xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "timexsup.h"
30 
31 #include <rc_cmdlength.h>
32 #ifdef KERNEL_PLL
33 # include "ntp_syscall.h"
34 #endif
35 
36 /*
37  * Structure to hold request procedure information
38  */
39 
40 struct ctl_proc {
41 	short control_code;		/* defined request code */
42 #define NO_REQUEST	(-1)
43 	u_short flags;			/* flags word */
44 	/* Only one flag.  Authentication required or not. */
45 #define NOAUTH	0
46 #define AUTH	1
47 	void (*handler) (struct recvbuf *, int); /* handle request */
48 };
49 
50 
51 /*
52  * Request processing routines
53  */
54 static	void	ctl_error	(u_char);
55 #ifdef REFCLOCK
56 static	u_short ctlclkstatus	(struct refclockstat *);
57 #endif
58 static	void	ctl_flushpkt	(u_char);
59 static	void	ctl_putdata	(const char *, unsigned int, int);
60 static	void	ctl_putstr	(const char *, const char *, size_t);
61 static	void	ctl_putdblf	(const char *, int, int, double);
62 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65 					    FPTOD(sfp))
66 static	void	ctl_putuint	(const char *, u_long);
67 static	void	ctl_puthex	(const char *, u_long);
68 static	void	ctl_putint	(const char *, long);
69 static	void	ctl_putts	(const char *, l_fp *);
70 static	void	ctl_putadr	(const char *, u_int32,
71 				 sockaddr_u *);
72 static	void	ctl_putrefid	(const char *, u_int32);
73 static	void	ctl_putarray	(const char *, double *, int);
74 static	void	ctl_putsys	(int);
75 static	void	ctl_putpeer	(int, struct peer *);
76 static	void	ctl_putfs	(const char *, tstamp_t);
77 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78 #ifdef REFCLOCK
79 static	void	ctl_putclock	(int, struct refclockstat *, int);
80 #endif	/* REFCLOCK */
81 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82 					  char **);
83 static	u_short	count_var	(const struct ctl_var *);
84 static	void	control_unspec	(struct recvbuf *, int);
85 static	void	read_status	(struct recvbuf *, int);
86 static	void	read_sysvars	(void);
87 static	void	read_peervars	(void);
88 static	void	read_variables	(struct recvbuf *, int);
89 static	void	write_variables (struct recvbuf *, int);
90 static	void	read_clockstatus(struct recvbuf *, int);
91 static	void	write_clockstatus(struct recvbuf *, int);
92 static	void	set_trap	(struct recvbuf *, int);
93 static	void	save_config	(struct recvbuf *, int);
94 static	void	configure	(struct recvbuf *, int);
95 static	void	send_mru_entry	(mon_entry *, int);
96 static	void	send_random_tag_value(int);
97 static	void	read_mru_list	(struct recvbuf *, int);
98 static	void	send_ifstats_entry(endpt *, u_int);
99 static	void	read_ifstats	(struct recvbuf *);
100 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101 					  restrict_u *, int);
102 static	void	send_restrict_entry(restrict_u *, int, u_int);
103 static	void	send_restrict_list(restrict_u *, int, u_int *);
104 static	void	read_addr_restrictions(struct recvbuf *);
105 static	void	read_ordlist	(struct recvbuf *, int);
106 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108 static	int	validate_nonce	(const char *, struct recvbuf *);
109 static	void	req_nonce	(struct recvbuf *, int);
110 static	void	unset_trap	(struct recvbuf *, int);
111 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112 				     endpt *);
113 
114 int/*BOOL*/ is_safe_filename(const char * name);
115 
116 static const struct ctl_proc control_codes[] = {
117 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130 	{ NO_REQUEST,			0,	NULL }
131 };
132 
133 /*
134  * System variables we understand
135  */
136 #define	CS_LEAP			1
137 #define	CS_STRATUM		2
138 #define	CS_PRECISION		3
139 #define	CS_ROOTDELAY		4
140 #define	CS_ROOTDISPERSION	5
141 #define	CS_REFID		6
142 #define	CS_REFTIME		7
143 #define	CS_POLL			8
144 #define	CS_PEERID		9
145 #define	CS_OFFSET		10
146 #define	CS_DRIFT		11
147 #define	CS_JITTER		12
148 #define	CS_ERROR		13
149 #define	CS_CLOCK		14
150 #define	CS_PROCESSOR		15
151 #define	CS_SYSTEM		16
152 #define	CS_VERSION		17
153 #define	CS_STABIL		18
154 #define	CS_VARLIST		19
155 #define	CS_TAI			20
156 #define	CS_LEAPTAB		21
157 #define	CS_LEAPEND		22
158 #define	CS_RATE			23
159 #define	CS_MRU_ENABLED		24
160 #define	CS_MRU_DEPTH		25
161 #define	CS_MRU_DEEPEST		26
162 #define	CS_MRU_MINDEPTH		27
163 #define	CS_MRU_MAXAGE		28
164 #define	CS_MRU_MAXDEPTH		29
165 #define	CS_MRU_MEM		30
166 #define	CS_MRU_MAXMEM		31
167 #define	CS_SS_UPTIME		32
168 #define	CS_SS_RESET		33
169 #define	CS_SS_RECEIVED		34
170 #define	CS_SS_THISVER		35
171 #define	CS_SS_OLDVER		36
172 #define	CS_SS_BADFORMAT		37
173 #define	CS_SS_BADAUTH		38
174 #define	CS_SS_DECLINED		39
175 #define	CS_SS_RESTRICTED	40
176 #define	CS_SS_LIMITED		41
177 #define	CS_SS_KODSENT		42
178 #define	CS_SS_PROCESSED		43
179 #define	CS_SS_LAMPORT		44
180 #define	CS_SS_TSROUNDING	45
181 #define	CS_PEERADR		46
182 #define	CS_PEERMODE		47
183 #define	CS_BCASTDELAY		48
184 #define	CS_AUTHDELAY		49
185 #define	CS_AUTHKEYS		50
186 #define	CS_AUTHFREEK		51
187 #define	CS_AUTHKLOOKUPS		52
188 #define	CS_AUTHKNOTFOUND	53
189 #define	CS_AUTHKUNCACHED	54
190 #define	CS_AUTHKEXPIRED		55
191 #define	CS_AUTHENCRYPTS		56
192 #define	CS_AUTHDECRYPTS		57
193 #define	CS_AUTHRESET		58
194 #define	CS_K_OFFSET		59
195 #define	CS_K_FREQ		60
196 #define	CS_K_MAXERR		61
197 #define	CS_K_ESTERR		62
198 #define	CS_K_STFLAGS		63
199 #define	CS_K_TIMECONST		64
200 #define	CS_K_PRECISION		65
201 #define	CS_K_FREQTOL		66
202 #define	CS_K_PPS_FREQ		67
203 #define	CS_K_PPS_STABIL		68
204 #define	CS_K_PPS_JITTER		69
205 #define	CS_K_PPS_CALIBDUR	70
206 #define	CS_K_PPS_CALIBS		71
207 #define	CS_K_PPS_CALIBERRS	72
208 #define	CS_K_PPS_JITEXC		73
209 #define	CS_K_PPS_STBEXC		74
210 #define	CS_KERN_FIRST		CS_K_OFFSET
211 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
212 #define	CS_IOSTATS_RESET	75
213 #define	CS_TOTAL_RBUF		76
214 #define	CS_FREE_RBUF		77
215 #define	CS_USED_RBUF		78
216 #define	CS_RBUF_LOWATER		79
217 #define	CS_IO_DROPPED		80
218 #define	CS_IO_IGNORED		81
219 #define	CS_IO_RECEIVED		82
220 #define	CS_IO_SENT		83
221 #define	CS_IO_SENDFAILED	84
222 #define	CS_IO_WAKEUPS		85
223 #define	CS_IO_GOODWAKEUPS	86
224 #define	CS_TIMERSTATS_RESET	87
225 #define	CS_TIMER_OVERRUNS	88
226 #define	CS_TIMER_XMTS		89
227 #define	CS_FUZZ			90
228 #define	CS_WANDER_THRESH	91
229 #define	CS_LEAPSMEARINTV	92
230 #define	CS_LEAPSMEAROFFS	93
231 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232 #ifdef AUTOKEY
233 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241 #define	CS_MAXCODE		CS_DIGEST
242 #else	/* !AUTOKEY follows */
243 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244 #endif	/* !AUTOKEY */
245 
246 /*
247  * Peer variables we understand
248  */
249 #define	CP_CONFIG		1
250 #define	CP_AUTHENABLE		2
251 #define	CP_AUTHENTIC		3
252 #define	CP_SRCADR		4
253 #define	CP_SRCPORT		5
254 #define	CP_DSTADR		6
255 #define	CP_DSTPORT		7
256 #define	CP_LEAP			8
257 #define	CP_HMODE		9
258 #define	CP_STRATUM		10
259 #define	CP_PPOLL		11
260 #define	CP_HPOLL		12
261 #define	CP_PRECISION		13
262 #define	CP_ROOTDELAY		14
263 #define	CP_ROOTDISPERSION	15
264 #define	CP_REFID		16
265 #define	CP_REFTIME		17
266 #define	CP_ORG			18
267 #define	CP_REC			19
268 #define	CP_XMT			20
269 #define	CP_REACH		21
270 #define	CP_UNREACH		22
271 #define	CP_TIMER		23
272 #define	CP_DELAY		24
273 #define	CP_OFFSET		25
274 #define	CP_JITTER		26
275 #define	CP_DISPERSION		27
276 #define	CP_KEYID		28
277 #define	CP_FILTDELAY		29
278 #define	CP_FILTOFFSET		30
279 #define	CP_PMODE		31
280 #define	CP_RECEIVED		32
281 #define	CP_SENT			33
282 #define	CP_FILTERROR		34
283 #define	CP_FLASH		35
284 #define	CP_TTL			36
285 #define	CP_VARLIST		37
286 #define	CP_IN			38
287 #define	CP_OUT			39
288 #define	CP_RATE			40
289 #define	CP_BIAS			41
290 #define	CP_SRCHOST		42
291 #define	CP_TIMEREC		43
292 #define	CP_TIMEREACH		44
293 #define	CP_BADAUTH		45
294 #define	CP_BOGUSORG		46
295 #define	CP_OLDPKT		47
296 #define	CP_SELDISP		48
297 #define	CP_SELBROKEN		49
298 #define	CP_CANDIDATE		50
299 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309 #define	CP_MAXCODE		CP_IDENT
310 #else	/* !AUTOKEY follows */
311 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312 #endif	/* !AUTOKEY */
313 
314 /*
315  * Clock variables we understand
316  */
317 #define	CC_TYPE		1
318 #define	CC_TIMECODE	2
319 #define	CC_POLL		3
320 #define	CC_NOREPLY	4
321 #define	CC_BADFORMAT	5
322 #define	CC_BADDATA	6
323 #define	CC_FUDGETIME1	7
324 #define	CC_FUDGETIME2	8
325 #define	CC_FUDGEVAL1	9
326 #define	CC_FUDGEVAL2	10
327 #define	CC_FLAGS	11
328 #define	CC_DEVICE	12
329 #define	CC_VARLIST	13
330 #define	CC_FUDGEMINJIT	14
331 #define	CC_MAXCODE	CC_FUDGEMINJIT
332 
333 /*
334  * System variable values. The array can be indexed by the variable
335  * index to find the textual name.
336  */
337 static const struct ctl_var sys_var[] = {
338 	{ 0,		PADDING, "" },		/* 0 */
339 	{ CS_LEAP,	RW, "leap" },		/* 1 */
340 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
341 	{ CS_PRECISION, RO, "precision" },	/* 3 */
342 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
343 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
344 	{ CS_REFID,	RO, "refid" },		/* 6 */
345 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
346 	{ CS_POLL,	RO, "tc" },		/* 8 */
347 	{ CS_PEERID,	RO, "peer" },		/* 9 */
348 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
349 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
350 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
351 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
352 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
353 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
354 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
355 	{ CS_VERSION,	RO, "version" },	/* 17 */
356 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
357 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
358 	{ CS_TAI,	RO, "tai" },		/* 20 */
359 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
360 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
361 	{ CS_RATE,	RO, "mintc" },		/* 23 */
362 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
363 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
364 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
365 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
366 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
367 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
368 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
369 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
370 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
371 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
372 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
373 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
374 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
375 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
376 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
377 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
378 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
379 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
380 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
381 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
382 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
383 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
384 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
385 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
386 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
387 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
388 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
389 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
390 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
391 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
392 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
393 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
394 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
395 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
396 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
397 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
398 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
399 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
400 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
401 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
402 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
403 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
404 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
405 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
406 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
407 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
408 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
409 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
410 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
411 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
412 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
413 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
414 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
415 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
416 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
417 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
418 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
419 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
420 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
421 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
422 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
423 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
424 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
425 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
426 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
427 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
428 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
429 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
430 
431 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
432 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
433 
434 #ifdef AUTOKEY
435 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
436 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
437 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
438 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
439 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
440 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
441 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
442 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
443 #endif	/* AUTOKEY */
444 	{ 0,		EOV, "" }		/* 94/102 */
445 };
446 
447 static struct ctl_var *ext_sys_var = NULL;
448 
449 /*
450  * System variables we print by default (in fuzzball order,
451  * more-or-less)
452  */
453 static const u_char def_sys_var[] = {
454 	CS_VERSION,
455 	CS_PROCESSOR,
456 	CS_SYSTEM,
457 	CS_LEAP,
458 	CS_STRATUM,
459 	CS_PRECISION,
460 	CS_ROOTDELAY,
461 	CS_ROOTDISPERSION,
462 	CS_REFID,
463 	CS_REFTIME,
464 	CS_CLOCK,
465 	CS_PEERID,
466 	CS_POLL,
467 	CS_RATE,
468 	CS_OFFSET,
469 	CS_DRIFT,
470 	CS_JITTER,
471 	CS_ERROR,
472 	CS_STABIL,
473 	CS_TAI,
474 	CS_LEAPTAB,
475 	CS_LEAPEND,
476 	CS_LEAPSMEARINTV,
477 	CS_LEAPSMEAROFFS,
478 #ifdef AUTOKEY
479 	CS_HOST,
480 	CS_IDENT,
481 	CS_FLAGS,
482 	CS_DIGEST,
483 	CS_SIGNATURE,
484 	CS_PUBLIC,
485 	CS_CERTIF,
486 #endif	/* AUTOKEY */
487 	0
488 };
489 
490 
491 /*
492  * Peer variable list
493  */
494 static const struct ctl_var peer_var[] = {
495 	{ 0,		PADDING, "" },		/* 0 */
496 	{ CP_CONFIG,	RO, "config" },		/* 1 */
497 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
498 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
499 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
500 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
501 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
502 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
503 	{ CP_LEAP,	RO, "leap" },		/* 8 */
504 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
505 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
506 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
507 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
508 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
509 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
510 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
511 	{ CP_REFID,	RO, "refid" },		/* 16 */
512 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
513 	{ CP_ORG,	RO, "org" },		/* 18 */
514 	{ CP_REC,	RO, "rec" },		/* 19 */
515 	{ CP_XMT,	RO, "xleave" },		/* 20 */
516 	{ CP_REACH,	RO, "reach" },		/* 21 */
517 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
518 	{ CP_TIMER,	RO, "timer" },		/* 23 */
519 	{ CP_DELAY,	RO, "delay" },		/* 24 */
520 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
521 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
522 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
523 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
524 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
525 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
526 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
527 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
528 	{ CP_SENT,	RO, "sent" },		/* 33 */
529 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
530 	{ CP_FLASH,	RO, "flash" },		/* 35 */
531 	{ CP_TTL,	RO, "ttl" },		/* 36 */
532 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
533 	{ CP_IN,	RO, "in" },		/* 38 */
534 	{ CP_OUT,	RO, "out" },		/* 39 */
535 	{ CP_RATE,	RO, "headway" },	/* 40 */
536 	{ CP_BIAS,	RO, "bias" },		/* 41 */
537 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
538 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
539 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
540 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
541 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
542 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
543 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
544 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
545 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
546 #ifdef AUTOKEY
547 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
548 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
549 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
550 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
553 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
554 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
555 #endif	/* AUTOKEY */
556 	{ 0,		EOV, "" }		/* 50/58 */
557 };
558 
559 
560 /*
561  * Peer variables we print by default
562  */
563 static const u_char def_peer_var[] = {
564 	CP_SRCADR,
565 	CP_SRCPORT,
566 	CP_SRCHOST,
567 	CP_DSTADR,
568 	CP_DSTPORT,
569 	CP_OUT,
570 	CP_IN,
571 	CP_LEAP,
572 	CP_STRATUM,
573 	CP_PRECISION,
574 	CP_ROOTDELAY,
575 	CP_ROOTDISPERSION,
576 	CP_REFID,
577 	CP_REFTIME,
578 	CP_REC,
579 	CP_REACH,
580 	CP_UNREACH,
581 	CP_HMODE,
582 	CP_PMODE,
583 	CP_HPOLL,
584 	CP_PPOLL,
585 	CP_RATE,
586 	CP_FLASH,
587 	CP_KEYID,
588 	CP_TTL,
589 	CP_OFFSET,
590 	CP_DELAY,
591 	CP_DISPERSION,
592 	CP_JITTER,
593 	CP_XMT,
594 	CP_BIAS,
595 	CP_FILTDELAY,
596 	CP_FILTOFFSET,
597 	CP_FILTERROR,
598 #ifdef AUTOKEY
599 	CP_HOST,
600 	CP_FLAGS,
601 	CP_SIGNATURE,
602 	CP_VALID,
603 	CP_INITSEQ,
604 	CP_IDENT,
605 #endif	/* AUTOKEY */
606 	0
607 };
608 
609 
610 #ifdef REFCLOCK
611 /*
612  * Clock variable list
613  */
614 static const struct ctl_var clock_var[] = {
615 	{ 0,		PADDING, "" },		/* 0 */
616 	{ CC_TYPE,	RO, "type" },		/* 1 */
617 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
618 	{ CC_POLL,	RO, "poll" },		/* 3 */
619 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
620 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
621 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
622 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
623 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
624 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
625 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
626 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
627 	{ CC_DEVICE,	RO, "device" },		/* 12 */
628 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
629 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
630 	{ 0,		EOV, ""  }		/* 15 */
631 };
632 
633 
634 /*
635  * Clock variables printed by default
636  */
637 static const u_char def_clock_var[] = {
638 	CC_DEVICE,
639 	CC_TYPE,	/* won't be output if device = known */
640 	CC_TIMECODE,
641 	CC_POLL,
642 	CC_NOREPLY,
643 	CC_BADFORMAT,
644 	CC_BADDATA,
645 	CC_FUDGEMINJIT,
646 	CC_FUDGETIME1,
647 	CC_FUDGETIME2,
648 	CC_FUDGEVAL1,
649 	CC_FUDGEVAL2,
650 	CC_FLAGS,
651 	0
652 };
653 #endif
654 
655 /*
656  * MRU string constants shared by send_mru_entry() and read_mru_list().
657  */
658 static const char addr_fmt[] =		"addr.%d";
659 static const char last_fmt[] =		"last.%d";
660 
661 /*
662  * System and processor definitions.
663  */
664 #ifndef HAVE_UNAME
665 # ifndef STR_SYSTEM
666 #  define		STR_SYSTEM	"UNIX"
667 # endif
668 # ifndef STR_PROCESSOR
669 #  define		STR_PROCESSOR	"unknown"
670 # endif
671 
672 static const char str_system[] = STR_SYSTEM;
673 static const char str_processor[] = STR_PROCESSOR;
674 #else
675 # include <sys/utsname.h>
676 static struct utsname utsnamebuf;
677 #endif /* HAVE_UNAME */
678 
679 /*
680  * Trap structures. We only allow a few of these, and send a copy of
681  * each async message to each live one. Traps time out after an hour, it
682  * is up to the trap receipient to keep resetting it to avoid being
683  * timed out.
684  */
685 /* ntp_request.c */
686 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
687 int num_ctl_traps;
688 
689 /*
690  * Type bits, for ctlsettrap() call.
691  */
692 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
693 #define TRAP_TYPE_PRIO		1	/* priority trap */
694 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
695 
696 
697 /*
698  * List relating reference clock types to control message time sources.
