
2944 // Update successor info.
2945 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2946 for (auto &UnwindDest : UnwindDests) {
2947 UnwindDest.first->setIsEHPad();
2948 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2949 }
2950 InvokeMBB->normalizeSuccProbs();
2951
2952 if (NeedEHLabel) {
2953 assert(BeginSymbol && "Expected a begin symbol!");
2954 assert(EndSymbol && "Expected an end symbol!");
2955 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2956 }
2957
2958 MIRBuilder.buildBr(ReturnMBB);
2959 return true;
2960 }
2961
translateCallBr(const User & U,MachineIRBuilder & MIRBuilder)2962 bool IRTranslator::translateCallBr(const User &U,
2963 MachineIRBuilder &MIRBuilder) {
2964 // FIXME: Implement this.
2965 return false;
2966 }
2967
translateLandingPad(const User & U,MachineIRBuilder & MIRBuilder)2968 bool IRTranslator::translateLandingPad(const User &U,
2969 MachineIRBuilder &MIRBuilder) {
2970 const LandingPadInst &LP = cast<LandingPadInst>(U);
2971
2972 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2973
2974 MBB.setIsEHPad();
2975
2976 // If there aren't registers to copy the values into (e.g., during SjLj
2977 // exceptions), then don't bother.
2978 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2979 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 &&
2980 TLI->getExceptionSelectorRegister(PersonalityFn) == 0)
2981 return true;
2982
2983 // If landingpad's return type is token type, we don't create DAG nodes
2984 // for its exception pointer and selector value. The extraction of exception
2985 // pointer or selector value from token type landingpads is not currently
2986 // supported.
2987 if (LP.getType()->isTokenTy())
2988 return true;
2989
2990 // Add a label to mark the beginning of the landing pad. Deletion of the
2991 // landing pad can thus be detected via the MachineModuleInfo.
2992 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2993 .addSym(MF->addLandingPad(&MBB));
2994
2995 // If the unwinder does not preserve all registers, ensure that the
2996 // function marks the clobbered registers as used.
2997 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2998 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2999 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
3000
3001 LLT Ty = getLLTForType(*LP.getType(), *DL);
3002 Register Undef = MRI->createGenericVirtualRegister(Ty);
3003 MIRBuilder.buildUndef(Undef);
3004
3005 SmallVector<LLT, 2> Tys;
3006 for (Type *Ty : cast<StructType>(LP.getType())->elements())
3007 Tys.push_back(getLLTForType(*Ty, *DL));
3008 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
3009
3010 // Mark exception register as live in.
3011 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn);
3012 if (!ExceptionReg)
3013 return false;
3014
3015 MBB.addLiveIn(ExceptionReg);
3016 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
3017 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
3018
3019 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn);
3020 if (!SelectorReg)
3021 return false;
3022
3023 MBB.addLiveIn(SelectorReg);
3024 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
3025 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
3026 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
3027
3028 return true;
3029 }
3030
translateAlloca(const User & U,MachineIRBuilder & MIRBuilder)3031 bool IRTranslator::translateAlloca(const User &U,
3032 MachineIRBuilder &MIRBuilder) {
3033 auto &AI = cast<AllocaInst>(U);
3034
3035 if (AI.isSwiftError())
3036 return true;
3037
3038 if (AI.isStaticAlloca()) {
3039 Register Res = getOrCreateVReg(AI);
3040 int FI = getOrCreateFrameIndex(AI);
3041 MIRBuilder.buildFrameIndex(Res, FI);
3042 return true;
3043 }
3044
3045 // FIXME: support stack probing for Windows.
3046 if (MF->getTarget().getTargetTriple().isOSWindows())
3047 return false;
3048
3049 // Now we're in the harder dynamic case.
3050 Register NumElts = getOrCreateVReg(*AI.getArraySize());
3051 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
3052 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
3053 if (MRI->getType(NumElts) != IntPtrTy) {
3054 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
3055 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
3056 NumElts = ExtElts;
3057 }
3058
3059 Type *Ty = AI.getAllocatedType();
3060
3061 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
3062 Register TySize =
3063 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
3064 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
3065
3066 // Round the size of the allocation up to the stack alignment size
3067 // by add SA-1 to the size. This doesn't overflow because we're computing
3068 // an address inside an alloca.
3069 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
3070 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
3071 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
3072 MachineInstr::NoUWrap);
3073 auto AlignCst =
3074 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
3075 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
3076
3077 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
3078 if (Alignment <= StackAlign)
3079 Alignment = Align(1);
3080 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
3081
3082 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
3083 assert(MF->getFrameInfo().hasVarSizedObjects());
3084 return true;
3085 }
3086
translateVAArg(const User & U,MachineIRBuilder & MIRBuilder)3087 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
3088 // FIXME: We may need more info about the type. Because of how LLT works,
3089 // we're completely discarding the i64/double distinction here (amongst
3090 // others). Fortunately the ABIs I know of where that matters don't use va_arg
3091 // anyway but that's not guaranteed.
