1 /*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 /* *****************************************************************************
12 * Constructs a dictionary using a heuristic based on the following paper:
13 *
14 * Liao, Petri, Moffat, Wirth
15 * Effective Construction of Relative Lempel-Ziv Dictionaries
16 * Published in WWW 2016.
17 *
18 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19 ******************************************************************************/
20
21 /*-*************************************
22 * Dependencies
23 ***************************************/
24 #include <stdio.h> /* fprintf */
25 #include <stdlib.h> /* malloc, free, qsort */
26 #include <string.h> /* memset */
27 #include <time.h> /* clock */
28
29 #ifndef ZDICT_STATIC_LINKING_ONLY
30 # define ZDICT_STATIC_LINKING_ONLY
31 #endif
32
33 #include "../common/mem.h" /* read */
34 #include "../common/pool.h"
35 #include "../common/threading.h"
36 #include "../common/zstd_internal.h" /* includes zstd.h */
37 #include "../zdict.h"
38 #include "cover.h"
39
40 /*-*************************************
41 * Constants
42 ***************************************/
43 /**
44 * There are 32bit indexes used to ref samples, so limit samples size to 4GB
45 * on 64bit builds.
46 * For 32bit builds we choose 1 GB.
47 * Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
48 * contiguous buffer, so 1GB is already a high limit.
49 */
50 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
51 #define COVER_DEFAULT_SPLITPOINT 1.0
52
53 /*-*************************************
54 * Console display
55 ***************************************/
56 #ifndef LOCALDISPLAYLEVEL
57 static int g_displayLevel = 0;
58 #endif
59 #undef DISPLAY
60 #define DISPLAY(...) \
61 { \
62 fprintf(stderr, __VA_ARGS__); \
63 fflush(stderr); \
64 }
65 #undef LOCALDISPLAYLEVEL
66 #define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
67 if (displayLevel >= l) { \
68 DISPLAY(__VA_ARGS__); \
69 } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
70 #undef DISPLAYLEVEL
71 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
72
73 #ifndef LOCALDISPLAYUPDATE
74 static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
75 static clock_t g_time = 0;
76 #endif
77 #undef LOCALDISPLAYUPDATE
78 #define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
79 if (displayLevel >= l) { \
80 if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
81 g_time = clock(); \
82 DISPLAY(__VA_ARGS__); \
83 } \
84 }
85 #undef DISPLAYUPDATE
86 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
87
88 /*-*************************************
89 * Hash table
90 ***************************************
91 * A small specialized hash map for storing activeDmers.
92 * The map does not resize, so if it becomes full it will loop forever.
93 * Thus, the map must be large enough to store every value.
94 * The map implements linear probing and keeps its load less than 0.5.
95 */
96
97 #define MAP_EMPTY_VALUE ((U32)-1)
98 typedef struct COVER_map_pair_t_s {
99 U32 key;
100 U32 value;
101 } COVER_map_pair_t;
102
103 typedef struct COVER_map_s {
104 COVER_map_pair_t *data;
105 U32 sizeLog;
106 U32 size;
107 U32 sizeMask;
108 } COVER_map_t;
109
110 /**
111 * Clear the map.
112 */
COVER_map_clear(COVER_map_t * map)113 static void COVER_map_clear(COVER_map_t *map) {
114 memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
115 }
116
117 /**
118 * Initializes a map of the given size.
119 * Returns 1 on success and 0 on failure.
120 * The map must be destroyed with COVER_map_destroy().
121 * The map is only guaranteed to be large enough to hold size elements.
122 */
COVER_map_init(COVER_map_t * map,U32 size)123 static int COVER_map_init(COVER_map_t *map, U32 size) {
124 map->sizeLog = ZSTD_highbit32(size) + 2;
125 map->size = (U32)1 << map->sizeLog;
126 map->sizeMask = map->size - 1;
127 map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
128 if (!map->data) {
129 map->sizeLog = 0;
130 map->size = 0;
131 return 0;
132 }
133 COVER_map_clear(map);
134 return 1;
135 }
136
137 /**
138 * Internal hash function
139 */
140 static const U32 COVER_prime4bytes = 2654435761U;
COVER_map_hash(COVER_map_t * map,U32 key)141 static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
142 return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
143 }
144
145 /**
146 * Helper function that returns the index that a key should be placed into.
147 */
COVER_map_index(COVER_map_t * map,U32 key)148 static U32 COVER_map_index(COVER_map_t *map, U32 key) {
149 const U32 hash = COVER_map_hash(map, key);
150 U32 i;
151 for (i = hash;; i = (i + 1) & map->sizeMask) {
152 COVER_map_pair_t *pos = &map->data[i];
153 if (pos->value == MAP_EMPTY_VALUE) {
154 return i;
155 }
156 if (pos->key == key) {
157 return i;
158 }
159 }
160 }
161
162 /**
163 * Returns the pointer to the value for key.
164 * If key is not in the map, it is inserted and the value is set to 0.
165 * The map must not be full.
166 */
COVER_map_at(COVER_map_t * map,U32 key)167 static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
168 COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
169 if (pos->value == MAP_EMPTY_VALUE) {
170 pos->key = key;
171 pos->value = 0;
172 }
173 return &pos->value;
174 }
175
176 /**
177 * Deletes key from the map if present.
