1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 #define DEBUG_TYPE "call-lowering"
30
31 using namespace llvm;
32
anchor()33 void CallLowering::anchor() {}
34
35 /// Helper function which updates \p Flags when \p AttrFn returns true.
36 static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy & Flags,const std::function<bool (Attribute::AttrKind)> & AttrFn)37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39 // TODO: There are missing flags. Add them here.
40 if (AttrFn(Attribute::SExt))
41 Flags.setSExt();
42 if (AttrFn(Attribute::ZExt))
43 Flags.setZExt();
44 if (AttrFn(Attribute::InReg))
45 Flags.setInReg();
46 if (AttrFn(Attribute::StructRet))
47 Flags.setSRet();
48 if (AttrFn(Attribute::Nest))
49 Flags.setNest();
50 if (AttrFn(Attribute::ByVal))
51 Flags.setByVal();
52 if (AttrFn(Attribute::ByRef))
53 Flags.setByRef();
54 if (AttrFn(Attribute::Preallocated))
55 Flags.setPreallocated();
56 if (AttrFn(Attribute::InAlloca))
57 Flags.setInAlloca();
58 if (AttrFn(Attribute::Returned))
59 Flags.setReturned();
60 if (AttrFn(Attribute::SwiftSelf))
61 Flags.setSwiftSelf();
62 if (AttrFn(Attribute::SwiftAsync))
63 Flags.setSwiftAsync();
64 if (AttrFn(Attribute::SwiftError))
65 Flags.setSwiftError();
66 }
67
getAttributesForArgIdx(const CallBase & Call,unsigned ArgIdx) const68 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
69 unsigned ArgIdx) const {
70 ISD::ArgFlagsTy Flags;
71 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
72 return Call.paramHasAttr(ArgIdx, Attr);
73 });
74 return Flags;
75 }
76
77 ISD::ArgFlagsTy
getAttributesForReturn(const CallBase & Call) const78 CallLowering::getAttributesForReturn(const CallBase &Call) const {
79 ISD::ArgFlagsTy Flags;
80 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
81 return Call.hasRetAttr(Attr);
82 });
83 return Flags;
84 }
85
addArgFlagsFromAttributes(ISD::ArgFlagsTy & Flags,const AttributeList & Attrs,unsigned OpIdx) const86 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
87 const AttributeList &Attrs,
88 unsigned OpIdx) const {
89 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
90 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
91 });
92 }
93
lowerCall(MachineIRBuilder & MIRBuilder,const CallBase & CB,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::optional<PtrAuthInfo> PAI,Register ConvergenceCtrlToken,std::function<unsigned ()> GetCalleeReg) const94 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
95 ArrayRef<Register> ResRegs,
96 ArrayRef<ArrayRef<Register>> ArgRegs,
97 Register SwiftErrorVReg,
98 std::optional<PtrAuthInfo> PAI,
99 Register ConvergenceCtrlToken,
100 std::function<unsigned()> GetCalleeReg) const {
101 CallLoweringInfo Info;
102 const DataLayout &DL = MIRBuilder.getDataLayout();
103 MachineFunction &MF = MIRBuilder.getMF();
104 MachineRegisterInfo &MRI = MF.getRegInfo();
105 bool CanBeTailCalled = CB.isTailCall() &&
106 isInTailCallPosition(CB, MF.getTarget()) &&
107 (MF.getFunction()
108 .getFnAttribute("disable-tail-calls")
109 .getValueAsString() != "true");
110
111 CallingConv::ID CallConv = CB.getCallingConv();
112 Type *RetTy = CB.getType();
113 bool IsVarArg = CB.getFunctionType()->isVarArg();
114
115 SmallVector<BaseArgInfo, 4> SplitArgs;
116 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
117 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
118
119 Info.IsConvergent = CB.isConvergent();
120
121 if (!Info.CanLowerReturn) {
122 // Callee requires sret demotion.
123 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
124
125 // The sret demotion isn't compatible with tail-calls, since the sret
126 // argument points into the caller's stack frame.
127 CanBeTailCalled = false;
128 }
129
130 // First step is to marshall all the function's parameters into the correct
131 // physregs and memory locations. Gather the sequence of argument types that
132 // we'll pass to the assigner function.
133 unsigned i = 0;
134 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
135 for (const auto &Arg : CB.args()) {
136 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
137 i < NumFixedArgs};
138 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
139
140 // If we have an explicit sret argument that is an Instruction, (i.e., it
141 // might point to function-local memory), we can't meaningfully tail-call.
142 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
143 CanBeTailCalled = false;
144
145 Info.OrigArgs.push_back(OrigArg);
146 ++i;
147 }
148
149 // Try looking through a bitcast from one function type to another.
150 // Commonly happens with calls to objc_msgSend().
151 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
152
153 // If IRTranslator chose to drop the ptrauth info, we can turn this into
154 // a direct call.
155 if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
156 CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
157 assert(isa<Function>(CalleeV));
158 }
159
160 if (const Function *F = dyn_cast<Function>(CalleeV)) {
161 if (F->hasFnAttribute(Attribute::NonLazyBind)) {
162 LLT Ty = getLLTForType(*F->getType(), DL);
163 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
164 Info.Callee = MachineOperand::CreateReg(Reg, false);
165 } else {
166 Info.Callee = MachineOperand::CreateGA(F, 0);
167 }
168 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
169 // IR IFuncs and Aliases can't be forward declared (only defined), so the
170 // callee must be in the same TU and therefore we can direct-call it without
171 // worrying about it being out of range.