3092 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
3093 {getOrCreateVReg(*U.getOperand(0)),
3094 DL->getABITypeAlign(U.getType()).value()});
3095 return true;
3096 }
3097
translateUnreachable(const User & U,MachineIRBuilder & MIRBuilder)3098 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
3099 if (!MF->getTarget().Options.TrapUnreachable)
3100 return true;
3101
3102 auto &UI = cast<UnreachableInst>(U);
3103
3104 // We may be able to ignore unreachable behind a noreturn call.
3105 if (const CallInst *Call = dyn_cast_or_null<CallInst>(UI.getPrevNode());
3106 Call && Call->doesNotReturn()) {
3107 if (MF->getTarget().Options.NoTrapAfterNoreturn)
3108 return true;
3109 // Do not emit an additional trap instruction.
3110 if (Call->isNonContinuableTrap())
3111 return true;
3112 }
3113
3114 MIRBuilder.buildTrap();
3115 return true;
3116 }
3117
translateInsertElement(const User & U,MachineIRBuilder & MIRBuilder)3118 bool IRTranslator::translateInsertElement(const User &U,
3119 MachineIRBuilder &MIRBuilder) {
3120 // If it is a <1 x Ty> vector, use the scalar as it is
3121 // not a legal vector type in LLT.
3122 if (auto *FVT = dyn_cast<FixedVectorType>(U.getType());
3123 FVT && FVT->getNumElements() == 1)
3124 return translateCopy(U, *U.getOperand(1), MIRBuilder);
3125
3126 Register Res = getOrCreateVReg(U);
3127 Register Val = getOrCreateVReg(*U.getOperand(0));
3128 Register Elt = getOrCreateVReg(*U.getOperand(1));
3129 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3130 Register Idx;
3131 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(2))) {
3132 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3133 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3134 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
3135 Idx = getOrCreateVReg(*NewIdxCI);
3136 }
3137 }
3138 if (!Idx)
3139 Idx = getOrCreateVReg(*U.getOperand(2));
3140 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3141 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3142 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
3143 }
3144 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
3145 return true;
3146 }
3147
translateExtractElement(const User & U,MachineIRBuilder & MIRBuilder)3148 bool IRTranslator::translateExtractElement(const User &U,
3149 MachineIRBuilder &MIRBuilder) {
3150 // If it is a <1 x Ty> vector, use the scalar as it is
3151 // not a legal vector type in LLT.
3152 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
3153 return translateCopy(U, *U.getOperand(0), MIRBuilder);
3154
3155 Register Res = getOrCreateVReg(U);
3156 Register Val = getOrCreateVReg(*U.getOperand(0));
3157 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3158 Register Idx;
3159 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
3160 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3161 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3162 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
3163 Idx = getOrCreateVReg(*NewIdxCI);
3164 }
3165 }
3166 if (!Idx)
3167 Idx = getOrCreateVReg(*U.getOperand(1));
3168 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3169 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3170 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
3171 }
3172 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
3173 return true;
3174 }
3175
translateShuffleVector(const User & U,MachineIRBuilder & MIRBuilder)3176 bool IRTranslator::translateShuffleVector(const User &U,
3177 MachineIRBuilder &MIRBuilder) {
3178 // A ShuffleVector that has operates on scalable vectors is a splat vector
3179 // where the value of the splat vector is the 0th element of the first
3180 // operand, since the index mask operand is the zeroinitializer (undef and
3181 // poison are treated as zeroinitializer here).
3182 if (U.getOperand(0)->getType()->isScalableTy()) {
3183 Value *Op0 = U.getOperand(0);
3184 auto SplatVal = MIRBuilder.buildExtractVectorElementConstant(
3185 LLT::scalar(Op0->getType()->getScalarSizeInBits()),
3186 getOrCreateVReg(*Op0), 0);
3187 MIRBuilder.buildSplatVector(getOrCreateVReg(U), SplatVal);
3188 return true;
3189 }
3190
3191 ArrayRef<int> Mask;
3192 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
3193 Mask = SVI->getShuffleMask();
3194 else
3195 Mask = cast<ConstantExpr>(U).getShuffleMask();
3196 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3197 MIRBuilder
3198 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
3199 {getOrCreateVReg(*U.getOperand(0)),
3200 getOrCreateVReg(*U.getOperand(1))})
3201 .addShuffleMask(MaskAlloc);
3202 return true;
3203 }
3204
translatePHI(const User & U,MachineIRBuilder & MIRBuilder)3205 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
3206 const PHINode &PI = cast<PHINode>(U);
3207
3208 SmallVector<MachineInstr *, 4> Insts;
3209 for (auto Reg : getOrCreateVRegs(PI)) {
3210 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
3211 Insts.push_back(MIB.getInstr());
3212 }
3213
3214 PendingPHIs.emplace_back(&PI, std::move(Insts));
3215 return true;
3216 }
3217
translateAtomicCmpXchg(const User & U,MachineIRBuilder & MIRBuilder)3218 bool IRTranslator::translateAtomicCmpXchg(const User &U,
3219 MachineIRBuilder &MIRBuilder) {
3220 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
3221
3222 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL);
3223
3224 auto Res = getOrCreateVRegs(I);
3225 Register OldValRes = Res[0];
3226 Register SuccessRes = Res[1];
3227 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3228 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
