1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the classes used to generate code from scalar expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstSimplifyFolder.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/InstructionCost.h" 27 28 namespace llvm { 29 extern cl::opt<unsigned> SCEVCheapExpansionBudget; 30 31 /// struct for holding enough information to help calculate the cost of the 32 /// given SCEV when expanded into IR. 33 struct SCEVOperand { SCEVOperandSCEVOperand34 explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) : 35 ParentOpcode(Opc), OperandIdx(Idx), S(S) { } 36 /// LLVM instruction opcode that uses the operand. 37 unsigned ParentOpcode; 38 /// The use index of an expanded instruction. 39 int OperandIdx; 40 /// The SCEV operand to be costed. 41 const SCEV* S; 42 }; 43 44 struct PoisonFlags { 45 unsigned NUW : 1; 46 unsigned NSW : 1; 47 unsigned Exact : 1; 48 unsigned Disjoint : 1; 49 unsigned NNeg : 1; 50 51 PoisonFlags(const Instruction *I); 52 void apply(Instruction *I); 53 }; 54 55 /// This class uses information about analyze scalars to rewrite expressions 56 /// in canonical form. 57 /// 58 /// Clients should create an instance of this class when rewriting is needed, 59 /// and destroy it when finished to allow the release of the associated 60 /// memory. 61 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> { 62 friend class SCEVExpanderCleaner; 63 64 ScalarEvolution &SE; 65 const DataLayout &DL; 66 67 // New instructions receive a name to identify them with the current pass. 68 const char *IVName; 69 70 /// Indicates whether LCSSA phis should be created for inserted values. 71 bool PreserveLCSSA; 72 73 // InsertedExpressions caches Values for reuse, so must track RAUW. 74 DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>> 75 InsertedExpressions; 76 77 // InsertedValues only flags inserted instructions so needs no RAUW. 78 DenseSet<AssertingVH<Value>> InsertedValues; 79 DenseSet<AssertingVH<Value>> InsertedPostIncValues; 80 81 /// Keep track of the existing IR values re-used during expansion. 82 /// FIXME: Ideally re-used instructions would not be added to 83 /// InsertedValues/InsertedPostIncValues. 84 SmallPtrSet<Value *, 16> ReusedValues; 85 86 /// Original flags of instructions for which they were modified. Used 87 /// by SCEVExpanderCleaner to undo changes. 88 DenseMap<PoisoningVH<Instruction>, PoisonFlags> OrigFlags; 89 90 // The induction variables generated. 91 SmallVector<WeakVH, 2> InsertedIVs; 92 93 /// A memoization of the "relevant" loop for a given SCEV. 94 DenseMap<const SCEV *, const Loop *> RelevantLoops; 95 96 /// Addrecs referring to any of the given loops are expanded in post-inc 97 /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add 98 /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new 99 /// phi starting at 1. This is only supported in non-canonical mode. 100 PostIncLoopSet PostIncLoops; 101 102 /// When this is non-null, addrecs expanded in the loop it indicates should 103 /// be inserted with increments at IVIncInsertPos. 104 const Loop *IVIncInsertLoop; 105 106 /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV 107 /// increment at this position. 108 Instruction *IVIncInsertPos; 109 110 /// Phis that complete an IV chain. Reuse 111 DenseSet<AssertingVH<PHINode>> ChainedPhis; 112 113 /// When true, SCEVExpander tries to expand expressions in "canonical" form. 114 /// When false, expressions are expanded in a more literal form. 115 /// 116 /// In "canonical" form addrecs are expanded as arithmetic based on a 117 /// canonical induction variable. Note that CanonicalMode doesn't guarantee 118 /// that all expressions are expanded in "canonical" form. For some 119 /// expressions literal mode can be preferred. 120 bool CanonicalMode; 121 122 /// When invoked from LSR, the expander is in "strength reduction" mode. The 123 /// only difference is that phi's are only reused if they are already in 124 /// "expanded" form. 125 bool LSRMode; 126 127 typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType; 128 BuilderType Builder; 129 130 // RAII object that stores the current insertion point and restores it when 131 // the object is destroyed. This includes the debug location. Duplicated 132 // from InsertPointGuard to add SetInsertPoint() which is used to updated 133 // InsertPointGuards stack when insert points are moved during SCEV 134 // expansion. 