1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/ExpandMemCmp.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
19 #include "llvm/Analysis/ProfileSummaryInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/SizeOpts.h"
33 #include <optional>
34
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37
38 namespace llvm {
39 class TargetLowering;
40 }
41
42 #define DEBUG_TYPE "expand-memcmp"
43
44 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
45 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
46 STATISTIC(NumMemCmpGreaterThanMax,
47 "Number of memcmp calls with size greater than max size");
48 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
49
50 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
51 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
52 cl::desc("The number of loads per basic block for inline expansion of "
53 "memcmp that is only being compared against zero."));
54
55 static cl::opt<unsigned> MaxLoadsPerMemcmp(
56 "max-loads-per-memcmp", cl::Hidden,
57 cl::desc("Set maximum number of loads used in expanded memcmp"));
58
59 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
60 "max-loads-per-memcmp-opt-size", cl::Hidden,
61 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
62
63 namespace {
64
65
66 // This class provides helper functions to expand a memcmp library call into an
67 // inline expansion.
68 class MemCmpExpansion {
69 struct ResultBlock {
70 BasicBlock *BB = nullptr;
71 PHINode *PhiSrc1 = nullptr;
72 PHINode *PhiSrc2 = nullptr;
73
74 ResultBlock() = default;
75 };
76
77 CallInst *const CI = nullptr;
78 ResultBlock ResBlock;
79 const uint64_t Size;
80 unsigned MaxLoadSize = 0;
81 uint64_t NumLoadsNonOneByte = 0;
82 const uint64_t NumLoadsPerBlockForZeroCmp;
83 std::vector<BasicBlock *> LoadCmpBlocks;
84 BasicBlock *EndBlock = nullptr;
85 PHINode *PhiRes = nullptr;
86 const bool IsUsedForZeroCmp;
87 const DataLayout &DL;
88 DomTreeUpdater *DTU = nullptr;
89 IRBuilder<> Builder;
90 // Represents the decomposition in blocks of the expansion. For example,
91 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
92 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
93 struct LoadEntry {
LoadEntry__anon455dbdd30111::MemCmpExpansion::LoadEntry94 LoadEntry(unsigned LoadSize, uint64_t Offset)
95 : LoadSize(LoadSize), Offset(Offset) {
96 }
97
98 // The size of the load for this block, in bytes.
99 unsigned LoadSize;
100 // The offset of this load from the base pointer, in bytes.
101 uint64_t Offset;
102 };
103 using LoadEntryVector = SmallVector<LoadEntry, 8>;
104 LoadEntryVector LoadSequence;
105
106 void createLoadCmpBlocks();
107 void createResultBlock();
108 void setupResultBlockPHINodes();
109 void setupEndBlockPHINodes();
110 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
111 void emitLoadCompareBlock(unsigned BlockIndex);
112 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
113 unsigned &LoadIndex);
114 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
115 void emitMemCmpResultBlock();
116 Value *getMemCmpExpansionZeroCase();
117 Value *getMemCmpEqZeroOneBlock();
118 Value *getMemCmpOneBlock();
119 struct LoadPair {
120 Value *Lhs = nullptr;
121 Value *Rhs = nullptr;
122 };
123 LoadPair getLoadPair(Type *LoadSizeType, Type *BSwapSizeType,
124 Type *CmpSizeType, unsigned OffsetBytes);
125
126 static LoadEntryVector
127 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
128 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
129 static LoadEntryVector
130 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
131 unsigned MaxNumLoads,
132 unsigned &NumLoadsNonOneByte);
133
134 static void optimiseLoadSequence(
135 LoadEntryVector &LoadSequence,
136 const TargetTransformInfo::MemCmpExpansionOptions &Options,
137 bool IsUsedForZeroCmp);
138
139 public:
140 MemCmpExpansion(CallInst *CI, uint64_t Size,
141 const TargetTransformInfo::MemCmpExpansionOptions &Options,
142 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
143 DomTreeUpdater *DTU);
144
145 unsigned getNumBlocks();
getNumLoads() const146 uint64_t getNumLoads() const { return LoadSequence.size(); }
147
148 Value *getMemCmpExpansion();
149 };
150
computeGreedyLoadSequence(uint64_t Size,llvm::ArrayRef<unsigned> LoadSizes,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)151 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
152 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
153 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
154 NumLoadsNonOneByte = 0;
155 LoadEntryVector LoadSequence;
156 uint64_t Offset = 0;
157 while (Size && !LoadSizes.empty()) {
158 const unsigned LoadSize = LoadSizes.front();
159 const uint64_t NumLoadsForThisSize = Size / LoadSize;
160 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
161 // Do not expand if the total number of loads is larger than what the
162 // target allows. Note that it's important that we exit before completing
163 // the expansion to avoid using a ton of memory to store the expansion for
164 // large sizes.