699  * Index by the reference clock type. This list will only be used iff
700  * the reference clock driver doesn't set peer->sstclktype to something
701  * different than CTL_SST_TS_UNSPEC.
702  */
703 #ifdef REFCLOCK
704 static const u_char clocktypes[] = {
705 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
706 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
707 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
708 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
709 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
710 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
711 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
712 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
713 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
714 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
716 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
717 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
718 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
719 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
720 	CTL_SST_TS_NTP,		/* not used (15) */
721 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
722 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
723 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
724 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
725 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
726 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
727 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
728 	CTL_SST_TS_NTP,		/* not used (23) */
729 	CTL_SST_TS_NTP,		/* not used (24) */
730 	CTL_SST_TS_NTP,		/* not used (25) */
731 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
732 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
733 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
734 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
735 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
736 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
737 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
738 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
739 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
740 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
741 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
742 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
743 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
744 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
745 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
746 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
747 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
748 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
749 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
750 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
751 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
752 };
753 #endif  /* REFCLOCK */
754 
755 
756 /*
757  * Keyid used for authenticating write requests.
758  */
759 keyid_t ctl_auth_keyid;
760 
761 /*
762  * We keep track of the last error reported by the system internally
763  */
764 static	u_char ctl_sys_last_event;
765 static	u_char ctl_sys_num_events;
766 
767 
768 /*
769  * Statistic counters to keep track of requests and responses.
770  */
771 u_long ctltimereset;		/* time stats reset */
772 u_long numctlreq;		/* number of requests we've received */
773 u_long numctlbadpkts;		/* number of bad control packets */
774 u_long numctlresponses;		/* number of resp packets sent with data */
775 u_long numctlfrags;		/* number of fragments sent */
776 u_long numctlerrors;		/* number of error responses sent */
777 u_long numctltooshort;		/* number of too short input packets */
778 u_long numctlinputresp;		/* number of responses on input */
779 u_long numctlinputfrag;		/* number of fragments on input */
780 u_long numctlinputerr;		/* number of input pkts with err bit set */
781 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
782 u_long numctlbadversion;	/* number of input pkts with unknown version */
783 u_long numctldatatooshort;	/* data too short for count */
784 u_long numctlbadop;		/* bad op code found in packet */
785 u_long numasyncmsgs;		/* number of async messages we've sent */
786 
787 /*
788  * Response packet used by these routines. Also some state information
789  * so that we can handle packet formatting within a common set of
790  * subroutines.  Note we try to enter data in place whenever possible,
791  * but the need to set the more bit correctly means we occasionally
792  * use the extra buffer and copy.
793  */
794 static struct ntp_control rpkt;
795 static u_char	res_version;
796 static u_char	res_opcode;
797 static associd_t res_associd;
798 static u_short	res_frags;	/* datagrams in this response */
799 static int	res_offset;	/* offset of payload in response */
800 static u_char * datapt;
801 static u_char * dataend;
802 static int	datalinelen;
803 static int	datasent;	/* flag to avoid initial ", " */
804 static int	datanotbinflag;
805 static sockaddr_u *rmt_addr;
806 static endpt *lcl_inter;
807 
808 static u_char	res_authenticate;
809 static u_char	res_authokay;
810 static keyid_t	res_keyid;
811 
812 #define MAXDATALINELEN	(72)
813 
814 static u_char	res_async;	/* sending async trap response? */
815 
816 /*
817  * Pointers for saving state when decoding request packets
818  */
819 static	char *reqpt;
820 static	char *reqend;
821 
822 /*
823  * init_control - initialize request data
824  */
825 void
826 init_control(void)
827 {
828 	size_t i;
829 
830 #ifdef HAVE_UNAME
831 	uname(&utsnamebuf);
832 #endif /* HAVE_UNAME */
833 
834 	ctl_clr_stats();
835 
836 	ctl_auth_keyid = 0;
837 	ctl_sys_last_event = EVNT_UNSPEC;
838 	ctl_sys_num_events = 0;
839 
840 	num_ctl_traps = 0;
841 	for (i = 0; i < COUNTOF(ctl_traps); i++)
842 		ctl_traps[i].tr_flags = 0;
843 }
844 
845 
846 /*
847  * ctl_error - send an error response for the current request
848  */
849 static void
850 ctl_error(
851 	u_char errcode
852 	)
853 {
854 	size_t		maclen;
855 
856 	numctlerrors++;
857 	DPRINTF(3, ("sending control error %u\n", errcode));
858 
859 	/*
860 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
861 	 * have already been filled in.
862 	 */
863 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
864 			(res_opcode & CTL_OP_MASK);
865 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
866 	rpkt.count = 0;
867 
868 	/*
869 	 * send packet and bump counters
870 	 */
871 	if (res_authenticate && sys_authenticate) {
872 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
873 				     CTL_HEADER_LEN);
874 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
875 			CTL_HEADER_LEN + maclen);
876 	} else
877 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
878 			CTL_HEADER_LEN);
879 }
880 
881 int/*BOOL*/
882 is_safe_filename(const char * name)
883 {
884 	/* We need a strict validation of filenames we should write: The
885 	 * daemon might run with special permissions and is remote
886 	 * controllable, so we better take care what we allow as file
887 	 * name!
888 	 *
889 	 * The first character must be digit or a letter from the ASCII
890 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
891 	 * must be from [-._+A-Za-z0-9].
892 	 *
893 	 * We do not trust the character classification much here: Since
894 	 * the NTP protocol makes no provisions for UTF-8 or local code
895 	 * pages, we strictly require the 7bit ASCII code page.
896 	 *
897 	 * The following table is a packed bit field of 128 two-bit
898 	 * groups. The LSB in each group tells us if a character is
899 	 * acceptable at the first position, the MSB if the character is
900 	 * accepted at any other position.
901 	 *
902 	 * This does not ensure that the file name is syntactically
903 	 * correct (multiple dots will not work with VMS...) but it will
904 	 * exclude potential globbing bombs and directory traversal. It
905 	 * also rules out drive selection. (For systems that have this
906 	 * notion, like Windows or VMS.)
907 	 */
908 	static const uint32_t chclass[8] = {
909 		0x00000000, 0x00000000,
910 		0x28800000, 0x000FFFFF,
911 		0xFFFFFFFC, 0xC03FFFFF,
912 		0xFFFFFFFC, 0x003FFFFF
913 	};
914 
915 	u_int widx, bidx, mask;
916 	if ( ! (name && *name))
917 		return FALSE;
918 
919 	mask = 1u;
920 	while (0 != (widx = (u_char)*name++)) {
921 		bidx = (widx & 15) << 1;
922 		widx = widx >> 4;
923 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
924 			return FALSE;
925 		if (0 == ((chclass[widx] >> bidx) & mask))
926 			return FALSE;
927 		mask = 2u;
928 	}
929 	return TRUE;
930 }
931 
932 
933 /*
934  * save_config - Implements ntpq -c "saveconfig <filename>"
935  *		 Writes current configuration including any runtime
936  *		 changes by ntpq's :config or config-from-file
937  *
938  * Note: There should be no buffer overflow or truncation in the
939  * processing of file names -- both cause security problems. This is bit
940  * painful to code but essential here.
941  */
942 void
943 save_config(
944 	struct recvbuf *rbufp,
945 	int restrict_mask
946 	)
947 {
948 	/* block directory traversal by searching for characters that
949 	 * indicate directory components in a file path.
950 	 *
951 	 * Conceptually we should be searching for DIRSEP in filename,
952 	 * however Windows actually recognizes both forward and
953 	 * backslashes as equivalent directory separators at the API
954 	 * level.  On POSIX systems we could allow '\\' but such
955 	 * filenames are tricky to manipulate from a shell, so just
956 	 * reject both types of slashes on all platforms.
957 	 */
958 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
959 	static const char * illegal_in_filename =
960 #if defined(VMS)
961 	    ":[]"	/* do not allow drive and path components here */
962 #elif defined(SYS_WINNT)
963 	    ":\\/"	/* path and drive separators */
964 #else
965 	    "\\/"	/* separator and critical char for POSIX */
966 #endif
967 	    ;
968 	char reply[128];
969 #ifdef SAVECONFIG
970 	static const char savedconfig_eq[] = "savedconfig=";
971 
972 	/* Build a safe open mode from the available mode flags. We want
973 	 * to create a new file and write it in text mode (when
974 	 * applicable -- only Windows does this...)
975 	 */
976 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
977 #  if defined(O_EXCL)		/* posix, vms */
978 	    | O_EXCL
979 #  elif defined(_O_EXCL)	/* windows is alway very special... */
980 	    | _O_EXCL
981 #  endif
982 #  if defined(_O_TEXT)		/* windows, again */
983 	    | _O_TEXT
984 #endif
985 	    ;
986 
987 	char filespec[128];
988 	char filename[128];
989 	char fullpath[512];
990 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
991 	time_t now;
992 	int fd;
993 	FILE *fptr;
994 	int prc;
995 	size_t reqlen;
996 #endif
997 
998 	if (RES_NOMODIFY & restrict_mask) {
999 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1000 		ctl_flushpkt(0);
1001 		NLOG(NLOG_SYSINFO)
1002 			msyslog(LOG_NOTICE,
1003 				"saveconfig from %s rejected due to nomodify restriction",
1004 				stoa(&rbufp->recv_srcadr));
1005 		sys_restricted++;
1006 		return;
1007 	}
1008 
1009 #ifdef SAVECONFIG
1010 	if (NULL == saveconfigdir) {
1011 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1012 		ctl_flushpkt(0);
1013 		NLOG(NLOG_SYSINFO)
1014 			msyslog(LOG_NOTICE,
1015 				"saveconfig from %s rejected, no saveconfigdir",
1016 				stoa(&rbufp->recv_srcadr));
1017 		return;
1018 	}
1019 
1020 	/* The length checking stuff gets serious. Do not assume a NUL
1021 	 * byte can be found, but if so, use it to calculate the needed
1022 	 * buffer size. If the available buffer is too short, bail out;
1023 	 * likewise if there is no file spec. (The latter will not
1024 	 * happen when using NTPQ, but there are other ways to craft a
1025 	 * network packet!)
1026 	 */
1027 	reqlen = (size_t)(reqend - reqpt);
1028 	if (0 != reqlen) {
1029 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1030 		if (NULL != nulpos)
1031 			reqlen = (size_t)(nulpos - reqpt);
1032 	}
1033 	if (0 == reqlen)
1034 		return;
1035 	if (reqlen >= sizeof(filespec)) {
1036 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1037 			   (u_int)sizeof(filespec));
1038 		ctl_flushpkt(0);
1039 		msyslog(LOG_NOTICE,
1040 			"saveconfig exceeded maximum raw name length from %s",
1041 			stoa(&rbufp->recv_srcadr));
1042 		return;
1043 	}
1044 
1045 	/* copy data directly as we exactly know the size */
1046 	memcpy(filespec, reqpt, reqlen);
1047 	filespec[reqlen] = '\0';
1048 
1049 	/*
1050 	 * allow timestamping of the saved config filename with
1051 	 * strftime() format such as:
1052 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1053 	 * XXX: Nice feature, but not too safe.
1054 	 * YYY: The check for permitted characters in file names should
1055 	 *      weed out the worst. Let's hope 'strftime()' does not
1056 	 *      develop pathological problems.
1057 	 */
1058 	time(&now);
1059 	if (0 == strftime(filename, sizeof(filename), filespec,
1060 			  localtime(&now)))
1061 	{
1062 		/*
1063 		 * If we arrive here, 'strftime()' balked; most likely
1064 		 * the buffer was too short. (Or it encounterd an empty
1065 		 * format, or just a format that expands to an empty
1066 		 * string.) We try to use the original name, though this
1067 		 * is very likely to fail later if there are format
1068 		 * specs in the string. Note that truncation cannot
1069 		 * happen here as long as both buffers have the same
1070 		 * size!
1071 		 */
1072 		strlcpy(filename, filespec, sizeof(filename));
1073 	}
1074 
1075 	/*
1076 	 * Check the file name for sanity. This might/will rule out file
1077 	 * names that would be legal but problematic, and it blocks
1078 	 * directory traversal.
1079 	 */
1080 	if (!is_safe_filename(filename)) {
1081 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1082 			   filename);
1083 		ctl_flushpkt(0);
1084 		msyslog(LOG_NOTICE,
1085 			"saveconfig rejects unsafe file name from %s",
1086 			stoa(&rbufp->recv_srcadr));
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * XXX: This next test may not be needed with is_safe_filename()
1092 	 */
1093 
1094 	/* block directory/drive traversal */
1095 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1096 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1097 		snprintf(reply, sizeof(reply),
1098 			 "saveconfig does not allow directory in filename");
1099 		ctl_putdata(reply, strlen(reply), 0);
1100 		ctl_flushpkt(0);
1101 		msyslog(LOG_NOTICE,
1102 			"saveconfig rejects unsafe file name from %s",
1103 			stoa(&rbufp->recv_srcadr));
1104 		return;
1105 	}
1106 
1107 	/* concatenation of directory and path can cause another
1108 	 * truncation...
1109 	 */
1110 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1111 		       saveconfigdir, filename);
1112 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1113 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1114 			   (u_int)sizeof(fullpath));
1115 		ctl_flushpkt(0);
1116 		msyslog(LOG_NOTICE,
1117 			"saveconfig exceeded maximum path length from %s",
1118 			stoa(&rbufp->recv_srcadr));
1119 		return;
1120 	}
1121 
1122 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1123 	if (-1 == fd)
1124 		fptr = NULL;
1125 	else
1126 		fptr = fdopen(fd, "w");
1127 
1128 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1129 		ctl_printf("Unable to save configuration to file '%s': %s",
1130 			   filename, strerror(errno));
1131 		msyslog(LOG_ERR,
1132 			"saveconfig %s from %s failed", filename,
1133 			stoa(&rbufp->recv_srcadr));
1134 	} else {
1135 		ctl_printf("Configuration saved to '%s'", filename);
1136 		msyslog(LOG_NOTICE,
1137 			"Configuration saved to '%s' (requested by %s)",
1138 			fullpath, stoa(&rbufp->recv_srcadr));
1139 		/*
1140 		 * save the output filename in system variable
1141 		 * savedconfig, retrieved with:
1142 		 *   ntpq -c "rv 0 savedconfig"
1143 		 * Note: the way 'savedconfig' is defined makes overflow
1144 		 * checks unnecessary here.
1145 		 */
1146 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1147 			 savedconfig_eq, filename);
1148 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1149 	}
1150 
1151 	if (NULL != fptr)
1152 		fclose(fptr);
1153 #else	/* !SAVECONFIG follows */
1154 	ctl_printf("%s",
1155 		   "saveconfig unavailable, configured with --disable-saveconfig");
1156 #endif
1157 	ctl_flushpkt(0);
1158 }
1159 
1160 
1161 /*
1162  * process_control - process an incoming control message
1163  */
1164 void
1165 process_control(
1166 	struct recvbuf *rbufp,
1167 	int restrict_mask
1168 	)
1169 {
1170 	struct ntp_control *pkt;
1171 	int req_count;
1172 	int req_data;
1173 	const struct ctl_proc *cc;
1174 	keyid_t *pkid;
1175 	int properlen;
1176 	size_t maclen;
1177 
1178 	DPRINTF(3, ("in process_control()\n"));
1179 
1180 	/*
1181 	 * Save the addresses for error responses
1182 	 */
1183 	numctlreq++;
1184 	rmt_addr = &rbufp->recv_srcadr;
1185 	lcl_inter = rbufp->dstadr;
1186 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1187 
1188 	/*
1189 	 * If the length is less than required for the header,
1190 	 * ignore it.
1191 	 */
1192 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1193 		DPRINTF(1, ("Short control packet\n"));
1194 		numctltooshort++;
1195 		return;
1196 	}
1197 
1198 	/*
1199 	 * If this packet is a response or a fragment, ignore it.
1200 	 */
1201 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1202 	    || pkt->offset != 0) {
1203 		DPRINTF(1, ("invalid format in control packet\n"));
1204 		if (CTL_RESPONSE & pkt->r_m_e_op)
1205 			numctlinputresp++;
1206 		if (CTL_MORE & pkt->r_m_e_op)
1207 			numctlinputfrag++;
1208 		if (CTL_ERROR & pkt->r_m_e_op)
1209 			numctlinputerr++;
1210 		if (pkt->offset != 0)
1211 			numctlbadoffset++;
1212 		return;
1213 	}
1214 
1215 	res_version = PKT_VERSION(pkt->li_vn_mode);
1216 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1217 		DPRINTF(1, ("unknown version %d in control packet\n",
1218 			    res_version));
1219 		numctlbadversion++;
1220 		return;
1221 	}
1222 
1223 	/*
1224 	 * Pull enough data from the packet to make intelligent
1225 	 * responses
1226 	 */
1227 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1228 					 MODE_CONTROL);
1229 	res_opcode = pkt->r_m_e_op;
1230 	rpkt.sequence = pkt->sequence;
1231 	rpkt.associd = pkt->associd;
1232 	rpkt.status = 0;
1233 	res_frags = 1;
1234 	res_offset = 0;
1235 	res_associd = htons(pkt->associd);
1236 	res_async = FALSE;
1237 	res_authenticate = FALSE;
1238 	res_keyid = 0;
1239 	res_authokay = FALSE;
1240 	req_count = (int)ntohs(pkt->count);
1241 	datanotbinflag = FALSE;
1242 	datalinelen = 0;
1243 	datasent = 0;
1244 	datapt = rpkt.u.data;
1245 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1246 
1247 	if ((rbufp->recv_length & 0x3) != 0)
1248 		DPRINTF(3, ("Control packet length %d unrounded\n",
1249 			    rbufp->recv_length));
1250 
1251 	/*
1252 	 * We're set up now. Make sure we've got at least enough
1253 	 * incoming data space to match the count.
1254 	 */
1255 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1256 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1257 		ctl_error(CERR_BADFMT);
1258 		numctldatatooshort++;
1259 		return;
1260 	}
1261 
1262 	properlen = req_count + CTL_HEADER_LEN;
1263 	/* round up proper len to a 8 octet boundary */
1264 
1265 	properlen = (properlen + 7) & ~7;
1266 	maclen = rbufp->recv_length - properlen;
1267 	if ((rbufp->recv_length & 3) == 0 &&
1268 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1269 	    sys_authenticate) {
1270 		res_authenticate = TRUE;
1271 		pkid = (void *)((char *)pkt + properlen);
1272 		res_keyid = ntohl(*pkid);
1273 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1274 			    rbufp->recv_length, properlen, res_keyid,
1275 			    maclen));
1276 
1277 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1278 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1279 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1280 				     rbufp->recv_length - maclen,
1281 				     maclen)) {
1282 			res_authokay = TRUE;
1283 			DPRINTF(3, ("authenticated okay\n"));
1284 		} else {
1285 			res_keyid = 0;
1286 			DPRINTF(3, ("authentication failed\n"));
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * Set up translate pointers
1292 	 */
1293 	reqpt = (char *)pkt->u.data;
1294 	reqend = reqpt + req_count;
1295 
1296 	/*
1297 	 * Look for the opcode processor
1298 	 */
1299 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1300 		if (cc->control_code == res_opcode) {
1301 			DPRINTF(3, ("opcode %d, found command handler\n",
1302 				    res_opcode));
1303 			if (cc->flags == AUTH
1304 			    && (!res_authokay
1305 				|| res_keyid != ctl_auth_keyid)) {
1306 				ctl_error(CERR_PERMISSION);
1307 				return;
1308 			}
1309 			(cc->handler)(rbufp, restrict_mask);
1310 			return;
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Can't find this one, return an error.