3229 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
3230
3231 MIRBuilder.buildAtomicCmpXchgWithSuccess(
3232 OldValRes, SuccessRes, Addr, Cmp, NewVal,
3233 *MF->getMachineMemOperand(
3234 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
3235 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3236 I.getSuccessOrdering(), I.getFailureOrdering()));
3237 return true;
3238 }
3239
translateAtomicRMW(const User & U,MachineIRBuilder & MIRBuilder)3240 bool IRTranslator::translateAtomicRMW(const User &U,
3241 MachineIRBuilder &MIRBuilder) {
3242 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
3243 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL);
3244
3245 Register Res = getOrCreateVReg(I);
3246 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3247 Register Val = getOrCreateVReg(*I.getValOperand());
3248
3249 unsigned Opcode = 0;
3250 switch (I.getOperation()) {
3251 default:
3252 return false;
3253 case AtomicRMWInst::Xchg:
3254 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3255 break;
3256 case AtomicRMWInst::Add:
3257 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3258 break;
3259 case AtomicRMWInst::Sub:
3260 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3261 break;
3262 case AtomicRMWInst::And:
3263 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3264 break;
3265 case AtomicRMWInst::Nand:
3266 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3267 break;
3268 case AtomicRMWInst::Or:
3269 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3270 break;
3271 case AtomicRMWInst::Xor:
3272 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3273 break;
3274 case AtomicRMWInst::Max:
3275 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3276 break;
3277 case AtomicRMWInst::Min:
3278 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3279 break;
3280 case AtomicRMWInst::UMax:
3281 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3282 break;
3283 case AtomicRMWInst::UMin:
3284 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3285 break;
3286 case AtomicRMWInst::FAdd:
3287 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3288 break;
3289 case AtomicRMWInst::FSub:
3290 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3291 break;
3292 case AtomicRMWInst::FMax:
3293 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3294 break;
3295 case AtomicRMWInst::FMin:
3296 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3297 break;
3298 case AtomicRMWInst::UIncWrap:
3299 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3300 break;
3301 case AtomicRMWInst::UDecWrap:
3302 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3303 break;
3304 }
3305
3306 MIRBuilder.buildAtomicRMW(
3307 Opcode, Res, Addr, Val,
3308 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3309 Flags, MRI->getType(Val), getMemOpAlign(I),
3310 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3311 I.getOrdering()));
3312 return true;
3313 }
3314
translateFence(const User & U,MachineIRBuilder & MIRBuilder)3315 bool IRTranslator::translateFence(const User &U,
3316 MachineIRBuilder &MIRBuilder) {
3317 const FenceInst &Fence = cast<FenceInst>(U);
3318 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3319 Fence.getSyncScopeID());
3320 return true;
3321 }
3322
translateFreeze(const User & U,MachineIRBuilder & MIRBuilder)3323 bool IRTranslator::translateFreeze(const User &U,
3324 MachineIRBuilder &MIRBuilder) {
3325 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3326 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3327
3328 assert(DstRegs.size() == SrcRegs.size() &&
3329 "Freeze with different source and destination type?");
3330
3331 for (unsigned I = 0; I < DstRegs.size(); ++I) {
3332 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3333 }
3334
3335 return true;
3336 }
3337
finishPendingPhis()3338 void IRTranslator::finishPendingPhis() {
3339 #ifndef NDEBUG
3340 DILocationVerifier Verifier;
3341 GISelObserverWrapper WrapperObserver(&Verifier);
3342 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3343 #endif // ifndef NDEBUG
3344 for (auto &Phi : PendingPHIs) {
3345 const PHINode *PI = Phi.first;
3346 if (PI->getType()->isEmptyTy())
3347 continue;
3348 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3349 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3350 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3351 #ifndef NDEBUG
3352 Verifier.setCurrentInst(PI);
3353 #endif // ifndef NDEBUG
3354
3355 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3356 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3357 auto IRPred = PI->getIncomingBlock(i);
3358 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3359 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3360 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3361 continue;
3362 SeenPreds.insert(Pred);
3363 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3364 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3365 MIB.addUse(ValRegs[j]);
3366 MIB.addMBB(Pred);
3367 }
3368 }
3369 }
3370 }
3371 }
3372
translateDbgValueRecord(Value * V,bool HasArgList,const DILocalVariable * Variable,const DIExpression * Expression,const DebugLoc & DL,MachineIRBuilder & MIRBuilder)3373 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList,
3374 const DILocalVariable *Variable,
3375 const DIExpression *Expression,
3376 const DebugLoc &DL,
3377 MachineIRBuilder &MIRBuilder) {
3378 assert(Variable->isValidLocationForIntrinsic(DL) &&
3379 "Expected inlined-at fields to agree");
3380 // Act as if we're handling a debug intrinsic.