165 return {};
166 }
167 if (NumLoadsForThisSize > 0) {
168 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
169 LoadSequence.push_back({LoadSize, Offset});
170 Offset += LoadSize;
171 }
172 if (LoadSize > 1)
173 ++NumLoadsNonOneByte;
174 Size = Size % LoadSize;
175 }
176 LoadSizes = LoadSizes.drop_front();
177 }
178 return LoadSequence;
179 }
180
181 MemCmpExpansion::LoadEntryVector
computeOverlappingLoadSequence(uint64_t Size,const unsigned MaxLoadSize,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)182 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
183 const unsigned MaxLoadSize,
184 const unsigned MaxNumLoads,
185 unsigned &NumLoadsNonOneByte) {
186 // These are already handled by the greedy approach.
187 if (Size < 2 || MaxLoadSize < 2)
188 return {};
189
190 // We try to do as many non-overlapping loads as possible starting from the
191 // beginning.
192 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
193 assert(NumNonOverlappingLoads && "there must be at least one load");
194 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
195 // an overlapping load.
196 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
197 // Bail if we do not need an overloapping store, this is already handled by
198 // the greedy approach.
199 if (Size == 0)
200 return {};
201 // Bail if the number of loads (non-overlapping + potential overlapping one)
202 // is larger than the max allowed.
203 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
204 return {};
205
206 // Add non-overlapping loads.
207 LoadEntryVector LoadSequence;
208 uint64_t Offset = 0;
209 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
210 LoadSequence.push_back({MaxLoadSize, Offset});
211 Offset += MaxLoadSize;
212 }
213
214 // Add the last overlapping load.
215 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
216 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
217 NumLoadsNonOneByte = 1;
218 return LoadSequence;
219 }
220
optimiseLoadSequence(LoadEntryVector & LoadSequence,const TargetTransformInfo::MemCmpExpansionOptions & Options,bool IsUsedForZeroCmp)221 void MemCmpExpansion::optimiseLoadSequence(
222 LoadEntryVector &LoadSequence,
223 const TargetTransformInfo::MemCmpExpansionOptions &Options,
224 bool IsUsedForZeroCmp) {
225 // This part of code attempts to optimize the LoadSequence by merging allowed
226 // subsequences into single loads of allowed sizes from
227 // `MemCmpExpansionOptions::AllowedTailExpansions`. If it is for zero
228 // comparison or if no allowed tail expansions are specified, we exit early.
229 if (IsUsedForZeroCmp || Options.AllowedTailExpansions.empty())
230 return;
231
232 while (LoadSequence.size() >= 2) {
233 auto Last = LoadSequence[LoadSequence.size() - 1];
234 auto PreLast = LoadSequence[LoadSequence.size() - 2];
235
236 // Exit the loop if the two sequences are not contiguous
237 if (PreLast.Offset + PreLast.LoadSize != Last.Offset)
238 break;
239
240 auto LoadSize = Last.LoadSize + PreLast.LoadSize;
241 if (find(Options.AllowedTailExpansions, LoadSize) ==
242 Options.AllowedTailExpansions.end())
243 break;
244
245 // Remove the last two sequences and replace with the combined sequence
246 LoadSequence.pop_back();
247 LoadSequence.pop_back();
248 LoadSequence.emplace_back(PreLast.Offset, LoadSize);
249 }
250 }
251
252 // Initialize the basic block structure required for expansion of memcmp call
253 // with given maximum load size and memcmp size parameter.
254 // This structure includes:
255 // 1. A list of load compare blocks - LoadCmpBlocks.
256 // 2. An EndBlock, split from original instruction point, which is the block to
257 // return from.
258 // 3. ResultBlock, block to branch to for early exit when a
259 // LoadCmpBlock finds a difference.
MemCmpExpansion(CallInst * const CI,uint64_t Size,const TargetTransformInfo::MemCmpExpansionOptions & Options,const bool IsUsedForZeroCmp,const DataLayout & TheDataLayout,DomTreeUpdater * DTU)260 MemCmpExpansion::MemCmpExpansion(
261 CallInst *const CI, uint64_t Size,
262 const TargetTransformInfo::MemCmpExpansionOptions &Options,
263 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
264 DomTreeUpdater *DTU)
265 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
266 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
267 Builder(CI) {
268 assert(Size > 0 && "zero blocks");
269 // Scale the max size down if the target can load more bytes than we need.