135 class SCEVInsertPointGuard { 136 IRBuilderBase &Builder; 137 AssertingVH<BasicBlock> Block; 138 BasicBlock::iterator Point; 139 DebugLoc DbgLoc; 140 SCEVExpander *SE; 141 142 SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; 143 SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; 144 145 public: SCEVInsertPointGuard(IRBuilderBase & B,SCEVExpander * SE)146 SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) 147 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), 148 DbgLoc(B.getCurrentDebugLocation()), SE(SE) { 149 SE->InsertPointGuards.push_back(this); 150 } 151 ~SCEVInsertPointGuard()152 ~SCEVInsertPointGuard() { 153 // These guards should always created/destroyed in FIFO order since they 154 // are used to guard lexically scoped blocks of code in 155 // ScalarEvolutionExpander. 156 assert(SE->InsertPointGuards.back() == this); 157 SE->InsertPointGuards.pop_back(); 158 Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); 159 Builder.SetCurrentDebugLocation(DbgLoc); 160 } 161 GetInsertPoint()162 BasicBlock::iterator GetInsertPoint() const { return Point; } SetInsertPoint(BasicBlock::iterator I)163 void SetInsertPoint(BasicBlock::iterator I) { Point = I; } 164 }; 165 166 /// Stack of pointers to saved insert points, used to keep insert points 167 /// consistent when instructions are moved. 168 SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; 169 170 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 171 const char *DebugType; 172 #endif 173 174 friend struct SCEVVisitor<SCEVExpander, Value *>; 175 176 public: 177 /// Construct a SCEVExpander in "canonical" mode. 178 explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, 179 const char *name, bool PreserveLCSSA = true) 180 : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA), 181 IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), 182 LSRMode(false), 183 Builder(se.getContext(), InstSimplifyFolder(DL), 184 IRBuilderCallbackInserter( 185 [this](Instruction *I) { rememberInstruction(I); })) { 186 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 187 DebugType = ""; 188 #endif 189 } 190 191 ~SCEVExpander() { 192 // Make sure the insert point guard stack is consistent. 193 assert(InsertPointGuards.empty()); 194 } 195 196 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 197 void setDebugType(const char *s) { DebugType = s; } 198 #endif 199 200 /// Erase the contents of the InsertedExpressions map so that users trying 201 /// to expand the same expression into multiple BasicBlocks or different 202 /// places within the same BasicBlock can do so. 203 void clear() { 204 InsertedExpressions.clear(); 205 InsertedValues.clear(); 206 InsertedPostIncValues.clear(); 207 ReusedValues.clear(); 208 OrigFlags.clear(); 209 ChainedPhis.clear(); 210 InsertedIVs.clear(); 211 } 212 213 ScalarEvolution *getSE() { return &SE; } 214 const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; } 215 216 /// Return a vector containing all instructions inserted during expansion. 217 SmallVector<Instruction *, 32> getAllInsertedInstructions() const { 218 SmallVector<Instruction *, 32> Result; 219 for (const auto &VH : InsertedValues) { 220 Value *V = VH; 221 if (ReusedValues.contains(V)) 222 continue; 223 if (auto *Inst = dyn_cast<Instruction>(V)) 224 Result.push_back(Inst); 225 } 226 for (const auto &VH : InsertedPostIncValues) { 227 Value *V = VH; 228 if (ReusedValues.contains(V)) 229 continue; 230 if (auto *Inst = dyn_cast<Instruction>(V)) 231 Result.push_back(Inst); 232 } 233 234 return Result; 235 } 236 237 /// Return true for expressions that can't be evaluated at runtime 238 /// within given \b Budget. 239 /// 240 /// \p At is a parameter which specifies point in code where user is going to 241 /// expand these expressions. Sometimes this knowledge can lead to 242 /// a less pessimistic cost estimation. 