172 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
173 } else
174 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
175
176 Register ReturnHintAlignReg;
177 Align ReturnHintAlign;
178
179 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
180
181 if (!Info.OrigRet.Ty->isVoidTy()) {
182 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
183
184 if (MaybeAlign Alignment = CB.getRetAlign()) {
185 if (*Alignment > Align(1)) {
186 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
187 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
188 ReturnHintAlign = *Alignment;
189 }
190 }
191 }
192
193 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
194 if (Bundle && CB.isIndirectCall()) {
195 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
196 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
197 }
198
199 Info.CB = &CB;
200 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
201 Info.CallConv = CallConv;
202 Info.SwiftErrorVReg = SwiftErrorVReg;
203 Info.PAI = PAI;
204 Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
205 Info.IsMustTailCall = CB.isMustTailCall();
206 Info.IsTailCall = CanBeTailCalled;
207 Info.IsVarArg = IsVarArg;
208 if (!lowerCall(MIRBuilder, Info))
209 return false;
210
211 if (ReturnHintAlignReg && !Info.LoweredTailCall) {
212 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
213 ReturnHintAlign);
214 }
215
216 return true;
217 }
218
219 template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const220 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
221 const DataLayout &DL,
222 const FuncInfoTy &FuncInfo) const {
223 auto &Flags = Arg.Flags[0];
224 const AttributeList &Attrs = FuncInfo.getAttributes();
225 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
226
227 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
228 if (PtrTy) {
229 Flags.setPointer();
230 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
231 }
232
233 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
234 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
235 Flags.isByRef()) {
236 assert(OpIdx >= AttributeList::FirstArgIndex);
237 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
238
239 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
240 if (!ElementTy)
241 ElementTy = FuncInfo.getParamByRefType(ParamIdx);
242 if (!ElementTy)
243 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
244 if (!ElementTy)
245 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
246
247 assert(ElementTy && "Must have byval, inalloca or preallocated type");
248
249 uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
250 if (Flags.isByRef())
251 Flags.setByRefSize(MemSize);
252 else
253 Flags.setByValSize(MemSize);
254
255 // For ByVal, alignment should be passed from FE. BE will guess if
256 // this info is not there but there are cases it cannot get right.
257 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258 MemAlign = *ParamAlign;
259 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260 MemAlign = *ParamAlign;
261 else
262 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
263 } else if (OpIdx >= AttributeList::FirstArgIndex) {
264 if (auto ParamAlign =
265 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
266 MemAlign = *ParamAlign;
267 }
268 Flags.setMemAlign(MemAlign);
269 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
270
271 // Don't try to use the returned attribute if the argument is marked as
272 // swiftself, since it won't be passed in x0.
273 if (Flags.isSwiftSelf())
274 Flags.setReturned(false);
275 }
276
277 template void
278 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
279 const DataLayout &DL,
280 const Function &FuncInfo) const;
281
282 template void
283 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
284 const DataLayout &DL,
285 const CallBase &FuncInfo) const;
286
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv,SmallVectorImpl<uint64_t> * Offsets) const287 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
288 SmallVectorImpl<ArgInfo> &SplitArgs,
289 const DataLayout &DL,
290 CallingConv::ID CallConv,
291 SmallVectorImpl<uint64_t> *Offsets) const {
292 LLVMContext &Ctx = OrigArg.Ty->getContext();
293
294 SmallVector<EVT, 4> SplitVTs;
295 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
296
297 if (SplitVTs.size() == 0)
298 return;
299
300 if (SplitVTs.size() == 1) {
301 // No splitting to do, but we want to replace the original type (e.g. [1 x
302 // double] -> double).
303 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
304 OrigArg.OrigArgIndex, OrigArg.Flags[0],
305 OrigArg.IsFixed, OrigArg.OrigValue);
306 return;
307 }
308
309 // Create one ArgInfo for each virtual register in the original ArgInfo.
310 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
311
312 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
313 OrigArg.Ty, CallConv, false, DL);
314 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
315 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
316 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
317 OrigArg.Flags[0], OrigArg.IsFixed);
318 if (NeedsRegBlock)
319 SplitArgs.back().Flags[0].setInConsecutiveRegs();
320 }
321
322 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
323 }
324
325 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
326 static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)327 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
328 ArrayRef<Register> SrcRegs) {
329 MachineRegisterInfo &MRI = *B.getMRI();
330 LLT LLTy = MRI.getType(DstRegs[0]);
331 LLT PartLLT = MRI.getType(SrcRegs[0]);
332
333 // Deal with v3s16 split into v2s16
334 LLT LCMTy = getCoverTy(LLTy, PartLLT);
335 if (LCMTy == LLTy) {
336 // Common case where no padding is needed.
337 assert(DstRegs.size() == 1);
338 return B.buildConcatVectors(DstRegs[0], SrcRegs);
339 }
340
341 // We need to create an unmerge to the result registers, which may require
342 // widening the original value.
343 Register UnmergeSrcReg;
344 if (LCMTy != PartLLT) {
345 assert(DstRegs.size() == 1);
346 return B.buildDeleteTrailingVectorElements(
347 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
348 } else {
349 // We don't need to widen anything if we're extracting a scalar which was
350 // promoted to a vector e.g. s8 -> v4s8 -> s8
351 assert(SrcRegs.size() == 1);
352 UnmergeSrcReg = SrcRegs[0];
353 }
354
355 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
356
357 SmallVector<Register, 8> PadDstRegs(NumDst);
358 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
359
360 // Create the excess dead defs for the unmerge.
361 for (int I = DstRegs.size(); I != NumDst; ++I)
362 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
363
364 if (PadDstRegs.size() == 1)
365 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
366 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
367 }
368
369 /// Create a sequence of instructions to combine pieces split into register
370 /// typed values to the original IR value. \p OrigRegs contains the destination
371 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
372 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
buildCopyFromRegs(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT,const ISD::ArgFlagsTy Flags)373 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
374 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
375 const ISD::ArgFlagsTy Flags) {
376 MachineRegisterInfo &MRI = *B.getMRI();
377
378 if (PartLLT == LLTy) {
379 // We should have avoided introducing a new virtual register, and just
380 // directly assigned here.