270 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
271 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
272 LoadSizes = LoadSizes.drop_front();
273 }
274 assert(!LoadSizes.empty() && "cannot load Size bytes");
275 MaxLoadSize = LoadSizes.front();
276 // Compute the decomposition.
277 unsigned GreedyNumLoadsNonOneByte = 0;
278 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
279 GreedyNumLoadsNonOneByte);
280 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
281 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
282 // If we allow overlapping loads and the load sequence is not already optimal,
283 // use overlapping loads.
284 if (Options.AllowOverlappingLoads &&
285 (LoadSequence.empty() || LoadSequence.size() > 2)) {
286 unsigned OverlappingNumLoadsNonOneByte = 0;
287 auto OverlappingLoads = computeOverlappingLoadSequence(
288 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
289 if (!OverlappingLoads.empty() &&
290 (LoadSequence.empty() ||
291 OverlappingLoads.size() < LoadSequence.size())) {
292 LoadSequence = OverlappingLoads;
293 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
294 }
295 }
296 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
297 optimiseLoadSequence(LoadSequence, Options, IsUsedForZeroCmp);
298 }
299
getNumBlocks()300 unsigned MemCmpExpansion::getNumBlocks() {
301 if (IsUsedForZeroCmp)
302 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
303 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
304 return getNumLoads();
305 }
306
createLoadCmpBlocks()307 void MemCmpExpansion::createLoadCmpBlocks() {
308 for (unsigned i = 0; i < getNumBlocks(); i++) {
309 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
310 EndBlock->getParent(), EndBlock);
311 LoadCmpBlocks.push_back(BB);
312 }
313 }
314
createResultBlock()315 void MemCmpExpansion::createResultBlock() {
316 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
317 EndBlock->getParent(), EndBlock);
318 }
319
getLoadPair(Type * LoadSizeType,Type * BSwapSizeType,Type * CmpSizeType,unsigned OffsetBytes)320 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
321 Type *BSwapSizeType,
322 Type *CmpSizeType,
323 unsigned OffsetBytes) {
324 // Get the memory source at offset `OffsetBytes`.
325 Value *LhsSource = CI->getArgOperand(0);
326 Value *RhsSource = CI->getArgOperand(1);
327 Align LhsAlign = LhsSource->getPointerAlignment(DL);
328 Align RhsAlign = RhsSource->getPointerAlignment(DL);
329 if (OffsetBytes > 0) {
330 auto *ByteType = Type::getInt8Ty(CI->getContext());
331 LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes);
332 RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes);
333 LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
334 RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
335 }
336
337 // Create a constant or a load from the source.
338 Value *Lhs = nullptr;
339 if (auto *C = dyn_cast<Constant>(LhsSource))
340 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
341 if (!Lhs)
342 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
343
344 Value *Rhs = nullptr;
345 if (auto *C = dyn_cast<Constant>(RhsSource))
346 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
347 if (!Rhs)
348 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
349
350 // Zero extend if Byte Swap intrinsic has different type
351 if (BSwapSizeType && LoadSizeType != BSwapSizeType) {
352 Lhs = Builder.CreateZExt(Lhs, BSwapSizeType);
353 Rhs = Builder.CreateZExt(Rhs, BSwapSizeType);
354 }
355
356 // Swap bytes if required.
357 if (BSwapSizeType) {
358 Function *Bswap = Intrinsic::getDeclaration(
359 CI->getModule(), Intrinsic::bswap, BSwapSizeType);
360 Lhs = Builder.CreateCall(Bswap, Lhs);
361 Rhs = Builder.CreateCall(Bswap, Rhs);
362 }
363
364 // Zero extend if required.
365 if (CmpSizeType != nullptr && CmpSizeType != Lhs->getType()) {
366 Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
367 Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
368 }
369 return {Lhs, Rhs};
370 }
371
372 // This function creates the IR instructions for loading and comparing 1 byte.
373 // It loads 1 byte from each source of the memcmp parameters with the given
374 // GEPIndex. It then subtracts the two loaded values and adds this result to the
375 // final phi node for selecting the memcmp result.
emitLoadCompareByteBlock(unsigned BlockIndex,unsigned OffsetBytes)376 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
377 unsigned OffsetBytes) {
378 BasicBlock *BB = LoadCmpBlocks[BlockIndex];
379 Builder.SetInsertPoint(BB);
380 const LoadPair Loads =
381 getLoadPair(Type::getInt8Ty(CI->getContext()), nullptr,
382 Type::getInt32Ty(CI->getContext()), OffsetBytes);
383 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
384
385 PhiRes->addIncoming(Diff, BB);
386
387 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
388 // Early exit branch if difference found to EndBlock. Otherwise, continue to
389 // next LoadCmpBlock,
390 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
391 ConstantInt::get(Diff->getType(), 0));
392 BranchInst *CmpBr =
393 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
394 Builder.Insert(CmpBr);
395 if (DTU)
396 DTU->applyUpdates(
397 {{DominatorTree::Insert, BB, EndBlock},
398 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
399 } else {
400 // The last block has an unconditional branch to EndBlock.