178 */
COVER_map_remove(COVER_map_t * map,U32 key)179 static void COVER_map_remove(COVER_map_t *map, U32 key) {
180 U32 i = COVER_map_index(map, key);
181 COVER_map_pair_t *del = &map->data[i];
182 U32 shift = 1;
183 if (del->value == MAP_EMPTY_VALUE) {
184 return;
185 }
186 for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
187 COVER_map_pair_t *const pos = &map->data[i];
188 /* If the position is empty we are done */
189 if (pos->value == MAP_EMPTY_VALUE) {
190 del->value = MAP_EMPTY_VALUE;
191 return;
192 }
193 /* If pos can be moved to del do so */
194 if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
195 del->key = pos->key;
196 del->value = pos->value;
197 del = pos;
198 shift = 1;
199 } else {
200 ++shift;
201 }
202 }
203 }
204
205 /**
206 * Destroys a map that is inited with COVER_map_init().
207 */
COVER_map_destroy(COVER_map_t * map)208 static void COVER_map_destroy(COVER_map_t *map) {
209 if (map->data) {
210 free(map->data);
211 }
212 map->data = NULL;
213 map->size = 0;
214 }
215
216 /*-*************************************
217 * Context
218 ***************************************/
219
220 typedef struct {
221 const BYTE *samples;
222 size_t *offsets;
223 const size_t *samplesSizes;
224 size_t nbSamples;
225 size_t nbTrainSamples;
226 size_t nbTestSamples;
227 U32 *suffix;
228 size_t suffixSize;
229 U32 *freqs;
230 U32 *dmerAt;
231 unsigned d;
232 } COVER_ctx_t;
233
234 /* We need a global context for qsort... */
235 static COVER_ctx_t *g_coverCtx = NULL;
236
237 /*-*************************************
238 * Helper functions
239 ***************************************/
240
241 /**
242 * Returns the sum of the sample sizes.
243 */
COVER_sum(const size_t * samplesSizes,unsigned nbSamples)244 size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
245 size_t sum = 0;
246 unsigned i;
247 for (i = 0; i < nbSamples; ++i) {
248 sum += samplesSizes[i];
249 }
250 return sum;
251 }
252
253 /**
254 * Returns -1 if the dmer at lp is less than the dmer at rp.
255 * Return 0 if the dmers at lp and rp are equal.
256 * Returns 1 if the dmer at lp is greater than the dmer at rp.
257 */
COVER_cmp(COVER_ctx_t * ctx,const void * lp,const void * rp)258 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
259 U32 const lhs = *(U32 const *)lp;
260 U32 const rhs = *(U32 const *)rp;
261 return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
262 }
263 /**
264 * Faster version for d <= 8.
265 */
COVER_cmp8(COVER_ctx_t * ctx,const void * lp,const void * rp)266 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
267 U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
268 U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
269 U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
270 if (lhs < rhs) {
271 return -1;
272 }
273 return (lhs > rhs);
274 }
275
276 /**
277 * Same as COVER_cmp() except ties are broken by pointer value
278 * NOTE: g_coverCtx must be set to call this function. A global is required because
279 * qsort doesn't take an opaque pointer.
280 */
COVER_strict_cmp(const void * lp,const void * rp)281 static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
282 int result = COVER_cmp(g_coverCtx, lp, rp);
283 if (result == 0) {
284 result = lp < rp ? -1 : 1;
285 }
286 return result;
287 }
288 /**
289 * Faster version for d <= 8.
290 */
COVER_strict_cmp8(const void * lp,const void * rp)291 static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
292 int result = COVER_cmp8(g_coverCtx, lp, rp);
293 if (result == 0) {
294 result = lp < rp ? -1 : 1;
295 }
296 return result;
297 }
298
299 /**
300 * Returns the first pointer in [first, last) whose element does not compare
301 * less than value. If no such element exists it returns last.
302 */
COVER_lower_bound(const size_t * first,const size_t * last,size_t value)303 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
304 size_t value) {
305 size_t count = last - first;
306 while (count != 0) {
307 size_t step = count / 2;
308 const size_t *ptr = first;
309 ptr += step;
310 if (*ptr < value) {
311 first = ++ptr;
312 count -= step + 1;
313 } else {
314 count = step;
315 }
316 }
317 return first;
318 }
319
320 /**
321 * Generic groupBy function.
322 * Groups an array sorted by cmp into groups with equivalent values.
323 * Calls grp for each group.
324 */
325 static void
COVER_groupBy(const void * data,size_t count,size_t size,COVER_ctx_t * ctx,int (* cmp)(COVER_ctx_t *,const void *,const void *),void (* grp)(COVER_ctx_t *,const void *,const void *))326 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
327 int (*cmp)(COVER_ctx_t *, const void *, const void *),
328 void (*grp)(COVER_ctx_t *, const void *, const void *)) {
329 const BYTE *ptr = (const BYTE *)data;
330 size_t num = 0;
331 while (num < count) {
332 const BYTE *grpEnd = ptr + size;
333 ++num;
334 while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
335 grpEnd += size;
336 ++num;
337 }
338 grp(ctx, ptr, grpEnd);
339 ptr = grpEnd;
340 }
341 }
342
343 /*-*************************************
344 * Cover functions
345 ***************************************/
346
347 /**
348 * Called on each group of positions with the same dmer.
