xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
11 // available.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation.h"
41 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
42 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <memory>
46 #include <set>
47 #include <string>
48 #include <unordered_map>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "pgo-icall-prom"
55 
56 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
57 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
58 
59 extern cl::opt<unsigned> MaxNumVTableAnnotations;
60 
61 namespace llvm {
62 extern cl::opt<bool> EnableVTableProfileUse;
63 }
64 
65 // Command line option to disable indirect-call promotion with the default as
66 // false. This is for debug purpose.
67 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
68                                 cl::desc("Disable indirect call promotion"));
69 
70 // Set the cutoff value for the promotion. If the value is other than 0, we
71 // stop the transformation once the total number of promotions equals the cutoff
72 // value.
73 // For debug use only.
74 static cl::opt<unsigned>
75     ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
76               cl::desc("Max number of promotions for this compilation"));
77 
78 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
79 // For debug use only.
80 static cl::opt<unsigned>
81     ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
82               cl::desc("Skip Callsite up to this number for this compilation"));
83 
84 // Set if the pass is called in LTO optimization. The difference for LTO mode
85 // is the pass won't prefix the source module name to the internal linkage
86 // symbols.
87 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
88                                 cl::desc("Run indirect-call promotion in LTO "
89                                          "mode"));
90 
91 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
92 // mode is it will add prof metadatato the created direct call.
93 static cl::opt<bool>
94     ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
95                      cl::desc("Run indirect-call promotion in SamplePGO mode"));
96 
97 // If the option is set to true, only call instructions will be considered for
98 // transformation -- invoke instructions will be ignored.
99 static cl::opt<bool>
100     ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
101                 cl::desc("Run indirect-call promotion for call instructions "
102                          "only"));
103 
104 // If the option is set to true, only invoke instructions will be considered for
105 // transformation -- call instructions will be ignored.
106 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
107                                    cl::Hidden,
108                                    cl::desc("Run indirect-call promotion for "
109                                             "invoke instruction only"));
110 
111 // Dump the function level IR if the transformation happened in this
112 // function. For debug use only.
113 static cl::opt<bool>
114     ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
115                  cl::desc("Dump IR after transformation happens"));
116 
117 // Indirect call promotion pass will fall back to function-based comparison if
118 // vtable-count / function-count is smaller than this threshold.
119 static cl::opt<float> ICPVTablePercentageThreshold(
120     "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
121     cl::desc("The percentage threshold of vtable-count / function-count for "
122              "cost-benefit analysis."));
123 
124 // Although comparing vtables can save a vtable load, we may need to compare
125 // vtable pointer with multiple vtable address points due to class inheritance.
126 // Comparing with multiple vtables inserts additional instructions on hot code
127 // path, and doing so for an earlier candidate delays the comparisons for later
128 // candidates. For the last candidate, only the fallback path is affected.
129 // We allow multiple vtable comparison for the last function candidate and use
130 // the option below to cap the number of vtables.
131 static cl::opt<int> ICPMaxNumVTableLastCandidate(
132     "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
133     cl::desc("The maximum number of vtable for the last candidate."));
134 
135 namespace {
136 
137 // The key is a vtable global variable, and the value is a map.
138 // In the inner map, the key represents address point offsets and the value is a
139 // constant for this address point.
140 using VTableAddressPointOffsetValMap =
141     SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
142 
143 // A struct to collect type information for a virtual call site.
144 struct VirtualCallSiteInfo {
145   // The offset from the address point to virtual function in the vtable.
146   uint64_t FunctionOffset;
147   // The instruction that computes the address point of vtable.
148   Instruction *VPtr;
149   // The compatible type used in LLVM type intrinsics.
150   StringRef CompatibleTypeStr;
151 };
152 
153 // The key is a virtual call, and value is its type information.
154 using VirtualCallSiteTypeInfoMap =
155     SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
156 
157 // The key is vtable GUID, and value is its value profile count.
158 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
159 
160 // Return the address point offset of the given compatible type.
