xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/MachineBasicBlock.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/SparseBitVector.h"
19 #include "llvm/ADT/ilist.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/Support/BranchProbability.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <iterator>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 class BasicBlock;
35 class MachineFunction;
36 class MCSymbol;
37 class ModuleSlotTracker;
38 class Pass;
39 class Printable;
40 class SlotIndexes;
41 class StringRef;
42 class raw_ostream;
43 class LiveIntervals;
44 class TargetRegisterClass;
45 class TargetRegisterInfo;
46 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
47 using MachineFunctionAnalysisManager = AnalysisManager<MachineFunction>;
48 
49 // This structure uniquely identifies a basic block section.
50 // Possible values are
51 //  {Type: Default, Number: (unsigned)} (These are regular section IDs)
52 //  {Type: Exception, Number: 0}  (ExceptionSectionID)
53 //  {Type: Cold, Number: 0}  (ColdSectionID)
54 struct MBBSectionID {
55   enum SectionType {
56     Default = 0, // Regular section (these sections are distinguished by the
57                  // Number field).
58     Exception,   // Special section type for exception handling blocks
59     Cold,        // Special section type for cold blocks
60   } Type;
61   unsigned Number;
62 
MBBSectionIDMBBSectionID63   MBBSectionID(unsigned N) : Type(Default), Number(N) {}
64 
65   // Special unique sections for cold and exception blocks.
66   const static MBBSectionID ColdSectionID;
67   const static MBBSectionID ExceptionSectionID;
68 
69   bool operator==(const MBBSectionID &Other) const {
70     return Type == Other.Type && Number == Other.Number;
71   }
72 
73   bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
74 
75 private:
76   // This is only used to construct the special cold and exception sections.
MBBSectionIDMBBSectionID77   MBBSectionID(SectionType T) : Type(T), Number(0) {}
78 };
79 
80 template <> struct DenseMapInfo<MBBSectionID> {
81   using TypeInfo = DenseMapInfo<MBBSectionID::SectionType>;
82   using NumberInfo = DenseMapInfo<unsigned>;
83 
84   static inline MBBSectionID getEmptyKey() {
85     return MBBSectionID(NumberInfo::getEmptyKey());
86   }
87   static inline MBBSectionID getTombstoneKey() {
88     return MBBSectionID(NumberInfo::getTombstoneKey());
89   }
90   static unsigned getHashValue(const MBBSectionID &SecID) {
91     return detail::combineHashValue(TypeInfo::getHashValue(SecID.Type),
92                                     NumberInfo::getHashValue(SecID.Number));
93   }
94   static bool isEqual(const MBBSectionID &LHS, const MBBSectionID &RHS) {
95     return LHS == RHS;
96   }
97 };
98 
99 // This structure represents the information for a basic block pertaining to
100 // the basic block sections profile.
101 struct UniqueBBID {
102   unsigned BaseID;
103   unsigned CloneID;
104 };
105 
106 template <> struct ilist_traits<MachineInstr> {
107 private:
108   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
109 
110   MachineBasicBlock *Parent;
111 
112   using instr_iterator =
113       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
114 
115 public:
116   void addNodeToList(MachineInstr *N);
117   void removeNodeFromList(MachineInstr *N);
118   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
119                              instr_iterator Last);
120   void deleteNode(MachineInstr *MI);
121 };
122 
123 class MachineBasicBlock
124     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
125 public:
126   /// Pair of physical register and lane mask.
127   /// This is not simply a std::pair typedef because the members should be named
128   /// clearly as they both have an integer type.
129   struct RegisterMaskPair {
130   public:
131     MCPhysReg PhysReg;
132     LaneBitmask LaneMask;
133 
134     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
135         : PhysReg(PhysReg), LaneMask(LaneMask) {}
136 
137     bool operator==(const RegisterMaskPair &other) const {
138       return PhysReg == other.PhysReg && LaneMask == other.LaneMask;
139     }
140   };
141 
142 private:
143   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
144 
145   const BasicBlock *BB;
146   int Number;
147 
148   /// The call frame size on entry to this basic block due to call frame setup
149   /// instructions in a predecessor. This is usually zero, unless basic blocks
150   /// are split in the middle of a call sequence.
151   ///
152   /// This information is only maintained until PrologEpilogInserter eliminates
153   /// call frame pseudos.
154   unsigned CallFrameSize = 0;
155 
156   MachineFunction *xParent;
157   Instructions Insts;
158 
159   /// Keep track of the predecessor / successor basic blocks.
160   std::vector<MachineBasicBlock *> Predecessors;
161   std::vector<MachineBasicBlock *> Successors;
162 
163   /// Keep track of the probabilities to the successors. This vector has the
164   /// same order as Successors, or it is empty if we don't use it (disable
165   /// optimization).
166   std::vector<BranchProbability> Probs;
167   using probability_iterator = std::vector<BranchProbability>::iterator;
168   using const_probability_iterator =
169       std::vector<BranchProbability>::const_iterator;
170 
171   std::optional<uint64_t> IrrLoopHeaderWeight;
172 
173   /// Keep track of the physical registers that are livein of the basicblock.
174   using LiveInVector = std::vector<RegisterMaskPair>;
175   LiveInVector LiveIns;
176 
177   /// Alignment of the basic block. One if the basic block does not need to be
178   /// aligned.
179   Align Alignment;
180   /// Maximum amount of bytes that can be added to align the basic block. If the
181   /// alignment cannot be reached in this many bytes, no bytes are emitted.
182   /// Zero to represent no maximum.
183   unsigned MaxBytesForAlignment = 0;
184 
185   /// Indicate that this basic block is entered via an exception handler.
186   bool IsEHPad = false;
187 
188   /// Indicate that this MachineBasicBlock is referenced somewhere other than
189   /// as predecessor/successor, a terminator MachineInstr, or a jump table.
190   bool MachineBlockAddressTaken = false;
191 
192   /// If this MachineBasicBlock corresponds to an IR-level "blockaddress"
193   /// constant, this contains a pointer to that block.
194   BasicBlock *AddressTakenIRBlock = nullptr;
195 
196   /// Indicate that this basic block needs its symbol be emitted regardless of
197   /// whether the flow just falls-through to it.
198   bool LabelMustBeEmitted = false;
199 
200   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
201   /// the block that used to have a catchpad or cleanuppad instruction in the
202   /// LLVM IR.
203   bool IsEHScopeEntry = false;
204 
205   /// Indicates if this is a target block of a catchret.
206   bool IsEHCatchretTarget = false;
207 
208   /// Indicate that this basic block is the entry block of an EH funclet.