349 * Counts the frequency of each dmer and saves it in the suffix array.
350 * Fills `ctx->dmerAt`.
351 */
COVER_group(COVER_ctx_t * ctx,const void * group,const void * groupEnd)352 static void COVER_group(COVER_ctx_t *ctx, const void *group,
353 const void *groupEnd) {
354 /* The group consists of all the positions with the same first d bytes. */
355 const U32 *grpPtr = (const U32 *)group;
356 const U32 *grpEnd = (const U32 *)groupEnd;
357 /* The dmerId is how we will reference this dmer.
358 * This allows us to map the whole dmer space to a much smaller space, the
359 * size of the suffix array.
360 */
361 const U32 dmerId = (U32)(grpPtr - ctx->suffix);
362 /* Count the number of samples this dmer shows up in */
363 U32 freq = 0;
364 /* Details */
365 const size_t *curOffsetPtr = ctx->offsets;
366 const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
367 /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
368 * different sample than the last.
369 */
370 size_t curSampleEnd = ctx->offsets[0];
371 for (; grpPtr != grpEnd; ++grpPtr) {
372 /* Save the dmerId for this position so we can get back to it. */
373 ctx->dmerAt[*grpPtr] = dmerId;
374 /* Dictionaries only help for the first reference to the dmer.
375 * After that zstd can reference the match from the previous reference.
376 * So only count each dmer once for each sample it is in.
377 */
378 if (*grpPtr < curSampleEnd) {
379 continue;
380 }
381 freq += 1;
382 /* Binary search to find the end of the sample *grpPtr is in.
383 * In the common case that grpPtr + 1 == grpEnd we can skip the binary
384 * search because the loop is over.
385 */
386 if (grpPtr + 1 != grpEnd) {
387 const size_t *sampleEndPtr =
388 COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
389 curSampleEnd = *sampleEndPtr;
390 curOffsetPtr = sampleEndPtr + 1;
391 }
392 }
393 /* At this point we are never going to look at this segment of the suffix
394 * array again. We take advantage of this fact to save memory.
395 * We store the frequency of the dmer in the first position of the group,
396 * which is dmerId.
397 */
398 ctx->suffix[dmerId] = freq;
399 }
400
401
402 /**
403 * Selects the best segment in an epoch.
404 * Segments of are scored according to the function:
405 *
406 * Let F(d) be the frequency of dmer d.
407 * Let S_i be the dmer at position i of segment S which has length k.
408 *
409 * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
410 *
411 * Once the dmer d is in the dictionary we set F(d) = 0.
412 */
COVER_selectSegment(const COVER_ctx_t * ctx,U32 * freqs,COVER_map_t * activeDmers,U32 begin,U32 end,ZDICT_cover_params_t parameters)413 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
414 COVER_map_t *activeDmers, U32 begin,
415 U32 end,
416 ZDICT_cover_params_t parameters) {
417 /* Constants */
418 const U32 k = parameters.k;
419 const U32 d = parameters.d;
420 const U32 dmersInK = k - d + 1;
421 /* Try each segment (activeSegment) and save the best (bestSegment) */
422 COVER_segment_t bestSegment = {0, 0, 0};
423 COVER_segment_t activeSegment;
424 /* Reset the activeDmers in the segment */
425 COVER_map_clear(activeDmers);
426 /* The activeSegment starts at the beginning of the epoch. */
427 activeSegment.begin = begin;
428 activeSegment.end = begin;
429 activeSegment.score = 0;
430 /* Slide the activeSegment through the whole epoch.
431 * Save the best segment in bestSegment.
432 */
433 while (activeSegment.end < end) {
434 /* The dmerId for the dmer at the next position */
435 U32 newDmer = ctx->dmerAt[activeSegment.end];
436 /* The entry in activeDmers for this dmerId */
437 U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
438 /* If the dmer isn't already present in the segment add its score. */
439 if (*newDmerOcc == 0) {
440 /* The paper suggest using the L-0.5 norm, but experiments show that it
441 * doesn't help.
442 */
443 activeSegment.score += freqs[newDmer];
444 }
445 /* Add the dmer to the segment */
446 activeSegment.end += 1;
447 *newDmerOcc += 1;
448
449 /* If the window is now too large, drop the first position */
450 if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
451 U32 delDmer = ctx->dmerAt[activeSegment.begin];
452 U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
453 activeSegment.begin += 1;
454 *delDmerOcc -= 1;
455 /* If this is the last occurrence of the dmer, subtract its score */
456 if (*delDmerOcc == 0) {
457 COVER_map_remove(activeDmers, delDmer);
458 activeSegment.score -= freqs[delDmer];
459 }
460 }
461
462 /* If this segment is the best so far save it */
463 if (activeSegment.score > bestSegment.score) {
464 bestSegment = activeSegment;
465 }
466 }
467 {
468 /* Trim off the zero frequency head and tail from the segment. */
469 U32 newBegin = bestSegment.end;
470 U32 newEnd = bestSegment.begin;
471 U32 pos;
472 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
473 U32 freq = freqs[ctx->dmerAt[pos]];
474 if (freq != 0) {
475 newBegin = MIN(newBegin, pos);
476 newEnd = pos + 1;
477 }
478 }
479 bestSegment.begin = newBegin;
480 bestSegment.end = newEnd;
481 }
482 {
483 /* Zero out the frequency of each dmer covered by the chosen segment. */
484 U32 pos;
485 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
486 freqs[ctx->dmerAt[pos]] = 0;
487 }
488 }
489 return bestSegment;
490 }
491
492 /**
493 * Check the validity of the parameters.