381 assert(OrigRegs[0] == Regs[0]);
382 return;
383 }
384
385 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
386 Regs.size() == 1) {
387 B.buildBitcast(OrigRegs[0], Regs[0]);
388 return;
389 }
390
391 // A vector PartLLT needs extending to LLTy's element size.
392 // E.g. <2 x s64> = G_SEXT <2 x s32>.
393 if (PartLLT.isVector() == LLTy.isVector() &&
394 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
395 (!PartLLT.isVector() ||
396 PartLLT.getElementCount() == LLTy.getElementCount()) &&
397 OrigRegs.size() == 1 && Regs.size() == 1) {
398 Register SrcReg = Regs[0];
399
400 LLT LocTy = MRI.getType(SrcReg);
401
402 if (Flags.isSExt()) {
403 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
404 .getReg(0);
405 } else if (Flags.isZExt()) {
406 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
407 .getReg(0);
408 }
409
410 // Sometimes pointers are passed zero extended.
411 LLT OrigTy = MRI.getType(OrigRegs[0]);
412 if (OrigTy.isPointer()) {
413 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
414 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
415 return;
416 }
417
418 B.buildTrunc(OrigRegs[0], SrcReg);
419 return;
420 }
421
422 if (!LLTy.isVector() && !PartLLT.isVector()) {
423 assert(OrigRegs.size() == 1);
424 LLT OrigTy = MRI.getType(OrigRegs[0]);
425
426 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
427 if (SrcSize == OrigTy.getSizeInBits())
428 B.buildMergeValues(OrigRegs[0], Regs);
429 else {
430 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
431 B.buildTrunc(OrigRegs[0], Widened);
432 }
433
434 return;
435 }
436
437 if (PartLLT.isVector()) {
438 assert(OrigRegs.size() == 1);
439 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
440
441 // If PartLLT is a mismatched vector in both number of elements and element
442 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
443 // have the same elt type, i.e. v4s32.
444 // TODO: Extend this coersion to element multiples other than just 2.
445 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
446 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
447 Regs.size() == 1) {
448 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
449 .changeElementCount(PartLLT.getElementCount() * 2);
450 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
451 PartLLT = NewTy;
452 }
453
454 if (LLTy.getScalarType() == PartLLT.getElementType()) {
455 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
456 } else {
457 unsigned I = 0;
458 LLT GCDTy = getGCDType(LLTy, PartLLT);
459
460 // We are both splitting a vector, and bitcasting its element types. Cast
461 // the source pieces into the appropriate number of pieces with the result
462 // element type.
463 for (Register SrcReg : CastRegs)
464 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
465 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
466 }
467
468 return;
469 }
470
471 assert(LLTy.isVector() && !PartLLT.isVector());
472
473 LLT DstEltTy = LLTy.getElementType();
474
475 // Pointer information was discarded. We'll need to coerce some register types
476 // to avoid violating type constraints.
477 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
478
479 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
480
481 if (DstEltTy == PartLLT) {
482 // Vector was trivially scalarized.
483
484 if (RealDstEltTy.isPointer()) {
485 for (Register Reg : Regs)
486 MRI.setType(Reg, RealDstEltTy);
487 }
488
489 B.buildBuildVector(OrigRegs[0], Regs);
490 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
491 // Deal with vector with 64-bit elements decomposed to 32-bit
492 // registers. Need to create intermediate 64-bit elements.
493 SmallVector<Register, 8> EltMerges;
494 int PartsPerElt =
495 divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
496 LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
497
498 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
499 auto Merge =
500 B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
501 if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
502 Merge = B.buildTrunc(RealDstEltTy, Merge);
503 // Fix the type in case this is really a vector of pointers.
504 MRI.setType(Merge.getReg(0), RealDstEltTy);
505 EltMerges.push_back(Merge.getReg(0));
506 Regs = Regs.drop_front(PartsPerElt);
507 }
508
509 B.buildBuildVector(OrigRegs[0], EltMerges);
510 } else {
511 // Vector was split, and elements promoted to a wider type.
512 // FIXME: Should handle floating point promotions.
513 unsigned NumElts = LLTy.getNumElements();
514 LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
515
516 Register BuildVec;
517 if (NumElts == Regs.size())
518 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
519 else {
520 // Vector elements are packed in the inputs.
521 // e.g. we have a <4 x s16> but 2 x s32 in regs.
522 assert(NumElts > Regs.size());
523 LLT SrcEltTy = MRI.getType(Regs[0]);
524
525 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
526
527 // Input registers contain packed elements.
528 // Determine how many elements per reg.
529 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
530 unsigned EltPerReg =
531 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
532
533 SmallVector<Register, 0> BVRegs;
534 BVRegs.reserve(Regs.size() * EltPerReg);
535 for (Register R : Regs) {
536 auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
537 for (unsigned K = 0; K < EltPerReg; ++K)
538 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
539 }
540
541 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
542 // for a <3 x s16> vector. We should have less than EltPerReg extra items.
543 if (BVRegs.size() > NumElts) {
544 assert((BVRegs.size() - NumElts) < EltPerReg);
545 BVRegs.truncate(NumElts);
546 }
547 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
548 }
549 B.buildTrunc(OrigRegs[0], BuildVec);
550 }
551 }
552
553 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
554 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
555 /// contain the type of scalar value extension if necessary.
556 ///
557 /// This is used for outgoing values (vregs to physregs)
buildCopyToRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,LLT SrcTy,LLT PartTy,unsigned ExtendOp=TargetOpcode::G_ANYEXT)558 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
559 Register SrcReg, LLT SrcTy, LLT PartTy,
560 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
561 // We could just insert a regular copy, but this is unreachable at the moment.