243 bool isHighCostExpansion(ArrayRef<const SCEV *> Exprs, Loop *L, 244 unsigned Budget, const TargetTransformInfo *TTI, 245 const Instruction *At) { 246 assert(TTI && "This function requires TTI to be provided."); 247 assert(At && "This function requires At instruction to be provided."); 248 if (!TTI) // In assert-less builds, avoid crashing 249 return true; // by always claiming to be high-cost. 250 SmallVector<SCEVOperand, 8> Worklist; 251 SmallPtrSet<const SCEV *, 8> Processed; 252 InstructionCost Cost = 0; 253 unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic; 254 for (auto *Expr : Exprs) 255 Worklist.emplace_back(-1, -1, Expr); 256 while (!Worklist.empty()) { 257 const SCEVOperand WorkItem = Worklist.pop_back_val(); 258 if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI, 259 Processed, Worklist)) 260 return true; 261 } 262 assert(Cost <= ScaledBudget && "Should have returned from inner loop."); 263 return false; 264 } 265 266 /// Return the induction variable increment's IV operand. 267 Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, 268 bool allowScale); 269 270 /// Utility for hoisting \p IncV (with all subexpressions requried for its 271 /// computation) before \p InsertPos. If \p RecomputePoisonFlags is set, drops 272 /// all poison-generating flags from instructions being hoisted and tries to 273 /// re-infer them in the new location. It should be used when we are going to 274 /// introduce a new use in the new position that didn't exist before, and may 275 /// trigger new UB in case of poison. 276 bool hoistIVInc(Instruction *IncV, Instruction *InsertPos, 277 bool RecomputePoisonFlags = false); 278 279 /// Return true if both increments directly increment the corresponding IV PHI 280 /// nodes and have the same opcode. It is not safe to re-use the flags from 281 /// the original increment, if it is more complex and SCEV expansion may have 282 /// yielded a more simplified wider increment. 283 static bool canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, PHINode *WidePhi, 284 Instruction *OrigInc, 285 Instruction *WideInc); 286 287 /// replace congruent phis with their most canonical representative. Return 288 /// the number of phis eliminated. 289 unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, 290 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 291 const TargetTransformInfo *TTI = nullptr); 292 293 /// Return true if the given expression is safe to expand in the sense that 294 /// all materialized values are safe to speculate anywhere their operands are 295 /// defined, and the expander is capable of expanding the expression. 296 bool isSafeToExpand(const SCEV *S) const; 297 298 /// Return true if the given expression is safe to expand in the sense that 299 /// all materialized values are defined and safe to speculate at the specified 300 /// location and their operands are defined at this location. 301 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const; 302 303 /// Insert code to directly compute the specified SCEV expression into the 304 /// program. The code is inserted into the specified block. 305 Value *expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I); 306 Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) { 307 return expandCodeFor(SH, Ty, I->getIterator()); 308 } 309 310 /// Insert code to directly compute the specified SCEV expression into the 311 /// program. The code is inserted into the SCEVExpander's current 312 /// insertion point. If a type is specified, the result will be expanded to 313 /// have that type, with a cast if necessary. 314 Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr); 315 316 /// Generates a code sequence that evaluates this predicate. The inserted 317 /// instructions will be at position \p Loc. The result will be of type i1 318 /// and will have a value of 0 when the predicate is false and 1 otherwise. 319 Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); 320 321 /// A specialized variant of expandCodeForPredicate, handling the case when 322 /// we are expanding code for a SCEVComparePredicate. 323 Value *expandComparePredicate(const SCEVComparePredicate *Pred, 324 Instruction *Loc); 325 326 /// Generates code that evaluates if the \p AR expression will overflow. 327 Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, 328 bool Signed); 329 330 /// A specialized variant of expandCodeForPredicate, handling the case when 331 /// we are expanding code for a SCEVWrapPredicate. 