494 * Returns non-zero if the parameters are valid and 0 otherwise.
495 */
COVER_checkParameters(ZDICT_cover_params_t parameters,size_t maxDictSize)496 static int COVER_checkParameters(ZDICT_cover_params_t parameters,
497 size_t maxDictSize) {
498 /* k and d are required parameters */
499 if (parameters.d == 0 || parameters.k == 0) {
500 return 0;
501 }
502 /* k <= maxDictSize */
503 if (parameters.k > maxDictSize) {
504 return 0;
505 }
506 /* d <= k */
507 if (parameters.d > parameters.k) {
508 return 0;
509 }
510 /* 0 < splitPoint <= 1 */
511 if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
512 return 0;
513 }
514 return 1;
515 }
516
517 /**
518 * Clean up a context initialized with `COVER_ctx_init()`.
519 */
COVER_ctx_destroy(COVER_ctx_t * ctx)520 static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
521 if (!ctx) {
522 return;
523 }
524 if (ctx->suffix) {
525 free(ctx->suffix);
526 ctx->suffix = NULL;
527 }
528 if (ctx->freqs) {
529 free(ctx->freqs);
530 ctx->freqs = NULL;
531 }
532 if (ctx->dmerAt) {
533 free(ctx->dmerAt);
534 ctx->dmerAt = NULL;
535 }
536 if (ctx->offsets) {
537 free(ctx->offsets);
538 ctx->offsets = NULL;
539 }
540 }
541
542 /**
543 * Prepare a context for dictionary building.
544 * The context is only dependent on the parameter `d` and can used multiple
545 * times.
546 * Returns 0 on success or error code on error.
547 * The context must be destroyed with `COVER_ctx_destroy()`.
548 */
COVER_ctx_init(COVER_ctx_t * ctx,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,unsigned d,double splitPoint)549 static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
550 const size_t *samplesSizes, unsigned nbSamples,
551 unsigned d, double splitPoint) {
552 const BYTE *const samples = (const BYTE *)samplesBuffer;
553 const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
554 /* Split samples into testing and training sets */
555 const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
556 const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
557 const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
558 const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
559 /* Checks */
560 if (totalSamplesSize < MAX(d, sizeof(U64)) ||
561 totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
562 DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
563 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
564 return ERROR(srcSize_wrong);
565 }
566 /* Check if there are at least 5 training samples */
567 if (nbTrainSamples < 5) {
568 DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
569 return ERROR(srcSize_wrong);
570 }
571 /* Check if there's testing sample */
572 if (nbTestSamples < 1) {
573 DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
574 return ERROR(srcSize_wrong);
575 }
576 /* Zero the context */
577 memset(ctx, 0, sizeof(*ctx));
578 DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
579 (unsigned)trainingSamplesSize);
580 DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
581 (unsigned)testSamplesSize);
582 ctx->samples = samples;
583 ctx->samplesSizes = samplesSizes;
584 ctx->nbSamples = nbSamples;
585 ctx->nbTrainSamples = nbTrainSamples;
586 ctx->nbTestSamples = nbTestSamples;
587 /* Partial suffix array */
588 ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
589 ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
590 /* Maps index to the dmerID */
591 ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
592 /* The offsets of each file */
593 ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
594 if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
595 DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
596 COVER_ctx_destroy(ctx);
597 return ERROR(memory_allocation);
598 }
599 ctx->freqs = NULL;
600 ctx->d = d;
601
602 /* Fill offsets from the samplesSizes */
603 {
604 U32 i;
605 ctx->offsets[0] = 0;
606 for (i = 1; i <= nbSamples; ++i) {
607 ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
608 }
609 }
610 DISPLAYLEVEL(2, "Constructing partial suffix array\n");
611 {
612 /* suffix is a partial suffix array.
613 * It only sorts suffixes by their first parameters.d bytes.
614 * The sort is stable, so each dmer group is sorted by position in input.
615 */
616 U32 i;
617 for (i = 0; i < ctx->suffixSize; ++i) {
618 ctx->suffix[i] = i;
619 }
620 /* qsort doesn't take an opaque pointer, so pass as a global.
621 * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
622 */
623 g_coverCtx = ctx;
624 #if defined(__OpenBSD__)
625 mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
626 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
627 #else
628 qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
629 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
630 #endif
631 }
632 DISPLAYLEVEL(2, "Computing frequencies\n");
633 /* For each dmer group (group of positions with the same first d bytes):
634 * 1. For each position we set dmerAt[position] = dmerID. The dmerID is
635 * (groupBeginPtr - suffix). This allows us to go from position to
636 * dmerID so we can look up values in freq.
637 * 2. We calculate how many samples the dmer occurs in and save it in
638 * freqs[dmerId].