562 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
563
564 const TypeSize PartSize = PartTy.getSizeInBits();
565
566 if (PartTy.isVector() == SrcTy.isVector() &&
567 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
568 assert(DstRegs.size() == 1);
569 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
570 return;
571 }
572
573 if (SrcTy.isVector() && !PartTy.isVector() &&
574 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
575 // Vector was scalarized, and the elements extended.
576 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
577 for (int i = 0, e = DstRegs.size(); i != e; ++i)
578 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
579 return;
580 }
581
582 if (SrcTy.isVector() && PartTy.isVector() &&
583 PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
584 ElementCount::isKnownLT(SrcTy.getElementCount(),
585 PartTy.getElementCount())) {
586 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
587 Register DstReg = DstRegs.front();
588 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
589 return;
590 }
591
592 LLT GCDTy = getGCDType(SrcTy, PartTy);
593 if (GCDTy == PartTy) {
594 // If this already evenly divisible, we can create a simple unmerge.
595 B.buildUnmerge(DstRegs, SrcReg);
596 return;
597 }
598
599 if (SrcTy.isVector() && !PartTy.isVector() &&
600 SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
601 LLT ExtTy =
602 LLT::vector(SrcTy.getElementCount(),
603 LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
604 SrcTy.getNumElements()));
605 auto Ext = B.buildAnyExt(ExtTy, SrcReg);
606 B.buildUnmerge(DstRegs, Ext);
607 return;
608 }
609
610 MachineRegisterInfo &MRI = *B.getMRI();
611 LLT DstTy = MRI.getType(DstRegs[0]);
612 LLT LCMTy = getCoverTy(SrcTy, PartTy);
613
614 if (PartTy.isVector() && LCMTy == PartTy) {
615 assert(DstRegs.size() == 1);
616 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
617 return;
618 }
619
620 const unsigned DstSize = DstTy.getSizeInBits();
621 const unsigned SrcSize = SrcTy.getSizeInBits();
622 unsigned CoveringSize = LCMTy.getSizeInBits();
623
624 Register UnmergeSrc = SrcReg;
625
626 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
627 // For scalars, it's common to be able to use a simple extension.
628 if (SrcTy.isScalar() && DstTy.isScalar()) {
629 CoveringSize = alignTo(SrcSize, DstSize);
630 LLT CoverTy = LLT::scalar(CoveringSize);
631 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
632 } else {
633 // Widen to the common type.
634 // FIXME: This should respect the extend type
635 Register Undef = B.buildUndef(SrcTy).getReg(0);
636 SmallVector<Register, 8> MergeParts(1, SrcReg);
637 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
638 MergeParts.push_back(Undef);
639 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
640 }
641 }
642
643 if (LCMTy.isVector() && CoveringSize != SrcSize)
644 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
645
646 B.buildUnmerge(DstRegs, UnmergeSrc);
647 }
648
determineAndHandleAssignments(ValueHandler & Handler,ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,MachineIRBuilder & MIRBuilder,CallingConv::ID CallConv,bool IsVarArg,ArrayRef<Register> ThisReturnRegs) const649 bool CallLowering::determineAndHandleAssignments(
650 ValueHandler &Handler, ValueAssigner &Assigner,
651 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
652 CallingConv::ID CallConv, bool IsVarArg,
653 ArrayRef<Register> ThisReturnRegs) const {
654 MachineFunction &MF = MIRBuilder.getMF();
655 const Function &F = MF.getFunction();
656 SmallVector<CCValAssign, 16> ArgLocs;
657
658 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
659 if (!determineAssignments(Assigner, Args, CCInfo))
660 return false;
661
662 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
663 ThisReturnRegs);
664 }
665
extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)666 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
667 if (Flags.isSExt())
668 return TargetOpcode::G_SEXT;
669 if (Flags.isZExt())
670 return TargetOpcode::G_ZEXT;
671 return TargetOpcode::G_ANYEXT;
672 }
673
determineAssignments(ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo) const674 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
675 SmallVectorImpl<ArgInfo> &Args,
676 CCState &CCInfo) const {
677 LLVMContext &Ctx = CCInfo.getContext();
678 const CallingConv::ID CallConv = CCInfo.getCallingConv();
679
680 unsigned NumArgs = Args.size();
681 for (unsigned i = 0; i != NumArgs; ++i) {
682 EVT CurVT = EVT::getEVT(Args[i].Ty);
683
684 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
685
686 // If we need to split the type over multiple regs, check it's a scenario
687 // we currently support.
688 unsigned NumParts =
689 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
690
691 if (NumParts == 1) {
692 // Try to use the register type if we couldn't assign the VT.
693 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
694 Args[i].Flags[0], CCInfo))
695 return false;
696 continue;
697 }
698
699 // For incoming arguments (physregs to vregs), we could have values in
700 // physregs (or memlocs) which we want to extract and copy to vregs.
701 // During this, we might have to deal with the LLT being split across
702 // multiple regs, so we have to record this information for later.
703 //
704 // If we have outgoing args, then we have the opposite case. We have a
705 // vreg with an LLT which we want to assign to a physical location, and
706 // we might have to record that the value has to be split later.
707
708 // We're handling an incoming arg which is split over multiple regs.
709 // E.g. passing an s128 on AArch64.
710 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
711 Args[i].Flags.clear();
712
713 for (unsigned Part = 0; Part < NumParts; ++Part) {
714 ISD::ArgFlagsTy Flags = OrigFlags;
715 if (Part == 0) {
716 Flags.setSplit();
717 } else {
718 Flags.setOrigAlign(Align(1));
719 if (Part == NumParts - 1)
720 Flags.setSplitEnd();
721 }
722
723 Args[i].Flags.push_back(Flags);
724 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
725 Args[i].Flags[Part], CCInfo)) {
726 // Still couldn't assign this smaller part type for some reason.