209   bool IsEHFuncletEntry = false;
210 
211   /// Indicate that this basic block is the entry block of a cleanup funclet.
212   bool IsCleanupFuncletEntry = false;
213 
214   /// Fixed unique ID assigned to this basic block upon creation. Used with
215   /// basic block sections and basic block labels.
216   std::optional<UniqueBBID> BBID;
217 
218   /// With basic block sections, this stores the Section ID of the basic block.
219   MBBSectionID SectionID{0};
220 
221   // Indicate that this basic block begins a section.
222   bool IsBeginSection = false;
223 
224   // Indicate that this basic block ends a section.
225   bool IsEndSection = false;
226 
227   /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
228   bool IsInlineAsmBrIndirectTarget = false;
229 
230   /// since getSymbol is a relatively heavy-weight operation, the symbol
231   /// is only computed once and is cached.
232   mutable MCSymbol *CachedMCSymbol = nullptr;
233 
234   /// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
235   mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
236 
237   /// Marks the end of the basic block. Used during basic block sections to
238   /// calculate the size of the basic block, or the BB section ending with it.
239   mutable MCSymbol *CachedEndMCSymbol = nullptr;
240 
241   // Intrusive list support
242   MachineBasicBlock() = default;
243 
244   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
245 
246   ~MachineBasicBlock();
247 
248   // MachineBasicBlocks are allocated and owned by MachineFunction.
249   friend class MachineFunction;
250 
251 public:
252   /// Return the LLVM basic block that this instance corresponded to originally.
253   /// Note that this may be NULL if this instance does not correspond directly
254   /// to an LLVM basic block.
255   const BasicBlock *getBasicBlock() const { return BB; }
256 
257   /// Remove the reference to the underlying IR BasicBlock. This is for
258   /// reduction tools and should generally not be used.
259   void clearBasicBlock() {
260     BB = nullptr;
261   }
262 
263   /// Check if there is a name of corresponding LLVM basic block.
264   bool hasName() const;
265 
266   /// Return the name of the corresponding LLVM basic block, or an empty string.
267   StringRef getName() const;
268 
269   /// Return a formatted string to identify this block and its parent function.
270   std::string getFullName() const;
271 
272   /// Test whether this block is used as something other than the target
273   /// of a terminator, exception-handling target, or jump table. This is
274   /// either the result of an IR-level "blockaddress", or some form
275   /// of target-specific branch lowering.
276   bool hasAddressTaken() const {
277     return MachineBlockAddressTaken || AddressTakenIRBlock;
278   }
279 
280   /// Test whether this block is used as something other than the target of a
281   /// terminator, exception-handling target, jump table, or IR blockaddress.
282   /// For example, its address might be loaded into a register, or
283   /// stored in some branch table that isn't part of MachineJumpTableInfo.
284   bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; }
285 
286   /// Test whether this block is the target of an IR BlockAddress.  (There can
287   /// more than one MBB associated with an IR BB where the address is taken.)
288   bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; }
289 
290   /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock.
291   BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; }
292 
293   /// Set this block to indicate that its address is used as something other
294   /// than the target of a terminator, exception-handling target, jump table,
295   /// or IR-level "blockaddress".
296   void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; }
297 
298   /// Set this block to reflect that it corresponds to an IR-level basic block
299   /// with a BlockAddress.
300   void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; }
301 
302   /// Test whether this block must have its label emitted.
303   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
304 
305   /// Set this block to reflect that, regardless how we flow to it, we need
306   /// its label be emitted.
307   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
308 
309   /// Return the MachineFunction containing this basic block.
310   const MachineFunction *getParent() const { return xParent; }
311   MachineFunction *getParent() { return xParent; }
312 
313   using instr_iterator = Instructions::iterator;
314   using const_instr_iterator = Instructions::const_iterator;
315   using reverse_instr_iterator = Instructions::reverse_iterator;
316   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
317 
318   using iterator = MachineInstrBundleIterator<MachineInstr>;
319   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
320   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
321   using const_reverse_iterator =
322       MachineInstrBundleIterator<const MachineInstr, true>;
323 
324   unsigned size() const { return (unsigned)Insts.size(); }
325   bool sizeWithoutDebugLargerThan(unsigned Limit) const;
326   bool empty() const { return Insts.empty(); }
327 
328   MachineInstr       &instr_front()       { return Insts.front(); }
329   MachineInstr       &instr_back()        { return Insts.back();  }
330   const MachineInstr &instr_front() const { return Insts.front(); }
331   const MachineInstr &instr_back()  const { return Insts.back();  }
332 
333   MachineInstr       &front()             { return Insts.front(); }
334   MachineInstr       &back()              { return *--end();      }
335   const MachineInstr &front()       const { return Insts.front(); }
336   const MachineInstr &back()        const { return *--end();      }
337 
338   instr_iterator                instr_begin()       { return Insts.begin();  }
339   const_instr_iterator          instr_begin() const { return Insts.begin();  }
340   instr_iterator                  instr_end()       { return Insts.end();    }
341   const_instr_iterator            instr_end() const { return Insts.end();    }
342   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
343   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
344   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
345   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
346 
347   using instr_range = iterator_range<instr_iterator>;
348   using const_instr_range = iterator_range<const_instr_iterator>;
349   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
350   const_instr_range instrs() const {
351     return const_instr_range(instr_begin(), instr_end());
352   }
353 
354   iterator                begin()       { return instr_begin();  }
355   const_iterator          begin() const { return instr_begin();  }
356   iterator                end  ()       { return instr_end();    }
357   const_iterator          end  () const { return instr_end();    }
358   reverse_iterator rbegin() {
359     return reverse_iterator::getAtBundleBegin(instr_rbegin());
360   }
361   const_reverse_iterator rbegin() const {
362     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
363   }
364   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
365   const_reverse_iterator rend() const {
366     return const_reverse_iterator(instr_rend());
367   }
368 
369   /// Support for MachineInstr::getNextNode().
370   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
371     return &MachineBasicBlock::Insts;
372   }
373 
374   inline iterator_range<iterator> terminators() {
375     return make_range(getFirstTerminator(), end());
376   }
377   inline iterator_range<const_iterator> terminators() const {
378     return make_range(getFirstTerminator(), end());
379   }
380 
381   /// Returns a range that iterates over the phis in the basic block.