3381 MIRBuilder.setDebugLoc(DL);
3382
3383 if (!V || HasArgList) {
3384 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
3385 // terminate any prior location.
3386 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression);
3387 return;
3388 }
3389
3390 if (const auto *CI = dyn_cast<Constant>(V)) {
3391 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression);
3392 return;
3393 }
3394
3395 if (auto *AI = dyn_cast<AllocaInst>(V);
3396 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) {
3397 // If the value is an alloca and the expression starts with a
3398 // dereference, track a stack slot instead of a register, as registers
3399 // may be clobbered.
3400 auto ExprOperands = Expression->getElements();
3401 auto *ExprDerefRemoved =
3402 DIExpression::get(AI->getContext(), ExprOperands.drop_front());
3403 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable,
3404 ExprDerefRemoved);
3405 return;
3406 }
3407 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL,
3408 MIRBuilder))
3409 return;
3410 for (Register Reg : getOrCreateVRegs(*V)) {
3411 // FIXME: This does not handle register-indirect values at offset 0. The
3412 // direct/indirect thing shouldn't really be handled by something as
3413 // implicit as reg+noreg vs reg+imm in the first place, but it seems
3414 // pretty baked in right now.
3415 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression);
3416 }
3417 return;
3418 }
3419
translateDbgDeclareRecord(Value * Address,bool HasArgList,const DILocalVariable * Variable,const DIExpression * Expression,const DebugLoc & DL,MachineIRBuilder & MIRBuilder)3420 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList,
3421 const DILocalVariable *Variable,
3422 const DIExpression *Expression,
3423 const DebugLoc &DL,
3424 MachineIRBuilder &MIRBuilder) {
3425 if (!Address || isa<UndefValue>(Address)) {
3426 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n");
3427 return;
3428 }
3429
3430 assert(Variable->isValidLocationForIntrinsic(DL) &&
3431 "Expected inlined-at fields to agree");
3432 auto AI = dyn_cast<AllocaInst>(Address);
3433 if (AI && AI->isStaticAlloca()) {
3434 // Static allocas are tracked at the MF level, no need for DBG_VALUE
3435 // instructions (in fact, they get ignored if they *do* exist).
3436 MF->setVariableDbgInfo(Variable, Expression,
3437 getOrCreateFrameIndex(*AI), DL);
3438 return;
3439 }
3440
3441 if (translateIfEntryValueArgument(true, Address, Variable,
3442 Expression, DL,
3443 MIRBuilder))
3444 return;
3445
3446 // A dbg.declare describes the address of a source variable, so lower it
3447 // into an indirect DBG_VALUE.
3448 MIRBuilder.setDebugLoc(DL);
3449 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
3450 Variable, Expression);
3451 return;
3452 }
3453
translateDbgInfo(const Instruction & Inst,MachineIRBuilder & MIRBuilder)3454 void IRTranslator::translateDbgInfo(const Instruction &Inst,
3455 MachineIRBuilder &MIRBuilder) {
3456 for (DbgRecord &DR : Inst.getDbgRecordRange()) {
3457 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3458 MIRBuilder.setDebugLoc(DLR->getDebugLoc());
3459 assert(DLR->getLabel() && "Missing label");
3460 assert(DLR->getLabel()->isValidLocationForIntrinsic(
3461 MIRBuilder.getDebugLoc()) &&
3462 "Expected inlined-at fields to agree");
3463 MIRBuilder.buildDbgLabel(DLR->getLabel());
3464 continue;
3465 }
3466 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3467 const DILocalVariable *Variable = DVR.getVariable();
3468 const DIExpression *Expression = DVR.getExpression();
3469 Value *V = DVR.getVariableLocationOp(0);
3470 if (DVR.isDbgDeclare())
3471 translateDbgDeclareRecord(V, DVR.hasArgList(), Variable, Expression,
3472 DVR.getDebugLoc(), MIRBuilder);
3473 else
3474 translateDbgValueRecord(V, DVR.hasArgList(), Variable, Expression,
3475 DVR.getDebugLoc(), MIRBuilder);
3476 }
3477 }
3478
translate(const Instruction & Inst)3479 bool IRTranslator::translate(const Instruction &Inst) {
3480 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3481 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3482 CurBuilder->setMMRAMetadata(Inst.getMetadata(LLVMContext::MD_mmra));
3483
3484 if (TLI->fallBackToDAGISel(Inst))
3485 return false;
3486
3487 switch (Inst.getOpcode()) {
3488 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3489 case Instruction::OPCODE: \
3490 return translate##OPCODE(Inst, *CurBuilder.get());
3491 #include "llvm/IR/Instruction.def"
3492 default:
3493 return false;
3494 }
3495 }
3496
translate(const Constant & C,Register Reg)3497 bool IRTranslator::translate(const Constant &C, Register Reg) {
3498 // We only emit constants into the entry block from here. To prevent jumpy
3499 // debug behaviour remove debug line.