727 return false;
728 }
729 }
730 }
731
732 return true;
733 }
734
handleAssignments(ValueHandler & Handler,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,ArrayRef<Register> ThisReturnRegs) const735 bool CallLowering::handleAssignments(ValueHandler &Handler,
736 SmallVectorImpl<ArgInfo> &Args,
737 CCState &CCInfo,
738 SmallVectorImpl<CCValAssign> &ArgLocs,
739 MachineIRBuilder &MIRBuilder,
740 ArrayRef<Register> ThisReturnRegs) const {
741 MachineFunction &MF = MIRBuilder.getMF();
742 MachineRegisterInfo &MRI = MF.getRegInfo();
743 const Function &F = MF.getFunction();
744 const DataLayout &DL = F.getDataLayout();
745
746 const unsigned NumArgs = Args.size();
747
748 // Stores thunks for outgoing register assignments. This is used so we delay
749 // generating register copies until mem loc assignments are done. We do this
750 // so that if the target is using the delayed stack protector feature, we can
751 // find the split point of the block accurately. E.g. if we have:
752 // G_STORE %val, %memloc
753 // $x0 = COPY %foo
754 // $x1 = COPY %bar
755 // CALL func
756 // ... then the split point for the block will correctly be at, and including,
757 // the copy to $x0. If instead the G_STORE instruction immediately precedes
758 // the CALL, then we'd prematurely choose the CALL as the split point, thus
759 // generating a split block with a CALL that uses undefined physregs.
760 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
761
762 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
763 assert(j < ArgLocs.size() && "Skipped too many arg locs");
764 CCValAssign &VA = ArgLocs[j];
765 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
766
767 if (VA.needsCustom()) {
768 std::function<void()> Thunk;
769 unsigned NumArgRegs = Handler.assignCustomValue(
770 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
771 if (Thunk)
772 DelayedOutgoingRegAssignments.emplace_back(Thunk);
773 if (!NumArgRegs)
774 return false;
775 j += (NumArgRegs - 1);
776 continue;
777 }
778
779 auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
780
781 const MVT ValVT = VA.getValVT();
782 const MVT LocVT = VA.getLocVT();
783
784 const LLT LocTy(LocVT);
785 const LLT ValTy(ValVT);
786 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
787 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
788 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
789 const LLT PointerTy = LLT::pointer(
790 AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
791
792 // Expected to be multiple regs for a single incoming arg.
793 // There should be Regs.size() ArgLocs per argument.
794 // This should be the same as getNumRegistersForCallingConv
795 const unsigned NumParts = Args[i].Flags.size();
796
797 // Now split the registers into the assigned types.
798 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
799
800 if (NumParts != 1 || NewLLT != OrigTy) {
801 // If we can't directly assign the register, we need one or more
802 // intermediate values.
803 Args[i].Regs.resize(NumParts);
804
805 // When we have indirect parameter passing we are receiving a pointer,
806 // that points to the actual value, so we need one "temporary" pointer.
807 if (VA.getLocInfo() == CCValAssign::Indirect) {
808 if (Handler.isIncomingArgumentHandler())
809 Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
810 } else {
811 // For each split register, create and assign a vreg that will store
812 // the incoming component of the larger value. These will later be
813 // merged to form the final vreg.
814 for (unsigned Part = 0; Part < NumParts; ++Part)
815 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
816 }
817 }
818
819 assert((j + (NumParts - 1)) < ArgLocs.size() &&
820 "Too many regs for number of args");
821
822 // Coerce into outgoing value types before register assignment.
823 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
824 VA.getLocInfo() != CCValAssign::Indirect) {
825 assert(Args[i].OrigRegs.size() == 1);
826 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
827 ValTy, extendOpFromFlags(Args[i].Flags[0]));
828 }
829
830 bool IndirectParameterPassingHandled = false;
831 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
832 for (unsigned Part = 0; Part < NumParts; ++Part) {
833 assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
834 "Only the first parameter should be processed when "
835 "handling indirect passing!");
836 Register ArgReg = Args[i].Regs[Part];
837 // There should be Regs.size() ArgLocs per argument.
838 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
839 CCValAssign &VA = ArgLocs[j + Idx];
840 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
841
842 // We found an indirect parameter passing, and we have an
843 // OutgoingValueHandler as our handler (so we are at the call site or the
844 // return value). In this case, start the construction of the following
845 // GMIR, that is responsible for the preparation of indirect parameter
846 // passing:
847 //
848 // %1(indirectly passed type) = The value to pass
849 // %3(pointer) = G_FRAME_INDEX %stack.0
850 // G_STORE %1, %3 :: (store (s128), align 8)
851 //
852 // After this GMIR, the remaining part of the loop body will decide how
853 // to get the value to the caller and we break out of the loop.
854 if (VA.getLocInfo() == CCValAssign::Indirect &&
855 !Handler.isIncomingArgumentHandler()) {
856 Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
857 MachineFrameInfo &MFI = MF.getFrameInfo();
858 // Get some space on the stack for the value, so later we can pass it
859 // as a reference.
860 int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
861 AlignmentForStored, false);
862 Register PointerToStackReg =
863 MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
864 MachinePointerInfo StackPointerMPO =
865 MachinePointerInfo::getFixedStack(MF, FrameIdx);
866 // Store the value in the previously created stack space.
867 MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
868 StackPointerMPO,
869 inferAlignFromPtrInfo(MF, StackPointerMPO));
870
871 ArgReg = PointerToStackReg;
872 IndirectParameterPassingHandled = true;
873 }
874
875 if (VA.isMemLoc() && !Flags.isByVal()) {
876 // Individual pieces may have been spilled to the stack and others
877 // passed in registers.
878
879 // TODO: The memory size may be larger than the value we need to
880 // store. We may need to adjust the offset for big endian targets.