382   inline iterator_range<iterator> phis() {
383     return make_range(begin(), getFirstNonPHI());
384   }
385   inline iterator_range<const_iterator> phis() const {
386     return const_cast<MachineBasicBlock *>(this)->phis();
387   }
388 
389   // Machine-CFG iterators
390   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
391   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
392   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
393   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
394   using pred_reverse_iterator =
395       std::vector<MachineBasicBlock *>::reverse_iterator;
396   using const_pred_reverse_iterator =
397       std::vector<MachineBasicBlock *>::const_reverse_iterator;
398   using succ_reverse_iterator =
399       std::vector<MachineBasicBlock *>::reverse_iterator;
400   using const_succ_reverse_iterator =
401       std::vector<MachineBasicBlock *>::const_reverse_iterator;
402   pred_iterator        pred_begin()       { return Predecessors.begin(); }
403   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
404   pred_iterator        pred_end()         { return Predecessors.end();   }
405   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
406   pred_reverse_iterator        pred_rbegin()
407                                           { return Predecessors.rbegin();}
408   const_pred_reverse_iterator  pred_rbegin() const
409                                           { return Predecessors.rbegin();}
410   pred_reverse_iterator        pred_rend()
411                                           { return Predecessors.rend();  }
412   const_pred_reverse_iterator  pred_rend()   const
413                                           { return Predecessors.rend();  }
414   unsigned             pred_size()  const {
415     return (unsigned)Predecessors.size();
416   }
417   bool                 pred_empty() const { return Predecessors.empty(); }
418   succ_iterator        succ_begin()       { return Successors.begin();   }
419   const_succ_iterator  succ_begin() const { return Successors.begin();   }
420   succ_iterator        succ_end()         { return Successors.end();     }
421   const_succ_iterator  succ_end()   const { return Successors.end();     }
422   succ_reverse_iterator        succ_rbegin()
423                                           { return Successors.rbegin();  }
424   const_succ_reverse_iterator  succ_rbegin() const
425                                           { return Successors.rbegin();  }
426   succ_reverse_iterator        succ_rend()
427                                           { return Successors.rend();    }
428   const_succ_reverse_iterator  succ_rend()   const
429                                           { return Successors.rend();    }
430   unsigned             succ_size()  const {
431     return (unsigned)Successors.size();
432   }
433   bool                 succ_empty() const { return Successors.empty();   }
434 
435   inline iterator_range<pred_iterator> predecessors() {
436     return make_range(pred_begin(), pred_end());
437   }
438   inline iterator_range<const_pred_iterator> predecessors() const {
439     return make_range(pred_begin(), pred_end());
440   }
441   inline iterator_range<succ_iterator> successors() {
442     return make_range(succ_begin(), succ_end());
443   }
444   inline iterator_range<const_succ_iterator> successors() const {
445     return make_range(succ_begin(), succ_end());
446   }
447 
448   // LiveIn management methods.
449 
450   /// Adds the specified register as a live in. Note that it is an error to add
451   /// the same register to the same set more than once unless the intention is
452   /// to call sortUniqueLiveIns after all registers are added.
453   void addLiveIn(MCRegister PhysReg,
454                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
455     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
456   }
457   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
458     LiveIns.push_back(RegMaskPair);
459   }
460 
461   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
462   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
463   /// LiveIn insertion.
464   void sortUniqueLiveIns();
465 
466   /// Clear live in list.
467   void clearLiveIns();
468 
469   /// Clear the live in list, and return the removed live in's in \p OldLiveIns.
470   /// Requires that the vector \p OldLiveIns is empty.
471   void clearLiveIns(std::vector<RegisterMaskPair> &OldLiveIns);
472 
473   /// Add PhysReg as live in to this block, and ensure that there is a copy of
474   /// PhysReg to a virtual register of class RC. Return the virtual register
475   /// that is a copy of the live in PhysReg.
476   Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
477 
478   /// Remove the specified register from the live in set.
479   void removeLiveIn(MCPhysReg Reg,
480                     LaneBitmask LaneMask = LaneBitmask::getAll());
481 
482   /// Return true if the specified register is in the live in set.
483   bool isLiveIn(MCPhysReg Reg,
484                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
485 
486   // Iteration support for live in sets.  These sets are kept in sorted
487   // order by their register number.
488   using livein_iterator = LiveInVector::const_iterator;
489 
490   /// Unlike livein_begin, this method does not check that the liveness
491   /// information is accurate. Still for debug purposes it may be useful
492   /// to have iterators that won't assert if the liveness information
493   /// is not current.
494   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
495   iterator_range<livein_iterator> liveins_dbg() const {
496     return make_range(livein_begin_dbg(), livein_end());
497   }
498 
499   livein_iterator livein_begin() const;
500   livein_iterator livein_end()   const { return LiveIns.end(); }
501   bool            livein_empty() const { return LiveIns.empty(); }
502   iterator_range<livein_iterator> liveins() const {
503     return make_range(livein_begin(), livein_end());
504   }
505 
506   /// Remove entry from the livein set and return iterator to the next.
507   livein_iterator removeLiveIn(livein_iterator I);
508 
509   const std::vector<RegisterMaskPair> &getLiveIns() const { return LiveIns; }
510 
511   class liveout_iterator {
512   public:
513     using iterator_category = std::input_iterator_tag;
514     using difference_type = std::ptrdiff_t;
515     using value_type = RegisterMaskPair;
516     using pointer = const RegisterMaskPair *;
517     using reference = const RegisterMaskPair &;
518 
519     liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
520                      MCPhysReg ExceptionSelector, bool End)
521         : ExceptionPointer(ExceptionPointer),
522           ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
523           BlockEnd(MBB.succ_end()) {
524       if (End)
525         BlockI = BlockEnd;
526       else if (BlockI != BlockEnd) {
527         LiveRegI = (*BlockI)->livein_begin();
528         if (!advanceToValidPosition())
529           return;
530         if (LiveRegI->PhysReg == ExceptionPointer ||
531             LiveRegI->PhysReg == ExceptionSelector)
532           ++(*this);
533       }
534     }
535 
536     liveout_iterator &operator++() {
537       do {
538         ++LiveRegI;
539         if (!advanceToValidPosition())
540           return *this;
541       } while ((*BlockI)->isEHPad() &&
542                (LiveRegI->PhysReg == ExceptionPointer ||
543                 LiveRegI->PhysReg == ExceptionSelector));
544       return *this;
545     }
546 
547     liveout_iterator operator++(int) {
548       liveout_iterator Tmp = *this;
549       ++(*this);
550       return Tmp;
551     }
552 
553     reference operator*() const {
554       return *LiveRegI;
555     }
556 
557     pointer operator->() const {
558       return &*LiveRegI;
559     }
560 
561     bool operator==(const liveout_iterator &RHS) const {
562       if (BlockI != BlockEnd)
563         return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
564       return RHS.BlockI == BlockEnd;
565     }
566 
567     bool operator!=(const liveout_iterator &RHS) const {
568       return !(*this == RHS);
569     }
570   private:
571     bool advanceToValidPosition() {
572       if (LiveRegI != (*BlockI)->livein_end())
573         return true;
574 
575       do {
576         ++BlockI;
577       } while (BlockI != BlockEnd && (*BlockI)->livein_empty());
578       if (BlockI == BlockEnd)
579         return false;
580 
581       LiveRegI = (*BlockI)->livein_begin();
582       return true;
583     }
584 
585     MCPhysReg ExceptionPointer, ExceptionSelector;
586     const_succ_iterator BlockI;
587     const_succ_iterator BlockEnd;
588     livein_iterator LiveRegI;
589   };
590 
591   /// Iterator scanning successor basic blocks' liveins to determine the
592   /// registers potentially live at the end of this block. There may be
593   /// duplicates or overlapping registers in the list returned.