401 BranchInst *CmpBr = BranchInst::Create(EndBlock);
402 Builder.Insert(CmpBr);
403 if (DTU)
404 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
405 }
406 }
407
408 /// Generate an equality comparison for one or more pairs of loaded values.
409 /// This is used in the case where the memcmp() call is compared equal or not
410 /// equal to zero.
getCompareLoadPairs(unsigned BlockIndex,unsigned & LoadIndex)411 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
412 unsigned &LoadIndex) {
413 assert(LoadIndex < getNumLoads() &&
414 "getCompareLoadPairs() called with no remaining loads");
415 std::vector<Value *> XorList, OrList;
416 Value *Diff = nullptr;
417
418 const unsigned NumLoads =
419 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
420
421 // For a single-block expansion, start inserting before the memcmp call.
422 if (LoadCmpBlocks.empty())
423 Builder.SetInsertPoint(CI);
424 else
425 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
426
427 Value *Cmp = nullptr;
428 // If we have multiple loads per block, we need to generate a composite
429 // comparison using xor+or. The type for the combinations is the largest load
430 // type.
431 IntegerType *const MaxLoadType =
432 NumLoads == 1 ? nullptr
433 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
434
435 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
436 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
437 const LoadPair Loads = getLoadPair(
438 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), nullptr,
439 MaxLoadType, CurLoadEntry.Offset);
440
441 if (NumLoads != 1) {
442 // If we have multiple loads per block, we need to generate a composite
443 // comparison using xor+or.
444 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
445 Diff = Builder.CreateZExt(Diff, MaxLoadType);
446 XorList.push_back(Diff);
447 } else {
448 // If there's only one load per block, we just compare the loaded values.
449 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
450 }
451 }
452
453 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
454 std::vector<Value *> OutList;
455 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
456 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
457 OutList.push_back(Or);
458 }
459 if (InList.size() % 2 != 0)
460 OutList.push_back(InList.back());
461 return OutList;
462 };
463
464 if (!Cmp) {
465 // Pairwise OR the XOR results.
466 OrList = pairWiseOr(XorList);
467
468 // Pairwise OR the OR results until one result left.
469 while (OrList.size() != 1) {
470 OrList = pairWiseOr(OrList);
471 }
472
473 assert(Diff && "Failed to find comparison diff");
474 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
475 }
476
477 return Cmp;
478 }
479
emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,unsigned & LoadIndex)480 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
481 unsigned &LoadIndex) {
482 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
483
484 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
485 ? EndBlock
486 : LoadCmpBlocks[BlockIndex + 1];
487 // Early exit branch if difference found to ResultBlock. Otherwise,
488 // continue to next LoadCmpBlock or EndBlock.
489 BasicBlock *BB = Builder.GetInsertBlock();
490 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
491 Builder.Insert(CmpBr);
492 if (DTU)
493 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
494 {DominatorTree::Insert, BB, NextBB}});
495
496 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
497 // since early exit to ResultBlock was not taken (no difference was found in
498 // any of the bytes).
499 if (BlockIndex == LoadCmpBlocks.size() - 1) {
500 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
501 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
502 }
503 }
504
505 // This function creates the IR intructions for loading and comparing using the
506 // given LoadSize. It loads the number of bytes specified by LoadSize from each
507 // source of the memcmp parameters. It then does a subtract to see if there was
508 // a difference in the loaded values. If a difference is found, it branches
509 // with an early exit to the ResultBlock for calculating which source was
510 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
511 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
512 // a special case through emitLoadCompareByteBlock. The special handling can
513 // simply subtract the loaded values and add it to the result phi node.
emitLoadCompareBlock(unsigned BlockIndex)514 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
515 // There is one load per block in this case, BlockIndex == LoadIndex.