881 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
882
883 MachinePointerInfo MPO;
884 Register StackAddr =
885 Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
886 ? PointerTy.getSizeInBytes()
887 : MemTy.getSizeInBytes(),
888 VA.getLocMemOffset(), MPO, Flags);
889
890 // Finish the handling of indirect passing from the passers
891 // (OutgoingParameterHandler) side.
892 // This branch is needed, so the pointer to the value is loaded onto the
893 // stack.
894 if (VA.getLocInfo() == CCValAssign::Indirect)
895 Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
896 else
897 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
898 VA);
899 } else if (VA.isMemLoc() && Flags.isByVal()) {
900 assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
901
902 if (Handler.isIncomingArgumentHandler()) {
903 // We just need to copy the frame index value to the pointer.
904 MachinePointerInfo MPO;
905 Register StackAddr = Handler.getStackAddress(
906 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
907 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
908 } else {
909 // For outgoing byval arguments, insert the implicit copy byval
910 // implies, such that writes in the callee do not modify the caller's
911 // value.
912 uint64_t MemSize = Flags.getByValSize();
913 int64_t Offset = VA.getLocMemOffset();
914
915 MachinePointerInfo DstMPO;
916 Register StackAddr =
917 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
918
919 MachinePointerInfo SrcMPO(Args[i].OrigValue);
920 if (!Args[i].OrigValue) {
921 // We still need to accurately track the stack address space if we
922 // don't know the underlying value.
923 const LLT PtrTy = MRI.getType(StackAddr);
924 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
925 }
926
927 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
928 inferAlignFromPtrInfo(MF, DstMPO));
929
930 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
931 inferAlignFromPtrInfo(MF, SrcMPO));
932
933 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
934 DstMPO, DstAlign, SrcMPO, SrcAlign,
935 MemSize, VA);
936 }
937 } else if (i == 0 && !ThisReturnRegs.empty() &&
938 Handler.isIncomingArgumentHandler() &&
939 isTypeIsValidForThisReturn(ValVT)) {
940 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
941 } else if (Handler.isIncomingArgumentHandler()) {
942 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
943 } else {
944 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
945 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
946 });
947 }
948
949 // Finish the handling of indirect parameter passing when receiving
950 // the value (we are in the called function or the caller when receiving
951 // the return value).
952 if (VA.getLocInfo() == CCValAssign::Indirect &&
953 Handler.isIncomingArgumentHandler()) {
954 Align Alignment = DL.getABITypeAlign(Args[i].Ty);
955 MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
956
957 // Since we are doing indirect parameter passing, we know that the value
958 // in the temporary register is not the value passed to the function,
959 // but rather a pointer to that value. Let's load that value into the
960 // virtual register where the parameter should go.
961 MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
962 Alignment);
963
964 IndirectParameterPassingHandled = true;
965 }
966
967 if (IndirectParameterPassingHandled)
968 break;
969 }
970
971 // Now that all pieces have been assigned, re-pack the register typed values
972 // into the original value typed registers. This is only necessary, when
973 // the value was passed in multiple registers, not indirectly.
974 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
975 !IndirectParameterPassingHandled) {
976 // Merge the split registers into the expected larger result vregs of
977 // the original call.
978 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
979 LocTy, Args[i].Flags[0]);
980 }
981
982 j += NumParts - 1;
983 }
984 for (auto &Fn : DelayedOutgoingRegAssignments)
985 Fn();
986
987 return true;
988 }
989
insertSRetLoads(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg,int FI) const990 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
991 ArrayRef<Register> VRegs, Register DemoteReg,
992 int FI) const {
993 MachineFunction &MF = MIRBuilder.getMF();
994 MachineRegisterInfo &MRI = MF.getRegInfo();
995 const DataLayout &DL = MF.getDataLayout();
996
997 SmallVector<EVT, 4> SplitVTs;
998 SmallVector<uint64_t, 4> Offsets;
999 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1000
1001 assert(VRegs.size() == SplitVTs.size());
1002
1003 unsigned NumValues = SplitVTs.size();
1004 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1005 Type *RetPtrTy =
1006 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
1007 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1008
1009 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
1010
1011 for (unsigned I = 0; I < NumValues; ++I) {
1012 Register Addr;
1013 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1014 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1015 MRI.getType(VRegs[I]),
1016 commonAlignment(BaseAlign, Offsets[I]));
1017 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1018 }
1019 }
1020
insertSRetStores(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg) const1021 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
1022 ArrayRef<Register> VRegs,
1023 Register DemoteReg) const {
1024 MachineFunction &MF = MIRBuilder.getMF();
1025 MachineRegisterInfo &MRI = MF.getRegInfo();
1026 const DataLayout &DL = MF.getDataLayout();
1027
1028 SmallVector<EVT, 4> SplitVTs;
1029 SmallVector<uint64_t, 4> Offsets;
1030 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1031
1032 assert(VRegs.size() == SplitVTs.size());
1033
1034 unsigned NumValues = SplitVTs.size();
1035 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1036 unsigned AS = DL.getAllocaAddrSpace();
1037 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
1038
1039 MachinePointerInfo PtrInfo(AS);
1040
1041 for (unsigned I = 0; I < NumValues; ++I) {
1042 Register Addr;
1043 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1044 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1045 MRI.getType(VRegs[I]),
1046 commonAlignment(BaseAlign, Offsets[I]));
1047 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1048 }
1049 }
1050
insertSRetIncomingArgument(const Function & F,SmallVectorImpl<ArgInfo> & SplitArgs,Register & DemoteReg,MachineRegisterInfo & MRI,const DataLayout & DL) const1051 void CallLowering::insertSRetIncomingArgument(
1052 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1053 MachineRegisterInfo &MRI, const DataLayout &DL) const {
1054 unsigned AS = DL.getAllocaAddrSpace();
1055 DemoteReg = MRI.createGenericVirtualRegister(
1056 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1057
1058 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
1059
1060 SmallVector<EVT, 1> ValueVTs;
1061 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1062
1063 // NOTE: Assume that a pointer won't get split into more than one VT.