639 */
640 COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
641 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
642 ctx->freqs = ctx->suffix;
643 ctx->suffix = NULL;
644 return 0;
645 }
646
COVER_warnOnSmallCorpus(size_t maxDictSize,size_t nbDmers,int displayLevel)647 void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
648 {
649 const double ratio = (double)nbDmers / maxDictSize;
650 if (ratio >= 10) {
651 return;
652 }
653 LOCALDISPLAYLEVEL(displayLevel, 1,
654 "WARNING: The maximum dictionary size %u is too large "
655 "compared to the source size %u! "
656 "size(source)/size(dictionary) = %f, but it should be >= "
657 "10! This may lead to a subpar dictionary! We recommend "
658 "training on sources at least 10x, and preferably 100x "
659 "the size of the dictionary! \n", (U32)maxDictSize,
660 (U32)nbDmers, ratio);
661 }
662
COVER_computeEpochs(U32 maxDictSize,U32 nbDmers,U32 k,U32 passes)663 COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
664 U32 nbDmers, U32 k, U32 passes)
665 {
666 const U32 minEpochSize = k * 10;
667 COVER_epoch_info_t epochs;
668 epochs.num = MAX(1, maxDictSize / k / passes);
669 epochs.size = nbDmers / epochs.num;
670 if (epochs.size >= minEpochSize) {
671 assert(epochs.size * epochs.num <= nbDmers);
672 return epochs;
673 }
674 epochs.size = MIN(minEpochSize, nbDmers);
675 epochs.num = nbDmers / epochs.size;
676 assert(epochs.size * epochs.num <= nbDmers);
677 return epochs;
678 }
679
680 /**
681 * Given the prepared context build the dictionary.
682 */
COVER_buildDictionary(const COVER_ctx_t * ctx,U32 * freqs,COVER_map_t * activeDmers,void * dictBuffer,size_t dictBufferCapacity,ZDICT_cover_params_t parameters)683 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
684 COVER_map_t *activeDmers, void *dictBuffer,
685 size_t dictBufferCapacity,
686 ZDICT_cover_params_t parameters) {
687 BYTE *const dict = (BYTE *)dictBuffer;
688 size_t tail = dictBufferCapacity;
689 /* Divide the data into epochs. We will select one segment from each epoch. */
690 const COVER_epoch_info_t epochs = COVER_computeEpochs(
691 (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
692 const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
693 size_t zeroScoreRun = 0;
694 size_t epoch;
695 DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
696 (U32)epochs.num, (U32)epochs.size);
697 /* Loop through the epochs until there are no more segments or the dictionary
698 * is full.
699 */
700 for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
701 const U32 epochBegin = (U32)(epoch * epochs.size);
702 const U32 epochEnd = epochBegin + epochs.size;
703 size_t segmentSize;
704 /* Select a segment */
705 COVER_segment_t segment = COVER_selectSegment(
706 ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
707 /* If the segment covers no dmers, then we are out of content.
708 * There may be new content in other epochs, for continue for some time.
709 */
710 if (segment.score == 0) {
711 if (++zeroScoreRun >= maxZeroScoreRun) {
712 break;
713 }
714 continue;
715 }
716 zeroScoreRun = 0;
717 /* Trim the segment if necessary and if it is too small then we are done */
718 segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
719 if (segmentSize < parameters.d) {
720 break;
721 }
722 /* We fill the dictionary from the back to allow the best segments to be
723 * referenced with the smallest offsets.
724 */
725 tail -= segmentSize;
726 memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
727 DISPLAYUPDATE(
728 2, "\r%u%% ",
729 (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
730 }
731 DISPLAYLEVEL(2, "\r%79s\r", "");
732 return tail;
733 }
734
ZDICT_trainFromBuffer_cover(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_cover_params_t parameters)735 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
736 void *dictBuffer, size_t dictBufferCapacity,
737 const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
738 ZDICT_cover_params_t parameters)
739 {
740 BYTE* const dict = (BYTE*)dictBuffer;
741 COVER_ctx_t ctx;
742 COVER_map_t activeDmers;
743 parameters.splitPoint = 1.0;
744 /* Initialize global data */
745 g_displayLevel = (int)parameters.zParams.notificationLevel;
746 /* Checks */
747 if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
748 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
749 return ERROR(parameter_outOfBound);
750 }
751 if (nbSamples == 0) {
752 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
753 return ERROR(srcSize_wrong);
754 }
755 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
756 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
757 ZDICT_DICTSIZE_MIN);
758 return ERROR(dstSize_tooSmall);
759 }