516 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
517
518 if (CurLoadEntry.LoadSize == 1) {
519 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
520 return;
521 }
522
523 Type *LoadSizeType =
524 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
525 Type *BSwapSizeType =
526 DL.isLittleEndian()
527 ? IntegerType::get(CI->getContext(),
528 PowerOf2Ceil(CurLoadEntry.LoadSize * 8))
529 : nullptr;
530 Type *MaxLoadType = IntegerType::get(
531 CI->getContext(),
532 std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(CurLoadEntry.LoadSize)) * 8);
533 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
534
535 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
536
537 const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
538 CurLoadEntry.Offset);
539
540 // Add the loaded values to the phi nodes for calculating memcmp result only
541 // if result is not used in a zero equality.
542 if (!IsUsedForZeroCmp) {
543 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
544 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
545 }
546
547 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
548 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
549 ? EndBlock
550 : LoadCmpBlocks[BlockIndex + 1];
551 // Early exit branch if difference found to ResultBlock. Otherwise, continue
552 // to next LoadCmpBlock or EndBlock.
553 BasicBlock *BB = Builder.GetInsertBlock();
554 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
555 Builder.Insert(CmpBr);
556 if (DTU)
557 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
558 {DominatorTree::Insert, BB, ResBlock.BB}});
559
560 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
561 // since early exit to ResultBlock was not taken (no difference was found in
562 // any of the bytes).
563 if (BlockIndex == LoadCmpBlocks.size() - 1) {
564 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
565 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
566 }
567 }
568
569 // This function populates the ResultBlock with a sequence to calculate the
570 // memcmp result. It compares the two loaded source values and returns -1 if
571 // src1 < src2 and 1 if src1 > src2.
emitMemCmpResultBlock()572 void MemCmpExpansion::emitMemCmpResultBlock() {
573 // Special case: if memcmp result is used in a zero equality, result does not
574 // need to be calculated and can simply return 1.
575 if (IsUsedForZeroCmp) {
576 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
577 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
578 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
579 PhiRes->addIncoming(Res, ResBlock.BB);
580 BranchInst *NewBr = BranchInst::Create(EndBlock);
581 Builder.Insert(NewBr);
582 if (DTU)
583 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
584 return;
585 }
586 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
587 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
588
589 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
590 ResBlock.PhiSrc2);
591
592 Value *Res =
593 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
594 ConstantInt::get(Builder.getInt32Ty(), 1));
595
596 PhiRes->addIncoming(Res, ResBlock.BB);
597 BranchInst *NewBr = BranchInst::Create(EndBlock);
598 Builder.Insert(NewBr);
599 if (DTU)
600 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
601 }
602
setupResultBlockPHINodes()603 void MemCmpExpansion::setupResultBlockPHINodes() {
604 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
605 Builder.SetInsertPoint(ResBlock.BB);
606 // Note: this assumes one load per block.
607 ResBlock.PhiSrc1 =
608 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
609 ResBlock.PhiSrc2 =
610 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
611 }
612
setupEndBlockPHINodes()613 void MemCmpExpansion::setupEndBlockPHINodes() {
614 Builder.SetInsertPoint(EndBlock, EndBlock->begin());
615 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
616 }
617
getMemCmpExpansionZeroCase()618 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
619 unsigned LoadIndex = 0;
620 // This loop populates each of the LoadCmpBlocks with the IR sequence to
621 // handle multiple loads per block.
622 for (unsigned I = 0; I < getNumBlocks(); ++I) {
623 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
624 }
625
626 emitMemCmpResultBlock();
627 return PhiRes;
628 }
629
630 /// A memcmp expansion that compares equality with 0 and only has one block of
631 /// load and compare can bypass the compare, branch, and phi IR that is required
632 /// in the general case.
getMemCmpEqZeroOneBlock()633 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
634 unsigned LoadIndex = 0;
635 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
636 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
637 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
638 }
639
640 /// A memcmp expansion that only has one block of load and compare can bypass
641 /// the compare, branch, and phi IR that is required in the general case.
642 /// This function also analyses users of memcmp, and if there is only one user
643 /// from which we can conclude that only 2 out of 3 memcmp outcomes really
644 /// matter, then it generates more efficient code with only one comparison.
getMemCmpOneBlock()645 Value *MemCmpExpansion::getMemCmpOneBlock() {
646 bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
647 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
648 Type *BSwapSizeType =
649 NeedsBSwap ? IntegerType::get(CI->getContext(), PowerOf2Ceil(Size * 8))
650 : nullptr;
651 Type *MaxLoadType =
652 IntegerType::get(CI->getContext(),
653 std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(Size)) * 8);
654
655 // The i8 and i16 cases don't need compares. We zext the loaded values and
656 // subtract them to get the suitable negative, zero, or positive i32 result.