1316 	 */
1317 	numctlbadop++;
1318 	ctl_error(CERR_BADOP);
1319 	return;
1320 }
1321 
1322 
1323 /*
1324  * ctlpeerstatus - return a status word for this peer
1325  */
1326 u_short
1327 ctlpeerstatus(
1328 	register struct peer *p
1329 	)
1330 {
1331 	u_short status;
1332 
1333 	status = p->status;
1334 	if (FLAG_CONFIG & p->flags)
1335 		status |= CTL_PST_CONFIG;
1336 	if (p->keyid)
1337 		status |= CTL_PST_AUTHENABLE;
1338 	if (FLAG_AUTHENTIC & p->flags)
1339 		status |= CTL_PST_AUTHENTIC;
1340 	if (p->reach)
1341 		status |= CTL_PST_REACH;
1342 	if (MDF_TXONLY_MASK & p->cast_flags)
1343 		status |= CTL_PST_BCAST;
1344 
1345 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1346 }
1347 
1348 
1349 /*
1350  * ctlclkstatus - return a status word for this clock
1351  */
1352 #ifdef REFCLOCK
1353 static u_short
1354 ctlclkstatus(
1355 	struct refclockstat *pcs
1356 	)
1357 {
1358 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1359 }
1360 #endif
1361 
1362 
1363 /*
1364  * ctlsysstatus - return the system status word
1365  */
1366 u_short
1367 ctlsysstatus(void)
1368 {
1369 	register u_char this_clock;
1370 
1371 	this_clock = CTL_SST_TS_UNSPEC;
1372 #ifdef REFCLOCK
1373 	if (sys_peer != NULL) {
1374 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1375 			this_clock = sys_peer->sstclktype;
1376 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1377 			this_clock = clocktypes[sys_peer->refclktype];
1378 	}
1379 #else /* REFCLOCK */
1380 	if (sys_peer != 0)
1381 		this_clock = CTL_SST_TS_NTP;
1382 #endif /* REFCLOCK */
1383 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1384 			      ctl_sys_last_event);
1385 }
1386 
1387 
1388 /*
1389  * ctl_flushpkt - write out the current packet and prepare
1390  *		  another if necessary.
1391  */
1392 static void
1393 ctl_flushpkt(
1394 	u_char more
1395 	)
1396 {
1397 	size_t i;
1398 	size_t dlen;
1399 	size_t sendlen;
1400 	size_t maclen;
1401 	size_t totlen;
1402 	keyid_t keyid;
1403 
1404 	dlen = datapt - rpkt.u.data;
1405 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1406 		/*
1407 		 * Big hack, output a trailing \r\n
1408 		 */
1409 		*datapt++ = '\r';
1410 		*datapt++ = '\n';
1411 		dlen += 2;
1412 	}
1413 	sendlen = dlen + CTL_HEADER_LEN;
1414 
1415 	/*
1416 	 * Pad to a multiple of 32 bits
1417 	 */
1418 	while (sendlen & 0x3) {
1419 		*datapt++ = '\0';
1420 		sendlen++;
1421 	}
1422 
1423 	/*
1424 	 * Fill in the packet with the current info
1425 	 */
1426 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1427 			(res_opcode & CTL_OP_MASK);
1428 	rpkt.count = htons((u_short)dlen);
1429 	rpkt.offset = htons((u_short)res_offset);
1430 	if (res_async) {
1431 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1432 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1433 				rpkt.li_vn_mode =
1434 				    PKT_LI_VN_MODE(
1435 					sys_leap,
1436 					ctl_traps[i].tr_version,
1437 					MODE_CONTROL);
1438 				rpkt.sequence =
1439 				    htons(ctl_traps[i].tr_sequence);
1440 				sendpkt(&ctl_traps[i].tr_addr,
1441 					ctl_traps[i].tr_localaddr, -4,
1442 					(struct pkt *)&rpkt, sendlen);
1443 				if (!more)
1444 					ctl_traps[i].tr_sequence++;
1445 				numasyncmsgs++;
1446 			}
1447 		}
1448 	} else {
1449 		if (res_authenticate && sys_authenticate) {
1450 			totlen = sendlen;
1451 			/*
1452 			 * If we are going to authenticate, then there
1453 			 * is an additional requirement that the MAC
1454 			 * begin on a 64 bit boundary.
1455 			 */
1456 			while (totlen & 7) {
1457 				*datapt++ = '\0';
1458 				totlen++;
1459 			}
1460 			keyid = htonl(res_keyid);
1461 			memcpy(datapt, &keyid, sizeof(keyid));
1462 			maclen = authencrypt(res_keyid,
1463 					     (u_int32 *)&rpkt, totlen);
1464 			sendpkt(rmt_addr, lcl_inter, -5,
1465 				(struct pkt *)&rpkt, totlen + maclen);
1466 		} else {
1467 			sendpkt(rmt_addr, lcl_inter, -6,
1468 				(struct pkt *)&rpkt, sendlen);
1469 		}
1470 		if (more)
1471 			numctlfrags++;
1472 		else
1473 			numctlresponses++;
1474 	}
1475 
1476 	/*
1477 	 * Set us up for another go around.
1478 	 */
1479 	res_frags++;
1480 	res_offset += dlen;
1481 	datapt = rpkt.u.data;
1482 }
1483 
1484 
1485 /* --------------------------------------------------------------------
1486  * block transfer API -- stream string/data fragments into xmit buffer
1487  * without additional copying
1488  */
1489 
1490 /* buffer descriptor: address & size of fragment
1491  * 'buf' may only be NULL when 'len' is zero!
1492  */
1493 typedef struct {
1494 	const void  *buf;
1495 	size_t       len;
1496 } CtlMemBufT;
1497 
1498 /* put ctl data in a gather-style operation */
1499 static void
1500 ctl_putdata_ex(
1501 	const CtlMemBufT * argv,
1502 	size_t             argc,
1503 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1504 	)
1505 {
1506 	const char * src_ptr;
1507 	size_t       src_len, cur_len, add_len, argi;
1508 
1509 	/* text / binary preprocessing, possibly create new linefeed */
1510 	if (bin) {
1511 		add_len = 0;
1512 	} else {
1513 		datanotbinflag = TRUE;
1514 		add_len = 3;
1515 
1516 		if (datasent) {
1517 			*datapt++ = ',';
1518 			datalinelen++;
1519 
1520 			/* sum up total length */
1521 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1522 				src_len += argv[argi].len;
1523 			/* possibly start a new line, assume no size_t overflow */
1524 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1525 				*datapt++ = '\r';
1526 				*datapt++ = '\n';
1527 				datalinelen = 0;
1528 			} else {
1529 				*datapt++ = ' ';
1530 				datalinelen++;
1531 			}
1532 		}
1533 	}
1534 
1535 	/* now stream out all buffers */
1536 	for (argi = 0; argi < argc; ++argi) {
1537 		src_ptr = argv[argi].buf;
1538 		src_len = argv[argi].len;
1539 
1540 		if ( ! (src_ptr && src_len))
1541 			continue;
1542 
1543 		cur_len = (size_t)(dataend - datapt);
1544 		while ((src_len + add_len) > cur_len) {
1545 			/* Not enough room in this one, flush it out. */
1546 			if (src_len < cur_len)
1547 				cur_len = src_len;
1548 
1549 			memcpy(datapt, src_ptr, cur_len);
1550 			datapt      += cur_len;
1551 			datalinelen += cur_len;
1552 
1553 			src_ptr     += cur_len;
1554 			src_len     -= cur_len;
1555 
1556 			ctl_flushpkt(CTL_MORE);
1557 			cur_len = (size_t)(dataend - datapt);
1558 		}
1559 
1560 		memcpy(datapt, src_ptr, src_len);
1561 		datapt      += src_len;
1562 		datalinelen += src_len;
1563 
1564 		datasent = TRUE;
1565 	}
1566 }
1567 
1568 /*
1569  * ctl_putdata - write data into the packet, fragmenting and starting
1570  * another if this one is full.
1571  */
1572 static void
1573 ctl_putdata(
1574 	const char *dp,
1575 	unsigned int dlen,
1576 	int bin			/* set to 1 when data is binary */
1577 	)
1578 {
1579 	CtlMemBufT args[1];
1580 
1581 	args[0].buf = dp;
1582 	args[0].len = dlen;
1583 	ctl_putdata_ex(args, 1, bin);
1584 }
1585 
1586 /*
1587  * ctl_putstr - write a tagged string into the response packet
1588  *		in the form:
1589  *
1590  *		tag="data"
1591  *
1592  *		len is the data length excluding the NUL terminator,
1593  *		as in ctl_putstr("var", "value", strlen("value"));
1594  */
1595 static void
1596 ctl_putstr(
1597 	const char *	tag,
1598 	const char *	data,
1599 	size_t		len
1600 	)
1601 {
1602 	CtlMemBufT args[4];
1603 
1604 	args[0].buf = tag;
1605 	args[0].len = strlen(tag);
1606 	if (data && len) {
1607 	    args[1].buf = "=\"";
1608 	    args[1].len = 2;
1609 	    args[2].buf = data;
1610 	    args[2].len = len;
1611 	    args[3].buf = "\"";
1612 	    args[3].len = 1;
1613 	    ctl_putdata_ex(args, 4, FALSE);
1614 	} else {
1615 	    args[1].buf = "=\"\"";
1616 	    args[1].len = 3;
1617 	    ctl_putdata_ex(args, 2, FALSE);
1618 	}
1619 }
1620 
1621 
1622 /*
1623  * ctl_putunqstr - write a tagged string into the response packet
1624  *		   in the form:
1625  *
1626  *		   tag=data
1627  *
1628  *	len is the data length excluding the NUL terminator.
1629  *	data must not contain a comma or whitespace.
1630  */
1631 static void
1632 ctl_putunqstr(
1633 	const char *	tag,
1634 	const char *	data,
1635 	size_t		len
1636 	)
1637 {
1638 	CtlMemBufT args[3];
1639 
1640 	args[0].buf = tag;
1641 	args[0].len = strlen(tag);
1642 	args[1].buf = "=";
1643 	args[1].len = 1;
1644 	if (data && len) {
1645 		args[2].buf = data;
1646 		args[2].len = len;
1647 		ctl_putdata_ex(args, 3, FALSE);
1648 	} else {
1649 		ctl_putdata_ex(args, 2, FALSE);
1650 	}
1651 }
1652 
1653 
1654 /*
1655  * ctl_putdblf - write a tagged, signed double into the response packet
1656  */
1657 static void
1658 ctl_putdblf(
1659 	const char *	tag,
1660 	int		use_f,
1661 	int		precision,
1662 	double		d
1663 	)
1664 {
1665 	char buffer[40];
1666 	int  rc;
1667 
1668 	rc = snprintf(buffer, sizeof(buffer),
1669 		      (use_f ? "%.*f" : "%.*g"),
1670 		      precision, d);
1671 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1672 	ctl_putunqstr(tag, buffer, rc);
1673 }
1674 
1675 /*
1676  * ctl_putuint - write a tagged unsigned integer into the response
1677  */
1678 static void
1679 ctl_putuint(
1680 	const char *tag,
1681 	u_long uval
1682 	)
1683 {
1684 	char buffer[24]; /* needs to fit for 64 bits! */
1685 	int  rc;
1686 
1687 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1688 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1689 	ctl_putunqstr(tag, buffer, rc);
1690 }
1691 
1692 /*
1693  * ctl_putcal - write a decoded calendar data into the response.
1694  * only used with AUTOKEY currently, so compiled conditional
1695  */
1696 #ifdef AUTOKEY
1697 static void
1698 ctl_putcal(
1699 	const char *tag,
1700 	const struct calendar *pcal
1701 	)
1702 {
1703 	char buffer[16];
1704 	int  rc;
1705 
1706 	rc = snprintf(buffer, sizeof(buffer),
1707 		      "%04d%02d%02d%02d%02d",
1708 		      pcal->year, pcal->month, pcal->monthday,
1709 		      pcal->hour, pcal->minute
1710 		);
1711 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1712 	ctl_putunqstr(tag, buffer, rc);
1713 }
1714 #endif
1715 
1716 /*
1717  * ctl_putfs - write a decoded filestamp into the response
1718  */
1719 static void
1720 ctl_putfs(
1721 	const char *tag,
1722 	tstamp_t uval
1723 	)
1724 {
1725 	char buffer[16];
1726 	int  rc;
1727 
1728 	time_t fstamp = (time_t)uval - JAN_1970;
1729 	struct tm *tm = gmtime(&fstamp);
1730 
1731 	if (NULL == tm)
1732 		return;
1733 
1734 	rc = snprintf(buffer, sizeof(buffer),
1735 		      "%04d%02d%02d%02d%02d",
1736 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1737 		      tm->tm_hour, tm->tm_min);
1738 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1739 	ctl_putunqstr(tag, buffer, rc);
1740 }
1741 
1742 
1743 /*
1744  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1745  * response
1746  */
1747 static void
1748 ctl_puthex(
1749 	const char *tag,
1750 	u_long uval
1751 	)
1752 {
1753 	char buffer[24];	/* must fit 64bit int! */
1754 	int  rc;
1755 
1756 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1757 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1758 	ctl_putunqstr(tag, buffer, rc);
1759 }
1760 
1761 
1762 /*
1763  * ctl_putint - write a tagged signed integer into the response
1764  */
1765 static void
1766 ctl_putint(
1767 	const char *tag,
1768 	long ival
1769 	)
1770 {
1771 	char buffer[24];	/*must fit 64bit int */
1772 	int  rc;
1773 
1774 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1775 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1776 	ctl_putunqstr(tag, buffer, rc);
1777 }
1778 
1779 
1780 /*
1781  * ctl_putts - write a tagged timestamp, in hex, into the response
1782  */
1783 static void
1784 ctl_putts(
1785 	const char *tag,
1786 	l_fp *ts
1787 	)
1788 {
1789 	char buffer[24];
1790 	int  rc;
1791 
1792 	rc = snprintf(buffer, sizeof(buffer),
1793 		      "0x%08lx.%08lx",
1794 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1795 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1796 	ctl_putunqstr(tag, buffer, rc);
1797 }
1798 
1799 
1800 /*
1801  * ctl_putadr - write an IP address into the response
1802  */
1803 static void
1804 ctl_putadr(
1805 	const char *tag,
1806 	u_int32 addr32,
1807 	sockaddr_u *addr
1808 	)
1809 {
1810 	const char *cq;
1811 
1812 	if (NULL == addr)
1813 		cq = numtoa(addr32);
1814 	else
1815 		cq = stoa(addr);
1816 	ctl_putunqstr(tag, cq, strlen(cq));
1817 }
1818 
1819 
1820 /*
1821  * ctl_putrefid - send a u_int32 refid as printable text
1822  */
1823 static void
1824 ctl_putrefid(
1825 	const char *	tag,
1826 	u_int32		refid
1827 	)
1828 {
1829 	size_t nc;
1830 
1831 	union {
1832 		uint32_t w;
1833 		uint8_t  b[sizeof(uint32_t)];
1834 	} bytes;
1835 
1836 	bytes.w = refid;
1837 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1838 		if (  !isprint(bytes.b[nc])
1839 		    || isspace(bytes.b[nc])
1840 		    || bytes.b[nc] == ','  )
1841 			bytes.b[nc] = '.';
1842 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1843 }
1844 
1845 
1846 /*
1847  * ctl_putarray - write a tagged eight element double array into the response
1848  */
1849 static void
1850 ctl_putarray(
1851 	const char *tag,
1852 	double *arr,
1853 	int start
1854 	)
1855 {
1856 	char *cp, *ep;
1857 	char buffer[200];
1858 	int  i, rc;
1859 
1860 	cp = buffer;
1861 	ep = buffer + sizeof(buffer);
1862 	i  = start;
1863 	do {
1864 		if (i == 0)
1865 			i = NTP_SHIFT;
1866 		i--;
1867 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1868 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1869 		cp += rc;
1870 	} while (i != start);
1871 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1872 }
1873 
1874 /*
1875  * ctl_printf - put a formatted string into the data buffer
1876  */
1877 static void
1878 ctl_printf(
1879 	const char * fmt,
1880 	...