1064 assert(ValueVTs.size() == 1);
1065
1066 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1067 ArgInfo::NoArgIndex);
1068 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1069 DemoteArg.Flags[0].setSRet();
1070 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1071 }
1072
insertSRetOutgoingArgument(MachineIRBuilder & MIRBuilder,const CallBase & CB,CallLoweringInfo & Info) const1073 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
1074 const CallBase &CB,
1075 CallLoweringInfo &Info) const {
1076 const DataLayout &DL = MIRBuilder.getDataLayout();
1077 Type *RetTy = CB.getType();
1078 unsigned AS = DL.getAllocaAddrSpace();
1079 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1080
1081 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1082 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1083
1084 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1085 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
1086 ArgInfo::NoArgIndex);
1087 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1088 DemoteArg.Flags[0].setSRet();
1089
1090 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1091 Info.DemoteStackIndex = FI;
1092 Info.DemoteRegister = DemoteReg;
1093 }
1094
checkReturn(CCState & CCInfo,SmallVectorImpl<BaseArgInfo> & Outs,CCAssignFn * Fn) const1095 bool CallLowering::checkReturn(CCState &CCInfo,
1096 SmallVectorImpl<BaseArgInfo> &Outs,
1097 CCAssignFn *Fn) const {
1098 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1099 MVT VT = MVT::getVT(Outs[I].Ty);
1100 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
1101 return false;
1102 }
1103 return true;
1104 }
1105
getReturnInfo(CallingConv::ID CallConv,Type * RetTy,AttributeList Attrs,SmallVectorImpl<BaseArgInfo> & Outs,const DataLayout & DL) const1106 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1107 AttributeList Attrs,
1108 SmallVectorImpl<BaseArgInfo> &Outs,
1109 const DataLayout &DL) const {
1110 LLVMContext &Context = RetTy->getContext();
1111 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1112
1113 SmallVector<EVT, 4> SplitVTs;
1114 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1115 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1116
1117 for (EVT VT : SplitVTs) {
1118 unsigned NumParts =
1119 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1120 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1121 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1122
1123 for (unsigned I = 0; I < NumParts; ++I) {
1124 Outs.emplace_back(PartTy, Flags);
1125 }
1126 }
1127 }
1128
checkReturnTypeForCallConv(MachineFunction & MF) const1129 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1130 const auto &F = MF.getFunction();
1131 Type *ReturnType = F.getReturnType();
1132 CallingConv::ID CallConv = F.getCallingConv();
1133
1134 SmallVector<BaseArgInfo, 4> SplitArgs;
1135 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1136 MF.getDataLayout());
1137 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1138 }
1139
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & OutLocs,const SmallVectorImpl<ArgInfo> & OutArgs) const1140 bool CallLowering::parametersInCSRMatch(
1141 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1142 const SmallVectorImpl<CCValAssign> &OutLocs,
1143 const SmallVectorImpl<ArgInfo> &OutArgs) const {
1144 for (unsigned i = 0; i < OutLocs.size(); ++i) {
1145 const auto &ArgLoc = OutLocs[i];
1146 // If it's not a register, it's fine.
1147 if (!ArgLoc.isRegLoc())
1148 continue;
1149
1150 MCRegister PhysReg = ArgLoc.getLocReg();
1151
1152 // Only look at callee-saved registers.
1153 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1154 continue;
1155
1156 LLVM_DEBUG(
1157 dbgs()
1158 << "... Call has an argument passed in a callee-saved register.\n");
1159
1160 // Check if it was copied from.
1161 const ArgInfo &OutInfo = OutArgs[i];
1162
1163 if (OutInfo.Regs.size() > 1) {
1164 LLVM_DEBUG(
1165 dbgs() << "... Cannot handle arguments in multiple registers.\n");
1166 return false;
1167 }
1168
1169 // Check if we copy the register, walking through copies from virtual
1170 // registers. Note that getDefIgnoringCopies does not ignore copies from
1171 // physical registers.
1172 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1173 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1174 LLVM_DEBUG(
1175 dbgs()
1176 << "... Parameter was not copied into a VReg, cannot tail call.\n");
1177 return false;
1178 }
1179
1180 // Got a copy. Verify that it's the same as the register we want.
1181 Register CopyRHS = RegDef->getOperand(1).getReg();
1182 if (CopyRHS != PhysReg) {
1183 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1184 "VReg, cannot tail call.\n");
1185 return false;
1186 }
1187 }
1188
1189 return true;
1190 }
1191
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,ValueAssigner & CalleeAssigner,ValueAssigner & CallerAssigner) const1192 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1193 MachineFunction &MF,
1194 SmallVectorImpl<ArgInfo> &InArgs,
1195 ValueAssigner &CalleeAssigner,
1196 ValueAssigner &CallerAssigner) const {
1197 const Function &F = MF.getFunction();
1198 CallingConv::ID CalleeCC = Info.CallConv;
1199 CallingConv::ID CallerCC = F.getCallingConv();
1200
1201 if (CallerCC == CalleeCC)
1202 return true;
1203
1204 SmallVector<CCValAssign, 16> ArgLocs1;
1205 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1206 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1207 return false;
1208
1209 SmallVector<CCValAssign, 16> ArgLocs2;
1210 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1211 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1212 return false;
1213
1214 // We need the argument locations to match up exactly. If there's more in
1215 // one than the other, then we are done.
1216 if (ArgLocs1.size() != ArgLocs2.size())
1217 return false;
1218
1219 // Make sure that each location is passed in exactly the same way.