657 if (Size == 1 || Size == 2) {
658 const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType,
659 Builder.getInt32Ty(), /*Offset*/ 0);
660 return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
661 }
662
663 const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
664 /*Offset*/ 0);
665
666 // If a user of memcmp cares only about two outcomes, for example:
667 // bool result = memcmp(a, b, NBYTES) > 0;
668 // We can generate more optimal code with a smaller number of operations
669 if (CI->hasOneUser()) {
670 auto *UI = cast<Instruction>(*CI->user_begin());
671 ICmpInst::Predicate Pred = ICmpInst::Predicate::BAD_ICMP_PREDICATE;
672 uint64_t Shift;
673 bool NeedsZExt = false;
674 // This is a special case because instead of checking if the result is less
675 // than zero:
676 // bool result = memcmp(a, b, NBYTES) < 0;
677 // Compiler is clever enough to generate the following code:
678 // bool result = memcmp(a, b, NBYTES) >> 31;
679 if (match(UI, m_LShr(m_Value(), m_ConstantInt(Shift))) &&
680 Shift == (CI->getType()->getIntegerBitWidth() - 1)) {
681 Pred = ICmpInst::ICMP_SLT;
682 NeedsZExt = true;
683 } else {
684 // In case of a successful match this call will set `Pred` variable
685 match(UI, m_ICmp(Pred, m_Specific(CI), m_Zero()));
686 }
687 // Generate new code and remove the original memcmp call and the user
688 if (ICmpInst::isSigned(Pred)) {
689 Value *Cmp = Builder.CreateICmp(CmpInst::getUnsignedPredicate(Pred),
690 Loads.Lhs, Loads.Rhs);
691 auto *Result = NeedsZExt ? Builder.CreateZExt(Cmp, UI->getType()) : Cmp;
692 UI->replaceAllUsesWith(Result);
693 UI->eraseFromParent();
694 CI->eraseFromParent();
695 return nullptr;
696 }
697 }
698
699 // The result of memcmp is negative, zero, or positive, so produce that by
700 // subtracting 2 extended compare bits: sub (ugt, ult).
701 // If a target prefers to use selects to get -1/0/1, they should be able
702 // to transform this later. The inverse transform (going from selects to math)
703 // may not be possible in the DAG because the selects got converted into
704 // branches before we got there.
705 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
706 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
707 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
708 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
709 return Builder.CreateSub(ZextUGT, ZextULT);
710 }
711
712 // This function expands the memcmp call into an inline expansion and returns
713 // the memcmp result. Returns nullptr if the memcmp is already replaced.
getMemCmpExpansion()714 Value *MemCmpExpansion::getMemCmpExpansion() {
715 // Create the basic block framework for a multi-block expansion.
716 if (getNumBlocks() != 1) {
717 BasicBlock *StartBlock = CI->getParent();
718 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
719 /*MSSAU=*/nullptr, "endblock");
720 setupEndBlockPHINodes();
721 createResultBlock();
722
723 // If return value of memcmp is not used in a zero equality, we need to
724 // calculate which source was larger. The calculation requires the
725 // two loaded source values of each load compare block.
726 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
727 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
728
729 // Create the number of required load compare basic blocks.
730 createLoadCmpBlocks();
731
732 // Update the terminator added by SplitBlock to branch to the first
733 // LoadCmpBlock.
734 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
735 if (DTU)
736 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
737 {DominatorTree::Delete, StartBlock, EndBlock}});
738 }
739
740 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
741
742 if (IsUsedForZeroCmp)
743 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
744 : getMemCmpExpansionZeroCase();
745
746 if (getNumBlocks() == 1)
747 return getMemCmpOneBlock();
748
749 for (unsigned I = 0; I < getNumBlocks(); ++I) {
750 emitLoadCompareBlock(I);
751 }
752
753 emitMemCmpResultBlock();
754 return PhiRes;
755 }
756
757 // This function checks to see if an expansion of memcmp can be generated.
758 // It checks for constant compare size that is less than the max inline size.
759 // If an expansion cannot occur, returns false to leave as a library call.
760 // Otherwise, the library call is replaced with a new IR instruction sequence.