1881 	)
1882 {
1883 	static const char * ellipsis = "[...]";
1884 	va_list va;
1885 	char    fmtbuf[128];
1886 	int     rc;
1887 
1888 	va_start(va, fmt);
1889 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1890 	va_end(va);
1891 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1892 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1893 		       ellipsis);
1894 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1895 }
1896 
1897 
1898 /*
1899  * ctl_putsys - output a system variable
1900  */
1901 static void
1902 ctl_putsys(
1903 	int varid
1904 	)
1905 {
1906 	l_fp tmp;
1907 	char str[256];
1908 	u_int u;
1909 	double kb;
1910 	double dtemp;
1911 	const char *ss;
1912 #ifdef AUTOKEY
1913 	struct cert_info *cp;
1914 #endif	/* AUTOKEY */
1915 #ifdef KERNEL_PLL
1916 	static struct timex ntx;
1917 	static u_long ntp_adjtime_time;
1918 
1919 	/*
1920 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1921 	 */
1922 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1923 	    current_time != ntp_adjtime_time) {
1924 		ZERO(ntx);
1925 		if (ntp_adjtime(&ntx) < 0)
1926 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1927 		else
1928 			ntp_adjtime_time = current_time;
1929 	}
1930 #endif	/* KERNEL_PLL */
1931 
1932 	switch (varid) {
1933 
1934 	case CS_LEAP:
1935 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1936 		break;
1937 
1938 	case CS_STRATUM:
1939 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1940 		break;
1941 
1942 	case CS_PRECISION:
1943 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1944 		break;
1945 
1946 	case CS_ROOTDELAY:
1947 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1948 			   1e3);
1949 		break;
1950 
1951 	case CS_ROOTDISPERSION:
1952 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1953 			   sys_rootdisp * 1e3);
1954 		break;
1955 
1956 	case CS_REFID:
1957 		if (REFID_ISTEXT(sys_stratum))
1958 			ctl_putrefid(sys_var[varid].text, sys_refid);
1959 		else
1960 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1961 		break;
1962 
1963 	case CS_REFTIME:
1964 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1965 		break;
1966 
1967 	case CS_POLL:
1968 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1969 		break;
1970 
1971 	case CS_PEERID:
1972 		if (sys_peer == NULL)
1973 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1974 		else
1975 			ctl_putuint(sys_var[CS_PEERID].text,
1976 				    sys_peer->associd);
1977 		break;
1978 
1979 	case CS_PEERADR:
1980 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1981 			ss = sptoa(&sys_peer->srcadr);
1982 		else
1983 			ss = "0.0.0.0:0";
1984 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1985 		break;
1986 
1987 	case CS_PEERMODE:
1988 		u = (sys_peer != NULL)
1989 			? sys_peer->hmode
1990 			: MODE_UNSPEC;
1991 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1992 		break;
1993 
1994 	case CS_OFFSET:
1995 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1996 		break;
1997 
1998 	case CS_DRIFT:
1999 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2000 		break;
2001 
2002 	case CS_JITTER:
2003 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2004 		break;
2005 
2006 	case CS_ERROR:
2007 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2008 		break;
2009 
2010 	case CS_CLOCK:
2011 		get_systime(&tmp);
2012 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2013 		break;
2014 
2015 	case CS_PROCESSOR:
2016 #ifndef HAVE_UNAME
2017 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2018 			   sizeof(str_processor) - 1);
2019 #else
2020 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2021 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2022 #endif /* HAVE_UNAME */
2023 		break;
2024 
2025 	case CS_SYSTEM:
2026 #ifndef HAVE_UNAME
2027 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2028 			   sizeof(str_system) - 1);
2029 #else
2030 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2031 			 utsnamebuf.release);
2032 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2033 #endif /* HAVE_UNAME */
2034 		break;
2035 
2036 	case CS_VERSION:
2037 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2038 			   strlen(Version));
2039 		break;
2040 
2041 	case CS_STABIL:
2042 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2043 			   1e6);
2044 		break;
2045 
2046 	case CS_VARLIST:
2047 	{
2048 		char buf[CTL_MAX_DATA_LEN];
2049 		//buffPointer, firstElementPointer, buffEndPointer
2050 		char *buffp, *buffend;
2051 		int firstVarName;
2052 		const char *ss1;
2053 		int len;
2054 		const struct ctl_var *k;
2055 
2056 		buffp = buf;
2057 		buffend = buf + sizeof(buf);
2058 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2059 			break;	/* really long var name */
2060 
2061 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2062 		buffp += strlen(buffp);
2063 		firstVarName = TRUE;
2064 		for (k = sys_var; !(k->flags & EOV); k++) {
2065 			if (k->flags & PADDING)
2066 				continue;
2067 			len = strlen(k->text);
2068 			if (len + 1 >= buffend - buffp)
2069 				break;
2070 			if (!firstVarName)
2071 				*buffp++ = ',';
2072 			else
2073 				firstVarName = FALSE;
2074 			memcpy(buffp, k->text, len);
2075 			buffp += len;
2076 		}
2077 
2078 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2079 			if (k->flags & PADDING)
2080 				continue;
2081 			if (NULL == k->text)
2082 				continue;
2083 			ss1 = strchr(k->text, '=');
2084 			if (NULL == ss1)
2085 				len = strlen(k->text);
2086 			else
2087 				len = ss1 - k->text;
2088 			if (len + 1 >= buffend - buffp)
2089 				break;
2090 			if (firstVarName) {
2091 				*buffp++ = ',';
2092 				firstVarName = FALSE;
2093 			}
2094 			memcpy(buffp, k->text,(unsigned)len);
2095 			buffp += len;
2096 		}
2097 		if (2 >= buffend - buffp)
2098 			break;
2099 
2100 		*buffp++ = '"';
2101 		*buffp = '\0';
2102 
2103 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2104 		break;
2105 	}
2106 
2107 	case CS_TAI:
2108 		if (sys_tai > 0)
2109 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2110 		break;
2111 
2112 	case CS_LEAPTAB:
2113 	{
2114 		leap_signature_t lsig;
2115 		leapsec_getsig(&lsig);
2116 		if (lsig.ttime > 0)
2117 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2118 		break;
2119 	}
2120 
2121 	case CS_LEAPEND:
2122 	{
2123 		leap_signature_t lsig;
2124 		leapsec_getsig(&lsig);
2125 		if (lsig.etime > 0)
2126 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2127 		break;
2128 	}
2129 
2130 #ifdef LEAP_SMEAR
2131 	case CS_LEAPSMEARINTV:
2132 		if (leap_smear_intv > 0)
2133 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2134 		break;
2135 
2136 	case CS_LEAPSMEAROFFS:
2137 		if (leap_smear_intv > 0)
2138 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2139 				   leap_smear.doffset * 1e3);
2140 		break;
2141 #endif	/* LEAP_SMEAR */
2142 
2143 	case CS_RATE:
2144 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2145 		break;
2146 
2147 	case CS_MRU_ENABLED:
2148 		ctl_puthex(sys_var[varid].text, mon_enabled);
2149 		break;
2150 
2151 	case CS_MRU_DEPTH:
2152 		ctl_putuint(sys_var[varid].text, mru_entries);
2153 		break;
2154 
2155 	case CS_MRU_MEM:
2156 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2157 		u = (u_int)kb;
2158 		if (kb - u >= 0.5)
2159 			u++;
2160 		ctl_putuint(sys_var[varid].text, u);
2161 		break;
2162 
2163 	case CS_MRU_DEEPEST:
2164 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2165 		break;
2166 
2167 	case CS_MRU_MINDEPTH:
2168 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2169 		break;
2170 
2171 	case CS_MRU_MAXAGE:
2172 		ctl_putint(sys_var[varid].text, mru_maxage);
2173 		break;
2174 
2175 	case CS_MRU_MAXDEPTH:
2176 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2177 		break;
2178 
2179 	case CS_MRU_MAXMEM:
2180 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2181 		u = (u_int)kb;
2182 		if (kb - u >= 0.5)
2183 			u++;
2184 		ctl_putuint(sys_var[varid].text, u);
2185 		break;
2186 
2187 	case CS_SS_UPTIME:
2188 		ctl_putuint(sys_var[varid].text, current_time);
2189 		break;
2190 
2191 	case CS_SS_RESET:
2192 		ctl_putuint(sys_var[varid].text,
2193 			    current_time - sys_stattime);
2194 		break;
2195 
2196 	case CS_SS_RECEIVED:
2197 		ctl_putuint(sys_var[varid].text, sys_received);
2198 		break;
2199 
2200 	case CS_SS_THISVER:
2201 		ctl_putuint(sys_var[varid].text, sys_newversion);
2202 		break;
2203 
2204 	case CS_SS_OLDVER:
2205 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2206 		break;
2207 
2208 	case CS_SS_BADFORMAT:
2209 		ctl_putuint(sys_var[varid].text, sys_badlength);
2210 		break;
2211 
2212 	case CS_SS_BADAUTH:
2213 		ctl_putuint(sys_var[varid].text, sys_badauth);
2214 		break;
2215 
2216 	case CS_SS_DECLINED:
2217 		ctl_putuint(sys_var[varid].text, sys_declined);
2218 		break;
2219 
2220 	case CS_SS_RESTRICTED:
2221 		ctl_putuint(sys_var[varid].text, sys_restricted);
2222 		break;
2223 
2224 	case CS_SS_LIMITED:
2225 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2226 		break;
2227 
2228 	case CS_SS_LAMPORT:
2229 		ctl_putuint(sys_var[varid].text, sys_lamport);
2230 		break;
2231 
2232 	case CS_SS_TSROUNDING:
2233 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2234 		break;
2235 
2236 	case CS_SS_KODSENT:
2237 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2238 		break;
2239 
2240 	case CS_SS_PROCESSED:
2241 		ctl_putuint(sys_var[varid].text, sys_processed);
2242 		break;
2243 
2244 	case CS_BCASTDELAY:
2245 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2246 		break;
2247 
2248 	case CS_AUTHDELAY:
2249 		LFPTOD(&sys_authdelay, dtemp);
2250 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2251 		break;
2252 
2253 	case CS_AUTHKEYS:
2254 		ctl_putuint(sys_var[varid].text, authnumkeys);
2255 		break;
2256 
2257 	case CS_AUTHFREEK:
2258 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2259 		break;
2260 
2261 	case CS_AUTHKLOOKUPS:
2262 		ctl_putuint(sys_var[varid].text, authkeylookups);
2263 		break;
2264 
2265 	case CS_AUTHKNOTFOUND:
2266 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2267 		break;
2268 
2269 	case CS_AUTHKUNCACHED:
2270 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2271 		break;
2272 
2273 	case CS_AUTHKEXPIRED:
2274 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2275 		break;
2276 
2277 	case CS_AUTHENCRYPTS:
2278 		ctl_putuint(sys_var[varid].text, authencryptions);
2279 		break;
2280 
2281 	case CS_AUTHDECRYPTS:
2282 		ctl_putuint(sys_var[varid].text, authdecryptions);
2283 		break;
2284 
2285 	case CS_AUTHRESET:
2286 		ctl_putuint(sys_var[varid].text,
2287 			    current_time - auth_timereset);
2288 		break;
2289 
2290 		/*
2291 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2292 		 * unavailable, otherwise calls putfunc with args.
2293 		 */
2294 #ifndef KERNEL_PLL
2295 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2296 		ctl_putint(sys_var[varid].text, 0)
2297 #else
2298 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2299 		putfunc args
2300 #endif
2301 
2302 		/*
2303 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2304 		 * loop is unavailable, or kernel hard PPS is not
2305 		 * active, otherwise calls putfunc with args.
2306 		 */
2307 #ifndef KERNEL_PLL
2308 # define	CTL_IF_KERNPPS(putfunc, args)	\
2309 		ctl_putint(sys_var[varid].text, 0)
2310 #else
2311 # define	CTL_IF_KERNPPS(putfunc, args)			\
2312 		if (0 == ntx.shift)				\
2313 			ctl_putint(sys_var[varid].text, 0);	\
2314 		else						\
2315 			putfunc args	/* no trailing ; */
2316 #endif
2317 
2318 	case CS_K_OFFSET:
2319 		CTL_IF_KERNLOOP(
2320 			ctl_putdblf,
2321 			(sys_var[varid].text, 0, -1,
2322 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2323 		);
2324 		break;
2325 
2326 	case CS_K_FREQ:
2327 		CTL_IF_KERNLOOP(
2328 			ctl_putsfp,
2329 			(sys_var[varid].text, ntx.freq)
2330 		);
2331 		break;
2332 
2333 	case CS_K_MAXERR:
2334 		CTL_IF_KERNLOOP(
2335 			ctl_putdblf,
2336 			(sys_var[varid].text, 0, 6,
2337 			 1000 * dbl_from_usec_long(ntx.maxerror))
2338 		);
2339 		break;
2340 
2341 	case CS_K_ESTERR:
2342 		CTL_IF_KERNLOOP(
2343 			ctl_putdblf,
2344 			(sys_var[varid].text, 0, 6,
2345 			 1000 * dbl_from_usec_long(ntx.esterror))
2346 		);
2347 		break;
2348 
2349 	case CS_K_STFLAGS:
2350 #ifndef KERNEL_PLL
2351 		ss = "";
2352 #else
2353 		ss = k_st_flags(ntx.status);
2354 #endif
2355 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2356 		break;
2357 
2358 	case CS_K_TIMECONST:
2359 		CTL_IF_KERNLOOP(
2360 			ctl_putint,
2361 			(sys_var[varid].text, ntx.constant)
2362 		);
2363 		break;
2364 
2365 	case CS_K_PRECISION:
2366 		CTL_IF_KERNLOOP(
2367 			ctl_putdblf,
2368 			(sys_var[varid].text, 0, 6,
2369 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2370 		);
2371 		break;
2372 
2373 	case CS_K_FREQTOL:
2374 		CTL_IF_KERNLOOP(
2375 			ctl_putsfp,
2376 			(sys_var[varid].text, ntx.tolerance)
2377 		);
2378 		break;
2379 
2380 	case CS_K_PPS_FREQ:
2381 		CTL_IF_KERNPPS(
2382 			ctl_putsfp,
2383 			(sys_var[varid].text, ntx.ppsfreq)
2384 		);
2385 		break;
2386 
2387 	case CS_K_PPS_STABIL:
2388 		CTL_IF_KERNPPS(
2389 			ctl_putsfp,
2390 			(sys_var[varid].text, ntx.stabil)
2391 		);
2392 		break;
2393 
2394 	case CS_K_PPS_JITTER:
2395 		CTL_IF_KERNPPS(
2396 			ctl_putdbl,
2397 			(sys_var[varid].text,
2398 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2399 		);
2400 		break;
2401 
2402 	case CS_K_PPS_CALIBDUR:
2403 		CTL_IF_KERNPPS(
2404 			ctl_putint,
2405 			(sys_var[varid].text, 1 << ntx.shift)
2406 		);
2407 		break;
2408 
2409 	case CS_K_PPS_CALIBS:
2410 		CTL_IF_KERNPPS(
2411 			ctl_putint,
2412 			(sys_var[varid].text, ntx.calcnt)
2413 		);
2414 		break;
2415 
2416 	case CS_K_PPS_CALIBERRS:
2417 		CTL_IF_KERNPPS(
2418 			ctl_putint,
2419 			(sys_var[varid].text, ntx.errcnt)
2420 		);
2421 		break;
2422 
2423 	case CS_K_PPS_JITEXC:
2424 		CTL_IF_KERNPPS(
2425 			ctl_putint,
2426 			(sys_var[varid].text, ntx.jitcnt)
2427 		);
2428 		break;
2429 
2430 	case CS_K_PPS_STBEXC:
2431 		CTL_IF_KERNPPS(
2432 			ctl_putint,
2433 			(sys_var[varid].text, ntx.stbcnt)
2434 		);
2435 		break;
2436 
2437 	case CS_IOSTATS_RESET:
2438 		ctl_putuint(sys_var[varid].text,
2439 			    current_time - io_timereset);
2440 		break;
2441 
2442 	case CS_TOTAL_RBUF:
2443 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2444 		break;
2445 
2446 	case CS_FREE_RBUF:
2447 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2448 		break;
2449 
2450 	case CS_USED_RBUF:
2451 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2452 		break;
2453 
2454 	case CS_RBUF_LOWATER:
2455 		ctl_putuint(sys_var[varid].text, lowater_additions());
2456 		break;
2457 
2458 	case CS_IO_DROPPED:
2459 		ctl_putuint(sys_var[varid].text, packets_dropped);
2460 		break;
2461 
2462 	case CS_IO_IGNORED:
2463 		ctl_putuint(sys_var[varid].text, packets_ignored);
2464 		break;
2465 
2466 	case CS_IO_RECEIVED:
2467 		ctl_putuint(sys_var[varid].text, packets_received);
2468 		break;
2469 
2470 	case CS_IO_SENT:
2471 		ctl_putuint(sys_var[varid].text, packets_sent);
2472 		break;
2473 
2474 	case CS_IO_SENDFAILED:
2475 		ctl_putuint(sys_var[varid].text, packets_notsent);
2476 		break;
2477 
2478 	case CS_IO_WAKEUPS:
2479 		ctl_putuint(sys_var[varid].text, handler_calls);
2480 		break;
2481 
2482 	case CS_IO_GOODWAKEUPS:
2483 		ctl_putuint(sys_var[varid].text, handler_pkts);
2484 		break;
2485 
2486 	case CS_TIMERSTATS_RESET:
2487 		ctl_putuint(sys_var[varid].text,
2488 			    current_time - timer_timereset);
2489 		break;
2490 
2491 	case CS_TIMER_OVERRUNS:
2492 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2493 		break;
2494 
2495 	case CS_TIMER_XMTS:
2496 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2497 		break;
2498 
2499 	case CS_FUZZ:
2500 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2501 		break;
2502 	case CS_WANDER_THRESH:
2503 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2504 		break;
2505 #ifdef AUTOKEY
2506 	case CS_FLAGS:
2507 		if (crypto_flags)
2508 			ctl_puthex(sys_var[CS_FLAGS].text,
2509 			    crypto_flags);
2510 		break;
2511 
2512 	case CS_DIGEST:
2513 		if (crypto_flags) {
2514 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2515 			    COUNTOF(str));
2516 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2517 			    strlen(str));
2518 		}
2519 		break;
2520 
2521 	case CS_SIGNATURE:
2522 		if (crypto_flags) {
2523 			const EVP_MD *dp;
2524 
2525 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2526 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2527 			    COUNTOF(str));
2528 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2529 			    strlen(str));
2530 		}
2531 		break;
2532 
2533 	case CS_HOST:
2534 		if (hostval.ptr != NULL)
2535 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2536 			    strlen(hostval.ptr));
2537 		break;
2538 
2539 	case CS_IDENT:
2540 		if (sys_ident != NULL)
2541 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2542 			    strlen(sys_ident));
2543 		break;
2544 
2545 	case CS_CERTIF:
2546 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2547 			snprintf(str, sizeof(str), "%s %s 0x%x",
2548 			    cp->subject, cp->issuer, cp->flags);
2549 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2550 			    strlen(str));
2551 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2552 		}
2553 		break;
2554 
2555 	case CS_PUBLIC:
2556 		if (hostval.tstamp != 0)
2557 			ctl_putfs(sys_var[CS_PUBLIC].text,
2558 			    ntohl(hostval.tstamp));
2559 		break;
2560 #endif	/* AUTOKEY */
2561 
2562 	default:
2563 		break;
2564 	}
2565 }
2566 
2567 
2568 /*
2569  * ctl_putpeer - output a peer variable
2570  */
2571 static void
2572 ctl_putpeer(
2573 	int id,
2574 	struct peer *p
2575 	)
2576 {
2577 	char buf[CTL_MAX_DATA_LEN];
2578 	char *s;
2579 	char *t;
2580 	char *be;
2581 	int i;
2582 	const struct ctl_var *k;
2583 #ifdef AUTOKEY
2584 	struct autokey *ap;
2585 	const EVP_MD *dp;
2586 	const char *str;
2587 #endif	/* AUTOKEY */
2588 
2589 	switch (id) {
2590 
2591 	case CP_CONFIG:
2592 		ctl_putuint(peer_var[id].text,
2593 			    !(FLAG_PREEMPT & p->flags));
2594 		break;
2595 
2596 	case CP_AUTHENABLE:
2597 		ctl_putuint(peer_var[id].text, !(p->keyid));
2598 		break;
2599 
2600 	case CP_AUTHENTIC:
2601 		ctl_putuint(peer_var[id].text,
2602 			    !!(FLAG_AUTHENTIC & p->flags));
2603 		break;
2604 
2605 	case CP_SRCADR:
2606 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2607 		break;
2608 
2609 	case CP_SRCPORT:
2610 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2611 		break;
2612 
2613 	case CP_SRCHOST:
2614 		if (p->hostname != NULL)
2615 			ctl_putstr(peer_var[id].text, p->hostname,
2616 				   strlen(p->hostname));
2617 		break;
2618 
2619 	case CP_DSTADR:
2620 		ctl_putadr(peer_var[id].text, 0,
2621 			   (p->dstadr != NULL)
2622 				? &p->dstadr->sin
2623 				: NULL);
2624 		break;
2625 
2626 	case CP_DSTPORT:
2627 		ctl_putuint(peer_var[id].text,
2628 			    (p->dstadr != NULL)
2629 				? SRCPORT(&p->dstadr->sin)
2630 				: 0);
2631 		break;
2632 
2633 	case CP_IN:
2634 		if (p->r21 > 0.)
2635 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2636 		break;
2637 
2638 	case CP_OUT:
2639 		if (p->r34 > 0.)
2640 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2641 		break;
2642 
2643 	case CP_RATE:
2644 		ctl_putuint(peer_var[id].text, p->throttle);
2645 		break;
2646 
2647 	case CP_LEAP:
2648 		ctl_putuint(peer_var[id].text, p->leap);
2649 		break;
2650 
2651 	case CP_HMODE:
2652 		ctl_putuint(peer_var[id].text, p->hmode);
2653 		break;
2654 
2655 	case CP_STRATUM:
2656 		ctl_putuint(peer_var[id].text, p->stratum);
2657 		break;
2658 
2659 	case CP_PPOLL:
2660 		ctl_putuint(peer_var[id].text, p->ppoll);
2661 		break;
2662 
2663 	case CP_HPOLL:
2664 		ctl_putuint(peer_var[id].text, p->hpoll);
2665 		break;
2666 
2667 	case CP_PRECISION:
2668 		ctl_putint(peer_var[id].text, p->precision);
2669 		break;
2670 
2671 	case CP_ROOTDELAY:
2672 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2673 		break;
2674 
2675 	case CP_ROOTDISPERSION:
2676 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2677 		break;
2678 
2679 	case CP_REFID:
2680 #ifdef REFCLOCK
2681 		if (p->flags & FLAG_REFCLOCK) {
2682 			ctl_putrefid(peer_var[id].text, p->refid);
2683 			break;
2684 		}
2685 #endif
2686 		if (REFID_ISTEXT(p->stratum))
2687 			ctl_putrefid(peer_var[id].text, p->refid);
2688 		else
2689 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2690 		break;
2691 
2692 	case CP_REFTIME:
2693 		ctl_putts(peer_var[id].text, &p->reftime);
2694 		break;
2695 
2696 	case CP_ORG:
2697 		ctl_putts(peer_var[id].text, &p->aorg);
2698 		break;
2699 
2700 	case CP_REC:
2701 		ctl_putts(peer_var[id].text, &p->dst);
2702 		break;
2703 
2704 	case CP_XMT:
2705 		if (p->xleave)
2706 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2707 		break;
2708 
2709 	case CP_BIAS:
2710 		if (p->bias != 0.)