161 //
162 // Type metadata of a vtable specifies the types that can contain a pointer to
163 // this vtable, for example, `Base*` can be a pointer to an derived type
164 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
165 static std::optional<uint64_t>
getAddressPointOffset(const GlobalVariable & VTableVar,StringRef CompatibleType)166 getAddressPointOffset(const GlobalVariable &VTableVar,
167                       StringRef CompatibleType) {
168   SmallVector<MDNode *> Types;
169   VTableVar.getMetadata(LLVMContext::MD_type, Types);
170 
171   for (MDNode *Type : Types)
172     if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
173         TypeId && TypeId->getString() == CompatibleType)
174       return cast<ConstantInt>(
175                  cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
176           ->getZExtValue();
177 
178   return std::nullopt;
179 }
180 
181 // Return a constant representing the vtable's address point specified by the
182 // offset.
getVTableAddressPointOffset(GlobalVariable * VTable,uint32_t AddressPointOffset)183 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
184                                              uint32_t AddressPointOffset) {
185   Module &M = *VTable->getParent();
186   LLVMContext &Context = M.getContext();
187   assert(AddressPointOffset <
188              M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
189          "Out-of-bound access");
190 
191   return ConstantExpr::getInBoundsGetElementPtr(
192       Type::getInt8Ty(Context), VTable,
193       llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
194 }
195 
196 // Return the basic block in which Use `U` is used via its `UserInst`.
getUserBasicBlock(Use & U,Instruction * UserInst)197 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
198   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
199     return PN->getIncomingBlock(U);
200 
201   return UserInst->getParent();
202 }
203 
204 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
205 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
206 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
207 // `Inst->getParent()`.
isDestBBSuitableForSink(Instruction * Inst,BasicBlock * DestBB)208 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
209   // 'BB' is used only by assert.
210   [[maybe_unused]] BasicBlock *BB = Inst->getParent();
211 
212   assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
213          DestBB->getUniquePredecessor() == BB &&
214          "Guaranteed by ICP transformation");
215 
216   BasicBlock *UserBB = nullptr;
217   for (Use &Use : Inst->uses()) {
218     User *User = Use.getUser();
219     // Do checked cast since IR verifier guarantees that the user of an
220     // instruction must be an instruction. See `Verifier::visitInstruction`.
221     Instruction *UserInst = cast<Instruction>(User);
222     // We can sink debug or pseudo instructions together with Inst.
223     if (UserInst->isDebugOrPseudoInst())
224       continue;
225     UserBB = getUserBasicBlock(Use, UserInst);
226     // Do not sink if Inst is used in a basic block that is not DestBB.
227     // TODO: Sink to the common dominator of all user blocks.
228     if (UserBB != DestBB)
229       return false;
230   }
231   return UserBB != nullptr;
232 }
233 
234 // For the virtual call dispatch sequence, try to sink vtable load instructions
235 // to the cold indirect call fallback.
236 // FIXME: Move the sink eligibility check below to a utility function in
237 // Transforms/Utils/ directory.
tryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)238 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
239   if (!isDestBBSuitableForSink(I, DestBlock))
240     return false;
241 
242   // Do not move control-flow-involving, volatile loads, vaarg, alloca
243   // instructions, etc.
244   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
245       isa<AllocaInst>(I))
246     return false;
247 
248   // Do not sink convergent call instructions.
249   if (const auto *C = dyn_cast<CallBase>(I))
250     if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
251       return false;
252 
253   // Do not move an instruction that may write to memory.
254   if (I->mayWriteToMemory())
255     return false;
256 
257   // We can only sink load instructions if there is nothing between the load and
258   // the end of block that could change the value.
259   if (I->mayReadFromMemory()) {
260     // We already know that SrcBlock is the unique predecessor of DestBlock.
261     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
262                               E = I->getParent()->end();
263          Scan != E; ++Scan) {
264       // Note analysis analysis can tell whether two pointers can point to the
265       // same object in memory or not thereby find further opportunities to
266       // sink.
267       if (Scan->mayWriteToMemory())
268         return false;
269     }
270   }
271 
272   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
273   I->moveBefore(*DestBlock, InsertPos);
274 
275   // TODO: Sink debug intrinsic users of I to 'DestBlock'.
276   // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
277   // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
278   // the core logic to do this.
279   return true;
280 }
281 
282 // Try to sink instructions after VPtr to the indirect call fallback.
283 // Return the number of sunk IR instructions.
tryToSinkInstructions(BasicBlock * OriginalBB,BasicBlock * IndirectCallBB)284 static int tryToSinkInstructions(BasicBlock *OriginalBB,
285                                  BasicBlock *IndirectCallBB) {
286   int SinkCount = 0;
287   // Do not sink across a critical edge for simplicity.
288   if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
289     return SinkCount;
290   // Sink all eligible instructions in OriginalBB in reverse order.
291   for (Instruction &I :
292        llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
293     if (tryToSinkInstruction(&I, IndirectCallBB))
294       SinkCount++;
295 
296   return SinkCount;
297 }
298 
299 // Promote indirect calls to conditional direct calls, keeping track of
300 // thresholds.