761 /// We want to transform:
762 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
763 /// To:
764 /// loadbb:
765 /// %0 = bitcast i32* %buffer2 to i8*
766 /// %1 = bitcast i32* %buffer1 to i8*
767 /// %2 = bitcast i8* %1 to i64*
768 /// %3 = bitcast i8* %0 to i64*
769 /// %4 = load i64, i64* %2
770 /// %5 = load i64, i64* %3
771 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
772 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
773 /// %8 = sub i64 %6, %7
774 /// %9 = icmp ne i64 %8, 0
775 /// br i1 %9, label %res_block, label %loadbb1
776 /// res_block: ; preds = %loadbb2,
777 /// %loadbb1, %loadbb
778 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
779 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
780 /// %10 = icmp ult i64 %phi.src1, %phi.src2
781 /// %11 = select i1 %10, i32 -1, i32 1
782 /// br label %endblock
783 /// loadbb1: ; preds = %loadbb
784 /// %12 = bitcast i32* %buffer2 to i8*
785 /// %13 = bitcast i32* %buffer1 to i8*
786 /// %14 = bitcast i8* %13 to i32*
787 /// %15 = bitcast i8* %12 to i32*
788 /// %16 = getelementptr i32, i32* %14, i32 2
789 /// %17 = getelementptr i32, i32* %15, i32 2
790 /// %18 = load i32, i32* %16
791 /// %19 = load i32, i32* %17
792 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
793 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
794 /// %22 = zext i32 %20 to i64
795 /// %23 = zext i32 %21 to i64
796 /// %24 = sub i64 %22, %23
797 /// %25 = icmp ne i64 %24, 0
798 /// br i1 %25, label %res_block, label %loadbb2
799 /// loadbb2: ; preds = %loadbb1
800 /// %26 = bitcast i32* %buffer2 to i8*
801 /// %27 = bitcast i32* %buffer1 to i8*
802 /// %28 = bitcast i8* %27 to i16*
803 /// %29 = bitcast i8* %26 to i16*
804 /// %30 = getelementptr i16, i16* %28, i16 6
805 /// %31 = getelementptr i16, i16* %29, i16 6
806 /// %32 = load i16, i16* %30
807 /// %33 = load i16, i16* %31
808 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
809 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
810 /// %36 = zext i16 %34 to i64
811 /// %37 = zext i16 %35 to i64
812 /// %38 = sub i64 %36, %37
813 /// %39 = icmp ne i64 %38, 0
814 /// br i1 %39, label %res_block, label %loadbb3
815 /// loadbb3: ; preds = %loadbb2
816 /// %40 = bitcast i32* %buffer2 to i8*
817 /// %41 = bitcast i32* %buffer1 to i8*
818 /// %42 = getelementptr i8, i8* %41, i8 14
819 /// %43 = getelementptr i8, i8* %40, i8 14
820 /// %44 = load i8, i8* %42
821 /// %45 = load i8, i8* %43
822 /// %46 = zext i8 %44 to i32
823 /// %47 = zext i8 %45 to i32
824 /// %48 = sub i32 %46, %47
825 /// br label %endblock
826 /// endblock: ; preds = %res_block,
827 /// %loadbb3
828 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
829 /// ret i32 %phi.res
expandMemCmp(CallInst * CI,const TargetTransformInfo * TTI,const TargetLowering * TLI,const DataLayout * DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU,const bool IsBCmp)830 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
831 const TargetLowering *TLI, const DataLayout *DL,
832 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
833 DomTreeUpdater *DTU, const bool IsBCmp) {
834 NumMemCmpCalls++;
835
836 // Early exit from expansion if -Oz.
837 if (CI->getFunction()->hasMinSize())
838 return false;
839
840 // Early exit from expansion if size is not a constant.
841 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
842 if (!SizeCast) {
843 NumMemCmpNotConstant++;
844 return false;
845 }
846 const uint64_t SizeVal = SizeCast->getZExtValue();
847
848 if (SizeVal == 0) {
849 return false;
850 }
851 // TTI call to check if target would like to expand memcmp. Also, get the
852 // available load sizes.
853 const bool IsUsedForZeroCmp =
854 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
855 bool OptForSize = CI->getFunction()->hasOptSize() ||
856 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
857 auto Options = TTI->enableMemCmpExpansion(OptForSize,
858 IsUsedForZeroCmp);
859 if (!Options) return false;
860
861 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
862 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
863
864 if (OptForSize &&
865 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
866 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
867
868 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
869 Options.MaxNumLoads = MaxLoadsPerMemcmp;
870
871 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
872
873 // Don't expand if this will require more loads than desired by the target.
874 if (Expansion.getNumLoads() == 0) {
875 NumMemCmpGreaterThanMax++;
876 return false;
877 }
878
879 NumMemCmpInlined++;
880
881 if (Value *Res = Expansion.getMemCmpExpansion()) {
882 // Replace call with result of expansion and erase call.
883 CI->replaceAllUsesWith(Res);
884 CI->eraseFromParent();
885 }
886
887 return true;
888 }
889
890 // Returns true if a change was made.