594   liveout_iterator liveout_begin() const;
595   liveout_iterator liveout_end() const {
596     return liveout_iterator(*this, 0, 0, true);
597   }
598   iterator_range<liveout_iterator> liveouts() const {
599     return make_range(liveout_begin(), liveout_end());
600   }
601 
602   /// Get the clobber mask for the start of this basic block. Funclets use this
603   /// to prevent register allocation across funclet transitions.
604   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
605 
606   /// Get the clobber mask for the end of the basic block.
607   /// \see getBeginClobberMask()
608   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
609 
610   /// Return alignment of the basic block.
611   Align getAlignment() const { return Alignment; }
612 
613   /// Set alignment of the basic block.
614   void setAlignment(Align A) { Alignment = A; }
615 
616   void setAlignment(Align A, unsigned MaxBytes) {
617     setAlignment(A);
618     setMaxBytesForAlignment(MaxBytes);
619   }
620 
621   /// Return the maximum amount of padding allowed for aligning the basic block.
622   unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; }
623 
624   /// Set the maximum amount of padding allowed for aligning the basic block
625   void setMaxBytesForAlignment(unsigned MaxBytes) {
626     MaxBytesForAlignment = MaxBytes;
627   }
628 
629   /// Returns true if the block is a landing pad. That is this basic block is
630   /// entered via an exception handler.
631   bool isEHPad() const { return IsEHPad; }
632 
633   /// Indicates the block is a landing pad.  That is this basic block is entered
634   /// via an exception handler.
635   void setIsEHPad(bool V = true) { IsEHPad = V; }
636 
637   bool hasEHPadSuccessor() const;
638 
639   /// Returns true if this is the entry block of the function.
640   bool isEntryBlock() const;
641 
642   /// Returns true if this is the entry block of an EH scope, i.e., the block
643   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
644   bool isEHScopeEntry() const { return IsEHScopeEntry; }
645 
646   /// Indicates if this is the entry block of an EH scope, i.e., the block that
647   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
648   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
649 
650   /// Returns true if this is a target block of a catchret.
651   bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
652 
653   /// Indicates if this is a target block of a catchret.
654   void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
655 
656   /// Returns true if this is the entry block of an EH funclet.
657   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
658 
659   /// Indicates if this is the entry block of an EH funclet.
660   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
661 
662   /// Returns true if this is the entry block of a cleanup funclet.
663   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
664 
665   /// Indicates if this is the entry block of a cleanup funclet.
666   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
667 
668   /// Returns true if this block begins any section.
669   bool isBeginSection() const { return IsBeginSection; }
670 
671   /// Returns true if this block ends any section.
672   bool isEndSection() const { return IsEndSection; }
673 
674   void setIsBeginSection(bool V = true) { IsBeginSection = V; }
675 
676   void setIsEndSection(bool V = true) { IsEndSection = V; }
677 
678   std::optional<UniqueBBID> getBBID() const { return BBID; }
679 
680   /// Returns the section ID of this basic block.
681   MBBSectionID getSectionID() const { return SectionID; }
682 
683   /// Sets the fixed BBID of this basic block.
684   void setBBID(const UniqueBBID &V) {
685     assert(!BBID.has_value() && "Cannot change BBID.");
686     BBID = V;
687   }
688 
689   /// Sets the section ID for this basic block.
690   void setSectionID(MBBSectionID V) { SectionID = V; }
691 
692   /// Returns the MCSymbol marking the end of this basic block.
693   MCSymbol *getEndSymbol() const;
694 
695   /// Returns true if this block may have an INLINEASM_BR (overestimate, by
696   /// checking if any of the successors are indirect targets of any inlineasm_br
697   /// in the function).
698   bool mayHaveInlineAsmBr() const;
699 
700   /// Returns true if this is the indirect dest of an INLINEASM_BR.
701   bool isInlineAsmBrIndirectTarget() const {
702     return IsInlineAsmBrIndirectTarget;
703   }
704 
705   /// Indicates if this is the indirect dest of an INLINEASM_BR.
706   void setIsInlineAsmBrIndirectTarget(bool V = true) {
707     IsInlineAsmBrIndirectTarget = V;
708   }
709 
710   /// Returns true if it is legal to hoist instructions into this block.
711   bool isLegalToHoistInto() const;
712 
713   // Code Layout methods.
714 
715   /// Move 'this' block before or after the specified block.  This only moves
716   /// the block, it does not modify the CFG or adjust potential fall-throughs at
717   /// the end of the block.
718   void moveBefore(MachineBasicBlock *NewAfter);
719   void moveAfter(MachineBasicBlock *NewBefore);
720 
721   /// Returns true if this and MBB belong to the same section.
722   bool sameSection(const MachineBasicBlock *MBB) const {
723     return getSectionID() == MBB->getSectionID();
724   }
725 
726   /// Update the terminator instructions in block to account for changes to
727   /// block layout which may have been made. PreviousLayoutSuccessor should be
728   /// set to the block which may have been used as fallthrough before the block
729   /// layout was modified.  If the block previously fell through to that block,
730   /// it may now need a branch. If it previously branched to another block, it
731   /// may now be able to fallthrough to the current layout successor.
732   void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
733 
734   // Machine-CFG mutators
735 
736   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
737   /// of Succ is automatically updated. PROB parameter is stored in
738   /// Probabilities list. The default probability is set as unknown. Mixing
739   /// known and unknown probabilities in successor list is not allowed. When all
740   /// successors have unknown probabilities, 1 / N is returned as the
741   /// probability for each successor, where N is the number of successors.
742   ///
743   /// Note that duplicate Machine CFG edges are not allowed.