332 Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); 333 334 /// A specialized variant of expandCodeForPredicate, handling the case when 335 /// we are expanding code for a SCEVUnionPredicate. 336 Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); 337 338 /// Set the current IV increment loop and position. 339 void setIVIncInsertPos(const Loop *L, Instruction *Pos) { 340 assert(!CanonicalMode && 341 "IV increment positions are not supported in CanonicalMode"); 342 IVIncInsertLoop = L; 343 IVIncInsertPos = Pos; 344 } 345 346 /// Enable post-inc expansion for addrecs referring to the given 347 /// loops. Post-inc expansion is only supported in non-canonical mode. 348 void setPostInc(const PostIncLoopSet &L) { 349 assert(!CanonicalMode && 350 "Post-inc expansion is not supported in CanonicalMode"); 351 PostIncLoops = L; 352 } 353 354 /// Disable all post-inc expansion. 355 void clearPostInc() { 356 PostIncLoops.clear(); 357 358 // When we change the post-inc loop set, cached expansions may no 359 // longer be valid. 360 InsertedPostIncValues.clear(); 361 } 362 363 /// Disable the behavior of expanding expressions in canonical form rather 364 /// than in a more literal form. Non-canonical mode is useful for late 365 /// optimization passes. 366 void disableCanonicalMode() { CanonicalMode = false; } 367 368 void enableLSRMode() { LSRMode = true; } 369 370 /// Set the current insertion point. This is useful if multiple calls to 371 /// expandCodeFor() are going to be made with the same insert point and the 372 /// insert point may be moved during one of the expansions (e.g. if the 373 /// insert point is not a block terminator). 374 void setInsertPoint(Instruction *IP) { 375 assert(IP); 376 Builder.SetInsertPoint(IP); 377 } 378 379 void setInsertPoint(BasicBlock::iterator IP) { 380 Builder.SetInsertPoint(IP->getParent(), IP); 381 } 382 383 /// Clear the current insertion point. This is useful if the instruction 384 /// that had been serving as the insertion point may have been deleted. 385 void clearInsertPoint() { Builder.ClearInsertionPoint(); } 386 387 /// Set location information used by debugging information. 388 void SetCurrentDebugLocation(DebugLoc L) { 389 Builder.SetCurrentDebugLocation(std::move(L)); 390 } 391 392 /// Get location information used by debugging information. 393 DebugLoc getCurrentDebugLocation() const { 394 return Builder.getCurrentDebugLocation(); 395 } 396 397 /// Return true if the specified instruction was inserted by the code 398 /// rewriter. If so, the client should not modify the instruction. Note that 399 /// this also includes instructions re-used during expansion. 400 bool isInsertedInstruction(Instruction *I) const { 401 return InsertedValues.count(I) || InsertedPostIncValues.count(I); 402 } 403 404 void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } 405 406 /// Determine whether there is an existing expansion of S that can be reused. 407 /// This is used to check whether S can be expanded cheaply. 408 /// 409 /// L is a hint which tells in which loop to look for the suitable value. 410 /// 411 /// Note that this function does not perform an exhaustive search. I.e if it 412 /// didn't find any value it does not mean that there is no such value. 413 bool hasRelatedExistingExpansion(const SCEV *S, const Instruction *At, 414 Loop *L); 415 416 /// Returns a suitable insert point after \p I, that dominates \p 417 /// MustDominate. Skips instructions inserted by the expander. 418 BasicBlock::iterator findInsertPointAfter(Instruction *I, 419 Instruction *MustDominate) const; 420 421 private: 422 LLVMContext &getContext() const { return SE.getContext(); } 423 424 /// Recursive helper function for isHighCostExpansion. 