301 class IndirectCallPromoter {
302 private:
303   Function &F;
304   Module &M;
305 
306   ProfileSummaryInfo *PSI = nullptr;
307 
308   // Symtab that maps indirect call profile values to function names and
309   // defines.
310   InstrProfSymtab *const Symtab;
311 
312   const bool SamplePGO;
313 
314   // A map from a virtual call to its type information.
315   const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
316 
317   VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
318 
319   OptimizationRemarkEmitter &ORE;
320 
321   // A struct that records the direct target and it's call count.
322   struct PromotionCandidate {
323     Function *const TargetFunction;
324     const uint64_t Count;
325 
326     // The following fields only exists for promotion candidates with vtable
327     // information.
328     //
329     // Due to class inheritance, one virtual call candidate can come from
330     // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
331     // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
332     // points for comparison.
333     VTableGUIDCountsMap VTableGUIDAndCounts;
334     SmallVector<Constant *> AddressPoints;
335 
PromotionCandidate__anon5ae95e860111::IndirectCallPromoter::PromotionCandidate336     PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
337   };
338 
339   // Check if the indirect-call call site should be promoted. Return the number
340   // of promotions. Inst is the candidate indirect call, ValueDataRef
341   // contains the array of value profile data for profiled targets,
342   // TotalCount is the total profiled count of call executions, and
343   // NumCandidates is the number of candidate entries in ValueDataRef.
344   std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
345       const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
346       uint64_t TotalCount, uint32_t NumCandidates);
347 
348   // Promote a list of targets for one indirect-call callsite by comparing
349   // indirect callee with functions. Return true if there are IR
350   // transformations and false otherwise.
351   bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
352                                ArrayRef<PromotionCandidate> Candidates,
353                                uint64_t TotalCount,
354                                ArrayRef<InstrProfValueData> ICallProfDataRef,
355                                uint32_t NumCandidates,
356                                VTableGUIDCountsMap &VTableGUIDCounts);
357 
358   // Promote a list of targets for one indirect call by comparing vtables with
359   // functions. Return true if there are IR transformations and false
360   // otherwise.
361   bool tryToPromoteWithVTableCmp(
362       CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
363       uint64_t TotalFuncCount, uint32_t NumCandidates,
364       MutableArrayRef<InstrProfValueData> ICallProfDataRef,
365       VTableGUIDCountsMap &VTableGUIDCounts);
366 
367   // Return true if it's profitable to compare vtables for the callsite.
368   bool isProfitableToCompareVTables(const CallBase &CB,
369                                     ArrayRef<PromotionCandidate> Candidates,
370                                     uint64_t TotalCount);
371 
372   // Given an indirect callsite and the list of function candidates, compute
373   // the following vtable information in output parameters and return vtable
374   // pointer if type profiles exist.
375   // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
376   // metadata attached on the vtable pointer.
377   // - For each function candidate, finds out the vtables from which it gets
378   // called and stores the <vtable-guid, count> in promotion candidate.
379   Instruction *computeVTableInfos(const CallBase *CB,
380                                   VTableGUIDCountsMap &VTableGUIDCounts,
381                                   std::vector<PromotionCandidate> &Candidates);
382 
383   Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
384                                              uint64_t AddressPointOffset);
385 
386   void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
387                                uint64_t Sum, uint32_t MaxMDCount);
388 
389   void updateVPtrValueProfiles(Instruction *VPtr,
390                                VTableGUIDCountsMap &VTableGUIDCounts);
391 
392 public:
IndirectCallPromoter(Function & Func,Module & M,ProfileSummaryInfo * PSI,InstrProfSymtab * Symtab,bool SamplePGO,const VirtualCallSiteTypeInfoMap & VirtualCSInfo,VTableAddressPointOffsetValMap & VTableAddressPointOffsetVal,OptimizationRemarkEmitter & ORE)393   IndirectCallPromoter(
394       Function &Func, Module &M, ProfileSummaryInfo *PSI,
395       InstrProfSymtab *Symtab, bool SamplePGO,
396       const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
397       VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
398       OptimizationRemarkEmitter &ORE)
399       : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
400         VirtualCSInfo(VirtualCSInfo),
401         VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
402   IndirectCallPromoter(const IndirectCallPromoter &) = delete;
403   IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
404 
405   bool processFunction(ProfileSummaryInfo *PSI);
406 };
407 
408 } // end anonymous namespace
409 
410 // Indirect-call promotion heuristic. The direct targets are sorted based on
411 // the count. Stop at the first target that is not promoted.