744   void addSuccessor(MachineBasicBlock *Succ,
745                     BranchProbability Prob = BranchProbability::getUnknown());
746 
747   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
748   /// of Succ is automatically updated. The probability is not provided because
749   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
750   /// won't be used. Using this interface can save some space.
751   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
752 
753   /// Set successor probability of a given iterator.
754   void setSuccProbability(succ_iterator I, BranchProbability Prob);
755 
756   /// Normalize probabilities of all successors so that the sum of them becomes
757   /// one. This is usually done when the current update on this MBB is done, and
758   /// the sum of its successors' probabilities is not guaranteed to be one. The
759   /// user is responsible for the correct use of this function.
760   /// MBB::removeSuccessor() has an option to do this automatically.
761   void normalizeSuccProbs() {
762     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
763   }
764 
765   /// Validate successors' probabilities and check if the sum of them is
766   /// approximate one. This only works in DEBUG mode.
767   void validateSuccProbs() const;
768 
769   /// Remove successor from the successors list of this MachineBasicBlock. The
770   /// Predecessors list of Succ is automatically updated.
771   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
772   /// after the successor is removed.
773   void removeSuccessor(MachineBasicBlock *Succ,
774                        bool NormalizeSuccProbs = false);
775 
776   /// Remove specified successor from the successors list of this
777   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
778   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
779   /// after the successor is removed.
780   /// Return the iterator to the element after the one removed.
781   succ_iterator removeSuccessor(succ_iterator I,
782                                 bool NormalizeSuccProbs = false);
783 
784   /// Replace successor OLD with NEW and update probability info.
785   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
786 
787   /// Copy a successor (and any probability info) from original block to this
788   /// block's. Uses an iterator into the original blocks successors.
789   ///
790   /// This is useful when doing a partial clone of successors. Afterward, the
791   /// probabilities may need to be normalized.
792   void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I);
793 
794   /// Split the old successor into old plus new and updates the probability
795   /// info.
796   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
797                       bool NormalizeSuccProbs = false);
798 
799   /// Transfers all the successors from MBB to this machine basic block (i.e.,
800   /// copies all the successors FromMBB and remove all the successors from
801   /// FromMBB).
802   void transferSuccessors(MachineBasicBlock *FromMBB);
803 
804   /// Transfers all the successors, as in transferSuccessors, and update PHI
805   /// operands in the successor blocks which refer to FromMBB to refer to this.
806   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
807 
808   /// Return true if any of the successors have probabilities attached to them.
809   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
810 
811   /// Return true if the specified MBB is a predecessor of this block.
812   bool isPredecessor(const MachineBasicBlock *MBB) const;
813 
814   /// Return true if the specified MBB is a successor of this block.
815   bool isSuccessor(const MachineBasicBlock *MBB) const;
816 
817   /// Return true if the specified MBB will be emitted immediately after this
818   /// block, such that if this block exits by falling through, control will
819   /// transfer to the specified MBB. Note that MBB need not be a successor at
820   /// all, for example if this block ends with an unconditional branch to some
821   /// other block.
822   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
823 
824   /// Return the successor of this block if it has a single successor.
825   /// Otherwise return a null pointer.
826   ///
827   const MachineBasicBlock *getSingleSuccessor() const;
828   MachineBasicBlock *getSingleSuccessor() {
829     return const_cast<MachineBasicBlock *>(
830         static_cast<const MachineBasicBlock *>(this)->getSingleSuccessor());
831   }
832 
833   /// Return the predecessor of this block if it has a single predecessor.
834   /// Otherwise return a null pointer.
835   ///
836   const MachineBasicBlock *getSinglePredecessor() const;
837   MachineBasicBlock *getSinglePredecessor() {
838     return const_cast<MachineBasicBlock *>(
839         static_cast<const MachineBasicBlock *>(this)->getSinglePredecessor());
840   }
841 
842   /// Return the fallthrough block if the block can implicitly
843   /// transfer control to the block after it by falling off the end of
844   /// it. If an explicit branch to the fallthrough block is not allowed,
845   /// set JumpToFallThrough to be false. Non-null return is a conservative
846   /// answer.
847   MachineBasicBlock *getFallThrough(bool JumpToFallThrough = true);
848 
849   /// Return the fallthrough block if the block can implicitly
850   /// transfer control to it's successor, whether by a branch or
851   /// a fallthrough. Non-null return is a conservative answer.
852   MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(false); }
853 
854   /// Return true if the block can implicitly transfer control to the
855   /// block after it by falling off the end of it.  This should return
856   /// false if it can reach the block after it, but it uses an
857   /// explicit branch to do so (e.g., a table jump).  True is a
858   /// conservative answer.
859   bool canFallThrough();
860 
861   /// Returns a pointer to the first instruction in this block that is not a
862   /// PHINode instruction. When adding instructions to the beginning of the
863   /// basic block, they should be added before the returned value, not before
864   /// the first instruction, which might be PHI.
865   /// Returns end() is there's no non-PHI instruction.
866   iterator getFirstNonPHI();
867   const_iterator getFirstNonPHI() const {
868     return const_cast<MachineBasicBlock *>(this)->getFirstNonPHI();
869   }
870 
871   /// Return the first instruction in MBB after I that is not a PHI or a label.
872   /// This is the correct point to insert lowered copies at the beginning of a
873   /// basic block that must be before any debugging information.
874   iterator SkipPHIsAndLabels(iterator I);
875 
876   /// Return the first instruction in MBB after I that is not a PHI, label or
877   /// debug.  This is the correct point to insert copies at the beginning of a
878   /// basic block. \p Reg is the register being used by a spill or defined for a
879   /// restore/split during register allocation.
880   iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg = Register(),
881                                   bool SkipPseudoOp = true);
882 
883   /// Returns an iterator to the first terminator instruction of this basic
884   /// block. If a terminator does not exist, it returns end().
885   iterator getFirstTerminator();
886   const_iterator getFirstTerminator() const {
887     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
888   }
889 
890   /// Same getFirstTerminator but it ignores bundles and return an
891   /// instr_iterator instead.
892   instr_iterator getFirstInstrTerminator();
893 
894   /// Finds the first terminator in a block by scanning forward. This can handle
895   /// cases in GlobalISel where there may be non-terminator instructions between
896   /// terminators, for which getFirstTerminator() will not work correctly.