891 static bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
892 const TargetTransformInfo *TTI, const TargetLowering *TL,
893 const DataLayout &DL, ProfileSummaryInfo *PSI,
894 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
895
896 static PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
897 const TargetTransformInfo *TTI,
898 const TargetLowering *TL,
899 ProfileSummaryInfo *PSI,
900 BlockFrequencyInfo *BFI, DominatorTree *DT);
901
902 class ExpandMemCmpLegacyPass : public FunctionPass {
903 public:
904 static char ID;
905
ExpandMemCmpLegacyPass()906 ExpandMemCmpLegacyPass() : FunctionPass(ID) {
907 initializeExpandMemCmpLegacyPassPass(*PassRegistry::getPassRegistry());
908 }
909
runOnFunction(Function & F)910 bool runOnFunction(Function &F) override {
911 if (skipFunction(F)) return false;
912
913 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
914 if (!TPC) {
915 return false;
916 }
917 const TargetLowering* TL =
918 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
919
920 const TargetLibraryInfo *TLI =
921 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
922 const TargetTransformInfo *TTI =
923 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
924 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
925 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
926 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
927 nullptr;
928 DominatorTree *DT = nullptr;
929 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
930 DT = &DTWP->getDomTree();
931 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
932 return !PA.areAllPreserved();
933 }
934
935 private:
getAnalysisUsage(AnalysisUsage & AU) const936 void getAnalysisUsage(AnalysisUsage &AU) const override {
937 AU.addRequired<TargetLibraryInfoWrapperPass>();
938 AU.addRequired<TargetTransformInfoWrapperPass>();
939 AU.addRequired<ProfileSummaryInfoWrapperPass>();
940 AU.addPreserved<DominatorTreeWrapperPass>();
941 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
942 FunctionPass::getAnalysisUsage(AU);
943 }
944 };
945
runOnBlock(BasicBlock & BB,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,const DataLayout & DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU)946 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
947 const TargetTransformInfo *TTI, const TargetLowering *TL,
948 const DataLayout &DL, ProfileSummaryInfo *PSI,
949 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU) {
950 for (Instruction &I : BB) {
951 CallInst *CI = dyn_cast<CallInst>(&I);
952 if (!CI) {
953 continue;
954 }
955 LibFunc Func;
956 if (TLI->getLibFunc(*CI, Func) &&
957 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
958 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
959 return true;
960 }
961 }
962 return false;
963 }
964
runImpl(Function & F,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DominatorTree * DT)965 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
966 const TargetTransformInfo *TTI,
967 const TargetLowering *TL, ProfileSummaryInfo *PSI,
968 BlockFrequencyInfo *BFI, DominatorTree *DT) {
969 std::optional<DomTreeUpdater> DTU;
970 if (DT)
971 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
972
973 const DataLayout& DL = F.getDataLayout();
974 bool MadeChanges = false;
975 for (auto BBIt = F.begin(); BBIt != F.end();) {
976 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
977 MadeChanges = true;
978 // If changes were made, restart the function from the beginning, since
979 // the structure of the function was changed.
980 BBIt = F.begin();
981 } else {
982 ++BBIt;
983 }
984 }
985 if (MadeChanges)
986 for (BasicBlock &BB : F)
987 SimplifyInstructionsInBlock(&BB);
988 if (!MadeChanges)
989 return PreservedAnalyses::all();
990 PreservedAnalyses PA;
991 PA.preserve<DominatorTreeAnalysis>();
992 return PA;
993 }
994
995 } // namespace
996
run(Function & F,FunctionAnalysisManager & FAM)997 PreservedAnalyses ExpandMemCmpPass::run(Function &F,
998 FunctionAnalysisManager &FAM) {
999 const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
1000 const auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1001 const auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
1002 auto *PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
1003 .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1004 BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary())
1005 ? &FAM.getResult<BlockFrequencyAnalysis>(F)
1006 : nullptr;
1007 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1008
1009 return runImpl(F, &TLI, &TTI, TL, PSI, BFI, DT);
1010 }
1011
1012 char ExpandMemCmpLegacyPass::ID = 0;
1013 INITIALIZE_PASS_BEGIN(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1014 "Expand memcmp() to load/stores", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1015 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1016 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1017 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
1018 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1019 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1020 INITIALIZE_PASS_END(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1021 "Expand memcmp() to load/stores", false, false)
1022
1023 FunctionPass *llvm::createExpandMemCmpLegacyPass() {
1024 return new ExpandMemCmpLegacyPass();
1025 }
1026