412 std::vector<IndirectCallPromoter::PromotionCandidate>
getPromotionCandidatesForCallSite(const CallBase & CB,ArrayRef<InstrProfValueData> ValueDataRef,uint64_t TotalCount,uint32_t NumCandidates)413 IndirectCallPromoter::getPromotionCandidatesForCallSite(
414     const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
415     uint64_t TotalCount, uint32_t NumCandidates) {
416   std::vector<PromotionCandidate> Ret;
417 
418   LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
419                     << " Num_targets: " << ValueDataRef.size()
420                     << " Num_candidates: " << NumCandidates << "\n");
421   NumOfPGOICallsites++;
422   if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
423     LLVM_DEBUG(dbgs() << " Skip: User options.\n");
424     return Ret;
425   }
426 
427   for (uint32_t I = 0; I < NumCandidates; I++) {
428     uint64_t Count = ValueDataRef[I].Count;
429     assert(Count <= TotalCount);
430     (void)TotalCount;
431     uint64_t Target = ValueDataRef[I].Value;
432     LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
433                       << "  Target_func: " << Target << "\n");
434 
435     if (ICPInvokeOnly && isa<CallInst>(CB)) {
436       LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
437       ORE.emit([&]() {
438         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
439                << " Not promote: User options";
440       });
441       break;
442     }
443     if (ICPCallOnly && isa<InvokeInst>(CB)) {
444       LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
445       ORE.emit([&]() {
446         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
447                << " Not promote: User options";
448       });
449       break;
450     }
451     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
452       LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
453       ORE.emit([&]() {
454         return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
455                << " Not promote: Cutoff reached";
456       });
457       break;
458     }
459 
460     // Don't promote if the symbol is not defined in the module. This avoids
461     // creating a reference to a symbol that doesn't exist in the module
462     // This can happen when we compile with a sample profile collected from
463     // one binary but used for another, which may have profiled targets that
464     // aren't used in the new binary. We might have a declaration initially in
465     // the case where the symbol is globally dead in the binary and removed by
466     // ThinLTO.
467     Function *TargetFunction = Symtab->getFunction(Target);
468     if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
469       LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
470       ORE.emit([&]() {
471         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
472                << "Cannot promote indirect call: target with md5sum "
473                << ore::NV("target md5sum", Target) << " not found";
474       });
475       break;
476     }
477 
478     const char *Reason = nullptr;
479     if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
480       using namespace ore;
481 
482       ORE.emit([&]() {
483         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
484                << "Cannot promote indirect call to "
485                << NV("TargetFunction", TargetFunction) << " with count of "
486                << NV("Count", Count) << ": " << Reason;
487       });
488       break;
489     }
490 
491     Ret.push_back(PromotionCandidate(TargetFunction, Count));
492     TotalCount -= Count;
493   }
494   return Ret;
495 }
496 
getOrCreateVTableAddressPointVar(GlobalVariable * GV,uint64_t AddressPointOffset)497 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
498     GlobalVariable *GV, uint64_t AddressPointOffset) {
499   auto [Iter, Inserted] =
500       VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
501   if (Inserted)
502     Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
503   return Iter->second;
504 }
505 
computeVTableInfos(const CallBase * CB,VTableGUIDCountsMap & GUIDCountsMap,std::vector<PromotionCandidate> & Candidates)506 Instruction *IndirectCallPromoter::computeVTableInfos(
507     const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
508     std::vector<PromotionCandidate> &Candidates) {
509   if (!EnableVTableProfileUse)
510     return nullptr;
511 
512   // Take the following code sequence as an example, here is how the code works
513   //   @vtable1 = {[n x ptr] [... ptr @func1]}
514   //   @vtable2 = {[m x ptr] [... ptr @func2]}
515   //
516   //   %vptr = load ptr, ptr %d, !prof !0
517   //   %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
518   //   tail call void @llvm.assume(i1 %0)
519   //   %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
520   //   %1 = load ptr, ptr %vfn
521   //   call void %1(ptr %d), !prof !1
522   //
523   //   !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
524   //   !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
525   //
526   // Step 1. Find out the %vptr instruction for indirect call and use its !prof
527   // to populate `GUIDCountsMap`.
528   // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
529   // make vtable definitions visible across modules.
530   // Step 3. Compute the byte offset of the virtual call, by adding vtable
531   // address point offset and function's offset relative to vtable address
532   // point. For each function candidate, this step tells us the vtable from
533   // which it comes from, and the vtable address point to compare %vptr with.
