xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Transforms/Utils/Cloning.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes.  This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Transforms/Utils/ValueMapper.h"
27 #include <functional>
28 #include <memory>
29 #include <vector>
30 
31 namespace llvm {
32 
33 class AAResults;
34 class AllocaInst;
35 class BasicBlock;
36 class BlockFrequencyInfo;
37 class DebugInfoFinder;
38 class DominatorTree;
39 class Function;
40 class Instruction;
41 class Loop;
42 class LoopInfo;
43 class Module;
44 class ProfileSummaryInfo;
45 class ReturnInst;
46 class DomTreeUpdater;
47 
48 /// Return an exact copy of the specified module
49 std::unique_ptr<Module> CloneModule(const Module &M);
50 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
51 
52 /// Return a copy of the specified module. The ShouldCloneDefinition function
53 /// controls whether a specific GlobalValue's definition is cloned. If the
54 /// function returns false, the module copy will contain an external reference
55 /// in place of the global definition.
56 std::unique_ptr<Module>
57 CloneModule(const Module &M, ValueToValueMapTy &VMap,
58             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
59 
60 /// This struct can be used to capture information about code
61 /// being cloned, while it is being cloned.
62 struct ClonedCodeInfo {
63   /// This is set to true if the cloned code contains a normal call instruction.
64   bool ContainsCalls = false;
65 
66   /// This is set to true if there is memprof related metadata (memprof or
67   /// callsite metadata) in the cloned code.
68   bool ContainsMemProfMetadata = false;
69 
70   /// This is set to true if the cloned code contains a 'dynamic' alloca.
71   /// Dynamic allocas are allocas that are either not in the entry block or they
72   /// are in the entry block but are not a constant size.
73   bool ContainsDynamicAllocas = false;
74 
75   /// All cloned call sites that have operand bundles attached are appended to
76   /// this vector.  This vector may contain nulls or undefs if some of the
77   /// originally inserted callsites were DCE'ed after they were cloned.
78   std::vector<WeakTrackingVH> OperandBundleCallSites;
79 
80   /// Like VMap, but maps only unsimplified instructions. Values in the map
81   /// may be dangling, it is only intended to be used via isSimplified(), to
82   /// check whether the main VMap mapping involves simplification or not.
83   DenseMap<const Value *, const Value *> OrigVMap;
84 
85   ClonedCodeInfo() = default;
86 
isSimplifiedClonedCodeInfo87   bool isSimplified(const Value *From, const Value *To) const {
88     return OrigVMap.lookup(From) != To;
89   }
90 };
91 
92 /// Return a copy of the specified basic block, but without
93 /// embedding the block into a particular function.  The block returned is an
94 /// exact copy of the specified basic block, without any remapping having been
95 /// performed.  Because of this, this is only suitable for applications where
96 /// the basic block will be inserted into the same function that it was cloned
97 /// from (loop unrolling would use this, for example).
98 ///
99 /// Also, note that this function makes a direct copy of the basic block, and
100 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
101 /// nodes from the original block, even though there are no predecessors for the
102 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
103 /// block will branch to the old successors of the original block: these
104 /// successors will have to have any PHI nodes updated to account for the new
105 /// incoming edges.
106 ///
107 /// The correlation between instructions in the source and result basic blocks
108 /// is recorded in the VMap map.
109 ///
110 /// If you have a particular suffix you'd like to use to add to any cloned
111 /// names, specify it as the optional third parameter.
112 ///
113 /// If you would like the basic block to be auto-inserted into the end of a
114 /// function, you can specify it as the optional fourth parameter.
115 ///
116 /// If you would like to collect additional information about the cloned
117 /// function, you can specify a ClonedCodeInfo object with the optional fifth
118 /// parameter.
119 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
120                             const Twine &NameSuffix = "", Function *F = nullptr,
121                             ClonedCodeInfo *CodeInfo = nullptr,
122                             DebugInfoFinder *DIFinder = nullptr);
123 
124 /// Return a copy of the specified function and add it to that
125 /// function's module.  Also, any references specified in the VMap are changed
126 /// to refer to their mapped value instead of the original one.  If any of the
127 /// arguments to the function are in the VMap, the arguments are deleted from
128 /// the resultant function.  The VMap is updated to include mappings from all of
129 /// the instructions and basicblocks in the function from their old to new
130 /// values.  The final argument captures information about the cloned code if
131 /// non-null.