2711 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2712 		break;
2713 
2714 	case CP_REACH:
2715 		ctl_puthex(peer_var[id].text, p->reach);
2716 		break;
2717 
2718 	case CP_FLASH:
2719 		ctl_puthex(peer_var[id].text, p->flash);
2720 		break;
2721 
2722 	case CP_TTL:
2723 #ifdef REFCLOCK
2724 		if (p->flags & FLAG_REFCLOCK) {
2725 			ctl_putuint(peer_var[id].text, p->ttl);
2726 			break;
2727 		}
2728 #endif
2729 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2730 			ctl_putint(peer_var[id].text,
2731 				   sys_ttl[p->ttl]);
2732 		break;
2733 
2734 	case CP_UNREACH:
2735 		ctl_putuint(peer_var[id].text, p->unreach);
2736 		break;
2737 
2738 	case CP_TIMER:
2739 		ctl_putuint(peer_var[id].text,
2740 			    p->nextdate - current_time);
2741 		break;
2742 
2743 	case CP_DELAY:
2744 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2745 		break;
2746 
2747 	case CP_OFFSET:
2748 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2749 		break;
2750 
2751 	case CP_JITTER:
2752 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2753 		break;
2754 
2755 	case CP_DISPERSION:
2756 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2757 		break;
2758 
2759 	case CP_KEYID:
2760 		if (p->keyid > NTP_MAXKEY)
2761 			ctl_puthex(peer_var[id].text, p->keyid);
2762 		else
2763 			ctl_putuint(peer_var[id].text, p->keyid);
2764 		break;
2765 
2766 	case CP_FILTDELAY:
2767 		ctl_putarray(peer_var[id].text, p->filter_delay,
2768 			     p->filter_nextpt);
2769 		break;
2770 
2771 	case CP_FILTOFFSET:
2772 		ctl_putarray(peer_var[id].text, p->filter_offset,
2773 			     p->filter_nextpt);
2774 		break;
2775 
2776 	case CP_FILTERROR:
2777 		ctl_putarray(peer_var[id].text, p->filter_disp,
2778 			     p->filter_nextpt);
2779 		break;
2780 
2781 	case CP_PMODE:
2782 		ctl_putuint(peer_var[id].text, p->pmode);
2783 		break;
2784 
2785 	case CP_RECEIVED:
2786 		ctl_putuint(peer_var[id].text, p->received);
2787 		break;
2788 
2789 	case CP_SENT:
2790 		ctl_putuint(peer_var[id].text, p->sent);
2791 		break;
2792 
2793 	case CP_VARLIST:
2794 		s = buf;
2795 		be = buf + sizeof(buf);
2796 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2797 			break;	/* really long var name */
2798 
2799 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2800 		s += strlen(s);
2801 		t = s;
2802 		for (k = peer_var; !(EOV & k->flags); k++) {
2803 			if (PADDING & k->flags)
2804 				continue;
2805 			i = strlen(k->text);
2806 			if (s + i + 1 >= be)
2807 				break;
2808 			if (s != t)
2809 				*s++ = ',';
2810 			memcpy(s, k->text, i);
2811 			s += i;
2812 		}
2813 		if (s + 2 < be) {
2814 			*s++ = '"';
2815 			*s = '\0';
2816 			ctl_putdata(buf, (u_int)(s - buf), 0);
2817 		}
2818 		break;
2819 
2820 	case CP_TIMEREC:
2821 		ctl_putuint(peer_var[id].text,
2822 			    current_time - p->timereceived);
2823 		break;
2824 
2825 	case CP_TIMEREACH:
2826 		ctl_putuint(peer_var[id].text,
2827 			    current_time - p->timereachable);
2828 		break;
2829 
2830 	case CP_BADAUTH:
2831 		ctl_putuint(peer_var[id].text, p->badauth);
2832 		break;
2833 
2834 	case CP_BOGUSORG:
2835 		ctl_putuint(peer_var[id].text, p->bogusorg);
2836 		break;
2837 
2838 	case CP_OLDPKT:
2839 		ctl_putuint(peer_var[id].text, p->oldpkt);
2840 		break;
2841 
2842 	case CP_SELDISP:
2843 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2844 		break;
2845 
2846 	case CP_SELBROKEN:
2847 		ctl_putuint(peer_var[id].text, p->selbroken);
2848 		break;
2849 
2850 	case CP_CANDIDATE:
2851 		ctl_putuint(peer_var[id].text, p->status);
2852 		break;
2853 #ifdef AUTOKEY
2854 	case CP_FLAGS:
2855 		if (p->crypto)
2856 			ctl_puthex(peer_var[id].text, p->crypto);
2857 		break;
2858 
2859 	case CP_SIGNATURE:
2860 		if (p->crypto) {
2861 			dp = EVP_get_digestbynid(p->crypto >> 16);
2862 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2863 			ctl_putstr(peer_var[id].text, str, strlen(str));
2864 		}
2865 		break;
2866 
2867 	case CP_HOST:
2868 		if (p->subject != NULL)
2869 			ctl_putstr(peer_var[id].text, p->subject,
2870 			    strlen(p->subject));
2871 		break;
2872 
2873 	case CP_VALID:		/* not used */
2874 		break;
2875 
2876 	case CP_INITSEQ:
2877 		if (NULL == (ap = p->recval.ptr))
2878 			break;
2879 
2880 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2881 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2882 		ctl_putfs(peer_var[CP_INITTSP].text,
2883 			  ntohl(p->recval.tstamp));
2884 		break;
2885 
2886 	case CP_IDENT:
2887 		if (p->ident != NULL)
2888 			ctl_putstr(peer_var[id].text, p->ident,
2889 			    strlen(p->ident));
2890 		break;
2891 
2892 
2893 #endif	/* AUTOKEY */
2894 	}
2895 }
2896 
2897 
2898 #ifdef REFCLOCK
2899 /*
2900  * ctl_putclock - output clock variables
2901  */
2902 static void
2903 ctl_putclock(
2904 	int id,
2905 	struct refclockstat *pcs,
2906 	int mustput
2907 	)
2908 {
2909 	char buf[CTL_MAX_DATA_LEN];
2910 	char *s, *t, *be;
2911 	const char *ss;
2912 	int i;
2913 	const struct ctl_var *k;
2914 
2915 	switch (id) {
2916 
2917 	case CC_TYPE:
2918 		if (mustput || pcs->clockdesc == NULL
2919 		    || *(pcs->clockdesc) == '\0') {
2920 			ctl_putuint(clock_var[id].text, pcs->type);
2921 		}
2922 		break;
2923 	case CC_TIMECODE:
2924 		ctl_putstr(clock_var[id].text,
2925 			   pcs->p_lastcode,
2926 			   (unsigned)pcs->lencode);
2927 		break;
2928 
2929 	case CC_POLL:
2930 		ctl_putuint(clock_var[id].text, pcs->polls);
2931 		break;
2932 
2933 	case CC_NOREPLY:
2934 		ctl_putuint(clock_var[id].text,
2935 			    pcs->noresponse);
2936 		break;
2937 
2938 	case CC_BADFORMAT:
2939 		ctl_putuint(clock_var[id].text,
2940 			    pcs->badformat);
2941 		break;
2942 
2943 	case CC_BADDATA:
2944 		ctl_putuint(clock_var[id].text,
2945 			    pcs->baddata);
2946 		break;
2947 
2948 	case CC_FUDGETIME1:
2949 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2950 			ctl_putdbl(clock_var[id].text,
2951 				   pcs->fudgetime1 * 1e3);
2952 		break;
2953 
2954 	case CC_FUDGETIME2:
2955 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2956 			ctl_putdbl(clock_var[id].text,
2957 				   pcs->fudgetime2 * 1e3);
2958 		break;
2959 
2960 	case CC_FUDGEVAL1:
2961 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2962 			ctl_putint(clock_var[id].text,
2963 				   pcs->fudgeval1);
2964 		break;
2965 
2966 	case CC_FUDGEVAL2:
2967 		/* RefID of clocks are always text even if stratum is fudged */
2968 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2969 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2970 		break;
2971 
2972 	case CC_FLAGS:
2973 		ctl_putuint(clock_var[id].text, pcs->flags);
2974 		break;
2975 
2976 	case CC_DEVICE:
2977 		if (pcs->clockdesc == NULL ||
2978 		    *(pcs->clockdesc) == '\0') {
2979 			if (mustput)
2980 				ctl_putstr(clock_var[id].text,
2981 					   "", 0);
2982 		} else {
2983 			ctl_putstr(clock_var[id].text,
2984 				   pcs->clockdesc,
2985 				   strlen(pcs->clockdesc));
2986 		}
2987 		break;
2988 
2989 	case CC_VARLIST:
2990 		s = buf;
2991 		be = buf + sizeof(buf);
2992 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2993 		    sizeof(buf))
2994 			break;	/* really long var name */
2995 
2996 		snprintf(s, sizeof(buf), "%s=\"",
2997 			 clock_var[CC_VARLIST].text);
2998 		s += strlen(s);
2999 		t = s;
3000 
3001 		for (k = clock_var; !(EOV & k->flags); k++) {
3002 			if (PADDING & k->flags)
3003 				continue;
3004 
3005 			i = strlen(k->text);
3006 			if (s + i + 1 >= be)
3007 				break;
3008 
3009 			if (s != t)
3010 				*s++ = ',';
3011 			memcpy(s, k->text, i);
3012 			s += i;
3013 		}
3014 
3015 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3016 			if (PADDING & k->flags)
3017 				continue;
3018 
3019 			ss = k->text;
3020 			if (NULL == ss)
3021 				continue;
3022 
3023 			while (*ss && *ss != '=')
3024 				ss++;
3025 			i = ss - k->text;
3026 			if (s + i + 1 >= be)
3027 				break;
3028 
3029 			if (s != t)
3030 				*s++ = ',';
3031 			memcpy(s, k->text, (unsigned)i);
3032 			s += i;
3033 			*s = '\0';
3034 		}
3035 		if (s + 2 >= be)
3036 			break;
3037 
3038 		*s++ = '"';
3039 		*s = '\0';
3040 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3041 		break;
3042 
3043 	case CC_FUDGEMINJIT:
3044 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3045 			ctl_putdbl(clock_var[id].text,
3046 				   pcs->fudgeminjitter * 1e3);
3047 		break;
3048 
3049 	default:
3050 		break;
3051 
3052 	}
3053 }
3054 #endif
3055 
3056 
3057 
3058 /*
3059  * ctl_getitem - get the next data item from the incoming packet
3060  */
3061 static const struct ctl_var *
3062 ctl_getitem(
3063 	const struct ctl_var *var_list,
3064 	char **data
3065 	)
3066 {
3067 	/* [Bug 3008] First check the packet data sanity, then search
3068 	 * the key. This improves the consistency of result values: If
3069 	 * the result is NULL once, it will never be EOV again for this
3070 	 * packet; If it's EOV, it will never be NULL again until the
3071 	 * variable is found and processed in a given 'var_list'. (That
3072 	 * is, a result is returned that is neither NULL nor EOV).
3073 	 */
3074 	static const struct ctl_var eol = { 0, EOV, NULL };
3075 	static char buf[128];
3076 	static u_long quiet_until;
3077 	const struct ctl_var *v;
3078 	char *cp;
3079 	char *tp;
3080 
3081 	/*
3082 	 * Part One: Validate the packet state
3083 	 */
3084 
3085 	/* Delete leading commas and white space */
3086 	while (reqpt < reqend && (*reqpt == ',' ||
3087 				  isspace((unsigned char)*reqpt)))
3088 		reqpt++;
3089 	if (reqpt >= reqend)
3090 		return NULL;
3091 
3092 	/* Scan the string in the packet until we hit comma or
3093 	 * EoB. Register position of first '=' on the fly. */
3094 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3095 		if (*cp == '=' && tp == NULL)
3096 			tp = cp;
3097 		if (*cp == ',')
3098 			break;
3099 	}
3100 
3101 	/* Process payload, if any. */
3102 	*data = NULL;
3103 	if (NULL != tp) {
3104 		/* eventually strip white space from argument. */
3105 		const char *plhead = tp + 1; /* skip the '=' */
3106 		const char *pltail = cp;
3107 		size_t      plsize;
3108 
3109 		while (plhead != pltail && isspace((u_char)plhead[0]))
3110 			++plhead;
3111 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3112 			--pltail;
3113 
3114 		/* check payload size, terminate packet on overflow */
3115 		plsize = (size_t)(pltail - plhead);
3116 		if (plsize >= sizeof(buf))
3117 			goto badpacket;
3118 
3119 		/* copy data, NUL terminate, and set result data ptr */
3120 		memcpy(buf, plhead, plsize);
3121 		buf[plsize] = '\0';
3122 		*data = buf;
3123 	} else {
3124 		/* no payload, current end --> current name termination */
3125 		tp = cp;
3126 	}
3127 
3128 	/* Part Two
3129 	 *
3130 	 * Now we're sure that the packet data itself is sane. Scan the
3131 	 * list now. Make sure a NULL list is properly treated by
3132 	 * returning a synthetic End-Of-Values record. We must not
3133 	 * return NULL pointers after this point, or the behaviour would
3134 	 * become inconsistent if called several times with different
3135 	 * variable lists after an EoV was returned.  (Such a behavior
3136 	 * actually caused Bug 3008.)
3137 	 */
3138 
3139 	if (NULL == var_list)
3140 		return &eol;
3141 
3142 	for (v = var_list; !(EOV & v->flags); ++v)
3143 		if (!(PADDING & v->flags)) {
3144 			/* Check if the var name matches the buffer. The
3145 			 * name is bracketed by [reqpt..tp] and not NUL
3146 			 * terminated, and it contains no '=' char. The
3147 			 * lookup value IS NUL-terminated but might
3148 			 * include a '='... We have to look out for
3149 			 * that!
3150 			 */
3151 			const char *sp1 = reqpt;
3152 			const char *sp2 = v->text;
3153 
3154 			/* [Bug 3412] do not compare past NUL byte in name */
3155 			while (   (sp1 != tp)
3156 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3157 				++sp1;
3158 				++sp2;
3159 			}
3160 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3161 				break;
3162 		}
3163 
3164 	/* See if we have found a valid entry or not. If found, advance
3165 	 * the request pointer for the next round; if not, clear the
3166 	 * data pointer so we have no dangling garbage here.
3167 	 */
3168 	if (EOV & v->flags)
3169 		*data = NULL;
3170 	else
3171 		reqpt = cp + (cp != reqend);
3172 	return v;
3173 
3174   badpacket:
3175 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3176 	numctlbadpkts++;
3177 	NLOG(NLOG_SYSEVENT)
3178 	    if (quiet_until <= current_time) {
3179 		    quiet_until = current_time + 300;
3180 		    msyslog(LOG_WARNING,
3181 			    "Possible 'ntpdx' exploit from %s (possibly spoofed)",
3182 			    sptoa(rmt_addr));
3183 	    }
3184 	reqpt = reqend; /* never again for this packet! */
3185 	return NULL;
3186 }
3187 
3188 
3189 /*
3190  * control_unspec - response to an unspecified op-code
3191  */
3192 /*ARGSUSED*/
3193 static void
3194 control_unspec(
3195 	struct recvbuf *rbufp,
3196 	int restrict_mask
3197 	)
3198 {
3199 	struct peer *peer;
3200 
3201 	/*
3202 	 * What is an appropriate response to an unspecified op-code?
3203 	 * I return no errors and no data, unless a specified assocation
3204 	 * doesn't exist.
3205 	 */
3206 	if (res_associd) {
3207 		peer = findpeerbyassoc(res_associd);
3208 		if (NULL == peer) {
3209 			ctl_error(CERR_BADASSOC);
3210 			return;
3211 		}
3212 		rpkt.status = htons(ctlpeerstatus(peer));
3213 	} else
3214 		rpkt.status = htons(ctlsysstatus());
3215 	ctl_flushpkt(0);
3216 }
3217 
3218 
3219 /*
3220  * read_status - return either a list of associd's, or a particular
3221  * peer's status.
3222  */
3223 /*ARGSUSED*/
3224 static void
3225 read_status(
3226 	struct recvbuf *rbufp,
3227 	int restrict_mask
3228 	)
3229 {
3230 	struct peer *peer;
3231 	const u_char *cp;
3232 	size_t n;
3233 	/* a_st holds association ID, status pairs alternating */
3234 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3235 
3236 #ifdef DEBUG
3237 	if (debug > 2)
3238 		printf("read_status: ID %d\n", res_associd);
3239 #endif
3240 	/*
3241 	 * Two choices here. If the specified association ID is
3242 	 * zero we return all known assocation ID's.  Otherwise
3243 	 * we return a bunch of stuff about the particular peer.
3244 	 */
3245 	if (res_associd) {
3246 		peer = findpeerbyassoc(res_associd);
3247 		if (NULL == peer) {
3248 			ctl_error(CERR_BADASSOC);
3249 			return;
3250 		}
3251 		rpkt.status = htons(ctlpeerstatus(peer));
3252 		if (res_authokay)
3253 			peer->num_events = 0;
3254 		/*
3255 		 * For now, output everything we know about the
3256 		 * peer. May be more selective later.
3257 		 */
3258 		for (cp = def_peer_var; *cp != 0; cp++)
3259 			ctl_putpeer((int)*cp, peer);
3260 		ctl_flushpkt(0);
3261 		return;
3262 	}
3263 	n = 0;
3264 	rpkt.status = htons(ctlsysstatus());
3265 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3266 		a_st[n++] = htons(peer->associd);
3267 		a_st[n++] = htons(ctlpeerstatus(peer));
3268 		/* two entries each loop iteration, so n + 1 */
3269 		if (n + 1 >= COUNTOF(a_st)) {
3270 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3271 				    1);
3272 			n = 0;
3273 		}
3274 	}
3275 	if (n)
3276 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3277 	ctl_flushpkt(0);
3278 }
3279 
3280 
3281 /*
3282  * read_peervars - half of read_variables() implementation
3283  */
3284 static void
3285 read_peervars(void)
3286 {
3287 	const struct ctl_var *v;
3288 	struct peer *peer;
3289 	const u_char *cp;
3290 	size_t i;
3291 	char *	valuep;
3292 	u_char	wants[CP_MAXCODE + 1];
3293 	u_int	gotvar;
3294 
3295 	/*
3296 	 * Wants info for a particular peer. See if we know
3297 	 * the guy.
3298 	 */
3299 	peer = findpeerbyassoc(res_associd);
3300 	if (NULL == peer) {
3301 		ctl_error(CERR_BADASSOC);
3302 		return;
3303 	}
3304 	rpkt.status = htons(ctlpeerstatus(peer));
3305 	if (res_authokay)
3306 		peer->num_events = 0;
3307 	ZERO(wants);
3308 	gotvar = 0;
3309 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3310 		if (v->flags & EOV) {
3311 			ctl_error(CERR_UNKNOWNVAR);
3312 			return;
3313 		}
3314 		INSIST(v->code < COUNTOF(wants));
3315 		wants[v->code] = 1;
3316 		gotvar = 1;
3317 	}
3318 	if (gotvar) {
3319 		for (i = 1; i < COUNTOF(wants); i++)
3320 			if (wants[i])
3321 				ctl_putpeer(i, peer);
3322 	} else
3323 		for (cp = def_peer_var; *cp != 0; cp++)
3324 			ctl_putpeer((int)*cp, peer);
3325 	ctl_flushpkt(0);
3326 }
3327 
3328 
3329 /*
3330  * read_sysvars - half of read_variables() implementation
3331  */
3332 static void
3333 read_sysvars(void)
3334 {
3335 	const struct ctl_var *v;
3336 	struct ctl_var *kv;
3337 	u_int	n;
3338 	u_int	gotvar;
3339 	const u_char *cs;
3340 	char *	valuep;
3341 	const char * pch;
3342 	u_char *wants;
3343 	size_t	wants_count;
3344 
3345 	/*
3346 	 * Wants system variables. Figure out which he wants
3347 	 * and give them to him.
3348 	 */
3349 	rpkt.status = htons(ctlsysstatus());
3350 	if (res_authokay)
3351 		ctl_sys_num_events = 0;
3352 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3353 	wants = emalloc_zero(wants_count);
3354 	gotvar = 0;
3355 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3356 		if (!(EOV & v->flags)) {
3357 			INSIST(v->code < wants_count);
3358 			wants[v->code] = 1;
3359 			gotvar = 1;
3360 		} else {
3361 			v = ctl_getitem(ext_sys_var, &valuep);
3362 			if (NULL == v) {
3363 				ctl_error(CERR_BADVALUE);
3364 				free(wants);
3365 				return;
3366 			}
3367 			if (EOV & v->flags) {
3368 				ctl_error(CERR_UNKNOWNVAR);
3369 				free(wants);
3370 				return;
3371 			}
3372 			n = v->code + CS_MAXCODE + 1;
3373 			INSIST(n < wants_count);
3374 			wants[n] = 1;
3375 			gotvar = 1;
3376 		}
3377 	}
3378 	if (gotvar) {
3379 		for (n = 1; n <= CS_MAXCODE; n++)
3380 			if (wants[n])
3381 				ctl_putsys(n);
3382 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3383 			if (wants[n + CS_MAXCODE + 1]) {
3384 				pch = ext_sys_var[n].text;
3385 				ctl_putdata(pch, strlen(pch), 0);
3386 			}
3387 	} else {
3388 		for (cs = def_sys_var; *cs != 0; cs++)
3389 			ctl_putsys((int)*cs);
3390 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3391 			if (DEF & kv->flags)
3392 				ctl_putdata(kv->text, strlen(kv->text),
3393 					    0);
3394 	}
3395 	free(wants);
3396 	ctl_flushpkt(0);
3397 }
3398 
3399 
3400 /*
3401  * read_variables - return the variables the caller asks for
3402  */
3403 /*ARGSUSED*/
3404 static void
3405 read_variables(
3406 	struct recvbuf *rbufp,
3407 	int restrict_mask
3408 	)
3409 {
3410 	if (res_associd)
3411 		read_peervars();
3412 	else
3413 		read_sysvars();
3414 }
3415 
3416 
3417 /*
3418  * write_variables - write into variables. We only allow leap bit
3419  * writing this way.