534 
535   // Only virtual calls have virtual call site info.
536   auto Iter = VirtualCSInfo.find(CB);
537   if (Iter == VirtualCSInfo.end())
538     return nullptr;
539 
540   LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
541                     << NumOfPGOICallsites << "\n");
542 
543   const auto &VirtualCallInfo = Iter->second;
544   Instruction *VPtr = VirtualCallInfo.VPtr;
545 
546   SmallDenseMap<Function *, int, 4> CalleeIndexMap;
547   for (size_t I = 0; I < Candidates.size(); I++)
548     CalleeIndexMap[Candidates[I].TargetFunction] = I;
549 
550   uint64_t TotalVTableCount = 0;
551   auto VTableValueDataArray =
552       getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
553                                MaxNumVTableAnnotations, TotalVTableCount);
554   if (VTableValueDataArray.empty())
555     return VPtr;
556 
557   // Compute the functions and counts from by each vtable.
558   for (const auto &V : VTableValueDataArray) {
559     uint64_t VTableVal = V.Value;
560     GUIDCountsMap[VTableVal] = V.Count;
561     GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
562     if (!VTableVar) {
563       LLVM_DEBUG(dbgs() << "  Cannot find vtable definition for " << VTableVal
564                         << "; maybe the vtable isn't imported\n");
565       continue;
566     }
567 
568     std::optional<uint64_t> MaybeAddressPointOffset =
569         getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
570     if (!MaybeAddressPointOffset)
571       continue;
572 
573     const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
574 
575     Function *Callee = nullptr;
576     std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
577         VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
578     if (!Callee)
579       continue;
580     auto CalleeIndexIter = CalleeIndexMap.find(Callee);
581     if (CalleeIndexIter == CalleeIndexMap.end())
582       continue;
583 
584     auto &Candidate = Candidates[CalleeIndexIter->second];
585     // There shouldn't be duplicate GUIDs in one !prof metadata (except
586     // duplicated zeros), so assign counters directly won't cause overwrite or
587     // counter loss.
588     Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
589     Candidate.AddressPoints.push_back(
590         getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
591   }
592 
593   return VPtr;
594 }
595 
596 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
597 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
createBranchWeights(LLVMContext & Context,uint64_t TrueWeight,uint64_t FalseWeight)598 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
599                                    uint64_t FalseWeight) {
600   MDBuilder MDB(Context);
601   uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
602   return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
603                                  scaleBranchCount(FalseWeight, Scale));
604 }
605 
promoteIndirectCall(CallBase & CB,Function * DirectCallee,uint64_t Count,uint64_t TotalCount,bool AttachProfToDirectCall,OptimizationRemarkEmitter * ORE)606 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
607                                          uint64_t Count, uint64_t TotalCount,
608                                          bool AttachProfToDirectCall,
609                                          OptimizationRemarkEmitter *ORE) {
610   CallBase &NewInst = promoteCallWithIfThenElse(
611       CB, DirectCallee,
612       createBranchWeights(CB.getContext(), Count, TotalCount - Count));
613 
614   if (AttachProfToDirectCall)
615     setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
616                      /*IsExpected=*/false);
617 
618   using namespace ore;
619 
620   if (ORE)
621     ORE->emit([&]() {
622       return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
623              << "Promote indirect call to " << NV("DirectCallee", DirectCallee)
624              << " with count " << NV("Count", Count) << " out of "
625              << NV("TotalCount", TotalCount);
626     });
627   return NewInst;
628 }
629 
630 // Promote indirect-call to conditional direct-call for one callsite.
tryToPromoteWithFuncCmp(CallBase & CB,Instruction * VPtr,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalCount,ArrayRef<InstrProfValueData> ICallProfDataRef,uint32_t NumCandidates,VTableGUIDCountsMap & VTableGUIDCounts)631 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
632     CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
633     uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
634     uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
635   uint32_t NumPromoted = 0;
636 
637   for (const auto &C : Candidates) {
638     uint64_t FuncCount = C.Count;
639     pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
640                              SamplePGO, &ORE);
641     assert(TotalCount >= FuncCount);
642     TotalCount -= FuncCount;
643     NumOfPGOICallPromotion++;
644     NumPromoted++;
645 
646     if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
647       continue;
648 
649     // After a virtual call candidate gets promoted, update the vtable's counts
650     // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
651     // a vtable from which the virtual call is loaded. Compute the sum and use
652     // 128-bit APInt to improve accuracy.