3500 if (auto CurrInstDL = CurBuilder->getDL())
3501 EntryBuilder->setDebugLoc(DebugLoc());
3502
3503 if (auto CI = dyn_cast<ConstantInt>(&C))
3504 EntryBuilder->buildConstant(Reg, *CI);
3505 else if (auto CF = dyn_cast<ConstantFP>(&C))
3506 EntryBuilder->buildFConstant(Reg, *CF);
3507 else if (isa<UndefValue>(C))
3508 EntryBuilder->buildUndef(Reg);
3509 else if (isa<ConstantPointerNull>(C))
3510 EntryBuilder->buildConstant(Reg, 0);
3511 else if (auto GV = dyn_cast<GlobalValue>(&C))
3512 EntryBuilder->buildGlobalValue(Reg, GV);
3513 else if (auto CPA = dyn_cast<ConstantPtrAuth>(&C)) {
3514 Register Addr = getOrCreateVReg(*CPA->getPointer());
3515 Register AddrDisc = getOrCreateVReg(*CPA->getAddrDiscriminator());
3516 EntryBuilder->buildConstantPtrAuth(Reg, CPA, Addr, AddrDisc);
3517 } else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3518 if (!isa<FixedVectorType>(CAZ->getType()))
3519 return false;
3520 // Return the scalar if it is a <1 x Ty> vector.
3521 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3522 if (NumElts == 1)
3523 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3524 SmallVector<Register, 4> Ops;
3525 for (unsigned I = 0; I < NumElts; ++I) {
3526 Constant &Elt = *CAZ->getElementValue(I);
3527 Ops.push_back(getOrCreateVReg(Elt));
3528 }
3529 EntryBuilder->buildBuildVector(Reg, Ops);
3530 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3531 // Return the scalar if it is a <1 x Ty> vector.
3532 if (CV->getNumElements() == 1)
3533 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3534 SmallVector<Register, 4> Ops;
3535 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3536 Constant &Elt = *CV->getElementAsConstant(i);
3537 Ops.push_back(getOrCreateVReg(Elt));
3538 }
3539 EntryBuilder->buildBuildVector(Reg, Ops);
3540 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3541 switch(CE->getOpcode()) {
3542 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3543 case Instruction::OPCODE: \
3544 return translate##OPCODE(*CE, *EntryBuilder.get());
3545 #include "llvm/IR/Instruction.def"
3546 default:
3547 return false;
3548 }
3549 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3550 if (CV->getNumOperands() == 1)
3551 return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3552 SmallVector<Register, 4> Ops;
3553 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3554 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3555 }
3556 EntryBuilder->buildBuildVector(Reg, Ops);
3557 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3558 EntryBuilder->buildBlockAddress(Reg, BA);
3559 } else
3560 return false;
3561
3562 return true;
3563 }
3564
finalizeBasicBlock(const BasicBlock & BB,MachineBasicBlock & MBB)3565 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3566 MachineBasicBlock &MBB) {
3567 for (auto &BTB : SL->BitTestCases) {
3568 // Emit header first, if it wasn't already emitted.
3569 if (!BTB.Emitted)
3570 emitBitTestHeader(BTB, BTB.Parent);
3571
3572 BranchProbability UnhandledProb = BTB.Prob;
3573 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3574 UnhandledProb -= BTB.Cases[j].ExtraProb;
3575 // Set the current basic block to the mbb we wish to insert the code into
3576 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3577 // If all cases cover a contiguous range, it is not necessary to jump to
3578 // the default block after the last bit test fails. This is because the
3579 // range check during bit test header creation has guaranteed that every
3580 // case here doesn't go outside the range. In this case, there is no need
3581 // to perform the last bit test, as it will always be true. Instead, make
3582 // the second-to-last bit-test fall through to the target of the last bit
3583 // test, and delete the last bit test.
3584
3585 MachineBasicBlock *NextMBB;
3586 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3587 // Second-to-last bit-test with contiguous range: fall through to the
3588 // target of the final bit test.
3589 NextMBB = BTB.Cases[j + 1].TargetBB;
3590 } else if (j + 1 == ej) {
3591 // For the last bit test, fall through to Default.
3592 NextMBB = BTB.Default;
3593 } else {
3594 // Otherwise, fall through to the next bit test.
3595 NextMBB = BTB.Cases[j + 1].ThisBB;
3596 }
3597
3598 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3599
3600 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3601 // We need to record the replacement phi edge here that normally
3602 // happens in emitBitTestCase before we delete the case, otherwise the
3603 // phi edge will be lost.
3604 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3605 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3606 MBB);
3607 // Since we're not going to use the final bit test, remove it.
3608 BTB.Cases.pop_back();
3609 break;
3610 }
3611 }
3612 // This is "default" BB. We have two jumps to it. From "header" BB and from
3613 // last "case" BB, unless the latter was skipped.