3420  */
3421 /*ARGSUSED*/
3422 static void
3423 write_variables(
3424 	struct recvbuf *rbufp,
3425 	int restrict_mask
3426 	)
3427 {
3428 	const struct ctl_var *v;
3429 	int ext_var;
3430 	char *valuep;
3431 	long val;
3432 	size_t octets;
3433 	char *vareqv;
3434 	const char *t;
3435 	char *tt;
3436 
3437 	val = 0;
3438 	/*
3439 	 * If he's trying to write into a peer tell him no way
3440 	 */
3441 	if (res_associd != 0) {
3442 		ctl_error(CERR_PERMISSION);
3443 		return;
3444 	}
3445 
3446 	/*
3447 	 * Set status
3448 	 */
3449 	rpkt.status = htons(ctlsysstatus());
3450 
3451 	/*
3452 	 * Look through the variables. Dump out at the first sign of
3453 	 * trouble.
3454 	 */
3455 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3456 		ext_var = 0;
3457 		if (v->flags & EOV) {
3458 			v = ctl_getitem(ext_sys_var, &valuep);
3459 			if (v != NULL) {
3460 				if (v->flags & EOV) {
3461 					ctl_error(CERR_UNKNOWNVAR);
3462 					return;
3463 				}
3464 				ext_var = 1;
3465 			} else {
3466 				break;
3467 			}
3468 		}
3469 		if (!(v->flags & CAN_WRITE)) {
3470 			ctl_error(CERR_PERMISSION);
3471 			return;
3472 		}
3473 		/* [bug 3565] writing makes sense only if we *have* a
3474 		 * value in the packet!
3475 		 */
3476 		if (valuep == NULL) {
3477 			ctl_error(CERR_BADFMT);
3478 			return;
3479 		}
3480 		if (!ext_var) {
3481 			if ( !(*valuep && atoint(valuep, &val))) {
3482 				ctl_error(CERR_BADFMT);
3483 				return;
3484 			}
3485 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3486 				ctl_error(CERR_BADVALUE);
3487 				return;
3488 			}
3489 		}
3490 
3491 		if (ext_var) {
3492 			octets = strlen(v->text) + strlen(valuep) + 2;
3493 			vareqv = emalloc(octets);
3494 			tt = vareqv;
3495 			t = v->text;
3496 			while (*t && *t != '=')
3497 				*tt++ = *t++;
3498 			*tt++ = '=';
3499 			memcpy(tt, valuep, 1 + strlen(valuep));
3500 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3501 			free(vareqv);
3502 		} else {
3503 			ctl_error(CERR_UNSPEC); /* really */
3504 			return;
3505 		}
3506 	}
3507 
3508 	/*
3509 	 * If we got anything, do it. xxx nothing to do ***
3510 	 */
3511 	/*
3512 	  if (leapind != ~0 || leapwarn != ~0) {
3513 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3514 	  ctl_error(CERR_PERMISSION);
3515 	  return;
3516 	  }
3517 	  }
3518 	*/
3519 	ctl_flushpkt(0);
3520 }
3521 
3522 
3523 /*
3524  * configure() processes ntpq :config/config-from-file, allowing
3525  *		generic runtime reconfiguration.
3526  */
3527 static void configure(
3528 	struct recvbuf *rbufp,
3529 	int restrict_mask
3530 	)
3531 {
3532 	size_t data_count;
3533 	int retval;
3534 
3535 	/* I haven't yet implemented changes to an existing association.
3536 	 * Hence check if the association id is 0
3537 	 */
3538 	if (res_associd != 0) {
3539 		ctl_error(CERR_BADVALUE);
3540 		return;
3541 	}
3542 
3543 	if (RES_NOMODIFY & restrict_mask) {
3544 		snprintf(remote_config.err_msg,
3545 			 sizeof(remote_config.err_msg),
3546 			 "runtime configuration prohibited by restrict ... nomodify");
3547 		ctl_putdata(remote_config.err_msg,
3548 			    strlen(remote_config.err_msg), 0);
3549 		ctl_flushpkt(0);
3550 		NLOG(NLOG_SYSINFO)
3551 			msyslog(LOG_NOTICE,
3552 				"runtime config from %s rejected due to nomodify restriction",
3553 				stoa(&rbufp->recv_srcadr));
3554 		sys_restricted++;
3555 		return;
3556 	}
3557 
3558 	/* Initialize the remote config buffer */
3559 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3560 
3561 	if (data_count > sizeof(remote_config.buffer) - 2) {
3562 		snprintf(remote_config.err_msg,
3563 			 sizeof(remote_config.err_msg),
3564 			 "runtime configuration failed: request too long");
3565 		ctl_putdata(remote_config.err_msg,
3566 			    strlen(remote_config.err_msg), 0);
3567 		ctl_flushpkt(0);
3568 		msyslog(LOG_NOTICE,
3569 			"runtime config from %s rejected: request too long",
3570 			stoa(&rbufp->recv_srcadr));
3571 		return;
3572 	}
3573 	/* Bug 2853 -- check if all characters were acceptable */
3574 	if (data_count != (size_t)(reqend - reqpt)) {
3575 		snprintf(remote_config.err_msg,
3576 			 sizeof(remote_config.err_msg),
3577 			 "runtime configuration failed: request contains an unprintable character");
3578 		ctl_putdata(remote_config.err_msg,
3579 			    strlen(remote_config.err_msg), 0);
3580 		ctl_flushpkt(0);
3581 		msyslog(LOG_NOTICE,
3582 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3583 			stoa(&rbufp->recv_srcadr),
3584 			reqpt[data_count]);
3585 		return;
3586 	}
3587 
3588 	memcpy(remote_config.buffer, reqpt, data_count);
3589 	/* The buffer has no trailing linefeed or NUL right now. For
3590 	 * logging, we do not want a newline, so we do that first after
3591 	 * adding the necessary NUL byte.
3592 	 */
3593 	remote_config.buffer[data_count] = '\0';
3594 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3595 		remote_config.buffer));
3596 	msyslog(LOG_NOTICE, "%s config: %s",
3597 		stoa(&rbufp->recv_srcadr),
3598 		remote_config.buffer);
3599 
3600 	/* Now we have to make sure there is a NL/NUL sequence at the
3601 	 * end of the buffer before we parse it.
3602 	 */
3603 	remote_config.buffer[data_count++] = '\n';
3604 	remote_config.buffer[data_count] = '\0';
3605 	remote_config.pos = 0;
3606 	remote_config.err_pos = 0;
3607 	remote_config.no_errors = 0;
3608 	config_remotely(&rbufp->recv_srcadr);
3609 
3610 	/*
3611 	 * Check if errors were reported. If not, output 'Config
3612 	 * Succeeded'.  Else output the error count.  It would be nice
3613 	 * to output any parser error messages.
3614 	 */
3615 	if (0 == remote_config.no_errors) {
3616 		retval = snprintf(remote_config.err_msg,
3617 				  sizeof(remote_config.err_msg),
3618 				  "Config Succeeded");
3619 		if (retval > 0)
3620 			remote_config.err_pos += retval;
3621 	}
3622 
3623 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3624 	ctl_flushpkt(0);
3625 
3626 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3627 
3628 	if (remote_config.no_errors > 0)
3629 		msyslog(LOG_NOTICE, "%d error in %s config",
3630 			remote_config.no_errors,
3631 			stoa(&rbufp->recv_srcadr));
3632 }
3633 
3634 
3635 /*
3636  * derive_nonce - generate 32-bit nonce value derived from the client
3637  *		  address and a request-specific timestamp.
3638  *
3639  * This uses MD5 for a non-authentication purpose -- the nonce is used
3640  * analogous to the TCP 3-way handshake to confirm the UDP client can
3641  * receive traffic from which it claims to originate, that is, to
3642  * prevent spoofed requests leading to reflected amplification.
3643  */
3644 static u_int32 derive_nonce(
3645 	sockaddr_u *	addr,
3646 	u_int32		ts_i,
3647 	u_int32		ts_f
3648 	)
3649 {
3650 	static u_int32	salt[4];
3651 	static u_long	last_salt_update;
3652 	MD5_CTX		ctx;
3653 	union d_tag {
3654 		u_char	digest[MD5_DIGEST_LENGTH];
3655 		u_int32 extract;
3656 	}		d;
3657 
3658 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3659 		salt[0] = ntp_random();
3660 		salt[1] = ntp_random();
3661 		salt[2] = ntp_random();
3662 		salt[3] = ntp_random();
3663 		last_salt_update = current_time;
3664 	}
3665 
3666 	MD5Init(&ctx);
3667 	MD5Update(&ctx, salt, sizeof(salt));
3668 	MD5Update(&ctx, &ts_i, sizeof(ts_i));
3669 	MD5Update(&ctx, &ts_f, sizeof(ts_f));
3670 	if (IS_IPV4(addr)) {
3671 		MD5Update(&ctx, &SOCK_ADDR4(addr), sizeof(SOCK_ADDR4(addr)));
3672 	} else {
3673 		MD5Update(&ctx, &SOCK_ADDR6(addr), sizeof(SOCK_ADDR6(addr)));
3674 	}
3675 	MD5Update(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3676 	MD5Update(&ctx, salt, sizeof(salt));
3677 	MD5Final(d.digest, &ctx);
3678 
3679 	return d.extract;
3680 }
3681 
3682 
3683 /*
3684  * generate_nonce - generate client-address-specific nonce string.
3685  */
3686 static void generate_nonce(
3687 	struct recvbuf *	rbufp,
3688 	char *			nonce,
3689 	size_t			nonce_octets
3690 	)
3691 {
3692 	u_int32 derived;
3693 
3694 	derived = derive_nonce(&rbufp->recv_srcadr,
3695 			       rbufp->recv_time.l_ui,
3696 			       rbufp->recv_time.l_uf);
3697 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3698 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3699 }
3700 
3701 
3702 /*
3703  * validate_nonce - validate client-address-specific nonce string.
3704  *
3705  * Returns TRUE if the local calculation of the nonce matches the
3706  * client-provided value and the timestamp is recent enough.
3707  */
3708 static int validate_nonce(
3709 	const char *		pnonce,
3710 	struct recvbuf *	rbufp
3711 	)
3712 {
3713 	u_int	ts_i;
3714 	u_int	ts_f;
3715 	l_fp	ts;
3716 	l_fp	now_delta;
3717 	u_int	supposed;
3718 	u_int	derived;
3719 
3720 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3721 		return FALSE;
3722 
3723 	ts.l_ui = (u_int32)ts_i;
3724 	ts.l_uf = (u_int32)ts_f;
3725 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3726 	get_systime(&now_delta);
3727 	L_SUB(&now_delta, &ts);
3728 
3729 	return (supposed == derived && now_delta.l_ui < 16);
3730 }
3731 
3732 
3733 /*
3734  * send_random_tag_value - send a randomly-generated three character
3735  *			   tag prefix, a '.', an index, a '=' and a
3736  *			   random integer value.
3737  *
3738  * To try to force clients to ignore unrecognized tags in mrulist,
3739  * reslist, and ifstats responses, the first and last rows are spiced
3740  * with randomly-generated tag names with correct .# index.  Make it
3741  * three characters knowing that none of the currently-used subscripted
3742  * tags have that length, avoiding the need to test for
3743  * tag collision.
3744  */
3745 static void
3746 send_random_tag_value(
3747 	int	indx
3748 	)
3749 {
3750 	int	noise;
3751 	char	buf[32];
3752 
3753 	noise = rand() ^ (rand() << 16);
3754 	buf[0] = 'a' + noise % 26;
3755 	noise >>= 5;
3756 	buf[1] = 'a' + noise % 26;
3757 	noise >>= 5;
3758 	buf[2] = 'a' + noise % 26;
3759 	noise >>= 5;
3760 	buf[3] = '.';
3761 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3762 	ctl_putuint(buf, noise);
3763 }
3764 
3765 
3766 /*
3767  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3768  *
3769  * To keep clients honest about not depending on the order of values,
3770  * and thereby avoid being locked into ugly workarounds to maintain
3771  * backward compatibility later as new fields are added to the response,
3772  * the order is random.
3773  */
3774 static void
3775 send_mru_entry(
3776 	mon_entry *	mon,
3777 	int		count
3778 	)
3779 {
3780 	const char first_fmt[] =	"first.%d";
3781 	const char ct_fmt[] =		"ct.%d";
3782 	const char mv_fmt[] =		"mv.%d";
3783 	const char rs_fmt[] =		"rs.%d";
3784 	char	tag[32];
3785 	u_char	sent[6]; /* 6 tag=value pairs */
3786 	u_int32 noise;
3787 	u_int	which;
3788 	u_int	remaining;
3789 	const char * pch;
3790 
3791 	remaining = COUNTOF(sent);
3792 	ZERO(sent);
3793 	noise = (u_int32)(rand() ^ (rand() << 16));
3794 	while (remaining > 0) {
3795 		which = (noise & 7) % COUNTOF(sent);
3796 		noise >>= 3;
3797 		while (sent[which])
3798 			which = (which + 1) % COUNTOF(sent);
3799 
3800 		switch (which) {
3801 
3802 		case 0:
3803 			snprintf(tag, sizeof(tag), addr_fmt, count);
3804 			pch = sptoa(&mon->rmtadr);
3805 			ctl_putunqstr(tag, pch, strlen(pch));
3806 			break;
3807 
3808 		case 1:
3809 			snprintf(tag, sizeof(tag), last_fmt, count);
3810 			ctl_putts(tag, &mon->last);
3811 			break;
3812 
3813 		case 2:
3814 			snprintf(tag, sizeof(tag), first_fmt, count);
3815 			ctl_putts(tag, &mon->first);
3816 			break;
3817 
3818 		case 3:
3819 			snprintf(tag, sizeof(tag), ct_fmt, count);
3820 			ctl_putint(tag, mon->count);
3821 			break;
3822 
3823 		case 4:
3824 			snprintf(tag, sizeof(tag), mv_fmt, count);
3825 			ctl_putuint(tag, mon->vn_mode);
3826 			break;
3827 
3828 		case 5:
3829 			snprintf(tag, sizeof(tag), rs_fmt, count);
3830 			ctl_puthex(tag, mon->flags);
3831 			break;
3832 		}
3833 		sent[which] = TRUE;
3834 		remaining--;
3835 	}
3836 }
3837 
3838 
3839 /*
3840  * read_mru_list - supports ntpq's mrulist command.
3841  *
3842  * The challenge here is to match ntpdc's monlist functionality without
3843  * being limited to hundreds of entries returned total, and without
3844  * requiring state on the server.  If state were required, ntpq's
3845  * mrulist command would require authentication.
3846  *
3847  * The approach was suggested by Ry Jones.  A finite and variable number
3848  * of entries are retrieved per request, to avoid having responses with
3849  * such large numbers of packets that socket buffers are overflowed and
3850  * packets lost.  The entries are retrieved oldest-first, taking into
3851  * account that the MRU list will be changing between each request.  We
3852  * can expect to see duplicate entries for addresses updated in the MRU
3853  * list during the fetch operation.  In the end, the client can assemble
3854  * a close approximation of the MRU list at the point in time the last
3855  * response was sent by ntpd.  The only difference is it may be longer,
3856  * containing some number of oldest entries which have since been
3857  * reclaimed.  If necessary, the protocol could be extended to zap those
3858  * from the client snapshot at the end, but so far that doesn't seem
3859  * useful.
3860  *
3861  * To accomodate the changing MRU list, the starting point for requests
3862  * after the first request is supplied as a series of last seen
3863  * timestamps and associated addresses, the newest ones the client has
3864  * received.  As long as at least one of those entries hasn't been
3865  * bumped to the head of the MRU list, ntpd can pick up at that point.
3866  * Otherwise, the request is failed and it is up to ntpq to back up and
3867  * provide the next newest entry's timestamps and addresses, conceivably
3868  * backing up all the way to the starting point.
3869  *
3870  * input parameters:
3871  *	nonce=		Regurgitated nonce retrieved by the client
3872  *			previously using CTL_OP_REQ_NONCE, demonstrating
3873  *			ability to receive traffic sent to its address.
3874  *	frags=		Limit on datagrams (fragments) in response.  Used
3875  *			by newer ntpq versions instead of limit= when
3876  *			retrieving multiple entries.
3877  *	limit=		Limit on MRU entries returned.  One of frags= or
3878  *			limit= must be provided.
3879  *			limit=1 is a special case:  Instead of fetching
3880  *			beginning with the supplied starting point's
3881  *			newer neighbor, fetch the supplied entry, and
3882  *			in that case the #.last timestamp can be zero.
3883  *			This enables fetching a single entry by IP
3884  *			address.  When limit is not one and frags= is
3885  *			provided, the fragment limit controls.
3886  *	mincount=	(decimal) Return entries with count >= mincount.
3887  *	laddr=		Return entries associated with the server's IP
3888  *			address given.  No port specification is needed,
3889  *			and any supplied is ignored.
3890  *	resall=		0x-prefixed hex restrict bits which must all be
3891  *			lit for an MRU entry to be included.
3892  *			Has precedence over any resany=.
3893  *	resany=		0x-prefixed hex restrict bits, at least one of
3894  *			which must be list for an MRU entry to be
3895  *			included.
3896  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3897  *			which client previously received.
3898  *	addr.0=		text of newest entry's IP address and port,
3899  *			IPv6 addresses in bracketed form: [::]:123
3900  *	last.1=		timestamp of 2nd newest entry client has.
3901  *	addr.1=		address of 2nd newest entry.
3902  *	[...]
3903  *
3904  * ntpq provides as many last/addr pairs as will fit in a single request
3905  * packet, except for the first request in a MRU fetch operation.
3906  *
3907  * The response begins with a new nonce value to be used for any
3908  * followup request.  Following the nonce is the next newer entry than
3909  * referred to by last.0 and addr.0, if the "0" entry has not been
3910  * bumped to the front.  If it has, the first entry returned will be the
3911  * next entry newer than referred to by last.1 and addr.1, and so on.
3912  * If none of the referenced entries remain unchanged, the request fails
3913  * and ntpq backs up to the next earlier set of entries to resync.
3914  *
3915  * Except for the first response, the response begins with confirmation
3916  * of the entry that precedes the first additional entry provided:
3917  *
3918  *	last.older=	hex l_fp timestamp matching one of the input
3919  *			.last timestamps, which entry now precedes the
3920  *			response 0. entry in the MRU list.
3921  *	addr.older=	text of address corresponding to older.last.
3922  *
3923  * And in any case, a successful response contains sets of values
3924  * comprising entries, with the oldest numbered 0 and incrementing from
3925  * there:
3926  *
3927  *	addr.#		text of IPv4 or IPv6 address and port
3928  *	last.#		hex l_fp timestamp of last receipt
3929  *	first.#		hex l_fp timestamp of first receipt
3930  *	ct.#		count of packets received
3931  *	mv.#		mode and version
3932  *	rs.#		restriction mask (RES_* bits)
3933  *
3934  * Note the code currently assumes there are no valid three letter
3935  * tags sent with each row, and needs to be adjusted if that changes.
3936  *
3937  * The client should accept the values in any order, and ignore .#
3938  * values which it does not understand, to allow a smooth path to
3939  * future changes without requiring a new opcode.  Clients can rely
3940  * on all *.0 values preceding any *.1 values, that is all values for
3941  * a given index number are together in the response.
3942  *
3943  * The end of the response list is noted with one or two tag=value
3944  * pairs.  Unconditionally:
3945  *
3946  *	now=		0x-prefixed l_fp timestamp at the server marking
3947  *			the end of the operation.
3948  *
3949  * If any entries were returned, now= is followed by:
3950  *
3951  *	last.newest=	hex l_fp identical to last.# of the prior
3952  *			entry.