653     uint64_t SumVTableCount = 0;
654     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
655       SumVTableCount += VTableCount;
656 
657     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
658       APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
659       APFuncCount *= VTableCount;
660       VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
661     }
662   }
663   if (NumPromoted == 0)
664     return false;
665 
666   assert(NumPromoted <= ICallProfDataRef.size() &&
667          "Number of promoted functions should not be greater than the number "
668          "of values in profile metadata");
669 
670   // Update value profiles on the indirect call.
671   updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
672                           NumCandidates);
673   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
674   return true;
675 }
676 
updateFuncValueProfiles(CallBase & CB,ArrayRef<InstrProfValueData> CallVDs,uint64_t TotalCount,uint32_t MaxMDCount)677 void IndirectCallPromoter::updateFuncValueProfiles(
678     CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
679     uint32_t MaxMDCount) {
680   // First clear the existing !prof.
681   CB.setMetadata(LLVMContext::MD_prof, nullptr);
682   // Annotate the remaining value profiles if counter is not zero.
683   if (TotalCount != 0)
684     annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
685                       MaxMDCount);
686 }
687 
updateVPtrValueProfiles(Instruction * VPtr,VTableGUIDCountsMap & VTableGUIDCounts)688 void IndirectCallPromoter::updateVPtrValueProfiles(
689     Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
690   if (!EnableVTableProfileUse || VPtr == nullptr ||
691       !VPtr->getMetadata(LLVMContext::MD_prof))
692     return;
693   VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
694   std::vector<InstrProfValueData> VTableValueProfiles;
695   uint64_t TotalVTableCount = 0;
696   for (auto [GUID, Count] : VTableGUIDCounts) {
697     if (Count == 0)
698       continue;
699 
700     VTableValueProfiles.push_back({GUID, Count});
701     TotalVTableCount += Count;
702   }
703   llvm::sort(VTableValueProfiles,
704              [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
705                return LHS.Count > RHS.Count;
706              });
707 
708   annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
709                     IPVK_VTableTarget, VTableValueProfiles.size());
710 }
711 
tryToPromoteWithVTableCmp(CallBase & CB,Instruction * VPtr,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalFuncCount,uint32_t NumCandidates,MutableArrayRef<InstrProfValueData> ICallProfDataRef,VTableGUIDCountsMap & VTableGUIDCounts)712 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
713     CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
714     uint64_t TotalFuncCount, uint32_t NumCandidates,
715     MutableArrayRef<InstrProfValueData> ICallProfDataRef,
716     VTableGUIDCountsMap &VTableGUIDCounts) {
717   SmallVector<uint64_t, 4> PromotedFuncCount;
718 
719   for (const auto &Candidate : Candidates) {
720     for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
721       VTableGUIDCounts[GUID] -= Count;
722 
723     // 'OriginalBB' is the basic block of indirect call. After each candidate
724     // is promoted, a new basic block is created for the indirect fallback basic
725     // block and indirect call `CB` is moved into this new BB.
726     BasicBlock *OriginalBB = CB.getParent();
727     promoteCallWithVTableCmp(
728         CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
729         createBranchWeights(CB.getContext(), Candidate.Count,
730                             TotalFuncCount - Candidate.Count));
731 
732     int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
733 
734     ORE.emit([&]() {
735       OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
736 
737       const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
738       Remark << "Promote indirect call to "
739              << ore::NV("DirectCallee", Candidate.TargetFunction)
740              << " with count " << ore::NV("Count", Candidate.Count)
741              << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
742              << ore::NV("SinkCount", SinkCount)
743              << " instruction(s) and compare "
744              << ore::NV("VTable", VTableGUIDAndCounts.size())
745              << " vtable(s): {";
746 
747       // Sort GUIDs so remark message is deterministic.
748       std::set<uint64_t> GUIDSet;
749       for (auto [GUID, Count] : VTableGUIDAndCounts)
750         GUIDSet.insert(GUID);
751       for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
752         if (Iter != GUIDSet.begin())
753           Remark << ", ";
754         Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
755       }
756 
757       Remark << "}";
758 
759       return Remark;
760     });
761 
762     PromotedFuncCount.push_back(Candidate.Count);
763 
764     assert(TotalFuncCount >= Candidate.Count &&
765            "Within one prof metadata, total count is the sum of counts from "
766            "individual <target, count> pairs");
767     // Use std::min since 'TotalFuncCount' is the saturated sum of individual
768     // counts, see
769     // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
770     TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
771     NumOfPGOICallPromotion++;
772   }
773 
774   if (PromotedFuncCount.empty())
775     return false;
776 
777   // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
778   // a distinct 'VPtr'.