897   iterator getFirstTerminatorForward();
898 
899   /// Returns an iterator to the first non-debug instruction in the basic block,
900   /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
901   /// Pseudo probes are like debug instructions which do not turn into real
902   /// machine code. We try to use the function to skip both debug instructions
903   /// and pseudo probe operations to avoid API proliferation. This should work
904   /// most of the time when considering optimizing the rest of code in the
905   /// block, except for certain cases where pseudo probes are designed to block
906   /// the optimizations. For example, code merge like optimizations are supposed
907   /// to be blocked by pseudo probes for better AutoFDO profile quality.
908   /// Therefore, they should be considered as a valid instruction when this
909   /// function is called in a context of such optimizations. On the other hand,
910   /// \c SkipPseudoOp should be true when it's used in optimizations that
911   /// unlikely hurt profile quality, e.g., without block merging. The default
912   /// value of \c SkipPseudoOp is set to true to maximize code quality in
913   /// general, with an explict false value passed in in a few places like branch
914   /// folding and if-conversion to favor profile quality.
915   iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
916   const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
917     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
918         SkipPseudoOp);
919   }
920 
921   /// Returns an iterator to the last non-debug instruction in the basic block,
922   /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
923   /// Pseudo probes are like debug instructions which do not turn into real
924   /// machine code. We try to use the function to skip both debug instructions
925   /// and pseudo probe operations to avoid API proliferation. This should work
926   /// most of the time when considering optimizing the rest of code in the
927   /// block, except for certain cases where pseudo probes are designed to block
928   /// the optimizations. For example, code merge like optimizations are supposed
929   /// to be blocked by pseudo probes for better AutoFDO profile quality.
930   /// Therefore, they should be considered as a valid instruction when this
931   /// function is called in a context of such optimizations. On the other hand,
932   /// \c SkipPseudoOp should be true when it's used in optimizations that
933   /// unlikely hurt profile quality, e.g., without block merging. The default
934   /// value of \c SkipPseudoOp is set to true to maximize code quality in
935   /// general, with an explict false value passed in in a few places like branch
936   /// folding and if-conversion to favor profile quality.
937   iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
938   const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
939     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
940         SkipPseudoOp);
941   }
942 
943   /// Convenience function that returns true if the block ends in a return
944   /// instruction.
945   bool isReturnBlock() const {
946     return !empty() && back().isReturn();
947   }
948 
949   /// Convenience function that returns true if the bock ends in a EH scope
950   /// return instruction.
951   bool isEHScopeReturnBlock() const {
952     return !empty() && back().isEHScopeReturn();
953   }
954 
955   /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
956   /// inserted after this block, and all instructions after \p SplitInst moved
957   /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
958   /// LiveIntervals will be appropriately updated. \return the newly inserted
959   /// block.
960   ///
961   /// If \p UpdateLiveIns is true, this will ensure the live ins list is
962   /// accurate, including for physreg uses/defs in the original block.
963   MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
964                              LiveIntervals *LIS = nullptr);
965 
966   /// Split the critical edge from this block to the given successor block, and
967   /// return the newly created block, or null if splitting is not possible.
968   ///
969   /// This function updates LiveVariables, MachineDominatorTree, and
970   /// MachineLoopInfo, as applicable.
971   MachineBasicBlock *
972   SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
973                     std::vector<SparseBitVector<>> *LiveInSets = nullptr) {
974     return SplitCriticalEdge(Succ, &P, nullptr, LiveInSets);
975   }
976 
977   MachineBasicBlock *
978   SplitCriticalEdge(MachineBasicBlock *Succ,
979                     MachineFunctionAnalysisManager &MFAM,
980                     std::vector<SparseBitVector<>> *LiveInSets = nullptr) {
981     return SplitCriticalEdge(Succ, nullptr, &MFAM, LiveInSets);
982   }
983 
984   /// Check if the edge between this block and the given successor \p
985   /// Succ, can be split. If this returns true a subsequent call to
986   /// SplitCriticalEdge is guaranteed to return a valid basic block if
987   /// no changes occurred in the meantime.
988   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
989 
990   void pop_front() { Insts.pop_front(); }
991   void pop_back() { Insts.pop_back(); }
992   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
993 
994   /// Insert MI into the instruction list before I, possibly inside a bundle.
995   ///
996   /// If the insertion point is inside a bundle, MI will be added to the bundle,
997   /// otherwise MI will not be added to any bundle. That means this function
998   /// alone can't be used to prepend or append instructions to bundles. See
999   /// MIBundleBuilder::insert() for a more reliable way of doing that.
1000   instr_iterator insert(instr_iterator I, MachineInstr *M);
1001 
1002   /// Insert a range of instructions into the instruction list before I.
1003   template<typename IT>
1004   void insert(iterator I, IT S, IT E) {
1005     assert((I == end() || I->getParent() == this) &&
1006            "iterator points outside of basic block");
1007     Insts.insert(I.getInstrIterator(), S, E);
1008   }
1009 
1010   /// Insert MI into the instruction list before I.
1011   iterator insert(iterator I, MachineInstr *MI) {
1012     assert((I == end() || I->getParent() == this) &&
1013            "iterator points outside of basic block");
1014     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1015            "Cannot insert instruction with bundle flags");
1016     return Insts.insert(I.getInstrIterator(), MI);
1017   }
1018 
1019   /// Insert MI into the instruction list after I.
1020   iterator insertAfter(iterator I, MachineInstr *MI) {
1021     assert((I == end() || I->getParent() == this) &&
1022            "iterator points outside of basic block");
1023     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1024            "Cannot insert instruction with bundle flags");
1025     return Insts.insertAfter(I.getInstrIterator(), MI);
1026   }
1027 
1028   /// If I is bundled then insert MI into the instruction list after the end of
1029   /// the bundle, otherwise insert MI immediately after I.
1030   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
1031     assert((I == instr_end() || I->getParent() == this) &&
1032            "iterator points outside of basic block");
1033     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1034            "Cannot insert instruction with bundle flags");
1035     while (I->isBundledWithSucc())
1036       ++I;
1037     return Insts.insertAfter(I, MI);
1038   }
1039 
1040   /// Remove an instruction from the instruction list and delete it.
1041   ///
1042   /// If the instruction is part of a bundle, the other instructions in the
1043   /// bundle will still be bundled after removing the single instruction.
1044   instr_iterator erase(instr_iterator I);
1045 
1046   /// Remove an instruction from the instruction list and delete it.
1047   ///
1048   /// If the instruction is part of a bundle, the other instructions in the
1049   /// bundle will still be bundled after removing the single instruction.
1050   instr_iterator erase_instr(MachineInstr *I) {
1051     return erase(instr_iterator(I));
1052   }
1053 
1054   /// Remove a range of instructions from the instruction list and delete them.
1055   iterator erase(iterator I, iterator E) {
1056     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
1057   }
1058 
1059   /// Remove an instruction or bundle from the instruction list and delete it.