132 ///
133 /// \pre VMap contains no non-identity GlobalValue mappings.
134 ///
135 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
136                         ClonedCodeInfo *CodeInfo = nullptr);
137 
138 enum class CloneFunctionChangeType {
139   LocalChangesOnly,
140   GlobalChanges,
141   DifferentModule,
142   ClonedModule,
143 };
144 
145 /// Clone OldFunc into NewFunc, transforming the old arguments into references
146 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
147 /// cloned into it will be added to the end of the function.  This function
148 /// fills in a list of return instructions, and can optionally remap types
149 /// and/or append the specified suffix to all values cloned.
150 ///
151 /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
152 /// required to contain no non-identity GlobalValue mappings. Otherwise,
153 /// referenced metadata will be cloned.
154 ///
155 /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
156 /// indicating cloning into the same module (even if it's LocalChangesOnly), if
157 /// debug info metadata transitively references a \a DISubprogram, it will be
158 /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
159 /// cloning of types and compile units.
160 ///
161 /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
162 /// module's \c !llvm.dbg.cu will get updated with any newly created compile
163 /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
164 /// caller.)
165 ///
166 /// FIXME: Consider simplifying this function by splitting out \a
167 /// CloneFunctionMetadataInto() and expecting / updating callers to call it
168 /// first when / how it's needed.
169 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
170                        ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
171                        SmallVectorImpl<ReturnInst *> &Returns,
172                        const char *NameSuffix = "",
173                        ClonedCodeInfo *CodeInfo = nullptr,
174                        ValueMapTypeRemapper *TypeMapper = nullptr,
175                        ValueMaterializer *Materializer = nullptr);
176 
177 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
178                                const Instruction *StartingInst,
179                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
180                                SmallVectorImpl<ReturnInst *> &Returns,
181                                const char *NameSuffix = "",
182                                ClonedCodeInfo *CodeInfo = nullptr);
183 
184 /// This works exactly like CloneFunctionInto,
185 /// except that it does some simple constant prop and DCE on the fly.  The
186 /// effect of this is to copy significantly less code in cases where (for
187 /// example) a function call with constant arguments is inlined, and those
188 /// constant arguments cause a significant amount of code in the callee to be
189 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
190 /// used for things like CloneFunction or CloneModule.
191 ///
192 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
193 /// mappings.
194 ///
195 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
196                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
197                                SmallVectorImpl<ReturnInst*> &Returns,
198                                const char *NameSuffix = "",
199                                ClonedCodeInfo *CodeInfo = nullptr);
200 
201 /// This class captures the data input to the InlineFunction call, and records
202 /// the auxiliary results produced by it.
203 class InlineFunctionInfo {
204 public:
205   explicit InlineFunctionInfo(
206       function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
207       ProfileSummaryInfo *PSI = nullptr,
208       BlockFrequencyInfo *CallerBFI = nullptr,
209       BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
GetAssumptionCache(GetAssumptionCache)210       : GetAssumptionCache(GetAssumptionCache), PSI(PSI), CallerBFI(CallerBFI),
211         CalleeBFI(CalleeBFI), UpdateProfile(UpdateProfile) {}
212 
213   /// If non-null, InlineFunction will update the callgraph to reflect the
214   /// changes it makes.
215   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
216   ProfileSummaryInfo *PSI;
217   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
218 
219   /// InlineFunction fills this in with all static allocas that get copied into
220   /// the caller.
221   SmallVector<AllocaInst *, 4> StaticAllocas;
222 
223   /// InlineFunction fills this in with callsites that were inlined from the
224   /// callee. This is only filled in if CG is non-null.
225   SmallVector<WeakTrackingVH, 8> InlinedCalls;
226 
227   /// All of the new call sites inlined into the caller.
228   ///
229   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
230   /// only if CG is null. If CG is non-null, instead the value handle
231   /// `InlinedCalls` above is used.
232   SmallVector<CallBase *, 8> InlinedCallSites;
233 
234   /// Update profile for callee as well as cloned version. We need to do this
235   /// for regular inlining, but not for inlining from sample profile loader.