760 /* Initialize context and activeDmers */
761 {
762 size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
763 parameters.d, parameters.splitPoint);
764 if (ZSTD_isError(initVal)) {
765 return initVal;
766 }
767 }
768 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
769 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
770 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
771 COVER_ctx_destroy(&ctx);
772 return ERROR(memory_allocation);
773 }
774
775 DISPLAYLEVEL(2, "Building dictionary\n");
776 {
777 const size_t tail =
778 COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
779 dictBufferCapacity, parameters);
780 const size_t dictionarySize = ZDICT_finalizeDictionary(
781 dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
782 samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
783 if (!ZSTD_isError(dictionarySize)) {
784 DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
785 (unsigned)dictionarySize);
786 }
787 COVER_ctx_destroy(&ctx);
788 COVER_map_destroy(&activeDmers);
789 return dictionarySize;
790 }
791 }
792
793
794
COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,const size_t * samplesSizes,const BYTE * samples,size_t * offsets,size_t nbTrainSamples,size_t nbSamples,BYTE * const dict,size_t dictBufferCapacity)795 size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
796 const size_t *samplesSizes, const BYTE *samples,
797 size_t *offsets,
798 size_t nbTrainSamples, size_t nbSamples,
799 BYTE *const dict, size_t dictBufferCapacity) {
800 size_t totalCompressedSize = ERROR(GENERIC);
801 /* Pointers */
802 ZSTD_CCtx *cctx;
803 ZSTD_CDict *cdict;
804 void *dst;
805 /* Local variables */
806 size_t dstCapacity;
807 size_t i;
808 /* Allocate dst with enough space to compress the maximum sized sample */
809 {
810 size_t maxSampleSize = 0;
811 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
812 for (; i < nbSamples; ++i) {
813 maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
814 }
815 dstCapacity = ZSTD_compressBound(maxSampleSize);
816 dst = malloc(dstCapacity);
817 }
818 /* Create the cctx and cdict */
819 cctx = ZSTD_createCCtx();
820 cdict = ZSTD_createCDict(dict, dictBufferCapacity,
821 parameters.zParams.compressionLevel);
822 if (!dst || !cctx || !cdict) {
823 goto _compressCleanup;
824 }
825 /* Compress each sample and sum their sizes (or error) */
826 totalCompressedSize = dictBufferCapacity;
827 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
828 for (; i < nbSamples; ++i) {
829 const size_t size = ZSTD_compress_usingCDict(
830 cctx, dst, dstCapacity, samples + offsets[i],
831 samplesSizes[i], cdict);
832 if (ZSTD_isError(size)) {
833 totalCompressedSize = size;
834 goto _compressCleanup;
835 }
836 totalCompressedSize += size;
837 }
838 _compressCleanup:
839 ZSTD_freeCCtx(cctx);
840 ZSTD_freeCDict(cdict);
841 if (dst) {
842 free(dst);
843 }
844 return totalCompressedSize;
845 }
846
847
848 /**
849 * Initialize the `COVER_best_t`.
850 */
COVER_best_init(COVER_best_t * best)851 void COVER_best_init(COVER_best_t *best) {
852 if (best==NULL) return; /* compatible with init on NULL */
853 (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
854 (void)ZSTD_pthread_cond_init(&best->cond, NULL);
855 best->liveJobs = 0;
856 best->dict = NULL;
857 best->dictSize = 0;
858 best->compressedSize = (size_t)-1;
859 memset(&best->parameters, 0, sizeof(best->parameters));
860 }
861
862 /**
863 * Wait until liveJobs == 0.
864 */
COVER_best_wait(COVER_best_t * best)865 void COVER_best_wait(COVER_best_t *best) {
866 if (!best) {
867 return;
868 }
869 ZSTD_pthread_mutex_lock(&best->mutex);
870 while (best->liveJobs != 0) {
871 ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
872 }
873 ZSTD_pthread_mutex_unlock(&best->mutex);
874 }
875
876 /**
877 * Call COVER_best_wait() and then destroy the COVER_best_t.
878 */
COVER_best_destroy(COVER_best_t * best)879 void COVER_best_destroy(COVER_best_t *best) {
880 if (!best) {
881 return;
882 }
883 COVER_best_wait(best);
884 if (best->dict) {
885 free(best->dict);
886 }
887 ZSTD_pthread_mutex_destroy(&best->mutex);
888 ZSTD_pthread_cond_destroy(&best->cond);
889 }
890
891 /**
892 * Called when a thread is about to be launched.
893 * Increments liveJobs.
894 */
COVER_best_start(COVER_best_t * best)895 void COVER_best_start(COVER_best_t *best) {
896 if (!best) {
897 return;
898 }
899 ZSTD_pthread_mutex_lock(&best->mutex);
900 ++best->liveJobs;
901 ZSTD_pthread_mutex_unlock(&best->mutex);
902 }
903
904 /**
905 * Called when a thread finishes executing, both on error or success.
906 * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
907 * If this dictionary is the best so far save it and its parameters.