1060   ///
1061   /// If I points to a bundle of instructions, they are all erased.
1062   iterator erase(iterator I) {
1063     return erase(I, std::next(I));
1064   }
1065 
1066   /// Remove an instruction from the instruction list and delete it.
1067   ///
1068   /// If I is the head of a bundle of instructions, the whole bundle will be
1069   /// erased.
1070   iterator erase(MachineInstr *I) {
1071     return erase(iterator(I));
1072   }
1073 
1074   /// Remove the unbundled instruction from the instruction list without
1075   /// deleting it.
1076   ///
1077   /// This function can not be used to remove bundled instructions, use
1078   /// remove_instr to remove individual instructions from a bundle.
1079   MachineInstr *remove(MachineInstr *I) {
1080     assert(!I->isBundled() && "Cannot remove bundled instructions");
1081     return Insts.remove(instr_iterator(I));
1082   }
1083 
1084   /// Remove the possibly bundled instruction from the instruction list
1085   /// without deleting it.
1086   ///
1087   /// If the instruction is part of a bundle, the other instructions in the
1088   /// bundle will still be bundled after removing the single instruction.
1089   MachineInstr *remove_instr(MachineInstr *I);
1090 
1091   void clear() {
1092     Insts.clear();
1093   }
1094 
1095   /// Take an instruction from MBB 'Other' at the position From, and insert it
1096   /// into this MBB right before 'Where'.
1097   ///
1098   /// If From points to a bundle of instructions, the whole bundle is moved.
1099   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
1100     // The range splice() doesn't allow noop moves, but this one does.
1101     if (Where != From)
1102       splice(Where, Other, From, std::next(From));
1103   }
1104 
1105   /// Take a block of instructions from MBB 'Other' in the range [From, To),
1106   /// and insert them into this MBB right before 'Where'.
1107   ///
1108   /// The instruction at 'Where' must not be included in the range of
1109   /// instructions to move.
1110   void splice(iterator Where, MachineBasicBlock *Other,
1111               iterator From, iterator To) {
1112     Insts.splice(Where.getInstrIterator(), Other->Insts,
1113                  From.getInstrIterator(), To.getInstrIterator());
1114   }
1115 
1116   /// This method unlinks 'this' from the containing function, and returns it,
1117   /// but does not delete it.
1118   MachineBasicBlock *removeFromParent();
1119 
1120   /// This method unlinks 'this' from the containing function and deletes it.
1121   void eraseFromParent();
1122 
1123   /// Given a machine basic block that branched to 'Old', change the code and
1124   /// CFG so that it branches to 'New' instead.
1125   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1126 
1127   /// Update all phi nodes in this basic block to refer to basic block \p New
1128   /// instead of basic block \p Old.
1129   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1130 
1131   /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1132   /// instructions.  Return UnknownLoc if there is none.
1133   DebugLoc findDebugLoc(instr_iterator MBBI);
1134   DebugLoc findDebugLoc(iterator MBBI) {
1135     return findDebugLoc(MBBI.getInstrIterator());
1136   }
1137 
1138   /// Has exact same behavior as @ref findDebugLoc (it also searches towards the
1139   /// end of this MBB) except that this function takes a reverse iterator to
1140   /// identify the starting MI.
1141   DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
1142   DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
1143     return rfindDebugLoc(MBBI.getInstrIterator());
1144   }
1145 
1146   /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1147   /// instructions. It is possible to find the last DebugLoc in the MBB using
1148   /// findPrevDebugLoc(instr_end()).  Return UnknownLoc if there is none.
1149   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
1150   DebugLoc findPrevDebugLoc(iterator MBBI) {
1151     return findPrevDebugLoc(MBBI.getInstrIterator());
1152   }
1153 
1154   /// Has exact same behavior as @ref findPrevDebugLoc (it also searches towards
1155   /// the beginning of this MBB) except that this function takes reverse
1156   /// iterator to identify the starting MI. A minor difference compared to
1157   /// findPrevDebugLoc is that we can't start scanning at "instr_end".
1158   DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
1159   DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
1160     return rfindPrevDebugLoc(MBBI.getInstrIterator());
1161   }
1162 
1163   /// Find and return the merged DebugLoc of the branch instructions of the
1164   /// block. Return UnknownLoc if there is none.
1165   DebugLoc findBranchDebugLoc();
1166 
1167   /// Possible outcome of a register liveness query to computeRegisterLiveness()
1168   enum LivenessQueryResult {
1169     LQR_Live,   ///< Register is known to be (at least partially) live.
1170     LQR_Dead,   ///< Register is known to be fully dead.
1171     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
1172   };
1173 
1174   /// Return whether (physical) register \p Reg has been defined and not
1175   /// killed as of just before \p Before.
1176   ///
1177   /// Search is localised to a neighborhood of \p Neighborhood instructions
1178   /// before (searching for defs or kills) and \p Neighborhood instructions
1179   /// after (searching just for defs) \p Before.
1180   ///
1181   /// \p Reg must be a physical register.
1182   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
1183                                               MCRegister Reg,
1184                                               const_iterator Before,
1185                                               unsigned Neighborhood = 10) const;
1186 
1187   // Debugging methods.
1188   void dump() const;
1189   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
1190              bool IsStandalone = true) const;
1191   void print(raw_ostream &OS, ModuleSlotTracker &MST,
1192              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
1193 
1194   enum PrintNameFlag {
1195     PrintNameIr = (1 << 0), ///< Add IR name where available
1196     PrintNameAttributes = (1 << 1), ///< Print attributes
1197   };
1198 
1199   void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
1200                  ModuleSlotTracker *moduleSlotTracker = nullptr) const;
1201 
1202   // Printing method used by LoopInfo.
1203   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
1204 
1205   /// MachineBasicBlocks are uniquely numbered at the function level, unless
1206   /// they're not in a MachineFunction yet, in which case this will return -1.
1207   int getNumber() const { return Number; }
1208   void setNumber(int N) { Number = N; }
1209 
1210   /// Return the call frame size on entry to this basic block.
1211   unsigned getCallFrameSize() const { return CallFrameSize; }
1212   /// Set the call frame size on entry to this basic block.
1213   void setCallFrameSize(unsigned N) { CallFrameSize = N; }
1214 
1215   /// Return the MCSymbol for this basic block.
1216   MCSymbol *getSymbol() const;
1217 
1218   /// Return the EHCatchret Symbol for this basic block.