779   // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
780   // used to load multiple virtual functions. The vtable profiles needs to be
781   // updated properly in that case (e.g, for each indirect call annotate both
782   // type profiles and function profiles in one !prof).
783   for (size_t I = 0; I < PromotedFuncCount.size(); I++)
784     ICallProfDataRef[I].Count -=
785         std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
786   // Sort value profiles by count in descending order.
787   llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
788                                          const InstrProfValueData &RHS) {
789     return LHS.Count > RHS.Count;
790   });
791   // Drop the <target-value, count> pair if count is zero.
792   ArrayRef<InstrProfValueData> VDs(
793       ICallProfDataRef.begin(),
794       llvm::upper_bound(ICallProfDataRef, 0U,
795                         [](uint64_t Count, const InstrProfValueData &ProfData) {
796                           return ProfData.Count <= Count;
797                         }));
798   updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
799   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
800   return true;
801 }
802 
803 // Traverse all the indirect-call callsite and get the value profile
804 // annotation to perform indirect-call promotion.
processFunction(ProfileSummaryInfo * PSI)805 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
806   bool Changed = false;
807   ICallPromotionAnalysis ICallAnalysis;
808   for (auto *CB : findIndirectCalls(F)) {
809     uint32_t NumCandidates;
810     uint64_t TotalCount;
811     auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
812         CB, TotalCount, NumCandidates);
813     if (!NumCandidates ||
814         (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
815       continue;
816 
817     auto PromotionCandidates = getPromotionCandidatesForCallSite(
818         *CB, ICallProfDataRef, TotalCount, NumCandidates);
819 
820     VTableGUIDCountsMap VTableGUIDCounts;
821     Instruction *VPtr =
822         computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
823 
824     if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
825       Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
826                                            TotalCount, NumCandidates,
827                                            ICallProfDataRef, VTableGUIDCounts);
828     else
829       Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
830                                          TotalCount, ICallProfDataRef,
831                                          NumCandidates, VTableGUIDCounts);
832   }
833   return Changed;
834 }
835 
836 // TODO: Return false if the function addressing and vtable load instructions
837 // cannot sink to indirect fallback.
isProfitableToCompareVTables(const CallBase & CB,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalCount)838 bool IndirectCallPromoter::isProfitableToCompareVTables(
839     const CallBase &CB, ArrayRef<PromotionCandidate> Candidates,
840     uint64_t TotalCount) {
841   if (!EnableVTableProfileUse || Candidates.empty())
842     return false;
843   LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
844                     << NumOfPGOICallsites << CB << "\n");
845   uint64_t RemainingVTableCount = TotalCount;
846   const size_t CandidateSize = Candidates.size();
847   for (size_t I = 0; I < CandidateSize; I++) {
848     auto &Candidate = Candidates[I];
849     auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
850 
851     LLVM_DEBUG(dbgs() << "  Candidate " << I << " FunctionCount: "
852                       << Candidate.Count << ", VTableCounts:");
853     // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
854     for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
855       LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
856                         << ", " << Count << "}");
857     LLVM_DEBUG(dbgs() << "\n");
858 
859     uint64_t CandidateVTableCount = 0;
860     for (auto &[GUID, Count] : VTableGUIDAndCounts)
861       CandidateVTableCount += Count;
862 
863     if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
864       LLVM_DEBUG(
865           dbgs() << "    function count " << Candidate.Count
866                  << " and its vtable sum count " << CandidateVTableCount
867                  << " have discrepancies. Bail out vtable comparison.\n");
868       return false;
869     }
870 
871     RemainingVTableCount -= Candidate.Count;
872 
873     // 'MaxNumVTable' limits the number of vtables to make vtable comparison
874     // profitable. Comparing multiple vtables for one function candidate will
875     // insert additional instructions on the hot path, and allowing more than
876     // one vtable for non last candidates may or may not elongate the dependency
877     // chain for the subsequent candidates. Set its value to 1 for non-last
878     // candidate and allow option to override it for the last candidate.
879     int MaxNumVTable = 1;
880     if (I == CandidateSize - 1)
881       MaxNumVTable = ICPMaxNumVTableLastCandidate;
882 
883     if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
884       LLVM_DEBUG(dbgs() << "    allow at most " << MaxNumVTable << " and got "
885                         << Candidate.AddressPoints.size()
886                         << " vtables. Bail out for vtable comparison.\n");
887       return false;
888     }
889   }
890 
891   // If the indirect fallback is not cold, don't compare vtables.