908 */
COVER_best_finish(COVER_best_t * best,ZDICT_cover_params_t parameters,COVER_dictSelection_t selection)909 void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
910 COVER_dictSelection_t selection) {
911 void* dict = selection.dictContent;
912 size_t compressedSize = selection.totalCompressedSize;
913 size_t dictSize = selection.dictSize;
914 if (!best) {
915 return;
916 }
917 {
918 size_t liveJobs;
919 ZSTD_pthread_mutex_lock(&best->mutex);
920 --best->liveJobs;
921 liveJobs = best->liveJobs;
922 /* If the new dictionary is better */
923 if (compressedSize < best->compressedSize) {
924 /* Allocate space if necessary */
925 if (!best->dict || best->dictSize < dictSize) {
926 if (best->dict) {
927 free(best->dict);
928 }
929 best->dict = malloc(dictSize);
930 if (!best->dict) {
931 best->compressedSize = ERROR(GENERIC);
932 best->dictSize = 0;
933 ZSTD_pthread_cond_signal(&best->cond);
934 ZSTD_pthread_mutex_unlock(&best->mutex);
935 return;
936 }
937 }
938 /* Save the dictionary, parameters, and size */
939 if (dict) {
940 memcpy(best->dict, dict, dictSize);
941 best->dictSize = dictSize;
942 best->parameters = parameters;
943 best->compressedSize = compressedSize;
944 }
945 }
946 if (liveJobs == 0) {
947 ZSTD_pthread_cond_broadcast(&best->cond);
948 }
949 ZSTD_pthread_mutex_unlock(&best->mutex);
950 }
951 }
952
COVER_dictSelectionError(size_t error)953 COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
954 COVER_dictSelection_t selection = { NULL, 0, error };
955 return selection;
956 }
957
COVER_dictSelectionIsError(COVER_dictSelection_t selection)958 unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
959 return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
960 }
961
COVER_dictSelectionFree(COVER_dictSelection_t selection)962 void COVER_dictSelectionFree(COVER_dictSelection_t selection){
963 free(selection.dictContent);
964 }
965
COVER_selectDict(BYTE * customDictContent,size_t dictBufferCapacity,size_t dictContentSize,const BYTE * samplesBuffer,const size_t * samplesSizes,unsigned nbFinalizeSamples,size_t nbCheckSamples,size_t nbSamples,ZDICT_cover_params_t params,size_t * offsets,size_t totalCompressedSize)966 COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
967 size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
968 size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
969
970 size_t largestDict = 0;
971 size_t largestCompressed = 0;
972 BYTE* customDictContentEnd = customDictContent + dictContentSize;
973
974 BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
975 BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
976 double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
977
978 if (!largestDictbuffer || !candidateDictBuffer) {
979 free(largestDictbuffer);
980 free(candidateDictBuffer);
981 return COVER_dictSelectionError(dictContentSize);
982 }
983
984 /* Initial dictionary size and compressed size */
985 memcpy(largestDictbuffer, customDictContent, dictContentSize);
986 dictContentSize = ZDICT_finalizeDictionary(
987 largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
988 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
989
990 if (ZDICT_isError(dictContentSize)) {
991 free(largestDictbuffer);
992 free(candidateDictBuffer);
993 return COVER_dictSelectionError(dictContentSize);
994 }
995
996 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
997 samplesBuffer, offsets,
998 nbCheckSamples, nbSamples,
999 largestDictbuffer, dictContentSize);
1000
1001 if (ZSTD_isError(totalCompressedSize)) {
1002 free(largestDictbuffer);
1003 free(candidateDictBuffer);
1004 return COVER_dictSelectionError(totalCompressedSize);
1005 }
1006
1007 if (params.shrinkDict == 0) {
1008 COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1009 free(candidateDictBuffer);
1010 return selection;
1011 }
1012
1013 largestDict = dictContentSize;
1014 largestCompressed = totalCompressedSize;
1015 dictContentSize = ZDICT_DICTSIZE_MIN;
1016
1017 /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1018 while (dictContentSize < largestDict) {
1019 memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1020 dictContentSize = ZDICT_finalizeDictionary(
1021 candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1022 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1023
1024 if (ZDICT_isError(dictContentSize)) {
1025 free(largestDictbuffer);
1026 free(candidateDictBuffer);
1027 return COVER_dictSelectionError(dictContentSize);
1028
1029 }
1030
1031 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1032 samplesBuffer, offsets,
1033 nbCheckSamples, nbSamples,
1034 candidateDictBuffer, dictContentSize);
1035
1036 if (ZSTD_isError(totalCompressedSize)) {
1037 free(largestDictbuffer);
1038 free(candidateDictBuffer);
1039 return COVER_dictSelectionError(totalCompressedSize);
1040 }
1041
1042 if (totalCompressedSize <= largestCompressed * regressionTolerance) {
1043 COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
1044 free(largestDictbuffer);
1045 return selection;
1046 }
1047 dictContentSize *= 2;
1048 }
1049 dictContentSize = largestDict;
1050 totalCompressedSize = largestCompressed;
1051 {
1052 COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1053 free(candidateDictBuffer);
1054 return selection;
1055 }
1056 }
1057
1058 /**
1059 * Parameters for COVER_tryParameters().
1060 */
1061 typedef struct COVER_tryParameters_data_s {
1062 const COVER_ctx_t *ctx;
1063 COVER_best_t *best;
1064 size_t dictBufferCapacity;
1065 ZDICT_cover_params_t parameters;
1066 } COVER_tryParameters_data_t;
1067
1068 /**
1069 * Tries a set of parameters and updates the COVER_best_t with the results.
1070 * This function is thread safe if zstd is compiled with multithreaded support.
1071 * It takes its parameters as an *OWNING* opaque pointer to support threading.