1219   MCSymbol *getEHCatchretSymbol() const;
1220 
1221   std::optional<uint64_t> getIrrLoopHeaderWeight() const {
1222     return IrrLoopHeaderWeight;
1223   }
1224 
1225   void setIrrLoopHeaderWeight(uint64_t Weight) {
1226     IrrLoopHeaderWeight = Weight;
1227   }
1228 
1229   /// Return probability of the edge from this block to MBB. This method should
1230   /// NOT be called directly, but by using getEdgeProbability method from
1231   /// MachineBranchProbabilityInfo class.
1232   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
1233 
1234 private:
1235   /// Return probability iterator corresponding to the I successor iterator.
1236   probability_iterator getProbabilityIterator(succ_iterator I);
1237   const_probability_iterator
1238   getProbabilityIterator(const_succ_iterator I) const;
1239 
1240   friend class MachineBranchProbabilityInfo;
1241   friend class MIPrinter;
1242 
1243   // Methods used to maintain doubly linked list of blocks...
1244   friend struct ilist_callback_traits<MachineBasicBlock>;
1245 
1246   // Machine-CFG mutators
1247 
1248   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
1249   /// unless you know what you're doing, because it doesn't update Pred's
1250   /// successors list. Use Pred->addSuccessor instead.
1251   void addPredecessor(MachineBasicBlock *Pred);
1252 
1253   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
1254   /// unless you know what you're doing, because it doesn't update Pred's
1255   /// successors list. Use Pred->removeSuccessor instead.
1256   void removePredecessor(MachineBasicBlock *Pred);
1257 
1258   // Helper method for new pass manager migration.
1259   MachineBasicBlock *
1260   SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P,
1261                     MachineFunctionAnalysisManager *MFAM,
1262                     std::vector<SparseBitVector<>> *LiveInSets);
1263 };
1264 
1265 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
1266 
1267 /// Prints a machine basic block reference.
1268 ///
1269 /// The format is:
1270 ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
1271 ///
1272 /// Usage: OS << printMBBReference(MBB) << '\n';
1273 Printable printMBBReference(const MachineBasicBlock &MBB);
1274 
1275 // This is useful when building IndexedMaps keyed on basic block pointers.
1276 struct MBB2NumberFunctor {
1277   using argument_type = const MachineBasicBlock *;
1278   unsigned operator()(const MachineBasicBlock *MBB) const {
1279     return MBB->getNumber();
1280   }
1281 };
1282 
1283 //===--------------------------------------------------------------------===//
1284 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
1285 //===--------------------------------------------------------------------===//
1286 
1287 // Provide specializations of GraphTraits to be able to treat a
1288 // MachineFunction as a graph of MachineBasicBlocks.
1289 //
1290 
1291 template <> struct GraphTraits<MachineBasicBlock *> {
1292   using NodeRef = MachineBasicBlock *;
1293   using ChildIteratorType = MachineBasicBlock::succ_iterator;
1294 
1295   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1296   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1297   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1298 };
1299 
1300 template <> struct GraphTraits<const MachineBasicBlock *> {
1301   using NodeRef = const MachineBasicBlock *;
1302   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1303 
1304   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1305   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1306   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1307 };
1308 
1309 // Provide specializations of GraphTraits to be able to treat a
1310 // MachineFunction as a graph of MachineBasicBlocks and to walk it
1311 // in inverse order.  Inverse order for a function is considered
1312 // to be when traversing the predecessor edges of a MBB
1313 // instead of the successor edges.
1314 //
1315 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
1316   using NodeRef = MachineBasicBlock *;
1317   using ChildIteratorType = MachineBasicBlock::pred_iterator;
1318 
1319   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
1320     return G.Graph;
1321   }
1322 
1323   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1324   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1325 };
1326 
1327 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
1328   using NodeRef = const MachineBasicBlock *;
1329   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
1330 
1331   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
1332     return G.Graph;
1333   }
1334 
1335   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1336   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1337 };
1338 
1339 // These accessors are handy for sharing templated code between IR and MIR.
1340 inline auto successors(const MachineBasicBlock *BB) { return BB->successors(); }
1341 inline auto predecessors(const MachineBasicBlock *BB) {
1342   return BB->predecessors();
1343 }
1344 
1345 /// MachineInstrSpan provides an interface to get an iteration range
1346 /// containing the instruction it was initialized with, along with all
1347 /// those instructions inserted prior to or following that instruction
1348 /// at some point after the MachineInstrSpan is constructed.
1349 class MachineInstrSpan {
1350   MachineBasicBlock &MBB;
1351   MachineBasicBlock::iterator I, B, E;
1352 
1353 public:
1354   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1355       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1356         E(std::next(I)) {
1357     assert(I == BB->end() || I->getParent() == BB);
1358   }
1359 
1360   MachineBasicBlock::iterator begin() {
1361     return B == MBB.end() ? MBB.begin() : std::next(B);
1362   }
1363   MachineBasicBlock::iterator end() { return E; }
1364   bool empty() { return begin() == end(); }
1365 
1366   MachineBasicBlock::iterator getInitial() { return I; }
1367 };
1368 
1369 /// Increment \p It until it points to a non-debug instruction or to \p End
1370 /// and return the resulting iterator. This function should only be used
1371 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1372 /// const_instr_iterator} and the respective reverse iterators.
1373 template <typename IterT>
1374 inline IterT skipDebugInstructionsForward(IterT It, IterT End,
1375                                           bool SkipPseudoOp = true) {
1376   while (It != End &&
1377          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1378     ++It;
1379   return It;
1380 }
1381 
1382 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
1383 /// and return the resulting iterator. This function should only be used
1384 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1385 /// const_instr_iterator} and the respective reverse iterators.
1386 template <class IterT>
1387 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
1388                                            bool SkipPseudoOp = true) {
1389   while (It != Begin &&
1390          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1391     --It;
1392   return It;
1393 }
1394 
1395 /// Increment \p It, then continue incrementing it while it points to a debug
1396 /// instruction. A replacement for std::next.
1397 template <typename IterT>
1398 inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
1399   return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
1400 }
1401 
1402 /// Decrement \p It, then continue decrementing it while it points to a debug
1403 /// instruction. A replacement for std::prev.
1404 template <typename IterT>
1405 inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
1406   return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
1407 }
1408 
1409 /// Construct a range iterator which begins at \p It and moves forwards until
1410 /// \p End is reached, skipping any debug instructions.
1411 template <typename IterT>
1412 inline auto instructionsWithoutDebug(IterT It, IterT End,
1413                                      bool SkipPseudoOp = true) {
1414   return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
1415     return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
1416   });
1417 }
1418 
1419 } // end namespace llvm
1420 
1421 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
1422