3614 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3615 BTB.Default->getBasicBlock()};
3616 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3617 if (!BTB.ContiguousRange) {
3618 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3619 }
3620 }
3621 SL->BitTestCases.clear();
3622
3623 for (auto &JTCase : SL->JTCases) {
3624 // Emit header first, if it wasn't already emitted.
3625 if (!JTCase.first.Emitted)
3626 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3627
3628 emitJumpTable(JTCase.second, JTCase.second.MBB);
3629 }
3630 SL->JTCases.clear();
3631
3632 for (auto &SwCase : SL->SwitchCases)
3633 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3634 SL->SwitchCases.clear();
3635
3636 // Check if we need to generate stack-protector guard checks.
3637 StackProtector &SP = getAnalysis<StackProtector>();
3638 if (SP.shouldEmitSDCheck(BB)) {
3639 bool FunctionBasedInstrumentation =
3640 TLI->getSSPStackGuardCheck(*MF->getFunction().getParent());
3641 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3642 }
3643 // Handle stack protector.
3644 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3645 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3646 return false;
3647 } else if (SPDescriptor.shouldEmitStackProtector()) {
3648 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3649 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3650
3651 // Find the split point to split the parent mbb. At the same time copy all
3652 // physical registers used in the tail of parent mbb into virtual registers
3653 // before the split point and back into physical registers after the split
3654 // point. This prevents us needing to deal with Live-ins and many other
3655 // register allocation issues caused by us splitting the parent mbb. The
3656 // register allocator will clean up said virtual copies later on.
3657 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3658 ParentMBB, *MF->getSubtarget().getInstrInfo());
3659
3660 // Splice the terminator of ParentMBB into SuccessMBB.
3661 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3662 ParentMBB->end());
3663
3664 // Add compare/jump on neq/jump to the parent BB.
3665 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3666 return false;
3667
3668 // CodeGen Failure MBB if we have not codegened it yet.
3669 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3670 if (FailureMBB->empty()) {
3671 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3672 return false;
3673 }
3674
3675 // Clear the Per-BB State.
3676 SPDescriptor.resetPerBBState();
3677 }
3678 return true;
3679 }
3680
emitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)3681 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3682 MachineBasicBlock *ParentBB) {
3683 CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3684 // First create the loads to the guard/stack slot for the comparison.
3685 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
3686 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3687 LLT PtrMemTy = getLLTForMVT(TLI->getPointerMemTy(*DL));
3688
3689 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3690 int FI = MFI.getStackProtectorIndex();
3691
3692 Register Guard;
3693 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3694 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3695 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext()));
3696
3697 // Generate code to load the content of the guard slot.
3698 Register GuardVal =
3699 CurBuilder
3700 ->buildLoad(PtrMemTy, StackSlotPtr,
3701 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3702 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3703 .getReg(0);
3704
3705 if (TLI->useStackGuardXorFP()) {
3706 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3707 return false;
3708 }
3709
3710 // Retrieve guard check function, nullptr if instrumentation is inlined.
3711 if (const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) {
3712 // This path is currently untestable on GlobalISel, since the only platform
3713 // that needs this seems to be Windows, and we fall back on that currently.
3714 // The code still lives here in case that changes.
3715 // Silence warning about unused variable until the code below that uses
3716 // 'GuardCheckFn' is enabled.
3717 (void)GuardCheckFn;
3718 return false;
3719 #if 0
3720 // The target provides a guard check function to validate the guard value.
3721 // Generate a call to that function with the content of the guard slot as
3722 // argument.
3723 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3724 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3725 ISD::ArgFlagsTy Flags;
3726 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3727 Flags.setInReg();
3728 CallLowering::ArgInfo GuardArgInfo(
3729 {GuardVal, FnTy->getParamType(0), {Flags}});
3730
3731 CallLowering::CallLoweringInfo Info;
3732 Info.OrigArgs.push_back(GuardArgInfo);
3733 Info.CallConv = GuardCheckFn->getCallingConv();
3734 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3735 Info.OrigRet = {Register(), FnTy->getReturnType()};
3736 if (!CLI->lowerCall(MIRBuilder, Info)) {
3737 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3738 return false;
3739 }
3740 return true;
3741 #endif
3742 }
3743
3744 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3745 // Otherwise, emit a volatile load to retrieve the stack guard value.
3746 if (TLI->useLoadStackGuardNode()) {
3747 Guard =
3748 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3749 getStackGuard(Guard, *CurBuilder);
3750 } else {
3751 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3752 const Value *IRGuard = TLI->getSDagStackGuard(M);
3753 Register GuardPtr = getOrCreateVReg(*IRGuard);
3754
3755 Guard = CurBuilder
3756 ->buildLoad(PtrMemTy, GuardPtr,
3757 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3758 MachineMemOperand::MOLoad |
3759 MachineMemOperand::MOVolatile)
3760 .getReg(0);
3761 }
3762
3763 // Perform the comparison.
3764 auto Cmp =
3765 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3766 // If the guard/stackslot do not equal, branch to failure MBB.
3767 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3768 // Otherwise branch to success MBB.