425 bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L, 426 const Instruction &At, InstructionCost &Cost, 427 unsigned Budget, 428 const TargetTransformInfo &TTI, 429 SmallPtrSetImpl<const SCEV *> &Processed, 430 SmallVectorImpl<SCEVOperand> &Worklist); 431 432 /// Insert the specified binary operator, doing a small amount of work to 433 /// avoid inserting an obviously redundant operation, and hoisting to an 434 /// outer loop when the opportunity is there and it is safe. 435 Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 436 SCEV::NoWrapFlags Flags, bool IsSafeToHoist); 437 438 /// We want to cast \p V. What would be the best place for such a cast? 439 BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const; 440 441 /// Arrange for there to be a cast of V to Ty at IP, reusing an existing 442 /// cast if a suitable one exists, moving an existing cast if a suitable one 443 /// exists but isn't in the right place, or creating a new one. 444 Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, 445 BasicBlock::iterator IP); 446 447 /// Insert a cast of V to the specified type, which must be possible with a 448 /// noop cast, doing what we can to share the casts. 449 Value *InsertNoopCastOfTo(Value *V, Type *Ty); 450 451 /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using 452 /// ptrtoint+arithmetic+inttoptr. 453 Value *expandAddToGEP(const SCEV *Op, Value *V); 454 455 /// Find a previous Value in ExprValueMap for expand. 456 /// DropPoisonGeneratingInsts is populated with instructions for which 457 /// poison-generating flags must be dropped if the value is reused. 458 Value *FindValueInExprValueMap( 459 const SCEV *S, const Instruction *InsertPt, 460 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts); 461 462 Value *expand(const SCEV *S); 463 Value *expand(const SCEV *S, BasicBlock::iterator I) { 464 setInsertPoint(I); 465 return expand(S); 466 } 467 Value *expand(const SCEV *S, Instruction *I) { 468 setInsertPoint(I); 469 return expand(S); 470 } 471 472 /// Determine the most "relevant" loop for the given SCEV. 473 const Loop *getRelevantLoop(const SCEV *); 474 475 Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID, 476 Twine Name, bool IsSequential = false); 477 478 Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } 479 480 Value *visitVScale(const SCEVVScale *S); 481 482 Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S); 483 484 Value *visitTruncateExpr(const SCEVTruncateExpr *S); 485 486 Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); 487 488 Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); 489 490 Value *visitAddExpr(const SCEVAddExpr *S); 491 492 Value *visitMulExpr(const SCEVMulExpr *S); 493 494 Value *visitUDivExpr(const SCEVUDivExpr *S); 495 496 Value *visitAddRecExpr(const SCEVAddRecExpr *S); 497 498 Value *visitSMaxExpr(const SCEVSMaxExpr *S); 499 500 Value *visitUMaxExpr(const SCEVUMaxExpr *S); 501 502 Value *visitSMinExpr(const SCEVSMinExpr *S); 503 504 Value *visitUMinExpr(const SCEVUMinExpr *S); 505 506 Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S); 507 508 Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } 509 510 void rememberInstruction(Value *I); 511 512 void rememberFlags(Instruction *I); 513 514 bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 515 516 bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 517 518 Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); 519 PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 520 const Loop *L, Type *&TruncTy, 521 bool &InvertStep); 522 Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 523 bool useSubtract); 524 525 void fixupInsertPoints(Instruction *I); 526 527 /// Create LCSSA PHIs for \p V, if it is required for uses at the Builder's 528 /// current insertion point. 529 Value *fixupLCSSAFormFor(Value *V); 530 531 /// Replace congruent phi increments with their most canonical representative. 532 /// May swap \p Phi and \p OrigPhi, if \p Phi is more canonical, due to its 533 /// increment. 534 void replaceCongruentIVInc(PHINode *&Phi, PHINode *&OrigPhi, Loop *L, 535 const DominatorTree *DT, 536 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 537 }; 538 539 /// Helper to remove instructions inserted during SCEV expansion, unless they 540 /// are marked as used. 541 class SCEVExpanderCleaner { 542 SCEVExpander &Expander; 543 544 /// Indicates whether the result of the expansion is used. If false, the 545 /// instructions added during expansion are removed. 546 bool ResultUsed; 547 548 public: 549 SCEVExpanderCleaner(SCEVExpander &Expander) 550 : Expander(Expander), ResultUsed(false) {} 551 552 ~SCEVExpanderCleaner() { cleanup(); } 553 554 /// Indicate that the result of the expansion is used. 555 void markResultUsed() { ResultUsed = true; } 556 557 void cleanup(); 558 }; 559 } // namespace llvm 560 561 #endif 562