1220 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1221 const CCValAssign &Loc1 = ArgLocs1[i];
1222 const CCValAssign &Loc2 = ArgLocs2[i];
1223
1224 // We need both of them to be the same. So if one is a register and one
1225 // isn't, we're done.
1226 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1227 return false;
1228
1229 if (Loc1.isRegLoc()) {
1230 // If they don't have the same register location, we're done.
1231 if (Loc1.getLocReg() != Loc2.getLocReg())
1232 return false;
1233
1234 // They matched, so we can move to the next ArgLoc.
1235 continue;
1236 }
1237
1238 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1239 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1240 return false;
1241 }
1242
1243 return true;
1244 }
1245
getStackValueStoreType(const DataLayout & DL,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1246 LLT CallLowering::ValueHandler::getStackValueStoreType(
1247 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1248 const MVT ValVT = VA.getValVT();
1249 if (ValVT != MVT::iPTR) {
1250 LLT ValTy(ValVT);
1251
1252 // We lost the pointeriness going through CCValAssign, so try to restore it
1253 // based on the flags.
1254 if (Flags.isPointer()) {
1255 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1256 ValTy.getScalarSizeInBits());
1257 if (ValVT.isVector())
1258 return LLT::vector(ValTy.getElementCount(), PtrTy);
1259 return PtrTy;
1260 }
1261
1262 return ValTy;
1263 }
1264
1265 unsigned AddrSpace = Flags.getPointerAddrSpace();
1266 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1267 }
1268
copyArgumentMemory(const ArgInfo & Arg,Register DstPtr,Register SrcPtr,const MachinePointerInfo & DstPtrInfo,Align DstAlign,const MachinePointerInfo & SrcPtrInfo,Align SrcAlign,uint64_t MemSize,CCValAssign & VA) const1269 void CallLowering::ValueHandler::copyArgumentMemory(
1270 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1271 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1272 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1273 CCValAssign &VA) const {
1274 MachineFunction &MF = MIRBuilder.getMF();
1275 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1276 SrcPtrInfo,
1277 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1278 SrcAlign);
1279
1280 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1281 DstPtrInfo,
1282 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1283 MemSize, DstAlign);
1284
1285 const LLT PtrTy = MRI.getType(DstPtr);
1286 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1287
1288 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1289 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1290 }
1291
extendRegister(Register ValReg,const CCValAssign & VA,unsigned MaxSizeBits)1292 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1293 const CCValAssign &VA,
1294 unsigned MaxSizeBits) {
1295 LLT LocTy{VA.getLocVT()};
1296 LLT ValTy{VA.getValVT()};
1297
1298 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1299 return ValReg;
1300
1301 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1302 if (MaxSizeBits <= ValTy.getSizeInBits())
1303 return ValReg;
1304 LocTy = LLT::scalar(MaxSizeBits);
1305 }
1306
1307 const LLT ValRegTy = MRI.getType(ValReg);
1308 if (ValRegTy.isPointer()) {
1309 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1310 // we have to cast to do the extension.
1311 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1312 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1313 }
1314
1315 switch (VA.getLocInfo()) {
1316 default:
1317 break;
1318 case CCValAssign::Full:
1319 case CCValAssign::BCvt:
1320 // FIXME: bitconverting between vector types may or may not be a
1321 // nop in big-endian situations.
1322 return ValReg;
1323 case CCValAssign::AExt: {
1324 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1325 return MIB.getReg(0);
1326 }
1327 case CCValAssign::SExt: {
1328 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1329 MIRBuilder.buildSExt(NewReg, ValReg);
1330 return NewReg;
1331 }
1332 case CCValAssign::ZExt: {
1333 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1334 MIRBuilder.buildZExt(NewReg, ValReg);
1335 return NewReg;
1336 }
1337 }
1338 llvm_unreachable("unable to extend register");
1339 }
1340
anchor()1341 void CallLowering::ValueAssigner::anchor() {}
1342
buildExtensionHint(const CCValAssign & VA,Register SrcReg,LLT NarrowTy)1343 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1344 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1345 switch (VA.getLocInfo()) {
1346 case CCValAssign::LocInfo::ZExt: {
1347 return MIRBuilder
1348 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1349 NarrowTy.getScalarSizeInBits())
1350 .getReg(0);
1351 }
1352 case CCValAssign::LocInfo::SExt: {
1353 return MIRBuilder
1354 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1355 NarrowTy.getScalarSizeInBits())
1356 .getReg(0);
1357 break;
1358 }
1359 default:
1360 return SrcReg;
1361 }
1362 }
1363
1364 /// Check if we can use a basic COPY instruction between the two types.
1365 ///
1366 /// We're currently building on top of the infrastructure using MVT, which loses
1367 /// pointer information in the CCValAssign. We accept copies from physical
1368 /// registers that have been reported as integers if it's to an equivalent sized
1369 /// pointer LLT.
isCopyCompatibleType(LLT SrcTy,LLT DstTy)1370 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1371 if (SrcTy == DstTy)
1372 return true;
1373
1374 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1375 return false;
1376
1377 SrcTy = SrcTy.getScalarType();
1378 DstTy = DstTy.getScalarType();
1379
1380 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1381 (DstTy.isPointer() && SrcTy.isScalar());
1382 }
1383
assignValueToReg(Register ValVReg,Register PhysReg,const CCValAssign & VA)1384 void CallLowering::IncomingValueHandler::assignValueToReg(
1385 Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1386 const MVT LocVT = VA.getLocVT();
1387 const LLT LocTy(LocVT);
1388 const LLT RegTy = MRI.getType(ValVReg);
1389
1390 if (isCopyCompatibleType(RegTy, LocTy)) {
1391 MIRBuilder.buildCopy(ValVReg, PhysReg);
1392 return;
1393 }
1394
1395 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1396 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1397 MIRBuilder.buildTrunc(ValVReg, Hint);
1398 }
1399