3953  */
3954 static void read_mru_list(
3955 	struct recvbuf *rbufp,
3956 	int restrict_mask
3957 	)
3958 {
3959 	static const char	nulltxt[1] = 		{ '\0' };
3960 	static const char	nonce_text[] =		"nonce";
3961 	static const char	frags_text[] =		"frags";
3962 	static const char	limit_text[] =		"limit";
3963 	static const char	mincount_text[] =	"mincount";
3964 	static const char	resall_text[] =		"resall";
3965 	static const char	resany_text[] =		"resany";
3966 	static const char	maxlstint_text[] =	"maxlstint";
3967 	static const char	laddr_text[] =		"laddr";
3968 	static const char	resaxx_fmt[] =		"0x%hx";
3969 
3970 	u_int			limit;
3971 	u_short			frags;
3972 	u_short			resall;
3973 	u_short			resany;
3974 	int			mincount;
3975 	u_int			maxlstint;
3976 	sockaddr_u		laddr;
3977 	endpt *			lcladr;
3978 	u_int			count;
3979 	u_int			ui;
3980 	u_int			uf;
3981 	l_fp			last[16];
3982 	sockaddr_u		addr[COUNTOF(last)];
3983 	char			buf[128];
3984 	struct ctl_var *	in_parms;
3985 	const struct ctl_var *	v;
3986 	const char *		val;
3987 	const char *		pch;
3988 	char *			pnonce;
3989 	int			nonce_valid;
3990 	size_t			i;
3991 	int			priors;
3992 	u_short			hash;
3993 	mon_entry *		mon;
3994 	mon_entry *		prior_mon;
3995 	l_fp			now;
3996 
3997 	if (RES_NOMRULIST & restrict_mask) {
3998 		ctl_error(CERR_PERMISSION);
3999 		NLOG(NLOG_SYSINFO)
4000 			msyslog(LOG_NOTICE,
4001 				"mrulist from %s rejected due to nomrulist restriction",
4002 				stoa(&rbufp->recv_srcadr));
4003 		sys_restricted++;
4004 		return;
4005 	}
4006 	/*
4007 	 * fill in_parms var list with all possible input parameters.
4008 	 */
4009 	in_parms = NULL;
4010 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4011 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4012 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4013 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4014 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4015 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4016 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4017 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4018 	for (i = 0; i < COUNTOF(last); i++) {
4019 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4020 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4021 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4022 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4023 	}
4024 
4025 	/* decode input parms */
4026 	pnonce = NULL;
4027 	frags = 0;
4028 	limit = 0;
4029 	mincount = 0;
4030 	resall = 0;
4031 	resany = 0;
4032 	maxlstint = 0;
4033 	lcladr = NULL;
4034 	priors = 0;
4035 	ZERO(last);
4036 	ZERO(addr);
4037 
4038 	/* have to go through '(void*)' to drop 'const' property from pointer.
4039 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4040 	 */
4041 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4042 	       !(EOV & v->flags)) {
4043 		int si;
4044 
4045 		if (NULL == val)
4046 			val = nulltxt;
4047 
4048 		if (!strcmp(nonce_text, v->text)) {
4049 			free(pnonce);
4050 			pnonce = (*val) ? estrdup(val) : NULL;
4051 		} else if (!strcmp(frags_text, v->text)) {
4052 			if (1 != sscanf(val, "%hu", &frags))
4053 				goto blooper;
4054 		} else if (!strcmp(limit_text, v->text)) {
4055 			if (1 != sscanf(val, "%u", &limit))
4056 				goto blooper;
4057 		} else if (!strcmp(mincount_text, v->text)) {
4058 			if (1 != sscanf(val, "%d", &mincount))
4059 				goto blooper;
4060 			if (mincount < 0)
4061 				mincount = 0;
4062 		} else if (!strcmp(resall_text, v->text)) {
4063 			if (1 != sscanf(val, resaxx_fmt, &resall))
4064 				goto blooper;
4065 		} else if (!strcmp(resany_text, v->text)) {
4066 			if (1 != sscanf(val, resaxx_fmt, &resany))
4067 				goto blooper;
4068 		} else if (!strcmp(maxlstint_text, v->text)) {
4069 			if (1 != sscanf(val, "%u", &maxlstint))
4070 				goto blooper;
4071 		} else if (!strcmp(laddr_text, v->text)) {
4072 			if (!decodenetnum(val, &laddr))
4073 				goto blooper;
4074 			lcladr = getinterface(&laddr, 0);
4075 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4076 			   (size_t)si < COUNTOF(last)) {
4077 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4078 				goto blooper;
4079 			last[si].l_ui = ui;
4080 			last[si].l_uf = uf;
4081 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4082 				priors++;
4083 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4084 			   (size_t)si < COUNTOF(addr)) {
4085 			if (!decodenetnum(val, &addr[si]))
4086 				goto blooper;
4087 			if (last[si].l_ui && last[si].l_uf && si == priors)
4088 				priors++;
4089 		} else {
4090 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4091 				    v->text));
4092 			continue;
4093 
4094 		blooper:
4095 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4096 				    v->text, val));
4097 			free(pnonce);
4098 			pnonce = NULL;
4099 			break;
4100 		}
4101 	}
4102 	free_varlist(in_parms);
4103 	in_parms = NULL;
4104 
4105 	/* return no responses until the nonce is validated */
4106 	if (NULL == pnonce)
4107 		return;
4108 
4109 	nonce_valid = validate_nonce(pnonce, rbufp);
4110 	free(pnonce);
4111 	if (!nonce_valid)
4112 		return;
4113 
4114 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4115 	    frags > MRU_FRAGS_LIMIT) {
4116 		ctl_error(CERR_BADVALUE);
4117 		return;
4118 	}
4119 
4120 	/*
4121 	 * If either frags or limit is not given, use the max.
4122 	 */
4123 	if (0 != frags && 0 == limit)
4124 		limit = UINT_MAX;
4125 	else if (0 != limit && 0 == frags)
4126 		frags = MRU_FRAGS_LIMIT;
4127 
4128 	/*
4129 	 * Find the starting point if one was provided.
4130 	 */
4131 	mon = NULL;
4132 	for (i = 0; i < (size_t)priors; i++) {
4133 		hash = MON_HASH(&addr[i]);
4134 		for (mon = mon_hash[hash];
4135 		     mon != NULL;
4136 		     mon = mon->hash_next)
4137 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4138 				break;
4139 		if (mon != NULL) {
4140 			if (L_ISEQU(&mon->last, &last[i]))
4141 				break;
4142 			mon = NULL;
4143 		}
4144 	}
4145 
4146 	/* If a starting point was provided... */
4147 	if (priors) {
4148 		/* and none could be found unmodified... */
4149 		if (NULL == mon) {
4150 			/* tell ntpq to try again with older entries */
4151 			ctl_error(CERR_UNKNOWNVAR);
4152 			return;
4153 		}
4154 		/* confirm the prior entry used as starting point */
4155 		ctl_putts("last.older", &mon->last);
4156 		pch = sptoa(&mon->rmtadr);
4157 		ctl_putunqstr("addr.older", pch, strlen(pch));
4158 
4159 		/*
4160 		 * Move on to the first entry the client doesn't have,
4161 		 * except in the special case of a limit of one.  In
4162 		 * that case return the starting point entry.
4163 		 */
4164 		if (limit > 1)
4165 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4166 	} else {	/* start with the oldest */
4167 		mon = TAIL_DLIST(mon_mru_list, mru);
4168 	}
4169 
4170 	/*
4171 	 * send up to limit= entries in up to frags= datagrams
4172 	 */
4173 	get_systime(&now);
4174 	generate_nonce(rbufp, buf, sizeof(buf));
4175 	ctl_putunqstr("nonce", buf, strlen(buf));
4176 	prior_mon = NULL;
4177 	for (count = 0;
4178 	     mon != NULL && res_frags < frags && count < limit;
4179 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4180 
4181 		if (mon->count < mincount)
4182 			continue;
4183 		if (resall && resall != (resall & mon->flags))
4184 			continue;
4185 		if (resany && !(resany & mon->flags))
4186 			continue;
4187 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4188 		    maxlstint)
4189 			continue;
4190 		if (lcladr != NULL && mon->lcladr != lcladr)
4191 			continue;
4192 
4193 		send_mru_entry(mon, count);
4194 		if (!count)
4195 			send_random_tag_value(0);
4196 		count++;
4197 		prior_mon = mon;
4198 	}
4199 
4200 	/*
4201 	 * If this batch completes the MRU list, say so explicitly with
4202 	 * a now= l_fp timestamp.
4203 	 */
4204 	if (NULL == mon) {
4205 		if (count > 1)
4206 			send_random_tag_value(count - 1);
4207 		ctl_putts("now", &now);
4208 		/* if any entries were returned confirm the last */
4209 		if (prior_mon != NULL)
4210 			ctl_putts("last.newest", &prior_mon->last);
4211 	}
4212 	ctl_flushpkt(0);
4213 }
4214 
4215 
4216 /*
4217  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4218  *
4219  * To keep clients honest about not depending on the order of values,
4220  * and thereby avoid being locked into ugly workarounds to maintain
4221  * backward compatibility later as new fields are added to the response,
4222  * the order is random.
4223  */
4224 static void
4225 send_ifstats_entry(
4226 	endpt *	la,
4227 	u_int	ifnum
4228 	)
4229 {
4230 	const char addr_fmtu[] =	"addr.%u";
4231 	const char bcast_fmt[] =	"bcast.%u";
4232 	const char en_fmt[] =		"en.%u";	/* enabled */
4233 	const char name_fmt[] =		"name.%u";
4234 	const char flags_fmt[] =	"flags.%u";
4235 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4236 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4237 	const char rx_fmt[] =		"rx.%u";
4238 	const char tx_fmt[] =		"tx.%u";
4239 	const char txerr_fmt[] =	"txerr.%u";
4240 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4241 	const char up_fmt[] =		"up.%u";	/* uptime */
4242 	char	tag[32];
4243 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4244 	int	noisebits;
4245 	u_int32 noise;
4246 	u_int	which;
4247 	u_int	remaining;
4248 	const char *pch;
4249 
4250 	remaining = COUNTOF(sent);
4251 	ZERO(sent);
4252 	noise = 0;
4253 	noisebits = 0;
4254 	while (remaining > 0) {
4255 		if (noisebits < 4) {
4256 			noise = rand() ^ (rand() << 16);
4257 			noisebits = 31;
4258 		}
4259 		which = (noise & 0xf) % COUNTOF(sent);
4260 		noise >>= 4;
4261 		noisebits -= 4;
4262 
4263 		while (sent[which])
4264 			which = (which + 1) % COUNTOF(sent);
4265 
4266 		switch (which) {
4267 
4268 		case 0:
4269 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4270 			pch = sptoa(&la->sin);
4271 			ctl_putunqstr(tag, pch, strlen(pch));
4272 			break;
4273 
4274 		case 1:
4275 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4276 			if (INT_BCASTOPEN & la->flags)
4277 				pch = sptoa(&la->bcast);
4278 			else
4279 				pch = "";
4280 			ctl_putunqstr(tag, pch, strlen(pch));
4281 			break;
4282 
4283 		case 2:
4284 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4285 			ctl_putint(tag, !la->ignore_packets);
4286 			break;
4287 
4288 		case 3:
4289 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4290 			ctl_putstr(tag, la->name, strlen(la->name));
4291 			break;
4292 
4293 		case 4:
4294 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4295 			ctl_puthex(tag, (u_int)la->flags);
4296 			break;
4297 
4298 		case 5:
4299 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4300 			ctl_putint(tag, la->last_ttl);
4301 			break;
4302 
4303 		case 6:
4304 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4305 			ctl_putint(tag, la->num_mcast);
4306 			break;
4307 
4308 		case 7:
4309 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4310 			ctl_putint(tag, la->received);
4311 			break;
4312 
4313 		case 8:
4314 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4315 			ctl_putint(tag, la->sent);
4316 			break;
4317 
4318 		case 9:
4319 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4320 			ctl_putint(tag, la->notsent);
4321 			break;
4322 
4323 		case 10:
4324 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4325 			ctl_putuint(tag, la->peercnt);
4326 			break;
4327 
4328 		case 11:
4329 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4330 			ctl_putuint(tag, current_time - la->starttime);
4331 			break;
4332 		}
4333 		sent[which] = TRUE;
4334 		remaining--;
4335 	}
4336 	send_random_tag_value((int)ifnum);
4337 }
4338 
4339 
4340 /*
4341  * read_ifstats - send statistics for each local address, exposed by
4342  *		  ntpq -c ifstats
4343  */
4344 static void
4345 read_ifstats(
4346 	struct recvbuf *	rbufp
4347 	)
4348 {
4349 	u_int	ifidx;
4350 	endpt *	la;
4351 
4352 	/*
4353 	 * loop over [0..sys_ifnum] searching ep_list for each
4354 	 * ifnum in turn.
4355 	 */
4356 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4357 		for (la = ep_list; la != NULL; la = la->elink)
4358 			if (ifidx == la->ifnum)
4359 				break;
4360 		if (NULL == la)
4361 			continue;
4362 		/* return stats for one local address */
4363 		send_ifstats_entry(la, ifidx);
4364 	}
4365 	ctl_flushpkt(0);
4366 }
4367 
4368 static void
4369 sockaddrs_from_restrict_u(
4370 	sockaddr_u *	psaA,
4371 	sockaddr_u *	psaM,
4372 	restrict_u *	pres,
4373 	int		ipv6
4374 	)
4375 {
4376 	ZERO(*psaA);
4377 	ZERO(*psaM);
4378 	if (!ipv6) {
4379 		psaA->sa.sa_family = AF_INET;
4380 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4381 		psaM->sa.sa_family = AF_INET;
4382 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4383 	} else {
4384 		psaA->sa.sa_family = AF_INET6;
4385 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4386 		       sizeof(psaA->sa6.sin6_addr));
4387 		psaM->sa.sa_family = AF_INET6;
4388 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4389 		       sizeof(psaA->sa6.sin6_addr));
4390 	}
4391 }
4392 
4393 
4394 /*
4395  * Send a restrict entry in response to a "ntpq -c reslist" request.
4396  *
4397  * To keep clients honest about not depending on the order of values,
4398  * and thereby avoid being locked into ugly workarounds to maintain
4399  * backward compatibility later as new fields are added to the response,
4400  * the order is random.
4401  */
4402 static void
4403 send_restrict_entry(
4404 	restrict_u *	pres,
4405 	int		ipv6,
4406 	u_int		idx
4407 	)
4408 {
4409 	const char addr_fmtu[] =	"addr.%u";
4410 	const char mask_fmtu[] =	"mask.%u";
4411 	const char hits_fmt[] =		"hits.%u";
4412 	const char flags_fmt[] =	"flags.%u";
4413 	char		tag[32];
4414 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4415 	int		noisebits;
4416 	u_int32		noise;
4417 	u_int		which;
4418 	u_int		remaining;
4419 	sockaddr_u	addr;
4420 	sockaddr_u	mask;
4421 	const char *	pch;
4422 	char *		buf;
4423 	const char *	match_str;
4424 	const char *	access_str;
4425 
4426 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4427 	remaining = COUNTOF(sent);
4428 	ZERO(sent);
4429 	noise = 0;
4430 	noisebits = 0;
4431 	while (remaining > 0) {
4432 		if (noisebits < 2) {
4433 			noise = rand() ^ (rand() << 16);
4434 			noisebits = 31;
4435 		}
4436 		which = (noise & 0x3) % COUNTOF(sent);
4437 		noise >>= 2;
4438 		noisebits -= 2;
4439 
4440 		while (sent[which])
4441 			which = (which + 1) % COUNTOF(sent);
4442 
4443 		/* XXX: Numbers?  Really? */
4444 		switch (which) {
4445 
4446 		case 0:
4447 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4448 			pch = stoa(&addr);
4449 			ctl_putunqstr(tag, pch, strlen(pch));
4450 			break;
4451 
4452 		case 1:
4453 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4454 			pch = stoa(&mask);
4455 			ctl_putunqstr(tag, pch, strlen(pch));
4456 			break;
4457 
4458 		case 2:
4459 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4460 			ctl_putuint(tag, pres->count);
4461 			break;
4462 
4463 		case 3:
4464 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4465 			match_str = res_match_flags(pres->mflags);
4466 			access_str = res_access_flags(pres->rflags);
4467 			if ('\0' == match_str[0]) {
4468 				pch = access_str;
4469 			} else {
4470 				LIB_GETBUF(buf);
4471 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4472 					 match_str, access_str);
4473 				pch = buf;
4474 			}
4475 			ctl_putunqstr(tag, pch, strlen(pch));
4476 			break;
4477 		}
4478 		sent[which] = TRUE;
4479 		remaining--;
4480 	}
4481 	send_random_tag_value((int)idx);
4482 }
4483 
4484 
4485 static void
4486 send_restrict_list(
4487 	restrict_u *	pres,
4488 	int		ipv6,
4489 	u_int *		pidx
4490 	)
4491 {
4492 	for ( ; pres != NULL; pres = pres->link) {
4493 		send_restrict_entry(pres, ipv6, *pidx);
4494 		(*pidx)++;
4495 	}
4496 }
4497 
4498 
4499 /*
4500  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4501  */
4502 static void
4503 read_addr_restrictions(
4504 	struct recvbuf *	rbufp
4505 )
4506 {
4507 	u_int idx;
4508 
4509 	idx = 0;
4510 	send_restrict_list(restrictlist4, FALSE, &idx);
4511 	send_restrict_list(restrictlist6, TRUE, &idx);
4512 	ctl_flushpkt(0);
4513 }
4514 
4515 
4516 /*
4517  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4518  */
4519 static void
4520 read_ordlist(
4521 	struct recvbuf *	rbufp,
4522 	int			restrict_mask
4523 	)
4524 {
4525 	const char ifstats_s[] = "ifstats";
4526 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4527 	const char addr_rst_s[] = "addr_restrictions";
4528 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4529 	struct ntp_control *	cpkt;
4530 	u_short			qdata_octets;
4531 
4532 	/*
4533 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4534 	 * used only for ntpq -c ifstats.  With the addition of reslist
4535 	 * the same opcode was generalized to retrieve ordered lists
4536 	 * which require authentication.  The request data is empty or
4537 	 * contains "ifstats" (not null terminated) to retrieve local
4538 	 * addresses and associated stats.  It is "addr_restrictions"
4539 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4540 	 * which are access control lists.  Other request data return
4541 	 * CERR_UNKNOWNVAR.
4542 	 */
4543 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4544 	qdata_octets = ntohs(cpkt->count);
4545 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4546 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4547 		read_ifstats(rbufp);
4548 		return;
4549 	}
4550 	if (a_r_chars == qdata_octets &&
4551 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4552 		read_addr_restrictions(rbufp);
4553 		return;
4554 	}
4555 	ctl_error(CERR_UNKNOWNVAR);
4556 }
4557 
4558 
4559 /*
4560  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4561  */
4562 static void req_nonce(
4563 	struct recvbuf *	rbufp,
4564 	int			restrict_mask
4565 	)
4566 {
4567 	char	buf[64];
4568 
4569 	generate_nonce(rbufp, buf, sizeof(buf));
4570 	ctl_putunqstr("nonce", buf, strlen(buf));
4571 	ctl_flushpkt(0);
4572 }
4573 
4574 
4575 /*
4576  * read_clockstatus - return clock radio status
4577  */
4578 /*ARGSUSED*/
4579 static void
4580 read_clockstatus(
4581 	struct recvbuf *rbufp,
4582 	int restrict_mask
4583 	)
4584 {
4585 #ifndef REFCLOCK
4586 	/*
4587 	 * If no refclock support, no data to return
4588 	 */
4589 	ctl_error(CERR_BADASSOC);
4590 #else
4591 	const struct ctl_var *	v;
4592 	int			i;
4593 	struct peer *		peer;
4594 	char *			valuep;
4595 	u_char *		wants;
4596 	size_t			wants_alloc;
4597 	int			gotvar;
4598 	const u_char *		cc;
4599 	struct ctl_var *	kv;
4600 	struct refclockstat	cs;
4601 
4602 	if (res_associd != 0) {
4603 		peer = findpeerbyassoc(res_associd);
4604 	} else {
4605 		/*
4606 		 * Find a clock for this jerk.	If the system peer
4607 		 * is a clock use it, else search peer_list for one.
4608 		 */
4609 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4610 		    sys_peer->flags))
4611 			peer = sys_peer;
4612 		else
4613 			for (peer = peer_list;
4614 			     peer != NULL;
4615 			     peer = peer->p_link)
4616 				if (FLAG_REFCLOCK & peer->flags)
4617 					break;
4618 	}
4619 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4620 		ctl_error(CERR_BADASSOC);
4621 		return;
4622 	}
4623 	/*
4624 	 * If we got here we have a peer which is a clock. Get his
4625 	 * status.