236   bool UpdateProfile;
237 
reset()238   void reset() {
239     StaticAllocas.clear();
240     InlinedCalls.clear();
241     InlinedCallSites.clear();
242   }
243 };
244 
245 /// This function inlines the called function into the basic
246 /// block of the caller.  This returns false if it is not possible to inline
247 /// this call.  The program is still in a well defined state if this occurs
248 /// though.
249 ///
250 /// Note that this only does one level of inlining.  For example, if the
251 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
252 /// exists in the instruction stream.  Similarly this will inline a recursive
253 /// function by one level.
254 ///
255 /// Note that while this routine is allowed to cleanup and optimize the
256 /// *inlined* code to minimize the actual inserted code, it must not delete
257 /// code in the caller as users of this routine may have pointers to
258 /// instructions in the caller that need to remain stable.
259 ///
260 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
261 /// and all varargs at the callsite will be passed to any calls to
262 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
263 /// are only used by ForwardVarArgsTo.
264 ///
265 /// The callee's function attributes are merged into the callers' if
266 /// MergeAttributes is set to true.
267 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
268                             bool MergeAttributes = false,
269                             AAResults *CalleeAAR = nullptr,
270                             bool InsertLifetime = true,
271                             Function *ForwardVarArgsTo = nullptr);
272 
273 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
274 /// Blocks.
275 ///
276 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
277 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
278 /// Note: Only innermost loops are supported.
279 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
280                              Loop *OrigLoop, ValueToValueMapTy &VMap,
281                              const Twine &NameSuffix, LoopInfo *LI,
282                              DominatorTree *DT,
283                              SmallVectorImpl<BasicBlock *> &Blocks);
284 
285 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
286 void remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
287                                ValueToValueMapTy &VMap);
288 
289 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
290 /// from BB between its beginning and the StopAt instruction into the split
291 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
292 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
293 /// is used to map the original instructions from BB to their newly-created
294 /// copies. Returns the split block.
295 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
296                                                 BasicBlock *PredBB,
297                                                 Instruction *StopAt,
298                                                 ValueToValueMapTy &ValueMapping,
299                                                 DomTreeUpdater &DTU);
300 
301 /// Updates profile information by adjusting the entry count by adding
302 /// EntryDelta then scaling callsite information by the new count divided by the
303 /// old count. VMap is used during inlinng to also update the new clone
304 void updateProfileCallee(
305     Function *Callee, int64_t EntryDelta,
306     const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
307 
308 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
309 /// basic blocks and extract their scope. These are candidates for duplication
310 /// when cloning.
311 void identifyNoAliasScopesToClone(
312     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
313 
314 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
315 /// instruction range and extract their scope. These are candidates for
316 /// duplication when cloning.
317 void identifyNoAliasScopesToClone(
318     BasicBlock::iterator Start, BasicBlock::iterator End,
319     SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
320 
321 /// Duplicate the specified list of noalias decl scopes.
322 /// The 'Ext' string is added as an extension to the name.
323 /// Afterwards, the ClonedScopes contains the mapping of the original scope
324 /// MDNode onto the cloned scope.
325 /// Be aware that the cloned scopes are still part of the original scope domain.
326 void cloneNoAliasScopes(
327     ArrayRef<MDNode *> NoAliasDeclScopes,
328     DenseMap<MDNode *, MDNode *> &ClonedScopes,
329     StringRef Ext, LLVMContext &Context);
330 
331 /// Adapt the metadata for the specified instruction according to the
332 /// provided mapping. This is normally used after cloning an instruction, when
333 /// some noalias scopes needed to be cloned.
334 void adaptNoAliasScopes(
335     llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
336     LLVMContext &Context);
337 
338 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
339 /// NewBlocks basicblocks to the cloned versions.
340 /// 'Ext' will be added to the duplicate scope names.
341 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
342                                 ArrayRef<BasicBlock *> NewBlocks,
343                                 LLVMContext &Context, StringRef Ext);
344 
345 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
346 /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
347 /// added to the duplicate scope names.
348 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
349                                 Instruction *IStart, Instruction *IEnd,
350                                 LLVMContext &Context, StringRef Ext);
351 } // end namespace llvm
352 
353 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
354