1072 */
COVER_tryParameters(void * opaque)1073 static void COVER_tryParameters(void *opaque)
1074 {
1075 /* Save parameters as local variables */
1076 COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1077 const COVER_ctx_t *const ctx = data->ctx;
1078 const ZDICT_cover_params_t parameters = data->parameters;
1079 size_t dictBufferCapacity = data->dictBufferCapacity;
1080 size_t totalCompressedSize = ERROR(GENERIC);
1081 /* Allocate space for hash table, dict, and freqs */
1082 COVER_map_t activeDmers;
1083 BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1084 COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1085 U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1086 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1087 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1088 goto _cleanup;
1089 }
1090 if (!dict || !freqs) {
1091 DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1092 goto _cleanup;
1093 }
1094 /* Copy the frequencies because we need to modify them */
1095 memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1096 /* Build the dictionary */
1097 {
1098 const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1099 dictBufferCapacity, parameters);
1100 selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1101 ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1102 totalCompressedSize);
1103
1104 if (COVER_dictSelectionIsError(selection)) {
1105 DISPLAYLEVEL(1, "Failed to select dictionary\n");
1106 goto _cleanup;
1107 }
1108 }
1109 _cleanup:
1110 free(dict);
1111 COVER_best_finish(data->best, parameters, selection);
1112 free(data);
1113 COVER_map_destroy(&activeDmers);
1114 COVER_dictSelectionFree(selection);
1115 free(freqs);
1116 }
1117
ZDICT_optimizeTrainFromBuffer_cover(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_cover_params_t * parameters)1118 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1119 void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1120 const size_t* samplesSizes, unsigned nbSamples,
1121 ZDICT_cover_params_t* parameters)
1122 {
1123 /* constants */
1124 const unsigned nbThreads = parameters->nbThreads;
1125 const double splitPoint =
1126 parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1127 const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1128 const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1129 const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1130 const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1131 const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1132 const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1133 const unsigned kIterations =
1134 (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1135 const unsigned shrinkDict = 0;
1136 /* Local variables */
1137 const int displayLevel = parameters->zParams.notificationLevel;
1138 unsigned iteration = 1;
1139 unsigned d;
1140 unsigned k;
1141 COVER_best_t best;
1142 POOL_ctx *pool = NULL;
1143 int warned = 0;
1144
1145 /* Checks */
1146 if (splitPoint <= 0 || splitPoint > 1) {
1147 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1148 return ERROR(parameter_outOfBound);
1149 }
1150 if (kMinK < kMaxD || kMaxK < kMinK) {
1151 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152 return ERROR(parameter_outOfBound);
1153 }
1154 if (nbSamples == 0) {
1155 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1156 return ERROR(srcSize_wrong);
1157 }
1158 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1159 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1160 ZDICT_DICTSIZE_MIN);
1161 return ERROR(dstSize_tooSmall);
1162 }
1163 if (nbThreads > 1) {
1164 pool = POOL_create(nbThreads, 1);
1165 if (!pool) {
1166 return ERROR(memory_allocation);
1167 }
1168 }
1169 /* Initialization */
1170 COVER_best_init(&best);
1171 /* Turn down global display level to clean up display at level 2 and below */
1172 g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1173 /* Loop through d first because each new value needs a new context */
1174 LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1175 kIterations);
1176 for (d = kMinD; d <= kMaxD; d += 2) {
1177 /* Initialize the context for this value of d */
1178 COVER_ctx_t ctx;
1179 LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1180 {
1181 const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1182 if (ZSTD_isError(initVal)) {
1183 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1184 COVER_best_destroy(&best);
1185 POOL_free(pool);
1186 return initVal;
1187 }
1188 }
1189 if (!warned) {
1190 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1191 warned = 1;
1192 }
1193 /* Loop through k reusing the same context */
1194 for (k = kMinK; k <= kMaxK; k += kStepSize) {
1195 /* Prepare the arguments */
1196 COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1197 sizeof(COVER_tryParameters_data_t));
1198 LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1199 if (!data) {
1200 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1201 COVER_best_destroy(&best);
1202 COVER_ctx_destroy(&ctx);
1203 POOL_free(pool);
1204 return ERROR(memory_allocation);
1205 }
1206 data->ctx = &ctx;
1207 data->best = &best;
1208 data->dictBufferCapacity = dictBufferCapacity;
1209 data->parameters = *parameters;
1210 data->parameters.k = k;
1211 data->parameters.d = d;
1212 data->parameters.splitPoint = splitPoint;
1213 data->parameters.steps = kSteps;
1214 data->parameters.shrinkDict = shrinkDict;
1215 data->parameters.zParams.notificationLevel = g_displayLevel;
1216 /* Check the parameters */
1217 if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1218 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1219 free(data);
1220 continue;
1221 }
1222 /* Call the function and pass ownership of data to it */
1223 COVER_best_start(&best);
1224 if (pool) {
1225 POOL_add(pool, &COVER_tryParameters, data);
1226 } else {
1227 COVER_tryParameters(data);
1228 }
1229 /* Print status */
1230 LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
1231 (unsigned)((iteration * 100) / kIterations));
1232 ++iteration;
1233 }
1234 COVER_best_wait(&best);
1235 COVER_ctx_destroy(&ctx);
1236 }
1237 LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1238 /* Fill the output buffer and parameters with output of the best parameters */
1239 {
1240 const size_t dictSize = best.dictSize;
1241 if (ZSTD_isError(best.compressedSize)) {
1242 const size_t compressedSize = best.compressedSize;
1243 COVER_best_destroy(&best);
1244 POOL_free(pool);
1245 return compressedSize;
1246 }
1247 *parameters = best.parameters;
1248 memcpy(dictBuffer, best.dict, dictSize);
1249 COVER_best_destroy(&best);
1250 POOL_free(pool);
1251 return dictSize;
1252 }
1253 }
1254