3769 CurBuilder->buildBr(*SPD.getSuccessMBB());
3770 return true;
3771 }
3772
emitSPDescriptorFailure(StackProtectorDescriptor & SPD,MachineBasicBlock * FailureBB)3773 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3774 MachineBasicBlock *FailureBB) {
3775 CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3776
3777 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3778 const char *Name = TLI->getLibcallName(Libcall);
3779
3780 CallLowering::CallLoweringInfo Info;
3781 Info.CallConv = TLI->getLibcallCallingConv(Libcall);
3782 Info.Callee = MachineOperand::CreateES(Name);
3783 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3784 0};
3785 if (!CLI->lowerCall(*CurBuilder, Info)) {
3786 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3787 return false;
3788 }
3789
3790 // On PS4/PS5, the "return address" must still be within the calling
3791 // function, even if it's at the very end, so emit an explicit TRAP here.
3792 // WebAssembly needs an unreachable instruction after a non-returning call,
3793 // because the function return type can be different from __stack_chk_fail's
3794 // return type (void).
3795 const TargetMachine &TM = MF->getTarget();
3796 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3797 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3798 return false;
3799 }
3800 return true;
3801 }
3802
finalizeFunction()3803 void IRTranslator::finalizeFunction() {
3804 // Release the memory used by the different maps we
3805 // needed during the translation.
3806 PendingPHIs.clear();
3807 VMap.reset();
3808 FrameIndices.clear();
3809 MachinePreds.clear();
3810 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3811 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3812 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3813 EntryBuilder.reset();
3814 CurBuilder.reset();
3815 FuncInfo.clear();
3816 SPDescriptor.resetPerFunctionState();
3817 }
3818
3819 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3820 /// variadic musttail call.
checkForMustTailInVarArgFn(bool IsVarArg,const BasicBlock & BB)3821 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3822 if (!IsVarArg)
3823 return false;
3824
3825 // Walk the block backwards, because tail calls usually only appear at the end
3826 // of a block.
3827 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3828 const auto *CI = dyn_cast<CallInst>(&I);
3829 return CI && CI->isMustTailCall();
3830 });
3831 }
3832
runOnMachineFunction(MachineFunction & CurMF)3833 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3834 MF = &CurMF;
3835 const Function &F = MF->getFunction();
3836 GISelCSEAnalysisWrapper &Wrapper =
3837 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3838 // Set the CSEConfig and run the analysis.
3839 GISelCSEInfo *CSEInfo = nullptr;
3840 TPC = &getAnalysis<TargetPassConfig>();
3841 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3842 ? EnableCSEInIRTranslator
3843 : TPC->isGISelCSEEnabled();
3844 TLI = MF->getSubtarget().getTargetLowering();
3845
3846 if (EnableCSE) {
3847 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3848 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3849 EntryBuilder->setCSEInfo(CSEInfo);
3850 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3851 CurBuilder->setCSEInfo(CSEInfo);
3852 } else {
3853 EntryBuilder = std::make_unique<MachineIRBuilder>();
3854 CurBuilder = std::make_unique<MachineIRBuilder>();
3855 }
3856 CLI = MF->getSubtarget().getCallLowering();
3857 CurBuilder->setMF(*MF);
3858 EntryBuilder->setMF(*MF);
3859 MRI = &MF->getRegInfo();
3860 DL = &F.getDataLayout();
3861 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3862 const TargetMachine &TM = MF->getTarget();
3863 TM.resetTargetOptions(F);
3864 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F);
3865 FuncInfo.MF = MF;
3866 if (EnableOpts) {
3867 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3868 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3869 } else {
3870 AA = nullptr;
3871 FuncInfo.BPI = nullptr;
3872 }
3873
3874 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3875 MF->getFunction());
3876 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3877 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3878
3879 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3880 SL->init(*TLI, TM, *DL);
3881
3882 assert(PendingPHIs.empty() && "stale PHIs");
3883
3884 // Targets which want to use big endian can enable it using
3885 // enableBigEndian()
3886 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3887 // Currently we don't properly handle big endian code.
3888 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3889 F.getSubprogram(), &F.getEntryBlock());
3890 R << "unable to translate in big endian mode";
3891 reportTranslationError(*MF, *TPC, *ORE, R);
3892 return false;
3893 }
3894
3895 // Release the per-function state when we return, whether we succeeded or not.
3896 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3897
3898 // Setup a separate basic-block for the arguments and constants
3899 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3900 MF->push_back(EntryBB);
3901 EntryBuilder->setMBB(*EntryBB);
3902
3903 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3904 SwiftError.setFunction(CurMF);
3905 SwiftError.createEntriesInEntryBlock(DbgLoc);
3906
3907 bool IsVarArg = F.isVarArg();
3908 bool HasMustTailInVarArgFn = false;
3909
3910 // Create all blocks, in IR order, to preserve the layout.