892   if (PSI && PSI->hasProfileSummary() &&
893       !PSI->isColdCount(RemainingVTableCount)) {
894     LLVM_DEBUG(dbgs() << "    Indirect fallback basic block is not cold. Bail "
895                          "out for vtable comparison.\n");
896     return false;
897   }
898 
899   return true;
900 }
901 
902 // For virtual calls in the module, collect per-callsite information which will
903 // be used to associate an ICP candidate with a vtable and a specific function
904 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
905 // calls in a compile-time efficient manner (by iterating its users) and more
906 // importantly use the compatible type later to figure out the function byte
907 // offset relative to the start of vtables.
908 static void
computeVirtualCallSiteTypeInfoMap(Module & M,ModuleAnalysisManager & MAM,VirtualCallSiteTypeInfoMap & VirtualCSInfo)909 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
910                                   VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
911   // Right now only llvm.type.test is used to find out virtual call sites.
912   // With ThinLTO and whole-program-devirtualization, llvm.type.test and
913   // llvm.public.type.test are emitted, and llvm.public.type.test is either
914   // refined to llvm.type.test or dropped before indirect-call-promotion pass.
915   //
916   // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
917   // Find out virtual calls by looking at users of llvm.type.checked.load in
918   // that case.
919   Function *TypeTestFunc =
920       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
921   if (!TypeTestFunc || TypeTestFunc->use_empty())
922     return;
923 
924   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
925   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
926     return FAM.getResult<DominatorTreeAnalysis>(F);
927   };
928   // Iterate all type.test calls to find all indirect calls.
929   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
930     auto *CI = dyn_cast<CallInst>(U.getUser());
931     if (!CI)
932       continue;
933     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
934     if (!TypeMDVal)
935       continue;
936     auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
937     if (!CompatibleTypeId)
938       continue;
939 
940     // Find out all devirtualizable call sites given a llvm.type.test
941     // intrinsic call.
942     SmallVector<DevirtCallSite, 1> DevirtCalls;
943     SmallVector<CallInst *, 1> Assumes;
944     auto &DT = LookupDomTree(*CI->getFunction());
945     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
946 
947     for (auto &DevirtCall : DevirtCalls) {
948       CallBase &CB = DevirtCall.CB;
949       // Given an indirect call, try find the instruction which loads a
950       // pointer to virtual table.
951       Instruction *VTablePtr =
952           PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
953       if (!VTablePtr)
954         continue;
955       VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
956                             CompatibleTypeId->getString()};
957     }
958   }
959 }
960 
961 // A wrapper function that does the actual work.
promoteIndirectCalls(Module & M,ProfileSummaryInfo * PSI,bool InLTO,bool SamplePGO,ModuleAnalysisManager & MAM)962 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
963                                  bool SamplePGO, ModuleAnalysisManager &MAM) {
964   if (DisableICP)
965     return false;
966   InstrProfSymtab Symtab;
967   if (Error E = Symtab.create(M, InLTO)) {
968     std::string SymtabFailure = toString(std::move(E));
969     M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
970     return false;
971   }
972   bool Changed = false;
973   VirtualCallSiteTypeInfoMap VirtualCSInfo;
974 
975   if (EnableVTableProfileUse)
976     computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
977 
978   // VTableAddressPointOffsetVal stores the vtable address points. The vtable
979   // address point of a given <vtable, address point offset> is static (doesn't
980   // change after being computed once).
981   // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
982   // entry the first time a <vtable, offset> pair is seen, as
983   // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
984   // repeatedly on each function.
985   VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
986 
987   for (auto &F : M) {
988     if (F.isDeclaration() || F.hasOptNone())
989       continue;
990 
991     auto &FAM =
992         MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
994 
995     IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
996                                       VirtualCSInfo,
997                                       VTableAddressPointOffsetVal, ORE);
998     bool FuncChanged = CallPromoter.processFunction(PSI);
999     if (ICPDUMPAFTER && FuncChanged) {
1000       LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1001       LLVM_DEBUG(dbgs() << "\n");
1002     }
1003     Changed |= FuncChanged;
1004     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1005       LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1006       break;
1007     }
1008   }
1009   return Changed;
1010 }
1011 
run(Module & M,ModuleAnalysisManager & MAM)1012 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1013                                                 ModuleAnalysisManager &MAM) {
1014   ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1015 
1016   if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1017                             SamplePGO | ICPSamplePGOMode, MAM))
1018     return PreservedAnalyses::all();
1019 
1020   return PreservedAnalyses::none();
1021 }
1022