4626 	 */
4627 	cs.kv_list = NULL;
4628 	refclock_control(&peer->srcadr, NULL, &cs);
4629 	kv = cs.kv_list;
4630 	/*
4631 	 * Look for variables in the packet.
4632 	 */
4633 	rpkt.status = htons(ctlclkstatus(&cs));
4634 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4635 	wants = emalloc_zero(wants_alloc);
4636 	gotvar = FALSE;
4637 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4638 		if (!(EOV & v->flags)) {
4639 			wants[v->code] = TRUE;
4640 			gotvar = TRUE;
4641 		} else {
4642 			v = ctl_getitem(kv, &valuep);
4643 			if (NULL == v) {
4644 				ctl_error(CERR_BADVALUE);
4645 				free(wants);
4646 				free_varlist(cs.kv_list);
4647 				return;
4648 			}
4649 			if (EOV & v->flags) {
4650 				ctl_error(CERR_UNKNOWNVAR);
4651 				free(wants);
4652 				free_varlist(cs.kv_list);
4653 				return;
4654 			}
4655 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4656 			gotvar = TRUE;
4657 		}
4658 	}
4659 
4660 	if (gotvar) {
4661 		for (i = 1; i <= CC_MAXCODE; i++)
4662 			if (wants[i])
4663 				ctl_putclock(i, &cs, TRUE);
4664 		if (kv != NULL)
4665 			for (i = 0; !(EOV & kv[i].flags); i++)
4666 				if (wants[i + CC_MAXCODE + 1])
4667 					ctl_putdata(kv[i].text,
4668 						    strlen(kv[i].text),
4669 						    FALSE);
4670 	} else {
4671 		for (cc = def_clock_var; *cc != 0; cc++)
4672 			ctl_putclock((int)*cc, &cs, FALSE);
4673 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4674 			if (DEF & kv->flags)
4675 				ctl_putdata(kv->text, strlen(kv->text),
4676 					    FALSE);
4677 	}
4678 
4679 	free(wants);
4680 	free_varlist(cs.kv_list);
4681 
4682 	ctl_flushpkt(0);
4683 #endif
4684 }
4685 
4686 
4687 /*
4688  * write_clockstatus - we don't do this
4689  */
4690 /*ARGSUSED*/
4691 static void
4692 write_clockstatus(
4693 	struct recvbuf *rbufp,
4694 	int restrict_mask
4695 	)
4696 {
4697 	ctl_error(CERR_PERMISSION);
4698 }
4699 
4700 /*
4701  * Trap support from here on down. We send async trap messages when the
4702  * upper levels report trouble. Traps can by set either by control
4703  * messages or by configuration.
4704  */
4705 /*
4706  * set_trap - set a trap in response to a control message
4707  */
4708 static void
4709 set_trap(
4710 	struct recvbuf *rbufp,
4711 	int restrict_mask
4712 	)
4713 {
4714 	int traptype;
4715 
4716 	/*
4717 	 * See if this guy is allowed
4718 	 */
4719 	if (restrict_mask & RES_NOTRAP) {
4720 		ctl_error(CERR_PERMISSION);
4721 		return;
4722 	}
4723 
4724 	/*
4725 	 * Determine his allowed trap type.
4726 	 */
4727 	traptype = TRAP_TYPE_PRIO;
4728 	if (restrict_mask & RES_LPTRAP)
4729 		traptype = TRAP_TYPE_NONPRIO;
4730 
4731 	/*
4732 	 * Call ctlsettrap() to do the work.  Return
4733 	 * an error if it can't assign the trap.
4734 	 */
4735 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4736 			(int)res_version))
4737 		ctl_error(CERR_NORESOURCE);
4738 	ctl_flushpkt(0);
4739 }
4740 
4741 
4742 /*
4743  * unset_trap - unset a trap in response to a control message
4744  */
4745 static void
4746 unset_trap(
4747 	struct recvbuf *rbufp,
4748 	int restrict_mask
4749 	)
4750 {
4751 	int traptype;
4752 
4753 	/*
4754 	 * We don't prevent anyone from removing his own trap unless the
4755 	 * trap is configured. Note we also must be aware of the
4756 	 * possibility that restriction flags were changed since this
4757 	 * guy last set his trap. Set the trap type based on this.
4758 	 */
4759 	traptype = TRAP_TYPE_PRIO;
4760 	if (restrict_mask & RES_LPTRAP)
4761 		traptype = TRAP_TYPE_NONPRIO;
4762 
4763 	/*
4764 	 * Call ctlclrtrap() to clear this out.
4765 	 */
4766 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4767 		ctl_error(CERR_BADASSOC);
4768 	ctl_flushpkt(0);
4769 }
4770 
4771 
4772 /*
4773  * ctlsettrap - called to set a trap
4774  */
4775 int
4776 ctlsettrap(
4777 	sockaddr_u *raddr,
4778 	endpt *linter,
4779 	int traptype,
4780 	int version
4781 	)
4782 {
4783 	size_t n;
4784 	struct ctl_trap *tp;
4785 	struct ctl_trap *tptouse;
4786 
4787 	/*
4788 	 * See if we can find this trap.  If so, we only need update
4789 	 * the flags and the time.
4790 	 */
4791 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4792 		switch (traptype) {
4793 
4794 		case TRAP_TYPE_CONFIG:
4795 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4796 			break;
4797 
4798 		case TRAP_TYPE_PRIO:
4799 			if (tp->tr_flags & TRAP_CONFIGURED)
4800 				return (1); /* don't change anything */
4801 			tp->tr_flags = TRAP_INUSE;
4802 			break;
4803 
4804 		case TRAP_TYPE_NONPRIO:
4805 			if (tp->tr_flags & TRAP_CONFIGURED)
4806 				return (1); /* don't change anything */
4807 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4808 			break;
4809 		}
4810 		tp->tr_settime = current_time;
4811 		tp->tr_resets++;
4812 		return (1);
4813 	}
4814 
4815 	/*
4816 	 * First we heard of this guy.	Try to find a trap structure
4817 	 * for him to use, clearing out lesser priority guys if we
4818 	 * have to. Clear out anyone who's expired while we're at it.
4819 	 */
4820 	tptouse = NULL;
4821 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4822 		tp = &ctl_traps[n];
4823 		if ((TRAP_INUSE & tp->tr_flags) &&
4824 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4825 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4826 			tp->tr_flags = 0;
4827 			num_ctl_traps--;
4828 		}
4829 		if (!(TRAP_INUSE & tp->tr_flags)) {
4830 			tptouse = tp;
4831 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4832 			switch (traptype) {
4833 
4834 			case TRAP_TYPE_CONFIG:
4835 				if (tptouse == NULL) {
4836 					tptouse = tp;
4837 					break;
4838 				}
4839 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4840 				    !(TRAP_NONPRIO & tp->tr_flags))
4841 					break;
4842 
4843 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4844 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4845 					tptouse = tp;
4846 					break;
4847 				}
4848 				if (tptouse->tr_origtime <
4849 				    tp->tr_origtime)
4850 					tptouse = tp;
4851 				break;
4852 
4853 			case TRAP_TYPE_PRIO:
4854 				if ( TRAP_NONPRIO & tp->tr_flags) {
4855 					if (tptouse == NULL ||
4856 					    ((TRAP_INUSE &
4857 					      tptouse->tr_flags) &&
4858 					     tptouse->tr_origtime <
4859 					     tp->tr_origtime))
4860 						tptouse = tp;
4861 				}
4862 				break;
4863 
4864 			case TRAP_TYPE_NONPRIO:
4865 				break;
4866 			}
4867 		}
4868 	}
4869 
4870 	/*
4871 	 * If we don't have room for him return an error.
4872 	 */
4873 	if (tptouse == NULL)
4874 		return (0);
4875 
4876 	/*
4877 	 * Set up this structure for him.
4878 	 */
4879 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4880 	tptouse->tr_count = tptouse->tr_resets = 0;
4881 	tptouse->tr_sequence = 1;
4882 	tptouse->tr_addr = *raddr;
4883 	tptouse->tr_localaddr = linter;
4884 	tptouse->tr_version = (u_char) version;
4885 	tptouse->tr_flags = TRAP_INUSE;
4886 	if (traptype == TRAP_TYPE_CONFIG)
4887 		tptouse->tr_flags |= TRAP_CONFIGURED;
4888 	else if (traptype == TRAP_TYPE_NONPRIO)
4889 		tptouse->tr_flags |= TRAP_NONPRIO;
4890 	num_ctl_traps++;
4891 	return (1);
4892 }
4893 
4894 
4895 /*
4896  * ctlclrtrap - called to clear a trap
4897  */
4898 int
4899 ctlclrtrap(
4900 	sockaddr_u *raddr,
4901 	endpt *linter,
4902 	int traptype
4903 	)
4904 {
4905 	register struct ctl_trap *tp;
4906 
4907 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4908 		return (0);
4909 
4910 	if (tp->tr_flags & TRAP_CONFIGURED
4911 	    && traptype != TRAP_TYPE_CONFIG)
4912 		return (0);
4913 
4914 	tp->tr_flags = 0;
4915 	num_ctl_traps--;
4916 	return (1);
4917 }
4918 
4919 
4920 /*
4921  * ctlfindtrap - find a trap given the remote and local addresses
4922  */
4923 static struct ctl_trap *
4924 ctlfindtrap(
4925 	sockaddr_u *raddr,
4926 	endpt *linter
4927 	)
4928 {
4929 	size_t	n;
4930 
4931 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4932 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4933 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4934 		    && (linter == ctl_traps[n].tr_localaddr))
4935 			return &ctl_traps[n];
4936 
4937 	return NULL;
4938 }
4939 
4940 
4941 /*
4942  * report_event - report an event to the trappers
4943  */
4944 void
4945 report_event(
4946 	int	err,		/* error code */
4947 	struct peer *peer,	/* peer structure pointer */
4948 	const char *str		/* protostats string */
4949 	)
4950 {
4951 	char	statstr[NTP_MAXSTRLEN];
4952 	int	i;
4953 	size_t	len;
4954 
4955 	/*
4956 	 * Report the error to the protostats file, system log and
4957 	 * trappers.
4958 	 */
4959 	if (peer == NULL) {
4960 
4961 		/*
4962 		 * Discard a system report if the number of reports of
4963 		 * the same type exceeds the maximum.
4964 		 */
4965 		if (ctl_sys_last_event != (u_char)err)
4966 			ctl_sys_num_events= 0;
4967 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4968 			return;
4969 
4970 		ctl_sys_last_event = (u_char)err;
4971 		ctl_sys_num_events++;
4972 		snprintf(statstr, sizeof(statstr),
4973 		    "0.0.0.0 %04x %02x %s",
4974 		    ctlsysstatus(), err, eventstr(err));
4975 		if (str != NULL) {
4976 			len = strlen(statstr);
4977 			snprintf(statstr + len, sizeof(statstr) - len,
4978 			    " %s", str);
4979 		}
4980 		NLOG(NLOG_SYSEVENT)
4981 			msyslog(LOG_INFO, "%s", statstr);
4982 	} else {
4983 
4984 		/*
4985 		 * Discard a peer report if the number of reports of
4986 		 * the same type exceeds the maximum for that peer.
4987 		 */
4988 		const char *	src;
4989 		u_char		errlast;
4990 
4991 		errlast = (u_char)err & ~PEER_EVENT;
4992 		if (peer->last_event != errlast)
4993 			peer->num_events = 0;
4994 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4995 			return;
4996 
4997 		peer->last_event = errlast;
4998 		peer->num_events++;
4999 		if (ISREFCLOCKADR(&peer->srcadr))
5000 			src = refnumtoa(&peer->srcadr);
5001 		else
5002 			src = stoa(&peer->srcadr);
5003 
5004 		snprintf(statstr, sizeof(statstr),
5005 		    "%s %04x %02x %s", src,
5006 		    ctlpeerstatus(peer), err, eventstr(err));
5007 		if (str != NULL) {
5008 			len = strlen(statstr);
5009 			snprintf(statstr + len, sizeof(statstr) - len,
5010 			    " %s", str);
5011 		}
5012 		NLOG(NLOG_PEEREVENT)
5013 			msyslog(LOG_INFO, "%s", statstr);
5014 	}
5015 	record_proto_stats(statstr);
5016 #if DEBUG
5017 	if (debug)
5018 		printf("event at %lu %s\n", current_time, statstr);
5019 #endif
5020 
5021 	/*
5022 	 * If no trappers, return.
5023 	 */
5024 	if (num_ctl_traps <= 0)
5025 		return;
5026 
5027 	/* [Bug 3119]
5028 	 * Peer Events should be associated with a peer -- hence the
5029 	 * name. But there are instances where this function is called
5030 	 * *without* a valid peer. This happens e.g. with an unsolicited
5031 	 * CryptoNAK, or when a leap second alarm is going off while
5032 	 * currently without a system peer.
5033 	 *
5034 	 * The most sensible approach to this seems to bail out here if
5035 	 * this happens. Avoiding to call this function would also
5036 	 * bypass the log reporting in the first part of this function,
5037 	 * and this is probably not the best of all options.
5038 	 *   -*-perlinger@ntp.org-*-
5039 	 */
5040 	if ((err & PEER_EVENT) && !peer)
5041 		return;
5042 
5043 	/*
5044 	 * Set up the outgoing packet variables
5045 	 */
5046 	res_opcode = CTL_OP_ASYNCMSG;
5047 	res_offset = 0;
5048 	res_async = TRUE;
5049 	res_authenticate = FALSE;
5050 	datapt = rpkt.u.data;
5051 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5052 	if (!(err & PEER_EVENT)) {
5053 		rpkt.associd = 0;
5054 		rpkt.status = htons(ctlsysstatus());
5055 
5056 		/* Include the core system variables and the list. */
5057 		for (i = 1; i <= CS_VARLIST; i++)
5058 			ctl_putsys(i);
5059 	} else if (NULL != peer) { /* paranoia -- skip output */
5060 		rpkt.associd = htons(peer->associd);
5061 		rpkt.status = htons(ctlpeerstatus(peer));
5062 
5063 		/* Dump it all. Later, maybe less. */
5064 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5065 			ctl_putpeer(i, peer);
5066 #	    ifdef REFCLOCK
5067 		/*
5068 		 * for clock exception events: add clock variables to
5069 		 * reflect info on exception
5070 		 */
5071 		if (err == PEVNT_CLOCK) {
5072 			struct refclockstat cs;
5073 			struct ctl_var *kv;
5074 
5075 			cs.kv_list = NULL;
5076 			refclock_control(&peer->srcadr, NULL, &cs);
5077 
5078 			ctl_puthex("refclockstatus",
5079 				   ctlclkstatus(&cs));
5080 
5081 			for (i = 1; i <= CC_MAXCODE; i++)
5082 				ctl_putclock(i, &cs, FALSE);
5083 			for (kv = cs.kv_list;
5084 			     kv != NULL && !(EOV & kv->flags);
5085 			     kv++)
5086 				if (DEF & kv->flags)
5087 					ctl_putdata(kv->text,
5088 						    strlen(kv->text),
5089 						    FALSE);
5090 			free_varlist(cs.kv_list);
5091 		}
5092 #	    endif /* REFCLOCK */
5093 	}
5094 
5095 	/*
5096 	 * We're done, return.
5097 	 */
5098 	ctl_flushpkt(0);
5099 }
5100 
5101 
5102 /*
5103  * mprintf_event - printf-style varargs variant of report_event()
5104  */
5105 int
5106 mprintf_event(
5107 	int		evcode,		/* event code */
5108 	struct peer *	p,		/* may be NULL */
5109 	const char *	fmt,		/* msnprintf format */
5110 	...
5111 	)
5112 {
5113 	va_list	ap;
5114 	int	rc;
5115 	char	msg[512];
5116 
5117 	va_start(ap, fmt);
5118 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5119 	va_end(ap);
5120 	report_event(evcode, p, msg);
5121 
5122 	return rc;
5123 }
5124 
5125 
5126 /*
5127  * ctl_clr_stats - clear stat counters
5128  */
5129 void
5130 ctl_clr_stats(void)
5131 {
5132 	ctltimereset = current_time;
5133 	numctlreq = 0;
5134 	numctlbadpkts = 0;
5135 	numctlresponses = 0;
5136 	numctlfrags = 0;
5137 	numctlerrors = 0;
5138 	numctlfrags = 0;
5139 	numctltooshort = 0;
5140 	numctlinputresp = 0;
5141 	numctlinputfrag = 0;
5142 	numctlinputerr = 0;
5143 	numctlbadoffset = 0;
5144 	numctlbadversion = 0;
5145 	numctldatatooshort = 0;
5146 	numctlbadop = 0;
5147 	numasyncmsgs = 0;
5148 }
5149 
5150 static u_short
5151 count_var(
5152 	const struct ctl_var *k
5153 	)
5154 {
5155 	u_int c;
5156 
5157 	if (NULL == k)
5158 		return 0;
5159 
5160 	c = 0;
5161 	while (!(EOV & (k++)->flags))
5162 		c++;
5163 
5164 	ENSURE(c <= USHRT_MAX);
5165 	return (u_short)c;
5166 }
5167 
5168 
5169 char *
5170 add_var(
5171 	struct ctl_var **kv,
5172 	u_long size,
5173 	u_short def
5174 	)
5175 {
5176 	u_short		c;
5177 	struct ctl_var *k;
5178 	char *		buf;
5179 
5180 	c = count_var(*kv);
5181 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5182 	k = *kv;
5183 	buf = emalloc(size);
5184 	k[c].code  = c;
5185 	k[c].text  = buf;
5186 	k[c].flags = def;
5187 	k[c + 1].code  = 0;
5188 	k[c + 1].text  = NULL;
5189 	k[c + 1].flags = EOV;
5190 
5191 	return buf;
5192 }
5193 
5194 
5195 void
5196 set_var(
5197 	struct ctl_var **kv,
5198 	const char *data,
5199 	u_long size,
5200 	u_short def
5201 	)
5202 {
5203 	struct ctl_var *k;
5204 	const char *s;
5205 	const char *t;
5206 	char *td;
5207 
5208 	if (NULL == data || !size)
5209 		return;
5210 
5211 	k = *kv;
5212 	if (k != NULL) {
5213 		while (!(EOV & k->flags)) {
5214 			if (NULL == k->text)	{
5215 				td = emalloc(size);
5216 				memcpy(td, data, size);
5217 				k->text = td;
5218 				k->flags = def;
5219 				return;
5220 			} else {
5221 				s = data;
5222 				t = k->text;
5223 				while (*t != '=' && *s == *t) {
5224 					s++;
5225 					t++;
5226 				}
5227 				if (*s == *t && ((*t == '=') || !*t)) {
5228 					td = erealloc((void *)(intptr_t)k->text, size);
5229 					memcpy(td, data, size);
5230 					k->text = td;
5231 					k->flags = def;
5232 					return;
5233 				}
5234 			}
5235 			k++;
5236 		}
5237 	}
5238 	td = add_var(kv, size, def);
5239 	memcpy(td, data, size);
5240 }
5241 
5242 
5243 void
5244 set_sys_var(
5245 	const char *data,
5246 	u_long size,
5247 	u_short def
5248 	)
5249 {
5250 	set_var(&ext_sys_var, data, size, def);
5251 }
5252 
5253 
5254 /*
5255  * get_ext_sys_var() retrieves the value of a user-defined variable or
5256  * NULL if the variable has not been setvar'd.
5257  */
5258 const char *
5259 get_ext_sys_var(const char *tag)
5260 {
5261 	struct ctl_var *	v;
5262 	size_t			c;
5263 	const char *		val;
5264 
5265 	val = NULL;
5266 	c = strlen(tag);
5267 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5268 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5269 			if ('=' == v->text[c]) {
5270 				val = v->text + c + 1;
5271 				break;
5272 			} else if ('\0' == v->text[c]) {
5273 				val = "";
5274 				break;
5275 			}
5276 		}
5277 	}
5278 
5279 	return val;
5280 }
5281 
5282 
5283 void
5284 free_varlist(
5285 	struct ctl_var *kv
5286 	)
5287 {
5288 	struct ctl_var *k;
5289 	if (kv) {
5290 		for (k = kv; !(k->flags & EOV); k++)
5291 			free((void *)(intptr_t)k->text);
5292 		free((void *)kv);
5293 	}
5294 }
5295