3911 for (const BasicBlock &BB: F) {
3912 auto *&MBB = BBToMBB[&BB];
3913
3914 MBB = MF->CreateMachineBasicBlock(&BB);
3915 MF->push_back(MBB);
3916
3917 if (BB.hasAddressTaken())
3918 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3919
3920 if (!HasMustTailInVarArgFn)
3921 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3922 }
3923
3924 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3925
3926 // Make our arguments/constants entry block fallthrough to the IR entry block.
3927 EntryBB->addSuccessor(&getMBB(F.front()));
3928
3929 if (CLI->fallBackToDAGISel(*MF)) {
3930 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3931 F.getSubprogram(), &F.getEntryBlock());
3932 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3933 reportTranslationError(*MF, *TPC, *ORE, R);
3934 return false;
3935 }
3936
3937 // Lower the actual args into this basic block.
3938 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3939 for (const Argument &Arg: F.args()) {
3940 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3941 continue; // Don't handle zero sized types.
3942 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3943 VRegArgs.push_back(VRegs);
3944
3945 if (Arg.hasSwiftErrorAttr()) {
3946 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3947 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3948 }
3949 }
3950
3951 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3952 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3953 F.getSubprogram(), &F.getEntryBlock());
3954 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3955 reportTranslationError(*MF, *TPC, *ORE, R);
3956 return false;
3957 }
3958
3959 // Need to visit defs before uses when translating instructions.
3960 GISelObserverWrapper WrapperObserver;
3961 if (EnableCSE && CSEInfo)
3962 WrapperObserver.addObserver(CSEInfo);
3963 {
3964 ReversePostOrderTraversal<const Function *> RPOT(&F);
3965 #ifndef NDEBUG
3966 DILocationVerifier Verifier;
3967 WrapperObserver.addObserver(&Verifier);
3968 #endif // ifndef NDEBUG
3969 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3970 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3971 for (const BasicBlock *BB : RPOT) {
3972 MachineBasicBlock &MBB = getMBB(*BB);
3973 // Set the insertion point of all the following translations to
3974 // the end of this basic block.
3975 CurBuilder->setMBB(MBB);
3976 HasTailCall = false;
3977 for (const Instruction &Inst : *BB) {
3978 // If we translated a tail call in the last step, then we know
3979 // everything after the call is either a return, or something that is
3980 // handled by the call itself. (E.g. a lifetime marker or assume
3981 // intrinsic.) In this case, we should stop translating the block and
3982 // move on.
3983 if (HasTailCall)
3984 break;
3985 #ifndef NDEBUG
3986 Verifier.setCurrentInst(&Inst);
3987 #endif // ifndef NDEBUG
3988
3989 // Translate any debug-info attached to the instruction.
3990 translateDbgInfo(Inst, *CurBuilder);
3991
3992 if (translate(Inst))
3993 continue;
3994
3995 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3996 Inst.getDebugLoc(), BB);
3997 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3998
3999 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
4000 std::string InstStrStorage;
4001 raw_string_ostream InstStr(InstStrStorage);
4002 InstStr << Inst;
4003
4004 R << ": '" << InstStrStorage << "'";
4005 }
4006
4007 reportTranslationError(*MF, *TPC, *ORE, R);
4008 return false;
4009 }
4010
4011 if (!finalizeBasicBlock(*BB, MBB)) {
4012 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4013 BB->getTerminator()->getDebugLoc(), BB);
4014 R << "unable to translate basic block";
4015 reportTranslationError(*MF, *TPC, *ORE, R);
4016 return false;
4017 }
4018 }
4019 #ifndef NDEBUG
4020 WrapperObserver.removeObserver(&Verifier);
4021 #endif
4022 }
4023
4024 finishPendingPhis();
4025
4026 SwiftError.propagateVRegs();
4027
4028 // Merge the argument lowering and constants block with its single
4029 // successor, the LLVM-IR entry block. We want the basic block to
4030 // be maximal.
4031 assert(EntryBB->succ_size() == 1 &&
4032 "Custom BB used for lowering should have only one successor");
4033 // Get the successor of the current entry block.
4034 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
4035 assert(NewEntryBB.pred_size() == 1 &&
4036 "LLVM-IR entry block has a predecessor!?");
4037 // Move all the instruction from the current entry block to the
4038 // new entry block.
4039 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
4040 EntryBB->end());
4041
4042 // Update the live-in information for the new entry block.
4043 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
4044 NewEntryBB.addLiveIn(LiveIn);
4045 NewEntryBB.sortUniqueLiveIns();
4046
4047 // Get rid of the now empty basic block.
4048 EntryBB->removeSuccessor(&NewEntryBB);
4049 MF->remove(EntryBB);
4050 MF->deleteMachineBasicBlock(EntryBB);
4051
4052 assert(&MF->front() == &NewEntryBB &&
4053 "New entry wasn't next in the list of basic block!");
4054
4055 // Initialize stack protector information.
4056 StackProtector &SP = getAnalysis<StackProtector>();
4057 SP.copyToMachineFrameInfo(MF->getFrameInfo());
4058
4059 return false;
4060 }
4061